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Abstract

Nucleic Acid Technology (NAT), introduced in the late 90s, is a molecular amplification
method that can be used for the diagnosis and management of patients with infectious
diseases. NAT test results are obtained quicker and are quantified, providing greater infor-
mation than the positive/negative results available from traditional techniques. However,
NATs are technically demanding, susceptible to contamination and hence results from as-
sociated diagnostic tests may be inaccurate. External Quality Assessment (EQA) services
are programmes developed to assess and advance the quality performance of laboratories
that use NAT kits to diagnose, manage and control human diseases. Quality Control for
Molecular Diagnostics (QCMD), an organisation that provides EQA, uses proficiency panels
designed with samples containing no, weak, medium and strong microbial loads. The panels
are distributed to participating laboratories who analyse them knowing the pathogen but
blind to the microbial load.

In this thesis, factors which are significantly associated with EQA participants’ performance
are identified. In particular, rigorous statistical methods are used and developed to interro-
gate, for the first time, the large reservoir of QCMD data and model participants’ perfor-
mance over time for different pathogens. Furthermore, new scoring schemes are developed
to assess individual participants’ performance on individual panels.

Existing scoring schemes do not take into account known prior information about the sam-
ple viral load. We propose, using Bayesian techniques, to score participants with respect
to a ‘Bayesian mean’ value obtained from prior information available to QCMD and the
values from ‘reference’ laboratories with high reputation. For qualitative (presence/absence)
diagnosis, logistic regression models from a Bayesian perspective are developed to fit his-
torical and current data in order to identify factors which are significantly associated with
participant performance. For quantitative (estimate of sample microbial load) diagnosis,
Generalised Linear Models (GLM) from a Bayesian perspective are developed to fit the data
and find significant factors associated with participants’ estimates of the sample microbial
load. A more natural parameter inference is made from a Bayesian perspective using the
distributions of the parameters given the data. Model validation and robustness are also
investigated. Some responses in the quantitative diagnosis are given as censored data, so
a GLM which allows the inclusion of the censored observations is introduced and devel-
oped in order to obtain a more accurate model to fit these data. Also, a variation of an
existing model comparison tool, the Deviance Information Criterion (DIC), is developed in
order to discriminate between different suggested models. Extensive use is made of Markov
Chain Monte Carlo (MCMC) methods using R statistical software to obtain model estimates.

The benefits of adopting this approach are the full use of data from panels for the same
pathogen over time, above/below limit of detection data and a more accurate target value.
These provide a better measure of participant performance, so the advice given to partic-
ipants about the best technology to be used improves. The techniques developed in this
thesis can be applied to other research areas- especially those where GLM for censored ob-
servation are used, such as survival analysis in medical research and industrial experiments
on reliability.
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Chapter 1

Introduction

The motivation of this research starts with a very common scenario. A general practitioner

(GP), consulted by an unwell patient, may suspect that the patient is suffering from a disease

caused by a pathogen, hepatitis B (HBV), for example. To obtain a diagnosis the doctor

takes a sample (such as a blood sample) from the patient and sends it to a clinical laboratory

to be tested for a specific virus. Traditional diagnostic tests take two weeks to provide a

positive or negative diagnosis for having HBV. More recent molecular techniques provide an

estimate of the microbial load within a much shorter period, often on the same day.

The shorter time to obtain the results from molecular diagnostic techniques has a number

of advantages. Treatment, if required, can begin much earlier when the microbial load may

be lower. In addition, there are some circumstances, such as transplant patients, where an

infection may be life threatening and therefore waiting for two weeks for a diagnosis would

be too long. Furthermore, there are some applications, such as in clinics that treat sexually

transmitted diseases (for example HIV), where the patient may not return to collect their

diagnosis. It is advantageous in these cases for the clinician to obtain the results of a di-

agnostic test when the patient is still present at the consultation. Point of care, molecular

diagnostic kits are currently being designed for such circumstances.
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The ability of molecular diagnostic kits to produce an estimate of the microbial load possesses

also a series of advantages, such as the rapid availability of the results allowing the clinician

to monitor pathogen load that can be used to determine and adjust the required dose by the

patient. This is an important consideration in diseases with drug resistant pathogens, such

as HIV.

The advantages above assume that the clinical laboratory using molecular diagnostic kits

provide clinicians with accurate results. Therefore, it is of interest to find out how well

laboratories analyse the samples, to which degree the laboratory does so correctly and the

reason why different laboratories may provide different estimates of the sample microbial

load for the same sample.

1.1 Background

1.1.1 Molecular Amplification Methods

Molecular Amplification Methods in Diagnostic Virology are used for the diagnosis and man-

agement of patients with infectious diseases such as hepatitis B (HBV), hepatitis C (HCV)

and Enterovirus (EV). New technologies, in particular Nucleic Acid Technology (NAT), have

been recently introduced and used by laboratories worldwide (Heid, et al., 1996; Fleige and

Pfaffl, 2006). These technologies have the advantages that results can be obtained rapidly

and can be quantified. Also, it is claimed that NATs have fewer false positives (more sensi-

tive) and false negatives (more specific) than traditional techniques.
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However, NATs are technically demanding, susceptible to contamination and hence results

of diagnostic tests provided by these technologies may be inaccurate (Germann and Te-

lenti, 1995; BioTecniques, 2007). Therefore, there is a need to monitor and improve labo-

ratory quality, and one method used for this is undertaking External Quality Assessment

(EQA), known in the United States as Proficiency Testing (PT) (ISO/IEC Guides, 1997a).

Nucleic acid amplification techniques are tests that directly detect the genetic material of

a microbe. These techniques vary depending on the amplification method. One method is

conventional Polymerase Chain Reaction (PCR), which is based on the amplification of a

single or few copies of a piece of DNA in order to generate thousands of copies of a particular

DNA sequence. A similar method is real time PCR based on the PCR method to amplify a

DNA sequence. However, real time PCR simultaneously quantifies a target DNA molecule

in real time as the reaction progresses, whilst with conventional PCR the product of the

reaction is detected at its end. Nucleic Acid Sequence Based Amplification (NASBA) is a

NAT method used to amplify RNA sequences. Amongst other methods are branched DNA

(bDNA) techniques, which use a molecule that links to the specific genetic material, and

Transcription Mediated Amplification (TMA). It should be noted that laboratories can use

a commercial system or can develop a system in-house (Apfalter et al., 2005).

1.1.2 External Quality Assessment

EQA has long been considered the most important way of monitoring laboratory quality. It

allows a laboratory to monitor independently its performance and provides feedback to iden-

tify and investigate potential areas of concern. Specific guidelines and general principles are

common to most EQA schemes (ILAC-G13, 2000; ISO/IEC Guides, 1997b). However, there

are many different approaches to EQA depending on the clinical, analytical, and regulatory

goals, which require variations in the design, implementation and reporting mechanism of

the EQA programme. Thus, the identification of appropriate “performance indicators” and
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their statistical analysis vary across EQA providers. Clinical chemistry has taken the lead

on laboratory quality issues but the traditional approaches to quality and EQA are limited

and difficult to apply for molecular diagnostics. Therefore, there is a need to adapt current

methods to define, develop and implement suitable performance indicators.

Within clinical virology and microbiology, EQA organisations providing schemes for molec-

ular diagnostics of infectious diseases have focused on the traditional subjective approach

to EQA with peer group review and consensus analyses used to measure the results from

all participants. They have also defined performance indicators by simple and immedi-

ate measures of the participants’ performance based on functions of the error or deviation

(NEQAS, 2010; QCMD, 2010). These performance indicators can be used as a relative

measure to compare laboratories, and are easy to compute and interpret. However, their

statistical distributions are unknown, and so it is difficult to establish limits to identify

participants who are performing satisfactorily.

1.1.3 Quality Control for Molecular Diagnosis and brief introduc-

tion to the data

Quality Control for Molecular Diagnosis (QCMD) is an organization based in Glasgow which

provides an EQA service for molecular diagnostic kits users and which aims “to assess and

advance the quality of NAT for diagnosis, management and control of human diseases with

particular reference to infectious diseases”. QCMD offers a variety of independent pro-

grammes and nowadays covers 29 programmes of different pathogens. Each programme

provides a panel of samples with different pathogen loads to be tested with respect to a

target pathogen. A worldwide range of laboratories participate, often voluntarily, on the

EQA programmes offered by QCMD so that they can be assessed on their performance.
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Using the results obtained by each participating laboratory of the EQA programme of a

particular pathogen, QCMD provides an individual score which allows the participants to

compare its results with those from other participants.

The QCMD organisation provides EQA programmes for a large range of viruses, such as,

Blood Borne Viruses (BBV) (e.g. Hepatitis B, Hepatitis C and HIV) and Enterovirus

(EV)(QCMD, 2010). QCMD designs panels of a single known pathogen containing sam-

ples of no, weak, medium and strong microbial load. The target samples’ microbial or viral

loads are estimated by QCMD technicians. The estimated samples’ target values, deter-

mined by QCMD, are based on the design of the panels. In addition, prior to distribution,

the panels are also sent to selected laboratories (‘reference’ laboratories) with a good rep-

utation for working with the pathogen. These ‘reference’ laboratories provide estimates of

the samples’ microbial load that QCMD uses in order to check for possible inconsistencies.

However, this information is not currently used when scoring participants.

The panels and a questionnaire related to the entire laboratory practice are distributed to

participating laboratories. Participating laboratories analyse a panel knowing the pathogen,

but are blind to the microbial loads estimated by QCMD. Then, the results obtained from

the participants are compared with the consensus of other participants estimates of the sam-

ple loads.

Previously, QCMD data have been used to provide individual performance indicator scores

and a general report summarising participants’ performance for individual pathogens for an

individual panel only. However, due to the lack of adequate statistical methods in the field of

quality control for molecular diagnosis, QCMD was not able to provide participants of EQA

programmes with suitable feedback and information about how their laboratory practices

affected their performance.

5



CHAPTER 1. INTRODUCTION

To address this, the present study uses a Bayesian approach to develop a statistical frame-

work suitable for the analysis of QCMD data. Panels for three pathogens over four years

(2002-2005) will be used for model development and testing.

1.2 Structure of the Thesis

The first and second chapter of the thesis describe the background of the project and the

data to be analysed. In Chapter 1 a general overview of the statistical techniques and con-

texts that will be used in this thesis to develop an appropriate model for the data is given.

It is also introduced the statistical methodology used and the two schools into which the

discipline of statistics is divided. In Chapter 2 the data of interest are described and an

exploratory analysis carried out.

Chapter 3 describes a newly developed and improved scoring system which assesses indi-

vidual participant’s performance. It also shows a comparison of the results obtained from

the improved scoring system applied to Hepatitis B virus data from 2005 with the current

scoring system used by QCMD.

In Chapter 4 and 5, new approaches for the analysis of qualitative and quantitative responses

in EQA application are. A qualitative response is the detection (or not) of the pathogen,

whilst a quantitative response is the estimation of the microbial load. The statistical models

developed from a Bayesian perspective are described and their applications to Enterovirus,

Hepatitis B virus and Hepatitis C virus data are shown.
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Due to the characteristics of the quantitative data, a new model that allows the use the

responses outside the limits of detection of the assay are refined and developed in order

to find information about participants’ performance. The improved model for quantitative

responses is described and shown in Chapter 6. Chapter 7 describes the results obtained

from a simulation study carried out in order to test and extend the improved model to other

data sources and areas of research.

Finally, Chapter 8 provides a discussion of this project and proposes further work. The ap-

pendices contain information about the probability distributions used throughout the thesis

and tables of results from the model application, as well as some classical tests used to study

the robustness of the models.

1.3 Statistical Data Modelling

Mathematical models are the realization of a real problem under study via equations that

explain or describe the problem itself. However, the mechanisms described by mathematical

models are often influenced by external factors that cannot be easily treated mathemati-

cally, such as the behaviour of biological organisms or atmospheric conditions. These sys-

tems cannot be exactly expressed by a deterministic equation. In the current application,

the quantification of viral load from a blood sample may, for example, be influenced by

the technician who analyses the sample, the technology used or the laboratory procedure.

Therefore, observational data may be collected and valid analysis techniques incorporating

probabilities about the observed data into the mathematical equations turn deterministic

models into statistical models (Krzanowski, 1998). In this way, variability using probability

distributions accommodating both random and systematic variations are represented.
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Statistical data modelling can be seen as a tool that enables the extrapolation from the ob-

served information from a sample of the population to the general population under study.

Thus, the statistical modelling process should involve a scientific team which provides guid-

ance and advice on how to represent reality by equations and probability functions. Consid-

erations of how the model is built and matched to the data need to be taken into account and

this can lead to the production of alternative models. This is the process of model checking

and criticism (Morgan, 2000).

Therefore, statistical models are about what we can learn from data. The art of modelling

lies in finding and providing a ‘good’ technique to describe the model, which explains the

real problem, and answers questions proposed in the most sensible and possibly less complex

way. Model complexity depends on the problem to be solved and the type of the answer

required (Davison, 2003).

1.3.1 Bayesian Models

Statistical modelling of data seeks to quantify some uncertainty, and so it is reasonable to

do it by using probability. Since physical randomness induces uncertainty, it seems sensible

to describe this uncertainty in terms of random events instead of fixing it with frequencies

from repeated measurements under the same conditions. Also, decision-making based on

statistical inference implies that the uncertainty must be represented in terms of probability

(Bernardo and Smith, 1994). The basic principle in Bayesian statistics is that probability

is a measure of uncertainty. If y is the known information and θ the unknown information,

then Bayes’ theorem (Bayes, 1763) can be formulated as follows:

f(θ|y) ∝ f(y|θ)f(θ), (1.1)
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where f(y|θ) is the likelihood function of y given θ, f(θ) denotes our prior beliefs about the

unknown information and f(θ|y) is the posterior density of the unknown information given

the known data.

The normalising factor in equation (1.1) is the inverse of the likelihood accumulated over all

possible prior values,

f(y) =
∫

f(θ)f(y|θ)dθ. (1.2)

In Bayesian modelling the posterior density of the unknown information is determined by

updating the assumed prior information with the data. Thus, information on the probabil-

ity distribution and characteristics of the unknown information is obtained. As a result of

this, Bayesian methods provide a comprehensive and robust approach to model estimation.

They are not dependent on the assumption of asymptotic normality as much as in classical

statistical modelling. In addition, with a Bayesian approach we are able to incorporate and

combine different sources of information, leading to a potential improvement of the precision

of the estimates (Berger, 2000). Furthermore, the use of ‘non-informative’ prior information

in Bayesian models (objective Bayesian) often leads to equivalent estimates to those obtained

in the classical approach with the advantage of obtaining posterior distributions of random

parameters (Gelman et al., 2004).

The Bayesian approach to modelling can be divided into ‘full’ and ‘empirical’ Bayes estima-

tion. In this context ‘empirical’ is referred to when the data are used to estimate the prior

parameters whilst ‘full’ refers to estimating the prior parameters of the model independently

of the data (Carlin and Louis, 2001).

Hierarchical Bayesian modelling is a natural way to fit complex data structures when the

information is available on several different levels of observational units. If instead a non

hierarchical model is used with many parameters then the model produced may fit the data
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well, but predictions for new data are inferior (overfitted). In turn, hierarchical models use

a predefined distribution to impose some dependence into parameters, this allows more pa-

rameters to be included without facing problems of ‘overfitting’ (Gelman et al., 2004).

Bayesian modelling can be used to deal with the complex situations arising from missing or

censored data, which are often impossible or difficult to handle in a frequentist framework.

Commonly, in the classical framework, missing data are discarded from the QCMD scoring

analysis and due to asymptotic problems censored data may make the statistical analysis

difficult to handle. One advantage of the use of Bayesian models is that they are not based

on asymptotic theory and with the use of probability distributions for missing and censored

information the data can be fitted in a more appropriate manner without discarding impor-

tant information.

So, the main advantages of Bayesian models can be summarised as follows: the models

take into account the uncertainty in multiparameter settings; no particular point estimate

is required, since uncertainty is measure in terms of probability; missing data imputation is

handled using the missing at random assumption; and hierarchical modelling avoids problems

of overfitting (David et al., 1986; Lindley, 1965; Liu, 1995; Little and Rubin, 1992). However,

the complex computational issues when fitting the models (Gamerman and Lopes, 2006) in-

cluding the time needed to obtain the results from the model fitting, the expertise required to

choose appropriate models and the difficulties deriving their results make Bayesian statistics

less attractive to researchers, particularly to non-statisticians. Although nowadays software

has been developed to provide applicants of Bayesian statistics with a simpler tool to model

their data (The BUGS Project, 1996-2004), it is still necessary to have a strong knowledge

of computing programming languages and statistics to interpret the results. In addition to

implementing general models using software, specific issues with the data have to be handled

manually and new models have to be developed and programmed (Gilks et al., 1996), which

is time consuming and requires a broad knowledge of computing and statistics.
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1.3.2 Modelling from Frequentist Perspective

versus Bayesian Perspective

The discipline of statistics is divided between the frequentist and the Bayesian schools. The

frequentist approach is based on the concept of ’frequency probability’, which is derived from

the observed frequency distribution or proportions of populations (population parameters are

fixed) assuming the experiment could be repeated under the same conditions arbitrarily often.

In contrast, the Bayesian approach is based on the representation of the uncertainty un-

der study by the use of probability distributions where the parameters to be estimated are

treated as random variables (Gelman et al., 2004). Therefore, the Bayesian approach does

not require the assumption of repeatability of the experiment under the same conditions.

Moreover, in testing an hypothesis, while frequentist inference obtains the probability of the

data given that the null hypothesis H0 is true, Bayesian inference obtains the probability of

H0 given the observed data which is, some argue, more in line with commonsense interpre-

tations.

Furthermore, Bayesian techniques allow the incorporation of prior information in the anal-

ysis, which is updated by the information obtained in the experiment. Thus, Bayesian

inference has formalised the process of learning from data by updating prior beliefs with

our recent knowledge (Congdon, 2001). However, not all statisticians agree about incorpo-

rating prior assumption via a prior density, claiming that doing so is subjective. In turn,

they believe that the observed data information should be kept separate from prior assump-

tion, which typically reduces Bayesian estimation to likelihood estimation theory (frequentist

perspective) (Davison, 2003). Bayesian techniques from an objective perspective, where the

prior information is not subjective, have been developed and a summary of this can be found

in the literature (Berger, 2000).
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Nevertheless, all statistical methods are subjective, in the sense of relying on idealizations

of the world, in a form of a specified likelihood. In addition, all inferential processes require

a priori scientific judgment that motivates the design and the study itself.

1.3.3 Generalised Linear Models

In this thesis participants’ EQA performance is analysed based on qualitative or quantitative

responses depending on whether they test for detection of the microbe or quantification of

the sample microbial load. Generalised Linear Models (GLMs) (Dobson, 1990) are fitted to

the data with possible associated covariates included in the models.

GLMs are statistical models that allow the response variable to follow any distribution that

is a member of the ”exponential family”, which include the Normal, Binomial, Poisson

and Gamma distribution. The distribution of the response variable, denoted by y, can be

mathematically described by (Davison, 2003):

f(y|θ, φ) = exp

{

yθ − b(θ)

φ
+ c(y, φ)

}

,

where θ depends on the linear predictor, and φ is the dispersion parameter. That is, the

density of the response belongs to the exponential family, where the functions b(.) and c(.)

are specific functions corresponding to the type of exponential family.

In addition, under the GLMs the mean of the response variable can be modelled as a linear

function of the explanatory variables via a link function, i.e.: η is a linear predictor,

η = g(µ) = ~xT ~β, (1.3)
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where µ = E(y), ~x is the vector of explanatory variables and ~β the vector of parameters.

The function g is a monotone link function that relates µ to the linear predictor η.

Linear Regression Models

The simplest form of the GLM occurs when the response variable y is continuous and its

density is from a normal distribution with mean µ and variance σ2 (Dobson, 1990). In this

case, the mean can be expressed as follows: E(y) = µ = ~xT ~β.

Thus, the link function g in equation (1.3) is the identity function since η = µ, and therefore

the regression model is called Linear Regression Model.

Logistic Regression Models

The logistic regression model is a GLM when the response variable y is a binary response that

follows a Bernoulli distribution. In that case, E(y) = p, which is the probability of success,

and the natural link function is given by the logit function (Fahrmeir and Tutz, 2001), i.e.:

η = g(p) = logit(p) = log

(

p

1 − p

)

. (1.4)

1.3.4 Generalised Linear Models from a Bayesian Perspective

GLMs can be approached from a classical point of view or from a Bayesian perspective. From

a classical point of view, parameters are estimated as unknown constants. The parameter

inference takes the form of point estimates, confidence intervals, hypothesis tests, predictions

or decisions. Therefore, the problem is to take into account the random nature of the data

and give an interpretation of the results.
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The probability for the parameters cannot be discussed because the only random elements

in the model are the data. However, GLMs from a Bayesian perspective estimate the pa-

rameters as random quantities, which fits better the natural approach of using probability

distributions as a measure of uncertainty. Parameter inference is carried out by the use of

the distributions of the parameters given the data, which implies a probabilistic and nat-

ural way of making inference. On the other hand, to achieve this it is necessary to make

prior beliefs about the parameters to estimate in order to obtain their posterior distribution.

Thus, the posterior distribution represents the prior beliefs of the parameters given the data

(Lee, 2004).

In addition, the Bayesian approach to GLMs allows the inclusion of information which GLMs

in classical analysis would discard due to the partial lack of information, as for example cen-

sored data, and/or avoids asymptotic problems from arrising frequentist theory (McCulloch

and Searle, 2001; Spanos, 1999; McCullagh and Nelder, 1989). Despite the difference between

the classical and Bayesian point of view of GLMs, similar conclusions are often found from

both approaches for simple analyses. However, Bayesian methods allow for more flexible as-

sumptions to be considered when modelling data and can be extended to more complicated

models (Gelman et al., 2004).

1.3.4.1 Model Selection Strategy

When developing a multivariable model a list of prespecified variables are included in the

regression model. However, in the desire to develop a concise model and to avoid collinear-

ity between variables, when presenting the results ‘insignificant’ regression coefficients are

normally removed. In this case, to assist with the selection of the significant variables for

the model, ‘stepwise selection methods’ are commonly used (Harrell, 2001).
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The stepwise method is a very popular technique which has been developed to identify appro-

priate subsets of models (with a reduced number of predicted variables from the prespecified

list proposed at the beginning of a study), with considerable less computing issues and ef-

forts than when all possible variables are included. The forward selection procedure chooses

the variables by adding one at a time starting with the one that accounts for the largest

amount of variation in the dependent variable. The backward elimination procedure starts

with the full model and eliminates at each step the one variable that causes the residual

sum of squares to increase the least. Neither of these two methods takes into account the

effect that the addition or elimination of a variable can have on the other variables. The

stepwise selection procedure is a combination of forward and backward elimination criteria

by adding or deleting (depending on the method), sequentially, the variable that has the

greatest impact on the residual sum of squares (Rawlings et al., 1998).

The use of stepwise selection methods has advantages and disadvantages. Sometimes a back-

ward elimination procedure is preferred because it performs better than forward stepwise

methods when collinearity is present and it examines the full model fitted. This provides ac-

curate standard errors and p-values since full models have the advantage of providing mean-

ingful confidence intervals using standard formulae (Harrell, 2001). However, economists

normally use the strategy of deleting only those variables that are not significant, which

have some issues in some biological problems by setting certain regression coefficients to zero.

Regression models from a Bayesian perspective are developed in this study. Ideally all

relevant information should be included in a statistical model, which in regression means

including all possible explanatory variables. Since by applying hierarchical structure in

Bayesian analysis the problem of overfitting is of less concern, we consider first the full

model with all possible covariates. This approach is based on the Bayesian perspective that to

study a full model is the main objective even if some variables are not statistically significant

(Gelman et al., 2004, p. 263). Then, the full model is reduced to a simple one to show how

15



CHAPTER 1. INTRODUCTION

from a Bayesian perspective model reduction and variable selection are performed. In order

to do so, a backward elimination procedure was applied. In particular, a combination of a

backward selection procedure and decision based on the conditional posterior distribution

obtained by modeling the data is used to reduce the full model to the best simple model.

In the simple model (reduced model), the ‘best’ list of independently important predictors

are selected only. The decision of which covariate will be removed from the model is based

on the conditional posterior distribution and the probability that the parameter associated

to that covariate takes the value zero (as an equivalent to what economist frequently do by

reducing those covariates with non-significant parameter).

Multiple Testing

One area of concern in classical theory is the interpretation of significance levels of multiple

tests. In the case, a multiple testing adjustment is applied and an adjusted p-value needs

to be specified. In Bayesian analysis, such adjustments are not necessary because of the use

of posterior predictive checks based on the posterior distributions. A particular aspect of

the data, that is expected to appear in replications, is studied via the posterior predictive

distribution of the parameter: being checked if in future replications it is possible that the

parameter takes on the value 0. Thus, in Bayesian application there is no concern about the

p-value (defined as the probability of falsely rejecting the null hypothesis when it is true) as

with classical theory. In fact, the posterior checks are used ‘to understand the limits of its

applicability in realistic applications’ (Gelman et al., 2004).

1.3.4.2 Model Checking

The goodness of fit and robustness of the model is assessed through the examination of

residuals. In the Bayesian approach, examining the residuals is equivalent to estimating

the posterior predictive distributions of the residuals, in contrast to the classical estimated

residual which is based on a point estimate.
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The distributions of the residuals are checked, and the 95% highest density interval lying

within -2 and 2 indicates a good fit of the model (Gelman et al., 2000).

To assess a model, rather than fixing the test statistic at some point estimate, the pos-

terior predictive distribution of an appropriate test statistic is obtained. Thus, Bayesian

techniques do not use the asymptotic distribution of a test statistic based on large-sample

approximation and do not employ the classical theory for a test statistic and hypothesis

testing. Furthermore, in Bayesian methodology, the test statistic used to produce a valid

p-value has no sample size related restriction (Gelman et al., 2004).

One basic technique used to check the fit of a model is to define a ‘test quantity’ which mea-

sures the discrepancy between the replicated data from the model and the observed data. In

Bayesian analysis, the test quantity has the same role as a statistical test in frequentist data

analysis. Note that there is no general agreement on how to choose the function for the ‘test

quantity’. This function should be defined in a sensible way according to the characteristic

of the data to be analysed (Gelman et al., 2004).

The main difference of a test statistic in the Bayesian framework compared to the classical

perspective is the use of the model parameters under their posterior distributions, as well as

the data, to summarise discrepancies between the model and the data. Thus, because of the

use of the posterior distributions of the model parameters, the test quantity in the Bayesian

framework is more flexible than a test quantity in the classical approach.

The lack of fit of the model to the data can be measured by the tail-area probability of the

posterior predicted distribution (the equivalent to p-value in classical statistics). In Bayesian

analysis, the probability that replicated data could be more extreme than observed data is

defined as the Bayesian ‘p-value’. To obtain the Bayesian ‘p-value’, a predictive replicate of
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the data, yrep, is drawn from the predictive distribution conditional on each simulated pa-

rameter θ. Thus, the draws are considered from the joint posterior distribution, p(yrep, θ|y).

Then, the density of the test quantity based on the replicated data (predictive test quantity)

is obtained. This is used to confirm that the distribution of the test quantity contains the

observed test value, which is employed to obtain the Bayesian ‘p-value’.

The test quantity of the observed data is now compared with the predictive test quantity.

Thus, the tail-area probability of the posterior predictive distribution is the proportion of

the simulations for which the test quantity exceeds the observed value of the test. Tail-area

probabilities close to 0 or 1 indicate that the observed data are unlikely to be replicated data

if the model is true. In that case, the position of the observed test quantity is in the tail of

the posterior predictive distribution of the test statistic.

1.3.4.3 Model Comparison

Model comparison is an important issue when choosing between nested models. Usually, a

larger model has the advantage of fitting the data better, since the features of the data are

explained by a larger range of variables. Larger models are also more appropriate when the

aim of the analysis is to find out influential variables. On the other hand, larger models have

the disadvantage of being more difficult to interpret, compute and are liable to contain more

covariates with missing values. Also, larger models may be overfitted, i.e., the model fits very

well the observed data but it cannot detect the underlying process and so predictions are not

good. Therefore, if the purpose of the model is not only to find factors that are significantly

associated with participants’ performance, but to obtain future predictions, then a reduced

model is more suitable, easier to interpret, to compute and the measure of the effect of an

exploratory variable on the results is more precise.
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Bayesian model comparison does not aim to tell the “true” model, but rather to find the

model that fits better given the data and the information provided. In a Bayesian framework

there are several methods that can be used for model comparison. These include posterior

model probabilities, Bayes factor and approximations such as the Bayesian Information Cri-

terion (BIC), the Deviance Information Criterion (DIC), and Bayesian Model Averaging

(BMA) (Congdon, 2001).

In the present application, posterior probabilities, the Bayesian Information Criterion (BIC)

for censored models (Volinsky and Raftery, 2000) and the Deviance Information Criterion

(DIC) (Spiegelhalter et al., 2002) are used for model comparison. The posterior model prob-

abilities are used to compare nested models (comparing models with different regression

parameters, Chapter 4 and 5). For model comparison, a smaller value of BIC or DIC in-

dicates a better fit. Therefore, the selection procedure is similar to the one based on the

Akaike’s Information Criterion (AIC). A new approach based on the DIC, which takes into

account model fit and number of parameters in the model, is used to select the best model

amongst two different proposed models (Chapter 6 and 7).

The BIC is defined as

BIC = logL(θ̄|y) − p/(2log(c)),

where θ is the p-dimensional vector of parameters, θ̄ the posterior mean of θ, c the number of

non-censored observations and p the number of parameters in the model. The BIC formula

represents the log of the likelihood function evaluated at the posterior mean of the vector of

parameters θ and a penalisation based on the number of parameters and the total number

of non-censored observations.
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The DIC is calculated as distances measures

DIC = “goodness of fit” + “complexity”

DIC = Mean[−2logL(θ|y)] + {Mean[−2logL(θ|y)] − (−2logL(θ̄|y))}. (1.5)

To obtain the DIC, the average of the log-likelihoods at each iteration of the Markov Chain

Monte Carlo (MCMC, which will be presented later on) and the log-likelihood given the pos-

terior means of the parameters are calculated. It can be shown that the DIC is a measure

of the predictive accuracy Mean[−2 log(L(θ|y))] and the ‘effective number of parameters’ of

the model given by pD = Mean[−2 log(L(θ|y))]−(−2 log(L(θ̄|y))) (Spiegelhalter et al., 2002).

1.3.4.4 Model Validation: Sensitivity Analysis

Sensitivity analysis is needed in order to check for uncertainty in posterior inferences. This

uncertainty may be due to the existence of alternative models. That is, other reasonable

models can fit the observed data equally well, but posterior inferences may be different, so

the model proposed in that case would not be robust. In other words, changes on the model

assumption may produce different results.

The basic method of sensitivity analysis is to fit different models to the same problem

(Gelman et al., 2004) and check the posterior distributions (posterior inferences). Alternative

models can differ in the likelihood function, prior distribution or in both, likelihood and prior.

In this thesis, our main interest is to investigate if changes of prior knowledge would affect the

posterior conclusions, therefore several models with different prior distribution are proposed

and applied to the data in order to check for the robustness of results.
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Note that changes of the likelihood function are not considered since the proposed ones are

the most reliable and appropriate, and model checking provided valid results. Therefore a

sensitivity analysis focusing on the prior distribution was the approach taken to study model

sensitivity.

1.3.5 Markov Chain Monte Carlo Methods

Bayesian inference and computation have the problem of finding the normalising factor given

in equation (1.2) to ensure that the integration of equation (1.1) equals one. That is, to in-

tegrate the product of the likelihood and the prior over the space of elements of θ given by

(1.2), which in a multidimensional space is a highly non-trivial numerical problem. This is

mainly because in a multidimensional parameter space we may want to know, for example,

the marginal distribution of each component or the posterior mean, which implies a complex

numerical integration problem. When it is not possible to work out the closed form of the

marginal posterior distribution because we are not able to analytically integrate the posterior

density, the use of methods for the calculation of the conditional and marginal distributions

and their moments are needed (Geyer, 1992).

Recent developments in the computing environment facilitate the application of Bayesian

methods in the fields of biostatistics and elsewhere. This is characterised by the use of

computer intensive sampling methods for parameter estimation (Gilks et al., 1993; Heath,

1997). Such an example are the Markov Chain Monte Carlo (MCMC) methods (Metropolis

et al., 1953; Hastings, 1970; Geman and Geman, 1984) that are widely used to solve complex

Bayesian inference problems, by allowing the handling of complicated distributions in mul-

tidimensional space. In general, Markov Chain simulations are complicated, but for some

models, such as hierarchical models, they are still a feasible way to obtain consistent results

(Gelman et al., 2004).
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Markov Chain Monte Carlo (MCMC) is a class of simulation algorithms that has been largely

developed during the nineties. MCMC methods may be used to simulate from complex dis-

tributions and can be explained as a combination of two mathematical and computational

tools: Markov Chain and Monte Carlo methods. The Monte Carlo method (Fishman, 1996)

is used in the draws of the posterior distributions obtained from the Markov Chain in order

to extract properties of the desired posterior distributions of the parameters to be estimated.

The Monte Carlo integration method (Kloek and van Dijk, 1978) solves the integration

problem by estimating the complex integral with realisations of repeated random simulations

from the posterior distribution. In a general context and notation Monte Carlo integration

works as follows: If X is a random variable with density function f(x), it is of interest to

evaluate E(g(X)) for some function g(X). Then by definition

E(g(X))) =
∫

X
g(x)f(x)dx. (1.6)

If x1, .., xn are simulated realisations of X, the integral in equation (1.6) can be approximated

by

E(g(X)) ≈ 1

n

n
∑

i=1

g(xi).

Furthermore, when it is not possible to simulate realisations of X, but instead to simulate

realisations of a random variable Y, y1, .., yn, with the same support space as X and density

function h(y), then

E(g(X)) =
∫

X
g(x)f(x)dx =

∫

X

g(x)f(x)

h(x)
h(x)dx,

which can be approximated by

E(g(X)) =
1

n

n
∑

i=1

g(yi)f(yi)

h(yi)
.
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In order to use the Monte Carlo method to obtain approximations of marginal posterior

distributions and their moments, simulation of random quantities from some standard dis-

tributions are required. By using a Markov chain (Gamerman and Lopes, 2006), which is a

stochastic process with the property that the future states are independent of the past states

given the present states (that is the past states do not provide information about the future

state if the present state is known), simulated realisations from posterior distributions can

be obtained. The following formula represents the general equation to express a first order

Markov chain

π(θn+1|θn, θn−1, .., θ0) = π(θn+1|θn).

In this thesis a Markov chain is defined as the process of obtaining successive simulation

quantities from the conditional posterior distributions of the parameters to estimate, de-

pending only on their immediate predecessors. The realization of the chain is iterated until

convergence to a stationary distribution is achieved. This stationary distribution is the

posterior distribution of the parameters to be estimated. Therefore, after convergence, the

draws obtained in the iterations are in equilibrium, and they can be used as a sample of the

target distribution (Gamerman and Lopes, 2006). Then, the Monte Carlo method is used

to sample the draws of the posterior distribution obtained from the Markov chain in order

to calculate properties of the desired posterior distribution of the parameters to be estimated.

There is a wide range of MCMC algorithms available, the choice of which depends on the

model to be fitted (Gilks et al., 1996). The priority when choosing an algorithm is to

be efficient in computational aspects, in terms of computational costs and the number of

iterations it takes for the chain to converge (Gamerman and Lopes, 2006). In this thesis,

the well-known Metropolis-Hasting (M-H) algorithm is used for simulating properties from

a density of interest (Gamerman and Lopes, 2006). This algorithm generates a chain where

at each stage a new value is simulated from a proposal distribution (a distribution which

it is easy to simulate a value from). This generated value is either accepted, in which case

the chain moves, or rejected, in which case the chain stays where it is. Whether or not
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the value is accepted or rejected depends on an acceptance probability which depends on

the relationship between the density of interest and the proposal distribution. A general

description of the M-H algorithm is provided below: If π(θ) is the density of interest and

q(θ, φ) is a proposal distribution from which it is easy to simulate

• 1. Initialise the interaction counter of the chain to j=1, and intialise the chain to θ0.

• 2. Generate a proposed value φ using q(θj−1, φ), called the ‘candidate value’.

• 3. Evaluate the acceptance probability α(θj−1, φ) of the proposed move, where

α(θ, φ) = min

{

1,
π(φ)q(φ, θ)

π(θ)q(θ, φ)

}

.

• 4. Put θj = φ with probability α(θj−1, φ), and put θj = θj−1 otherwise.

• Change the counter of the chain from j to j+1 and return to step 2 until convergence

is reached.

The samples obtained from the MCMC, under mild regularity conditions, converge to a sam-

ple from the target posterior distribution. Therefore, the draws from the algorithm can be

considered realisations from the desired distribution and can be used to obtain information

about the target distribution (Gamerman and Lopes, 2006).

As explained above, the idea of MCMC is to create a Markov chain for the simulation of

values form the conditional posterior distribution and treat them as draws from the target

distribution (posterior distribution). To make this possible, the state space for the Markov

chain has to be the parameter space and the posterior distribution has to be the limit

distribution. Samples from the chain may only be considered realisations from the target

distribution if the following two conditions hold:
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• Invariance: the Markov chain moves should leave the target distribution invariant.

• Irreducibility: all the states in which the posterior probability is positive have to be

obtainable from the values simulated in the Markov chain.

When these two conditions hold, the convergence to posterior expectations are assured. This

theoretical result and other distributional results are available in Barndorff-Nielsen, Cox and

Kluepperlberg (2001).

The introduction presented here provides the background to Bayesian computation and to

the general concept of MCMC methodology used throughout this thesis. More information

may be found in the literature cited here. Further information on the concrete algorithm

used here is given in Chapter 7.

1.4 Project Aim

The project aim is to develop a suitable statistical framework to assess users of molecular

amplification techniques. In particular, appropriate scoring schemes are devised to assess

an individual EQA participant’s performance on individual panels. Furthermore, statistical

models are adapted and developed in order to find factors that are significantly associated

with participants’ performance over time for different pathogens. The large reservoir of

QCMD data, which has not been analysed previously, is used for the development and test-

ing of the statistical methods.

Classical statistical methods, based on asymptotic theory, failed to fit the data adequately

due to the amount of missing information and the random character of the observations

because of the measuring technique. For this reason, the statistical approach is carried out

from a Bayesian perspective. The Bayesian statistical methods have been adapted, refined

and coded to fit the specific requirements of the data and the goals of the investigation.
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Using the methods developed in this research project, QCMD can now interrogate the data

gathered over time to improve the design of future EQA programmes to advance the quality

of diagnosis of NATs users and hence improve patients’ health.The techniques developed

may be also applied to a broad range of problems within other areas of research, such as

clinical medicine, veterinary medicine and clinical chemistry.

26



Chapter 2

Exploratory Data Analysis

This chapter provides a description of the QCMD data, which are used in this project for

model development and testing. In particular, the datasets used are from participants of the

Enterovirus (Gastrointestinal virus), Hepatitis B virus and Hepatitis C virus (Blood Borne

Viruses) QCMD quality control panels from 2002 to 2005 inclusive. These panels are chosen

for the following reasons:

• Different pathogens are needed to test if the proposed models work independently of

the type of pathogen chosen. Pathogens which infect different areas of the human body

and in a different way (via blood or food, etc.) are needed, so tests can be performed to

determine whether the models are robust enough to distinguish among different types

of pathogens.

• The programmes have to be run for different observation years in order to conduct

comparisons over time.

• The number of participants across programmes has to be large enough to be represen-

tative and to provide enough information about laboratory practice.
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QC programmes are carried out over time and information about participants’ performance

is gathered by QCMD. Participating laboratories vary over time, since many laboratories

enroll voluntarily on QCMD quality control programmes.

The proficiency panels are provided to participants together with a questionnaire. Informa-

tion about the entire laboratory is asked for, such as the technology used to analyse the

sample, the method of analysis, the use of anti-contamination system, the inhibition test

performed, the laboratory type, the accreditation status and the experience of analysing

other specimens (biopsies, swabs...). Note that responses are frequently missing.

The application of more than one validated method of routine analysis may be used when

a single determination analysis has failed, often because the variability of the assay method

has not been acceptable. Thus, when precision and accuracy do not fall within acceptable

tolerance limits, duplicate or even triplicate analysis may be performed to obtain a better

estimate (Niazi, 2007). When a duplicate or triplicate analysis was used, this was recorded

as the method of analysis in the questionnaire.

One common concern of molecular amplification methods is contamination. In this case, a

highly sensitive molecular test may result in a false positive and so an increased microbial

load may be reported if an anti-contamination system is not used. Furthermore, inhibition

may occur since the sample can contain substances that interfere with the molecular reac-

tion, and the lack of formation of amplified gene products that inhibit the DNA polymerase

enzyme may result in a false negative or decreased microbial load reported without the use

of an inhibition test. Consequently, specific anti-contamination strategies are essential to

minimise the chance of anti-contamination and an inhibition test may be added to the sam-

ple to determine if an interfering substance has caused inhibition of the enzymatic reaction

(Dennis Lo et al., 2006; Burtis and Ashwood, 2007).
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Laboratory accreditation determines the technical competence to perform a specific type

of testing. It provides a recognition of competent laboratories and it is renewed annually

(ILAC, 2010). Participants may be or may not be accredited, but not all participants provide

that information. Participants are classified by type of laboratory as: hospital labs, public

labs, private labs, reference labs, manufacture labs and research/clinical labs.

2.1 Exploratory Qualitative Data Analysis

A description of the qualitative data analysed for this project is provided in this subsection.

The description mainly involves the qualitative performance provided by participants of

Enterovirus and Hepatitis B virus programmes over time, as they are a representative sample

of qualitative QCMD programmes over time. Note that quantitative estimates of pathogen

load are not provided by participants for Enterovirus panels.

2.1.1 Description of Enterovirus Programmes Qualitative Data

Enterovirus (EV) is a group of viruses that may infect the gastrointestinal tract and can

spread to other areas such as the nervous system of humans and animals.

Here, a general description of the EV data from 2002 to 2005 is presented. EV proficiency

panels consisted of 12 samples with a varying number of negative, non-EV and positive EV

samples. Negative samples do not contain EV viral load, non-EV samples contain viral load

of a different pathogen to EV and positive EV samples contain different EV viral loads across

years. Samples are grouped by sample dilution series, non-EV and negative samples. Table

2.1 summarises the panel composition over time showing the number of samples included in

the panel per sample group and year.
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Table 2.1: EV panel composition over time.

Number of samples per group and year 2002 2003 2004 2005
Sample group 1x10−3 1 0 0 1
by dilution 1x10−4 0 0 1 1
series 1x10−5 2 3 3 2

1x10−6 4 3 3 2
1x10−7 2 1 1 2
1x10−8 1 1 1 1

Non-EV 0 2 1 2
Negative 2 2 2 1

The total number of datasets returned by participants are 100, 89, 116 and 107 from 2002

to 2005, respectively. Results provided by participants are positive, negative and not deter-

mined. Not determined is reported if the assay shows an equivocal result. For the purpose

of the analysis carried out for this project, participants’ responses are classified as correct

or incorrect depending on whether the laboratory detects the sample rightly or wrongly.

Throughout this thesis, to be consistent with the approach taken by QCMD, not determined

responses are interpreted as incorrect.

Table 2.2 shows the percentage of correct results per year and sample group. For the neg-

ative, non-EV and strongest (10−3) sample groups, the percentages of correct results are

higher than for the rest of the sample groups. In general, lower percentages of correct results

per positive sample are obtained as the sample viral load decreases. It is observed that the

overall highest percentage of correct results are obtained for 2003, which may be due to the

fact that performance of sample groups with the lower dilution series, 1x10−7 and 1x10−8,

are better than for other years.

According to the NAT method and laboratory’s system, the technology used to analyse the

EV samples are classified as follows: CC- Conventional PCR Commercial technologies, RTC-

Real Time PCR Commercial technologies, CIH- PCR Conventional In-house technologies,

RTIH- Real Time PCR In-house technologies and NASBA-NASBA technologies.
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Table 2.2: EV percentage of correct results over time per sample group.

