
On Improving Cybersecurity Through Memory
Isolation Using Systems Management Mode

A thesis submitted for the degree of Doctor of Philosophy

James Andrew Sutherland
School of Design and Informatics

University of Abertay Dundee

August 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/224739211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

��������	��

����������	 ��
������
�	
�� ����� ���	�
 ��
��	����� ��	��� ��	
���
��

���
����� �����

�� �� �	!

��� ���"����
 ��
�� 	�#��	����
� ��	
�� �
�	� �� ���
�	 �� $������ �� %$��&�
���	
�� �����	��
�� ��
����� �� �
�
�	' ������ �
��	
��� 	���	����� �	 ��'��
�!
�����()���
�	' ��� ��
 ���� �����

�� ��	 ��� �
��	 #����"��
��� �
 ��� �
��	
�������� ���
�
�
���(

������
��
� *	����� +��� �����
 ����

�������	
��	 ��
������
�
�� , ��� *�	������ ��	��� ��	
���
��

�� �������
� ��� ���"����
�� �����
���� ��

�� ,�����
��� ��� ,�����
���� � 	� 	��
� ��	
�� ���	�� �� ���
�	 �� $������ ��
%$��& �� ���	
�� �����	��
� ���
��

�� �������
� �� #����"��
� �����

���

����� �� � ����
��� ��	
��
 ���	��(

������ ((
��
� *	����� +��� �����
 ����

������
���
� ����
���
� ��	
���
��

��� �� �
	�� ��� ����	�
� ��	���� ��
��
����� � 	���� ��
��
�-�����	�� ��� �	������� 	�����
���� ���� ���� ���"����(

�� �	����	((((((
��
�((

�

i

Abstract

This thesis describes research into security mechanisms for protecting sensitive
areas of memory from tampering or intrusion using the facilities of Systems Man-
agement Mode.

The essence and challenge of modern computer security is to isolate or contain
data and applications in a variety of ways, while still allowing sharing where desir-
able. If Alice and Bob share a computer, Alice should not be able to access Bob’s
passwords or other data; Alice’s web browser should not be able to be tricked into
sending email, and viewing a social networking web page in that browser should
not allow that page to interact with her online banking service.

The aim of this work is to explore techniques for such isolation and how they
can be used usefully on standard PCs.

This work focuses on the creation of a small dedicated area to perform cryp-
tographic operations, isolated from the rest of the system. This is a sufficiently
useful facility that many modern devices such as smartphones incorporate dedic-
ated hardware for this purpose, but other approaches have advantages which are
discussed.

As a case study, this research included the creation of a secure web server whose
encryption key is protected using this approach such that even an intruder with
full Administrator level access cannot extract the key. A proof of concept backdoor
which captures and exfiltrates encryption keys using a modified processor was also
demonstrated.

ii

Contents

List of Tables vi

1 Introduction 1
1.1 Background . 3
1.2 Context . 6

1.2.1 Privacy and Integrity of Communications 6
1.2.2 Minimum Privilege . 7
1.2.3 Defence in Depth — Fault Containment 7
1.2.4 Minimal Trusted Computing Base 8

1.3 Aim & Hypothesis . 8

2 Literature Review 10
2.1 Introduction . 10
2.2 Historical Context . 11
2.3 Physical RAM . 14
2.4 Hardware Attacks . 14

2.4.1 Cold Boot Attack . 15
2.4.2 Rowhammer Attacks . 15
2.4.3 Bus Level Attacks . 16
2.4.4 Test Port Attack . 17
2.4.5 DMA Attack . 18

2.5 Context Switches and KAISER/KPTI 18
2.6 Summary . 20

3 Security Requirements 21
3.1 Introduction . 21
3.2 Scenario . 22
3.3 Threat Model . 24
3.4 RowHammer . 26
3.5 Spectre/Meltdown . 27
3.6 Summary . 27

iii

CONTENTS iv

4 Systems Management Mode for Security 28
4.1 Introduction . 28
4.2 Origins . 29
4.3 SMRAM and privilege levels . 30
4.4 Bootstrapping SMM . 31
4.5 Other uses of SMM . 32

4.5.1 Security . 32
4.5.2 Forensics/Surveillance . 33

4.6 SGX . 33
4.7 Other Platforms . 34
4.8 Software Alternatives . 35

4.8.1 Credential Guard — VM isolation 35
4.8.2 Process Isolation . 36
4.8.3 Encrypted Memory . 36
4.8.4 Encrypted Swap . 37

4.9 Summary . 38

5 Methodology 39
5.1 Introduction . 39
5.2 Experiment 1: CPU Backdoor . 41
5.3 Experiment 2: Micro Benchmarking 43
5.4 SMRAM and SMM . 45
5.5 Experiment 3a: Protocol Verification 47

5.5.1 Tool: Wireshark . 49
5.5.2 Tool: Qualys . 49

5.6 Experiment 3b: Process Isolated Key Handling 50
5.7 Experiment 3c: HTTPS Performance Testing 50

5.7.1 Tool: http_load . 52
5.8 Server Implementation . 52
5.9 Enclave Implementation . 53
5.10 Certificate Signing . 54
5.11 Performance Testing . 55
5.12 Security Testing . 55
5.13 Summary . 56

6 Results 57
6.1 Introduction . 57

6.1.1 Processor Level Backdoor 58
6.1.2 TLS — Protocol Verification 58

6.2 Micro-benchmarks . 60
6.3 Macro-benchmarks . 63

CONTENTS v

6.4 Summary . 63

7 Discussion 66
7.1 Introduction . 66
7.2 Analysis of Results . 67

7.2.1 Experiment 1: Backdoor . 67
7.2.2 Experiment 2: Microbenchmark 67
7.2.3 Experiment 3a: Protocol Handling 68
7.2.4 Experiment 3b: Process-isolated Key Handling 68
7.2.5 Experiment 3c: HTTPS Performance Testing 69

7.3 Hypothesis . 70
7.4 Performance . 70

7.4.1 Batch signing . 70
7.4.2 Multiple cores/threads . 71

7.5 Hardware alternatives . 71
7.6 Security . 72
7.7 Summary . 74

8 Summary, Conclusions 75
8.1 Introduction . 75
8.2 Dissemination . 76
8.3 Further Work . 77

8.3.1 Intrusion countermeasures 77
8.3.2 Operation batching . 78
8.3.3 Multi core support . 78
8.3.4 Additional algorithm support 79
8.3.5 Other applications and protocols 79
8.3.6 Persistent storage . 80
8.3.7 SMM experimentation kit 80

Appendices 82

A API Design 83

B Micro benchmarking code 86

C C compiler 95

D Linux kernel 98

E Processor 108

CONTENTS vi

F Multi-mode HTTPS server code 112

Glossary 146

Index 152

Bibliography 154

List of Tables

4.1 Comparison of SMM and ICE attributes 30
4.2 The x86 processor memory map . 31

5.1 Operations tested in micro-benchmarking 45
5.2 Test platforms for benchmarking 45
5.3 Configurations tested in experiment 3 52

6.1 Execution time for system calls and SMI invocations 62
6.2 Execution time (TSC ticks) on bare metal 63
6.3 Execution time (TSC ticks) under KVM 63

A.1 Message passing area layout . 84

vii

Acknowledgements

I would like to express my gratitude to my supervisors, Dr Natalie Coull, Dr R Ian

Ferguson and Dr Allan MacLeod for their support and guidance over this process,

as well as Dr Adam Sampson, Dr George Weir and Dr John Grigor who performed

my viva voce examination.

I am also very grateful to my fiancée Emily, my mother and my grandfather

for their support in life through my research and beyond.

viii

—Every contact leaves a

trace

Dr Edmond Locard

1
Introduction

It is a founding principle of forensic science that ‘Every contact leaves a trace’ (Dr

Edmond Locard, elaborated by Kirk 1953). More recently, it has become apparent

that every point of contact between entities in computer systems leaves analogous

traces, often with important security implications.

This makes it important to achieve effective isolation between components,

in particular between sensitive ones and those most vulnerable to compromise

or subject to external influence; this concept was implemented in OpenSSH by

1

CHAPTER 1. INTRODUCTION 2

Provos, Friedl and Honeyman 2003 and is discussed further and a semi-automated

mechanism for implementing such isolation introduced in Brumley and Song 2004,

including an experiment modifying the stunnel SSL/TLS server to handle the

keys in a separate process similar to experiment 2b described later in this thesis.

Merely reading a value in memory has long been considered side-effect free for

security and developer purposes (Gifford and Lucassen 1986). Processor caching,

however, contradicts this: by precisely measuring the time taken to retrieve data

from the same location later, other code can determine whether or not that retrieval

operation was performed against a given location — leading to the Spectre attacks

(Kocher et al. 2018).

To achieve better security, then, we must manage — and limit — the inter-

action between components much better than we have so far. Covert channels

and side channels depend on unexpected interactions; RowHammer (Kim et al.

2014), for example, can be used to achieve privilege escalation (Seaborn and Dul-

lien 2015) via a previously-unexpected interaction between physically proximate

memory components. Since there was no correlation between physical and virtual

addresses (different processes and the kernel would commingle pages arbitrarily),

low-privilege pages could easily be found which happened to be adjacent to highly

sensitive system ones, allowing tampering. The same applies between virtual ma-

chines and hypervisor control structures. As detailed later, the more coarse-grained

the sharing gets, the more limited the avenues of attack become, though any level

of shared caching can be an avenue of attack (Liu et al. 2015).