% Correct results 2002 2003 2004 2005 Total
Sample group 1x10−3 96.00 - - 97.19 96.62
by dilution 1x10−4 - - 73.27 80.37 76.68
series 1x10−5 94.00 94.75 87.64 85.04 90.18

1x10−6 76.25 80.52 75.57 80.84 77.79
1x10−7 45.00 82.02 73.27 56.07 59.45
1x10−8 23.00 39.32 29.31 22.42 28.16

Non-EV - 82.58 87.06 88.32 86.02
Negative 94.50 93.25 94.39 96.26 94.42
Total 74.25 83.25 78.44 76.40

Table 2.3 shows the percentages of datasets analysed per technology group and the per-

centages of correct results per sample dilution series for each technology group during the

period 2002-2005. It is observed that the most common technologies used by participants

are conventional in-house technologies. In contrast, the least popular technology used by

participants is NASBA. The proportions of correct results by users of real time technologies

are higher than the proportions of conventional technologies for negative and non-EV sam-

ples. However, these proportions are lower for the sample with the strongest and medium

dilution series when comparing RTC and CC technologies. All participants using NASBA

technologies detect correctly negative, non-EV samples and samples with stronger dilution

series. The smallest percentage of correct results for the sample with the weakest dilution

series is obtained for the group of participants using NASBA technologies.

The data returned by participants in the questionnaire issued with the panel are summarised

in Tables 2.4 to 2.6 inclusive. Table 2.4 shows the number of datasets per year and the per-

centage of results from participants who used a single, duplicate or other method of analysis.

The percentage of results from participants who used an anti-contamination system, and the

percentages of results from participants who performed an inhibition test on all samples,

only negatives or did not perform an inhibition test are shown in Table 2.4. Note that, as

previously stated, not all participants answered those questions in the questionnaire.
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Table 2.3: EV percentages of datasets analysed and correct results per sample group classified
by technology group from 2002 to 2005.

% Correct results CIH CC RTC RTIH NASBA
% Datasets analysed per sample 59.71 4.37 3.64 30.10 2.18
% Correct results 1x10−3 95.97 100.00 88.89 98.33 100.00

1x10−4 79.51 100.00 53.84 72.73 100.00
1x10−5 92.34 97.87 63.89 87.50 95.00
1x10−6 78.93 86.79 58.34 76.59 70.00
1x10−7 62.70 48.00 25.00 59.78 50.00
1x10−8 28.45 16.67 26.67 30.64 11.11

Non-EV 81.41 76.00 96.15 92.22 100.00
Negative 93.45 93.75 100.00 95.61 100.00

Table 2.4 also provides information about the percentage of returned results from partici-

pants who did not answer those questions. The majority of results are given by participants

who performed single and duplicate analysis methods. Approximately 5% of the results from

participants are missing since they did not reply to the question about the method of anal-

ysis. It is observed that for 2004 and 2005 no participant used other methods of analysis,

and for these two years higher percentages of missing information for the analysis method

were found. With respect to the use of an anti-contamination system, most of the results

are given by participants who did not use an anti-contamination system and roughly 3.2% of

the results are from participants who did not provide information about this issue. Almost

99% of the results are from participants who provided information about performing an in-

hibition test, and the majority of those results are from participants who did not perform

an inhibition test on the samples.

Table 2.5 shows the number of datasets per year and the percentage of results from partic-

ipants categorised by laboratory type and accreditation status. As in previous questions,

a participant may not provide information about the type of laboratory, so Table 2.5 also

reflects the percentages of results from those participants who did not answer these questions.
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Table 2.4: EV percentage of participants’ results per year classified by method of analysis, use
of an anti-contamination system and performance of an inhibition test. Number of datasets
per year is given by n.

Total number and percentages 2002 2003 2004 2005 Total
of participants’ results n=100 n=89 n=116 n=107 n=412
Analysis Single 35.00 46.10 48.30 45.80 43.94

Duplicate 58.00 47.2 42.2 47.7 48.54
Other 6.00 5.60 0.00 0.00 2.67

Not answered 1.00 1.10 9.50 6.50 4.85

Anti-contamination Yes 16.00 19.10 24.10 20.60 20.15
No 84.00 78.70 71.60 73.80 76.70

Not answered 0.00 2.20 4.30 5.60 3.15

Inhibition test Yes 27.00 36.10 39.70 42.10 36.41
No 66.00 52.80 56.00 53.30 57.04

Only Negatives 7.00 9.00 3.40 2.80 5.34
Not answered 0.00 2.20 0.90 1.90 1.21

Table 2.5: EV percentage of participants’ results per year classified by laboratory type and
accreditation status. Number of datasets per year is given by n.

Total number and percentages 2002 2003 2004 2005 Total
of participants’ results n=100 n=89 n=116 n=107 n=412
Laboratory Hospital 58.00 49.40 40.50 50.50 49.27

Public 15.00 15.70 12.90 8.40 12.86
Private 4.00 4.50 4.30 2.80 3.88

Reference 6.00 0.00 5.20 0.90 3.15
Manufacture 6.00 1.10 0.90 1.90 2.43

Research/Clinic 4.00 2.20 3.40 1.90 2.91
Not answered 7.70 24.00 38.00 36.00 25.48

Accreditation Yes 45.00 32.60 31.90 31.80 35.19
No 42.00 39.30 38.80 35.50 38.83

Not answered 13.00 28.10 29.30 32.70 25.97
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Roughly 50% of results are given by participants from a hospital laboratory followed by

public laboratories with almost 13% of results. The percentages of results returned by par-

ticipants from private, reference, manufactures and research laboratories are around 3% for

each laboratory type. There is a high percentage, 25.48%, of results from participants who

did not provide information about the laboratory type. The lowest percentage of missing

information about participants’ laboratory type is found for 2002. Information about the

accreditation status of the participants is also missing for almost 30% of the results, with

the proportions of results from accredited and non accredited participants being similar over

time.

Table 2.6 shows the number of datasets per year and the percentages of participants grouped

according to performing annual tests of different types of specimens, such as a plasma test,

cerebrospinal fluid (CSF), serum, biopsies and swabs. Between 25% and 30% of partici-

pants did not provide information about performing annual tests of the different types of

specimens. Participants performing a plasma test are classified by the number of tests per-

formed annually. Approximately 29% of the results are given by participants who performed

between 101 and 1,000 tests annually, and only 1.4% of the results are from participants

who performed more than 10,000 tests annually. More than 67% of the results are from

participants who had experience with testing CSF samples. The percentages of results from

participants with experience with swabs, serum and biopsies tests are around 35%. In gen-

eral, the percentage of missing information about performing annual tests of different types

of specimens increases over time.
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Table 2.6: EV percentage of participants’ results per year classified by specimen test experi-
ence. Number of datasets per year is given by n.

Total number and percentages 2002 2003 2004 2005 Total
of participants’ results n=100 n=89 n=116 n=107 n=412
Number of plasma test 0-10 0.00 0.00 31.00 28.00 16.02

11-100 13.00 19.10 20.70 19.60 18.20
101-1,000 65.00 38.20 8.60 7.50 28.40

1,001-2,000 5.00 11.20 6.00 5.60 6.80
2,001-10,000 6.00 4.50 1.70 3.70 3.40
>10,000 0.00 0.00 2.60 2.80 1.45

Not answered 11.00 27.00 29.30 32.70 30.58

CSF Yes 87.00 65.2 58.60 59.80 67.23
No 5.00 7.90 12.10 7.50 8.25

Not answered 8.00 27.00 29.30 32.70 24.51

Serum Yes 39.00 28.10 34.50 42.10 36.16
No 53.00 44.90 33.60 25.20 38.59

Not answered 8.00 27.00 31.90 32.70 25.24

Biopsies Yes 30.00 27.10 36.40 34.60 32.28
No 62.00 46.00 34.50 32.70 43.69

Not answered 8.00 27.00 29.30 32.70 24.51

Swabs Yes 37.00 27.00 34.50 40.20 34.95
No 55.00 46.00 36.20 27.10 40.53

Not answered 8.00 27.00 29.30 32.70 24.51

2.1.2 Description of Hepatitis B Virus Programmes Qualitative

Data

Hepatitis B virus (HBV) is the causative agent of viral hepatitis type B, a form of liver in-

flammation. Here, a general description of data of Hepatitis B virus (HBV) QC programmes

from 2002 to 2005 is provided. Note that participants may return qualitative and quantita-

tive responses for this pathogen.

The HBV proficiency panels consist of eight samples per year. There is one negative sample

per year and the positive sample are classified depending on the viral load as: sample groups

6, 5, 4, 3.5, 3, and 2.3 log10 copies/ml. The positive samples are either of subtype A or D.
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Table 2.7 shows the panel composition over time, the number of samples per group, N, and

the sample subtype. The total number of datasets per year and sample are 96, 87, 107 and

123 from 2002 to 2005, respectively.

Table 2.7: HBV panel composition over time. Number and subtype of samples included in
the panel each year by group of viral load.

Number of samples 2002 2003 2004 2005
per group and year N Subtype N Subtype N Subtype N Subtype
Sample group 6 1 D 1 A 1 A 1 D
log10 5 2 A/D 2 A/D 2 A/D 2 A/D
Copies/ml 4 1 A 1 A 1 A 2 D

3.5 2 A 1 A 0 - 0 -
3 0 - 1 A 2 A/D 2 A/D

2.3 1 A 1 A 1 A 0 -
Negative 1 - 1 - 1 - 1 -

Table 2.8 shows that the percentage of correct results per sample group and year generally

increases over time and as the sample viral load increases. Less than 70% of the overall

results are correct for the sample group with the weakest viral load. Around 88% of the

results are correct for the sample groups of 3 and 3.5 log10 copies/ml viral load. Less than

5% of the results are incorrect for the stronger samples.

Table 2.8: HBV percentage of correct results over time per sample group.

% Correct results 2002 2003 2004 2005 Total
Sample group 6 98.96 100.00 97.20 99.19 98.79
log10 5 91.67 97.13 96.26 96.34 95.76
Copies/ml 4 87.50 93.10 96.26 96.34 94.22

3.5 86.46 91.95 - - 89.07
3 - 87.36 92.52 83.33 87.57

2.3 70.83 62.07 72.90 - 68.97
Negative 97.92 97.70 96.26 95.93 96.85
Total 88.93 90.80 92.64 93.60
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The technologies used to analyse the samples are classified in different groups. Participants’

results of HBV programmes are grouped according to the following technologies: CC- Con-

ventional PCR Commercial technologies, RTC- Real time PCR Commercial technologies,

CIH- Conventional PCR In-house technologies, RTIH- Real time PCR In-house technolo-

gies, bDNA- bDNA technologies, HC- Hybrid Capture technologies and TMA- Transcription

mediated amplification technologies.

Table 2.9 shows the percentage of datasets per sample analysed by each technology type and

the percentage of correct results per technology and sample group. Less than 5% of the re-

sults are provided by HC and TMA technologies users. Between 15% and 20% of the results

are returned by in-house technologies users, and a similar percentage of results are given by

real time commercial technologies users. The most widely used technology is CC, almost

38% of the results are provided by CC users. The proportion of correct results obtained with

real time technologies is higher than the proportion with conventional technologies for all

sample groups except for the negative samples. bDNA and HC technologies users obtained

lower percentages of correct results than PCR users, although they are amongst the less

popular methods used by participants.

Table 2.9: HBV percentages of datasets analysed and correct results per sample group clas-
sified by technology group from 2002 to 2005.

% Correct results CIH CC RTC RTIH bDNA HC TMA
% Datasets analysed 15.49 37.77 18.64 19.61 5.56 2.41 0.48
% Correct results 6 97.40 98.72 100.00 100.00 95.65 100.00 100.00

5 96.75 98.08 99.22 98.77 69.57 65.00 100.00
4 94.38 97.95 99.03 97.14 76.67 8.33 100.00

3.5 89.71 100.00 90.91 98.21 20.00 7.69 100.00
3 83.72 93.50 93.16 86.79 58.06 14.29 0.00

2.3 63.08 76.92 84.00 78.95 0.00 12.50 100.00
Negative 97.40 99.36 95.31 95.06 91.30 90.00 100.00
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Participants in HBV programmes are asked to fill in a questionnaire about their laboratory

practice, but, in general, not all participants provide all the information. Table 2.10 shows

for each of the four years, the number of datasets per sample and the percentages of par-

ticipants’ results classified by method of analysis, use of an anti-contamination system and

performance of an inhibition test, as defined in the previous section. Less than 3% of the

results are from participants who failed to answer the questions. The majority of the results

are from participants who performed a single method of analysis. More than 50% of the

results are given by participants who used an anti-contamination system and performed an

inhibition test.

Table 2.10: HBV percentage of participants’ results per year classified by method of analysis,
use of an anti-contamination and performance of an inhibition test. Number of datasets per
year is given by n.

Total number and percentages 2002 2003 2004 2005 Total
of participants’ results n=96 n=87 n=107 n=123 n=413
Analysis Single 60.40 63.20 69.20 74.00 67.31

Duplicate 33.30 32.20 25.20 20.30 27.12
Other 6.30 3.40 4.70 4.10 4.60

Not answered 0.00 1.10 1.90 1.60 1.21

Anti-contamination Yes 50.00 49.40 56.10 58.50 53.99
No 43.80 47.10 42.10 40.70 43.10

Not answered 6.30 3.40 1.90 0.80 2.90

Inhibition test Yes 50.00 62.10 64.50 56.90 58.35
No 40.60 27.60 30.80 34.10 33.41

Only Negatives 5.30 8.00 1.90 7.30 5.81
Not answered 3.10 2.30 2.80 1.60 2.42

Table 2.11 shows the number of datasets per sample and the percentages of results per year

from participants by laboratory type and accreditation status. Approximately 42% of the

results are from accredited participants and 36% from participants who were not accredited.

However, more than 20% of the results are given by participants who failed to answer the

question. Participants are classified by type of laboratory as in previous section. Almost

22% of the results are given by participants who did not provide information about the

laboratory type.
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Almost half of the results are from hospital laboratories. Only 2% of the results are from

public labs and approximately 4% of the results are given by participants from reference,

manufacture or research labs.

Table 2.11: HBV percentage of participants’ results per year classified by laboratory type and
accreditation status. Number of datasets per year is given by n.

Total number and percentages and 2002 2003 2004 2005 Total
of participants’ results n=96 n=87 n=107 n=123 n=413
Laboratory Hospital 53.10 52.90 44.90 44.70 48.43

Public 12.50 9.20 8.40 6.50 2.18
Private 12.50 9.20 11.20 13.00 11.62

Reference 5.20 2.30 0.90 2.40 3.87
Manufacture 4.20 3.40 0.00 4.90 3.38

Research/Clinic 0.00 2.30 7.50 4.10 3.63
Not answered 12.50 20.70 27.10 24.40 21.55

Accreditation Yes 43.80 39.10 43.90 35.80 41.65
No 42.70 37.90 29.00 39.80 36.08

Not answered 13.50 23.00 27.10 24.40 22.28

Participants are classified according to the information that they provide about their expe-

rience testing samples of different types of specimens. In Table 2.12 the number of datasets,

n, and the percentages of participants’ results classified by the experience of the partici-

pant performing annual tests of different types of specimens, such as, plasma test, serum

and others (biopsies, swabs,..) are provided per year. The experience performing tests on

plasma and serum samples are classified by the number of samples analysed annually. More

than 20% of the results are from participants who failed to answer the questions about their

experience performing tests on samples of different types of specimens. More than 50% of

the results are given by participants who tested up to 1,000 samples of serum and plasma

annually. Around 10% of the results are from participants who tested between 2,001 and

10,000 samples of serum and plasma annually. Approximately 55% of the results are pro-

vided by participants who did not have experience testing samples of other specimens such

as biopsies and swab.
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Table 2.12: HBV percentage of participants’ results per year classified by specimen test ex-
perience. Number of datasets per year is given by n.

Total number and percentages and 2002 2003 2004 2005 Total
of participants’ results n=96 n=87 n=107 n=123 n=413
Number of plasma test 0-10 32.30 29.90 25.20 22.80 27.12

11-100 9.40 17.20 5.60 4.90 8.72
101-1,000 28.10 26.40 17.80 18.70 22.28

1,001-2,000 10.40 4.60 3.70 9.80 7.26
2,001-10,000 9.40 0.00 15.90 14.60 10.65
>10,000 0.00 1.10 6.50 4.90 3.39

Not answered 10.40 20.70 25.20 24.40 20.58

Number of serum test 0-10 27.10 27.60 11.20 13.00 18.89
11-100 11.50 12.60 7.50 13.80 11.38

101-1,000 33.30 29.90 25.20 17.90 25.91
1,001-2,000 14.60 5.70 11.20 8.10 9.93
2,001-10,000 5.20 3.40 15.90 17.90 11.38
>10,000 0.00 0.00 1.90 4.10 1.69

Not answered 8.30 20.70 27.10 25.20 32.20

Other Specimen Yes 18.80 12.60 30.80 30.90 24.21
No 72.90 66.70 42.10 44.70 55.20

Not answered 8.30 20.70 27.10 24.40 20.58

2.2 Exploratory Quantitative Data Analysis

2.2.1 Description of Hepatitis B Virus Programmes Quantitative

Data

In the previous section, the HBV qualitative data have been described. The panel compo-

sition and the percentages of correct results have been provided, and some characteristics

of the participating laboratories’ practices such as technology used, method of analysis and

accreditation status have been summarised. In this section, the quantitative HBV data (es-

timation of viral load) for the positive samples are summarised.
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Table 2.7 provides information about the panel composition over time. There are six groups

of samples defined by sample viral load. Participants are asked to return the estimated viral

loads of the samples. However, not all participants are able to provide that information;

some participants only provide the qualitative information about the samples (as described

in previous sections); others provide both, qualitative and quantitative results, but, not all

of the participants who provided quantitative results are able to provide an exact estimate

of the viral load. Instead they produce a response, for example, such as load greater than

4.5 log10 copies/ml (a threshold of the sample viral load).

The threshold of the sample viral load is provided when the participant has detected a viral

load below or above the limit of detection of the assay used to analyse the sample. Therefore,

the information that this participant has about the viral load of the sample is incomplete,

since the participant cannot provide an exact estimated value for the viral load of the sam-

ple. This partial information is statistically defined as a ‘censored observation’. Thus, the

censored observation provided by a participant represents the threshold of the viral load for

the sample (limit of detection of the assay). The exact estimated viral load of the sample is

a value below (c ≥ value) or above (c ≤ value) the threshold of the viral load reported by

the participant (denoted by c).

For the purposes of the quantitative analysis, the results from participants who provided

estimated viral loads of 0 are discarded since that would mean that these participants do

not detect the sample correctly. The participants’ results are classified as exact values, when

they provide exact estimates of viral loads; left censored values (c ≥), when they provide

information about below the limit of detection of the assay used; and right censored values

(c ≤), when they provide information about above the limit of detection of the assay used.
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Table 2.13 shows the total number n of quantitative results returned by participants, the

total number of censored data nc (without taking into account the direction of censoring)

and the percentage of censored data rounded to the nearest integer, %c, per year and sam-

ple group. The sample groups are classified as weak, medium and strong depending on the

sample viral load. The weakest sample group corresponds to the 2.3 log10 copies/ml sample

group and the strongest sample group corresponds to the 6 log10 copies/ml sample group.

The sample groups of medium viral load such as 4 and 5 log10 copies/ml have the lowest

percentages of censored data.

Table 2.13: HBV total and percentage of censored datasets returned by participants over
time per sample group. The total number of quantitative results per year is given by n. The
number of results out of the total per year that are censored is given by nc.

Datasets 2002 2003 2004 2005 Total
per year n nc %c n nc %c n nc %c n nc %c n nc %c

Sample 6 65 8 12 62 9 15 82 19 23 100 14 14 309 50 16
group 5 130 15 12 124 5 4 164 0 0 200 3 2 618 23 4
log10 4 64 9 14 61 4 7 82 0 0 199 2 1 406 15 4
Copies/ml 3.5 130 19 15 61 4 7 - - - - - - 191 23 12

3 - - - 61 7 11 162 7 4 190 22 12 413 36 9
2.3 63 17 27 58 26 45 79 21 27 - - - 200 64 32

Total 452 68 15 427 55 13 569 47 8 689 41 6 2137 211 10

Overall, 10% of the results are censored. As an illustrative example of the participants’ quan-

titative results, Figure 2.1 shows the participants’ reported values for all years combined by

technology group for sample groups 2.3 and 6 log10 copies/ml. Blue triangles correspond to

left censored responses and red squares indicate the right censored responses.

Figure 2.2 shows the box plots for participants’ estimates of viral loads from all years com-

bined by technology group for sample groups 2.3 and 6 log10 copies/ml. The box plots are

obtained once the censored observations have been removed. Then, the censored observations

are superimposed on the boxplots. The variability of the responses per technology changes

depending on the sample group analysed. Thus, for the sample group 2.3 log10 copies/ml the
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Figure 2.1: HBV participants’ reported values for all years combined, ordered by estimated
viral load, for sample groups 2.3 and 6 log10 copies/ml. Blue triangles and red squares are
left and right censored responses, respectively.

responses from RTC technology users have lower variability than for sample group 6 log10

copies/ml. These variabilities also change amongst technology groups. The majority of the

censored observations are outside the box for both sample groups.

Table 2.14 shows the mean of the observed sample viral loads provided by participants

(consensus mean) per sample group over time. To obtain the consensus mean, participants

reporting censored observations have been excluded.

In addition to some of the technologies used for analysing HBV qualitative data, which are

CC- Conventional Commercial, RTC- Real time Commercial, CIH- Conventional Commer-

cial and RTIH- Real time In-house technologies, some participants used bDNA and HC-

Hybrid Capture technologies when analysing the samples to report quantitative estimates of

viral loads.
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Figure 2.2: HBV box plots of participants’ reported values for all years combined by technology
group for sample groups 2.3 and 6 log10 copies/ml. Blue triangles and red squares are left
and right censored responses respectively.

Table 2.15 shows the number of datasets analysed and the percentage of censored information

per technology and sample group. The highest percentages of censored data are provided

by participants using bDNA and HC technologies with an overall of 42% and 54% of the

censored observations, respectively. However, participants using those technologies return

fewer censored observations than conventional technologies users for the strongest sample vi-

ral load. No more than 5% of the overall censored observations are returned by participants

using CIH, RTC and RTIH technologies.

Table 2.16 shows the consensus mean per sample group by technology used. Table 2.17

shows the numbers and percentages of datasets per year by method of analysis, use of an

anti-contamination system and performance of an inhibition test. Less than 3% of the re-
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Table 2.14: HBV consensus mean of estimated sample viral loads over time per sample group.

Consensus mean by year 2002 2003 2004 2005 Total
Sample group 6 6.03 5.92 5.96 5.53 5.83
log10 5 5.14 4.94 5.05 4.71 4.93
Copies/ml 4 4.21 4.04 4.03 3.83 3.96

3.5 4.06 3.46 - - 3.86
3 - 3.01 3.38 2.89 3.13

2.3 2.80 2.53 2.68 - 2.69

Table 2.15: HBV number of datasets and percentage of censored information per sample
group classified by technology group.

Datasets CC CIH RTC RTIH bDNA HC
per Tech. group n %c n %c n %c n %c n %c n %c

Sample 6 137 34 21 10 54 0 66 0 23 4 8 0
group 5 274 1 42 0 108 0 132 0 46 30 16 25
log10 4 169 28 25 0 89 0 85 1 30 23 8 88
Copies/ml 3.5 103 0 15 0 2 0 46 4 15 80 10 90

3 171 2 25 0 100 1 82 13 31 55 4 75
2.3 104 30 13 23 18 0 43 21 16 100 6 83

Total 958 14 141 4 371 0 454 5 161 42 52 54

sults are returned by participants who failed to answer these questions. In total, almost 70%

of the results are from participants who performed single analysis methods when analysing

the samples. Roughly 64% of the overall results are from participants who used an anti-

contamination system and a similar percentage did not perform an inhibition test. The use

of an anti-contamination system and single analysis methods increases over time.

Table 2.18 summarises the number and percentages of datasets returned by participants per

year classified by laboratory type and accreditation status. More than 20% of the results are

returned by participants who failed to answer the questions. Almost 50% of the results are

from hospital laboratories, and participation of private laboratories increases over time, so

that in 2005 around 4% more of the results are returned by them compared to 2002. Almost

44% of the results are from accredited participants, with the highest percentage of results

returned by accredited participants occurring in 2003.
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Table 2.16: HBV consensus mean per sample group classified by technology group.

Consensus mean by technology group CC CIH RTC RTIH bDNA HC
Sample 6 5.74 5.70 5.68 5.96 6.15 6.13
group 5 4.97 4.63 4.81 4.93 5.29 5.32
log10 4 4.01 3.62 3.80 4.05 4.23 3.92
Copies/ml 3.5 3.72 3.41 3.66 4.23 5.54 3.74

3 3.09 2.98 3.01 3.25 3.45 5.34
2.3 2.43 3.08 2.70 3.05 - 5.32

Table 2.17: HBV number and percentage of datasets per year classified by method of analysis,
use of an anti-contamination and performance of an inhibition test.

Number and percentage 2002 2003 2004 2005 Total
of participants’ results n % n % n % n % n %
Analysis Single 286 63.27 258 60.42 378 64.43 527 76.49 1449 67.81

Duplicate 145 32.08 148 34.66 165 29.00 134 19.45 592 27.70
Other 21 4.65 21 4.92 26 4.57 21 3.05 89 4.16

Not answered 0 0.00 0 0.00 0 0.00 7 1.01 7 0.33

Anticont. Yes 257 56.86 277 64.87 363 63.80 473 68.65 1370 64.11
No 160 35.40 143 33.49 199 34.97 209 30.33 711 33.27

Not answered 35 7.43 7 1.64 7 1.23 7 1.02 56 2.62

Inhibition Yes 139 30.75 83 19.44 168 29.52 198 28.73 588 21.51
Test No 279 61.72 110 72.60 373 65.55 414 60.09 1376 64.39

Only Neg. 20 4.42 27 6.32 14 2.46 63 9.14 124 5.80
Not answered 14 3.10 7 1.64 14 2.46 14 2.03 49 2.29

Table 2.19 shows the number and percentages of datasets returned depending on the expe-

rience of participants testing different specimens per year. More than 19% of the results are

returned by participants who failed to answer these questions. Approximately 27% of the

results are from participants who had little experience performing a plasma test (between 0

and 10 tests annually), and less than 4% of the results are from participants who performed

more than 10,000 plasma tests annually. In total, 24.3% of the results are from participants

who performed annually between 101 and 1,000 plasma tests. More than 50% of the results

are returned by participants who had experience performing less than 1,000 serum tests

annually. More than 50% of the results are from participants who did not have experience

performing tests for other types of specimens.
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Table 2.18: HBV percentage of datasets per year classified by laboratory type and accreditation
status.

Number and percentage 2002 2003 2004 2005 Total
of participants’ results n % n % n % n % n %
Lab. Hospital 250 55.31 223 52.22 269 47.27 323 46.88 1065 49.84
type Public 62 13.72 42 9.84 63 11.07 27 3.92 194 9.08

Private 35 7.74 31 7.26 63 11.07 84 12.19 213 9.97
Reference 28 6.19 7 1.64 0 0.00 21 3.05 56 2.62

Manufacture 21 4.65 20 4.68 0 0.00 42 6.09 83 3.88
Research/Clin. 0 0.00 14 3.28 42 7.38 35 5.08 91 4.26
Not answered 56 12.39 90 21.08 132 23.20 157 22.79 435 20.35

Accred. Yes 189 41.81 210 49.18 266 46.75 269 39.04 934 43.71
No 207 45.80 127 29.74 171 30.05 263 38.17 768 35.94

Not answered 56 12.39 90 21.80 132 23.20 157 22.79 435 20.35

Table 2.19: HBV Percentage of datasets per year classified by experience of the participants
testing other specimens.

Number and percentage 2002 2003 2004 2005 Total
of participants’ results n % n % n % n % n %
Number 0-10 145 32.08 129 30.21 146 25.66 155 22.50 575 26.91
Plasma 11-100 49 10.84 42 9.84 35 6.15 20 4.06 154 7.21
test 101-1,000 125 27.65 132 30.91 109 19.16 153 22.21 519 24.29

1,001-2,000 49 10.84 27 6.32 14 2.46 77 11.17 167 7.81
2,001-10,000 42 9.29 0 0.00 112 19.68 91 13.21 245 11.46
>10,000 0 0.00 7 1.64 35 6.15 28 4.06 70 3.27

Not answered 42 9.29 90 21.08 118 20.74 157 22.79 407 19.04

Number 0-10 132 29.20 125 29.27 56 9.84 88 12.77 401 18.76
Serum 11-100 28 6.19 42 9.84 42 7.38 104 15.09 216 10.11
test 101-1,000 160 35.40 128 29.98 151 26.54 133 19.30 572 26.77

1,001-2,000 83 18.36 28 6.56 55 9.67 47 6.82 213 9.97
2,001-10,000 14 3.10 14 3.28 119 20.91 132 19.16 279 13.05
>10,000 0 0.00 0 0.00 14 2.46 28 4.06 42 1.96

Not answered 35 7.74 90 21.08 132 23.20 157 22.79 414 19.37

Other Yes 82 18.14 55 12.88 178 31.28 214 31.06 529 24.75
Specimen No 335 74.11 282 66.04 259 45.52 318 46.15 1194 55.87

Not answered 35 7.74 90 21.08 132 23.20 157 22.79 414 19.37

47



CHAPTER 2. EPLORATORY DATA ANALISIS

2.2.2 Description of Hepatitis C Virus Programmes Quantitative

Data

Hepatitis C virus (HCV) is the causative agent of viral hepatitis type C, a form of liver

inflammation. A general description of quantitative data of the Hepatitis C virus (HCV)

QC programmes from 2002 to 2005 is now provided. Note that participants can return

both qualitative and quantitative responses for HCV panels. As in the previous subsection

dealing with quantitative HBV data, participants provide a quantitative response measure

of the viral load for each positive sample. Table 2.20 shows the panel composition of HCV

programmes over time. The HCV proficiency panels consist of eight samples per year. There

is one negative sample per year, and the positive sample can be classified depending on the

viral load. The positive samples across time are classified per sample group of viral load as

follows: sample group 5.9, 4.9, 3.9, 3.5, 3.2 and 2.2 10IU/ml. The positive samples are either

of genotype 1, 3, 4, or 5. Reported values of 0 and censored observations are treated in the

same way as for HBV quantitative data, outlined in Section 2.1.2.

Table 2.20: HCV panel composition for positive samples over time. N is the number of
samples per panel and year.

Number of samples 2002 2003 2004 2005
per group and year N Genotype N Genotype N Genotype N Genotype
Sample group 5.9 1 1 1 1 1 1 0 -
log10 4.9 1 3 2 1/4 2 1/3 2 3/5
IU/ml 3.9 2 1 1 1 1 1 2 1/3

3.5 1 1 1 1 1 1 0 -
3.2 1 1 1 1 1 1 2 3/5
2.2 1 4 1 1 1 1 1 1

The total number of quantitative results returned by participants, n, the number of censored

data nc and the percentage of censored data rounded to the nearest integer %c, per year and

sample group, are shown in Table 2.21. The sample groups can be classified as weak, medium

and strong depending on their viral loads. The strongest is the 5.9 log10 IU/ml sample group

and the weakest is the 2.2 log10 IU/ml sample group. The sample groups of medium and
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strong viral load, such as, 3.5, 3.9, 4.9 and 5.9 log10IU/ml have the lowest percentages of

censored data, while the extreme sample group with the weakest viral load has the highest

percentage of censored data (62% of censored observations).

Table 2.21: HCV percentage of censored datasets returned by participants over time per
sample group. The total number of quantitative results per year is given by n. The number
of results out of the total per year that are censored is given by nc.

Datasets per 2002 2003 2004 2005 Total
per year n nc %c n nc %c n nc %c n nc %c n nc %c

Sample 5.9 50 0 0 112 10 18 70 15 21 0 0 0 176 25 14
group 4.9 50 0 0 56 1 1 138 0 0 177 2 1 477 3 1
log10 3.9 100 6 6 56 1 2 70 0 0 176 48 27 402 55 14
IU/ml 3.5 50 7 14 56 2 3 69 3 4 0 0 0 175 12 7

3.2 45 28 62 54 6 11 69 10 14 166 39 23 334 83 25
2.2 47 31 66 40 31 77 54 36 67 75 36 48 216 134 62

Total 342 72 21 374 51 14 470 64 14 594 125 21 1780 312 17

Table 2.22 shows the mean of the estimated sample viral loads provided by participants

(consensus mean) per sample group over time. To obtain the consensus mean, participants

reporting censored observations are excluded.

Table 2.22: HCV consensus mean of estimated sample viral loads over time per sample group.

Consensus mean by year 2002 2003 2004 2005 Total
Sample group 5.9 5.25 5.92 6.04 - 5.75
log10 4.9 4.78 4.72 4.64 4.58 4.66
IU/ml 3.9 3.91 3.78 3.71 3.69 3.76

3.5 3.18 3.33 3.77 - 3.26
3.2 2.63 3.01 2.98 2.92 2.93
2.2 2.69 1.92 2.02 2.54 2.39

The technologies used to analyse the samples are classified as for the HBV quantitative data

with the exception that the HC technology is not used by participants when analysing HCV

samples. The number of datasets analysed and the percentage of censored information per

technology and sample group are shown in Table 2.23. The highest percentages of censored

data are returned by participants using CC and bDNA technologies with an overall of 21%
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and 22% of censored data, respectively. However, for the sample group with the strongest

viral load, 20% and 9%, respectively, of the reported results from users of CC and RTC tech-

nologies are censored observations, whilst non-censored observation is returned from bDNA,

CIH or RTIH technologies users.

Table 2.23: HCV number of datasets and percentage of censored information per sample
group classified by technology group.

Datasets CC CIH RTC RTIH bDNA
per Tech. group n %c n %c n %c n %c n %c

Sample 5.9 121 20 6 0 11 9 17 0 21 0
group 4.9 305 1 9 0 52 0 47 0 64 0
log10 3.9 259 20 13 0 42 0 34 3 54 4
IU/ml 3.5 121 5 6 0 11 0 16 6 21 24

3.2 210 27 7 29 38 3 30 7 49 45
2.2 136 76 5 20 22 5 18 11 35 74

Total 1152 21 46 7 176 2 162 4 244 22

As an illustrative example of the participants’ quantitative results, Figure 2.3 shows the

participants’ reported values for all years combined by technology group for sample groups

2.2 and 5.9 log10IU/ml. Blue triangles highlight the left censored responses and red squares

indicate the right censored responses.

Figure 2.4 shows the box plots for participants’ estimates of viral loads from all years com-

bined by technology group for some selected samples. The variability on the responses

changes depending on the sample group and technology used to analyse the samples. This

variability is lower for the sample group 5.9 log10IU/ml than for the sample group 2.2

log10IU/ml. It is observed that the majority of censored observations for sample group

2.2 log10IU/ml is outside the box.
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Figure 2.3: HCV participants’ reported values for all years combined, ordered by estimated
viral load, for sample groups 2.2 and 5.9 log10IU/ml. Blue triangles and red squares are left
and right censored responses, respectively.

Figure 2.4: HCV box plots of participants’ reported values for all years combined by technology
group for sample groups 2.2 and 5.9 log10IU/ml. Blue triangles and red squares are left and
right censored responses respectively.

51



CHAPTER 2. EPLORATORY DATA ANALISIS

Table 2.24 shows the consensus mean per sample group by technology used. Except for the

weakest sample group, the consensus means are lower than the target viral load (viral load

of the sample group) for all technology groups.

Table 2.24: HCV consensus mean per sample group classified by technology group.

Consensus mean by technology group CC CIH RTC RTIH bDNA
Sample 5.9 5.78 4.86 5.62 5.83 5.78
group 4.9 4.79 3.98 4.44 4.34 4.49
log10 3.9 3.89 3.40 3.60 3.60 3.48
IU/ml 3.5 3.32 - 3.45 3.45 3.13

3.2 3.01 2.42 2.63 2.84 3.02
2.2 2.54 2.53 2.10 1.97 3.10

Table 2.25 shows the numbers and percentages of datasets per year by method of analysis,

use of an anti-contamination system and performance of an inhibition test. The question

regarding the method of analysis was answered by all participants. Less than 2.5% of the

results are returned by participants who failed to answer questions referring to an anti-

contamination system and an inhibition test. In total, more than 80% of results are from

participants who performed a single analysis method and 65% from participants who used an

anti-contamination system. Most of the results are from participants who did not perform

an inhibition test, and few results are from participants who performed an inhibition test on

negative samples.

The number and percentages of datasets per year returned from participants classified by

laboratory type and accreditation status are shown in Table 2.26. More than 25% of the

results are from participants who did not answer the questions. In total, the highest percent-

age of results is returned by hospital laboratories, and less than 3% of the results are from

reference, manufacture or research laboratories. Almost 42% of the results are returned by

accredited participants, and the highest percentage of results from accredited participants is

found for 2002.
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Table 2.25: HCV number and percentage of datasets per year classified by method of analysis,
use of an anti-contamination and performance of an inhibition test.

Number and percentage 2002 2003 2004 2005 Total
of participants’ results n % n % n % n % n %
Analysis Single 281 82.16 303 81.02 364 77.45 496 83.50 1444 81.12

Duplicate 61 17.84 71 18.98 99 21.06 85 14.31 316 17.75
Other 0 0.00 0 0.00 7 1.45 13 2.19 20 1.23

Not answered 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

Anticont. Yes 237 69.30 241 64.44 307 65.32 373 62.79 1158 65.05
No 91 26.61 114 30.48 156 33.19 221 37.20 582 32.70

Not answered 4 4.09 19 5.08 7 1.49 0 0 40 2.25

Inhibition Yes 66 19.30 80 21.39 99 21.06 155 26.09 400 22.47
test No 234 68.42 282 75.40 332 70.64 411 69.19 1259 70.73

Only Neg. 28 8.19 12 3.21 19 4.04 28 4.71 87 4.88
Not answered 14 4.03 0 0.00 20 4.25 0 0.00 34 1.91

Table 2.26: HCV percentage of datasets per year classified by laboratory type and accreditation
status.

Number and percentage 2002 2003 2004 2005 Total
of participants’ results n % n % n % n % n %
Lab. Hospital 218 63.74 185 49.46 229 48.72 264 44.44 896 50.34
type Public 42 12.88 47 12.57 27 5.74 21 3.53 137 7.70

Private 40 11.69 14 3.74 40 8.51 74 12.46 168 9.44
Reference 14 4.09 0 0.00 7 1.45 14 2.36 35 1.97

Manufacture 0 0.00 6 1.60 0 0.00 21 3.53 27 1.52
Research/Clin. 7 2.05 7 1.87 7 1.49 22 3.70 43 2.41
Not answered 21 6.14 115 30.75 160 34.04 178 29.97 474 26.63

Accred. Yes 175 51.17 148 39.57 167 35.53 244 41.08 734 41.23
No 146 42.69 104 27.81 143 30.42 172 28.96 565 31.74

Not answered 21 6.14 122 32.62 160 34.04 178 29.97 481 27.02
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Finally, Table 2.27 describes the number and percentages of datasets per year returned de-

pending on the experience of participants testing different specimens. More than 26% of the

results are from participants who failed to answer questions about testing different speci-

mens. More than 15% of the results are returned by participants who had experience testing

between 2,001 and 10,000 plasma and serum samples annually. In general, the percentages

of results from participants who tested annually more than 100 plasma samples and more

than 100 serum samples are around 48% and 43%, respectively.

Table 2.27: HCV percentage of datasets per year classified by the experience of participants
testing others specimens.

Number and percentage 2002 2003 2004 2005 Total
of participants’ results n % n % n % n % n %
Number 0-10 113 33.04 52 13.90 68 14.47 100 16.83 333 18.71
Plasma 11-100 7 2.04 18 4.81 18 3.83 32 5.39 75 4.21
test 101-1,000 68 19.88 106 28.34 116 24.68 109 18.35 399 22.41

1,001-2,000 77 22.51 28 7.49 21 4.47 34 5.72 160 8.99
2,001-10,000 56 16.37 49 13.01 61 12.98 108 18.18 274 15.39
>10,000 0 0.00 6 1.60 26 5.53 33 5.55 65 3.65

Not answered 21 6.14 115 30.75 160 34.04 178 29.97 474 26.63

Number 0-10 82 23.98 107 28.61 60 12.76 118 19.86 367 20.62
Serum 11-100 14 4.09 14 3.74 32 6.80 53 8.92 113 6.35
test 101-1,000 47 13.74 79 21.12 79 16.80 79 13.30 284 15.95

1,001-2,000 102 29.82 31 8.29 48 10.21 47 7.91 228 12.81
2,001-10,000 69 20.17 28 7.49 91 19.36 92 15.49 280 15.73
>10,000 6 1.75 0 0.00 0 0.00 27 4.54 33 1.85

Not answered 22 6.43 115 30.75 160 34.04 178 29.97 475 26.68

Other Yes 55 16.08 36 9.62 88 18.72 134 22.56 313 17.58
Specimen No 259 75.73 223 59.62 222 47.23 282 47.47 986 55.39

Not answered 28 8.19 115 30.75 160 34.04 178 29.97 481 27.02
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Chapter 3

Monitoring Quantitative Performance

of Molecular Diagnostic Assays

Users

External quality assurance (EQA) programmes allow a laboratory to monitor independently

its performance and provide feedback to identify and investigate potential areas of concern.

Recently EQA providers for molecular diagnostic kit users have started incorporating infor-

mation about the technology used to their score scheme (Staines et al., 2009). However,

none of the EQA providers make use of their prior information about the proficiency panel,

provided by the knowledge of ‘reference’ laboratories and the internal EQA working team,

in order to monitor participants’ performance independently and give feedback.

In this chapter a new scoring system based on well-known statistical principles is developed.

The system is simple, flexible and easy to interpret. In addition, it can be incorporated as

additional information to the existing scoring system and can be used to measure perfor-

mance for single samples or across a panel to provide useful and meaningful information to

participants in EQA programmes. The newly proposed scoring system is compared to the

current scores using the 2005 QCMD Hepatitis B Virus Proficiency programme.
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3.1 Introduction

External quality assessment or proficiency testing is considered the most important way of

monitoring participants’ quality and a complement to their internal quality control. By par-

ticipating in EQA programmes it allows laboratories to monitor their performance and pro-

vides them with part of the laboratory’s quality system requirements to gain the ISO (Inter-

national Standard Organisation) certification or national accreditation schemes. However, al-

though there are specific guidelines (ISO/IEC Guides, 1997a; ISO/IEC Guides, 1997b; ILAC-

G13, 2000) and general principles, which are common to most EQA schemes, there are many

different approaches to EQA and reporting mechanisms of the EQA programmes.

Therefore, there is a need to provide a common and appropriate way of monitoring par-

ticipants’ performance in order to assess participanting laboratories. Traditionally, EQA

organisations providing schemes for molecular diagnosis of infectious diseases within the

area of clinical virology and microbiology have used a subjective approach to define indica-

tors based on consensus analysis or peer group review (CEN TC 140 prEN 14136, 2004),

rather than on defined performance indicators related to specific analytical and clinical pa-

rameters.

Furthermore, the QCMD organisation has historically used a very simple scoring system

for their EQA programmes and the individual participant scores were not reported, but

used for internal report analysis only. However, as regulatory requirements changed and the

number of laboratories asking for a performance score increased, a scoring system based on

well-known statistical principles that is simple, flexible and easy to interpret was developed

by Staines et al. (2009) and applied by Pogathota (2007). The scoring system proposed by

Staines et al. (2009) is based on a standardised quantity depending on the participant’s

quantitative response, an estimated mean and standard deviation. The estimated mean can

be obtained by the sample mean, known as the consensus value. This estimate may be bi-
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ased towards the mean of the modal assay used and may be influenced by poorly performing

laboratories (Westgard, 2004; Wong, 2005).

In this chapter approaches to performance scoring within the EQA programmes are evalu-

ated. Also, an alternative estimate for the target value, from a Bayesian perspective, based

on ‘reference’ laboratories performance prior to the distribution of the EQA panel is pro-

posed. The information from ‘reference’ laboratories about the sample load concentration

is gathered by QCMD before delivering the panel to participants for each programme. This

information is used internally to measure panel quality before the QC programme starts,

but not used to score participants. The primary aim is to establish a suitable mechanism

for monitoring participant performance that gives an appropriate representation of a par-

ticipant’s result, which is independent from other participants’ results and can be used in a

clinical virological and microbiological settings.

The proposed way of scoring provides laboratories with an indicator as a measure of qual-

ity that is simple, easy to interpret and has the ability to include cumulative information

from previous EQA programmes or ‘reference’ laboratories. Furthermore, it will provide

useful, meaningful and independent information to laboratories which take part in EQA

programmes. Here, a summary of the proposed scoring system by Staines et al. (2009) is

presented, the new proposed estimation for obtaining the scores based on Bayesian methods

is explained, and the application of the scores to HBV data from QCMD-EQA programmes

in 2005 is shown.
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3.2 Proposed Scoring System for Quantitative

Participants’ Performance

Performance indicators for individual samples within a panel were investigated by Staines

et al. (2009) and extended to an overall performance score for a panel.

In their study, Staines et al. (2009) provided performance indicators for the quantitative

estimate of viral or microbial load and sample reproducibility. If the EQA panel consists of

J samples, the jth (j = 1, ..., J) sample is assumed to have an estimated ‘target’ load, µj.

They also assumed that participant i, (i = 1, ..., I) has reported a viral or microbial load of

wij for sample j on a log10 scale quantitative measurement.

In this section the performance indicator for quantitative responses using QCMD’s current

scoring scheme and a scheme based on a Bayesian approach, developed in this thesis, are

described. This is followed by the description of a performance indicator of within-participant

consistency and the performance indicators for a panel.

3.2.1 Existing Quantitative Performance Indicators for

Individual Samples

Simple and immediate measures of the performance of participant i for sample j are available

based on functions of deviation, dij = (wij−µj). Commonly used functions of dij include the

absolute deviation, |dij|, the squared deviation, d2
ij and the percentage absolute deviation

100 |dij| /µj (Westgard, 2004). These metrics can be used as a relative measure to compare

laboratories and are easy to compute and interpret. However, their statistical distributions

are not known, and so it is difficult to determine limits to identify participants that are

performing satisfactorily. An alternative approach is to set acceptance limits, typically µj ±

0.5 (Burtis and Ashwood, 2007). However, for this measure, all values within a given range
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are regarded as equally good and those outside the limits as uniformly bad. For example,

if the target value, on a log10 scale, were 3, then all the values between 2.5 and 3.5 are

acceptable and all others are not. So a value of 2.51 is acceptable and scored the same as

the target value of 3 and a value 3.49. The values of 0, 3.51 and 6 are regarded as equally

unacceptable, even though their clinical significance may be very different.

Therefore, all the scoring schemes proposed so far by other authors are not totally appropriate

and a new approach needs to be taken in order to obtain a scoring scheme, which can score

participants’ performance satisfactorily, independently of all other participants’ results and

comparable across years or EQA programmes.

3.2.2 Proposed Quantitative Performance Indicator for Individual

Samples

The proposed quantitative performance indicators for individual samples is based on the

standardised score of a participant estimated viral or microbial load for sample j, wij, from

a set of data with known assigned value (mean µj) and known assigned standard deviation

σj , defined as

zij =
(wij − µj)

σj
. (3.1)

The proposed score for sample j for the ith participant is defined as

z∗ij = min(3, integer [|zij |]). (3.2)

The absolute value of zij is used since it is assumed that an underestimation and overesti-

mation by the same amount indicates equally poor performance. The integer function with

a maximum of three helps interpretation by participants. The value three was chosen since

zij is a standardised value, which in theory has low probability of being greater than 3.

The possible values of z∗ are 0, 1, 2 and 3. The scores 0 to 3 are presented to participants

as ‘highly satisfactory’, ‘satisfactory’, ‘unsatisfactory’ and ‘highly unsatisfactory’ and may

59



CHAPTER 3. MONITORING QUANTITATIVE PERFORMANCE

be visualised with an associated colour code, for example: green, yellow, orange and red,

respectively. Note that, in general, the mean, µj , and the standard deviation, σj , of the viral

or microbial load of sample j are not known. They may be estimated in different ways which

are explained in the next subsection.

3.2.2.1 Procedure to calculate Quantitative Performance Indicators for

Individual Samples

The procedure to calculate quantitative performance indicators for individual samples are

summarised in four steps:

• Step 1: Check the data for outliers and remove them before proceeding with the next

steps.

• Step 2: Estimate the standard deviation σj in formula (3.1).

• Step 3: Estimate the mean µj in formula (3.1).

• Step 4: Obtain the score for each individual sample using the formula (3.2) based on

the estimated mean and standard deviation from step 2 and 3.

Three possible estimates for the mean µj are presented in this section and applied in the

following section. For the standard deviation, two possibles estimates are presented below

in order to obtain the score depending on the estimated mean used.

Outlier Detection

Once participants have submitted their results and data have been cleaned (based on a

pre-defined Standard Operation Procedure), participants may be classified into K mutually

exclusive and exhaustive strata (e.g. based on technology used). For those strata with at

least 5 observations the standardised residuals are calculated based on the strata mean of

observations and the standard deviation of the observed values. Outliers are defined as those
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values with a standardised residual with absolute value greater than 3 (Zar, 1999). When the

stratum has less than five observations, outliers are defined as those values greater than 1.5

times the interquartile range from the relevant quartile (Upton and Cook, 2002). Outliers

and strata with less than four observations are removed from the data when calculating

σ̂j , the estimate of the standard deviation, and the mean used to obtain the performance

indicator z∗ij .

Standard Deviation Estimation

The standard deviation, σj , may be estimated by using sj , the sample standard deviation.

Assuming that participants are a random sample of all diagnostic technologies users, then

s2
j is an unbiased estimate of σ2

j . However, since participants may be classified into K mu-

tually exclusive and exhaustive strata (e.g. based on the technology used), a more accurate

estimate of the pooled standard deviation, σj , may be found by considering the strata sizes

and within strata standard deviations as shown below.

If there are nk participants within stratum k (k = 1, 2, ..., K) and their standard deviation

for sample j is sjk, then an unbiased estimate for σ2
j is found from

σ̂2
j =

∑

k(nk − 1)s2
jk

∑

k(nk − 1)
. (3.3)

This is the value of the mean square for the error in the analysis of variance (ANOVA) Table

when the response is the participant’s result and the factor levels are the strata (Zar, 1999).

Note that for the case when participants on the specific stratum k are scored with respect

to participants in the same stratum, then the estimated standard deviation for the sample

j within the stratum k, sjk, can be used in formula (3.1) instead of the estimated pooled

standard deviation σ̂2
j in formula (3.3).
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Mean Estimation from a Classical Perspective

The assigned value, the mean µj, may be estimated by the sample mean, µcj = w̄j =
∑

i∈I
wij

I
,

known as the consensus value. For participants in the same stratum k, the estimated stratum

mean of observations, µkj =
∑

i∈k
wij

nk
, can be obtained and used as the assigned mean value µj.

The mean µj may also be estimated from the use of a limited number of ‘reference’ labora-

tories prior to the distribution of the panel, but this estimate may be inaccurate and biased

towards the technology used by them. Hence, the use of a more robust estimate such as a

trimmed mean may be more appropriate.

Mean Estimation from a Bayesian Perspective

A Bayesian approach is proposed to provide a more accurate and appropriate mean estimate

that makes use of a prior estimate ‘target’ viral or microbial load or sample ‘target concen-

tration’, ϑj , for the jth sample. The prior sample ‘target’ concentration may be available

prior to the panel distribution by the EQA organisation. The proposed estimate is based

on the prior ‘target’ information updated with estimates provided by ‘reference’ laboratories

to obtain the ‘posterior information’. This is the distribution around the most likely true

concentration target based on the information available.

Here, a classical approach of Bayesian inference for the normal distribution with conjugated

prior is adopted to estimate the mean, which will be used to calculate the scoring system.

The prior information represents the distribution of the unknown sample ‘target’ concentra-

tion, µj. The observed information represents the estimated sample ‘target’ concentration

by ‘reference’ laboratories, yrj for the laboratory r with r = 1, ..., R and sample j.
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In the proposed performance indicator of individual samples, it is assumed that the prior

and observed distributions are normal.

The prior distribution of µj is assumed to be N(ϑj , τ
2
j ) (see Figure 3.1). The mean ϑj is a

defined prior ‘target’ concentration for sample j and the variance τ 2
j is chosen to be 0.0625

for all samples since this ensures that 95% of the prior distribution lies within the interval

ϑj ± 0.5 (Valentine-Thon et al., 2001). The distribution of yrj is defined as N(µj, ζ
2
j ) where

ζ2
j is an unknown parameter having an Inverse Gamma distribution with parameters a and

b, InvGamma(a, b). Since there is no proper prior information about ζ2
j , the parameters a

and b are taken to be 0.0001 corresponding to a non-informative prior distribution. Note

that other distributions can be used for the unknown ζ2
j (Gelman et al., 2004).

The conditional posterior distribution for the ‘target’ concentration µj is the normal distri-

bution (Gelman et al., 2004),

µj ∼ N

(

ζ2
j ϑj + τ 2

j

∑R
r yrj

ζ2
j + τ 2

j R
,

τ 2
j ζ

2
j

ζ2
j +Rτ 2

j

)

.

Therefore, the Bayesian mean, µbj is estimated by

µ̂j =
ζ2
j ϑj + τ 2

j

∑R
r yrj

ζ2
j + τ 2

j R
. (3.4)

And the Bayesian estimate for the variance ζ2
j is

ζ̂2
j =

2b+
∑R
r yrj

R + 2(a− 1)
, (3.5)

where a=0.0001, b=0.0001 and τ 2
j = 0.0625. The Bayesian estimate for the variance in

formula (3.5) is only used and needed to calculate the mean estimate given by the previous

formula (3.4) but it is not used to calculate the score in formula (3.1). The standard deviation

used in the score formula (3.1) is specified in the next subsection.
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Figure 3.1: Prior, observed and posterior distributions for a sample with prior sample ‘target’
concentration.

Three different ways of scoring

Depending on the objectives of the EQA, participants may be assessed with respect to

the Bayesian mean concentration, consensus value or stratum (technology) consensus value.

Thus, if the objective of the EQA is to compare the results of participants with the general

performance of laboratories then the consensus mean value can be used to provide scores.

However if the aim of the EQA is to compare participants using a specific technology then

scores based on the technology consensus mean value are more appropriate. If the objective

of the EQA is to provide an independent score for each laboratory which can be used to

compare results within-participants over time then the Bayesian mean value is the most

suitable one.

When scoring participants, the assigned mean µj in formula (3.1) may be replaced by the

consensus mean, µcj, and the standard deviation used is as defined in formula (3.3). However,

if the interest is in scoring participants within a certain stratum k the stratum consensus

mean, µkj , should replace µj, and the standard deviation used is sjk. In case of scoring in-
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dependently of other participants’ results the Bayesian mean, µbj can be used to replace the

assigned mean, and the pooled standard deviation in formula (3.3) is used. These changes

of the estimated mean provide three different ways of scoring which may depend on the aim

of the EQA and interest of participants’ laboratories.

3.2.3 Proposed Performance Indicator of within Participant

Consistency

Here a new procedure is suggested to assess the performance of within participant consis-

tency:

• Calculate the difference of a participant’s results for two samples, di.

• Estimate the standard deviation of the differences, σ̂d, as it was calculated for the

quantitative score

σ̂2
d =

∑

k(nk − 1)s2
dk

∑

k(nk − 1)
,

where sdk is the standard deviation, of the difference of estimated viral or microbial

load for the two samples, for the stratum k.

• Calculate the score, Z∗
d , based on the previous score formula , with

z∗di
= min(3, integer

[∣

∣

∣

∣

∣

(di − d̂)

σ̂d

∣

∣

∣

∣

∣

]

),

where d̂ is the known or estimated mean for the difference of viral or microbial load

for the two samples.

The interpretation of the score is equivalent to the quantitative score.
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Reproducibility is a special case to monitor participant consistency with d=0. The repro-

ducibility is defined as the extend to which a participant can produce the same estimate

viral or microbial load for two identical samples within a panel. Note that reproducibility

scores must not be added to obtain the panel score since it is not independent of the scores of

individual samples of the panel. The reproducibility score provides extra information about

the ability to reproduce sample concentration loads.

3.2.4 Proposed Performance Indicator for a Panel

The proposed performance indicator for an individual sample ranges from 0 (highly satisfac-

tory) to 3 (highly unsatisfactory). One measure of overall performance for a panel is to sum

a participant’s score for those samples where a value is reported. The distribution of this

score is not known and will vary according to the number of samples reported. Participants

are classified using the method outline below.

Assuming normality and independence, the proposed score for an individual sample takes the

values 0 to 3 with probabilities 0.683, 0.272, 0.043 and 0.002 respectively. J columns, one for

each sample, of 10,000 Monte Carlo simulations from the previous probability mass function

are found to generate 10,000 virtual participants. The sums of the J columns for each Monte

Carlo simulation are obtain. The frequencies of the sums are found and used as follows. For

consistency with the scoring for individual samples, participants that reported J samples

are given score 0 (classified as ‘highly satisfactory’) if their sum is in the smallest 68.3%

of the simulated values, score 1 (‘satisfactory’) in the next 27.2%, score 2 (‘unsatisfactory’)

in the following 4.3% and score 3 (‘highly unsatisfactory’) in the highest 0.2%. Therefore,

depending on the sum of individual scores a panel score can be otained as described above.
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Table 3.1: Panel score table for panels with up to 15 samples.

Number of Panel
samples per panel Score

0 1 2 3

1 sample 0 1 2 3

2 samples 0 1 2-3 4+

3 samples 0-1 2 3-4 5+

4 samples 0-1 2-3 4-5 6+

5 samples 0-1 2-4 5-6 7+

6 samples 0-2 3-4 5-7 8+

7 samples 0-2 3-5 6-7 8+

8 samples 0-3 4-5 6-8 9+

9 samples 0-3 4-6 7-8 9+

10 samples 0-4 5-6 7-9 10+

11 samples 0-4 5-7 8-10 11+

12 samples 0-4 5-7 8-10 11+

13 samples 0-5 6-8 9-11 12+

14 samples 0-5 6-8 9-12 13+

15 samples 0-6 7-9 10-13 14+

Table 3.1 gives the range of total scores corresponding to each panel score for a given number

of samples (Staines et al.,2009). For example, a participant who has a total score of six or

seven from seven samples is scored 2 (i.e.‘unsatisfactory’).

3.3 Application

An application of the proposed performance indicators to the 2005 QCMD Hepatitis B Virus

Proficiency Programme (QCMD, 2010) is presented in this section. The Panel composition

is shown in Table 3.2. Seven independent ‘reference’ laboratories analysed the panel before

it was sent to participants. There were 116 participants from 27 countries of which 102 re-

turned panel results. The total number of datasets submitted was 122 of which 21 datasets

provided only qualitative information on the detection of the virus and 101 datasets provided

quantitative and qualitative information on sample viral load.
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The datasets are classified per technology group used to analyse the panel: Conventional

Commercial PCR (CC, n=38), Conventional In-house PCR (CIH, n=12), Real time Com-

mercial PCR (RTC, n=39), Real time In-house PCR (RTIH, n=24), bDNA (bDNA, n=7)

and Hybrid Capture (HC, n=2). However, the total number of datasets reporting quantita-

tive results per technology group varies depending on the sample analysed.

Table 3.2: 2005 QCMD HBV panel composition.

Sample Sample QCMD Defined
Type Sample Conc. Sample

Log Copies/ml Status

HBV01 D 5.00 P
HBV02 A 4.00 P
HBV03 D 3.00 WP
HBV04 D 4.00 P
HBV05 A 3.00 WP
HBV06 D 6.00 SP
HBV07 N/A 0.00 N
HBV08 A 5.00 P

D-virus subtype D; A-virus subtype A; N/A-no applicable

P-positive sample; N-negative sample

WP- weak positive sample; SP-strong positive sample

3.3.1 Quantitative Analysis

A summary of the quantitative score obtained with respect to consensus mean and technol-

ogy group consensus mean sample concentration is shown in this section. Note that negative

samples, a zero microbial load reported, and values reported as outside the detection limits

of the assays are excluded from the quantitative analysis.

To illustrate how the score is calculated for laboratories the results for laboratories of tech-

nology group RTC are considered. In this example, two laboratories are used, participant 1

(Lab1) and participant 2 (Lab2), and one sample (HBV02) with target concentration 4 log10

copies/ml. The results provided by these two laboratories are 3.509 and 1.826, respectively,
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which give standardised residuals -0.658 and -3.520, respectively. Note that for the calcula-

tion of standardised residuals the procedure followed was as described in Section 3.2.2.1.

Lab2 is detected as an outlier as its standardised residual is outside the interval (−3, 3).

Then, the new consensus mean and standard deviation are calculated and the results are

3.988 and 0.473, respectively, once outliers have been removed. Therefore, the score is cal-

culated in the following way:

Lab1 zlab1 = 3.509−3.988
0.473

= −1.013, z∗lab1 = 1.

Lab2 zlab2 = 1.826−3.988
0.473

= −4.571, z∗lab2 = 3.

3.3.1.1 Score with Respect to Consensus Mean

The consensus mean w̄j and standard deviation, σ̂j, for each sample j = 1, ..., 6, 8 are calcu-

lated (datasets provided by laboratories using HC technologies and outliers are not included

for the calculations). Four technology groups, CC, RTC, RTIH and bDNA, are used to

estimate the standard deviation for samples HBV01, HBV02, HBV04, HBV06 and HBV08.

However, there are not enough datasets (≥ 5) to take into account the bDNA group for sam-

ples HBV03 and HBV05 since some estimates are outside the limit of detection for the assay.

Table 3.3 (illustrated in Figure 3.2) shows the estimated consensus mean and standard de-

viation of the log10 viral load, arranged in decreasing consensus mean, and the frequency of

z∗ scores for each sample by technology. For example, 16 participants out of 32 that used

technology CC-Commercial PCR have score 0 (‘highly satisfactory’) for the sample HBV06

with target viral load of 6. For this case, the consensus mean was 5.702 and the pooled

standard deviation obtained as described in Section 3.2.2 was 0,607. When the result re-

ported by a participant was outside the limit of detection or missing the participant was
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∗A=CC, B=CIH, C=RTC, D=RTIH, H=bDNA

Figure 3.2: Percentage of datasets scoring 0, 1, 2 and 3, with respect to consensus mean, per
sample and technology group.

classified as LOD/NR. The score amongst participants withing RTC or RTIH technologies

appear to be more variable than the score amongst participants of other technology groups.

Most of participants using CC technology have score 0 or 1, while participants using RTC

have scores dispersed around 0 or 1.

Note that all laboratories except those with results outside the limit of detection of the assay

are scored even if they are not included in the calculation of the mean or standard deviation.
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Table 3.3: Summary participants’ score with respect to consensus mean.

Consensus CC n=32 CIH n=4

Mean σj 0 1 2 3 LOD/NR∗ 0 1 2 3 LOD/NR∗

HBV06 5.702 0.607 16 3 1 0 12 3 0 1 0 0
HBV08 4.887 0.511 29 2 0 0 1 0 1 2 1 0
HBV01 4.789 0.576 31 0 1 0 0 1 1 1 1 0
HBV02 3.988 0.473 28 4 0 0 0 2 0 2 0 0
HBV04 3.834 0.544 29 2 1 0 0 0 1 2 1 0
HBV05 2.952 0.576 29 2 0 0 1 1 1 0 0 2
HBV03 2.879 0.453 28 3 0 0 1 1 0 3 0 0

Consensus RTC n=35 RTIH n=20

Mean σj 0 1 2 3 LOD/NR∗ 0 1 2 3 LOD/NR∗

HBV06 5.702 0.607 22 9 3 1 0 14 4 0 2 0
HBV08 4.887 0.511 21 10 2 2 0 13 2 3 2 0
HBV01 4.789 0.576 21 9 1 4 0 14 2 2 2 0
HBV02 3.988 0.473 21 10 2 2 0 12 4 2 2 0
HBV04 3.834 0.544 20 11 0 3 1 12 6 1 1 0
HBV05 2.952 0.576 19 8 6 0 2 12 2 1 0 5
HBV03 2.879 0.453 16 12 2 1 4 9 5 1 1 4

Consensus bDNA n=7 HC n=2

Mean σj 0 1 2 3 LOD/NR∗ 0 1 2 3 LOD/NR∗

HBV06 5.702 0.607 7 0 0 0 0 2 0 0 0 0
HBV08 4.887 0.511 7 0 0 0 0 0 0 0 0 2
HBV01 4.789 0.576 7 0 0 0 0 0 0 0 0 2
HBV02 3.988 0.473 7 0 0 0 0 0 0 0 0 2
HBV04 3.834 0.544 7 0 0 0 0 0 0 0 0 2
HBV05 2.952 0.576 0 1 0 0 6 0 0 0 0 2
HBV03 2.879 0.453 0 0 0 0 7 0 0 0 1 1
*LOD/NR: Result reported as lower limit detection or upper limit detection/no value or no result reported

CC=Commercial PCR, CIH=Conventional In-house PCR, RTC=Real time Commercial PCR

RTIH=Real time In-house PCR, bDNA and HC=Hybrid Capture
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3.3.1.2 Score with Respect to Technology Consensus Mean

The consensus mean for each technology group, with at least four observations once outliers

have been removed, is calculated. Each participants score with respect to the stratum con-

sensus mean and standard deviation, where the stratum refers to the group of participants

using the same type of technology. Thus, participants can be classified by technology group

or stratum depending on the technology that was used to analyse the samples. CIH and HC

technology groups do not satisfy the requirement of having at least 5 datasets before and 4

datasets after the removal of outliers. Therefore, laboratories using these technologies are

not scored with respect to their technology group.

Table 3.4 shows the estimated technology consensus mean and standard deviation of the

log10 viral load and the frequency of z∗ scores for each sample by technology. As in previous

section it is observed that 16 participants out of 32 that used technology CC have score 0

for the sample HBV06, however the estimated mean and the standard deviation are different

since now the way of scoring is with respect to the technology group mean and standard

deviation. Those values were calculated using only the information provided by the 32 partic-

ipants that used CC technology to analyse the samples. RTC participants are scoring better

with respect to their own technology than with respect to the consensus mean (see Table 3.3).

Figure 3.3 shows the percentages of overall datasets scoring 0, 1, 2 and 3 per sample with

respect to technology consensus mean (LOD/NR: result reported as outside the limit of de-

tection/ no value or no result reported; Conventional Commercial PCR (CC); Real Time

Commercial (RTC); Real Time In-house (RTIH); bDNA).

72



CHAPTER 3. MONITORING QUANTITATIVE PERFORMANCE

Table 3.4: Summary participants’ score with respect to technology consensus mean.

Technology CC n=32 Technology bDNA n=7

Mean σj 0 1 2 3 LOD/NR∗ Mean σj 0 1 2 3 LOD/NR∗

HBV06 5.721 0.496 16 3 1 0 12 5.940 0.035 5 2 0 0 0
HBV08 5.068 0.241 27 1 1 2 1 5.161 0.092 6 1 0 0 0
HBV01 4.967 0.281 28 1 2 1 0 5.004 0.069 5 2 0 0 0
HBV02 4.121 0.253 26 3 3 0 0 4.163 0.140 4 3 0 0 0
HBV04 4.017 0.291 27 2 2 1 0 3.988 0.125 5 2 0 0 0
HBV05 3.102 0.257 25 3 2 1 1 - -
HBV03 2.976 0.255 26 2 3 0 1 - -

Technology RTC n=35 Technology RTIH n=20

Mean σj 0 1 2 3 LOD/NR∗ Mean σj 0 1 2 3 LOD/NR∗

HBV06 5.637 0.720 24 9 1 1 0 5.676 0.574 13 4 1 2 0
HBV08 4.874 0.679 22 11 1 1 0 4.700 0.568 14 4 0 2 0
HBV01 4.697 0.799 24 7 3 1 0 4.641 0.563 13 4 1 2 0
HBV02 3.957 0.593 24 9 0 2 0 3.788 0.577 14 3 2 1 0
HBV04 3.763 0.716 23 8 2 1 1 3.806 0.609 12 7 0 1 0
HBV05 2.794 0.754 22 11 0 0 2 2.937 0.601 12 2 1 0 5
HBV03 2.836 0.564 19 11 0 1 4 2.855 0.525 9 6 0 1 4

*LOD/NR: Result reported as lower limit detection or upper limit detection/no value or not result reported

CC=Commercial PCR, CIH=Conventional In-house PCR, RTC=Real time Commercial PCR RTIH=Real time In-house PCR

bDNA and HC=Hybrid Capture

∗A=CC, C=RTC, D=RTIH, H=bDNA

Figure 3.3: Percentage of datasets scoring 0, 1, 2 and 3, with respect to technology consensus
mean, per sample and technology group.
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3.3.1.3 Score with Respect to Bayesian Mean

In order to obtain laboratories’ score with respect to the Bayesian mean, the target value is

updated from estimates provided by ‘reference’ laboratories.

Using the Bayesian model defined in Section 3.2.2.1 coded in WinBUGS (Project, 1996-

2004), the ‘target’ sample concentrations are estimated (see Table 3.5).

Table 3.5 and Figure 3.4 show the total number and percentage of datasets scoring 0, 1, 2 and

3 with respect to the Bayesian mean, per sample and technology used. It is observed that

all samples have Bayesian means higher than the corresponding consensus mean, perhaps

because most ‘reference’ laboratories analysed the samples using CC or RTC technologies.

For the strongest viral load sample group, 6 and 14 datasets are scored 0 with respect to the

Bayesian mean for CC and RTC technologies, whilst 16 and 22 datasets are scored 0 with

respect to consensus mean for those technologies, respectively. Participants’ scores are more

scattered when scoring with respect to Bayesian mean than those with respect to consensus

mean.

∗A=CC, B=CIH, C=RTC, D=RTIH, H=bDNA

Figure 3.4: Percentage of datasets scoring 0, 1, 2 and 3, with respect to Bayesian mean, per
sample and technology group.
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Table 3.5: Summary participants’ score with respect to Bayesian mean.

Bayesian CC n=32 CIH n=4

Mean σj 0 1 2 3 LOD/NR 0 1 2 3 LOD/NR

HBV06 6.355 0.607 6 12 2 0 12 2 1 0 1 0
HBV08 5.440 0.511 27 3 1 0 1 0 1 1 2 0
HBV01 5.368 0.576 29 3 0 0 0 1 1 1 1 0
HBV02 4.469 0.473 29 1 2 0 0 1 2 0 1 0
HBV04 4.431 0.544 26 5 1 0 0 0 1 0 3 0
HBV05 3.399 0.576 29 2 0 0 1 0 2 0 0 2
HBV03 3.444 0.453 14 16 1 0 1 0 2 0 2 0

Target RTC n=35 RTIH n=20

Mean σj 0 1 2 3 LOD/NR 0 1 2 3 LOD/NR

HBV06 6.355 0.607 14 13 4 4 0 10 5 1 4 0
HBV08 5.440 0.511 19 8 4 4 0 7 7 1 5 0
HBV01 5.368 0.576 18 9 3 5 0 9 5 2 4 0
HBV02 4.469 0.473 18 9 4 4 0 6 8 3 3 0
HBV04 4.431 0.544 16 10 5 3 1 10 5 3 2 0
HBV05 3.399 0.576 19 5 6 3 2 5 9 1 0 5
HBV03 3.444 0.453 13 7 7 4 4 7 3 4 2 4

Bayesian bDNA n=7 HC n=2

Mean σj 0 1 2 3 LOD/NR 0 1 2 3 LOD/NR

HBV06 6.355 0.607 7 0 0 0 0 0 2 0 0 0
HBV08 5.440 0.511 7 0 0 0 0 0 0 0 0 2
HBV01 5.368 0.576 7 0 0 0 0 0 0 0 0 2
HBV02 4.469 0.473 6 1 0 0 0 0 0 0 0 2
HBV04 4.431 0.544 6 1 0 0 0 0 0 0 0 2
HBV05 3.399 0.576 1 0 0 0 6 0 0 0 0 2
HBV03 3.444 0.453 0 0 0 0 7 0 0 0 1 1

*LOD/NR: Result reported as lower limit detection or upper limit detection/no value or not result reported

CC=Commercial PCR, CIH=Conventional In-house PCR, RTC=Real time Commercial PCR

RTIH=Real time In-house PCR, bDNA and HC=Hybrid Capture
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3.3.2 Scoring Performance within Participant Consistency

As an illustrative example, sample HBV01 and HBV04, both of which are subtype D with

QCMD sample concentration loads of 5.00 and 4.00 log10 copies/ml respectively, are consid-

ered. The consensus mean and standard deviation of the difference after removal of outliers

are 0.942 and 0.230 respectively. Therefore, the difference, z value and the score for consis-

tency of a participant with observations 4.954 and 3.923 for samples HBV01 and HBV04,

respectively, are given by:

d = 1.031, zd = 1.031−0.942
0.230

= 0.387 and z∗d = 0

3.3.3 Panel Score

Panel scores for quantitative analysis are calculated for laboratories which return estimates

for all seven positive samples. It is found that only 56 participants returned complete quan-

titative datasets of which 47 datasets receive a panel score 0, 2 datasets obtain score 1, 3

datasets obtain score 2 and 4 datasets obtain score 3 (scores obtained with respect to con-

sensus mean).

With respect to Bayesian mean, it is found that 32 datasets obtain a panel score of 0, 2

datasets obtain a score of 1 and 11 datasets receive a score of 2 or 3. The results on the

panel score show that with respect to the consensus mean more participants are classified

as high satisfactory (a score of 0), than with respect to the Bayesian mean. Scoring with

respect to the Bayesian mean classified more participants with scores 2 and 3 than scoring

with respect to the consensus mean.
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3.4 Summary and Conclusions

The Bayesian mean estimation used to obtain the score allows to incorporate the QCMD

prior information about the sample load concentration, which is updated with information

provided by selected ‘reference’ laboratories.

Since the Bayesian mean estimation is obtained based on probability theory (the most likely

estimate for the mean) and on independent laboratories from the QC programme, it may be

considered to be more objective and realistic than using the consensus mean, which is based

on performances from participating laboratories. In fact, scoring with respect to Bayesian

mean provided external quality assessment based on an independent mechanism to the par-

ticipants’ performances from the EQA programme. The proposed scoring system based on a

Bayesian mean is a step forward in providing appropriate performance indicators to monitor

quantitative performance of molecular diagnostic users.

In contrast to the use of consensus or technology mean, the Bayesian mean is indepen-

dent of participants’ results. Thus, the use of a Bayesian mean provides an appropriate and

independent indicator as a measure of external quality.

The scoring system has been applied with a variety of assigned values. The results ob-

tained, when the scoring system has been applied to consensus, technology and Bayesian

mean estimations, show that the percentages of laboratories with better score varies with

the assigned value used. The scores obtained with the consensus mean are better than those

obtained from the estimated Bayesian mean. Although these differences in the percentages

are expected, the results state that when laboratories are assessed based on consensus mean

obtained from their own results then they obtain a better score than when independent

means (Bayesian means) are used.
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Although a direct statistical comparison of the three scoring methods is possible it does

not appear to provide further insight as the ‘real target’ value is unknown. That is, in the

absence of the ‘real target’ value it is impossible to make a judgment in terms of which of the

three scores is the best indicator from a statistical point of view. However, conclusions as to

how participants’ performances are assessed from a descriptive and methodological point of

view can be made as shown in this chapter.

The application of these performance indicators to the 2005 QCMD Hepatitis B Virus Profi-

ciency programme highlights the flexible use and desirable properties of the proposed scoring

system for assessing various aspects of participant performance. However, since it is based

on an updating process of information provided from ‘reference’ laboratories, their choice is

crucial. Therefore, the selecting procedure of ‘reference’ laboratories should be considered

and carefully done. Furthermore, the use of the Bayesian mean and its interpretation should

be studied carefully in some cases such as when all references used the same technology for

analysing the samples and thus no variability on technology used are represented on the

reference laboratories.

The proposed score provides a flexible and mathematically rigorous metric to assess partic-

ipant performance for molecular diagnostic kit users. However, there are some drawbacks

when considering quantitative results.

Firstly, the score requires participants to provide their estimates of the viral or microbial

load. Sometimes, participants report values outside the detectable limits of the assay they

use. These have been ignored for the purposes of this chapter. Possible approaches to this

problem using the frequentist approach are to include censored value techniques or to re-

place the value by either the limit of detection or half of this value. In Chapter 4, a Bayesian

alternative to this approach will be introduced.
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Secondly, a Bayesian approach to estimating the target value has been suggested. The

Bayesian estimate is the value suggested by the EQA provider (from internal investigations

and previous panels) updated by estimates from ‘reference’ laboratories. Although these

may contain assay bias due to the way of choice of ‘reference’ laboratories, care can be taken

to ensure a range of assays are covered by the ‘reference’ laboratories.

Finally, the score assumes normality, which is almost certainly not valid for scoring partici-

pants who report false positives from negative samples. Hence the Bayesian mean estimate

is only recommended for positive samples since negative samples do not have a microbial or

viral load to be quantified. Further discussion can be found in Chapter 6.

79



Chapter 4

Modelling Qualitative Performance of

Participants of QCMD Programmes

over Time

In the previous chapter, performance indicators for microbial load estimation by molecular

diagnostic assay users have been proposed. In this chapter, risk factors associated with par-

ticipants qualitative performance (specificity and sensitivity) are studied in order to gain

further knowledge for the design of future EQA programmes and to provide better feedback

to participants.

This chapter proposes a new model to investigate which of the exploratory variables, defined

in chapter 2, are related to qualitative performance of participants of QCMD programmes for

one pathogen over time. The model will be applied to qualitative responses of participants’

performance which provide information about the correct detection of sample microbe. The

relation between qualitative responses and the participating laboratory practice is studied

with the proposed model.

80



CHAPTER 4. MODELLING QUALITATIVE PERFORMANCE

In this chapter the pathogens Enterovirus (EV) and hepatitis B virus (HBV) are considered

for the model application to real data.

4.1 Introduction

The statistical tools used to analyse qualitative data provided by EQA participants in molec-

ular diagnostics, have previously been based on frequentist methods such as Generalised

Linear Models (GLM). While Bayesian approaches to analyse data have been considered

recently in some areas, such as clinical chemistry and veterinary medicine (Conraths and

Schare, 2006; Geurden et al., 2004), these methods have not been used yet to identify signif-

icant factors associated with performance of molecular diagnostic assays, such as sensitivity

and specificity.

The analysis of factors of interest that are associated with individual participant’s perfor-

mance requires the inclusion of multiple parameters in the model. Due to the large number

of parameters, the missing information from covariates and the nature of the data, it is

beneficial to approach the analysis of qualitative performance from a Bayesian perspective.

The Bayesian approach can easily handle multiple parameters and missing values by em-

ploying a hierarchical structure of the model. Based on prior probability distributions, such

a Bayesian model can be used to estimate the posterior distribution of the parameters and

missing values.

The approach proposed here is to model the qualitative responses of participants’ perfor-

mance using a GLM, in particular, a logistic regression model from a Bayesian perspective.

The model, which will be called the ‘Qualitative Bayesian Model’ (QLBM), enables the iden-

tification of significant factors associated with qualitative participants’ performance. While

the theory of logistic regression models and Bayesian data analysis is well known, combin-

ing the two statistical tools for the modelling of biomedical data is still under development.
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Logistic regression models and Bayesian data analysis are combined in this thesis in order

to derive a model for the qualitative data. The model will derive the posterior information

needed to answer several research questions, relevant for measuring the qualitative perfor-

mance of EQA participants.

The proposed QLBM model takes into account the peculiarities of the present data condi-

tions. In particular, it allows the inclusion of those datasets which would be discarded using

a classical GLM due to missing covariate information. The model uses the observed data to

derive the probability distribution of the missing observations. Thus, the QLBM not only

enables the estimation of parameters related to the factors under study, but it also allows the

estimation of missing observations using the learning process inherent within the Bayesian

framework. Therefore, knowledge is gained about the data by not discarding incomplete

datasets.

The developed QLBM is programmed using the statistical software WinBUGS (Project,

1996-2004), and is applied to the 2002 to 2005 QCMD EV and HBV programmes. The code

to carry out the model estimations have been developed by the author and it can be found

in the CD attached to the thesis.

Before proposing the Bayesian model (QLBM), a classical GLM approach to analyzing qual-

itative EQA responses based on the logistic regression is presented.

4.2 Logistic regression GLM: basic notation and

model formulation for the EQA qualitative data

If Ysi denotes the ith participant’s response for the sample group s, then under the logistic

regression model, this is assumed to follow a Bernoulli distribution with parameter psi.
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Thus, psi is the probability that the ith participant’s response is correct for the sample group

s. Note that the participant’s response takes on the value 0 - incorrect if the participant fails

to detect the virus in a positive sample or reports the detection of the virus in a negative

sample, and it takes on the value 1 - correct if the participant detects the virus in a positive

sample or reports no detection of the virus in a negative sample.

This probability is assumed to depend lineraly on the covariates under investigation through

the ‘logit’ link function (1.4) in the following way (Dugard et al., 2010):

logit(psi) = log(
psi

1 − psi
) = ~xsi~βs. (4.1)

As a result:

psi =
exp(~xsi~βs)

1 + exp(~xsi~βs)
(4.2)

where:

• i is the ith observation in the sample group s with i=1,..,ns.

• ns is the total number of observations within sample group s with s=1,..,l.

• l is the total number of sample groups.

• ~xsi = (xsi1, .., xsir) is the r-dimensional vector of covariates for the ith observation of

sample group s with xsi1 = 1 as the intercept.

• The covariate matrix Xs for each sample group is the matrix with r columns and ns

rows. Each column corresponds to the covariate for participants in sample group s.

Thus, each row is the r-dimensional vector of covariates ~xsi = (xsi1, .., xsir) for the ith

observation of sample group s.

• ~βs is the r-dimensional column vector of regression coefficients, ~βs = (βs1, .., βsr)
T .
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Note that the subscript si is used for indicating the participant i in sample group s instead

of si which is reserved for allowing different variances on subgroups of participants’ responses

within sample group s (see Chapter 5 and 6).

To illustrate how the model described by equation (4.1) applies to the EV dataset, a simple

example using a subset of covariates is presented in what follows. For this purpose, we

chose the fifth response for the first sample group (1), y15 = 1, which is a correct result

meaning that the participant detected the virus correctly. This response was returned by

an accredited participant (Accred.) using CC technology (CC) for a sample from the year

2004 (2004). This is represented here by a vector of dummy variables ~x15 corresponding to

the covariates associated with the response, i.e. ~x15 = (x15(Id), x15(Accred.), x15(CC), x15(2004)),

where Id is the variable set to value 1 to allow for an intercept to be included into the model

(x15(Id) = 1). Using equation (4.1), the probability of a correct response for a sample of this

group is given by:

logit(p15) = β11 ∗ Id+ β12 ∗ (Accred. = yes) + β13 ∗ (CC = yes) + β14 ∗ (2004 = yes)

which is equivalent to the mathematical expression

logit(p15) = β11 ∗ x15(Id) + β12 ∗ x15(Accred.=yes) + β13 ∗ x15(CC=yes) + β14 ∗ x15(2004=yes).

4.3 Problems Arising with Classical GLM when

Analysing Qualitative Responses

A logistic regression GLM as described in the previous section was applied to the data, and

it was observed that the classical techniques failed to model the EQA qualitative data for

several reasons, which are briefly discussed in what follows:
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• The classical GLM cannot deal with observations containing missing covariates.

• For some sample groups all participants using a specific technology provide correct

results. Then, since GLM is based on asymptotic theory it fails to fit the data with no

variability within the responses. Consequently, the model fails to provide an estimate

for the corresponding parameter. Therefore, in classical analysis all observations from

those technologies with all correct results have to be discarded for investigating the

effect of technology used when analysing the sample.

• Some covariates have such a high proportion of correct or wrong results that the es-

timated parameters have large estimated standard errors. It is therefore not possible

to draw appropriate conclusions about the effect of those covariates on the response

when GLM is applied.

The following examples do not provide a complete analysis, but rather aim to highlight some

of the major problems arising when using a classical GLM approach in this application. Ta-

ble 4.1 and Table 4.3 show the results when the classical GLM is applied for the detection of

the virus in the strongest and weakest (viral loads) samples, of the EV programmes over time

(see Chapter 2 for information about the EV data). The covariates are chosen to illustrate

in a simple way the problems that appear when applying GLM to the type of data dealt in

this project.

In Table 4.1 the strongest sample group has samples with dilution series of 1× 10−3. When

applying the classical GLM to the responses the software returns an error message because

all responses from CC and NASBA are correct results. Hence, the model cannot obtain

estimates for these parameters. Thus, for studying the association of technologies with the

correct detection of the virus, the subgroup of responses from participants using these two

technologies has to be discarded (which roughly corresponds to 7.5% of the dataset, see

Chapter 2).
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The classical GLM is also applied to study the association of year, use of an anti-contamination

system and accreditation status with the correct detection of the virus. The results in Table

4.1 show that the estimated parameter for the use of an anti-contamination system has a

very large standard error suggesting that this estimate is not reliable (in Table 4.2 we can

see that 100% of the participants who used anti-contamination system provided correct re-

sults. In this case, it is difficult to provide a reliable model estimate using classical GLM).

Furthermore, as the GLM cannot handle missing covariates the dataset has to be reduced

from 207 to 155 observations. Therefore, by using a standard classical GLM it is not possible

to analyse the complete dataset.

Table 4.1: Results from the classical GLM applied to the strongest EV sample group.

Parameters Estimate SE p-value
Intercept 4.746 1.327 0.0003
Year 2002 (baseline 2005) -0.966 1.139 0.396
Anti-contamination Yes (baseline No) 16.017 1934.027 0.993
Accreditation Yes (baseline No) -1.324 1.136 0.244

Note that the strongest EV sample group was only found in the panels of 2002 and 2005.

Therefore, parameters for other years are not estimated.

Results for the weakest positive EV sample group with dilution series of 1×10−8 are presented

in Table 4.3. The classical GLM is applied to study the association of year, technology, use of

an anti-contamination system and accreditation status with the correct detection of the virus.

The results in Table 4.3 show that the estimated parameters are reliable, in the sense that

unlike in the previous example we do not get large standard errors. However, as in the

previous example, since the GLM cannot handle missing covariates the dataset has to be

reduced from 412 to 300 observations.
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Table 4.2: Percentages of correct results per sample group classified by covariate level for the
EV programmes.

It is concluded that the classical approach to analyse the qualitative data is not appropriate.

Therefore, a model needs to be developed that fits the data appropriately based on techniques

other than the classical approach.

87



CHAPTER 4. MODELLING QUALITATIVE PERFORMANCE

Table 4.3: Results from the classical GLM applied to the weakest EV sample group.

Parameters Estimate SE p-value
Intercept -0.918 0.361 0.011
Year 2002 (baseline 2005) -0.288 0.405 0.477
Year 2003 (baseline 2005) 0.624 0.389 0.109
Year 2004 (baseline 2005) 0.020 0.389 0.957
Tech. CC (baseline CIH) -1.656 1.066 0.121
Tech. RTC (baseline CIH) -0.152 0.721 0.833
Tech. NASBA (baseline CIH) -1.165 1.086 0.283
Tech. RTIH (baseline CIH) -0.212 0.319 0.507
Anti-contamination Yes (baseline No) -0.063 0.337 0.850
Accreditation Yes (baseline No) -0.044 0.272 0.871

4.4 Proposed Model for the Qualitative Responses

based on Bayesian Methods

The logistic regression model formulated in Section 4.2 under the classical approach will be

further use to develop the Bayesian framework. Under this new framework a prior distri-

bution for the probability of detecting correctly the virus in a sample needs to be specified

in advance. When information is given on several different levels of observational units a

hierarchical model approach should be used (Gelman et al., 2004). The data have a hier-

archical structure mainly due to the different number of sample groups and differences in

participants’ laboratory practices.

When fitting models to the data, the use of a non-hierarchical model is inappropriate for

hierarchical data since many parameters have to be estimated, and non-hierarchical models

tend to overfit these data (Gelman et al., 2004). Overfitting occurs when the model fits the

data well, but it leads to inferior prediction for new data. By using a hierarchical model

instead, it is possible to use the probability distributions to structure some dependence into

the parameters and avoid problems of overfitting.
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For this reason, the QLBM was developed as a hierarchical model with prior and hyper-prior

distributions for the parameters and missing covariates to be estimated. In this way, infer-

ences on the probabilities can be derived from the conditional posterior distributions of the

parameters and missing covariates.

A general derivation of the conditional posterior distribution similar to the one presented in

this chapter can be found in advanced statistics text books (Gilks et al., 1996, Gelman et al.,

2004, Banerjee et al., 2004). Since a different combination of likelihood and priors is used

than those which can be found in articles and books, the particular equations necessary for

the present application are derived and shown in what follows.

4.4.1 Likelihood Function

Let ysi be a realization of the ith participant’s response observed for sample group s. The

random variable Ysi follows a Bernoulli distribution with parameter psi. As a result, the

probability mass function is given by

f(ysi|psi) = (psi)
ysi(1 − psi)

(1−ysi).