The principle was expanded upon by Paul Kirk (Kirk 1953) in another context

decades ago, but is also applicable to computer security in this context: to achieve

security, we must carefully limit and control every interaction across security peri-

CHAPTER 1. INTRODUCTION 3

meters:

Wherever he steps, whatever he touches, whatever he leaves, even un-

consciously, will serve as a silent witness against him. Not only his

fingerprints or his footprints, but his hair, the fibers from his clothes,

the glass he breaks, the tool mark he leaves, the paint he scratches,

the blood or semen he deposits or collects. All of these and more, bear

mute witness against him. This is evidence that does not forget. It

is not confused by the excitement of the moment. It is not absent

because human witnesses are. It is factual evidence. Physical evidence

cannot be wrong, it cannot perjure itself, it cannot be wholly absent.

Only human failure to find it, study and understand it, can diminish

its value. — Paul Kirk (Kirk 1953)

1.1 Background

This work began with an investigation of direct memory access attacks, partly in-

spired by proof of concept attacks over Thunderbolt (Hudson and Rudolph 2015)

and FireWire/IEEE1394 (Dornseif 2004). Proposed protection for the system’s

primary processor against such attacks dates at least as far back as MIT’s proposed

2002 memory authentication scheme (Suh et al. 2003). Previous work had focussed

on implementing a more limited coprocessor dedicated to security-essential func-

tions (Yee 1994) (Smith and Weingart 1999); other work proposed architectural

modifications intended to achieve more secure execution (Lie et al. 2000).

At an early stage, during 2014, some other aspects of hardware isolation and

data protection were also investigated, including simulating a processor-level back-

CHAPTER 1. INTRODUCTION 4

door for capturing and subsequently exfiltrating encryption keys being used in

conjunction with Intel’s AES acceleration instruction set, AES-NI, as introduced

in 2010. Four years after this work was published, it was revealed in CVE-2018-

3665: Intel Core-based Processors ‘Lazy FPU Restore’ Lets Local Users Obtain

Potentially Sensitive FPU State Information on the Target System 2018 under the

name ‘LazyFP’ that Intel had in fact unintentionally implemented a very sim-

ilar mechanism in production silicon for years, disclosing encryption keys across

process and virtual machine boundaries.

In investigating DMA attacks and protection, it became clear that either DMA

would have to be disabled entirely (Microsoft’s proposed mitigation at the time,

Microsoft Corporation 2017), carefully managed via IOMMU I/O virtualisation

(on platforms which support this), or through use of a distinct area of memory

which is already excluded from DMA access for other reasons — an enclave. Whilst

the former option has significant drawbacks (loss of performance or even function-

ality on external storage) and the IOMMU was only introduced to x86 as ‘VT-d’ in

Intel’s ‘Nehalem’ microarchitecture, with availability being limited and full usage

requiring significant driver modifications. The Qubes operating system and Xen

research project on which it built both explored these issues in depth in various

ways, creating mechanisms for failure containment on drivers and their associated

devices.

Computer security is largely concerned with erecting boundaries between en-

tities: users, privilege levels, processes. Wherever a resource crosses a boundary, it

creates the potential for compromise, either through passive information leakage

(as in the case of timing attacks, where the exact details of how long an operation

takes inadvertently discloses some information) or the potential for active tamper-

CHAPTER 1. INTRODUCTION 5

ing (as in RowHammer, where writing to one memory location indirectly affects

another through non-obvious electrical coupling between parts of a memory chip).

Historically, the term ‘enclave’ was used to refer to ‘a part of a country that

is surrounded by another country, or a group of people who are different from the

people living in the surrounding area’ (Cambridge University Press 2018). In a

computer security context, the term is applied to ‘(a) an isolated process, executed

on a platform that provides confidentiality and integrity of code and data as well

as (b) sealing and (c) attestation.’ (Beekman 2016). In this case, the focus is

on (a) and (b) as detailed later under Threat Model, since attestation addresses

specific scenarios not applicable in this case.

This work explores various threats and mitigation techniques, then evaluates

some possibilities on existing x86 architecture in terms of protecting against various

avenues of attack. While the ‘enclave’ concept is a particular approach to guarding

against one threat model with substantial overheads and associated issues, an

alternative approach is explored here, aiming to deliver a ‘defence in depth’ using

the existing x86 architecture in novel ways.

Commercial enclave offerings such as Intel’s SGX aim to offer a minimal Trus-

ted Computing Base (TCB), in which the security of the system is reliant largely

on Intel alone, rather than on the hosting company or the manufacturers of other

system components. (For example, any compromise of the RAM could not result

in information disclosure, since the contents remain encrypted with a key available

only to the CPU or Intel.)

More generally, SGX is one cryptographic technique for reducing the TCB by

one component, in this case removing reliance on system RAM and peripherals:

code and data are encrypted, guarding against eavesdropping, and checksummed

CHAPTER 1. INTRODUCTION 6

to guard against tampering. This approach has a long history in computing:

network connections are commonly encrypted using TLS for the same reason, Full

Disk Encryption and Self Encrypting Drives are increasingly popular for storage.

This protection was defeated in 2018 via side-channel attack (Chen et al.

2018a), forcing Intel to update SGX’s deployment mechanism to be able to check

the Spectre attacks were properly mitigated on the target hardware.

1.2 Context

Within the broader field of computer security, this work combines some existing

concepts in a novel way.

1.2.1 Privacy and Integrity of Communications

The privacy and integrity of communications has been a high priority in computer

science and security research for a long time now, with added financial importance

now with the dramatic increase in e-commerce and individual companies in the

field now having market capitalisations in the hundreds of billions of pounds.

Security breaches can even have impact beyond the financial, as illustrated

by the suicides following the exposure of users of the Ashley Madison adultery

facilitation site (Mansfield-Devine 2015).

The scale and importance may be newer, but the underlying need for privacy

and protecting information, as well as the use of forms of encryption, dates back

at least two thousand years (Churchhouse and Churchhouse 2002).

Within this vast area of study, protection can be divided into three primary

areas:

CHAPTER 1. INTRODUCTION 7

• Avoiding storing information at all — for example, passwords can be kept

in a hashed form, enabling correct passwords to be identified without ever

storing the password itself.

• Protecting information at rest — Full Disk Encryption and password-

protected archive files protect information by requiring a password or other

key material before that information can be accessed.

• Protecting information in transit — Protecting messages in transit via cryp-

tography or steganography (both derived from terms for ‘hidden writing’,

using the Greek words κρυπτός and στεγανός respectively).

This work focuses on improving robustness of the last of these areas, through

a new approach to the second: protecting encryption keys while held within a

computer system for use in securing communications over a network, constructing

and analysing a proof of concept web server which handles encryption keys using

secure memory protection techniques.

1.2.2 Minimum Privilege

Securing a system by denying each principal (a user, hardware or software com-

ponent) access to anything they do not require access to. These restrictions are

an important building block in subsection 1.2.3.

1.2.3 Defence in Depth — Fault Containment

In broader engineering terms, it is considered good practice to incorporate fault

containment: if and when one component fails for some reason, it should do so in

CHAPTER 1. INTRODUCTION 8

such a way as to minimise the damage done to the rest of the system. Electrical

systems often incorporate fuses and residual current devices, so that when an

electrical fault develops it will interrupt the power supply rather than endanger

the user or start a fire.

In a computing context, we should consider this for both security and system

stability reasons: a malfunctioning word processor should endeavour to shut down

without corrupting the files being edited; however badly that word processor might

malfunction, the operating system should ensure it cannot damage the file system

or interfere with other applications or users on that system. Early implementations

were poor at this: a malfunctioning application could hang or crash the whole

system, sometimes causing the file system to be corrupted in the process, an issue

addressed by process and user isolation and journalled file systems.

1.2.4 Minimal Trusted Computing Base

A similar concept to subsection 1.2.2, systems should be designed so that a minimal

subset of components have to function properly for security to be maintained. A

faulty or malicious mouse, for example, should not be able to leak your password

or banking information, even if compromised by a skilled adversary.

1.3 Aim & Hypothesis

The aim is to explore the available facilities for data protection within modern pro-

cessor architectures, including recent special-purpose additions, and more formally:

Demonstrate that secure isolation can be practically implemented us-

CHAPTER 1. INTRODUCTION 9

ing only the long-established Systems Management Mode mechanisms,

giving better security isolation than existing techniques such as process

separation.

More specifically, a series of experiments will develop and explore protection

of private encryption keys in a server environment, using an HTTPS web server

implementation as a test case.

In the chapter 2, the technical background to this work is established, along

with the historical context and the details of relevant attack and protection tech-

niques. An analysis of how security can best be achieved in this context is dis-

cussed in chapter 3, with the technical details of Systems Management Mode for

this purpose in chapter 4.

The experimental technique is discussed in chapter 5. Results of these experi-

ments are then detailed in chapter 6, with an analysis of the implications of these

results in chapter 7.

The work is then summarised in chapter 8 followed by a discussion of some

possible future work building on this research.

2
Literature Review

2.1 Introduction

Memory protection is an essential element of modern operating system and security

design. This chapter provides a historical context to the evolution of this concept

and modern implementations thereof, as well as highlighting the most important

issues discussed later.

From the earliest days of time-sharing systems, research has developed a vari-

10

CHAPTER 2. LITERATURE REVIEW 11

ety of schemes for protecting system memory, primarily from internal software

threats (partitioning memory to allow multiple independent uses while minim-

ising conflict), as well as a less common goal of guarding against forms of physical

external access, be it malfunctioning or misconfigured hardware or malicious in-

terference.