Assuming independence of ysi, the likelihood of psi after observing the data can be written

as:

L(p|y) =
∏

si

f(ysi|psi) =
∏

si

(psi)
ysi(1 − psi)

(1−ysi),

where the multiplication
∏

si
=

l
∏

s=1

ns
∏

i=1
is the product over all observations over the l groups

(s = 1, .., l; i = 1, .., ns).
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4.4.2 Regression Model

In order to fit the logistic regression model described by equation (4.2), the likelihood is

expressed as a function of the vector of parameters ~βs and the vector of covariates ~xsi as:

L(p|y) =
∏

si

f(ysi|psi) =
∏

si

f(ysi|~xsi~βs) = L(β, x|y). (4.3)

The last term on the right hand side of equation (4.3) can be expressed as

L(β, x|y) =
∏

si

f(ysi|~xsi~βs) =
∏

si





exp(~xsi~βs)

1 + exp(~xsi~βs)





ysi


1 − exp(~xsi~βs)

1 + exp(~xsi~βs)





(1−ysi)

=
∏

si

exp(~xsi~βsysi)

(1 + exp(~xsi~βs))ysi

1

(1 + exp(~xsi~βs))(1−ysi)
.

Thus,

L(p|y) = L(β, x|y) =
∏

si

exp(~xsi~βsysi)

1 + exp(~xsi~βs)
.

4.4.3 Bayesian Framework

A particular feature of the Bayesian approach is the use of prior distributions for the pa-

rameters to be estimated and for missing covariates. In the QLBM the following prior

distributions are used:

• For the vector parameter ~βTs = (βs1, .., βsr), with s = 1, .., l, r − 1 being the total

number of explanatory variables included in the model for sample s and βs1 being the

parameter associated with the identity vector to allow for the inclusion of an intercept

into the model, the prior is given by the normal distribution:

~βs|~βs0,Vs0 ∼ Np(~βs0,Vs0),

with mean vector βs0 and covariance matrix Vs0.
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• For the missing covariates xsij , with j taking values from 2,..,r and r being the total

number of covariates for sample s, the priors are chosen based on the type of the

covariate as follows:

– If the jth-covariate is a binary variable, then

xsij |bj ∼ Bernoulli(bj),

where bj is the probability of success.

– If the jth-covariate is a categorical variable (with more than two categories), then

xsij |~gj[] ∼ Categorical(~gj[]),

where ~gj[] is the vector of assigned probabilities to each category of the vari-

able. That is the Prob(xsij) = gj[xsij ] with xsij = 1, .., dim(~gj) such that

0 ≤ gj[xsij ] ≤ 1 and
∑dim(~gj)
i=1 gj[i] = 1. The Categorical distribution is a discrete

univariate distribution for a random variable that measure one possible outcome

out of several categories. It is like an extension of a Bernoulli distribution but

instead of having failure and success as possible outcomes of the variable, in the

Categorical the outcomes are more than two categories, i.e. type of laboratory

where more than two options of laboratory type are available. The random vari-

able that follows a Categorical distribution in this case has different probabilities

of being each category of possible outcome as described above. Application of

this discrete distribution to data can be found in Roche et al (1975) and Thissen

(1986) (p.71) (Lunn et al., 2000). This should not be confused with a multino-

mial distribution where the sum of several outcomes with different categories are

measured (Gelman et al., 2004).
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In the model proposed here, ~βs0 ,Vs0 , bj and ~gj[] are the hyperparameters. The hyperpa-

rameters may be estimated using only the data, known as the ‘empirical Bayes’ approach

or they may also be given a prior distribution, which is known as the ‘full Bayes’ approach.

The ‘full Bayes’ approach with prior distributions for the hyperparameters, described in the

following, is used.

Since there is no specific information available a priori about the regression hyperparameters

and variances, their corresponding prior distributions can be set up as follows:

• Prior distributions for the elements of the vector ~βs0 are set up as uniform flat distri-

butions

βs01, .., βs0r ∼ U [−100, 100].

• Prior distributions for the elements of the diagonal matrix Vs0 are set up as inverse-

gamma flat distributions

Vs01, .., Vs0r ∼ InvGamma(0.001, 0.001).

• Prior distributions for bj are set up as Beta distributions

bj ∼ Beta(a, b),

where a and b take positive values; in particular a = 2 and b = 2 are used to obtain an

informative symmetric hyper-prior distribution with mean 0.5 or a = 1 and b = 1 to

obtain a flat hyper-prior distribution.

• Prior distributions for ~gj[] are set up as Dirichlet distributions

~gj[] ∼ Dirichlet(~α[]),
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which is the multivariate distribution corresponding to the beta distribution. The

vector of parameters ~α[] is defined positive (each component is greater than 0), so that

each of the components of the vector ~gj [] has equal expectation.

The prior distribution are well known priors appropriate for the hyperparameters, which

were also chosen to provide conjugate posterior distribution where it is possible (Gelman et

al., 2004).

4.4.3.1 Posterior Distributions

The posterior distribution for the parameters to be estimated is derived from the likelihood

and the prior distributions as:

π(β, x|y) ∝ likelihood× prior ∝ L(β, x)π(β|β0, V0)π(x|b, g[]).

Since ~βs and ~xsi are independent, the prior density functions for β and x can be written as:

π(β|β0, V0) =
∏

s

π(~βs|~βs0,Vs0) ∼
∏

s

Np(~βs0,Vs0)

and

π(x|b, g) =
∏

sij

π(xsij|bj , ~gj[]) ∼
∏

sij

Bernoulli(bj)
(Ij)Categorical(~gj[])

(1−Ij),

where Ij is an indicator variable for the missing covariates and the product
∏

sij =
∏l
s=1

∏ns

i=1

∏r
j=1

is over all covariates j for all participants’ responses i and all sample group s.

The posterior distribution of each parameter can be expressed in terms of its posterior

conditional distribution, which will be used in the estimation procedure. Although the

vector of parameters ~βs is of primary interest, conditional posterior distributions for ~βs and

the missing covariates xsij are also presented here.
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• The conditional posterior distribution for ~βs with s = 1, .., l is given by:

π(~βs|y, x, ~β−s) ∝ L(~βs, x)π(~βs|~βs0,Vs0)

π(~βs|y, xs., ~β−s) ∝
∏

i(s)

exp(~xsi~βsysi)

1 + exp(~xsi~βs)
× exp

{

−1

2
(~βs − ~βs0)

TV−1
s0 (~βs − ~βs0)

}

,

where i(s) is the subgroup of responses from participants for sample group s, and ~β−s

are the vectors of regression parameters for each sample group except for sample group

s (that is, except ~βs).

• The conditional posterior distribution for missing variables xsij where j can take on

values from 2,..,r are given as follows:

– For missing binary variables

π(xsij |ysi, x−sij, βsj) ∝ L(βsj, xsij)π(xsij|bj)

π(xsij |ysi, x−sij, βsj) ∝
exp(xsijβsjysi)

1 + exp(xsijβsj)
× (bj)

xsij(1 − bj)
(1−xsij).

– For missing categorical variables

π(xsij |ysi, x−sij, βsj) ∝ L(βsj, xsij)π(xsij|gj[xsij ])

π(xsij |ysi, x−sij, βsj) ∝
exp(xsijβsjysi)

1 + exp(xsijβsj)
× gj[xsij ],

where x−sij are all the covariate values except the observed jth covariate value

for the ith observation in sample group s.
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4.4.4 Model Selection Procedure

As described in Chapter 1, for model selection, a backwards elimination procedure based

on the conditional posterior distributions for the estimated parameters was applied. The

95% highest density intervals for the means of the conditional posterior distributions of the

parameters were obtained and used to perform model selection. In addition to the model se-

lection procedure, possible confounders, interactions and correlated parameters were studied.

In a first step, the full model with all covariates is fitted. Then, using a backward selection

procedure, the number of parameters in the model is reduced to obtain conclusions about the

effect of the significant covariates on the estimated probabilities of correct results. Covariates

which are furthest from being significant at the two-sided 5% level are successively removed.

In each step, it is checked that the change of the model does not affect the values of all other

parameters by more than 30% of their previous values (as a rule of thumb defined by other

authors) (Miettinen and Cook, 1981), otherwise the removed covariate in the previous step

is returned back to the model (confounder variable) (Hak et al., 2002).

The parameters associated with each of the variables are tested at the two-sided 5% sig-

nificance level. The test is based on the posterior probabilities of the parameter estimates

being greater than zero. Posterior probabilities from the conditional posterior distributions

of the parameters are obtained. If the posterior probability is close to zero (smaller than

0.025), zero is on the upper tail of the distribution, and thus the parameter is concluded to

be significant at the one-sided 2.5% level. If the posterior probability is close to 1 (higher

than 0.975), zero is on the lower tail of the distribution and it is concluded that the param-

eter is significant at the one-sided 2.5% level. Finally, if the parameter is not significant at

the one-sided 2.5% level, the covariate corresponding to that parameter is removed from the

model.
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A further check is made to ensure that changes to the model do not interfere on the signif-

icance of other parameters. If a high correlation between parameters of covariates is found

then the covariate is not removed from the model (highly correlated is defined as a correla-

tion coefficient with modulus higher than 0.7) (Cohen, 1988).

Pair-wise interactions between covariates are studied and taken into account when reducing

the parameters in the model. The pair-wise interactions studied are chosen by theoretical

knowledge and practical interest. Given that the covariate Technology is the exploratory

variable of main interest, in general all pair-wise interactions studied are between Technol-

ogy and other covariates.

The results from the full and reduced models are presented in Section 4.5, together with

the 95% highest density intervals (or confidence intervals), defined as the most likely (with

probability of 0.95) estimates of the parameter under investigation. If the value 0 is within the

interval then the parameter is assumed to be 0, and the associated covariate of the parameter

is removed from the model for not being significantly different from 0. When reporting the

results, the estimated probability refers to the expected probability for the distribution of

participants’ results (incorrect/correct detection of the virus). This expectation is obtained

from the posterior distribution of the probabilities for detecting the virus correctly otained

using MCMC method.

4.4.5 Model Checking

Statistical models should be checked for adequacy of their fit to the data, thus model check-

ing should be included in the statistical modelling analysis. To check if a model is consistent

with the data, the posterior predictive results are assessed. If the model fits the data well,

then replicated data under model conditions should look similar to the observed data.
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For qualitative response variables, which are under investigation in this chapter, the sta-

tistical test and the procedure to assess predictive posterior distribution are described as

follows:

• Let T (ysik, θs) be a test statistic, a summary measure of the data ysik and the pa-

rameters θs for the sample group s and the subgroup of observations of the year k,

ik.

• T (ysik, θ) =

∑

ik
ysi

nsk
is defined as the sum of the responses within sample group s and

year k divided by the total number of responses, nsk, for that sample group and year.

• For each simulation from the posterior distribution of θs one replicated dataset of

responses from the predictive distribution for the sample group s and year k, yrsik ,

is generated. From those replicated data, the joint posterior predictive distribution

p(yrsik, θs|ysik) is obtained.

• Then, the observed test quantity, T (ysik, θs), is compared with the predicted test quan-

tities, T (yrsik , θs).

• The estimated Bayesian ‘p-value’ is the proportion of those simulations for which the

predictive test quantity is equal or exceeds the observed value, i.e. the proportion of

simulation such that T (yrsik, θs) ≥ T (ysik, θs).

4.4.6 Model Comparison

In order to determine if the reduced model fits the data well, methods based on comparing

the posterior distributions of the full and reduced models are used. Therefore, the estimated

posterior probabilities of detecting the virus correctly and their 95% confidence intervals

are obtained for both full and reduced models. Then, the estimated posterior probabilities

and their 95% confidence intervals of the full model are plotted, and the estimated posterior

probabilities of the reduced model are added to the plot.
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If the reduced model fits the data well, it is expected that the posterior probabilities estimated

by the reduced model lie within the 95% confidence intervals of the posterior probabilities

obtained with the full model.

An advantage of the Bayesian approach is that the posterior predictive distribution can be

computed for any data summary, as it has been shown with the estimated probabilities.

Using simulation, the posterior predictive probabilities are computed and the means of the

distributions of the estimated probabilities for the reduced model are checked to lie within

the distribution of estimated probabilities for the full model.

4.5 Model Application

The results presented in this section are obtained for the following specifications of the

QLBM:

• The hyperparameters bj are estimated from a Beta distribution with shape and scale

parameter 2.

• ~gj are estimated from a Dirichlet distribution as described in the previous section.

• The ~βs0 are set to be 0 and Vs0 defined as the identity diagonal matrix in order to

provide an informative prior distribution to the parameters with equal information for

all sample groups.

Variations of the estimates from the QLBM with different choices of prior distributions for

the hyperparmeters are studied, and the results are summarised in Section 4.6.
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4.5.1 Modelling EV Qualitative Data

Application of the QLBM to the Enterovirus (EV) proficiency panels introduced in Chapter

2, will be presented in this section. Table 4.4 describes the variables included in the model.

Note that the covariate plasma is categorised given that participants provided an interval

around the number of plasma tests performed annually.

Table 4.4: Covariates included in the EV analysis.

Covariate Description Values

Year Year when the sample was anal-
ysed

Indicator variables for years 2002 to 2004 compared
with year 2005

Technology Technology used to analyse the
sample

Indicator variables for technology groups: CC, RTC,
RTIH and NASBA compared with CIH

Anti Use of anti-contamination sys-
tem

Indicator variable with No use of anti-contamination
system as baseline

Accred Laboratory accreditation status Indicator variable with No accredited laboratory as
baseline

CSF Experience on CSF samples per-
formance

Indicator variable with No experience performing
CSF test as baseline

Swab Experience on swab samples per-
formance

Indicator variable with No experience performing
swab test as baseline

Biopsies Experience on biopsies samples
performance

Indicator variable with No experience performing
biopsies test as baseline

Serum Experience on serum samples
performance

Indicator variable with No experience performing
serum test as baseline

Plasma Annual number of plasma tests
performed by the participant

Indicators variables per group of number of plasma
test: 0-10 baseline, 11-100- group 1, 101-1,000 -
group 2, 1,001-2,000- group 3, 2,001-10,000- group
4, > 10, 000- group 5

Analysis Method of analysis used by the
participant

Indicator variables for analysis method. The base-
line of singular analysis compared with Duplicate
and other analysis methods

Inhibition Performance of inhibition test by
the participant

Indicator variables with non-performance of inhibi-
tion tests as baseline compared with performance
of inhibition test and performance of inhibition test
only in negative samples

Labtype Laboratory type where the sam-
ple was analysed

Indicator variables with hospital laboratories as
baseline compared with public health laboratory, pri-
vate laboratories, reference laboratories, manufac-
tures laboratories and research laboratories

Technologies: CC=Conventional Commercial, RTC=Real Time Commercial,

CIH=Conventional Commercial, RTIH=Real Time In-house and NASBA=NASBA.
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The baseline of a non-ordinal covariate is chosen based mainly on the most frequent level of

the covariate. For an ordinal covariate the baseline is chosen to be the lowest category. For

the covariate year the baseline is chosen to be the last year, in order to compare and draw

conclusions on the responses for samples from the last year with respect to the responses for

samples from previous years (a priori a better performance is expected in more recent years).

In a previous study some covariates were assumed to behave linearly and were considered

to be continuous variables (Garćıa-Fernández et al., 2007). However, this consideration of

linearity assumption led to inappropriate results for those covariates.

4.5.1.1 Full EV Model

The QLBM is fitted to the data in order to check the influence of significant covariates

associated with the correct detection of the virus. A summary of the results obtained from

applying the QLBM to the full data set for each sample group dilution series is presented in

this section (Table 4.5). Significant refers to significance at the two-sided 5% level.

Sample group dilution series 1 × 10−3

The strongest samples, with dilution of 1×10−3, are only included in the panels of 2002 and

2005. A summary of the results obtained from the full model for this sample group can be

found in Table 4.6.

Participants using CC, RTIH and NASBA technologies are more likely to detect the virus

correctly than those using CIH technology. In contrast, participants using RTC technology

are less likely to detect the virus correctly than those using CIH technology, although, these

differences are not significant at the two-sided 5% level.
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Table 4.5: Mean and SD of the parameter estimates from the full QLBM for EV sample
groups. The results in bold are significant at the two-sided 5% level.

Results in bold are significant at the two-sided 5% level.
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The results show that participants with experience performing CSF tests are significantly

more likely to detect the virus correctly than those without experience performing CSF tests.

Experience performing duplicate or other methods of analysis, such as triplicate methods,

tends to improve participants’ performance, but this finding is not significant at the two-

sided 5% level.

Experience performing plasma or biopsies tests has a positive influence when detecting the

virus correctly, however this tendency is not significant at the two-sided 5% level.

Only private laboratories are less likely to detect the virus correctly than hospital labora-

tories, and performing inhibition tests indicate a positive tendency for detecting the virus

correctly, but these findings are not significant at the two-sided 5% level.

As an illustrative example, the estimated probability of providing a correct result, using

the QLBM model, is obtained for a participant with a particular combination of laboratory

practices. Then, the estimated probability is compared with the observed probability of

correct results from participants fulfilling the same conditions.

For this example, consider a participant with the following laboratory practice for analysing

a sample of dilution series 1 × 10−3 from 2002: The participant

• used RTIH technology to analyse the sample,

• was an accredited laboratory,

• did not use an anti-contamination system (baseline),

• had experience performing a CSF test,
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• had experience performing a serum test,

• did not have any experience with biopsies and swab (baseline),

• was using a duplicated method of analysis,

• has experience in testing between 101 and 1,000 plasma tests annually,

• was a hospital laboratory (baseline),

• did not perform any inhibition test (baseline).

For such a participant, the probability of having a correct result is derived from the estimated

means given in Table 4.6 as follows:

logit(p̂) = 1.499 − 0.09 × (Year=2002) + 0.585 × (RTIH=yes) − 0.17 × (Accred.=yes)+

1.763× (CSF=yes)− 0.06× (Serum=yes) + 0.489× (Duplic.=yes) + 0.163× (Plasma=yes).

Since the covariates are indicator variables for non-baseline information, the above expression

can be rewritten as

logit(p̂) = 1.499 − 0.09 + 0.585 − 0.17 + 1.763 − 0.06 + 0.489 + 0.163 = 4.179

p̂ =
exp(4.179)

(1 + exp(4.179))
= 0.99.

Thus, the participant in this example has a probability of 0.99 to return the result correctly.

A comparison with the observed data shows that all participants with the same laboratory

practice provided their results correctly for the sample from 2002.
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A participant with the same characteristics, but who had no experience with CSF tests

would have:

logit(p̂) = 1.499 − 0.09 + 0.585 − 0.17 + 1.763 × 0 − 0.06 + 0.489 + 0.163 = 2.416

and hence the estimated probability

p̂ =
exp(2.416)

(1 + exp(2.416))
= 0.918.

So participants having experience performing CSF test are 0.99
0.918

= 1.078 times more likely

to detect the virus correctly than participants with no experience performing CSF tests.

Table 4.6: Summary statistics for the parameter estimates from the full QLBM for EV sample
group dilution series 1×10−3: estimated mean, standard deviation (SD), confidence interval,
tendency describing the sign of the estimated mean and significance at two-sided 5% of the
parameter.
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Consider now the example of a participant with the following laboratory practice for analysing

a sample of dilution series 1 × 10−4 from 2004:

• used RTIH technology to analyse the sample,

• was an accredited laboratory,

• did not use an anti-contamination system (baseline),

• had experience performing CSF tests,

• had no experience performing serum tests (baseline),

• did not have any experience with biopsies and swab (baseline),

• was using a duplicated method of analysis,

• had no experience in testing plasma samples annually (baseline),

• was a hospital laboratory (baseline),

• provided a missing value for performing any inhibition test.

For the missing value of the covariate ‘performing any inhibition test’, the model estimates

the most likely value given the knowledge of the other covariates. In this example, the esti-

mation obtained by the model is that the participant performed an inhibition test. Based on

this result, in a second step, the model estimates the probability of a correct result, which

in the given example is p = 0.779.

The probability of having a correct result for a participant with the same characteristics, but

who provided the information of performing an inhibition test (see Table 4.5, more detailed

results are presented in Appendix B), is given by:
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logit(p̂) = 1.669 − 0.467 × (Year=2004) − 0.642 × (RTIH=yes) − 0.438 × (Accred.=yes)+

0.871 × (CSF=yes) + 0.818 × (Duplic.=yes) − 0.543 × (Inh.Test=yes).

logit(p̂) = 1.268

p̂ =
exp(1.268)

(1 + exp(1.268))
= 0.780.

Note how the model adjusts the probability of a correct result for the participant who

provided missing information. The adjustment for this probability with respect to the prob-

ability of a correct result for a participant who provided the complete information is not

high, although the model assigned slightly less probability of correctly detecting the virus to

the participant with missing data.

By checking the observed data, the proportion of correct results from participants with those

characteristics is 0.8, which is in agreement with the results provided by the model. The

probability of providing a correct result for a participant with the same characteristics but

not performing an inhibition test is 0.86, and for a participant only performing an inhibition

test in negative samples is 0.72. This indicates that the estimate from the model for the

participant with missing covariate is appropriate. The estimated probability from the model

is closer to the probability for a participant who performed an inhibition test than to the

probability for a participant not performing inhibition tests or performing inhibition tests

only in negative samples.

106



CHAPTER 4. MODELLING QUALITATIVE PERFORMANCE

Sample group dilution series 1 × 10−4

A summary of results for this sample group is presented in Table 4.5. This dilution series is

only contained in the panels of 2004 and 2005. No significant differences were found between

samples from 2004 and 2005, although for samples from 2004 participants are less likely to

detect the virus correctly than for samples from 2005.

There are no significant differences between technologies, but the following tendencies are

observed: participants using CC and NASBA technologies are more likely to detect the virus

correctly than those using CIH technology, whilst participants using RTC and RTIH tech-

nologies are less likely to detect the virus correctly than participants using CIH technology.

Consistent with the results shown in Table 4.2, the use of an anti-contamination system is a

significant factor positively associated with the correct detection of the virus.

Experience performing CSF tests tends to improve participants’ performance. Those partic-

ipants are more likely to detect the virus correctly, but it is not significant at the two-sided

5% level.

Participants performing duplicate analysis methods are significantly more likely to detect

the virus correctly than those performing single analysis methods.

Participants from private laboratories are significantly less likely to detect the virus correctly

than those from hospital laboratories.
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Participants who did not perform inhibition tests are more likely to detect the virus correctly

than those performing inhibition tests, but the differences on their performance are not

statistically significant.

Sample Group Dilution Series 1 × 10−5

A summary of results for this sample group is presented in Table 4.5. Participants are sig-

nificantly more likely to detect the virus correctly for samples from 2003 than for samples

from 2005.

Participants using CC technology are more likely to detect the virus correctly than those

using CIH, although these differences are not significant. Participants using RTIH, RTC and

NASBA technologies are less likely to detect the virus correctly than CIH technology users,

but these differences between their performance are not significant.

In agreement with Table 4.2, the use of an anti-contamination system tends to improve par-

ticipants’ performance.

Although not statistically significant, experience performing CSF, swabs, biopsies or plasma

tests tends to improve the performance of participants.

Public health and manufactures laboratories are significantly more likely to detect the virus

correctly than hospital laboratories, while private laboratories are less likely to detect the

virus correctly than hospital laboratories.
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Sample Group Dilution Series 1 × 10−6

A summary of results for this sample group is presented in Table 4.5. For samples from 2005

participants are significantly more likely to detect the virus correctly than for samples from

2002.

Although the use of different technologies is not significantly associated with participants’

performance, the users of CC technology are more likely to detect the virus correctly than

CIH technology users.

Participants using other methods of analysis are significantly more likely to detect the virus

correctly than participants using single analysis methods.

Manufacture laboratories are significantly more likely to detect the virus correctly than

hospital laboratories, which is consistent with the observed percentages of correct results in

Table 4.2. In contrast with previous samples, private laboratories tend to detect the virus

correctly as well as hospital laboratories.

Sample Group Dilution Series 1 × 10−7

A summary of results for this sample group is presented in Table 4.5. For samples from

2002 participants are significantly less likely to detect the virus correctly than for samples

from 2005. In contrast, for samples from 2003 and 2004 participants are significantly more

likely to provide a correct result than for samples from 2005, which is consistent with the

percentages provided in Table 4.2.

Participants using RTC technology are significantly less likely to detect the virus correctly

than CIH technology users.
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The use of duplicate or other methods of analysis such as triplicate methods tends to improve

participants’ performance, but this improvement is not significant.

Manufacture laboratories are significantly more likely to provide a correct result than hospital

laboratories. Private laboratories are less likely to detect the virus correctly than hospital

laboratories, but the differences are not statistically significant.

Sample Group Dilution Series 1 × 10−8

A summary of results for this sample group is presented in Table 4.5. The samples of di-

lution series 1 × 10−8 are the weakest positive samples included in the panels across years.

In agreement with the information provided in Table 4.2, the results show that for samples

from 2003 participants are significantly more likely to detect the virus correctly than for

samples from 2005. Although not statistically significant, the same tendency is observed for

participants’ performance for samples from 2004 with respect 2005.

Users of commercial technologies (RTC, NASBA and CC) are less likely to detect the virus

correctly than CIH technology users. However, the differences are not significant.

No significant differences were found between the results from different laboratory types,

although all of them are more likely to provide a correct result than hospital laboratories.

Negative Sample Group

A summary of results for this sample group is presented in Table 4.5. None of the covariates

included in the model are significantly associated with participants’ performance for negative

samples.
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In particular, no significant differences were found between technology groups or laboratory

types. However, the tendencies of the parameters indicate that users of RTIH, NASBA and

RTC technologies are more likely to provide the correct response than CIH technology users,

as observed in Table 4.2.

The use of duplicate or other method of analysis, such as triplicate, tends to improve partic-

ipants’ performance, but the differences between the methods of analysis are not significant

at the two-sided 5% level.

Private and manufacture laboratories are more likely to provide a correct results than hospital

laboratories.

4.5.1.2 Non-EV Sample Group

A summary of results for this sample group is presented in Table 4.5. The results show that

for samples from 2003 participants are less likely to provide a correct result than for samples

from 2005, but this finding is not statistically significant.

Users of RTIH technology are significantly more likely to provide a correct result than CIH

users, which is consistent with the observed results in Table 4.2. The same tendency is ob-

served for the results of NASBA and RTC users, however these differences are not significant.

The general tendency of experience testing other specimens, such as plasma, CSF and biop-

sies, is to improve participants’ performance, but it is not statistically significant.

Participants from private laboratories are the worst in providing correct results, but not

significantly different from hospital laboratories.
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Participants performing an inhibition test are significantly more likely to provide a correct

result than those not performing any inhibition test.

4.5.1.3 Reduced EV Model

In order to simplify the full model those covariates, per sample group, that are not significant

at the two-sided 5% level are removed. However, covariates behaving as confounders are not

excluded from the model even if they are not significant. A covariate is considered to be a

cofounder if the estimated parameters, for all other covariates of the reduced model, change

more than 30% of their values from the previous model.

Interactions between covariates and correlations of the estimated parameters were also stud-

ied. Interaction between parameters were not found. Correlations between the parameters

were checked when reducing the model. The estimated parameters were not correlated, in

most cases, the absolute values of the correlation coefficients being lower than 0.25.

The results of the reduced model are summarised in the next subsections (more detailed

results can be found in Tables B.8 to B.15 in Appendix B). Table 4.7 shows the mean and

standard deviation for each of the parameter estimates from the reduced model. The results

in bold are the significant estimates at the two-sided 5% level.

Sample Group Dilution Series 1 × 10−3

The reduced model for the sample group dilution series 1 × 10−3 shows that only the expe-

rience performing an CSF test is significantly associated with the correct detection of the

virus. Those participants with experience performing CSF tests have exp(1.591) = 4.91

times higher odds of detecting the virus correctly than those with no experience performing

CSF tests.
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Table 4.7: Mean and SD of the parameter estimates from the reduced QLBM for EV sample
groups with different dilutions series

Results in bold are significant at two-sided 5% level.
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Sample Group Dilution Series 1 × 10−4

Performing serum, plasma, cerebrospinal fluid, biopsies and swabs tests are not significant.

However, they are confounders for other covariates in the model. Therefore, it is preferable

to include them into the final model to gain precision in prediction. As the technology vari-

able is a confounder it is also included in the final model.

Participants performing duplicate analysis methods have exp(0.737) = 2.08 times higher

odds of detecting the virus correctly than those performing only single analysis.

Private laboratories have 1/ exp(−1.764) = 1/0.17 = 5.83 times lower odds of detecting the

virus correctly than hospital laboratories.

Sample Group Dilution Series 1 × 10−5

The odds of detecting this virus correctly for samples from 2003 is exp(0.959) = 2.6 times

higher than the odds for samples from 2005.

Users of RTC and RTIH technologies have, respectively, 4.2 and 1.75 times lower odds of

detecting the virus correctly than participants using CIH technology.

Using an anti-contamination system does not significantly influence participants’ perfor-

mance, although those participants using it have almost twice the odds of detecting the

virus correctly than those not using an anti-contamination system (exp(0.561) = 1.75).
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Experience in plasma, biopsies and swab tests are not significantly associated with the cor-

rect detection of the virus; however, this experience has an influence on others variables such

as those related to performing a serum test or related to the method of analysis. Thus, it is

more appropriate to include them into the final model.

Participants from public health and manufacture laboratories have 2.8 (exp(1.033)) and 4

(exp(1.397)) times higher, respectively, odds of detecting the virus correctly than hospital

laboratories.

Sample Group Dilution Series 1 × 10−6

For samples from 2002 participants have 1/ exp(−0.558) = 1.747 times lower odds of detect-

ing the virus correctly than for samples from 2005.

RTC, NASBA and RTIH technologies users are less likely to detect the virus correctly

than CIH users. For example, the odds of detecting the virus correctly for RTC users is

1/ exp(−0.85) = 2.33 times lower than the odds for CIH users.

Participants performing other methods of analysis, such as triplicate, are significantly more

likely to detect the virus correctly than those performing single analysis methods, with an

odds ratio of exp(1.279) = 3.59.

Participants from manufacture laboratories have exp(2.086) = 8.05 times higher odds of

detecting the virus correctly than hospital laboratories.
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Sample Group Dilution Series 1 × 10−7

It was found that for samples from 2002, participants have 2.14 times lower odds of detecting

the virus correctly than for samples from 2005. For samples from 2003 and 2004 participants

are significantly more likely to detect the virus correctly than for samples from 2005 (with

odds ratios of 3.7 and 2.02, respectively).

All other technology users are less likely to detect the virus correctly than CIH users, for

example the odds for RTC users are 4.22 times lower than the odds for CIH users.

As in previous samples groups, the exploratory variables experience performing tests from

serum, biopsies, CSF, swabs and method of analysis are taken into account in the model,

since their exclusion implies distortion between them and experience performing plasma

tests. However, they are not significant at the two-sided 5% level.

The odds for participants from manufacture and research laboratories are 4 times higher

than the odds for hospital laboratories.

Sample Group Dilution Series 1 × 10−8

For the weakest concentration sample group no significant differences were found between

users of technology groups. However, the odds of detecting the virus correctly for samples

from 2003 is twice the odds for samples from 2005.

Negative Sample Group

Participants with experience performing CSF tests have 2.38 times higher odds of detecting

the virus correctly than those with no experience performing CSF tests, at the two-side 5%

significance level.
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Although not statistically significant, participants performing inhibition tests are more likely

to detect the virus correctly than those not performing inhibition test (with an approximately

odds ratio of 2). However, the odds for those participants who performed only inhibition

tests in negative samples is twice lower than the odds for participants who did not perform

any inhibition test, at the two-sided 5% significance level.

Non-EV Sample Group

In contrast to positive EV sample groups, for the non-EV sample group RTC, NASBA and

RTIH technologies users are more likely to provide a correct result than CIH users, with the

odds for RTIH users 2.27 times higher than the odds for CIH users, at the two-sided 5%

significance level.

Those laboratories performing inhibition tests have almost twice the odds of detecting the

virus correctly than laboratories who did not perform any inhibition test.

4.5.1.4 Model Checking

Figure 4.1 shows the density function of the test statistic T obtained from 10,000 simulated

datasets from the model for the negative sample in 2004. The black line represents the

observed data value of T , T (ysik, θs). The area under the density curve on the right tail

represents the Bayesian ‘p-value’ or the probability that the predictive posterior statistics T

from replicated data is more extreme than the T from observed data.

Table 4.8 shows the probability of T (yrsik, θs) ≥ T (ysik, θs) for each sample group and year.

That is the Bayesian ‘p-value’ used for assessing the statistical significance of discrepancies

between the observed data and the predicted data. An extreme Bayesian ‘p-value’ indicates

a conflict between the observed data and an aspect of the model.
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Figure 4.1: Density function of the T test for the Negative sample in 2004 from the reduced
QLBM.

Table 4.8: EV Bayesian ‘p-values’ from the reduced QLBM per year and sample group.

No discrepancies were found for any of the sample groups and years. Therefore, using this

approach it is concluded that the model fits the data adequately.
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4.5.1.5 Model Comparison

Figure 4.2 shows the estimated posterior probabilities of detecting the virus correctly for

two randomly selected samples, together with their 95% confidence intervals from the full

model and the estimated probabilities from the reduced model. For illustration, a sample of

dilution series 1 × 10−4 from 2004 and a non-EV sample from 2003 are selected. The plots

are ordered by decreasing posterior probabilities. It is observed that the posterior predicted

probabilities from the reduced model are within the 95% confidence limits obtained from the

full model, indicating a good fit of the reduced model to the data for those sample groups.

An observed common feature for all sample groups is that the estimated probability of de-

tecting the virus correctly decreases when the sample dilution series decreases (see Figure

B.1). For the sample group dilution series 1 × 10−7, it is observed that the probabilities of

getting a correct result for samples from 2002 are lower than for samples from subsequent

years. The negative and the strongest sample group dilution series 1 × 10−3 are the most

likely samples to be detected correctly by participants across years.
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Figure 4.2: EV estimated probabilities from the full and reduced QLBM for the sample group
dilution series 1 × 10−4 in 2004 and for the Non-EV sample group in 2003. Results are
ordered by decreasing estimated probabilities. The x-axis represents an identification number
of participants’ results.
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4.5.2 Modelling Hepatitis B Virus Qualitative Data

In order to check if the QLBM fits well the data from other pathogens, the model is applied

to the Hepatitis B Virus data. Since the steps involved to reduce the full model are the same

as in the previous subsection, the details of the results obtained by applying the full model

are not shown. Instead, the results from the final reduced model along with the conclusions

from model comparison and checking are presented.

Hepatitis B virus (HBV) proficiency panels consist of 8 samples per year with different sub-

type and viral load. Section 1.3.1 in Chapter 1 contains a summary of the HBV data. Table

4.10 shows the percentages of correct results per sample group and covariate level.

Table 4.9: Changes on covariates for the analysis of HBV qualitative data.

Covariate Description Values

Technology Technology used to analyse the
sample

Indicator variables for technology groups: CIH,
RTC, RTIH, bDNA, HC and TMA compare with
CC

OtherSp. Experience on other specimen
sample performance such as
biopsies, swabs, etc..

Indicator variable with No experience performing
test of other specimens as baseline

Serum Annual number of serum tests
performed by the participant

Indicator variables per group of number of plasma
test: 0-10 baseline, 11-100- group 1, 101-1,000 -
group 2, 1,001-2,000- group 3, 2,001-10,000- group
4, > 10, 000- group 5

Technologies: CC=Conventional Commercial, RTC=Real Time Commercial, CIH=Conventional Commercial,

RTIH=Real Time In-house, bDNA=bDNA, HC=Hybrid Capture and TMA=TMA.

The variables included in the model are described in Table 4.4 except for minor changes for

some of the covariates shown in Table 4.9. Note that the baseline for the technology variable

is CC technology in this analysis. The baseline technology method is changed to the most

frequent technology used.
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Table 4.10: Percentages of correct results per sample group classified by covariate level for
the HBV programmes. Sample viral load is given in log10 copies/ml.
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The association of the covariates in Table 4.9 to the correct detection of the virus is checked

by applying the QLBM to the HBV data. The full QLBM is fitted to the HBV data and

the parameter associated with each variable is tested at the two-sided 5% significance level

(test based on the posterior distribution of the estimated parameters as in the previous EV

data analysis). Covariates that are not significant, or do not interact with others and/or do

not behave as confounders in the model are discarded. Thus, the full model fitted to HBV

data is simplified to obtain a reduced model, as in the previous EV data analysis. Only the

results and tables that summarise the reduced model fitted to HBV data are presented in

this section (the summary of results obtained from the full model can be found in Appendix

B, Table B.16).

4.5.2.1 Reduced HBV Model

As in the previous EV data analysis, the same selection procedure as described in Section 4.4

is used to select the reduced model. The reduced model includes those covariates, per sample

group, that are significant at the two-sided 5% level. In addition, confounding covariates,

interactions between them and correlations of the parameter estimates were checked and

confounding covariates were retained in the model as well as covariates showing correlation

between parameter estimates. In general, no significant interactions were found.

Tables B.17 to B.23 in Appendix B show the results obtained from the reduced model for

each sample group. Table 4.11 summarises the results with the mean and standard deviation

of the estimated parameters from the reduced HBV model. The results in bold shown in

Table 4.11 are the significant parameters. Experience performing serum and plasma tests,

laboratory type and performing inhibition test are not included in the reduced model for

any sample group, therefore they are not shown in the table.
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Table 4.11: Mean and SD of the parameter estimates from the reduced QLBM for HBV
sample groups.

Results in bold are significant at the two-sided 5% level.

Sample Group 6 log10 Copies/ml Viral Load

No significant difference was found between participants’ performance for samples of subtype

A and subtype D. The results show that participants perform similarly, independent of the

technology used, experience testing other specimens, type of laboratory, accreditation status

and use of an anti-contamination system.
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The estimated probability of a correct result is (exp(3.870))/(1 + exp(3.870)) = 0.98. Thus,

as a general conclusion, the 2% error for the correct detection of the virus is not significantly

associated with any of the covariates included in the model.

Sample Group 5 log10 Copies/ml Viral Load

Participants using bDNA or HC technology are significantly less likely to detect the virus

correctly than CC technology users (with odds of 1/ exp(−2.512) = 12.35 and 1/ exp(−2.069)

= 7.9, respectively). Although not statistically significant, RTIH and RTC users have 2.5

and 2.8 times higher odds of detecting the virus correctly than CC users, respectively.

The odds for accredited participants is 4.5 times higher than the odds for non-accredited

participants.

Participants with experience performing other sample tests, such as biopsies, have almost 3

times the odds of participants without experience.

Sample Group 4 log10 Copies/ml Viral Load

No significant differences were found between participants’ performance for samples of sub-

type A and subtype D.

The results show that bDNA and HC technology users are significantly less likely to detect

the virus correctly than CC technology users (with inverse of odds ratios of 5 and 30, re-

spectively).

Participants using an anti-contamination system have 2.5 times higher odds of detecting the

virus correctly than those not using an anti-contamination system.
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Accredited participants or participants with experience performing other specimen tests are

significantly more likely to detect the virus correctly than non-accredited participants or

participants with lack of experience (with odds ratios of 4.4 and 4, respectively).

Sample Group 3.5 log10 Copies/ml Viral Load

The results of participants from 2003 are not significantly different from the results of par-

ticipants from 2002.

The users of bDNA and HC technologies are significantly less likely to detect the virus cor-

rectly than CC users (the inverse of the odds ratios are more than 20).

The use of an anti-contamination system tends to improve participants’ performance, the

odds for participants using an anti-contamination system is 2.3 times higher than the odds

for participants not using an anti-contamination system.

Sample Group 3 log10 Copies/ml Viral Load

No significant difference was found between participants’ performance for samples of subtype

A and subtype D.

The users of bDNA and HC technologies are significantly less likely to detect the virus cor-

rectly than CC technology users; their inverse odds ratios of detecting the virus correctly are

3.7 and 5.3, respectively. The odds for users of RTC technology is twice the odds for CC users.

The use of an anti-contamination system tends to improve participants’ performance, par-

ticipants using an anti-contamination system having almost 3.5 times higher odds than

participants not using any anti-contamination system.
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Accredited participants are more likely to detect the virus correctly than non-accredited par-

ticipants, being the odds for accredited participants almost twice the odds for non-accredited

participants.

Sample Group 2.3 log10 Copies/ml Viral Load

It was found that participants using bDNA and HC technologies have 14.4 and 5.3 times

higher odds than CC technology users.

The odds for participants performing analysis methods in triplicate or more is 4.2 times the

odds for participants performing single analysis methods.

Negative Sample Group

No significant differences were found between the performance of participants using different

technologies. However, participants using an anti-contamination system have almost 3 times

higher odds of a correct result than participants not using any anti-contamination system.

4.5.2.2 Model Comparison

As in the previous analysis of EV data, model comparison tools are applied in order to de-

terminate if the reduced model fits the data as well as the full model. The approach taken

to model comparison is as described in Section 4.4.

Figure 4.3 shows the graphs for two randomly selected samples, the results are ordered by de-

creasing estimated probability. It is observed that the majority of the posterior probabilities

of detecting the virus correctly from the reduced model lie within the confidence intervals

(which is expected since we are providing the 95% confidence limits).
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However, for the weakest sample group of 2.3 log10 copies/ml, the estimated probabilities

from the reduced model are underestimated with respect to the probabilities from the full

model when those are above 0.75 (see Figure B.2). Nevertheless, these probabilities are still

within the range of the confidence limits, so it is concluded that the reduced model fits the

data appropriately.

Figure 4.3: HBV estimated probabilities from the full and reduced QLBM for the sample group
3 log10 copies/ml in 2002 and for the sample group 5 log10 copies/ml in 2005. Results are
ordered by decreasing estimated probabilities. The x-axis represents an identification number
of participants’ results.
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Generally speaking, the estimated probability of detecting the virus correctly decreases when

the viral load of the sample to be tested decreases. No differences are observed between the

estimated probabilities for samples with different subtypes across years (see Figure B.2).

4.5.2.3 Model Checking

To test if the model is consistent with the data the posterior predictive results are assessed.

The test quantity used to study model consistency is the same as the one defined in Section

4.4. Lack of fit of the data is assessed by the tail-area probability of the posterior predicted

distribution.

Figure 4.4 shows the density of the test statistic T for the sample in group 3 log10 copies/ml

and year 2005. It is observed that the area under the distribution of T for values higher than

the observed test quantity is bigger than 0.025 and lower than 0.975, so it is concluded that

the model fits the data well at the 5% significant level.

Table 4.12 shows the Bayesian ‘p-value’ that assesses the significance of discrepancies between

the observed and the predicted data. An extreme Bayesian ‘p-value’ indicates disagreement

between the observed data and the proposed model.

Observing the probabilities shown in Table 4.12, no discrepancies were found for any of the

sample groups and years. Therefore, it is concluded that the model fits the data adequately.
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Figure 4.4: Density function of the T test for the sample group 3 log10 copies/ml in 2005
from the reduced QLBM.

Table 4.12: HBV Bayesian ‘p-values’ from the reduced QLBM per year and sample group.

4.6 Model Prior Sensitivity Analysis

The proposed model, QLBM, estimates the parameters using Bayesian techniques which

employ prior distributions to obtain posterior estimates. As described previously, the prior

distribution is part of the model within the Bayesian framework, but the precise choice of

the prior distribution is to some extend subjective.
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Therefore, in order to study the robustness of the model subject to different priors, a sen-

sitivity analysis is performed for a range of alternative prior distributions. This sensitivity

analysis assesses the effect of alternative prior models on the posterior inferences.

To measure the effect and sensitivity of the chosen prior distributions on the estimated pa-

rameters and covariates, three QLB models are fitted with different prior distributions. In

the previous application, the QLBM with normal prior distributions for the regression pa-

rameters and low informative priors for the covariates and hyperparameters was considered.

In Bayesian analysis, if the model is unaffected by external information (or it is believed so),

then there is not a strong prior knowledge to be taken into account, so it is used what is

called a non-informative prior distribution. This distribution has only a weak impact on the

posterior distribution since the density is described as vague or flat.

From another perspective, prior distributions can be divided by proper (informative and

non-informative) and improper distributions. Improper distributions are those that violate

the assumption that probabilities sum up to 1. While, proper distributions do not violate

any axiom of probability theory.

In this section, the results obtained from alternative models with different prior distributions

are summarised. Since there is no informative knowledge about the parameters models

with more informative priors than the proposed for the QLBM are not in this study. All

chosen alternative priors are less informative than the QLBM, and the following choices are

decreasing in the prior information considered (from more informative to less informative):

• Model 1 with Prior 1: ‘Non-informative’ or flat prior distributions, Beta(1,1), for the

hyperparameters of the covariates to be estimated.
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• Model 2 with Prior 2: A hierarchical model with hyperparameters from a flat uniform

and inverse-gamma distribution for some of the primary parameters of interest θ.

• Model 3 with Prior 3: Full hierarchical model with non-informative distributions for

the hyperparameters of the regression parameters to be estimated and flat prior dis-

tributions for the hyperparameters of the covariates to be estimated.

For the sensitivity analysis, the prior distributions are non-informative proper priors in order

to make sure that the posterior distributions are proper posterior distributions.