The conventional model of memory learned by programmers and provided by

operating system designers is that RAM is simply a homogenous sequence of bytes

or words, uniformly accessible, changing only when that location is explicitly writ-

ten to; the more sophisticated model after studying some operating system theory

includes the fact each page of memory can be made off-limits, read-only (with or

without the ability to execute the contents as code) or writable. Every aspect

of this model has been subverted in various ways, leading to significant attack

avenues detailed here.

2.2 Historical Context

The very earliest computers such as Colossus executed only pre-determined pro-

grammes (Copeland 2010), often co-developed with the hardware on which they

ran. In the simple implicit trust model of the time, security was not a concern:

code and computer were a monolithic entity, with no concerns about conflicting

code since there was no other code present, and peripherals had no autonomy

which could cause problems.

This had the unintentional advantage of tamper-resistance, an aspect retained

for that reason in some security and safety critical designs today in simple embed-

ded systems.

CHAPTER 2. LITERATURE REVIEW 12

As the world progressed to the Von Neumann architecture, blending code and

data, a hierarchy of trust evolved. Time-sharing and multi-user systems created a

need for restrictions: one user’s code had to be prevented from consuming resources

needed by another, or accessing their data without permission, and more intelligent

peripherals created the possiblity of conflicting accesses.

The IBM 709 mainframe introduced Channel I/O in 1957, a precursor of Direct

Memory Access I/O described later. The preceding 704 model left I/O to the main

processor, via simple read and write instructions1 — on the 709, tape, printer and

card devices could be attached and operate independently of the processor. To

manage this, an IBM 766 Data Synchronizer gave programmers control of this

process, as well as some degree of error handling, although programming was still

a monolithic single-tasking system with no concept of privilege levels or access

controls: the programme had full control of the data and attached peripherals

while executing.

It was on these architectures, however, that John McCarthy and his colleagues

first demonstrated time-sharing execution at MIT (Corbató, Merwin-Daggett and

Daley 1962). Their eventual ‘Compatible Time Sharing System’ and the underly-

ing research were prescient in many ways, with consideration of resource starvation,

a form of virtual memory in task swapping and even anticipation of the risks of

‘thrashing’, but security was not yet a major consideration, perhaps because the

concurrent users were all physically co-located at the multiple consoles, although

password authentication was incorporated.
1More specifically, CPY, Copy and Skip, which would read or write from a specified location

chosen by a prior RDS – Read Select – or WRS – Write Select – operation; the only error
handling consisted of halting execution and lighting the ‘read-write check light’ on the operator
console if the operation timed out. IBM 1955

CHAPTER 2. LITERATURE REVIEW 13

The two IBM 7094 machines used for this system were modified in one import-

ant way to facilitate this service: two separate banks of memory were installed

rather than the usual one. The privileged ‘A-core’ contained and could only be

accessed by the ‘kernel’ code, invoked via interrupts from user code or hardware.

(This replaced the previous work using earlier 704 and 709 machines.)

Mainframes made early use of techniques similar to DMA to offload routine

data transfer from expensive processors, dating as far back as the vacuum tube-

based IBM 709 mainframe of 1958. Unlike the previous model, the 704, this

offloaded I/O tasks to the Model 766 Data Synchronizer (Bell and Newell 1971),

which could transfer data to or from peripherals while the central processor con-

tinued uninterrupted.

Early PCs featured a component called a DMA controller, an Intel 8237, a

simple device which could be instructed to read some number of bytes either

from memory or from a device, writing each byte to memory or another device.

Although devices accessed in this way gain many of the advantages of DMA, they

do not have any control over memory access: only the 8237 itself performs actual

DMA operations. On a device level, the connection is more akin to the mainframe

‘channel’ approach, passively receiving read and write commands.

When later facilities such as the PCI bus enabled true DMA, where devices

could read or write memory independently, DMA was prefixed with the otherwise-

redundant qualifier “bus mastering”, or ‘BM-DMA’.

CHAPTER 2. LITERATURE REVIEW 14

2.3 Physical RAM

Even before the transistor, computers had Random Access Memory of some form:

fundamentally, a set of words which could be retrieved and modified by address.

Some of the very earliest computers used mechanical magnetic drum memory for

main memory, in a similar system to modern hard or floppy disk drives, or ultra-

sonic delay lines - in both cases, accessing a particular unit of memory required

waiting for that unit to reach the head again.

Magnetic core memory was invented in 1947 and quickly replaced these ap-

proaches, itself being replaced by a solid state counterpart in the 70s. The most

common since then has been DRAM, Dynamic RAM, in which a single capacitor

is either charged (to represent a 1) or discharged (for 0). This is simple, robust

and effective, but since a capacitor’s charge dissipates over time, a periodic refresh

cycle is required, recharging each 1 before it falls to a low enough voltage to be

mistaken for a 0.

2.4 Hardware Attacks

In the majority of cases, anyone with physical access to the hardware is assumed

to be trusted: they have the ability to replace the hardware in its entirety, or

components thereof. Exceptions to this threat model, where for various reasons

a physical custodian must also be protected against, present an interesting set of

situations and solutions.

CHAPTER 2. LITERATURE REVIEW 15

2.4.1 Cold Boot Attack

In a cold boot attack (Halderman et al. 2009), the entire operating system (and

hypervisor, if present) is replaced by power-cycling and booting from alternative

media provided by the attacker. This technique has long been used to capture

forensic images of target systems for ‘static analysis’ offline, targetting the per-

sistent storage media rather than RAM contents, but the technique also allows

capture of RAM contents including encryption keys and other system state, useful

to an attacker or forensic analyst.

2.4.2 Rowhammer Attacks

This enables the lowest level attack on memory, RowHammer (Kim et al. 2014) —

by repeatedly writing to one location in memory to which the attacker does have

access, physically adjacent bits can be changed through electrical coupling.

Seaborn and Dullien 2015 demonstrated this from within a web browser sand-

box, using the resulting memory corruption to achieve privilege escalation.

CVE-2018-1038: Microsoft Windows — Local Privilege Escalation 2018

demonstrated that modifying even a single bit can completely bypass operating

system memory protection. In the latter, the user/system bit on the top level

page table entry was wrongly set to ‘user’, enabling unprivileged code to modify

all other page table data and so gain full control of all code and memory.

Two versions of mitigation for this attack were incorporated in Intel’s Ivy

Bridge architecture. Where supported by the memory, the pseudo target row re-

fresh (pTRR) feature causes specific target rows to be refreshed ahead of schedule

to prevent excess leakage corrupting values; in the absence of this targeted mech-

CHAPTER 2. LITERATURE REVIEW 16

anism, Ivy Bridge chips default to refreshing the DRAM at double the normal rate

to achieve similar protection at a cost of 2-4% higher memory access latency due

to increased frequency of refresh-access conflicts.

2.4.3 Bus Level Attacks

Given full physical control of a target system, memory contents can be retrieved

and manipulated in various ways which are not otherwise possible. DMA attacks

are a variant of this discussed later, exploiting authorised access for unauthorised

purposes, and have spawned a whole field of legitimate applications in forensic

analysis, including Live Memory Forensics; Windows versions prior to Windows

10 version 1607, for example, could be debugged and probed directly over a 1394

(Firewire) bus cable (Microsoft Corporation 2018), which facilitates DMA. The

Intel Direct Connect Interface (DCI) brought this capability to USB 3 ports (Lau-

terbach GmbH 2018).

Embedded systems such as games consoles are commonly designed to be less

amenable to user debugging and reverse engineering, however, and avoid present-

ing such powerful avenues of attack. George Hotz gained full memory access on

the Sony PlayStation 3 (a privilege escalation or hypervisor escape) by corrupt-

ing the hypervisor’s memory map through a combined hardware and software

attack (Lawson 2010): a piece of low-level software to set up appropriate data

structures in memory, then a simple fault-injection device implemented on a field

programmable gate array (FPGA, programmable hardware) to interfere with the

hypervisor’s memory access at a crucial point. When executed successfully, this

leaves the user code with the ability to read and write otherwise-protected memory

CHAPTER 2. LITERATURE REVIEW 17

areas and bypass the hypervisor’s access controls.

Bus level access was also exploited against Microsoft’s XBox by Huang 2002.

This class of attack is more generally referred to as a ‘fault attack’ or ‘glitching

attack’ (Bar-El et al. 2006), shown to be a powerful and low-cost avenue of attack

even for an attacker with limited resources available (Anderson and Kuhn 1997).

2.4.4 Test Port Attack

The JTAG (Joint Test Action Group) port is a standardised mechanism for testing

and debugging electronic circuits defined by IEEE 1149.1 and IEEE 1149.7. For

devices where the manufacturer wishes to impede the owner altering or reverse-

engineering the product, this is usually disabled – for example, Microsoft’s Xbox

360 games console disables the JTAG ports in software very early in the boot

process (DeBusschere and McCambridge 2012).

In a typical desktop/laptop computer scenario, this is not considered a major

vulnerability since the JTAG port is not accessible without dissassembly of the

computer. Intel, however, exposed comparable system debug functionality via an

externally connected USB port (CVE-2017-5689: Intel Active Management Tech-

nology Authentication Flaw Lets Remote and Local Users Gain Elevated Privileges

2017) as part of their Active Management Technology. (The port was apparently

intended to be internal to the system chassis, which would have reduced the se-

curity implications in typical scenarios.)

Given the intentionally unconstrained access such ports give, the only effective

mechanism to guard against this is to disable the ports in question, as the Xbox

does, or physically protect against access, for example by locating a server in a

CHAPTER 2. LITERATURE REVIEW 18

suitably secure facility.