A graphical summary of the posterior checks is presented as an illustration of the differences

of the posterior probabilities obtained when applying several models. A Bayesian statistics

test can be developed to formally test these differences. In this case, however, a graphical

representation gives more insight into possible structural differences between the models than

a formal test. In order not to interrupt the flow of the Bayesian spirit of this thesis at this

point, some formal classical test procedures are shown in Appendix E for the reader who is

more familiar with classical analysis.

4.6.1 Sensitivity Analysis of QLBM Applied to EV Data

The three alternative models using the priors described in the previous subsection, were

applied to EV data. No differences were found between the results obtained from the al-

ternative models and the results from the applied QLBM to the EV data, confirming the

robustness of the QLBM approach.

As an illustrating example, Figure 4.5 shows the differences between the estimated posterior

probabilities from the three models with respect to the estimated probabilities from the

QLBM for the sample group 10−6 in 2004. The structure of the differences does not have any

particular pattern. It is observed that the differences are close to zero for each participant.
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There is not a systematic pattern in the differences, suggesting that all three new models

agree with the initial QLBM.

Figure 4.5: Differences between EV estimated probabilities from the QLBM. The x-axis rep-
resents the estimated probabilities of correct detection of the sample.

4.6.2 Sensitivity Analysis of QLBM Applied to HBV Data

As in the previous subsection, the robustness of the QLBM applied to HBV data is checked

by a sensitivity analysis. No differences were found between the estimated posterior prob-

abilities from the three alternative models and the estimated probabilities from the QLBM

for any of the sample groups and years.

Figure 4.6 shows the differences between the estimated probabilities from the alternative

models and the applied QLBM for the sample group 5 log10 copies/ml and year 2005.

As a general conclusion, based on the sensitivity analysis conducted, no differences were found

between the means of the estimated posterior probabilities from the alternative models and

the estimated probabilities from the QLBM.
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This result is in agreement with the idea of Bayesian analysis, in the sense, that if a great

amount of information from observations is available, the prior knowledge has little influence

on posterior estimates.

Figure 4.6: Differences between HBV estimated probabilities from the QLBM. The x-axis
represents the estimated probabilities of correct detection of the sample.

4.7 Summary and Conclusions

The QLBM developed in this study represents a new statistical method that can be used

for the identification of factors that are associated with participants’ performance of indi-

vidual samples across time. Unlike the classical approach, the Bayesian framework proposed

here allows the inclusion of missing information from participating laboratories. Further-

more, problems related to asymptotic theory that occur in classical models are avoided. The

QLBM developed and reported in Garćıa-Fernández et al. (2007) (see Appendix F) has

been reviewed and adjusted to provide more adequate results and explain the difference on

performance in a more appropriate way.
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The full QLBM applied to EV and HBV provides a better overview of how the covariates

influence the performance. Predictions of the model can be used to inform laboratories about

the best procedures to adopt, such as technology to be used, use of an anti-contamination

system, experience need to improve their performance, etc. In turn, the reduced model pro-

vides estimates of the real impact of the significant covariate on the results, and this can be

used for making future predictions. In addition, it provides a measurement for the influence

of the laboratory practices over its performance.

As a general overview of the results, it is concluded from the application of the QLBM to

EV and HBV data that performance varies depending on the virus to be analysed and the

sample load. The best technology used to test the samples varies among the viruses and

sample viral loads. bDNA and HC users are less likely to detect the virus correctly than

CC for HBV samples independently of the viral load. However, for EV performance, as the

dilution series decreases, CC users are less likely to provide a correct result than CIH users.

The use of an anti-contamination system tends to improve the correct detection of the virus.

Differences on performance between types of labs were found when analysing EV samples,

but not when the sample to analyse is of HBV. Private laboratories are less likely to detect

the virus correctly than hospital laboratories as the EV sample dilution increases. On the

other hand, manufacture and research laboratories are more likely to detect the virus cor-

rectly than hospital laboratories as the EV sample dilution decreases. Experience of testing

different specimens, such as biopsies, tends to improve (overall) participants’ performance.

Both model applications have been checked for goodness of fit and the results have shown that

QLBM fits the data appropriately. This was achieved by generating replicate data simulated

from the model and performing a test statistics to compare simulated and observed data.

The probability distribution used for the data is a well known distribution chosen according

to the characteristics and the definition of the data to be analysed. The sensitivity analysis

has shown that the QLBM is robust under changes in the prior knowledge.
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The proposed model fulfills the requirement of using complete datasets, having no restriction

about the number of covariates to be studied, providing appropriate parameter estimates and

identifying factors that are associated with participants’ performance. Therefore, the QLBM

is an appropriate model to fit the data and provide feedback to participants such as informa-

tion of the best technology to be used when testing the samples depending on the pathogen

to be analysed.

It also provides information for the design of future panels including which viral load is more

likely to be detected correctly. Although in this thesis no continuous covariate has been used,

the QLBM can be used with continuous covariates after some adjustment, as carried out in

a previous analysis by Garćıa-Fernández et al. (2007). Furthermore, no further care needs

to be taken about multiple parameter testing since each parameter has its own probability

distribution, and hence no assumption needs to be imposed.

However, the QLBM has some considerations which need to be taken into account. The

model assumes that the responses from participants are independent, however, some partic-

ipants may return several results in the same year. Thus, they may be correlated, and this

correlation has not been considered. Another consideration is that some participants are

common across years, so results provided by them should be treated as repeated measures.

Since the QLBM treats the observations as independent, new considerations about repeated

measures and their possible correlations need to be taken into account. However, the in-

dependent working assumptions relax the model complexity and computational burden (in

this case the model run approximately between 3 to 5 hours, depending on the number of

covariates included). Furthermore, the model validation indicates the goodness of fit of the

QLBM (for a model detailed discussion see Chapter 8).
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Chapter 5

Modelling Quantitative Performance

of Participants in QCMD Quality

Control Programmes over Time

In the previous chapter the Qualitative Bayesian Model (QLBM) has been proposed to

determine risk factors associated with qualitative responses from participants’ performance

of EQA programmes over time. The QLBM has been applied to two different datasets and

the results obtained have been summarised. However, the quantitative responses returned by

participants of EQA programmes have not been analysed, i.e. where participants estimate

the microbial load within a positive sample. Therefore, a Quantitative Bayesian Model

(QTBM) is developed to investigate which of the exploratory variables are related to the

quantitative performance of participants of QCMD programmes over time. In this chapter

the model is described and applied to two different data sets (HBV and HCV quantitative

data described in Chapter 2), then results and conclusions are shown.
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5.1 Introduction

The quantitative responses, described in Chapter 2, are analysed from a Bayesian perspec-

tive to identify factors significantly associated with participants’ quantitative performance.

Similar to the analysis of qualitative data, Generalised Linear Models (GLM) can be applied

to analyse quantitative data from EQA participants (as introduced in Chapter 1). A special

feature of this type of quantitative data is that the response from a participant using molec-

ular diagnostic assays may be a censored observation of a quantitative measure. Censored

observations may arise because some participants are unable to estimate the microbial load

when the value is outwith the limits of detection of the assay used. Therefore, there is a

need to develop a model that can appropriately incorporate both censored and non-censored

observations from participants.

A model that takes into account the censored and non-censored responses from participants’

performance is proposed here by using a linear regression model in a Bayesian framework for

the log10 transformed estimated microbial load. This model will be referred as ‘Quantitative

Bayesian Model’ (QTBM). As the model is constructed within a Bayesian framework, it

has the same benefits as the model for qualitative data presented in the previous chapter.

The main advantage is that the large number of parameters and the missing information

from covariates can be handled easily and appropriately. In addition, for quantitative data,

both, censored and non-censored, observations can be included in the model. Therefore, the

QTBM identifies significant factors associated with quantitative participants’ performance

without discarding valuable information.

The theory of linear regression models (Dobson, 1990) and Bayesian data analysis are well

known (Gelman et al., 2004). This knowledge is used to derive a model to fit the peculiarities

of these special data conditions. This model includes data that classical linear models would
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discard due to the missing covariate information or the censored responses from the partici-

pants. The way of approaching these issues here is by assigning probability distributions to

them.

Similar to the QLBM approach described in the previous Chapter, for the QTBM model

estimates of parameters and missing observations will be provided. In addition, estimates of

the censored responses are calculated without having to discard incomplete datasets.

The QTBM developed here is coded in WinBUGS (Project, 1996-2004). The code can be

found on the CD attached to this thesis. In this chapter the QTBM will be used and applied

to a subset of the large reservoir of QCMD data: the Hepatitis B virus (HBV) and Hepatitis

C virus (HCV) QCMD programmes from 2002 to 2005.

5.2 Analysis of Variance

As part of model parameter specification it is important to determine in a first instance

whether the response variances per technology group are significantly different. For this

purpose, two classical statistical tests are carried out. First, a homogeneity test of variances

of the two main technology groups (commercial and in-house) for the overall sample groups

is performed and then for each sample group. Since this analysis is approached from a clas-

sical point of view, censored observations are discarded.

Levene’s test is performed to test for homogeneity of variances (Dugard et al., 2010) among

two technology clusters, commercial technologies (CC, bDNA, RTC, HC) and in-house tech-

nologies (CIH, RTIH), and the obtained p-value is 0.0115. Therefore, the hypothesis of equal

variances between these two clusters is rejected at the two-sided 5% level.
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A more detailed analyses is carried out to study the differences of variances among technology

types for each sample group. Levene’s test for homogeneity of variances is computed and

the p-values per sample group are given in Table 5.1 below:

Table 5.1: P-values from Levene’s test. Observed variances are calculated after removing
censored observations (Variances C=Commercial group, Variances I=In-house group).

Sample group log10 copies/ml 6.0 5.0 4.0 3.5 3.0 2.3
P-value 0.032 0.001 0.813 0.348 0.518 0.024
Variances C 0.358 0.228 0.233 0.288 0.263 0.222
Variances I 0.882 0.972 0.817 0.604 0.550 0.415

Based on the p-values of the Levene’s test variances among technology groups for samples

6.0, 5.0 and 2.3 are significantly different at the two-sided 5% level. These findings will be

incorporated in the formulation of the QTBM model.

5.3 General linear model: basic notation and

model formulation for the EQA quantitative data

Let Ysi denote the ith quantitative response for the sample group s. Note that the quantitative

response measures the viral load of a sample. It is assumed that wsi = log10(ysi) follows a

normal distribution with mean µsi and variance σ2
si

where si = 1, .., q with q being the total

number of variances within the sample group s. Thus, si indicates that the participants’

response i of sample group s belongs to the group 1, 2,...,q within the sample group s. For

example, the technology used by a participant may be an in-house or commercial technology.

The results from in-house assays are expected to be more variable, as this collection of

observations are from individually developed assays performed by an individual laboratory.

In turn, users of the same commercial molecular diagnostic kit use the same assay and are

provided with detailed protocols to prevent different results by different users.
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In the previous Section 5.2, it was found that the variances of the responses corresponding

to commercial and in house technologies differ. Based on these results we represent the

variances from these technology categories by estimating two different variances si = 1, 2.

In a GLM, the mean µsi is assumed to vary depending on some covariates according to a

linear function:

µsi = xsiβs

where:

• i is the ith observation with i=1,..,ns.

• ns is the total number of observations within the sample group s with s=1,..,l.

• l is the total number of sample groups.

• ~xsi = (xsi1, .., xsir) is the r-dimensional vector of covariates for the ith observation of

the sample group s with xsi1 = 1.

• The covariate matrix Xs for each sample group is the matrix with r columns and ns

rows. Each column corresponds to the rth covariate for participants in the sample

group s. Thus each row is the r-dimensional vector of covariates ~xsi = (xsi1, .., xsir) for

the ith observation of the sample group s.

• βs is the r-dimensional vector of regression coefficients, ~βs = (βs1, .., βsr)
T .

For participants’ responses that are censored an estimate from a normal distribution, trun-

cated to the censored observed response, is calculated. For example, if y11 is the observed

censored response 1 from the sample group 1 and it is right censored, then w11 is estimated

to be a value greater than log10(y11) from a normal distribution with mean µsi and variance

σ2
si
.
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5.4 Problems Arising with Classical GLMs when

Analysing Quantitative Responses

A classical linear model is applied to the log10 transformed microbial load estimates. The

following example does not aim to provide a complete analysis, but instead its aim is to

highlight some of the problems arising from using classical GLMs.

5.4.1 Results of the GLM Applied to the Strongest HBV Sample

Group

Table 5.2 shows the results that are obtained when a classical linear model is applied to the

strongest viral load sample group. This sample group is selected because of the high number

of censored observations, therefore it is a good example for illustrating the type of problems

arising in this context. The strongest sample viral load group has a target viral load of 6

log10 copies/ml. The classical linear model is applied to study the association of year, use of

an anti-contamination system and accreditation status with the estimated sample viral load.

The total number of returned datasets is 309, but 50 datasets from censored observations

and a further 20 from missing covariate values, for accreditation and anti-contamination

are discarded. Although the results appear appropriate for the subgroup of data, a lot of

information is omitted due to the 70 datasets discarded. The amount of lost information is

likely to increase as the number of covariates with missing values increases.

The example above shows that classical techniques fail to model the data appropriately be-

cause of missing covariates and censored observations. In addition, the use of asymptotic

theory restricts the number of parameters included in the model. Although there are some

classical techniques and regression approaches that deal with censored observations such as

the Tobit regression model (Tobin, 1958), the theory behind it is still based on asymptotic
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Table 5.2: Results of the classical linear regression model applied to the strongest HBV sample
group.

Parameters Estimate SE p-value
Intercept 5.385 0.173 0.000
Year 2002 (baseline 2005) 0.479 0.134 0.000
Year 2003 (baseline 2005) 0.325 0.136 0.018
Year 2004 (baseline 2005) 0.255 0.121 0.037
Tech. CIH (baseline CC) -0.095 0.195 0.626
Tech. RTC (baseline CC) 0.419 0.148 0.005
Tech. bDNA (baseline CC) 0.619 0.202 0.002
Tech. RTIH (baseline CC) 0.309 0.127 0.015
Tech. HC (baseline CC) 0.434 0.319 0.174
Anti-contamination Yes (baseline No) -0.002 0.117 0.984
Accreditation Yes (baseline No) -0.077 0.100 0.442

assumptions. Therefore, when the covariates are missing, particular care needs to be taken

when including parameters in the model.

A similar analysis was carried out for all the sample groups and similar conclusions related to

the amount of missing information and the restriction that occurred because of asymptotic

theory were found. As a result of this analysis, it can be concluded that classical methods to

analyse the quantitative data are inappropriate and there is a need to develop models based

on techniques that can handle this complex data situation more efficiently.

5.5 Proposed Model for the Quantitative Responses

based on Bayesian Methods

The description of the QTBM and the analytical derivation of the conditional posterior dis-

tributions from a Bayesian perspective are presented in this section. A general derivation

of the conditional posterior distributions similar to those presented in this chapter can be

found in advanced statistics text books (Gilks et al., 1996; Gelman, Carlin, Stern and Ru-
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bin, 2004; Banerjee et al., 2004). The QTBM is fitted to the data, and estimates of the

means and variances of viral loads are provided under the assumption that the log10 of the

viral load returned by a participant is from a normal distribution with those parameters.

The estimated mean represents the expected mean of sample viral loads that can be obtained

by participants under specific laboratory practices. In a Bayesian framework a prior distri-

bution for the mean and one for the variance of the normal distribution need to be specified.

For the reasons explained in Chapter 1 and 4, the QTBM is developed as a hierarchical

model with prior and hyper-prior distributions for the parameters and missing covariates to

be estimated. Therefore, inferences for the means and variances can be derived from the

conditional posterior distributions of the parameters and missing covariates.

Since a different combination of likelihood and priors is used, the particular equations nec-

essary for this application are derived and shown here.

5.5.1 Likelihood Function

As stated in Section 5.4, wsi = log10(ysi) is assumed to follow a normal distribution with

mean µsi and variance σ2
si
. Then, its probability density function is given by

f(wsi|µsi, σ2
si
) = (2π(σ2

si
))−1/2 exp

{

−(wsi − µsi)
2

2σ2
si

}

.

Assuming independence of wsi, the likelihood of µsi and σ2
si

can be written as

L(µ, ~σ2|w) =
∏

si

f(wsi|µsi, σ2
si
) =

∏

si

(2π(σ2
si
))−1/2 exp

{

−(wsi − µsi)
2

2σ2
si

}

,

where multiplication
∏

si =
∏l
s=1

∏ns

i=1 is the product over all observations of l groups (s =

1, .., l; i = 1, .., ns).
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5.5.2 Regression Model

In order to fit the linear regression model, µsi = ~xsi~βs, the likelihood is rewritten as a function

of the parameters ~βs and the covariate matrix x as follows

L(µ, ~σ2|w) =
∏

si

f(wsi|~xsi~βs, σ2
si
) =

∏

si

(2π(σ2
si
))−1/2 exp







−(wsi − ~xsi~βs)
2

2σ2
si







.

L(µ, ~σ2|w) = L(β, x, ~σ2|w).

5.5.3 Bayesian Framework

The prior distributions for each ~βs and each missing covariate xsij are considered the same

as for the qualitative analysis described in Chapter 4. Additionally to these prior distribu-

tions there is a need to introduce the prior distribution for each of the variances σ2
si
. It is

assumed that σ2
si

follows an inverse-gamma distribution with parameters csi
and dsi

, which

is a common positive defined distribution used to estimate variances (Gelman, Carlin, Stern

and Rubin, 2004).

Given that the likelihood for the quantitative responses differs from the likelihood used for

the qualitative responses the descriptions of the posterior distributions also differ and are

presented in what follows.

5.5.3.1 Posterior Distributions

The posterior distribution for the parameters to estimate is obtained from the likelihood and

the prior distributions as follows:

π(β, x, ~σ2|z) ∝ likelihood× prior ∝ L(β, x, ~σ2)π(β|β0, V0)π(x|b, g[])π(~σ2|~c, ~d).

145



CHAPTER 5. MODELLING QUANTITATIVE PERFORMANCE

Since β, x and ~σ2 are assumed to be independent, the prior density functions for ~βs, ~xsi and

σ2
si

can be written as:

π(β|~β0,V0) =
∏

s

π(βs|~βs0,Vs0) ∼
∏

s

Np(~βs0,Vs0)

and

π(x|b, g) =
∏

sij

π(xsij|bj , ~gj[]) ∼
∏

sij

Bernoulli(bj)
(Ij)Categorical(~gj[])

(1−Ij),

where Ij is an indicator variable for the missing covariates and the product
∏

sij =
∏l
s=1

∏ns

i=1

∏r
j=1

is over all covariates j, for all participants’ responses i and for all sample group s. ~gj[] is the

vector of assigned probabilities to each category of the covariate as defined in Chapter 4.

Using the transformation ~τ 2 = 1/~σ2, the prior can be re-written as:

π(~τ 2|~c, ~d) =
∏

si

π(τ 2
si
|csi

, dsi
) ∼

∏

si

Gamma(csi
, dsi

).

Then, the posterior distribution of each parameter can be expressed in terms of its posterior

conditional distribution, which will be used in the estimation procedure. The conditional

posterior distributions for ~βs, the missing covariates xsij and σ2
si

are shown below:

• Conditional posterior distribution for ~βs with s = 1, .., l

π(~βs|w, x, ~β−s, ~σ2) ∝ L(βs, x, ~σ
2)π(~βs|~βs0,Vs0)

π(~βs|w, ~xs., ~β−s, ~σ2
s.
) ∝

∏

i(s)

exp







−(wsi − ~xsi~βs)
2

2σ2
si







× exp
{

−1

2
(~βs − ~βs0)

TV−1
s0 (~βs − ~βs0)

}

,
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where i(s) is the subgroup of responses from participants of sample group s, and ~β−s

are the vectors of regression parameters for each sample group except for sample group

s (that is, except ~βs). The group of covariates from all participants in sample group s

is denoted by xs.. The variances σ2
s.

are the group of variances within sample group s.

• Conditional posterior distribution for xsij where j can take on values from 2,..,r

– For missing binary variables

π(xsij|wsi, x−sij, βsj, σ2
si
) ∝ L(βsj, xsij , σ

2
si
)π(xsij|bj)

π(xsij |wsi, x−sij, βsj, σ2
si
) ∝ exp

{

−(wsi − xsijβsj)
2

2σ2
si

}

×(bj)
xsij(1 − bj)

(1−xsij).

– For missing categorical variables

π(xsij|wsi, x−sij, βsj, σ2
si
) ∝ L(βsj, xsij , σ

2
si
)π(xsij|gj[xsij ])

π(xsij|wsi, x−sij, βsj, σ2
si
) ∝ exp

{

−(wsi − xsijβsj)
2

2σ2
si

}

× gj[xsij ],

where x−sij are all the covariate values except the observed jth covariate value

for the ith observation in sample group s.

• Conditional posterior distribution for σ2
si

with s = 1, .., l and si = 1, .., q

π(σ2
si
|w, ~xsi, ~βs, σ2

−si
) ∝ L(~βs, ~xsi, ~σ

2)π(σ2
si
|csi

, dsi
).

Using the transformation τ 2
si

= 1/σ2
si
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π(τ 2
si
|w, ~xsi, ~βs, τ 2

−si
) ∝

∏

i
(σ2

si
)

(τ 2
si
)1/2 exp







−τ
2
si
(wsi − ~xsi~βs)

2

2







×(τ 2
si
)csi

−1 exp
{

−dsi
τ 2
si

}

π(τ 2
si
|w, ~xsi, ~βs, τ 2

−si
) ∝

∏

i
(σ2

si
)

exp







−τ 2
si





(wsi − ~xsi~βs)
2

2
+ dsi











× (τ 2
si
)csi

−1/2,

where i(σ2
si

) is the group of observations with the same variance σ2
si
.

A special feature of the quantitative data considered in this thesis is censored responses.

Since participants’ responses are assumed to follow a normal distribution on a log10 scale,

the censored response i in sample s is estimated as follows:

• If the participant’s response is left censored, the censored response is estimated by a

random number wcsi from a normal distribution, such that wcsi ≤ wsi, i.e.:

wcsi ∼ N(~xsi~βs, σ
2
si
)I(0, zsi),

where I(0, wsi) is an indicator function that accepts the generated value from the

normal distribution wcsi if 0 < wcsi ≤ wsi.

• If the participant’s response is right censored, the censored response is estimated by a

random number wcsi from a normal distribution, such that wcsi ≥ wsi, i.e.:

wcsi ∼ N(~xsi~βs, σ
2
si
)I(wsi,∞),

where I(wsi,∞) is an indicator function that accepts the generated value from the

normal distribution wcsi if wcsi ≥ wsi.
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5.5.4 Model Selection Procedure

As described in the previous chapter, for model selection, a backwards selection procedure

based on the conditional posterior distribution for the estimated parameters is applied. The

95% highest density intervals for the means of the conditional posterior distribution are

obtained and used to determine the model selection procedure. If the confidence interval

for the parameter contains the value 0, the corresponding covariate is removed from the

model. Additional to the model selection procedure, possible confounders, interactions and

correlated parameters are studied using the same approach as in Chapter 4.

5.5.5 Model Checking

As in Chapter 4, it is checked that the model is consistent with the data. If the model

fits the data well, then replicated data under model conditions should look similar to the

observed data. Using the technique of ‘test quantity’ described in Chapter 1, the measure

of discrepancy between the replicated data, yrepsi from the model and the observed data, ysi

is given by the standardised residual for each observation, which is defined as:

T (ysi, µsi, σsi
) =

ysi − µsi
σsi

. (5.1)

Under the model conditions, replicated data, yrep, and standardised residuals for each of

the replicated observations, T (yrepsi , µsi, σsi
), are obtained. Thereafter, for each sample group

and participant’s result, the standardised residual based on the replicated observation is

compared with the standardised residual based on the observed response in each simulation

step (10,000 data points are simulated). Then, for each sample group s and participant’s

result i, an indicator is obtained when the standardised residual on the replicated value

exceeds the observed standardised residual. That indicator takes on the value 0 if the

replicated standardised residual does not exceed the observed standardised residual for each

sample s and participant’s result i, otherwise the indicator takes on the value 1.
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Note that censored observations returned by participants are replaced by their estimates at

each simulation step, which is a sensible procedure because there is an interest in checking

if replicated data under the model conditions µ and ~σ2 are appropriate. Then, in each sim-

ulation, the mean of the indicators across participants’ results per year and for each sample

group s is obtained.

In each step of the simulation the mean of the indicator values across participants’ results

per year and for each sample group s represents the proportion of participants’ results with

observed standardised residuals exceeding the replicated standardised residuals. The dis-

tribution of these proportions is equivalent to the distribution of the probabilities that the

observed standardised residuals for sample group s within year k are equal or exceeded by

the predicted standardised residual for the same year and sample group (Bayesian ‘p-values’

that contrast the observed residuals versus the replicated residuals). Lack of fit to the data

occurs when the distribution of these probabilities are lower than 0.025 or higher than 0.975.

The statistical test and the procedure to obtain its predictive posterior distribution are

described in what follows:

• Let T (ysi, µs, σsi
) be a summary measure of the observed data ysi and the parameters

µsi and σsi
, for the sample group s and the ith-observation.

• T (ysi, µs, σsi
) = ysi−µsi

σsi

is defined as the standardised residual within sample group s

and participant’s result i.

• For each simulation from the posterior distribution of µsi and σsi
, one replicated re-

sponse is obtained from the predicted distribution of the ith-result for the sample group

s, yrepsi .

• The observed standardised residual, T (ysi, µs, σsi
), is compared with the predicted

standardised residual, T (yrepsi , µs, σsi
).
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• For each simulation, the proportion of the predictive standardised residuals that are

equal or exceed the observed standardised residuals is obtained for the group of ob-

servations of year k and the sample group s. That is the proportion of observations

within year k such as T (yrepsi , µs, σsi
) ≥ T (ysi, µs, σsi

).

• Since this proportion is calculated in each simulation step, a sample from the distribu-

tion of proportions is obtained.

5.5.6 Model Comparison

As in chapter 4 a model comparison tool based on the posterior distribution is implemented.

In particular, a graphical tool to compare the full and reduced model, based on the es-

timated posterior means of the sample viral loads from both models, is proposed. The

estimated means, µ̂, from the reduced model are compared to the estimated means from

the full model. The estimated posterior means from the full model are plotted together

with their 95% confidence intervals. Then, the estimated posterior means from the reduced

model are added to the plot. If the reduced model fits the data well, it is expected that the

posterior means estimated by the reduced model lie within the 95% confidence intervals of

the posterior means obtained from the full model.

To allow an easier comparison of the means from different sample groups, all means are

transformed to a standardised scale, in order to obtain values that lie within the interval

(0,1). The function used for standardisation is

µsi − minµs
maxµs − minµs

,

where µsi is the estimated mean for the distribution of the participant’s result i and sample

group s, and µs is the group of estimated means for the results of all participants for sample

group s.
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5.6 Model Application

The results presented in this section are obtained with the same specifications for the hyper-

parametes as for the QLBM in Section 4.5. Variations of the QTBM with different choices

of prior distributions are studied, and results are summarised in Section 5.7 of this chapter.

When reporting the results from the model in further subsections, the estimated mean refers

to the expected mean parameter for the distribution of participants’ responses (observed

viral loads). This expectation is calculated from the posterior distribution of the means

obtained using the MCMC method (see Chapter 1 and 6 for more detailed about MCMC

methods).

5.6.1 Modelling HBV Quantitative Data

A description of the HBV panels from 2002 to 2005 can be found in Chapter 2. Table

5.3 shows the mean of participants’ responses for each covariate level (excluding censored

observations, see Table 2.13 for the percentage of censored data per sample group). The

variables included in the model are described in Table 4.9 with the exception of technology

group. For the quantitative data the technology groups are: CIH, RTIH, RTC, bDNA and

HC compared with the CC technology group.

The full QTBM is fitted to the data, and then a reduced model is found using a backward

selection procedure, as described in Chapter 4. The results from the full and reduced models

are presented in the next subsection.
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Table 5.3: Mean of participants’ results per covariate level for HBV programmes.
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5.6.1.1 Full HBV Model

The full model fitted to the HBV quantitative data includes all possible covariates. The

results obtained from the full model for each sample group can be found in Tables C.1 to C.6

in Appendix C. A summary of the results obtained can be found in Table 5.4. The results

in bold are significant at the two-sided 5% level.

Sample Group 6 log10 Copies/ml Viral Load

Table 5.4 indicates that the covariates time, subtype, technology, use of an anti-contamination

system, experience performing serum tests and use of inhibition tests are significant factors

associated with participants’ performance.

The estimated mean for the results of participants under baseline conditions is 3.743 log10

copies/ml. In particular, for samples from 2002 to 2004 participants tend to provide higher

estimates of viral load than for samples from 2005.

The estimates of viral load for samples of subtype D are more likely to be higher than the

estimates for samples of subtype A.

Participants using RTIH and bDNA technologies tend to provide significantly higher esti-

mates of viral load than participants using CC technology.

Participants using an anti-contamination system are more likely to return higher estimates

of viral load than participants not using an anti-contamination system.
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Table 5.4: Mean and SD of the parameter estimates from the full QTBM for HBV sample
groups.

Results in bold are significant at the two-sided 5% level.
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Experience performing serum tests significantly influences the estimates of viral load. Es-

timates from participants testing more than 2,000 test annually tend to be higher than

estimates from participants performing 0 to 10 tests annually.

Participants who performed inhibition tests only in negative samples are more likely to pro-

vide higher estimates of viral load than participants not performing an inhibition test.

No significant differences of the estimates of viral load were found for participants with or

without accreditation, plasma test experience, other specimens test experience, laboratory

type or method of analysis used.

As an illustrative example, the estimated mean is obtained from the full QTBM model for

the results of participants with a particular combination of laboratory practices. Then, the

estimated mean is compared with the observed viral load from a participant fulfilling the

same conditions.

Consider a participant from 2004 with the following laboratory practice for analysing a

sample of 6 log10 copies/ml viral load of subtype A:

• used RTIH technology to analyse the sample,

• used an anti-contamination system,

• was not an accredited laboratory (baseline),

• had no experience performing other specimens test (baseline),

• was using duplicated method of analysis,

• had experience testing between 0 and 10 plasma tests annually (baseline),

• had experience testing between 2,001 and 10,000 serum tests annually,
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• was a hospital laboratory (baseline),

• performed an inhibition test.

From the estimated means given in Table 5.4, the estimated mean for participants with such

characteristics is derived. Note that the baseline does not add any parameter value since all

the information is picked up by the intercept:

µ̂ = 3.743 + 1.648 × (Year=2004) + 0.308 × (RTIH=yes) + 0.202 × (Antic.=yes)

−0.111 × (Anal.Dupl.=yes) + 0.323 × (Serum4=yes) + 0.118 × (Inhib.=yes).

Since the covariates are indicator variables for non-baseline information, the above expression

can be rewritten as

µ̂ = 3.743 + 1.648 × 1 + 0.308 × 1 + 0.202 × 1 − 0.111 × 1 + 0.323 × 1 + 0.118 × 1 = 6.231.

Thus, results from participants with those characteristics have an estimated mean of 6.231

log10 copies/ml. Since the participants used an in-house technology, the estimated variance is

1.122 (see Table 5.6). Thus, the reported viral load for a sample of 6 log10 copies/ml viral load

from a participant with these characteristics is from the normal distribution N(6.231,1.122).

If the observed data are checked, a randomly chosen participant in 2004 with the same lab-

oratory practice returned an observed viral load of 6.825 log10. The observed datum has a

p-value of 0.322 when assuming to be from the normal distribution N(6.231,1.122), which is

in agreement with assuming this distribution for the participant’s result.

Now, consider a participant from 2004 who returned a censored observation. Suppose

that the participant has the following laboratory practice for analysing a sample of 6 log10

copies/ml viral load subtype A:

• used CC technology to analyse the sample (baseline),
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• did not an use anti-contamination system (baseline),

• was an accredited laboratory,

• had experience performing other specimens test,

• was using a single method of analysis (baseline),

• had experience testing between 2,001 and 10,000 plasma tests annually,

• had experience testing between 101 and 1,000 serum test annually,

• was a hospital laboratory (baseline),

• did not perform an inhibition test (baseline).

Then,

µ̂ = 3.743 + 1.648 × (Year=2004) + 0.013 × (Accred.=yes) − 0.085 × (Other.Spc.=yes)

+0.237 × (Plasma4=yes) + 0.211 × (Serum2=yes).

Thus, the estimated mean is µ̂ = 5.767 log10 copies/ml. Since the participant used a com-

mercial technology, the estimated variance is 0.238 (see Table 5.6). The reported viral load in

log10 copies/ml from a participant with these characteristics is from the normal distribution

N(5.767,0.238).

If the observed data are checked for a participant in 2004 with the same laboratory practice

returning a censored observation because its assay provides the upper limit of detection of

5.301 log10 copies/ml for the sample viral load, this censored observation is not in agree-

ment with the estimated distribution for the reported value. If the censored observation is

assumed to be from that distribution, the p-value would be 0.017. However, the model takes

into account the fact that this observation is censored. In this case the distribution assumed
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is truncated to the participant’s censored observation, and the estimated mean is different

to the one obtained here. The estimated mean for a participant who provided a censored

observation with these characteristics is µ̂ = 7.220. The estimated value for the censored

observation obtained with the model is 7.229, assuming that it is from a normal distribution

with mean µ̂ = 7.220 and variance 0.238, the p-value was found to be 0.749. Thus, the

estimated mean for the result of this participant is in agreement with the estimated value

for the censored observation.

Finally, consider a participant from 2004 with the following laboratory practice (the sample

to be analysed was a sample of 6 log10 copies/ml viral load of subtype A):

• used bDNA technology to analyse the sample.

• used an anti-contamination system.

• was an accredited laboratory.

• had experience performing other specimens test.

• was using a duplicated method of analysis.

• had experience testing more than 10,000 plasma tests annually.

• had experience testing more than 10,000 serum tests annually.

• was a private laboratory.

• returned a missing value for performing an inhibition test.

From the estimated means given in Table 5.4, the estimated mean for the results of partici-

pants with such characteristics as described above is derived. The covariate performing an

inhibition test does not provide any information, so the model estimates that the most likely

option is not performing any inhibition test.
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Note that the baseline does not add any parameter value since all the information is picked

up by the intercept:

µ̂ = 3.743 + 1.648 ∗ Year=2004 + 0.518 ∗ bDNA=yes + 0.013 ∗ Accred.=yes

−0.111 ∗ Anal.Dupl.=yes + 0.150 ∗ Plasma5=yes + 0.606 ∗ Serum5=yes

−0.113 ∗ Labtype=private = 6.454.

Since the participant did not provide information about the covariate, the mean is adjusted

to take into account the missing information provided by the participant. The estimated ad-

justed mean for the results of the participant with unknown information about the covariate

level is obtained by the model assuming that the participant did not perform an inhibition

test (which is the most likely possibility calculated by the model for this participant). This

mean is µ̂ = 6.462. The technology used by this participant was a commercial technology,

for which the estimated variance is 0.238. The reported value for the sample viral load of a

participant with these characteristics is 6.299 log10 copies/ml. Thus, assuming the partici-

pant’s response is from a N(6.462,0.238), then the p-value associated to the reported value

is 0.711, which indicates an agreement between the observed value and the model estimates.

Sample Group 5 log10 Copies/ml Viral Load

The estimated mean for the results of participants under baseline conditions is 4.554 log10

copies/ml for samples of subtype A and 4.509 log10 copies/ml for samples of subtype D.

Significant differences were found for the estimated means for samples across years. For

samples from years 2002 to 2004 participants tend to provide higher estimates of viral load

than for samples from 2005.

Participants using bDNA and HC technologies are more likely to provide higher estimates of

viral load than CC technology users. However, participants using RTC technology tend to
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provide lower estimates of viral load than CC technology users. No differences were found for

the performance of participants using in-house technologies with respect to CC technology

users.

Estimates of viral load from participants using an anti-contamination system tend to be

higher than estimates from participants not using any anti-contamination system.

Participants with experience performing more than 2,000 serum tests annually are more

likely to provide higher estimates of viral load than participants performing very few (0 to

10 tests annually).

Participants from research laboratories tend to return lower estimates of viral load than

participants from hospital laboratories.

Participants performing inhibition tests tend to provide higher estimates of viral load than

participants who did not perform any inhibition test.

Sample Group 4 log10 Copies/ml Viral Load

Performance of participants are significantly different across time (see Table 5.4). The esti-

mated mean for the results of participants under baseline conditions is 3.509 log10 copies/ml.

For samples from 2002 and 2004 participants are more likely to provide higher estimates of

viral load than for samples from 2005. The estimates of viral load for samples of subtype D

tend to be lower than the estimates for samples of subtype A.

The use of different technologies has an influence on participants’ performance. RTC users

tend to return lower estimates of viral load than CC users, in contrast to bDNA users who

are more likely to provide higher estimates than CC users.
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Participants using an anti-contamination system are more likely to return higher estimates

of viral load than participants not using an anti-contamination system.

The method of analysis, the accreditation status and experience in performing other speci-

men tests are not significant covariates when estimating the viral load.

Participants performing over 2,000 serum tests annually tend to provide higher estimates of

viral load than participants performing less than 11 tests.

Participating manufacture laboratories are more likely to return higher estimates of viral

load than participating hospital laboratories.

The estimates of viral load from participants performing an inhibition test on the samples

tend to be higher than the estimates from participants not performing any inhibition test.

Sample Group 3.5 log10 Copies/ml Viral Load

The estimated mean for the results of participants under baseline conditions is 3.139 log10

copies/ml. Significant differences were found between participants’ performance samples

from 2002 and 2003. For samples from 2002 participants tend to provide higher estimates

of viral load than for samples from 2003.

Participants using RTIH technology are more likely to return higher estimates of viral load

than participants using CC technology, if all the other covariates are the same.

Those participants with experience in testing other specimens are more likely to provide

higher estimates of viral load than participants without experience.
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Participants performing an inhibition test tend to return higher estimates of viral load than

participants not performing an inhibition test.

Sample Group 3 log10 Copies/ml Viral Load

The estimated mean for the participants’ results under baseline conditions is 2.769 log10

copies/ml (see Table 5.4). No differences were found between the performance from 2003

and 2005. However, for samples from 2004 participants tend to provide higher estimates of

viral load than for samples from 2005. No significant differences were found for the estimates

of viral load when testing samples of different subtypes.

Participants using HC technology are more likely to provide higher estimates of viral load

than CC technology users.

The estimated mean for the results of participants with experience testing other specimens

is lower than for the results of participants with no experience. Participants with experience

testing plasma and serum samples (between 2,000 and 10,000 tests annually) tend to provide

higher estimates of viral load than participants performing 0 to 10 tests annually.

Private and research laboratories are more likely to return lower estimates of viral load than

hospital laboratories, while manufacture laboratories tend to provide higher estimates than

hospital laboratories.

Sample Group 2.3 log10 Copies/ml Viral Load

The estimated mean for the participants’ results under baseline conditions is 2.491 log10

copies/ml. For samples from 2003 participants tend to provide lower estimates of viral load

than for samples from 2004.
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The estimates of viral load from users of CIH, RTIH, RTC and HC tend to be higher than

the estimates from CC users.

Participants with extensive experience performing plasma tests (more than 10,000 tests an-

nually) are more likely to provide lower estimates than participants with less experience.

Those participants performing an inhibition test only in negative samples tend to return

higher estimates of viral load than participants not performing an inhibition test.

5.6.1.2 Reduced HBV Quantitative Model

As with the qualitative model considered in Chapter 4, model reduction and simplification is

carried out. For each sample group those covariates which are not significant at the two-sided

5% level are removed from the full model. However, covariates behaving as confounders are

not excluded from the model even if they are not significant.

Interactions between covariates and correlations of the estimated parameters were studied.

No interaction was found between covariates. Correlations between the estimated parame-

ters were checked when reducing the full model to the final one. The estimated parameters

were not correlated or only low correlations occur (with correlation coefficients lower than

0.25).

The results obtained from the reduced model for each sample group can be found in Tables

C.7 to C.12 in Appendix C. Table 5.5 shows a summary of the results obtained from the re-

duced model. The estimated mean and standard deviation (SD) of the parameter estimates

for each sample group are presented. Results in bold are significant at the two-sided 5%

level. In this section, only the significant findings are reported.
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Table 5.5: Mean and SD of the parameter estimates from the reduced QTBM for HBV sample
groups.

Results in bold are significant at the two-sided 5% level.
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The summary of the results and estimated means provided in the subsequent section are

based on the assumption that all covariates, except the one that is commented on at each

time, are under baseline conditions.

Sample Group 6 log10 Copies/ml Viral Load

The estimated mean for the results of participants under baseline conditions is 3.592 log10

copies/ml, while the estimated mean for the results of participants for samples from 2004 is

3.592+1.745 = 5.337 log10 copies/ml. Thus, for samples from 2004 participants, is more likely

to obtain an estimate of the viral load closer to the ‘target’ estimate than for samples from

2005. Estimates of viral load for samples of subtype D tend to be higher than estimates for

samples of subtype A. For samples of subtype D the estimated mean is 3.592+1.366 = 4.958

log10 copies/ml.

Participants using CC technology tend to return lower estimates of viral load than partici-

pants using other technologies. The highest estimated means are obtained for the results of

participants using bDNA and HC technologies, 3.592 + 0.551 = 4.143 and 3.592 + 0.521 =

4.113 log10 copies/ml, respectively.

The estimated mean for the results of participants using an anti-contamination system is

0.263 log10 copies/ml, which is higher than the estimated mean for the results of participants

not using an anti-contamination system.

The estimated mean for the results of participants with experience testing more than 10,000

serum tests annually is 4.128 log10 copies/ml, which is the highest estimated mean amongst

the results of participants with different level of experience performing serum tests annually.
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The estimated mean for the results of participants performing inhibition tests only in negative

samples is significantly higher than the estimated mean for the results of participants not

performing any inhibition test.

Sample Group 5 log10 Copies/ml Viral Load

The estimated mean for the results of participants under baseline conditions is 4.489 log10

copies/ml. For samples from 2002 to 2004 participants are more likely to provide higher

estimates of viral load than for samples from 2005. The estimated means were found to be

around 4.8 log10 copies/ml for the results of participants for samples from 2002 and 2004.

For the results of participants using in-house technologies and RTC technology the estimated

means are under 4.5 log10 copies/ml. In contrast, for the results of participants using bDNA

and HC technologies the estimated means are over 4.5 log10 copies/ml.

For the results of participants with experience performing more than 2,000 and less than

10,000 serum tests annually the estimated mean is 4.73 log10 copies/ml. For the results of

participants with experience of more than 10,000 serum tests annually the estimated mean

is 4.96 log10 copies/ml.

Research laboratories tend to provide significantly lower estimates of viral loads than hos-

pital laboratories. The estimated mean for the results of research laboratories is around 4

log10 copies/ml.

For participants who did not perform any inhibition test the estimated mean is less than 4.5

log10 copies/ml. In turn, the mean for the results of participants who performed inhibition

tests, is more than 4.5 log10 copies/ml.
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Sample Group 4 log10 Copies/ml Viral Load

For the results of participants for 2005 samples the estimated mean is 3.444 log10 copies/ml,

which is lower than the estimated mean for the results of participants for 2002 samples (3.635

log10 copies/ml).

The highest estimated mean was found for the results of bDNA users, which is 3.703 log10

copies/ml (versus 3.444 log10 copies/ml for the results of CC users). In contrast, the lowest

estimated mean is obtained for the RTC users, 3.25 log10 copies/ml.

For the results of participants testing more than 10,000 serum samples annually the esti-

mated mean is higher than 4 log10 copies/ml. For the results of manufacture laboratories

the estimated mean is close to 4 log10 copies/ml, in contrast to the mean for the results of

private laboratories, which is around 3.2 log10 copies/ml.

The estimated mean for the results of participants performing inhibition tests is closer to

the target, 4 log10 copies/ml provided by QCMD, than the estimated mean for the results

of participants not performing any inhibition test.

Sample Group 3.5 log10 Copies/ml Viral Load

The estimated mean for the results of participants under baseline conditions is 3.117 log10

copies/ml. The estimated mean for the results of participants from 2002, 3.7 log10 copies/ml,

is higher than the mean for the results of participants from 2003.
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The lowest estimated mean was found for the results of CIH technology users, which is 2.889

log10 copies/ml. In turn, the highest estimated mean is obtained for the results of bDNA

technology users, that is 3.731 log10 copies/ml. The closest estimated mean to the target

sample viral load was found for the results of RTIH users.

There are differences between estimated means for the results of participants depending on

the level of experience performing serum and plasma tests annually; although these differ-

ence are not significant, these factors confound other results.

The estimated mean for the results of participants using other methods of analysis, such as

triplicate methods, is higher than 3.3 log10 copies/ml.