Taking full control of the memory bus on modern systems is a difficult under-

taking: 64 or more data lines carrying signals at speeds of 1 GHz or more, with

extremely precise timing requirements. Huang 2002 explored the costs and prac-

ticalities, finding the main memory bus to be prohibitive in that context, though

access to the narrower and slower HyperTransport peripheral bus was achievable

and sufficient. Similar attacks against other parts such as the I2C bus were detailed

by Giller 2015.

2.4.5 DMA Attack

The development of FireWire and Thunderbolt interfaces exposed DMA facilit-

ies outside the relative physical security of the system chassis enabling an early

successful attack on Mac OS X systems over FireWire (Dornseif 2004) and later

more complex attacks such as ThunderStrike (Hudson and Rudolph 2015). When

successful, these attacks give similar functionality to those in subsection 2.4.3 but

using existing components rather than physical changes or additions to the target.

2.5 Context Switches and KAISER/KPTI

Most modern processor architectures implement some form of virtual memory map-

ping (Denning 1970): the memory a user process can access at address 0x10000

may be stored in any arbitrary page of physical memory, or indeed be entirely

absent and filled in by the operating system when an attempt is next made to

access that, known as a ‘page fault’.

To reduce the overhead of loading this mapping from memory, processors gen-

CHAPTER 2. LITERATURE REVIEW 19

erally feature Translation Lookaside Buffers (TLBs), a set of cached address map-

pings. (Architectures have varying approaches to this; on MIPS, the operating

system explicitly populates TLB entries as needed; x86 and more recent ARM

variants populate TLB entries directly within the hardware without OS involve-

ment, while the original ARMv2 had 512 explicit memory mappings within the

MEMC1 memory controller chip as Content Addressable Memory.)

On x86, paging is controlled by Control Register 3 (CR3, also referred to as

the Page Directory Base Register), which holds the physical address of the top

level of the page table. Any write operation to CR3 automatically flushes all TLB

entries which have not been marked ‘global’.

A ‘CR3 reload’ is therefore an expensive operation in CPU resources, triggering

a series of memory accesses, and required on each transition between different

processes.

The Meltdown attack (Lipp et al. 2018) exploits small performance differences

as a way of accessing otherwise inaccessible memory contents on vulnerable pro-

cessors, including Intel’s Core and Xeon families and some ARM designs. By using

a target byte as the offset into an accessible table in main memory, the correspond-

ing row becomes cached. The fetch operation itself is aborted, having accessed a

prohibited address, but the next direct access to that row will succeed, and do

so faster than access to the other rows since only that one has been preloaded to

cache.

Prior to this discovery, it was thought to be safe for the kernel’s memory space

to be mapped globally at all times, relying on marking those pages as kernel-only.

To prevent the Meltdown attack being used, the kernel pages had to be unmapped

and remapped when exiting and reentering kernel mode, a mitigation implemented

CHAPTER 2. LITERATURE REVIEW 20

on the Linux kernel under the names KAISER or KPTI: the protected pages are

not merely off-limits (so their address cannot be used directly), but they have no

address at all, usable or otherwise.

The x86 architecture’s Systems Management Mode, described in detail in

chapter 4, already provided a similar level of isolation and consequently already

protected against attacks of this type, as well as having protection from DMA

attack which KAISER/KPTI does not. The SMM handler code cannot be in-

voked except by triggering a hardware System Management Interrupt (SMI), which

causes the processor to switch memory maps; ARM’s TrustZone transfers control

to the ‘Secure World’ environment via an analogous mechanism, their Secure Mon-

itor Call (SMC) exception.

2.6 Summary

Comprehensive memory protection addresses a broad spectrum of modern security

threats, including pre-emptively guarding against some classes of unknown issues.

This thesis proposes an approach to deliver this protection using SMM (Systems

Management Mode) in chapter 4, followed by a discussion of previous related work.

Attacks can broadly be divided into physical (those requiring access to the

device itself, for example by connecting or disconnecting components) and logical

or remote (by reprogramming or tricking existing components in software alone).

As detailed later, SMM can be used to guard against both classes: even Adminis-

trator or root level access is not sufficient to compromise SMM isolation, and only

the processor and memory chips themselves (and the electrical bus connections

between them) have the ability to access the protected SMRAM area.

—The art of war teaches us

to rely not on the likelihood

of the enemy’s not coming,

but on our own readiness

to receive him; not on the

chance of his not attacking,

but rather on the fact that we

have made our position unas-

sailable.

Tzu 6th century BC

3
Security Requirements

3.1 Introduction

The previous chapter detailed the importance of memory isolation and classes

of attacks involved. This chapter develops these themes and analyses their im-

plications in terms of the possible avenues of attack on an SMM-based security

implementation in various circumstances, as well as possible mitigations.

The primary hypothesis to be explored here is that hardware memory isol-

21

CHAPTER 3. SECURITY REQUIREMENTS 22

ation, as implemented in a case study using Intel’s x86 SMM, can be used to

deliver similar protection of cryptographic keys to that in the PlayStation 3’s Cell

architecture or a dedicated hardware security module (HSM), without hardware

requirements beyond a standard x86 computer system. Experimentation will aim

to demonstrate and evaluate such an implementation, with a particular focus on

use to secure a web server’s TLS implementation and the public key material on

which it depends, through careful consideration and management of the points of

interaction between the sensitive components (the cryptographic code and data in

use) and the rest of the system.

The security aim is an instance of defence in depth: not intending to prevent

any specific attack, but to reduce the impact of successful attacks in general. The

later evaluation will consider this in the context of various known attacks and

mitigations, particularly those where separation of components either has been or

could have been used to prevent or reduce the impact of a compromise.

3.2 Scenario

This work aims to secure a network-connected system against remote or transient

physical attack, using a simple web server as the model and endeavouring to protect

it against unauthorised information disclosure, in particular the cryptographic keys

which are used to authenticate the server to clients. (This is clearly generalisable to

securing the authentication material on the client end as well: client cryptographic

keys, stored passwords, payment mechanisms.)

Other scenarios exist: games consoles attempt to guard against the system

owner accessing or modifying data (for example, to reverse engineer the system,

CHAPTER 3. SECURITY REQUIREMENTS 23

circumvent copy protection or to cheat), which requires a different approach. At-

tacks such as those mentioned previously in subsection 2.4.3 remain pertinent there

however; in particular, the technical and economic aspects discussed in Huang

2002.

To protect the most sensitive data requires the construction of some sort of

containment to which access from all other components is restricted or prevented

— but with just enough interaction permitted to enable the intended use of the

keys (or other material) in question.

For an SSL/TLS web server, the sensitive data is created as a public/private

key pair. As the name implies, the public part of the pair may be freely exported

and shared — indeed, it is provided to every client connecting, as part of the initial

protocol handshake — while the private key is never to be disclosed to anyone else.

To prove the identify of the server, a CSR (Certificate Signing Request) is

generated and signed using the private key; after completion of appropriate checks,

a Certification Authority (either one trusted by the general public and the software

they use, such as LetsEncrypt, or an internal entity such as the US Department of

Defense’s internal CA) usually signs that CSR to produce a certificate. Any entity

can issue certificates, it is merely a matter of policy which issuers are trusted or

not for any given situation; for experimental purposes, a self-issued certificate is

equally suitable.

LetsEncrypt uses the ACME protocol to sign CSRs without human interven-

tion, using challenge-response proofs of identity as part of a broader effort to

make shorter certificate lifetimes practical, while public Certificate Transparency

logs provide an additional safeguard against inappropriate certificate issuance.

CHAPTER 3. SECURITY REQUIREMENTS 24

3.3 Threat Model

Two vital considerations in any threat model are the expected levels of technical

resources and physical access available to the attacker. A related parameter is the

duration of access, from having transient physical custody of a device (for example,

a government agency intercepting a server in transit from the manufacturer) to

persistent infiltration of a facility (either through personnel, such as a bribed or

undercover employee, or technical, as in a compromised device or covert addition

to the network).

At one extreme of the former spectrum lie ‘nation state’ adversaries: govern-

ment agencies, expected to have substantial budgets and skill sets with few or no

legal constraints in place, often with prior knowledge of attacks not yet known to

the academic security community and not motivated by direct financial gain —

for example Stuxnet (Langner 2011), where the aim was not to obtain information

or perform useful work, but merely to damage a specific SCADA system. The op-

posite end of this spectrum is occupied by a more typical ‘hacker’ or botnet, using

relatively simple attack techniques to harvest banking credentials, send spam or

perform volumetric (‘brute force’) DDoS attacks (Cooke, Jahanian and McPherson

2005).

Physical access runs a spectrum of levels, from no proximity at all, through the

ability to attach some external device such as some external storage, to replacing or

modifying internal hardware. Orthogonally, this access may be transient or more

persistent. The American NSA and their British counterpart GCHQ have long-

running programmes to compromise products from the design stage (Ball, Borger

and Greenwald 2013), to intercepting equipment in transit from manufacturers to

CHAPTER 3. SECURITY REQUIREMENTS 25

customers (Kirk 2013) onwards (Kingsbury 2009). Some of the possible attack

scenarios are listed below:

• Replace CPU or memory

• Interfere with memory bus, as in the PS3 ‘glitching’ hypervisor escape

• Install keylogger

• Replace or modify BIOS content

• RCE

• Credential Theft

• Social Engineering

• ‘Evil Maid’ (Tereshkin 2010)

This work aims to guard the encryption keys against all but the upper extreme

of attacker resources: remote attacks including root and kernel level compromise,

as well as physical attacks short of replacement or modification of the system itself.

A root compromise would allow monitoring of network traffic while the com-

promise persists, but gaining access to the key would enable impersonation of

the server even after the attacker loses access again, which is why the Heartbleed

key exposure vulnerability was considered so serious: the additional protection

afforded here reduces the damage by such a compromise.

Given an attacker with the resources to replace or modify the processor itself,

however (perhaps through a suitably designed microcode patch, rather than phys-

ical circuit changes), security is almost impossible to achieve; the first experiment

CHAPTER 3. SECURITY REQUIREMENTS 26

described in chapter 5 demonstrates the possibilities for an attacker with such

capabilities.

3.4 RowHammer

The RowHammer attack allows modification of bits in physically adjacent areas of

memory, which could theoretically be used to exfiltrate information from the SMM

enclave. Integrity checking (a checksum verified on each entry) would provide some

protection against this, while ASLR would make such an attack almost impossible

— just shifting the code and data by a small random number of bytes each time

the system is booted would mean the attacker was operating blindly (able to flip

some bits, but without knowledge of which instruction or piece of data is being

affected), while the use of ‘canary’ values around the code and data would make

such an attempted attack very unlikely to go undetected.

Moreover, given sufficient knowledge of the memory arrangement in use, simply

adding a single disused row between the SMM code and data area and memory

used by the system would frustrate any RowHammer attempt: it would corrupt

only that buffer space, with no effect on the SMM area.

Also, on the specific test hardware used for the majority of this experimenta-

tion, the DDR2 memory installed is much less susceptible to RowHammer attacks

anyway: exploiting this generally requires DDR3 or newer, due to the smaller

feature size and faster access.

A similar approach would also be effective against most direct hardware at-

tacks, such as address line glitching: without knowing the exact address to target, a

successful attack would be very much more difficult than against a system without

CHAPTER 3. SECURITY REQUIREMENTS 27

this protection.

3.5 Spectre/Meltdown

The most recent memory protection attacks against vulnerable Intel and ARM

processor architectures pose two potential threats against an SMM protection im-

plementation.

Firstly, the Meltdown techniques can be used directly to extract otherwise

protected data, for example from kernel buffers, by using the address of that data

indirectly then observing side-effects of that operation. This is not applicable to

SMM code or data, since there is no address which refers to that memory in the

first place. This was empirically verified by Eclypsium (2018).

Secondly, the Spectre attacks have been used against system firmware executing

in SMM to bypass bounds checks (ibid.) — that issue is avoided entirely in this

work by using only fixed size parameters, with no bounds checks or boundaries to

be violated.

3.6 Summary

The set of relevant attacks discussed in chapter 2 was assessed in the context of

this threat model, along with some general principles for mitigating or preventing

them. In chapter 4 a specific approach to addressing these using SMM will be

described, followed by experimentation in chapter 5 for testing the viability of this

approach in an example system.

4
Systems Management Mode for Security

4.1 Introduction

This chapter presents an overview of the origins of the Systems Management Mode

on Intel processors, with information about its attributes and implementation in

particular as relevant to a security context, as well as noting related concepts and

developments on other platforms and virtualisation approaches.

The chapter concludes with some discussion of other related approaches and

28

CHAPTER 4. SYSTEMS MANAGEMENT MODE FOR SECURITY 29

another application of SMM for security purposes.

The experimentation presented in chapter 5 will build on this analysis to ex-

plore the main hypothesis, that SMM can be used to deliver improved security

isolation.

4.2 Origins

The Systems Management Mode was first introduced on Intel’s 80386SL pro-

cessor, the first low-power variant of the 386 architecture intended for portable

use. This mode was introduced as a way for the system BIOS to operate certain

low-level components (such as the battery, charging subsystem and screen back-

light) without conflicting with the main operating system (in those days, typically

MS-DOS, which had no inherent support for mobile devices and limited ability to

be extended to support them explicitly).

Prior to this, Intel had implemented In-Circuit Emulation — ICE — mode as

a debugging facility on the 80286 (Collins 1997b), allowing the full processor state

to be saved and later restored (via the undocumented special-purpose LOADALL

instruction, opcode 0x0f05 or the later 80386 variant, 0x0f07). On the Pentium,

this was then replaced with a more sophisticated Probe Mode (Collins 1997a).

Key attributes of SMM and ICE are compared in Table 4.1.

Superficially SMM and the ICE modes have a lot in common: saving the

existing processor state to a special-purpose area of memory, switching execution

to a dedicated handler routine, then resuming execution later, transparently to

the operating system and applications — similar to normal interrupt handling,

but with the addition of transitioning to an alternative memory map with areas

CHAPTER 4. SYSTEMS MANAGEMENT MODE FOR SECURITY 30

Parameter SMM ICE
Entry trigger pin SMI ICEBP

Trigger opcode N/A1 ICEBP (Collins 1996) (0xf1)
Exit opcode RSM LOADALL

Table 4.1: Comparison of SMM and ICE attributes

of memory not accessible otherwise.

4.3 SMRAM and privilege levels

The defining characteristic of SMM is that while the processor core is executing

code in that mode, it asserts the SMIACT2 output line. This signal is interpreted

by the Memory Controller Hub (MCH): when asserted, addresses are decoded dif-

ferently, enabling access to the otherwise-inaccessible SMRAM area. (Physically,

this is just part of the main RAM, but gated by the memory controller to prevent

non-SMM access.) In early SMM implementations, the address used was 0xA0000,

which is also used by legacy graphics support: any attempt by non-SMM code to

read or write this area will access the video memory instead.

The location of SMRAM is defined by the SMBASE register, initially set

to 0x30000 (192 kilobytes from the bottom of the memory space); setting the

G_SMRAME control flag on the processor’s SMRAMC (SMRAM control) register puts

128 kilobytes of SMRAM at a base address of 0xA0000, or 640 kilobytes, while

setting T_EN (TSEG Enable) grants access to a larger area higher up. The address

layout is depicted in Table 4.2.

It is important to note that SMM is not a privileged mode of execution as such,

despite common references to it as ‘ring -1’ or ‘ring -2’ as if it were a more privileged
2The overscore denotes an electronic signal which is pulled low when active, rather than high

CHAPTER 4. SYSTEMS MANAGEMENT MODE FOR SECURITY 31

Address Size Content (normal) Content (SMM)
0xF0000 64k BIOS ROM
0xC0000 192k Device ROM/Upper Memory Blocks
0xA0000 128k Legacy video SMRAM
0x00000 640k Legacy (DOS) memory

Table 4.2: The x86 processor memory map

alternative to ring 0 in which kernel code executes. For example, Wojtczuk and

Rutkowska 2009 refers to “escalation from Ring 3 to SMM” — in reality, SMM

code is entered in ring 0, and can transition to a reduced privilege level if desired.

In all cases, access to the SMRAM area is permitted only if the access is by

the processor core (as opposed to any other peripheral), and then only if either

SMIACT is asserted or the D_OPEN control bit in the system chipset is set to permit

this. As a result, SMRAM has robust protection against any sort of DMA attack:

attempted access from the PCI bus or elsewhere is not valid at any time.

4.4 Bootstrapping SMM

As noted earlier, access to the dedicated area of memory SMM uses, the SMRAM,

is gated by the memory controller. In order to bootstrap the SMI handler, however,

it must be possible to load this memory area before the first SMI instance. This

is permitted by the D_OPEN control bit in the chipset: when set, this bit permits

access to SMRAM without being in SMM. After initialisation is complete, this bit

should be cleared and the D_LCK (Lock) bit set, rendering all the SMM control

registers read-only until the processor is reset.

This should be done very early in the system boot process by the system BIOS

before activating any peripherals or executing any other code to prevent malicious

CHAPTER 4. SYSTEMS MANAGEMENT MODE FOR SECURITY 32

code using SMM as a hiding place; older BIOS implementations often failed to

secure the state properly during the boot process, leaving the way open for a

variety of SMM rootkits at least as far back as 2009 (Embleton, Sparks and Zou

2013).

Attacks on the code executing within SMM are also a possibility, including the

recently discovered Spectre technique to bypass bounds checking as discovered by

Eclypsium (2018).

4.5 Other uses of SMM

4.5.1 Security

Soon after malicious use of SMM’s isolation property was demonstrated, more

benign uses were found, with HyperGuard (Rutkowska and Wojtczuk 2008) in

2008, HyperCheck (Wang, Stavrou and Ghosh 2010) in 2010, HyperVerify (Ding

et al. 2013) in 2013 and a US patent on the concept being granted in 2014 (Barde

2014).

The TrustZone-based Real-time Kernel Protection (TZ-RKP) (Azab et al.

2014) applies the same concepts to an ARM system, using ARM’s TrustZone

mechanism in place of SMM. (TrustZone was created later, with a ‘Secure World’

entered by invoking a Secure Monitor Call exception.)

The underlying concept in each case is to generate then periodically verify cryp-

tographic hashes of critical structures or code (in HyperGuard’s case, by walking

the Page Tables to identify all executable pages marked for supervisor access).

At the time, this was not wholly sufficient since the processor could still execute

CHAPTER 4. SYSTEMS MANAGEMENT MODE FOR SECURITY 33

non-supervisor pages with supervisor privilege; the later development of Super-

visor Mode Execution Protection (SMEP) by Intel (Ven et al. 2016) closed this

loophole.

The level of privilege at which code executes in x86 Protected Mode is determ-

ined by the two least significant bits of the CS (Code Selector/Segment) register,

so the code at a single address in memory may normally be executed at any priv-

ilege level without modification. This has its origins in the 80286’s implementation

of Protected Mode, prior to the 80386’s introduction of paged virtual memory: as

the two mechanisms were orthogonal, prior to SMEP a page could be user writable

(ring 3) yet run at kernel privilege (ring 0).