Participants performing inhibition tests tend to provide higher estimates of viral load than

participants who did not perform any inhibition test.

Sample Group 3 log10 Copies/ml Viral Load

The estimated mean for the results of participants under baseline conditions is 2.833 log10

copies/ml. The estimated mean for the results of participants for samples from 2004 is over

3.3 log10 copies/ml.

The closest estimated mean to the target viral load is obtained for the results of RTIH tech-

nology users, which is 2.952 log10 copies/ml assuming all other variables are at their baseline

levels. For the results of participants using HC technology the estimated mean is 4.386 log10

copies/ml.

The estimated means for the results of participants performing more than 2,000 serum tests

annually are higher than 3 log10 copies/ml.
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The lowest estimated mean was found for the results of participants from research labora-

tories, around 2.3 log10 copies/ml, whilst the highest estimated mean is obtained for the

results of participants from manufacture laboratories. The closest estimated mean to the

target viral load was found for the results of participants from reference laboratories.

Sample Group 2.3 log10 Copies/ml Viral Load

For the results of participants under baseline condition the estimated mean is 2.359 log10

copies/ml. The estimated means for the results of participants for 2002 and 2003 samples

are significantly higher and lower, respectively, than the estimated mean for the results of

participants for 2004 samples.

The highest estimated mean is obtained for the results of HC technology users, which is

4.738 log10 copies/ml. The closest estimated mean to the target value was found for the

results of CC technology users.

The estimated mean for the results of participants performing inhibition tests only in negative

samples is higher than 2.7 log10 copies/ml.

5.6.1.3 Estimated Variances for the HBV Quantitative Data

The estimated variances for the distributions of participants’ results are obtained by the

use of the QTBM. Table 5.6 shows the estimated variances by the model per sample group

and technology type. Note that the estimated variance refers to the mean of the posterior

distribution of the variance.

The QTBM allows different variances depending on whether the technology used by the par-

ticipant is commercial or in-house type. It is observed that the estimated variances for the

results of in-house technologies users are higher than the estimated variances for the results

170



CHAPTER 5. MODELLING QUANTITATIVE PERFORMANCE

of commercial technologies users for all sample groups. These results are in agreement with

the classical test performed in Section 5.2, where the variability of the results obtained from

participants differs depending on the technology used for some of the sample groups.

Table 5.6: Summary statistics of the variance estimates from the reduced QTBM for HBV
sample groups classified by technology type: estimated mean, standard deviation (SD), con-
fidence interval.

5.6.1.4 Model Checking

Figure 5.1 represents the density function of the probabilities that the observed standardised

residuals are equal or exceed the predicted standardised residuals for sample group 4 log10

copies/ml in 2005. It is observed that the distribution of the proportions is within the interval

given by the confidence limits of 0.025 and 0.975, showing no significant differences between

the observed and the replicated data. Similar results were found for all other sample groups.
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Figure 5.1: Density function of the Bayesian p-values for sample group 4 log10 copies/ml in
2005.

Table 5.7 shows the mean for the distribution of the probabilities of T (yrepsi , µs, σsi
) ≥

T (ysi, µs, σsi
), as well as its 95% confidence intervals per sample group and year; in other

words, the mean and confidence intervals of the Bayesian ‘p-values’ that assess the statis-

tical significance of discrepancies between observed and predicted data. Extreme Bayesian

‘p-values’ indicate conflict between data and aspects of the model. No discrepancies were

found for any of the sample groups and years, since the Bayesian ‘p-values’ are higher than

0.025 and lower than 0.975 for all cases. Therefore, it is concluded that the model fits the

data adequately.

As in the previous chapter, note that the definition of function T is chosen depending on

the data to be analysed. A function that is sensible for the quantitative responses and can

describe the data appropriately has been chosen (Gelman et al., 2004).
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Table 5.7: HBV mean and confidence intervals of Bayesian ‘p-values’ per year and sample
group.

5.6.1.5 Model Comparison

Figure C.1 (see Appendix C) shows the estimated posterior means of sample viral loads

and their 95% confidence intervals from the full and the reduced model. As in the previous

chapter, two selected plots are chosen in order to illustrate with more clarity the tendencies

of the estimated means. It is shown that the estimated means from the reduced model lie

within the confindence intervals indicating that the reduced model is appropriate.

Generally speaking, the reduced model fits the data appropriately since it can be observed

that the posterior means from the reduced model lie within the confidence intervals obtained

from the full model for all sample groups and years (see Appendix C, Figure C.1).
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Figure 5.2: HBV estimated means of sample viral load from the full and reduced QTBM for
the sample group 2.3 log10 copies/ml in 2002 and for the sample group 5 log10 copies/ml in
2005. Results are ordered by decreasing estimated means. The x-axis represents an identifi-
cation number of participants’ results.
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5.6.1.6 Estimates of Censored Data of HBV

A special feature of the quantitative data considered in this chapter is the censored observa-

tions. The QTBM takes into account the censored observations via the use of a probability

distribution. Therefore, with the use of the probability distribution an estimate for the sam-

ple viral load can be obtained for a participant who provided a censored observation.

The posterior distribution for each censored observation is obtained using the QTBM. The

mean of the distribution is used to impute the unknown value of the sample viral load.

Figure 5.3 shows the censored observations and their estimates for sample groups 2.3 and

6 log10 copies/ml. The estimates are ordered for each technology group by the censored

observation and then by the estimated values obtained from the model. The estimates for

the sample group 2.3 log10 copies/ml are observed to be lower and closer to the target than

the censored observation provided by the participant.

Figure 5.3: Censored observations and their estimates for the HBV sample groups 2.3 and 6
log10 copies/ml. Labs’ codes are order by technology used as follows: bDNA;17 data for the
sample group 2.3 and 1 for the sample group 6 log10 copies/ml, CC; 31 data for the sample
group 2.3 and 47 for the sample group 6 log10 copies/ml, CIH; 3 data for the sample group
2.3 and 2 for the sample group 6 log10 copies/ml, HC; 5 data for the sample group 2.3 log10

copies/ml, RTIH; 9 data for the sample group 2.3 log10 copies/ml.

175



CHAPTER 5. MODELLING QUANTITATIVE PERFORMANCE

The variability between the estimates and the censored observations for the sample group

6 log10 copies/ml is higher than the variability for the sample group 2.3 log10 copies/ml.

Also, some estimates for the strongest sample group are far from the target viral load, in

contrast to the results obtained for the weakest viral load sample group. It is observed that

for the strongest sample group, estimates from the bDNA and CIH users are close to the

observed censored value. This may be due to the fact that those censored observations are

left censored (see Figure 2.1 in Chapter 1). The fact that censored responses have estimates

further away from the censored observation and from the target viral load may be explained

by a different combination of all other covariates.

5.6.2 Modelling HCV Quantitative Data

In order to check if the QTBM fits data from another pathogen, the model is applied to

the Hepatitis C Virus data. Since the steps to reduced the full model and the procedure to

follow is the same as in the previous subsection, details of the conclusions obtained from the

full model are not described. Only the results from the final reduced model along with the

conclusions from model comparison and checking are presented.

Hepatitis C virus (HCV) proficiency panels are described in Chapter 2. Information about

the percentage of censored data per sample group can also be found in Chapter 2. The

variables included in the model are presented in Table 5.8. Table 5.9 shows the mean of the

observed responses per sample group and classified by covariate level (with the exception of

the censored observations). The mean of the responses from participants with other method

of analysis appears fairly low for the sample group 3.5 IU/ml. The reason for this is due to

the fact the there is only one observation available for calculating the mean.
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Table 5.8: Covariates for the analysis of HCV quantitative data.

Covariate Description Values

Year Year when the sample was anal-
ysed

Indicator variables for year 2002, 2003 and 2004 com-
pared with year 2005

Technology Technology used to analyse the
sample

Indicator variables for technology groups: CIH,
RTC, RTIH, bDNA compare with CC

Anti Use of anti-contamination sys-
tem

Indicator variable with ‘No use of anti-contamination
system’ as baseline

Accred Laboratory accreditation status Indicator variable with ‘No accredited laboratory’ as
baseline

OtherSp. Experience on other specimen
sample performance such as
biopsies, swabs, etc..

Indicator variable with ‘No experience performing
test of other specimens’ as baseline

Serum Annual number of serum tests
performed by the participant

Indicator variables per group of number of plasma
tests: ‘0-10’ baseline, ‘11-100’- group 1, ‘101-1,000’ -
group 2, ‘1,001-2,000’- group 3, ‘2,001-10,000’- group
4, ‘> 10, 000’- group 5

Plasma Annual number of plasma tests
performed by the participant

Indicator variables per group of number of plasma
tests: ‘0-10’ baseline, ‘11-100’- group 1, ‘101-1,000’ -
group 2, ‘1,001-2,000’- group 3, ‘2,001-10,000’- group
4, ‘> 10, 000’- group 5

Analysis Method of analysis used by the
participant

Indicator variables for analysis method. The base-
line is ‘Simply method of analysis’ compared with
‘Duplicate’ and ‘Other methods’

Test Inhibition Performance of inhibition test by
the participant

Indicator variables with ‘Non performance of inhibi-
tion tests’ as baseline compare with ‘Performance of
inhibition test’ and ‘Performance of inhibition test
only in negative samples’

Labtype Laboratory type where the sam-
ple was analysed

Indicator variables with ‘Hospital laboratories’
as baseline compare with ‘Public Health labora-
tory’, ‘Private laboratories’, ‘Reference laboratories’,
‘Manufactures laboratories’ and ‘Research/Others
laboratories’

Genotype Genotype of the sample analysed Indicator variables with ‘Genotype 1’ as baseline
compare with ‘Genotype 3’, ‘Genotype 4’ and ‘Geno-
type 5’

Technologies: CC=Conventional Commercial, RTC=Real Time Commercial, CIH=Conventional Commercial,

RTIH=Real Time In-house and bDNA=bDNA.
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Table 5.9: Mean of participants’ results per covariate level for HCV programmes.
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The associations of the covariates in Table 5.8 with the estimated sample viral load are

studied by adjusting the QTBM to the HCV data. The full model is fitted to the HCV data,

and the parameter corresponding to each variable is tested at the two-sided 5% significance

level. Those covariates that are not significant, do not interact with others and/or do not

behave as a confounder in the model are discarded. Thus, the full model fitted to HCV data

is simplified to obtain a reduced model by using a backwards elimination. Here, the results

and tables summarising the reduced model fitted to HCV data are presented (see Appendix

C for a summary of the results for the full model).

5.6.2.1 Reduced HCV Quantitative Model

The reduced model includes those covariates, per sample group, that are significant at the

two-sided 5% level in the full model. Confounding covariates, interactions between them and

correlations of the estimated parameters were checked. The confounding covariates were in-

cluded in the reduced model, interactions were not significant and correlations between the

estimated parameters were not found.

Tables C.14 to C.19, in the Appendix C, show the results obtained from the reduced model

for each sample group. The Table 5.10 shows the mean and standard deviation for the pa-

rameter estimates from the reduced model for each sample group. The results in bold are

the significant parameters at the two-sided 5% level.

In the next subsection, a description of the results is obtained assuming that the covariates

are under baseline levels except for the commented variable at each time.
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Table 5.10: Mean and SD of the parameter estimates from the reduced QTBM for HCV
sample groups.

Results in bold are significant at two-sided 5% level.
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Sample Group 5.9 log10 IU/ml Viral Load

The estimated mean for the results of participants under baseline conditions is 5.897 log10

IU/ml. There are significant differences on performance over time. The estimated mean for

the results from 2002, 5.091 log10 IU/ml, is lower than the mean for the results from 2004, .

Participants perform similar independently of the technology used, their experience testing

other type of samples, their accreditation status and the use of an anti-contamination system.

Manufacture laboratories tend to provide significantly lower estimates of viral load than hos-

pital laboratories, resulting in an estimated mean for their responses of 2.951 log10 IU/ml.

The estimated means for the results of participants performing inhibition tests are higher

than for the results of participants not performing any inhibition test; for the results of

participants performing inhibition tests only in negative samples the estimated mean is

6.162 log10 IU/ml.

Sample Group 4.9 log10 IU/ml Viral Load

The estimated mean for the results of participants under baseline conditions is 5.074 log10

IU/ml. There are significant differences on performance for samples with different genotypes:

samples of genotypes 3, 4 or 5 are estimated with lower viral load than samples of genotype

1. The estimated means for samples of genotype 3 and 4 are around 4.84 log10 IU/ml.

Differences between the estimated means for the results of participants using different tech-

nologies were found. In particular, CC users tend to provide higher estimates of viral load

than users of all other technologies.

181



CHAPTER 5. MODELLING QUANTITATIVE PERFORMANCE

RTIH and CIH users are more likely to return lower estimates than the target viral load

of 4.9 log10 IU/ml; their estimated means are 4.6 and 4.3 log10 IU/ml, respectively. The

estimated mean for the results of bDNA users is 4.78 log10 IU/ml.

Participants with experience performing between 2,001 and 10,000 plasma tests annually

tend to return lower estimates of viral loads than participants with less or more experience.

The estimated mean is the furthest away from the target viral load.

The lowest estimated mean was found for the results of manufacture laboratories, having a

value of 3.68 log10 IU/ml.

Sample Group 3.9 log10 IU/ml Viral Load

The estimated mean for the results of participants under baseline conditions is 3.87 log10

IU/ml, being almost the target viral load. Lower estimates of viral load were found for

samples of genotype 3 than for samples of genotype 1.

CIH, RTIH, RTC and bDNA users tend to provide significantly lower estimates than CC

users. The estimated means are 3.4, 3.5, 3.7, 3.5 log10 IU/ml, respectively.

Accredited participants are more likely to return higher estimates than non-accredited lab-

oratories, with an estimated mean of 4 log10 IU/ml.

Participants using other method of analysis tend to return higher estimates of viral load

than participants using a single method of analysis (with an estimated mean of 4.58 log10

IU/ml).
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Sample Group 3.5 log10 IU/ml Viral Load

The estimated mean for the results of participants under baseline conditions is 3.276 log10

IU/ml. bDNA users tend to return lower estimates of viral load than other commercial

technologies. The closest estimated mean to the target viral load was found for the results

of CC users.

Sample Group 3.2 log10 IU/ml Viral Load

Significant differences were found for the estimates of viral loads for samples of genotypes 3

and 5 with respect to samples of genotype 1. The estimated mean for samples of genotype 1

is 2.335 log10 IU/ml, whilst for samples of genotypes 3 and 5 the estimated means are 2.89

and 3.02 log10 IU/ml, respectively. For samples from 2003 and 2004 participants, the model

tends to provide significantly higher estimates, which are closer to the target viral load, than

for samples from 2005. The estimated means are around 3 log10 IU/ml for the results of

participants from 2003 and 2004, and for the results of participants from 2005 the estimated

mean is 2.335 log10 IU/ml).

Users of technologies different from the CC technology tend to provide lower estimates of

viral loads than CC technology users.

Participants from reference laboratories and manufacture laboratories are more likely to re-

turn lower estimates of viral load, which are further away from the target viral load, than

hospital laboratories.

Participants performing inhibition tests tend to provide lower estimates of viral load than

participants not performing any inhibition test.
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Sample Group 2.2 log10 IU/ml Viral Load

Estimates of viral load for samples from 2003 and 2004 were found to be lower than estimates

for samples from 2005. The estimated mean for the results of participants from 2005 is 2.332

log10 IU/ml, whilst the estimated means for the results of participants from 2003 and 2004

are around 1.9 log10 IU/ml.

Participants using real time technologies tend to provide closer estimates of viral load to the

target than users of all other technologies, under baseline conditions. The estimated mean

for their results is close to 2.2 log10 IU/ml. The estimated means for the results of bDNA

and CIH technologies users are higher than 2.6 log10 IU/ml.

5.6.2.2 Estimated Variances for the HCV Quantitative Data

The estimated variances for the distributions of the participants’ results are obtained using

the QTBM. Table 5.11 shows the estimated variances from the model per sample group

and technology type. The QTBM takes into account different variances depending on the

technology used by the participant, if it is a commercial or an in-house technology.

The estimated variances for the results of in-house technology users are higher than the

estimated variances for the results of commercial technology users for almost all sample

groups. However, for the weakest viral load the results of commercial technology users

are more variable than results of in-house technology users. For the sample group of 3.2

log10 IU/ml both estimated variances are quite similar suggesting small differences for the

variability of the results.
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Table 5.11: Summary statistics of the variance estimates from the reduced QTBM for HCV
sample groups classified by technology type: estimated mean, standard deviation (SD), con-
fidence interval.

5.6.2.3 Model Checking

As in the previous section 5.5.5, the posterior predictive results are assessed for model consis-

tency. With the use of a measure of discrepancy between the observed and replicated data,

the goodness of fit of the model is studied. Formula 5.1 is used to obtain the standardised

residuals as a measure of the discrepancy between replicated and observed data.

Figure 5.4 represents the density function of the probability that the observed standardised

residuals are equal or exceed the predicted standardised residuals for the results of sample

group 3.2 log10 IU/ml in 2004. It is observed that the distribution of the proportions are

within the confidence interval of 0.025 and 0.975. Therefore, no discrepancy between the

observed and replicated data was found.
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Figure 5.4: Density function of the Bayesian p-values for sample group 3.2 log10 IU/ml in
2004 from the reduced QTBM.

Table 5.12: HCV mean and confidence intervals of Bayesian ‘p-values’ from the reduced
QTBM per year and sample group.
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Table 5.12 shows the mean of the distribution for the probability of T (yrepsi , µs, σsi
) ≥

T (ysi, µs, σsi
), as well as the 95% confidence intervals per sample group and year. There

is no extreme Bayesian ‘p-values’ indicating any disagreement between data and some as-

pects of the model for any of the sample groups and years. Therefore, it is concluded that

the model fits the data appropriately.

5.6.2.4 Model Comparison

A model comparisons between nested models is carried out in the same way as described

previously in Section 5.5.6. Figure 5.5 shows the plots of two randomly chosen samples.

They show the estimated posterior scaled means for participants’ results from the full model

and their 95% confidence intervals together with the estimated posterior means from reduced

model. The graph shows that the posterior means from the reduced model lie within the

confidence intervals from the full model indicating that the reduced model fits the data

appropriately. (For other plots see Figure C.2).
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Figure 5.5: HCV estimated means of sample viral load from the full and reduced QTBM for
the sample group 3.2 log10 IU/ml in 2005 and for the sample group 5.9 log10 IU/ml in 2003.
Results are ordered by decreasing estimated means. The x-axis represents an identification
number of participants’ results.
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5.6.2.5 Estimates of Censored Data of HCV

As in the HBV data analysis, the estimated posterior distribution for each censored obser-

vation is checked and used to obtain the mean of the distribution, which is inputed for the

unknown censored observation.

Figure 5.6 shows the censored observations and their estimates obtained from the QTBM for

sample groups 2.2 and 5.9 log10 IU/ml. It is observed that the variability of the estimated

posterior means in comparison with the censored observations is higher for the weakest sam-

ple group. Their estimates are closer to the target viral load than the observed censored

values. For the strongest sample group the estimates of the censored observations are close

to their corresponding censored value and to the target viral load.

Figure 5.6: Censored observations and their estimates for the HCV sample groups 2.2 and
5.9 log10 IU/ml. Labs’ codes are order by technology used as follows: bDNA; 27 data for
the sample group 2.2 log10 IU/ml, CC; 104 data for the sample group 2.2 and 24 for the
sample group 5.9 log10 IU/ml, CIH; 1 data for the sample group 2.2 log10 IU/ml, RTC; 1
data for the sample group 2.2 and 1 for the sample group 5.9 log10 IU/ml, RTIH; 2 data for
the sample group 2.2 and 1 for the sample group 5.9 log10 IU/ml.
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5.7 Model Sensitivity Analysis

As described and explained in Chapter 4, depending on the prior distributions defined for

the model, other reasonable models may also provide a good fit to the data, but they may

also lead to different conclusions. Therefore, in order to study the robustness of the model,

a sensitivity analysis is performed for a range of alternative prior distributions.

As in Chapter 4, the following models with the alternative priors are used:

• Model 1 with Prior 1: ‘Non-informative’ or flat prior distributions, Beta(1,1), for the

hyperparameters of the covariates to be estimated.

• Model 2 with Prior 2: A hierarchical model with hyperparameters from a flat uniform

and inverse-gamma distribution for some of the primary parameters of interest.

• Model 3 with Prior 3: Full hierarchical model with non-informative distributions for

the hyperparameters of the regression parameters to be estimated, and flat prior dis-

tributions for the hyperparameters of the covariates to be estimated.

5.7.1 Sensitivity Analysis of QTBM Applied to HBV Data

The three alternative models, described above, are applied to the HBV data and the results

are compared to the original model.

No differences were found between the results obtained from the new models and the results

from the QTBM with the prior distributions defined in Section 4.5.
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As an illustrating example, Figure 5.7 shows the difference between the posterior estimated

means from the three models and the estimated means from the QTBM for the sample

group 4 log10 copies/ml in 2002. The differences are close to zero for each participant and

may be attributed to the random nature of the data. Therefore, no incongruent results or

inappropriate model fit is expected.

Figure 5.7: Differences between HBV estimated means of viral load from the QTBM. The
x-axis represents an identification number of participants’ results.

5.7.2 Sensitivity Analysis of QTBM Applied to HCV Data

Here, the robustness of the QTBM applied to the HCV data by a sensitivity analysis is

checked. No differences between the estimated posterior means from the three alternative

models and the estimated means from the QTBM were found. Figure 5.8 shows the dif-

ferences between the estimated means from the alternative models and the estimated mean

from the QTBM, for the sample group 3.9 log10 IU/ml in 2002.
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Figure 5.8: Differences between HCV estimated means of viral load from the QTBM. The
x-axis represents an identification number of participants’ results.

5.8 Summary and Conclusions

The proposed QTBM allows to identify factors that are associated with participant’s perfor-

mance of individual samples from a single pathogen across time. It also allows the inclusion of

missing information and censored observations from participating laboratories. Thus, there

is no need to discard information as in classical models. Furthermore, problems related to

asymptotic theory that occur in classical models are avoided.

The QTBM developed and reported by Garćıa-Fernández et al. (2007) (see Appendix F) have

been reviewed and adjusted to provide more appropriate results that explain the difference

of performance in a more exhaustive way. The corresponding applications and results have

been presented in this chapter.
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The full QTBM applied to HBV and HCV provides a better overview of how the covariates

influence the performance. It may help laboratories to improve their performance for fu-

ture analysis by predicting the best procedure to take when analysing the samples, such as

technology to be used, use of anti-contamination system, experience needed to improve their

performance, etc. Furthermore, the reduced model provides estimates of the real impact of

the significant covariates on the results and can be used for making future predictions. It

also provides a measurement for the influence of the laboratory practices over its performance.

As a general overview, from the application of the QTBM to the HBV and HCV data, per-

formance is shown to vary depending on the virus to be analysed and the sample load.

The best technologies used to test the samples from HCV data are CC and RTC, but for the

HBV data the best technology varies depending on the sample viral load. Users of bDNA

and HC perform poorly for lower strength sample groups, but their performance is better

on samples with increased viral load.

The use of an anti-contamination system provides closer estimates of viral loads to the

target for stronger samples of HBV, assuming other covariates are at their baseline levels;

however it does not change the performance when HCV samples are tested. Differences of

performance between laboratories were found when analysing some sample groups of HBV

and HCV. Manufacture labs perform poorly for HCV samples, while for HBV samples these

labs perform better.
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Differences were found for participants performing inhibition tests for HBV sample groups,

who in most cases provided better estimates than those participants not performing inhibi-

tion tests. However, for the HCV data, those differences appear only for the strongest and

the 3.2 log10 IU/ml sample groups. In both cases the results from participants performing

inhibition tests are further away from the target than the results for participants not per-

forming them.

Experience of testing plasma and serum tests annually influences the performance on some

sample groups for both HBV and HCV datasets. Given that these covariates behave as con-

founders in some situations, the interpretation about participants’ performance depending

on the experience of the laboratories should be done carefully.

The estimated variances for the responses of participants using different technologies (com-

mercial or in-house) indicate that the variability is higher for the results of participants using

in-house methods for all sample groups of HBV data. This is consistent with the classical

analysis of variances that has been performed in this chapter. For the HCV data similar con-

clusions are obtained for sample groups of viral loads higher than 3.2 log10 IU/ml. However,

for weaker sample groups, more variability was found in the results of commercial technology

users than in the results of in-house technology users. Nevertheless, these differences were

not substantial.

The estimates of the censored observations provide an exact value that can be used to

obtain the participants’ score for its performance (scoring system described in Chapter 3).

The estimates provided from the QTBM take into account the laboratory practices. In some

cases these estimates are close to the target viral load, but in other cases the estimates are

further away from the target viral load. Participants that so far were excluded can now be

scored.
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Both model applications were checked for goodness of fit, and the results showed that the

QTBM fitted the data appropriately. The prior probability distribution used for the data is

a well known distribution chosen according to the characteristics and the definition of the

data to be analysed. The sensitivity analysis proved the robustness of the QTBM under

changes to prior knowledge.

The main advantage of the proposed QTBM is its capability to deal with censored ob-

servations and missing covariates. Since the developed model is derived from a Bayesian

perspective, there is no need to have extra considerations about issues with multiple pa-

rameter testing and asymptotic theory when estimating parameters of the model. As in the

previous chapter no continuous covariates were included in the model as none was collected

in the QCMD questionnaire. However, the QTBM is able to be used with continuous co-

variates after some adjustment (Garćıa-Fernández et al., 2007).

As for the QLBM model, one assumption in the QTBM model is that the responses over

time are independent, which reduces model complexity and computational time. However,

participants can repeat programmes, and those results may be treated as repeated measure

if the sample is the same over time. This aspect has not been taken into account, although

the QTBM fits the data appropriately and replicated data are consistent with the observed

one. Suggestions on how to approach this aspect can be found in Chapter 8. Furthermore, in

one year a participant may return several results, and even if the technology used to analyse

the sample is different, the laboratory practice and the technician may be the same. In this

case, the responses may be correlated, which may lead to biased results. Suggestions about

how to approach this can be found in Chapter 8.
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One feature of the data is the censored observations provided by some participants. The

QTBM updates this partially missing information by the use of probability distributions

and provides a distribution of the best possible value to estimate the censored observation.

Thus, the model has a very large number of parameters to estimate. On the other hand, the

likelihood considers an estimation of the censored observation as an exact observation. So,

the likelihood does not distinguish between exact results and censored results; once these

are estimated, all of them contribute to the likelihood in the same way.

It is assumed for the QTBM that the variances are different across sample groups and type

of technologies used (commercial or in-house). It has been shown that in some cases these

differences may not be significant (classical analysis). Therefore, it may be more convenient

to reduce the number of estimations within the model and consider a likelihood with different

contributions for participants who provided censored observations than for participants who

provided exact results.
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Chapter 6

Improved Bayesian Model for

Quantitative Responses and Pilot

Study for its Application

The QTBM, described in Chapter 5, allows the inclusion of missing values and censored

observations into the model. However, the QTBM has some limitations. The values of the

censored observations are used to estimate exact responses which are used to replace those

censored observations in the model. These estimates of the censored observations are then

used to estimate the parameters of interest of the model. As a consequence of the contri-

bution of censored information to the model via their estimates, the number of nuisance

parameters increases the model’s complexity and makes posterior predictive checks, model

validation and model comparison difficult. Furthermore, the QTBM assumes that the cen-

soring data mechanism can be ignored, but this is not always appropriate.

In this chapter an improved Bayesian model (Censored Bayesian Model-CBM) is proposed

and developed where the contribution of the censored information to the CBM is included

via its real observed censored value.
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6.1 Introduction

Modelling censored data problems from a Bayesian perspective generally implies the inclu-

sion of a probability distribution into the model that relates the censored information to the

variables of interest (Chapter 5 for the QTBM). Thus, censored observations are estimated

according to their posterior distributions conditional on the data and the current values for

the unknown parameters.

In the QTBM, the censored observations are estimated as additional unknown parameters,

which are simulated from the specified likelihood distribution given the current values for all

relevant unknown parameters and the information provided by the censored observations.

Then, assuming that the response variable follows a normal distribution, the censored obser-

vations are simulated from the normal distribution given the current value of the unknown

parameters and based on the fact that the real unobserved responses are higher or lower

than the observed censored responses (Gelman et al., 2004).

Usually, the prime objective is not to replace the censored observation by an estimate, but

to study the relation of the complete data set to the covariates of interest. For this case the

QTBM simulates an unnecessary number of parameters (censored observations).

A Censored Bayesian Model (CBM) that takes into account the information provided by the

censored observations, and where the conditional posterior distributions of the parameters

of interest do not depend on simulated values for the censored observations, is proposed

in order to reduce the number of unnecessary estimations and implicitly, to reduce model

complexity. The model is developed and coded in the statistical software R (the R code can

be found on the CD attached to this thesis).
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The inferences on the parameters from the CBM are based on a realistic likelihood function

with the observed censored and non-censored information. Furthermore, the CBM has the

capacity to incorporate a function that explains the censoring mechanism when this cannot

be ignored. Additionally, a simulated value for the censored observation based on the cur-

rent values of the estimated parameters and the exact observed data can be obtained from

the CBM if required. In other words, the CBM can be used to obtain an estimate of the

censored value, but this is not necessary to carry out model parameter estimations. This is

in contrast with the QTBM that needs the estimate of the censored observation in order to

carry out model estimation.

While the CBM is more appropriate and efficient, the new structure of the likelihood intro-

duces a further difficulty since existing techniques for model comparison cannot be applied

to the CBM. Thus, in this chapter some modifications of a well known model comparison

technique are introduced and applied to the CBM.

The CBM is tested on a subgroup of datasets from QCMD’s HBV programmes and on

simulated data. Firstly, the results of the modified comparison tool are presented. Then, the

results of the CBM application to the complete data set of HBV programmes are described,

the chapter concluding with a summary of results and benefits gained from using the proposed

model.

6.2 Censored log10-normal Model from a

Bayesian Perspective

In this section the general theory of the CBM for the analysis of log10 transformed normal

data is presented, allowing for censored responses in a Bayesian framework.
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The CBM is a linear regression model allowing right and left censored responses, where the

number of covariates may change depending on the observations. First, the notation used in

this chapter is introduced. Then, the model derivation is shown and finally the estimation

procedure is described.

6.2.1 Notation

The notation used throughout this chapter is as follows:

• Ysi is used to denote a quantitative response for the ith observation, i=1,...,ns, within

the sth sample group, s=1,..,l with l being the total number of sample groups.

• υsi is an indicator variable for the group of right censored values, with

υsi =















0 if ysi is right censored,

1 otherwise.

• ρsi is an indicator variable for the group of left censored values, with

ρsi =















0 if ysi is left censored,

1 otherwise.

• ψsi = υsiρsi is an indicator variable for the group of censored values, with

ψsi =















0 if ysi is censored,

1 if ysi is not censored.

• ~xsi = (xsi1, .., xsip) denotes the p-dimensional vector of covariates for the ith observation

in sample group s with xsi1 = 1.

• ~βs is the p-dimensional vector of regression coefficients,

~βTs = (βs1, ..., βsp).

200



CHAPTER 6. IMPROVED BAYESIAN MODEL

6.2.2 Likelihood Function

It is assumed that the log10 of the response variable, ysi, follows a normal distribution with

mean µsi and variance σ2
si

with si = 1, ..., q where q is the total number of different variances

within the sample group s. As outlined in Chapter 5, models with different variances (e.g.

accounting for different technology clusters) may be necessary. For HBV data, si = 1 refers

to the group of participants’ responses using in-house technologies and si = 2 refers to the

group of participants’ responses using commercial technologies for sample group s. In this

case, two variances per sample group (target viral load) are considered, so q = 2 for each

sample group s.

• Let Ysi follow a log10-normal distribution with parameters µsi and σ2
si
. Then, the

probability density function is given by

f(ysi|µsi, σ2
si
) = (2π)−1/2(ysi ln(10)σsi

)−1 exp

{

− 1

2σ2
si

(log10(ysi) − µsi)
2

}

.

Assuming independent censoring, a likelihood that appropriately takes into account the

censored observation is proposed (formula (6.1)). The censored observation contributes to

the likelihood through censored and probability distribution functions as follows

Likelihood =
∏

si

f(ysi)
ψsi(G(ysi)H(ysi))

ψsi

(

S(ysi)
1−υsig(ysi)

1−υsiF (ysi)
1−ρsih(ysi)

1−ρsi

)1−ψsi

,

(6.1)

where G(.) and H(.) are the censoring distribution functions, while g(.) and h(.) are their

corresponding censoring densities, respectively. S(.) = 1−F (.), where F (.) is the cumulative

distribution function for the response variable with density f(.).
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Since the censoring mechanism is assumed to be of no real interest in this application, only

the partial likelihood is considered. Thus, the partial likelihood function of the full set of

parameters (µ, σ2) can be written as

L(µ, ~σ2|y) =
∏

si

f(ysi|µsi, σ2
si
)ψsi

(

S(ysi|µsi, σ2
si
)1−υsiF (ysi|µsi, σ2

si
)1−ρsi

)1−ψsi

. (6.2)

6.2.3 Regression Model

In order to fit a linear regression model, µsi = ~xsi~βs, the model is rewritten as a function

of (β, ~σ2) with β = (~β1, ..., ~βl), where l is the total number of sample groups and ~σ2 =

(σ2
1, ..., σ

2
m) with m the total number of variances in the model, i.e across all viral loads.

L(β, ~σ2|y) =
∏

si

f(ysi|~βs, σ2
si
)ψsi

(

(1 − F (ysi|~βs, σ2
si
))1−υsiF (ysi|~βs, σ2

si
)1−ρsi

)1−ψsi

L(β, ~σ2|y) =

(

(2π)−k/2
(

∏

si

(σ2
si

)−1/2

))ψsi

exp

{

−1

2

∑

si

(

ψsi(log10(ysi) − ~xsi~βs)
2

σ2
si

)}

×
∏

si

(

(ysi ln(10))−ψsi

)





(

1 − φ

(

log10(ysi) − ~xsi~βs

σsi

))1−υsi
(

φ

(

log10(ysi) − ~xsi~βs

σsi

))1−ρsi




1−ψsi

.

(6.3)

In formula (6.3), k is the total number of non-censored observations and φ is the cumulative

distribution function of the standard normal distribution for the log10 of the responses.

6.2.4 Bayesian Framework

The prior distributions for each ~βs and missing covariate xsij are considered the same as

for the previous models QLBM and QTBM. However, the prior distribution for σ2
si

and its

hyperparmeters are defined as follows
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• Prior distribution for σ2
si

with si = 1, ..., q, where

σ2
si
|csi

, dsi ∼ InvGamma(csi
, dsi).

The hyperparameters csi
and dsi

, in the subsequent application, are set up as 3 and 1 in order

to provide the variances σ2
si

with a proper inverse-gamma prior distribution with expected

variability of responses of 0.5 and existing variances (this facilitates the starting values of

the MCMC chain and improves convergence without assuming strong prior knowledge). The

hyperparameters for each ~βs and missing covariate xsij are defined as in previous models.

6.2.4.1 Posterior Distributions

Considering the partial likelihood (formula 6.3) and the prior distributions from the previous

section, the posterior distribution for the parameters given the data is:

π(β, ~σ2|y) ∝ likelihood× prior ∝ L(β, ~σ2)π(β|β0, V0)π(~σ2|c, d).

Since ~βs, σsi
and xsij , with s = 1, .., l, si = 1, .., q and j = 2, .., r, are independent, then,

the posterior distribution of each parameter can be expressed in terms of its conditional

posterior distribution, which is described below:

• Conditional posterior distribution for ~βs with s = 1, .., l:

π(~βs|y, ~σ2, ~β−s) ∝ L(~βs, σ
2
si
)π(~βs|~βs0,Vs0)

π(~βs|y, ~σ2, ~β−s) ∝ exp







−1

2

∑

i(s)

(

ψsi(log10(ysi) − ~xsi~βs)
2

σ2
si

)







×
∏

i(s)





(

1 − φ

(

log10(ysi) − ~xsi~βs

σsi

))1−υsi
(

φ

(

log10(ysi) − ~xsi~βs

σsi

))1−ρsi




1−ψsi
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× exp

{

−1

2
(~βs − ~βs0)

TV−1
s0 (~βs − ~βs0)

}

,

where i(s) is the subgroup of responses from participants of sample group s.

• Conditional posterior distribution of σ2
si

with si = 1, .., q:

π(σ2
si
|y, β, σ2

−si
) ∝ L(β, σ2

si
)π(σ2

si
|csi

, dsi
)

π(σ2
si
|y, β) ∝ (2πσ2)

−k
(σ2

si
)

2 exp











− 1

2σ2
si

∑

i
(σ2

si
)

(ψsi(log10(ysi) − ~xsi~βs)
2)











×
∏

i
(σ2

si
)





(

1 − φ

(

log10(ysi) − ~xsi~βs

σsi

))1−υsi
(

φ

(

log10(ysi) − ~xsi~βs

σsi

))1−ρsi




1−ψsi

×(σ2
si

)−csi
−1exp

{

−dsi

σ2
si

}

π(σ2
si
|y, β) ∝

∏

i
(σ2

si
)





(

1 − φ

(

log10(ysi) − ~xsi~βs

σsi

))1−υsi
(

φ

(

log10(ysi) − ~xsi~βs

σsi

))1−ρsi




1−ψsi

× exp











− 1

σ2
si






dsi

+
1

2

∑

si(σsi
)

(ψsi(log10(ysi) − ~xsi~βs)
2)

















× (σ2
si

)
−1−

(

k
(σ2

si
)

2
+csi

)

,

where i(σ2
si

) is the group of observations having the same variance σ2
si

and k(σ2
si

) is the

number of non-censored observations with variance σ2
si
.
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• Conditional posterior distribution for xsij with j = 2, ..., r

– For missing binary variables

π(xsij|ysi, x−sij, βsj, σ2
si
) ∝ L(βsj, xsij , σ

2
si
)π(xsij|bj)

π(xsij |ysi, x−sij , βsj , σ2
si

) ∝ exp

{

−1

2

(

ψsi(log10(ysi) − xsijβsj)
2

σ2
si

)}

×
(

(

1 − φ

(

log10(ysi) − xsijβsj

σsi

))1−υsi
(

φ

(

log10(ysi) − xsijβsj

σsi

))1−ρsi
)1−ψsi

×(bj)
xsij (1 − bj)

(1−xsij ).

– For missing categorical variables

π(xsij |ysi, x−sij, βsj, σ2
si
) ∝ L(βsj , xsij, σ

2
si
)π(xsij |gj[])

π(xsij |ysi, x−sij , βsj , σ2
si

) ∝ exp

{

−1

2

(

ψsi(log10(ysi) − xsijβsj)
2

σ2
si

)}

×
(

(

1 − φ

(

log10(ysi) − xsijβsj

σsi

))1−υsi
(

φ

(

log10(ysi) − xsijβsj

σsi

))1−ρsi
)1−ψsi

×gj [xsij],

where x−sij are all the covariate values except the observed jth covariate value for

the ith observation in sample group s and ~gj[] is the vector of assigned probabilities

to each category of the variable (see Chapter 5 in Section 5.4 for more details).

6.2.5 MCMC and Simulation of Posterior Distributions

In this subsection, the well known algorithm used to fit the CBM is described. In order to

obtain samples from the multivariate posterior distribution of the joint parameters β and

~σ2, samples from their conditional posterior distributions are simulated separately.
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The MCMC algorithm for the censored log10-normal model applied to HBV data makes use

of the Metropolis-Hastings (M-H) algorithm with multivariate random walk proposals. The

Metropolis-Hastings algorithm is a technique to simulate iteratively a sample chain where at

each iteration step a new ‘candidate’ value is proposed and this value is accepted with an ap-

propriate probability (as a rule of thumb: minimum acceptance probability 24% (Gamerman

and Lopes, 2006)).

The M-H algorithm is an iterative procedure given by the following steps:

1. Initialise the chain with some starting values (~β0
1 , ..,

~β0
l , (σ

2
1)

0, .., (σ2
m)0).

2. Update the parameters as follows:

Draw a candidate ~βcan1 from a multivariate normal distribution with the mean being the

current value of the chain and a covariance matrix given by the inverse of the curvature

of the log of the normal distribution at its mode multiplied by a predefined tuning

factor. The covariance estimate is pre-calculated, at the beginning of the iteration

process, based on the non-censored observations.

The next value in the chain, ~β1
1 , is actualised by ~β0

1 with probability 1 − p or by ~βcan1

with probability p, where

p = min







1,
π(~βcan1 |~β0

2 , ..
~β0
l , (σ

2)0, y)

π(~β0
1 |~β0

2 , ..~β
0
l , (σ

2)0, y)

ξ(~β0
1 |~βcan1 , ~β0

2 , ..
~β0
p , (σ

2)0, y)

ξ(~βcan1 |~β0
1 , ~β

0
2 , ..~β

0
p , (σ

2)0, y)







and ξ(.) being the candidate generator density, in this case having a multivariate normal

density with mean equal to the current value of the chain. Thus, the probability p given

in the previous formula is reduced to:

p = min







1,
π(~βcan1 |~β0

2 , ..
~β0
p , (σ

2)0, y)

π(~β0
1 |~β0

2 , ..~β
0
p , (σ

2)0, y)







.
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Repeating the above process for ~β1
s and ~βcans for each s, with s = 2, .., l, at the current

values of the parameters, a simulated vector of regression parameters for each category

s is obtained.

3. Update the parameter (σ2
1)

1 using a similar procedure as for the regression parameters

in Step 2. Here, the proposal distribution is a normal distribution. The proposed

candidate is accepted with probability p if it is bigger than zero (truncated normal

distribution from zero since the variances can only take on positive values). Repeat

the procedure to update (σ2
si
)1 with si = 2, .., q.

4. Iterate the updating procedure from Step 2.

The simulation of ~βs-vectors per block of sample group breaks the correlation between the

parameters of sample blocks. This improves convergence, since in high-dimensional models

simulating individual parameters can slow down the convergence (Gamerman and Lopes,

2006).

6.3 Pilot Study of the CBM

The main aim of the pilot study, where the CBM has been applied to the HBV data with

a subgroup of covariates, is to check the results from the proposed model and study the

variability assumption of the data. This study was performed via a representative reduced

dataset from the HBV full data in order to save time and computational efforts (in Chapter

7 the application of the CBM to the full HBV data is shown).

For practicality, selected covariates without missing values (year, technology group and viral

subtype) are chosen to test the model in this pilot study. Models are fitted to all sample

groups using censored and non-censored observations from participants’ viral load estimates

over time. An exploratory analysis of the differences in technology cluster variances using a

classical statistical test has been carried out in Chapter 5, and significant differences between
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variances have been found for some sample groups. Therefore, two models are fitted to the

selected subgroup of HBV data; one with two variances for all six target viral loads and the

second allowing for two variances within each viral target load. Equal variances per year

and within technology group are assumed.

The covariates used in these models are:

• Sample subtype: this binary variable takes on the value 0 if the data are from a sample

of subtype A and value 1 if the data are from a sample of subtype D. The reason for

the inclusion of this variable into the models is to study significant differences in the

performance of samples with different subtypes.

• Sample year: for convenience, to simplify the pilot study and to test the model with

non-categorical covariates, year is considered as a continuous variable. Year takes

values from 1 to 4 corresponding to the years 2002 to 2005. A linear relationship over

time is assumed to check for a trend in the performance over time.

• Technology group: this variable identifies the technology used for analysing the sample.

It consists of five indicator variables comparing bDNA, RTC, HC, CIH, RTIH using

CC as a baseline.

The ~βs is a 8-dimensional vector of regression coefficients for those sample groups that contain

samples with both subtypes A and D. However, for those sample groups containing only one

kind of subtype, a 7-dimensional vector of regression coefficients is used. The sample groups

are defined as in Chapter 2.

6.3.1 Results from the Model with two Variances

The CBM with two variances is considered in this section. First, convergence is checked,

then autocorrelations are studied and finally the results are discussed.
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6.3.1.1 Convergence and Autocorrelations

Chains of parameter estimations are run until convergence is achieved. Only the parameter

estimations, the convergence of which is achieved, are used for the analysis. The convergence

of the results is achieved to ensure that the draws obtained can be used as a sample from the

posterior distribution. Convergence is assessed using graphical diagnostic tools, by plotting

the cumulative posterior means for the parameters against the number of iteration of the

chain.