4.5.2 Forensics/Surveillance

Wang et al presented a set of SMM based tools for firmware assisted memory

capture for forensics applications (Wang et al. 2011). Unlike most capture and

analysis tools, this is theoretically undetectable to any guest code or intruder

except via ‘stolen’ clock cycles (which may potentially be disguised as normal

throttling/power saving) defeating counterforensic measures — a powerful possible

alternative to the usual VM sandbox approach for malware analysis.

4.6 SGX

Intel Software Guard Extensions aim to deliver similar benefits within the main

processor through architectural extensions, with an encrypted area of main

memory rather than one isolated by the memory controller hardware. SGX-Shield

(Seo et al. 2017) reviews the main limitations of this implementation and proposes

CHAPTER 4. SYSTEMS MANAGEMENT MODE FOR SECURITY 34

an implementation of ASLR (Address Space Layout Randomisation, varying the

location of memory contents to make attacks more difficult) within this enclave

for additional protection from outside interference.

This isolation is a mixed blessing, providing a hiding place for less benign code

as well (Schwarz et al. 2017), while failing to protect against variants of the Spectre

attack (Chen et al. 2018b).

The TaLoS project (Aublin et al. 2017) has significant similarities to the final

experiment in chapter 5, in that it seeks to protect the encryption keys and traffic

over an SSL/TLS connection but using SGX rather than SMM to isolate the data

in question.

4.7 Other Platforms

SMM is not a concept confined to the x86 architecture alone. For obvious reasons

of ancestry and compatibility it is shared with the x86-64 (Intel® 64 and IA-32

ArchitecturesSoftware Developer’s Manual) and Itanium (Intel Platform Innova-

tion Framework for EFI System Management Mode Core Interface Specification

(SMM CIS) v0.9) architectures. As noted previously, ARM’s TrustZone can be

used as a substitute for SMM in the same protection methodology as HyperGuard.

The Cell Broadband Engine architecture powering the Sony PlayStation 3

(Murase et al. 2009) is a more interesting variant, with multiple PowerPC pro-

cessor cores in a single physical chip: one or more Power Processing Elements

(PPEs) and multiple Synergistic Processing Elements (SPEs). Each SPE has a

small local area of memory called the Local Store; when isolation mode is engaged

on an SPE, this memory becomes inaccessible from all other components regard-

CHAPTER 4. SYSTEMS MANAGEMENT MODE FOR SECURITY 35

less of privilege level: nothing outside that processor core can access that memory

later, only pass messages to and from that core to request operations and receive

the results.

Early in the PlayStation 3 boot process, encryption keys and code are loaded

into an SPE which is then placed in isolation mode before the main hypervisor and

operating system code is even loaded; as a result, the encryption keys are robustly

protected from extraction by would-be reverse engineers (PlayStation 3 Secrets).

Consequently, attacks have focussed on compromising the earliest stages of the

boot process software, ultimately obtaining the key to sign their own replacement

‘level 0’ bootloader (Sony PS3 hacked “for good” —- master keys revealed) rather

than attempting to attack the architecture itself.

4.8 Software Alternatives

Various attempts have been made to deliver isolation between memory areas in

other ways in recent years:

4.8.1 Credential Guard — VM isolation

Microsoft recently released a software-only implementation of a similar approach,

Credential Guard, in which authentication keys are held in a dedicated virtual ma-

chine running on top of the Hyper-V hypervisor platform. This way, even a kernel

compromise of the main operating system is not sufficient to extract credentials for

reuse: no more ‘Pass The Hash’ privilege escalation once a system is compromised.

Only a compromise of the underlying hypervisor itself, or the hardware isolation

mechanisms, would suffice: a much smaller attack surface compared to the full OS

CHAPTER 4. SYSTEMS MANAGEMENT MODE FOR SECURITY 36

kernel.

4.8.2 Process Isolation

The commercial content delivery network (CDN) Cloudflare has an interesting

implementation of TLS/SSL in two respects. First, they offer ‘Keyless SSL’ (Key-

less SSL: The Nitty Gritty Technical Details) in which the site’s private key is

handled remotely. Secondly, the SSL/TLS handling is performed in a separate

isolated instance of the Nginx web server (Incident report on memory leak caused

by Cloudflare parser bug) — an example of defence in depth which ensured that

when a bug was found in their HTML parsing implementation, the information

disclosed could not include site private keys, unlike with the widespread Heart-

bleed bug in OpenSSL (The Results of the CloudFlare Challenge) — only a kernel

or hardware level exploit could have exposed the key, not an application level one.

A version of this technique is also covered in the experimentation detailed in

chapter 5.

4.8.3 Encrypted Memory

TRESOR (Müller, Freiling and Dewald 2011) demonstrated that a general-purpose

computer system can be operated with almost all of main memory encrypted

while at rest, albeit with a significant performance penalty, using a modified Linux

kernel. There is some overlap with the research this thesis describes: TRESOR

uses the processor debug registers as an area of storage which cannot be accessed

via DMA. This was intended to protect against DMA attacks, among others, but

was not successful in that respect since this cannot protect the associated code:

CHAPTER 4. SYSTEMS MANAGEMENT MODE FOR SECURITY 37

TRESOR-Hunt (Blass and Robertson 2012) demonstrated a successful attack on

this protection, using code injection via DMA - an attack which could not be

prevented through software mechanisms alone.

TreVisor (Müller, Taubmann and Freiling 2012) extended the techniques of

TRESOR to a hypervisor level in combination with techniques from BitVisor

(Shinagawa et al. 2009) to incorporate Intel VT-d (IOMMU) protection from DMA

attack.

On other platforms, the ARMORED (Gotzfried and Muller 2013) project ap-

plied TRESOR techniques to the Android operating system on ARM architecture

processors as a countermeasure to their own FROST (Müller and Spreitzenbarth

2013) attack, which used a cold boot attack to retrieve information from mobile

handsets running Android 4.0 despite the disk encryption employed.

4.8.4 Encrypted Swap

A cold boot attack can retrieve RAM contents for a brief period after a system is

shut down, but the system’s virtual memory persists indefinitely after shutdown

unless explicitly wiped. To avoid this, keeping that data encrypted is an idea

which long predates efforts to encrypt or otherwise protect the RAM, including

the encrypted swap space (Provos 2000) extensions to the UVM system (Cranor

and Parulkar 1999) originally proposed as an enhancement of the original 4.4BSD

approach. The much slower nature of disk storage meant the extra overhead of

this encryption was more widely accepted early on.

CHAPTER 4. SYSTEMS MANAGEMENT MODE FOR SECURITY 38

4.9 Summary

SMM, although originally intended to deliver other functionality, is used in a

variety of ways relevant to security, both positive (to protect systems and data from

intruders or corruption) and negative (to escape detection, conceal compromises

and covertly capture information from a target). While SMM itself is a specific

Intel or x86 instance of this isolation mechanism, other platforms have analogous

mechanisms such as ARM TrustZone and virtualised isolation mechanisms, making

the underlying principle more broadly applicable. SMM and TrustZone may be

regarded as one extreme on a spectrum of context isolation mechanisms, with

direct inline handling of key material as the other extreme (no isolation at all)

and other options in between, such as separating key handling in either another

virtual machine (as Microsoft does for Credential Guard) or another Unix process

(as CloudFlare does) — the experiments described later study the performance

aspects of three points on this spectrum.

5
Methodology

5.1 Introduction

This chapter details a set of experiments which explore the initial hypothesis,

that SMM can deliver improved security isolation compared to other software-

only approaches such as process or virtual machine isolation.

The initial work consisted of a proof of concept exploit, section 5.2: a simulated

hardware backdoor in the x86 architecture whereby cryptographic keys would be

39

CHAPTER 5. METHODOLOGY 40

captured then exfiltrated. This did not involve memory protection, but served to

explore and validate aspects of the later work as well as delivering a result in itself,

demonstrating a mechanism for bypassing security by circumventing the isolation

between processes.

For the performance assessment, two approaches are used: first, micro-

benchmarks, measuring the individual components involved in transitions to and

from SMM and kernel mode in isolation; secondly, to measure the overall perform-

ance of a web server using different isolation mechanisms, to be able to compare

SMM isolation’s performance overhead against versions with no isolation of key

handling and one which uses process-level isolation (which would protect against

process level compromise, but not a root or kernel level one as SMM isolation

does).

The experiments in section 5.3 investigate the performance aspects of using

SMM, in particular detailing the performance impact of each transition to and

from SMM compared to transitions to kernel space and back, which will be the

dominant factor in the overall performance of the SMM-isolated server developed

for section 5.7 later.

Finally, a set of three experiments described in section 5.5, section 5.6 and

section 5.7 test the performance and functionality of a simple HTTPS server ap-

plication with three different levels of key isolation: none (a control), process

separation, and fully SMM isolated key handling.

CHAPTER 5. METHODOLOGY 41

5.2 Experiment 1: CPU Backdoor

This early stage work simulated a ‘backdoored’ version of an x86 processor. Intel

had recently released the Westmere microarchitecture (Gueron 2010), which ad-

ded hardware acceleration of the AES cryptographic functions to the preceding

Nehalem implementation. At this time, Edward Snowden had just exposed some

of the National Security Agency’s activities, raising new questions about the in-

tegrity of many products, the hypothetical question was posed (Bernstein 2013):

‘Thought experiment in malicious chip design: What would be the easiest way for

an Intel CPU to leak AESKEYGENASSIST inputs to an attacker?’

This work entailed multiple facets: the details of Intel’s AES implementation

(particularly, the AESKEYGENASSIST instruction mentioned, which expands

the raw AES key to the form used for encryption and decryption), some way of

capturing and storing this key even across context switches within the operat-

ing system or hypervisor, then constructing a covert channel through which the

attacker can retrieve the key later.

The simulation itself was constructed by modifying the Bochs open-source sys-

tem simulator (Lawton 1996), an instruction by instruction simulation of the x86

and x86-64 instruction set.

Initial key capture and retention was simple: a global state variable, loaded

with the key operand whenever the AESKEYGENASSIST instruction was called

with a Round Constant of 0. (AES has key sizes of 128, 192 or 256 bits; the first

128 bits are always used for round 0, with the remaining bits if any loaded in

round 1; for this proof of concept, 128 bit AES was sufficient, demonstrating an

approach which could easily extend to the 192 and 256 bit variants if desired.) In

CHAPTER 5. METHODOLOGY 42

a physical implementation of this design, the variable would be implemented as a

128 bit register. Since this register is a concealed addition of which the operating

system and hypervisor have no knowledge, this state will persist across process

and virtual machine boundaries: only a full processor reset would clear it.

Exfiltration was via the floating point instruction set, a design partly inspired

by the Pentium FDIV bug (Pratt 1995): Intel’s flaw was included on all the

original Pentium chips, yielding an incorrect result once per 233 divisions, and was

not discovered for a significant time. An intentional version triggering much less

frequently would be effectively undetectable without specific prior knowledge of the

numerical parameters chosen. By triggering only for a specific pair of operands

(specifically, 1.91207592522993 × 2306 being divided by itself), only one in every

2128 possible divisions yields an unexpected result — in this case, instead of the

correct answer of 1.0, the next 32 bits of the last-used AES encryption key are

returned.

FDIV — floating point division — was chosen because it is not only an un-

privileged operation any code can execute, but also a basic primitive with a direct

counterpart in high level languages, including Javascript: performing this partic-

ular division calculation will lead to execution of that precise instruction, on any

Javascript implementation from the simplest interpreter to the most sophisticated

JIT.

With the target key captured in a non-privileged piece of Javascript, relaying

that over the Internet within a URL was trivial, appending it to an image URL

(Sutherland, Coull and MacLeod 2014).

Late in the course of this research, it emerged that Intel had in fact incor-

porated a version of this unintentionally (CVE-2018-3665: Intel Core-based Pro-

CHAPTER 5. METHODOLOGY 43

cessors ‘Lazy FPU Restore’ Lets Local Users Obtain Potentially Sensitive FPU

State Information on the Target System 2018): the key was stored in a standard

processor register in a way which could later be retrieved by another process or

virtual machine despite intervening context switches.

This was an early exploration of the security aspects of the processor hardware,

serving to test and refine processor simulation techniques and implementation

details.

5.3 Experiment 2: Micro Benchmarking

Having experimented with low-level simulations, processor architecture and data

transfer between privilege levels and across isolation contexts, the next stage was

to investigate the performance on real-world hardware: SMM was documented to

provide robust isolation, but could it easily provide sufficient performance for a

workable web server implementation?

After prototyping work on the Bochs hardware simulation, a physical target

system was required for performance tests. A Lenovo ThinkPad X200 was obtained

and loaded with the Libreboot free software project’s variant of the open-source

Coreboot firmware (Libreboot), including its SMI handler code which could then

be freely modified in theory. An unmodified ThinkPad T60, with similar hard-

ware but retaining the original manufacturer’s BIOS, served as control, backup

and development system, allowing testing of SMM code under the Qemu-KVM

virtualisation system in conjunction with the related SeaBIOS project (SeaBIOS).

The first performance tests focus on comparing the raw latency penalty im-

posed by the architecture on transitions between userspace and either kernel mode

CHAPTER 5. METHODOLOGY 44

or SMM as appropriate. This would give an early indication of the viability of the

overall approach to explore later, as well as determining how much effort might be

required to optimise the design for performance to be viable.

Each test consists of executing the function under test multiple times, recording

the elapsed time and calculating the time per iteration from that. To ensure

consistency, each test was repeated multiple times and checked for outliers.

Timing is measured in two ways: the system ‘time of day’ clock (which records

times in microseconds) and, for the T60 and virtualised system, the processor

Time Stamp Counter (read via the RDTSC instruction). On recent Intel processors,

including those in use here, the time stamp counter advances at a constant rate

regardless of power saving modes or clock speed, making this a useful timing

measurement. (On earlier implementations, the TSC rate varied with processor

speed, making this usage more problematic.)

The operations tested are listed in Table 5.1. Each set of measurements was

performed on each test system, to provide a baseline for interpreting performance

figures later.

The source code for the tests is included in B, with details of the processor

(E), Linux kernel (D) and compiler version (C) used in the tests. The test code

was compiled with level 2 optimisation (‘-O2’), for x86-64, in each case. To gather

statistical details about the distribution of each individual operation, the test code

optionally records the TSC value after each; for the overall operations, to avoid

the extra overhead, a consecutive sequence of runs is timed without recording

timestamps in between, by compiling with the BATCHONLY flag. (For the 1,000,000

iterations of getpid, 8,000,000 bytes of values are written out to memory, almost

four times the size of the L2 cache, although writing the values to disk is deferred

CHAPTER 5. METHODOLOGY 45

Operation Purpose
NOP SMI Round trip to/from SMM

open-close System call requiring access to kernel memory
getpid Trivial system call to reflect minimal kernel transition cost

Table 5.1: Operations tested in micro-benchmarking

Model X200 T60 Qemu-VM
CPU Core 2 Duo P8400 Core 2 Duo T5600 Core 2 Duo T5600

Clockspeed 2.26 GHz 1.83GHz 1.83GHz
RAM 4 GiB 3 GiB 1 GiB
BIOS Libreboot Lenovo original SeaBIOS

Table 5.2: Test platforms for benchmarking

until after the timed portion.)

(Ordinarily the getpid function is accessed via vDSO for performance reasons

— the kernel puts a copy of the PID in the process’s own memory space and

provides a function to retrieve that directly, avoiding the userspace-kernel round

trip, but in order to measure that round trip the legacy system call is used here.)

The resulting timing figures are shown in section 6.2.

5.4 SMRAM and SMM

The overall goal is to implement a proof of concept server, in which cryptographic

secrets are protected within an SMM enclave, bearing in mind the needs for ef-

ficiency and security: in particular, minimal overhead in each transition to/from

SMM, and presenting a minimal attack surface on the SMM component while

enabling the application counterpart to run with minimal privileges.

As noted earlier, the Sony PlayStation 3 uses a similar approach to isolating its

cryptographic keys: one of the Cell’s Synergistic Processing Elements is isolated

CHAPTER 5. METHODOLOGY 46

from the rest of system early in the boot process, functioning as a cryptographic

oracle exchanging messages with the rest of the system.

From the programmer’s perspective, this enclave will function in many ways

akin to a physical hardware device, passing messages in both directions via a page

of physical memory.

The starting point is a conventional web server, running as a normal unpriv-

ileged application (‘ring 3’) under Linux.

Entry to SMM requires triggering an SMI (System Management Interrupt).

Ordinarily, hardware interrupts cannot be triggered directly from user mode ap-

plications; first a system call would be required, to effect a transition to kernel

mode (‘ring 0’ on x86), then the corresponding kernel code would trigger the in-

terrupt on the application’s behalf. This, however, incurs additional overhead, two

mode transitions rather than one.

A more efficient approach is for the application to write to the I/O address

0xb2 as explained below.

Most modern processors implement a unified hardware memory map, in which

RAM and devices occupy the same address space; x86 has two distinct memory

spaces, a 64 kilobyte legacy space accessed via the IN/OUT set of instructions, and

a much larger space accessed via standard memory operations.

For devices mapped into the main memory space, the usual memory permis-

sions apply: the appropriate 4 kilobyte (or larger) page could be mapped with

appropriate permission bits set. The I/O space has different, fine-grained permis-

sions: the IOPB (I/O Permissions Bitmap) within the TSS (Task State Segment)

controls whether access is granted or not to any given byte within the I/O address

space. On Linux, the ioperm system call may be used to enable access to any

CHAPTER 5. METHODOLOGY 47

specified I/O address.

To make use of the cryptographic enclave services, the userspace code must first

allocate and lock a page of physical memory, determining the underlying physical

address via the Linux /proc/self/pagemap virtual file and communicating this

to the SMM enclave at initialisation time. This shared page can then be used as

a mailslot for exchanging data: the userspace (ring 3) code interacts directly with

the SMM cryptographic code, without transitions to/from the kernel in between.

5.5 Experiment 3a: Protocol Verification

Through the use of Google’s established BoringSSL variant of the open-source

OpenSSL project codebase, much of the protocol-handling work required to deliver

a functional implementation of HTTPS was simplified. Other implementations in-

cluding the original OpenSSL were experimented with early on, but BoringSSL is

simplified and well-maintained making it better suited here, as CloudFlare con-

cluded for a large-scale use case with some similar elements to this work, notable

the private key handling callback mechanism as opposed to OpenSSL’s ‘engine’

approach: Make SSL boring again.

As a minimum, any server must have a signed ‘certificate’ which identifies the

server name and the cryptographic public key to be used for communication. In a

typical public deployment, the certificate will be signed by a CA such as Comodo

or GlobalSign which is already trusted by the common web browsers: the HTTPS

server at 2a00:1450:4009:80f::2004 presents a certificate asserting that it is

‘www.google.com’, GlobalSign sign the certificate asserting that this is verified1,
1In fact, GlobalSign’s certificate ‘GlobalSign Root CA R2’ merely asserts that ‘Google In-

CHAPTER 5. METHODOLOGY 48

and web browsers then trust this assertion as a result.