Figure 6.1 illustrates the convergence for some selected parameters in the model. The graph

in the upper-left corner is showing the chain of the cumulative posterior means of the pa-

rameter estimates for the intercept. The corresponding graph appears to stabilize around

2,000 iterations. Therefore, the first 2,000 iterations are considered as a burn-in period and

the rest of iterations are used as samples from the posterior distribution.
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Figure 6.1: Plots of posterior means of parameters against the number of iterations. The
vertical axis represents the cumulative posterior means of the parameter (cum).
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Figure 6.2 shows the autocorrelation of the unfiltered chain for some selected parameters.

The time lag of the autocorrelation function is decreasing indicating a good mixing of the

chain. The autocorrelations are approximately zero after a time lag of 10. Since the simu-

lated values of the chain should be independent realisations from the posterior distributions,

a thinning period to break the autocorrelation is needed (see Section 1.4). The figure suggests

that a thinning period of 10 iterations is appropriate for breaking autocorrelations between

consecutive simulated values. That is, every 10th observation is taken from the simulated

chain and used for drawing conclusions from the posterior distribution.
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Figure 6.2: Autocorrelations plots of the chain for four selected parameters.
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Figure 6.3 illustrates the correlation between some of the selected parameters. Correlations

for two parameters would be present if the pairs follows a particular pattern, as for example

an increasing or decreasing line. Since the plots show a random scattering of parameter

pair-values, there is no clear evidence of presence of correlation between pairs of parameters.
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Figure 6.3: Scatter plots to show correlation between two selected parameters.

The chain is run for 60,000 iterations with a thinning period of 10 iterations to break autocor-

relation between simulated values. Therefore, 6,000 simulated values are kept. Convergence

is achieved after approximately 2,000 iterations. A total of 4,000 simulated values are used

to estimate the posterior distribution function.
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6.3.1.2 Numerical Results

Table 6.1 to 6.6 illustrate the estimated posterior means, standard deviations and proba-

bilities for the regression coefficients for each sample group. The posterior probability is

calculated, first, by summing all of the simulation values obtained from the conditional pos-

terior distribution which are higher than zero. Then, the sum is divided by the total number

of iterations. If this posterior probability is close to zero (smaller than 0.025), zero is in the

upper tail of the distribution. In this situation, it is concluded that parameter is significant

(at the one-sided 2.5% significant level). If the posterior probability is close to 1 (higher

than 0.975), zero is on the lower tail of the distribution, and it is concluded that parameter

is significant (at the one-sided 2.5% significance level).

Numerical results obtained for the posterior probabilities can be summarised for each sample

group as follows:

• Sample group 6 log10 copies/ml:

The variable year is significant at the one-sided 2.5% level. In other words, the esti-

mated means for the participants’ results decrease significantly over time. The results

from the row data in Table 5.3 show the observed means which decrease from 6.032

to 5.532 for samples from 2002 to 2005. Both bDNA and RTIH users are significantly

more likely to provide higher estimates of viral loads than CC users.

Table 6.1: Table with posterior means, standard deviations and probabilities for the regression
parameters from the CBM corresponding to sample group 6 log10 copies/ml.

Posterior Intercept Year Subtype CIH RTIH RTC bDNA HC
Mean 6.045 -0.095 -0.062 -0.004 0.239 0.253 0.377 0.015
SD 0.091 0.030 0.069 0.178 0.103 0.165 0.113 0.095
Prob 1.000 0.001 0.187 0.487 0.988 0.937 0.999 0.566

• Sample group 5 log10 copies/ml:

There is a significant negative linear trend over time. Users of bDNA technology

are significantly more likely to return higher estimates of viral loads than CC users.
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However, CIH users are more likely to return lower estimates of viral loads than CC

users. Estimates of viral loads for samples of subtype A tend to be significantly lower

than estimates for samples of subtype D, at the one-sided 3% level.

Table 6.2: Table with posterior means, standard deviations and probabilities for the regression
parameters from the CBM corresponding to sample group 5 log10 copies/ml.

Posterior Intercept Year Subtype CIH RTIH RTC bDNA HC
Mean 5.185 -0.067 -0.083 -0.301 0.007 -0.092 0.303 0.157
SD 0.065 0.021 0.043 0.126 0.071 0.063 0.084 0.132
Prob 1.000 0.001 0.029 0.009 0.539 0.070 0.999 0.880

• Sample group 4 log10 copies/ml:

The estimates of viral loads for samples of subtype D tend to be lower than the esti-

mates for samples of subtype A. Estimates of viral loads from participants using bDNA

and CIH tend to be lower than estimates from CC users.

Table 6.3: Table with posterior means, standard deviations and probabilities for the regression
parameters from the CBM corresponding to sample group 4 log10 copies/ml.

Posterior Intercept Year Subtype CIH RTIH RTC bDNA HC
Mean 4.147 -0.04 -0.146 -0.406 0.063 -0.077 0.269 -0.129
SD 0.089 0.031 0.072 0.161 0.088 0.070 0.108 0.354
Prob 1.000 0.096 0.023 0.006 0.765 0.144 0.995 0.364

• Sample group 3.5 log10 copies/ml:

Estimates of viral loads are significantly different over time. The estimates decrease

over time. RTIH and bDNA users tend to provide significantly higher estimates of

viral loads than CC users.

Table 6.4: Table with posterior means, standard deviations and probabilities for the regression
parameters from the CBM corresponding to sample group 3.5 log10 copies/ml.

Posterior Intercept Year CIH RTIH RTC bDNA HC
Mean 4.480 -0.587 -0.201 0.521 0.189 1.314 0.174
SD 0.124 0.090 0.193 0.125 0.251 0.205 0.369
Prob 1.000 0.000 0.149 1.000 0.780 1.000 0.695
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• Sample group 3 log10 copies/ml:

Estimates of viral loads for samples of subtype D tend to be higher than the estimates

for samples of subtype A. RTC users are more likely to provide significantly lower

estimates of viral loads than CC users at the one-sided 4% level. Also, a significant

difference is found between the estimates of viral loads from HC and CC technology

users.

Table 6.5: Table with posterior means, standard deviations and probabilities for the regression
parameters from the CBM corresponding to sample group 3 log10 copies/ml.

Posterior Intercept Year Subtype CIH RTIH RTC bDNA HC
Mean 3.324 -0.092 0.133 -0.085 0.137 -0.125 0.059 1.104
SD 0.135 0.042 0.057 0.167 0.089 0.069 0.106 0.332
Prob 1.000 0.013 0.989 0.301 0.938 0.036 0.719 0.999

• Sample group 2.3 log10 copies/ml:

RTIH and HC technologies users tend to return significantly higher estimates of viral

loads than CC users. The estimated mean for the results of bDNA users has the

highest estimated standard deviation amongst the results from other technology and

sample groups. In Chapter 2, it has been shown that all the data provided by bDNA

technology users for this sample group are censored, so this may be the reason why

the estimated mean has a high standard deviation.

Table 6.6: Table with posterior means, standard deviations and probabilities for the regression
parameters from the CBM corresponding to sample group 2.3 log10 copies/ml.

Posterior Intercept Year CIH RTIH RTC bDNA HC
Mean 2.423 -0.043 0.283 0.542 0.228 -0.811 2.082
SD 0.115 0.052 0.217 0.127 0.138 0.626 0.323
Prob 1.000 0.205 0.904 1.000 0.950 0.088 1.000

Table 6.7 shows the means, standard deviations and probabilities for the estimated variances.

The estimated variance for the results given by in-house technologies is approximately three

times the estimated variance for the results from users of commercial technologies. This

indicates a difference of the variability of results from the two groups of participants.
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However, it is not clear if the additional variability is due to change of participants’ results

or change of different sample groups. Thus, the second CBM fitted to the data, in the next

section of this chapter, takes into account differences in the variability not only depending

on the technology type, but also on the sample group.

Table 6.7: Posterior means, standard deviations and probabilities for the variances.

Variance Mean SD Prob
In-house 0.604 0.035 1
Commercial 0.236 0.009 1

To conclude this section, Figure 6.4 illustrates some simulations from the conditional poste-

rior distribution of two selected regression parameters and their histograms. The sampling

paths in the upper row of the Figure 6.4 show that the chain mixes well, while the corre-

sponding histograms indicate a normal approximation for the posterior distribution of the

parameters.
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Figure 6.4: Plots of the simulations and histograms from the conditional posterior distribution
for two selected parameters.
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6.3.1.3 Table of Significance

Table 6.8 summarises the results described previously. It shows the two-sided significance

levels for each covariate and sample group obtained from the application of the CBM to the

subgroup of HBV data.

Table 6.8: Table of significances of the parameter estimates from the CBM with two variances.

Sample group Intercept Year Subtype bDNA RTC HC CIH RTIH
Sample 6.0 *** *** - *** - - - ***
Sample 5.0 *** *** * *** - - *** -
Sample 4.0 *** - ** *** - - *** -
Sample 3.5 *** *** *** - - - ***
Sample 3.0 *** *** *** - ** *** - -
Sample 2.3 *** - - * *** - ***

*** 2.5% level, ** 5% level, * 10% level and - not significant at 10% two-sided level.
Blank cells: no parameter to estimate.

6.3.2 Results from the Model with Twelve Variances

Following the findings in the exploratory analysis, an extended model with twelve variances

is fitted allowing for different variances for in-house and commercial technology users within

each target viral load.

The estimated results obtained from this model are similar to those from the previous model.

Convergence is achieved after 1,000 iterations. The chain is run for 60,000 iterations with a

thinning period of 10 and no presence of correlations between parameters is detected.

Regression parameters are interpreted as in the previous section for the model with two

variances. There are some slight differences with respect to the previous model when testing

at the two-sided 5% level. Table 6.9 shows a summary of significances for the estimated

parameters from the model with twelve variances.
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Table 6.9: Table of significances of the parameter estimates from the CBM with twelve vari-
ances.

Sample group Intercept Year Subtype bDNA RTC HC CIH RTIH
Sample 6.0 *** *** - *** - - - **
Sample 5.0 *** *** * *** - * *** -
Sample 4.0 *** - ** *** - - *** -
Sample 3.5 *** *** *** - - - ***
Sample 3.0 *** *** *** - * *** - *
Sample 2.3 *** - - * *** * ***

*** 2.5% level, ** 5% level, * 10% level and - not significant at 10% two-sided level.
Blank cells: no parameter to estimate.

Table 6.10 shows the estimated posterior means of variances for the distributions of partici-

pants’ results for each sample group. This illustrates the differences in the variations between

the participants’ performance for these two major technology clusters. As expected, the vari-

ability of results from commercial technology users is lower than the variability of responses

from in-house technology users for each sample group.

Table 6.10: Estimated posterior means of variances for each sample group.

Sample group log10 copies/ml
Variances 6 5 4 3.5 3 2.3
In-house 0.676 0.766 0.606 0.425 0.458 0.380
Commercial 0.407 0.209 0.216 0.255 0.129 0.232

6.3.3 Model Diagnostics

In this section the goodness of fit of the model with two variances is checked. The standard-

ised residuals are used as a model diagnostic tool. In a Bayesian framework the residual for

each observation is a random variable since the parameters have probability distributions. A

sample from the residual distribution for each data value is calculated based on the posterior

parameter samples obtain from the MCMC.
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Table 6.11 shows the 5% - lower and 95% - upper limit of the empirical 2.5% and the 97.5

quantile of the standardised residuals for each sample group. For each observation, the

empirical 2.5% and 97.5% quantile are obtained from the distribution of the standardised

residuals. Then, from the range of all empirical 2.5% quantiles among the observations of

a sample group, the cut off point for the 5% quantile is calculated. From the range of all

empirical 97.5% quantiles among the observations of a sample group, the cut off point for the

95% quantile is obtained. Thus, there is a lower and upper value cut off for the residuals of

the 95% of the data for each sample group. Note that it is not assumed that the distributions

of the quantiles follow normal distributions. However, those quantiles should be within the

range given by (-3, 3) for a well fitting model.

For sample group 2.3 log10 copies/ml the residuals are far outside of the acceptance limits.

This sample group corresponds to the one with the highest proportion of censored data.

Therefore, the variation in the standardised residuals may be due to the effect of censored

data. For the other sample groups the quantiles of the residual values lie within the upper

and lower limits (-3, 3) indicating a good fit of the model. Similar results are obtained with

the use of the CBM with twelve variances.

Table 6.11: Summary of standardised residual.

Standardised residuals per sample group log10 copies/ml
Limits 6 5 4 3.5 3 2.3
5% low limit -1.841 -1.855 -1.782 -1.991 -1.438 -1.317
95% upper limit 1.944 1.692 2.039 1.703 2.435 3.618
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6.4 Conclusions

In order to improve the analysis of quantitative data from EQA programmes carried out

with the QTBM, a new model has been proposed which has several advantages over the

QTBM. The new CBM uses the real censored observation along the model estimation proce-

dure, instead of an estimated value for the censored observation. This reduces the number of

nuisance parameters estimated by the QTBM model, saving time and reducing complexity.

Since the estimation of the parameters of interest from the model is based on the observed

censored value, the results from the CBM are more reliable and robust than the results

from the QTBM (as in the QTBM the censored values are estimates of the observed ones).

Therefore, predictions and conclusions obtained from the CBM are more consistent with the

real data from EQA programmes.

The proposed CBM provides a more appropriate, objective and accurate model to identify

factors significantly associated with participants’ quantitative performance than the QTBM

developed in Chapter 5. The CBM is a step forward to improve the QTBM, as the former

takes into account the censored information by using a censored function without having to

estimate a value for each censored observation. Therefore, the CBM treats the data infor-

mation in a more objective, exact and accurate way. Although the censoring mechanism in

this application has been assumed to be ignorable and not of real interest, the CBM can be

adjusted to any censoring mechanism. Thus, the CBM is a model fulfilling the requirement

of flexibility needed to apply it to future EQA data. Furthermore, the CBM can be applied

to data from other areas of research with censored observations such as economy or finance.

The pilot study carried out on the HBV data with a subgroup of covariates confirms that

the CBM is applicable providing sensible results.
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In order to compare competitive models and chose the one that fits the data better, a further

study about model selection procedure was carried out. Since the CBM is based on a partial

likelihood due to the censored observations, there was a need to adapt and derive a model

comparison tool that could be used with CBMs. The next chapter presents the study of a

model comparison tool designed for the application of the CBM, its application to the pilot

study presented here and the results of the CBM applied to the full dataset.
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Chapter 7

Model Comparison Tool and

Simulation Study

The aim of this Chapter is to compare the two models proposed in the Chapter 6: the CBM

with two variances and the CBM with twelve variances and apply the better of them to a full

quantitative dataset. The two model comparison tools, BIC and DIC, provide information

about the model fit (see Section 1.3.5). However, there is no agreement whether the BIC is

an appropriate measure for model comparison when there is uncertainty that one and only

one of the competing models is the “true” one (Bernardo and Smith, 1994). In other words,

when the aim of the study is to choose the correct model out of several competing models

from where only one of them is the “true” model and the rest are wrong, then the BIC is an

appropriate measure for model comparison. Since it is not assumed here that one of the two

models, only one of which is the true one, it is preferable to use another measure of compar-

ison, the DIC, which is based on the distances of the data to each of the approximate models.
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The CBM, described in Chapter 6, makes use of the partial likelihood (6.2). The analysis of

censored observations based on the partial likelihood provides parameter estimates for the

complete model, since under the assumption of ignorable censoring mechanism both mod-

els are equivalent. However, this raises some important questions in the context of model

comparison, which have not been addressed yet in any published researched. If the partial

likelihood is used to study model comparison with the DIC, can we still rely on the results

as a comparable measurement between models? The behaviour of the Deviance Information

Criterion based on the partial likelihood, DICp, has not been researched yet. Since there is

no information about the complete likelihood, how does the DICp behave with respect to

the Deviance Information Criterion based on the complete likelihood, DICM? Are DICp

and DICM equivalent? How do DICp and DICM vary within data sets of similar charac-

teristics? How do DICp and DICM behave when the amount of censored data increases or

decreases?

In this Chapter the relation between the DICp and DICM is investigated from a theoretical

point of view. Then, simulated data are used to study the variation of the DICp within data

sets of similar characteristics and different proportions of censored data within the data sets.

The behaviour of the DICM in relation with the behaviour of the DICp and the proportions

of censored data are also studied. The DICp obtained from the two models, used in the

pilot study in the previous chapter, are compared in order to determine if it is necessary to

take into account different variances across sample groups and technology types. Finally,

the better model, selected by using the DICp, will be applied to the full HBV dataset.
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7.1 Relation between DICp and DICM

Using equation (1.5), the Deviance Information Criterion (Spiegelhalter et al., 2002), based

on the complete likelihood in equation (6.1), DICM can be defined as follows:

DICM = Eθ|y[−2 log(LM (θ|y))] + {Eθ|y[−2 log(LM (θ|y))] − (−2 log(LM (θ̄|y))}, (7.1)

where LM (θ|y) is the complete likelihood, θ̄ = E(θ|y) is the estimated mean of the parame-

ters and the mean Mean[−2 log(LM(θ|y))] is replaced by Eθ|y[−2 log((LM(θ|y))] in equation

(1.5).

The complete likelihood given parameter θ is defined in equation (6.1) and can be expressed

as follows:

LM(θ|y) =
∏

si

f(ysi|θ)ψsi(G(ysi)H(ysi))
ψsi

(

S(ysi|θ)1−υsig(ysi)
1−υsiF (ysi|θ)1−ρsih(ysi)

1−ρsi

)1−ψsi

,

(7.2)

which can be rewritten in vector form as:

LM(θ|y) = f(Ynon|θ)(G(Ynon)H(Ynon))

×
(

S(Ycen|θ)1−υceng(Ycen)
1−υcenF (Ycen|θ)1−ρcenh(Ycen)

1−ρcen

)

LM(θ|y) = f(Ynon|θ)
(

S(Ycen|θ)1−υcenF (Ycen|θ)1−ρcen

)

×((G(Ynon))(H(Ynon))
(

g(Ycen)
1−υcenh(Ycen)

1−ρcen

)

,

where υcen is 0 for the group of left censored observations, ρcen is 0 for the group of right

censored observations, otherwise both take the value 1; Ycen is the vector of censored obser-

vations and Ynon is the vector of non-censored observations.
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Then, the complete likelihood can be expressed as:

LM(θ|y) = L(θ|y) × Z(Ycen, Ynon), (7.3)

where Z(Ycen, Ynon) = G(Ynon)H(Ynon) (g(Ycen)
1−υcenh(Ycen)

1−ρcen). Combining equation (7.1)

and (7.3), the DICM can be expressed as:

DICM = Eθ|y[−2 log(L(θ|y)Z(Ycen, Ynon))] + {Eθ|y[−2 log(L(θ|y)Z(Ycen, Ynon))]

+2 log(L(θ̄|y)Z(Ycen, Ynon))}.

Next, by using the properties of the logarithm and the expectation function, it leads to

DICM = Eθ|y[−2(θ|y)] + {Eθ|y[−2 log(L(θ|y))] − (−2 log(L(θ̄|y)))}

+Eθ|y[−2 log(Z(Ycen, Ynon)))] + {Eθ|y[−2 log(Z(Ycen, Ynon)))] − (−2 log(Z(Ycen, Ynon)))}.

Based on the above formula, the Deviance Information Criterion based on the partial likeli-

hood can be formulated as:

DICp = Eθ|y[−2(θ|y)] + {Eθ|y[−2 log(L(θ|y))] − (−2 log(L(θ̄|y)))}

+Eθ|y[−2 log(Z(Ycen, Ynon)))] + {Eθ|y[−2 log(Z(Ycen, Ynon)))]}

Consequently, the DICM can be further summarised as:

DICM = DICp − 2logZ(Ycen, Ynon),

where the function Z depends only on the observations Y.

224



CHAPTER 7. MODEL COMPARISON TOOL

This result shows that the full model DIC can be expressed as the partial DIC and an

additional additive term, which depends only on the observations.

7.2 Model Comparison via DICp

In order to compare two models, nested or non-nested, and decide which model fits the data,

the DICM for model 1 and model 2 are used with the following notation:

• Let DIC1
M be the complete Deviance Information Criterion for model 1.

• Let DIC2
M be the complete Deviance Information Criterion for model 2.

• Let D = DIC1
M − DIC2

M be the difference of the Deviance Information Criterion

between model 1 and 2.

According to the Deviance Information Criterion, the model with the lower value is the

preferred choice. Then, by studying the difference of the Deviance Information Criterion, D,

it can be deduced which model fits the data better. However, the difference can be written

as D = DIC1
p −DIC2

p since the Z function does only depend on the data set. Thus, models

can be compared based on the Partial Deviance Information Criterion, DICp, concluding

that the model with lower DICp fits the data better.

7.3 Simulation Study

Simulated data are used to study the variation of the DICp within datasets of similar char-

acteristics to datasets from the QC programmes. The simulated datasets will have a similar

data structure as the QC datasets, but different proportions of censored data within.
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First, the description of how the data are simulated is presented. Then, the results of the

DICp from the simulation study are shown. The behaviour of the DICM in relation to the

DICp and in relation to the proportion of censored data are also studied (see Section 7.4).

Data are simulated in two different ways with the aim of checking consistency and robustness

of the conclusions obtained. The first way of simulating data is based on the estimations ob-

tained after applying the CBM, and the second way of simulating data is based on replicated

data from the observed HBV data per sample group.

7.3.1 Simulation Study with Data generated from the CBM

For the first type of simulation study, 20 data sets are simulated, each consisting of 10,000

observations, which have similar characteristics as the HBV data studied in the previous

chapter. The observations are simulated from a log10-normal distribution with mean, β̄, and

variances, σ̄2, based on the posterior mean of the parameters obtained from the CBM applied

to the subgroup of HBV data defined previously. The 20 simulated data sets are classified

into four different groups of data (five data sets per group) according to the following data

features:

Group 1: Data sets with no censored observations.

Group 2: Data sets with the same proportions of censored observations as the HBV data set

for different viral loads (see descriptive analysis in Chapter 2).

Group 3: Data sets with twice the amount of censored data than in group 2.

Group 4: Data sets with three times the amount of censored data than in group 2.

In order to retain the proportions of observations per sample group, values are simulated

according to the empirical proportions of the observed HBV data per sample group.
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Therefore, a total of 10,000 observations is obtained, where the number of observations

per sample group is based on those proportions calculated previously. An approximate

proportion of censored observations per each sample group is obtained from the HBV data.

Then, for each of the groups of data, censoring indicator variables are calculated as follows:

Group 1: Since this group does not have any censored observations, no censored indicator

variable is simulated.

Group 2: Random variables are simulated for each sample group from a Bernoulli distri-

bution. For each sample group the probability for a censored observation is equal to the

estimated proportion of censored observations within the HBV data.

Group 3: Random variables are simulated for each sample group from a Bernoulli distri-

bution. The probability assigned to each sample group is twice the proportion of censored

observations within the HBV data.

Group 4: Random variables are simulated for each sample group from a Bernoulli distribu-

tion. The probability assigned to each sample group is three times the proportion of censored

observations within the HBV data.

To obtain the covariate matrix, Xsim, for the simulation study, the variables year, technol-

ogy group and subtype are generated from a discrete distribution. The probabilities of the

discrete distributions are based on the empirical proportions of categories per sample group.

The simulated response variable Ysim is generated from a log10-normal distribution with

mean β̄Xsim and variance σ̄2. β̄ and σ̄2 are the estimated posterior means of the parameters

obtained from the CBM applied to the HBV data.

Finally, the CBM is fitted to the simulated datasets by applying the MCMC techniques

described in previous chapter. This allows for the new parameters β and σ to be estimated

and to be used to calculate the DICp for each of the datasets.
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Results of the Simulation Study

It is of interest to study the behaviour of the Partial Deviance Information Criterion, DICp,

depending on the amount of censored observations in the data set and the variation of the

results from the same classified group. Before considering the results obtained from this

simulation study, the notation and definition of the simulated data sets Y are introduced:

• Let Y j
non ∼ N(β̄ ∗Xsim, σ̄2) be the simulated sample Y for data group 1.

• Let Y j
1cen ∼ N(β̄ ∗Xsim, σ̄2) be the simulated sample Y for data group 2.

• Let Y j
2cen ∼ N(β̄ ∗Xsim, σ̄2) be the simulated sample Y for data group 3.

• Let Y j
3cen ∼ N(β̄ ∗Xsim, σ̄2) be the simulated sample Y for data group 4.

In the above notation, j = 1, ..., 5 is the number of data sets replicated for each group.

Five replicates are taken as a sensible compromise between illustrating basic features and

computational effort.

The CBM, allowing for twelve variances depending on technology and sample group, is ap-

plied to each of the data sets and the posterior distributions of the parameters are obtained.

Then, the DICp is calculated for each data set.

Table 7.1 shows theMean[−2 log(L(θ|y))], −2 log(L(θ̄|y)),DICp and the ‘effective number of

parameters’, pD, for each of the data sets. The CBM with twelve variances has 58 parameters.

For all data sets the value of the effective number of parameters, pD, is approximately 58.
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Figure 7.1 shows the tendency of the DICp depending on the proportion of censored ob-

servations. There is a decreasing relationship that appears to be approximately linear with

increasing number of censored observations.

Table 7.1: Partial Deviance Information Criterion (DICp): Simulation study based on the
CBM.

Mean[−2 log(L(θ|y))] −2 log(L(θ̄|y)) pD DICp
Model Y 1

non 230318.2 230260.0 58.12 230376.3
Model Y 2

non 229873.2 229814.9 58.25 229931.4
Model Y 3

non 230007.1 230065.1 57.96 230123.1
Model Y 4

non 231033.9 230976.3 57.64 231091.5
Model Y 5

non 230173.5 230115.5 58.03 230231.5
Model Y 1

1cen 209555.8 209498.0 57.75 209613.5
Model Y 2

1cen 210049.1 209991.9 57.27 210106.4
Model Y 3

1cen 210134.9 210077.2 57.73 210192.7
Model Y 4

1cen 209978.6 209920.5 58.01 210036.6
Model Y 5

1cen 210129.0 210071.0 57.99 210187.0
Model Y 1

2cen 191154.2 191096.6 57.64 191211.9
Model Y 2

2cen 190647.9 190589.9 58.01 190705.9
Model Y 3

2cen 190865.7 190807.9 57.87 190923.6
Model Y 4

2cen 190615.5 190557.6 57.87 190673.4
Model Y 5

2cen 190384.9 190327.6 57.24 190442.1
Model Y 1

3cen 171244.1 171186.4 57.68 171301.8
Model Y 2

3cen 171098.1 171041.3 56.76 171154.8
Model Y 3

3cen 171378.2 171320.8 57.34 171435.5
Model Y 4

3cen 171304.4 171246.3 58.11 171362.5
Model Y 5

3cen 171495.6 171437.8 57.83 171553.4

The DICp varies slightly within replicated data for each group and decreases linearly be-

tween groups of simulated data with different proportions of censored observations. In order

to study if the same behaviour occurs when the data are simulated in a different way, new

simulated data sets are obtained based on replications of each real observation. Then, the

CBM is applied, and the DICp is calculated, and checked for consistency.
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Figure 7.1: Partial DIC for simulated data sets based on the CBM with different proportions
of censored observations; no censored observations on the data sets, same proportion of
censored observations as HBV data, twice the proportion of censored observations of HBV
data, three times the proportion of censored observations of HBV data.

7.3.2 Simulation Study using Replicated Data based on the HBV

Dataset

In this simulation study the aim is to reproduce random data of approximately 10,000 ob-

servations. The procedure is set up in a way that preserves the structure and proportions of

the original HBV data. Four different groups of data are simulated each of which differs in

the number of censored observations. For each group five data sets are replicated in order

to study variation within group.

Using the observations from the HBV programmes, data are replicated in the following

way: data from a normal distribution are simulated for each sample group, and the same

covariate values of the observations for the replicated data are used. For each sample group

s, the corresponding proportion of data from the total number of HBV data are obtained,

ps = ns/N ; here the ns is the total number of HBV observations for the sample group s

and N is the total number of HBV data among sample groups. Then, 10000 ∗ ps data are

simulated for each sample viral load group s. The way of simulating data from a normal

distribution varies as follows:
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• Group 1: |10000∗ps

ns
| data are simulated from a N(log10(ysi), 0.5) for each observation

ysi. Thus, the simulated values of the log10 sample viral load are obtained for sample

group s and participant i. Note that the variation of the log10(ysi) is 0.5, which is a

standard assumption in molecular diagnostics (see Chapter 2). All observations are

considered non-censored. The covariates associated with each simulated datum from

N(log10(ysi), 0.5) are the covariates associated with the observation ysi.

• Group 2: As in group 1, for each observation ysi, |10000∗ps

ns
| data are simulated from a

N(log10(ysi), 0.5). The associated covariates for each simulated datum are the covari-

ates associated with participant i in sample group s. If the observation ysi is censored

then the simulated data are considered censored observations in the same direction as

observed. Thus, the proportion of censored information of the data set is the same as

in the HBV data.

• Group 3: In order to obtain a higher proportion of censored information for the sim-

ulated data, twice the amount of data for those censored observations ysi is simu-

lated. Then, 2 ∗ |10000∗ps

ns
| simulated data are obtained from the normal distribution

for each censored observation ysi, and |10000∗ps

ns
| simulated data are obtained for each

non-censored observation. Then, |10000∗ps

ns
| ∗ ncs non-censored values are selected ran-

domly and removed from all the simulated data for sample s, where ncs is the total

number of censored observations for sample group s. Thus, the proportion of censored

observations is double as in the HBV data.

• Group 4: Triple of the amount of data for those censored observations ysi are simulated.

The set up is similar to Group 3, i.e. 3 ∗ |10000∗ps

ns
| simulated data are obtained from

the normal distribution for each censored observation ysi, and |10000∗ps

ns
| simulated data

are obtained for each non-censored observation. Then, 2 ∗ |10000∗ps

ns
| ∗ ncs non-censored

values are selected randomly and removed from all the simulated data for sample group

s, where ncs is the total number of censored observations for sample group s.

231



CHAPTER 7. MODEL COMPARISON TOOL

Table 7.2 shows the values of Mean[−2 log(L(θ|y))], −2 log(L(θ̄|y)), DICp and the pD for

each of the data sets. Figure 7.2 shows a linear decreasing trend on the DICp as the pro-

portion of censored observations increases. However, a slight decrease in the pD values is

observed as the proportion of censored observations increases.

Table 7.2: Partial Deviance Information Criterion (DICp): Simulation study based on HBV
replicated data.

Mean[−2 log(L(θ|y))] −2 log(L(θ̄|y)) pD DICp
Model Y 1

non 241840.9 241783.2 57.77 241898.7
Model Y 2

non 241804.5 241746.6 57.91 241862.5
Model Y 3

non 241828.3 241773.3 57.71 241886.0
Model Y 4

non 241831.0 241773.3 57.69 241888.7
Model Y 5

non 241831.0 241772.9 58.11 241889.1
Model Y 1

1cen 218083.8 218026.3 57.51 218141.3
Model Y 2

1cen 218123.5 218066.5 56.97 218180.5
Model Y 3

1cen 218077.0 218019.9 57.08 218134.0
Model Y 4

1cen 218091.4 218034.4 57.01 218148.5
Model Y 5

1cen 218053.3 217996.2 57.11 218110.4
Model Y 1

2cen 196575.7 196518.7 56.97 196632.6
Model Y 2

2cen 196702.4 196645.4 56.94 196759.3
Model Y 3

2cen 196307.4 196250.8 56.57 196364.0
Model Y 4

2cen 196349.4 196292.2 57.23 196406.6
Model Y 5

2cen 196598.0 196541.4 56.58 196654.5
Model Y 1

3cen 174568.2 174512.1 56.06 174624.2
Model Y 2

3cen 174510.4 174454.6 55.81 174566.2
Model Y 3

3cen 174488.2 174432.5 55.74 174544.0
Model Y 4

3cen 174488.5 174432.0 56.47 174545.0
Model Y 5

3cen 174374.5 174319.1 55.40 174429.9

From both simulation studies it is concluded that the DICp for the CBM decreases when

the censored information of the data to be analysed increases. The decrease of the DICp

values appears to be linear with respect to the proportion of censored information contained

in the data. Therefore, the DICp can be approximated by a linear function depending on the

proportion of censored information contained on the data. In the next section the theoretical

relation between DICM and DICp will be derived based on an approximation of the DICp

by a linear function.

232



CHAPTER 7. MODEL COMPARISON TOOL

Figure 7.2: Partial DIC for simulated data sets based on replicated observations from the HBV
programmes with different proportions of censored observations; no censored observations on
the data sets, same proportion of censored observations as HBV data, twice the proportion
of censored observations of HBV data, three times the proportion of censored observations of
HBV data.

7.4 Relation of the DICM with Respect to the DICp

In the previous section the simulation study showed that the DICp follows approximately a

negative linear relationship with respect to the proportion of censored observations. Thus,

the DICp can be approximated to a linear function a + b ∗ nc

N
where nc is the number of

censored observations within the data set and N the total number of data.

On the other hand, log(Z(Ycen, Ynon)) can be written as

log(Z(Ycen, Ynon)) = log





∏

i∈IN−nc

G(yi)H(yi)



+ log





∏

i∈Inc

g(yi)
1−υih(yi)

1−ρi





=
∑

i∈IN−nc

log (G(yi)H(yi)) +
∑

i∈Inc

log
(

g(yi)
1−υih(yi)

1−ρi

)

,

where Inc
is the group of censored observations and IN−nc

is the group of non-censored

observations.
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If (N − nc) and nc are sufficiently large then log(Z(Ycen, Ynon)) can be approximated by

log(Z(Ycen, Ynon)) ≈ (N − nc)(Eynon [log((G(y)H(y)))]) + (nc)
(

Eycen [log(g(y)1−υcenh(y)1−ρcen)]
)

≈ nc(Eycen [log(g(y)1−υcenh(y)1−ρcen)] − Eynon [log(G(y)H(y))]) +N (Eynon [log(G(y)H(y))]) .

Since the last term is constant with respect to nc, the log(Z(Ycen, Ynon)) can be expressed

as:

log(Z(Ycen, Ynon)) ≈ nc(Eycen [log(g(y)1−υcenh(y)1−ρcen)] −Eynon [log(G(y)H(y))]) + d,

where d = N (Eynon
[log(G(y)H(y))]).

Finally, the DICM can be approximated by:

DICM ≈ a− 2d+
nc

N
(b− 2N(Eycen [log(g(y)1−υcenh(y)1−ρcen)] − Eynon [log(G(y)H(y))])).

7.5 DIC from the Pilot Study

In Chapter 5, it has been assumed that the variability of the data depends on the sample

group and the technology classification. However, the results and the classical analysis of

variances performed in Chapter 5 showed that this assumption is not valid for all sample

groups. The differences in the variability of the response depending on technology type are

only significant for some sample groups.
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In order to study a reduced model in which the variability in the data is assumed to be the

same across all groups, the CBM was applied to a subgroup of HBV data in a pilot study.

Two applications of the CBM were carried out: a CBM assuming two different variances

for the observations and a CBM assuming twelve different variances for the data. To check

which of the two models fits the data better, a variant of the DIC, in the form of DICp

was proposed. In previous section, its theoretical derivation and application via a simulation

study was studied, showing that the proposed DIC can be used to test which of the two

models fits the data better.

In this section the proposed DICp is applied to the two models from the pilot study. The

results from the two models are shown in Table 7.3. Assuming twelve variances the CBM

has a better average fit to the data, Mean[−2 log(L(θ|y))], a better fitting point estimate

−2 log(L(θ̄|y)) and a lower estimated predictive error DICp, compared to the two variances

model.

Table 7.3: Partial Deviance Information Criterion (DICp): Pilot study.

Mean[−2 log(L(θ|y))] −2 log(L(θ̄|y)) pD DICp BIC
Model 2 variances 43707.35 43661.29 46.06 43753.41 44023.52
Model 12 variances 43640.33 43585.20 55.12 43695.45 44022.84

The BIC is quite similar for both models, although a bit smaller when 12 variances are

included in the model. Both information criteria suggest that the CBM assuming twelve

variances fits the data better.
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7.6 CBM Applied to HBV Data

So far the CBM has been proposed and developed as a more appropriate model to fit the

data in this application. The effectiveness and robustness of a variant of the DIC, the DICp,

as a measure of goodness of fit of the model has also been considered. The CBM assuming

twelve variances is concluded to fit the data better than the model based on two variances,

when applying it to the HBV data with a subgroup of covariates and to the simulated data.

In this section the CBM assuming twelve variances is applied to the complete HBV data set.

The results obtained from the application of the full CBM to the HBV data are presented.

If it is not specifically stated otherwise, the results are given with the remaining covariates

under baseline conditions.

Sample Group 6 log10 Copies/ml Viral Load

The estimated mean for the results of participants under baseline conditions is roughly 4

log10 copies/ml (see Table 7.4). The estimated mean viral load for samples from 2005 is sig-

nificantly lower than the means for samples from 2002 to 2004, indicating that participants

from those years tend to provide closer estimates of viral load to the target viral load of 6

log10 copies/ml than participants from 2005. Although it is not significant, the estimated

mean viral load for samples of subtype D is approximately 1.2 log10 copies/ml higher than

the estimated mean for samples of subtype A.

bDNA users are more likely to provide significantly closer estimates of viral load to the

target than CC users. Participants using an anti-contamination system tend to provide

significantly higher estimates of viral load than participants not using an anti-contamination

system. Participants performing an inhibition test in negative samples tend to return higher

estimates of viral load than participants not performing any inhibition test.
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Table 7.4: Summary statistics of the parameter estimates from the CBM for HBV sample
group 6 log10 copies/ml viral load: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance of the parameter.

In the next section a summary of the results is presented (more detailed results can be found

in Appendix D).

Sample Group 5 log10 Copies/ml Viral Load

For samples from 2002 and 2004 participants are more likely to provide significantly higher

estimates of viral load that are closer to the target than for samples from 2005 (see Table

D.1 in Appendix D).
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The performance of bDNA and HC technology users is significantly different from perfor-

mance of CC technology users. Users of bDNA and HC technologies tend to return higher

estimates, which are closer to the target viral load than CC users.

Participants using an anti-contamination system are more likely to provide higher estimates

of viral load that are closer to the target than participants not using anti-contamination

system.

Participants performing between 2,001 to 10,000 serum tests annually tend to return signif-

icantly higher estimates of viral load than participants testing less than 11 serum samples

annually.

The estimated mean for the results of research laboratories is significantly lower and further

away from the target viral load than the estimated mean for the results of hospital labora-

tories.

Participants that performed an inhibition test for negative samples are more likely to re-

port significantly higher estimates of viral load than participants who did not perform any

inhibition test.

Sample Group 4 log10 Copies/ml Viral Load

The estimated mean for the results of participants under baseline conditions is 3.5 log10

copies/ml (see Table D.2 in Appendix D). For samples from 2002 participants are more

likely to provide significantly higher estimates of viral load than for samples from 2005.

Users of bDNA technology tend to return higher estimates of viral load that are closer to

the target than CC technology users.
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Users of an anti-contamination system are more likely to report higher estimates of viral

load than participants not using an anti-contamination system.

Experience performing between 2,000 and 10,000 serum tests annually tends to improve par-

ticipants’ results. The estimated mean for the results of participants with such experience

is higher and closer to the target viral load than the estimated mean for the results of par-

ticipants performing fewer than 11 serum tests annually.

Participants performing inhibition tests only in negative samples tend to provide higher

estimates of viral load than those not performing any inhibition test.

Sample Group 3.5 log10 Copies/ml Viral Load

The estimated mean for the results of participants under baseline conditions is approximately

3 log10 copies/ml (see Table D.3 in Appendix D). For samples from 2002, participants tend

to provide significantly higher estimates of viral load than for samples from 2003.

bDNA and RTIH users are more likely to report higher estimates of viral load than CC users.

However, bDNA users tend to provide estimates of viral load further away from the target

than CC users.

Participants performing other methods of analysis, such as triplicate, are more likely to pro-

vide higher estimates of viral load that are closer to the target than participants using single

analysis method.

Participants performing an inhibition test tend to return closer estimates of viral load to the

target than participants not performing any inhibition test.
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Sample Group 3 log10 Copies/ml Viral Load

The estimated mean for the results of participants under baseline conditions is 2.6 log10

copies/ml (see Table D.4 in Appendix D). Participants in 2004 tend to provide estimates of

viral load that are significantly closer to the target than participants in 2005.

HC users are more likely to return estimates of viral load significantly further away from the

target than CC users.

Participants performing between 2,000 and 10,000 serum tests annually are more likely to

obtain estimates of viral load that are closer to the target than participants performing fewer

than 11 serum tests annually.

Research laboratories are more likely to provide significantly lower estimates of viral load

than hospital laboratories. Those estimates are further away from the target viral load.

Participants performing an inhibition test only in negative samples tend to report signifi-

cantly higher estimates of viral load and closer to the target than participants not performing

any inhibition test.

Sample Group 2.3 log10 Copies/ml Viral Load

For samples from 2004 participants tend to provide closer estimates of viral load to the target

than for samples from 2003 and 2002; the estimated mean viral load for samples from 2004

is 2.39 log10 copies/ml (Table D.6 in Appendix D).
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The closest estimated mean to the target is found for the results of CC users. RTC, RTIH

and CIH users tend to provide estimates of viral load significantly further away from the

target than CC users. The estimated means for the results of bDNA and HC users are not

significantly different from the estimated mean for the results of CC users, although partic-

ipants using bDNA are more likely to report lower estimates of viral load than participants

using CC technology.

Participants performing inhibition tests only in negative samples tend to provide higher es-

timates of viral load that are further away from the target than participants not performing

any inhibition test.

As in Chapter 5, model reduction can be carried out using the same selection procedure.

Since the aim of this chapter is to provide a better model from a statistical point of view,

it is considered unnecessary to present the results from the reduced model here, which of

course it would be more interesting from a practical point of view than from a statistical

point of view. The table with the estimated variances for the full model can be found in

Appendix D. As in the pilot study described in Section 6.3, here the residuals of the model

have been studied to check the goodness of fit of the CBM applied to HBV data. It has been

observed that the quantiles of the residuals lie between -3 and 3 indicating that the model

fits the data well.

7.6.1 Technical Report of the CBM Applied to HBV Data

The CBM is run for 100,000 iterations. To break up the autocorrelations of the estimates,

every tenth observation is recorded and the rest are discarded. Thus, a sample of 10,000

values is obtained for each parameter in order to describe the posterior distribution of the

parameter. Convergence is studied and achieved after a burn in period of 3,000 iterations.
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No correlation between the estimated parameters is found. The results for each parameter

are obtained by a summary of the sample after the burn in period, that is the last 7,000

values from the sample. The acceptance probabilities for each block of parameters (one

block of estimated parameters per sample group) is checked. Table 7.5 shows the acceptance

probability rates obtained. All the acceptance rates are over 30% indicating that the chain

is mixing well (Gamerman and Lopes, 2006).

Table 7.5: Acceptance probability rates of the parameters estimated from the CBM for HBV
sample groups.

Parameters Acceptance probability rate

Sample 2.3 Sample 3 Sample 3.5 Sample 4 Sample 5 Sample 6
~βs 32.40 40.69 39.25 39.80 42.43 44.08

~σ2
1

Commercial 57.77 35.60 37.59 37.19 30.77 57.41

~σ2
2

In-house 68.82 62.02 62.89 71.79 70.85 80.93

The primary aim of this chapter is to develop a better model than the proposed QTBM in

the previous chapter, and developed an appropriate measure of fit to discriminate between

models (nested and non-nested models), the DICp. The results of the DICp from a simula-

tion study were used to select between the two variances and twelve variances model applied

to HBV data with a reduced group of covariates (chosen as more relevant from a practical

point of view). Based on these results, the CBM was applied to the HBV data with the full

set of covariates to confirm that the model is working well in a large data setting. This model

can be used to provide participants with a full and objective feedback on their laboratory

practice when analysing samples of HBV.
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7.6.2 Summary

A further application of the CBM to the HBV with a complete set of covariates was carried

out and it was concluded that for samples from 2004, participants were more likely to re-

turn closer estimates of viral load to the target than for samples from 2005. No differences

were found between estimates of viral load for samples of different subtypes. However, for

the strongest viral load of 6 log10 copies/ml, the difference between the estimated means

was approximately 1.2 log10 copies/ml higher for samples of subtype D than for samples of

subtype A (note that the standard deviation for this estimate is 0.6 log10 copies/ml). This

result indicates that participants are more likely to provide closer estimates of viral load to

the target for samples of subtype D than for samples of subtype A.

For sample groups of viral load 6, 5 and 4 log10 copies/ml, participants using bDNA technol-

ogy tend to provide closer estimates of viral load to the targets than participants using CC

technology. However, for the lowest sample group of 2.3 log10 copies/ml participants using

bDNA technology are more likely to return estimates further away from the target viral load

than CC users.

The use of an anti-contamination system tends to improve the estimates of viral load, pro-

viding higher estimates that are closer to the target viral load for sample groups of 6, 5

and 4 log10 copies/ml, but no differences are found when the sample groups have a lower

viral load. Estimates of viral load from participants with different accreditation status are

not significantly different for any sample group. For almost all sample groups, participants

performing an inhibition test only in negative samples tend to provide closer estimates to

the target viral load than participants not performing any inhibition test.
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7.7 Conclusions

The measure of the expected predicted error, DIC, developed by Spiegelhalter et al. (2002)

fails to work well when censored data are estimated in the models, as it is the case of the

QTBM. On the other hand, a better proposed model (the CBM) for quantitative data was

developed and described in Chapter 6 which did not use estimates of censored data to pro-

vide parameters estimates. However, the CBM makes used of the partial likelihood instead

of full likelihood and therefore the existing tool for model comparison, DIC, could not be

applied directly to the CBM. In order to be able to perform a model comparison for the

developed CBM, a variant of the Bayesian comparison tool DIC was developed in this thesis

and results of its applications to real and simulated data were provided.

The partial Deviance Information Criterion, DICp provides a model comparison tool that is

accurate and appropriate to discriminate between models. The simulation study carried out

shows the behaviour of the DICp and its robustness. The DICp measure obtained from the

CBM applied to the HBV data with a subgroup of covariates has made possible to discrimi-

nate between a model with two variances and a model with twelve variances, leading to the

conclusion that the CBM with twelve variances fits the HBV data better.

It is concluded that the application of the CBM to the HBV data provides more objective

and accurate results, which are going to provide better feedback to participants based on

their laboratory practices. This is the first time that a derivation of the DIC based on

partial likelihood is developed, proving a robust tool for model comparison, which allows to

discriminate between nested and non-nested models.

There are however, few concerns with the newly proposed selection criterion. In particular,

the assumption that the censoring mechanism is ignorable, which may not always be true.
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On the other hand, in common with the previous chapters independence between responses

was also assumed. However, some participants return several results per year or repeat the

EQA programme leading to non-independent or repeated samples. Both types of depen-

dences may be addressed using methods that count for repeated measures.

The areas of concerns of the data analysis and statistical methodology presented in Chapters

3 to 7 and their evidence of originality will be discussed in Chapter 8. Other areas of research

where these models can be applied will be proposed, and further research that needs to be

carried out in this field of work will also be suggested.
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Discussion and Further Work

An important way of monitoring laboratory quality by an independent body is to considerer

the entire laboratory practice and procedure as part of the EQA programme. It allows a

laboratory to benchmark its performance against other laboratories and provides feedback

to identify and investigate potential areas of concern. However, there are no uniformly ac-

cepted criteria for molecular diagnostic kit EQAs for assessing laboratory performance. The

data collected by QCMD is one of the world’s largest and oldest molecular diagnostic EQA

provider, nevertheless, there is no record of previous research undertaken to interrogate this

reservoir of data, in order to study the risk factors associated with laboratories’ performance,

to provide better feedback to participants about their laboratory practice and to improve

the design of EQA programmes.

In this thesis a measure for scoring participants’ quantitative performance, which is an im-

provement on previous measures, has been proposed. Risk factors associated with qualitative

and quantitative responses over time and EQA programmes with different pathogens have

also been studied. In addition, a statistical model has been developed that can be applied

to other research areas and can take into account missing and censored information.
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A novel approach has been chosen by investigating the data from a non-classical perspec-

tive. Bayesian techniques are widely used in other areas of research (Gelman et al., 2004).

However, Bayesian models for qualitative data within the molecular diagnostic field have not

been investigated previously. Although in other research fields Bayesian methods have been

used to deal with missing data (Clogg et al., 1991), these have not previously been applied

to molecular diagnostic performance and missing data as in the QLBM model. Under the

classical approach censored observations are currently discarded when scoring participants.

In this study, a model that uses censored observations and treats the data in a more natu-

ral way is developed for the first time using a Bayesian approach. In particular, the CBM

presented in Chapter 6 and the model comparison tool for quantitative data (presented in

Chapter 7) is a clear theoretical advancement in the area of Bayesian statistics, which have

not been investigated previously in any other area of research.

The methods proposed performed very well when tested on the large reservoir of QCMD data.

Despite that, the model proposed are based on a series of assumptions, which sometimes

are not met by the data under consideration. This represents a limitation that need to

be taken into account when reporting the results. Here some of the limitations of the

proposed methodology are presented and further work to be done for improving this research

is outlined.

8.1 Proposed Scoring System for Quantitative

Participants’ Performance

In order to provide appropriate and independent performance indicators to measure the

quality of laboratories’ performance, a Bayesian approach to estimate the assigned value

was suggested in this thesis. This Bayesian estimate is the target value suggested by the

EQA provider (from internal investigations and previous panels) amended by estimates from
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high quality reference laboratories. In addition, this estimate may be calculated taking into

account values outside the limits of detection for the assay used from reference laboratories.

However, the estimate depends on the chosen reference laboratories and their performance.

Therefore, special care needs to be taken when choosing the reference laboratories. It should

be noted that good laboratories score low marks for the proposed score, but high marks for

many existing measures, which may be due to the way of choosing reference laboratories.

Instead of using the estimates from reference laboratories, an alternative way to estimate

the Bayesian value is to amend the target value suggested by the EQA provider by estimates

from participants in previous pathogen EQA programmes.

When calculating the Bayesian mean estimate, it has been assumed that the observations

from the reference laboratories follow a normal distribution. If this is not the case Bayesian

techniques can still be used to obtain the mean. However, the proposed Bayesian mean

should be modified and adjusted for each EQA programme.

Although the Bayesian mean estimate takes into account the censored observations from the

reference laboratories, the current scoring system cannot provide a score for those partici-

pants reporting values outside the limit of detection. Thus, an adjusted scoring indicator

should be developed in order to provide participants containing censored observations with

a score of their performance.

A proposed area for further work to be done is to obtain, via the use of Bayesian techniques,

an estimate of the censored observations from participants to be imputed and then scored.

The estimated value to be imputed may be calculated based on the laboratory practice and

the censored observation reported by the participant.
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8.2 Modelling Qualitative Performance of Participants

in QCMD Quality Control Programmes over Time

Given that classical methods failed to model the data adequately, a Bayesian model, the

QLBM, is proposed in this thesis in order to analyse and model qualitative performance of

participants in QCMD programmes over time. The QLBM was developed and coded using

the statistical software WinBUGs. The QLBM is a GLM from a Bayesian perspective that

takes into account missing information. The model was applied to data of two different

pathogen programmes over time and goodness of fit for the model was checked using pos-

terior predictive techniques for model checking, while model robustness was studied via a

sensitivity analysis. It was concluded that the QLBM fits appropriately the qualitative data

from EQA programmes. Furthermore, since Bayesian techniques were used to develop the

model, there is no need to take care of the asymptotic theory and the assumptions underlying

classical GLM theory such as sample size or multiple testing.

The prior specification of the QLBM was built using a hierarchical structure and non-

informative priors. The hierarchical structure of the model allows to include enough pa-

rameters in the model, avoiding problems of overfitting because of the use of probability

distributions to structure the dependency of some parameters. Since there is no prior infor-

mation available about the primary parameters, the use of non-informative priors influence

the results with ‘objective’ information. Therefore, the large number of parameters fitted

and subjective concerns are not drawbacks from the QLBM.

Although, there is not a concern about sample size as in classical analysis, the reliability of

the QLBM increases with the increase of the sample size. In this case, the prior information

will not have a high impact on the results. However, if the sample size is small the prior

distributions specified for the QLBM has a high influence on the estimates. The prior infor-

mation about the parameters is updated via the likelihood. If the sample size is small then
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the updated process is carried out adding little information. Then, the posterior information

of the parameter is highly influenced by the prior information. Therefore, in applications

with a small number of observations, special care needs to be taken when choosing priors

(Gelman et al., 2004).

The priors specified in this thesis for the missing covariates are specific for categorical covari-

ates. If instead continuous variables with missing values are considered, the prior distribu-

tions for those need to be changed to take into account the continuous nature of the covariate.

An important area of concern in the QLBM is that it uses the independence of responses as

a working assumption. This is done to keep the complexity of the model structure and com-

putational burden within acceptable limits. However, this assumption might not be fulfilled

for some responses. Although the model validation shows that replicated responses from

the QLBM were in concordance with the observed data (the model fitted appropriately),

some participants returned several responses for the same sample in one year. In this case,

the responses may be correlated. One possibility to address possible correlations between

responses is to include a covariance matrix in the model accounting for these correlations.

On the other hand, it is possible that participants repeat the EQA programme, so repeated

responses from participants over time for the same sample can be otained (assuming that the

sample is the same over time). In this case, the model to analyse the data should incorporate

techniques that can deal with repeated measures. One approach in this direction is to use

random effects for each participant with a specific correlation distribution or to develop a

GEE model for the responses from a Bayesian perspective (Dugard et al., 2010; Hand and

Crowder, 1996; Twisk, 2003).
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The model developed in this thesis were tested on EQA programmes from 2002 to 2005. In

further analysis, it would be of interest to perform an external validation of the model using

cross-validation methods, where new data obtained on EQA programmes from 2006 to 2010

are compared with the estimates from the QLBM.

From another perspective, it would also be of interest to compare the different countries

where the samples were analysed by mapping the results of participants (Banerjee et al.,

2004; Waller and Gotway, 2004). Thus, performance depending on the country and its lab-

oratory practice in relation to the level of development of the country and its resources can

be studied.

Alternatively, the model can include a covariate depending on whether the participant has

previous experience with QCMD programmes or a variable quantifying experience itself.

This may answer questions whether taking part in a EQA really improves performance.

Finally, the proposed QLBM model can be applied in other areas of research such as medicine.

An illustrative example in this sense is the application of QLBM in oncology to study risk

factors associated with positive sentinel lymph node. A sentinel lymph node is found to

be positive after surgery is taken place. If previous to surgery it is known which patients

with lymph nodes are more likely to have a positive sentinel, doctors could avoid surgery

on certain types of patients saving cost and time for health providers; this may save the

patient from having an unnecessary surgery. Although research approaching this topic from

a classical perspective was carried out in the past, information about patients containing

missing data has had to be discarded (Katz, et al., 2008; van la Parra et al., 2009; Tyler and

Balch, 2005). This is only one example of research area where, by applying the proposed

QLBM, complete datasets can be analysed and more appropriate conclusions can be obtained

from a Bayesian perspective.
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8.3 Modelling Quantitative Performance of

Participants in QCMD Quality Control

Programmes over Time

Given that the classical model failed to model the data appropriately, a Bayesian method

has been proposed to analyse and model the quantitative performance of participants in

QCMD Quality Control programmes over time. As for the qualitative model, the QTBM is

not a standard model that can be found implemented in any statistical software. Although

WinBUGs is a Bayesian software which uses implemented MCMC to obtain estimates for

basic Bayesian models, the user has to code up non-standard models such as the QTBM. A

considerable advantage of the QTBM is that it takes into account the missing information

and censored observations.

In order to check the robustness of the model when applied to different datasets, the pro-

posed QTBM was applied to data of two different pathogen programmes over time. Once the

results from its application were obtained, the goodness of fit of the model was checked by

using posterior predictive techniques for model checking, while the robustness of the model

was studied by using a range of different priors via a sensitivity analysis. Based on these

results, it was concluded that the QTBM fits appropriately the quantitative data from EQA

programmes. Since Bayesian techniques were used, there was no need to take into account

extra considerations about issues that may be problematic when applied classical theory,

such as discarding data due to missing information.

There are some drawbacks of the approach taken to model quantitative data. This was the

case with the QLBM in Chapter 3, where independence of responses was assumed. However,

a model validation was carried out and it was concluded that the QTBM fitted the data

appropriately. Nevertheless, this might be improved by incorporating the dependence struc-
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ture which is present within the data. One possibility is to include a correlation matrix into

the model, which might reflect dependence of responses for those participants who provided

more than one result for a sample within the same year. On the other hand, since some of

the samples are repeated over time, another possibility is to extend the model by using tech-

niques from longitudinal data models to account for the correlation structure arising from

those participants who repeat a programme over time (Hand and Crowder, 1996; Gelman

and Hill, 2007).

A classical approach to analyse censored data is the Tobit regression model (Tobin, 1958).

However, this model still cannot deal with missing covariates and has restriction about the

number of parameter estimates because it is based on asymptotic theory. This model was

developed from a Bayesian perspective and implemented in statistical software (Goodrich

and Lu, 2007), but the Bayesian Tobit model does not take into account missing covariates.

Therefore, it would be of interest to develop the Tobit model from the Bayesian perspective

in such a way that it can deal with missing covariates, and to compare the results of that

model with those of the QTBM. Furthermore, new research to introduce a model that takes

into account the country where the sample was analysed would be of high interest. This will

determine which country has better performance.

Finally, the QTBM can also be applied to other areas of research such as the estimation

of concentrations of compounds in biological samples. Such an example is the cockroach

allergen concentration in the homes of asthma sufferers. In this application the analysis

of data from a single plate is undertaken by a serial dilution assay. This can result in the

concentration being recorded as ‘below detection limit’. Standard computer programmes for

analysing these data give no estimate at all. This analysis was approached with a Bayesian

model developed by Gelman et al. (2004). It is expected the results to be improved by using

the QTBM.
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8.4 Improved Bayesian Model for Quantitative

Responses and Model Comparison Tool

The Bayesian model for quantitative responses provided in Chapter 6 improves the way of

treating the censored data in comparison with the methodology presented in Chapter 5.

The new methodology is based on describing the likelihood as a function of the observed and

censored exact values without having to obtain an estimate for the censored observation.

Thus, the complete likelihood can incorporate the censoring mechanism of the data, which

may lead to substantial improvements if the censoring mechanism is known. A further ad-

vantage is the considerable reduction in the number of nuisance parameters in the CBM in

comparison with the QTBM. This makes the CBM less complex for subsequent analysis and

interpretation.

Under the working assumption of ignorable censoring mechanism, the CBM model estimates

and its application are simplified by the use of a partial likelihood. For this particular sit-

uation, no previous research was carried out and published about model comparison tools

that can be used to discriminate between nested or non nested models. Therefore, a variant

of the existing model comparisons tool Deviance Information Criterion (DIC), the partial

DIC (DICp) was proposed in this thesis. The behaviour of this proposed measure for model

comparison via a simulation study and general conclusions was also investigated by applying

the DICp to the quantitative data and help decide between two models.

However, there are some areas of concern: the CBM assumes independence for the responses

which may not be a reasonable assumption when participants provided repeated measures.

The working assumption of ignorable censoring mechanism may be inappropriate in some

cases, and the variant of the DIC does not take into account the amount of nuisance param-

eters due to missing covariates.
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Incorporating a correlation matrix structure to the CBM would take into account the de-

pendency of responses. Also, approaching the analysis via other techniques for repeated

measurements can be studied from a Bayesian perspective, as explained in previous sections.

The working assumption, which ignores the censoring mechanism can be relaxed by study-

ing the censoring mechanism and proposing a function to be incorporated in the complete

likelihood.

The partial DIC proposed in Chapter 7 can be adjusted to obtain a better method for model

comparison when the covariates have missing information. An adjusted DIC was studied by

Celeux et al. (2006), and the approach presented there can be taken into account to develop

an adjusted DICp.

The CBM can be applied to other areas of research. An example may be found in industrial

applications, where experiments to assess the failure times of springs at cycles of repeated

loading under a given stress, in units of 103 cycles of loading, are undertaken and resulted

data need to be analysed. When, by the end of the experiment, the recorded value is a

lower bound for the number of cycles to failure (Cox and Oakes, 1984), then the failure time

may be assumed to be log10 normally distributed with censored observations. Therefore, the

CBM could very well be applied to find out the association of the stress with the failure

time.
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8.5 General Remarks

It should be mentioned that some of the conclusions about participants’ performance re-

ported in Chapters 5 and 6 are obtained with respect to a target viral load estimate provided

by QCMD, assuming that this target value is correct. However, if this assumption does not

hold true then reported conclusions may be misleading. This situation may be improved

if conclusions are obtained with respect to the Bayesian estimated target (as described in

Chapter 3).

For the quantitative analysis, another fruitful approach would be to use these models to in-

vestigate a measure of performance based on the difference of participants’ responses from a

‘true’ value, instead of participants’ estimates of viral loads. In this situation the conclusions

obtained from the model would directly reflect the quality of their performance. However,

this would depend on the correctness of the ‘true’ value used to measure these differences.

The models proposed for quantitative data are not only applicable to data including one

sided censored responses, but they can be easily modified to allow interval censored obser-

vations.

Note that extending the models in a way which include two or more pathogens simultaneously

is in theory possible, but in practice may not provide a great advantage. Let us consider for

example two different approaches to extend the model to two pathogens. A first approach

would be including an indicator variable to distinguish between pathogens. This is only

an appropriate choice if the remaining covariates included in the model behave the same

or similar across pathogens. However, in the analysis it is found that, for example, the

association of the variable technology with the responses behave differently across pathogens.
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The second approach is to solve the problem presented in the first approach by including

additional parameters that take into account the differences in the association of covariates

depending on the pathogen analysed. However, as a consequence of the increasing number

of parameters, the model complexity and computational cost would increase without gaining

further insight into the structure of the data.

A test statistic T has been used in Chapters 4 and 5 for checking models consistency. How-

ever, since there is no unique function T to be generally applied to all problems, a function

was defined in a way to provide a sensible description of the particular type of data. The test

statistic based on this particular choice of function shows that the model provides a good

fit to the data. However, there might be other sensible choices of functions which could be

used, and it would be of interest to check if they lead to similar conclusions.

The models suggested in this thesis were applied to the data to answer a particular set of

questions. However, the models are not limited to just answer the research questions ad-

dressed in this thesis. For example, from the point of view of a laboratory it may be of

interest to check how good participants’ performance are using a certain technology when

analysing samples with different viral loads. In this case, the laboratories’ results from a

panel should be standardised (for having the same scale of values across samples) and intro-

duced in the model as responses using as a covariate an indicator variable for the sample.

It should be mentioned at this point that the conclusions obtained from the model application

for a particular pathogen can not be generalised to other pathogens. Furthermore, the

laboratory practices have a different effect on the performance depending on the pathogen to

be analysed. Although the models suggested in this thesis were only applied to performance

of viral samples, they can also be used to analyse the performance of samples of other

pathogens or biomarkers such as KRAS.
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The conclusions from applying models to QCMD data in this thesis can be considered to

reflect well the performance of participants in the geographical area of Europe, as QCMD

participants are placed mainly around western Europe and the sample size of the data anal-

ysed are large. However, as participants are not randomly selected, the conclusions from the

model application cannot be extrapolated for other EQA participants or molecular diagnos-

tic users. Nevertheless, the models proposed in this thesis can be applied to other datasets

from EQA providers around the world.

Going back to the motivating scenario, which it was introduced in this thesis (see intro-

duction in Chapter 1), it can be concluded that the quality of the information used by the

doctor may depend on the practice within the laboratory which analysed the sample. Thus,

a doctor who sends a patient’s sample for being analysed with respect to a specific pathogen

should be aware of the laboratory practice. Furthermore, the doctor who sends samples to

be analysed in order to monitor a treatment should be informed about changes on laboratory

practices since this may modified the result provided.

Finally, the research undertaken in this thesis provides a series of statistical methods that

can be implemented by EQA providers in order to improve the analysis of the EQA data

and provide better recommendations. As a consequence, EQA programmes will gain more

participants due to the improvement of the feedbacks received by EQA providers. This will

lead to an increase of quality of the laboratories’ advice to clinicians, which in turn will lead

to better patient diagnoses and care.
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Appendix A

Probability Distributions

Here we present the standard notation and probability density functions, means and stan-
dard deviations for the probability distributions used in this thesis.

• Normal
θ ∼ N(µ, σ2)

f(θ) =
1√
2πσ

exp
(

− 1

2σ2
(θ − µ)2

)

.

The E(θ) = µ and V ar(θ) = σ2

• Gamma
θ ∼ Gamma(α, β)

where the shape parameter α > 0 and the inverse scale β > 0 for θ > 0.

f(θ) =
βα

Γ(α)
θ(α−1) exp−βθ .

The E(θ) = α
β

and the V ar(θ) = α
β2 .

• Inverse Gamma
θ ∼ InvGamma(α, β)

where the shape parameter is α > 0 and the scale parameter is β > 0 for θ > 0.

f(θ) =
βα

Γ(α)
θ−(α+1) exp−β/θ .

The E(θ) = β
α−1

for α > 1 and the V ar(θ) = β2

(α−1)2(α−2)
for α > 2.
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• Beta
θ ∼ Beta(α, β)

where α > 0 and β > 0 are ‘prior sample size’ and θ ∈ [0, 1].

f(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1 − θ)β−1.

The E(θ) = α
α+β

and V ar(θ) = αβ
(α+β)2(α+β+1)

.

• Dirichlet
θ ∼ Dirichlet(α1, .., αk)

where the ‘prior sample sizes’ are αj > 0;
∑k
j=1 αj ≡ α0.

f(θ) =
Γ(α1 + ...+ αk)

Γ(α1)...Γ(αk)
θα1
1 ...(θk)

αk

where θ1, .., θk ≥ 0;
∑k
j=1 θj = 1. The E(θj) = αj

α0
and V ar(θ) = αj(α0−αj)

α2
0(α0+1)

.

• Bernoulli
θ ∼ Ber(p)

where p is the probability of success, p ∈ [0, 1] and θ = 0, 1.

f(θ) = pθ(1 − p)1−θ.

The E(θ) = p and V ar(θ) = p(1 − p).

• Categorical
θ ∼ Cat(p[])

where θ = 1, .., dim(p);
∑dim(p)
i=1 p[i] = 1 and f(θ) = p[θ].
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Tables of Results from the QLBM
Applied to EV and HBV Data

B.1 Results from the Full QLBM Applied to EV Data

Sample Group Dilution Series 1 × 10−4

Table B.1: Summary statistics of the parameter estimates from the full QLBM for EV sample
group dilution series 1×10−4: estimated mean, standard deviation (SD), confidence interval,
tendency describing the sign of the estimated mean and significance at two-sided 5% of the
parameter.
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Sample Group Dilution Series 1 × 10−5

Table B.2: Summary statistics of the parameter estimates from the full QLBM for EV sample
group dilution series 1×10−5: estimated mean, standard deviation (SD), confidence interval,
tendency describing the sign of the estimated mean and significance at two-sided 5% of the
parameter.
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Sample Group Dilution Series 1 × 10−6

Table B.3: Summary statistics of the parameter estimates from the full QLBM for EV sample
group dilution series 1×10−6: estimated mean, standard deviation (SD), confidence interval,
tendency describing the sign of the estimated mean and significance at two-sided 5% of the
parameter.
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Sample Group Dilution Series 1 × 10−7

Table B.4: Summary statistics of the parameter estimates from the full QLBM for EV sample
group dilution series 1×10−7: estimated mean, standard deviation (SD), confidence interval,
tendency describing the sign of the estimated mean and significance at two-sided 5% of the
parameter.
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Sample Group Dilution Series 1 × 10−8

Table B.5: Summary statistics of the parameter estimates from the full QLBM for EV sample
group dilution series 1×10−8: estimated mean, standard deviation (SD), confidence interval,
tendency describing the sign of the estimated mean and significance at two-sided 5% of the
parameter.
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Sample Group Negative

Table B.6: Summary statistics of the parameter estimates from the full QLBM for EV neg-
ative sample group: estimated mean, standard deviation (SD), confidence interval, tendency
describing the sign of the estimated mean and significance at two-sided 5% of the parameter.
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Sample Group Non-EV

Table B.7: Summary statistics of the parameter estimates from the full QLBM for Non-
EV sample group: estimated mean, standard deviation (SD), confidence interval, tendency
describing the sign of the estimated mean and significance at two-sided 5% of the parameter.
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B.2 Results from the Reduced QLBM Applied to EV

Data

Sample Group Dilution Series 1 × 10−3

Table B.8: Summary statistics of the parameter estimates from the reduced QLBM for EV
sample group dilution series 1× 10−3: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.

Sample Group Dilution Series 1 × 10−4

Table B.9: Summary statistics of the parameter estimates from the reduced QLBM for EV
sample group dilution series 1× 10−4: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.
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Sample Group Dilution Series 1 × 10−5

Table B.10: Summary statistics of the parameter estimates from the reduced QLBM for EV
sample group dilution series 1× 10−5: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.
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Sample Group Dilution Series 1 × 10−6

Table B.11: Summary statistics of the parameter estimates from the reduced QLBM for EV
sample group dilution series 1× 10−6: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.
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Sample Group Dilution Series 1 × 10−7

Table B.12: Summary statistics of the parameter estimates from the reduced QLBM for EV
sample group dilution series 1× 10−7: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.
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Sample Group Dilution Series 1 × 10−8

Table B.13: Summary statistics of the parameter estimates from the reduced QLBM for EV
sample group dilution series 1× 10−8: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.

Negative Sample Group

Table B.14: Summary statistics of the parameter estimates from the reduced QLBM for
EV Negative sample group: estimated mean, standard deviation (SD), confidence interval,
tendency describing the sign of the estimated mean and significance at two-sided 5% of the
parameter.
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Non-EV Sample Group

Table B.15: Summary statistics of the parameter estimates from the reduced QLBM for Non-
EV sample group: estimated mean, standard deviation (SD), confidence interval, tendency
describing the sign of the estimated mean and significance at two-sided 5% of the parameter.
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B.3 EV Estimated Probabilities

Figure B.1: EV estimated probabilities from the full and reduced QLBM.
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B.4 Results from the Full QLBM Applied to HBV

Data

In this section is presented a summary of the results obtained from the full QLBM applied
to HBV data. Table B.16 summaries the mean and standard deviation from the posterior
distribution of the parameter estimates per sample group and covariate level. In next section
is shown the complete tables of results obtained from the reduced QLBM model.

Table B.16: Estimated mean and standard deviation of the parameter estimates from the full
QLBM applied to the HBV data.

275



APPENDIX B. RESULTS FROM THE QLBM

B.5 Results from the Reduced QLBM Applied to HBV

Data

Sample Group 6 log10 Copies/ml Viral Load

Table B.17: Summary statistics of the parameter estimates from the reduced QLBM for
HBV sample group 6 Log10 copies/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.

Sample Group 5 log10 Copies/ml Viral Load

Table B.18: Summary statistics of the parameter estimates from the reduced QLBM for
HBV sample group 5 Log10 copies/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.
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Sample Group 4 log10 Copies/ml Viral Load

Table B.19: Summary statistics of the parameter estimates from the reduced QLBM for
HBV sample group 4 Log10 copies/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.

Sample Group 3.5 log10 Copies/ml Viral Load

Table B.20: Summary statistics of the parameter estimates from the reduced QLBM for
HBV sample group 3.5 Log10 copies/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.
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Sample Group 3 log10 Copies/ml Viral Load

Table B.21: Summary statistics of the parameter estimates from the reduced QLBM for
HBV sample group 3 Log10 copies/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.

Sample Group 2.3 log10 Copies/ml Viral Load

Table B.22: Summary statistics of the parameter estimates from the reduced QLBM for
HBV sample group 2.3 Log10 copies/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.
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Negative Sample Group

Table B.23: Summary statistics of the parameter estimates from the reduced QLBM for
HBV Negative sample group: estimated mean, standard deviation (SD), confidence interval,
tendency describing the sign of the estimated mean and significance at two-sided 5% of the
parameter.
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B.6 HBV Estimated Probabilities

Figure B.2: HBV estimated probabilities from the full and reduced QLBM.
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Appendix C

Tables of Results from the QTBM
Applied to HBV and HCV Data

C.1 Results from the Full QTBM Applied to HBV

Data

Sample Group 6 log10 Copies/ml Viral Load

Table C.1: Summary statistics of the parameter estimates from the full QTBM for HBV sam-
ple group 6 log10 copies/ml viral load: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.
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Sample Group 5 log10 Copies/ml Viral Load

Table C.2: Summary statistics of the parameter estimates from the full QTBM for HBV sam-
ple group 5 log10 copies/ml viral load: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.

282



APPENDIX C. RESULTS FROM THE QTBM

Sample Group 4 log10 Copies/ml Viral Load

Table C.3: Summary statistics of the parameter estimates from the full QTBM for HBV sam-
ple group 4 log10 copies/ml viral load: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.
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Sample Group 3.5 log10 Copies/ml Viral Load

Table C.4: Summary statistics of the parameter estimates from the full QTBM for HBV sam-
ple group 3.5 log10 copies/ml viral load: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided 5%
of the parameter.
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Sample Group 3 log10 Copies/ml Viral Load

Table C.5: Summary statistics of the parameter estimates from the full QTBM for HBV sam-
ple group 3 log10 copies/ml viral load: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.
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Sample Group 2.3 log10 Copies/ml Viral Load

Table C.6: Summary statistics of the parameter estimates from the full QTBM for HBV sam-
ple group 2.3 log10 copies/ml viral load: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided 5%
of the parameter.
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C.2 Results from the Reduced QTBM Applied to HBV

Data

Sample Group 6 log10 Copies/ml Viral Load

Table C.7: Summary statistics of the parameter estimates from the reduced QTBM for HBV
sample group 6 log10 copies/ml viral load: estimated mean, standard deviation (SD), confi-
dence interval, tendency describing the sign of the estimated mean and significance at two-
sided 5% of the parameter.
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Sample Group 5 log10 Copies/ml Viral Load

Table C.8: Summary statistics of the parameter estimates from the reduced QTBM for HBV
sample group 5 log10 copies/ml viral load: estimated mean, standard deviation (SD), confi-
dence interval, tendency describing the sign of the estimated mean and significance at two-
sided 5% of the parameter.
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Sample Group 4 log10 Copies/ml Viral Load

Table C.9: Summary statistics of the parameter estimates from the reduced QTBM for HBV
sample group 4 log10 copies/ml viral load: estimated mean, standard deviation (SD), confi-
dence interval, tendency describing the sign of the estimated mean and significance at two-
sided 5% of the parameter.
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Sample Group 3.5 log10 Copies/ml Viral Load

Table C.10: Summary statistics of the parameter estimates from the reduced QTBM for
HBV sample group 3.5 log10 copies/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.
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Sample Group 3 log10 Copies/ml Viral Load

Table C.11: Summary statistics of the parameter estimates from the reduced QTBM for
HBV sample group 3 log10 copies/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.
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Sample Group 2.3 log10 Copies/ml Viral Load

Table C.12: Summary statistics of the parameter estimates from the reduced QTBM for
HBV sample group 2.3 log10 copies/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.
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C.3 HBV Estimated Means

Figure C.1: HBV estimated means of sample viral load from the full and reduced QTBM.
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C.4 Results from the Full QTBM Applied to HCV

Data

In this section is presented a summary of the results obtained from the full QTBM applied
to HCV data. Table C.13 summaries the mean and standard deviation from the posterior
distribution of the parameter estimates per sample group and covariate level.

Table C.13: Estimated mean and standard deviation of the parameter estimates from the full
QTBM applied to the HCV data.
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C.5 Results from the Reduced QTBM Applied to HCV

Data

Sample Group 5.9 log10 IU/ml Viral Load

Table C.14: Summary statistics of the parameter estimates from the reduced QTBM for
HCV sample group 5.9 log10 IU/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.
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Sample Group 4.9 log10 IU/ml Viral Load

Table C.15: Summary statistics of the parameter estimates from the reduced QTBM for
HCV sample group 4.9 log10 IU/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.

Sample Group 3.9 log10 IU/ml Viral Load

Table C.16: Summary statistics of the parameter estimates from the reduced QTBM for
HCV sample group 3.9 log10 IU/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.
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Sample Group 3.5 log10 IU/ml Viral Load

Table C.17: Summary statistics of the parameter estimates from the reduced QTBM for
HCV sample group 3.5 log10 IU/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.
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Sample Group 3.2 log10 IU/ml Viral Load

Table C.18: Summary statistics of the parameter estimates from the reduced QTBM for
HCV sample group 3.2 log10 IU/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.
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Sample Group 2.2 log10 IU/ml Viral Load

Table C.19: Summary statistics of the parameter estimates from the reduced QTBM for
HCV sample group 2.2 log10 IU/ml viral load: estimated mean, standard deviation (SD),
confidence interval, tendency describing the sign of the estimated mean and significance at
two-sided 5% of the parameter.
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C.6 HCV Estimated Means

Figure C.2: HCV estimated means of sample viral load from the full and reduced QTBM.
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Tables of Results from the CBM
Applied to HBV Data

Sample Group 5 log10 Copies/ml Viral Load

Table D.1: Summary statistics of the parameter estimates from the CBM for HBV sample
group 5 log10 copies/ml viral load: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.
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Sample Group 4 log10 Copies/ml Viral Load

Table D.2: Summary statistics of the parameter estimates from the CBM for HBV sample
group 4 log10 copies/ml viral load: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.
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Sample Group 3.5 log10 Copies/ml Viral Load

Table D.3: Summary statistics of the parameter estimates from the CBM for HBV sample
group 3.5 log10 copies/ml viral load: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.
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Sample Group 3 log10 Copies/ml Viral Load

Table D.4: Summary statistics of the parameter estimates from the CBM for HBV sample
group 3 log10 copies/ml viral load: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.
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Sample Group 2.3 log10 Copies/ml Viral Load

Table D.5: Summary statistics of the parameter estimates from the CBM for HBV sample
group 2.3 log10 copies/ml viral load: estimated mean, standard deviation (SD), confidence
interval, tendency describing the sign of the estimated mean and significance at two-sided
5% of the parameter.
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Estimates of Variances

Table D.6: Summary statistics of the variance estimates from the CBM for HBV sample
groups classified by technology type: estimated mean, standard deviation (SD), confidence
interval.
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Appendix E

Sensitivity Analysis: Classical Tests

We used classical statistical tests to compare the means of the posterior distributions of the
estimates in order to prove formally that there is no significant difference between the models
for a specific sample group chosen.

E.1 Application to the QLBM

E.1.1 Application to the EV Data Analysis

The ROC curves shows an analysis of the specificity and sensitivity from each of the models
proposed for studying the robustness of the QLBM model. Figure E.1 shows the curves for
each model. Almost no differences were observed between results obtained from the different
models. Furthermore, the differences for the Area Under the Curve (AUC) was tested and
Table E.1 shows the results obtained. The AUC is a global measure for comparison between
models. It is the probability of a correct classification for a couple of responses of correct and
incorrect result. It shows significant difference from 0.5 indicating that the model are better
for discriminating between correct and incorrect results than random selection, indicating
that all of them are useful at predicting a correct result.

Table E.1: AUC for the EV data analysis.

Confidence Interval
Model AUC SD 2.5% 97.5% p-value
Full QTBM 0.697 0.032 0.633 0.760 0.000
Model 1 0.693 0.033 0.629 0.757 0.000
Model 2 0.695 0.032 0.631 0.759 0.000
Model 3 0.695 0.033 0.631 0.759 0.000
Reduced QTBM 0.684 0.033 0.619 0.748 0.000
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Figure E.1: ROC curve for the EV data analysis from the proposed models.

E.1.2 Application to the HBV Data Analysis

As in previous subsection we applied classical tests for differences between the results of
the several models proposed in the sensitivity analysis. Figure E.2 and Table E.2 show the
curves and the areas under the curves, respectively, from the applied models to the HBV
data. Similar conclusions to the previous subsection are obtained.

Table E.2: AUC test for the HBV data analysis.

Confidence Interval
Model AUC SD 2.5% 97.5% p-value
Full QTBM 0.982 0.017 0.950 1.00 0.000
Model 1 0.981 0.016 0.949 1.00 0.000
Model 2 0.981 0.016 0.949 1.00 0.000
Model 3 0.981 0.016 0.949 1.00 0.000
Reduced QTBM 0.924 0.033 0.859 0.988 0.000
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Figure E.2: ROC curve for the HBV data analysis from the proposed models.

E.2 Application to the QTBM

To test the differences between the mean estimated from the QTBM and the rest of models
proposed we performed classical paired tests for the mean of the posterior distributions for
the estimates of viral loads. This test is a general summary for comparing the posterior
distributions obtained from the different models.

E.2.1 Application to the HBV Data Analysis

Table E.3 shows the differences on the posterior means, the confidence intervals and the
p-values. No significant differences were found between the applied QTBM and the other
models proposed in the sensitivity analysis.

E.2.2 Application to the HCV Data Analysis

Table E.4 shows the differences on the posterior means, the confidence intervals and the p-
values. It is shown not different between the applied QTBM and the rest of models proposed
in the sensitivity analysis.
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Table E.3: Paired tests for differences of means from the HBV analysis.

Confidence Interval
Model Differences SD 2.5% 97.5% p-value
Full QTBM and Model 1 0.001 0.007 -0.001 0.002 0.517
Full QTBM and Model 2 0.001 0.007 -0.0012 0.002 0.517
Full QTBM and Model 3 0.001 0.007 -0.001 0.002 0.517
Full QTBM and Reduced QTBM -0.006 0.066 -0.022 0.011 0.496

Table E.4: Paired tests for differences of means from the HCV analysis.

Confidence Interval
Model Differences SD 2.5% 97.5% p-value
Full QTBM and Model 1 0.001 0.077 -0.014 0.016 0.890
Full QTBM and Model 2 0.001 0.004 -0.000 0.001 0.202
Full QTBM and Model 3 0.001 0.004 -0.000 0.001 0.065
Full QTBM and Reduced QTBM -0.003 0.075 -0.018 0.012 0.701
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Appendix F

Publications

In this appendix, we present the two posters and corresponding abstract that the author
published in relation with the QLBM and QTBM models (Garćıa-Fernández, Wallace and
Staines, 2007) (Garćıa-Fernández, Wallace, Staines and van Loon, 2007).

F.1 Modelling Performances of Quality Control for

Molecular Diagnostics Participants in Enterovirus

Programmes over Time

F.1.1 Abstract

F.1.1.1 Objectives

To analyse data from Enterovirus (EV) Quality Control (QC) programmes over time to
provide a better feedback to participants and improve the design of future QC programmes.
These should help improve the performance of molecular diagnostic technologies users.

F.1.1.2 Methods

Homogeneity tests and Generalised Linear Models (GLM) are used to model the posi-
tive/negative responses provided in the QC programmes. Homogeneity tests are performed
on the ratio of correct results over time for the different category of samples. GLM (logistic re-
gression) is used to find significant factors on the estimated probabilities of correct/incorrect
results over time and sample categories.
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F.1.1.3 Results

Data from the 1999 to 2005 QCMD EV programmes were analysed. The EV proficiency
panel compositions varied by year although they contained series of similar samples (sample
category): negative, non-EV and EV samples with different serotype and viral load.

Labs were categorised on whether they had been in previous EV programmes, if they had
returned a correct result in that previous programme and whether they were accredited. The
technology used was one amongst other factors included as potential explanatory variables.

The difference in the proportions of false positives and false negatives results over time varied
depending on sample and lab category. The proportion of false positives for non-EV samples
varied on the virus included in the sample. Laboratories that had a correct result in the
previously panel are significantly less likely to obtain a false positive that those that are new
to the programme. However, no significant differences were found when analysing negative
samples. No significance difference was found between the performances of accredited and
non-accredited participants. Performances from different technology users varied over time
and sample category. In 2004/05 commercial assay users were less likely to detect low
dilution samples than in 2002/03. The proportion of correct result over time decreased, as
the dilution series are lower.

F.1.1.4 Conclusions

Performance of participants to the EV QC programme depended on the virus. These re-
sults suggest that participating in an EV QC programme helps improve the performance of
laboratories. However no difference was found between the performance of accredited and
non-accredited labs.
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Figure F.1: Modelling performances of Quality Control for Molecular Diagnostics partici-
pants in Enterovirus programmes over time
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F.2 Statistical Modelling of the Performance of Nu-

cleic Acid Amplification Technologies in Clinical

Diagnostic Applied to Quality Control for Molec-

ular Diagnostics Hepatitis B Virus Programmes

F.2.1 Abstract

F.2.1.1 Objectives

Pathogen load estimation provided by Nucleic Acid Technologies (NATs) used to diagnose
and manage patients with infectious disease gives more information than positive/negative
results available from earlier techniques. Generalised Linear Models (GLM) are currently
used to analyse NAT users’ performance. However, these ignore the censored quantities
lying outside the detection limits of the assays. We introduce an approach that identifies
significant factors associated with lab performance including censored values. The model is
tested on data from 4 years of QCMD HBV programmes.

F.2.1.2 Methods

We propose a GLM allowing a censored mechanism and Bayesian parameter inferences using
Markov Chain Monte Carlo (MCMC) methods. The model assumes that the log10 copies/ml
pathogen load estimates are normally distributed.

F.2.1.3 Results

Potential explanatory variables in the model include NAT technology used, year of pro-
gramme and sample genotype. Lab performance was assessed by the difference between the
lab’s and the target estimate of the pathogen load.

The proportion of censored data was higher for samples with lower viral load.
Users of Commercial PCR technologies were compared with other technology groups and
results depended on viral load. HBV genotype was a significant factor for some sample
categories whilst programme year was significant for almost all sample categories.

F.2.1.4 Conclusions

The model deals with multiple parameters and censored values in a simpler way than tradi-
tional statistical techniques. Information from the censored values (outside the assay limits
of detection) is incorporated in the model and further modelling of the censored values can
be made.
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Figure F.2: Statistical modelling of the performance of Nucleic Acid Amplification Tech-
nologies in clinical diagnostic applied to Quality Control for Molecular Diagnostics hepatitis
B virus programmes

315



Bibliography

Apfalter, P., Reischl, U. and Hammerschlog, M. R. (2005). In-house Nucleic Acid Amplifica-
tion Assays in Research: How much quality control is needed before one can rely upon
the results?, Journal of Clinical Microbiology 43(12): 5835–5841.

Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2004). Hierarchical Modeling and Analysis
of Spatial Data, Chapman & Hall, New York.

Barndorff-Nielsen, O. E., Cox, D. R. and Klueppelberg, C. (2001). Complex Stochastic
Systems, Chapman & Hall, Florida.

Bayes, T. (1763). An eassy towards solving a problem in the doctrine of chances, Phil. Trans.
Roy. Soc. 53: 370–418.

Berger, J. (2000). Bayesian Analysis: a look of today and thoughts of tomorrow, Journal
American Statist. Assoc. 95: 1269–1276.

Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian Theory, Wiley, New York.

BioTecniques (2007). BioTechniques’ Protocol Guide 2008. http://www.biotechniques.com.

Burtis, C. and Ashwood, E. (2007). Fundamentals of Molecular Diagnostics, Saunders El-
sever, Missouri.

Carlin, B. P. and Louis, T. A. (2001). Bayes and Empirical Bayes Methods for Data Analysis,
2nd edn, Chapman & Hall, New York.

Celeux, G., Forbes, F., Robert, C. P. and Titterington, D. M. (2006). Deviance Information
Criteria for Missing Data Models, Bayesian Analysis 1(4): 651–674.

CEN TC 140 prEN 14136 (2004). Use of EQA schemes in the assessment of the performance
of in vitro diagnostic examination procedures.

Clogg, C., Rubin, D., Schenker, N., Shultz, B. and Wideman, L. (1991). Multiple imputation
of industry and occupation codes in Census public use samples using Bayesian logistic
regression, Journal of American Statistical Association 86: 68–78.

Cohen, J. (1988). Statistical power analysis for the behavioural sciences, 2nd edn, Lawrence
Erlbaum Associates, Inc., New Jersey.

Congdon, P. (2001). Bayesian Statistical Modelling, John Wiley & Sons, Ltd., Chichester.

316



Conraths, F. J. and Schare, G. (2006). Validation of molecular-diagnostic techniques in the
parasitological laboratory, Veterinary Parasitology 136: 91–98.

Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data, Chapman & Hall, London.

David, M. H., Little, R. J. A., Samuhel, M. E. and Triest, R. K. (1986). Alternative methods
for CPS income imputation, Journal of the American Statistical Association 81: 29–41.

Davison, A. C. (2003). Statistical Models, Cambridge University Press, Cambridge.

Dennis Lo, Y., Chiu, R. and Allenchan, K. (2006). Clinical Applications of PCR, 2th edn,
Humana Press, Inc., New Jersey.

Dobson, A. (1990). An Introduction to Generalized Linear Models, Chapman Hall, U.S.A.

Dugard, P., Todman, J. and Staines, H. (2010). Approaching Multivariate Analysis. A
Practical Introduction, 2nd edn, Routledge, New York.

Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized
Linear Models, 2nd edn, Springer, New York.

Fishman, G. S. (1996). Monte Carlo: Concepts, Algorithms, and Applications, Springer-
Verlag, New York.

Fleige, S. and Pfaffl, M. W. (2006). RNA integrity and RT-PCR performance, Molecular
Aspects Med. 27: 126–139.

Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo, 2nd edn, Chapman &
Hall, London.
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