For experimental purposes, a ‘self-signed’ certificate is sufficient: the crypto-

graphic mechanisms are identical, but most client applications will alert the user

to the unknown identity of the server before proceeding.

For public demonstration and early testing purposes, two of the three most

popular web browsers provide good examples (Google Chrome has held a substan-

tial lead in popularity throughout the duration of this project, while Microsoft’s

Internet Explorer and Mozilla Firefox have alternated between second and third

place).

For automated protocol testing, the standard Unix utilities curl and wget

are both well-established, with the former in particular being noted for protocol

support: early support for the new HTTP2 protocol and Brotli compression al-

gorithm, as well as easy integration into various other platforms via the libcurl

library and associated language bindings.

Once basic functionality was established, more extensive protocol functionality

and compatibility testing is available via a variety of published testing tools. A

combination of two established test suites, the Qualys SSL Labs tool (Qualys 2014)

and textssl.sh (Wetter 2016) provide a substantial and well-regarded array of

tests for both compatibility with a variety of simulated client applications and

platforms and testing for various common implementation errors, such as accepting

weak or invalid cryptographic keys, obsolete algorithms or allowing inappropriate

key reuse. During development, the Wireshark packet capture/analysis tool was

also invaluable for debugging interoperability issues between the test server and

ternet Authority G3’ can be trusted, and that certificate in turn validates that in use on
www.google.com.

CHAPTER 5. METHODOLOGY 49

client applications.

The goal of this experiment was to achieve a working server with demonstrated

broad client compatibility, through a combination of manual client application

testing and the automated test suites.

5.5.1 Tool: Wireshark

Wireshark is an established open-source network traffic capture and analysis tool,

originally released under the name Ethereal around 1998. The graphical interface

now features advanced packet dissection tools, advocated for TCP/IP teaching in

lab sessions (Wang, Xu and Yan 2010) — as it now includes the ability to interpret

SSL/TLS message structures in the same way, this makes it an excellent diagnostic

and testing tool for this experiment as well.

5.5.2 Tool: Qualys

The protocol parameters and configuration were largely chosen in accordance with

Qualys 2014 for best practice (with certain justified deviation: for example, OCSP

stapling and HTTP Strict Transport Security are not applicable when not using

publicly trusted certificates, and both TLS session reuse and HTTP keepalives

are performance enhancements which would just impede the performance testing

later). These configuration details and a set of known common issues are em-

bodied in the Qualys SSL Labs test suite, along with a system for simulating the

cryptographic handshake processes used by a variety of HTTP client applications

and host platform versions (for example, different versions of Google Chrome on

Windows XP, Windows Vista and others).

CHAPTER 5. METHODOLOGY 50

5.6 Experiment 3b: Process Isolated Key Hand-

ling

This experiment modified the initial test bed HTTPS server to segregate the cryp-

tographic private key used outside the main server process. As noted earlier, this

separation provides some additional security protection (a compromise of the main

server application, as in Heartbleed, would no longer be sufficient to expose the

server key) akin to that presently deployed commercially by CloudFlare, reflecting

an intermediate position on the spectrum between the full isolation of SMM or

other mechanisms and unprotected key handling.

No new tooling was involved in this experiment, just additional coding (using

a page of shared memory and two file descriptor pairs from the pipe system call to

synchronise the interaction between the two processes) and re-running the previous

experiment’s interoperability tests to guard against regressions. (Any change in

code potentially introduces new flaws; ensuring at each stage that the code under

test is still a fully functioning SSL/TLS implementation, rather than ‘completing’

the benchmark without correctly performing all the steps involved.)

5.7 Experiment 3c: HTTPS Performance Test-

ing

This experiment tests the full spectrum of key handling options, including SMM

hardware-assisted key isolation, and studies the performance impact of using each.

In particular, measuring the number of requests per second handled in each con-

CHAPTER 5. METHODOLOGY 51

figuration to identify the additional overhead contributed by the use of SMM to

isolate the cryptographic private key and associated code compared to the con-

trol option (no isolation at all) and the simple option (using a separate user-space

process for isolation).

To isolate the cryptographic aspects, the simplest possible HTTP situation is

ideal: a single very small piece of static content, being requested as many times

as possible per second with each request over a fresh encrypted connection using

a fresh session key.

In a ‘real’ web server situation, multiple requests will normally be sent over a

single connection, and the client and server will agree to re-use the existing keys

from a previous connection rather than perform a fresh handshake each time. This

will amortise the overhead of the initial cryptographic handshake across multiple

connections. (The server may also be hosting multiple web sites with distinct

keys, although major installations such as Google and CloudFlare share keys and

certificates across hostnames.)

Both of these factors make the measurements from this experiment a ‘worst

case’ scenario for the performance impact of SMM key isolation, leaving room for

improvement as discussed later.

The technical details of the overall design and operation of the server code are

described later in this chapter.

To quantify the performance impact of the Qemu-KVM virtualisation system

used to test the SMM version, the other two tests take place on both the bare

metal test system and under Qemu-KVM. Each performance test is run at four

different response sizes: 1k, 10k, 100k and 1MiB, to determine the effect this has.

The four sizes were chosen to cover a broad range of possible scenarios, including

CHAPTER 5. METHODOLOGY 52

ID Description
0 Control - keys handled directly in-process, no isolation
1 Process separation - keys handled in separate worker process
2 SMM separation - keys handled in SMM

Table 5.3: Configurations tested in experiment 3

an extreme case of very small payloads in which the initial connection setup and

handshake will dominate, up to a size more likely to be representative of real

web content (MachMetrics 2018): a total page size of 2 MiB will be comprised of

multiple objects.

5.7.1 Tool: http_load

The free http_load tool from ACME (http_load) provides a simple HTTP load

generator with optional support for HTTPS.

5.8 Server Implementation

The long-established OpenSSL (originally SSLeay, by Eric Young) library provides

all the code necessary for both client and server SSL/TLS implementations, and

had been extended with ‘engine’ functionality for applications to make use of

hardware acceleration devices as well.

After some high-profile security issues highlighted long-standing maintenance

and code hygeine issues with this codebase, two forks were created to provide a

better service, LibreSSL (under the auspices of the OpenBSD project) and Bor-

ingSSL (under Google). Of particular relevance to this project is the addition

of SSL_PRIVATE_KEY_METHOD, allowing application code to make indirect use of

CHAPTER 5. METHODOLOGY 53

a private key to which it does not have access – precisely the facility the SMM

enclave is intended to deliver.

Combining the BoringSSL library and the SMM cryptographic enclave creates

a single simple HTTPS-capable web server which can operate in three modes:

handling the public key cryptography and keys in-process (the ‘traditional’ ap-

proach used by most web servers today, where any server compromise exposes the

private key as in the Heartbleed bug), across a conventional Linux process bound-

ary (akin to the privilege separation added to OpenSSH in 2002 (Provos, Friedl

and Honeyman 2003), giving some protection) or using the SMM enclave (in which

even a root or kernel level compromise does not expose the private keys: the keys

are generated within SMM and never exposed outside this enclave). The relative

performance of all three modes can then be tested and compared, with minimal

artefacts from the difference between implementations.

5.9 Enclave Implementation

To create the SMM enclave itself, the code must be loaded early in the system

boot process. (Specifically, at power-up, the protected SMRAM area can still be

configured and accessed by enabling the D_OPEN bit, until the D_LOCK bit is set to

prohibit further access from outside SMM.)

Once loaded, this code is entered whenever the SMI (Systems Management

Interrupt) is triggered. On entry, the existing register contents are all saved within

the SMRAM State Save Map, so invoking SMI after loading the physical address

of the mailslot page into a register is sufficient to establish communication. (A

single 4k page is ample for passing signatures and public keys.)

CHAPTER 5. METHODOLOGY 54

5.10 Certificate Signing

For a web server to be accepted as ‘valid’ for a given name, it must present a

signed certificate asserting ownership of that name, signed by either a trusted root

Certificate Authority (CA) directly, or an intermediate certificate which is itself

trusted.

This is a two stage process. First, a Certificate Signing Request must be

generated, containing a copy of the server’s public key and a signature using the

private key (the private key itself is never exposed).

Secondly, this CSR must be submitted to and accepted by the CA. Originally,

this was done manually using human verification of documents and credentials;

this still applies for ‘Extended Validation’ certificates, but for standard ‘Domain

Validation’ certificates this process can now be entirely automatic.

Specifically, the free LetsEncrypt CA allows ownership of a name to be verified

by publishing specific challenge response values in the DNS entries of the name

in question, without the server ever having to be publicly accessible. (This is

one variant of the ACME — Automated Certificate Management Environment —

protocol; other variants use the TLS SNI handshake process and HTTP messages

respectively to accomplish similar results via other protocols.)

This allows a public-private keypair to be generated within the SMM enclave,

issued with a valid certificate, then used to host a secured website for testing and

demonstration purposes, without ever exposing the key material externally.

For testing purposes, however, this external signing step is not necessary: a

‘self-signed’ certificate is sufficient.

CHAPTER 5. METHODOLOGY 55

5.11 Performance Testing

As the cryptographic code is unmodified – a standard x86/x86-64 implementation

of the elliptic curve algorithms – the key performance metric is the additional

overhead introduced by transitions to and from SMM.

For context, this should be compared with the overhead entailed in a context

switch between usermode processes (as applies where the cryptographic code is run

in a separate process, as CloudFlare does in their content delivery network’s edge

devices) and user-kernel mode transitions (particularly after implementation of the

KPTI changes to mitigate the Spectre/Meltdown security issues). Experiments 2

and 3c quantify these.

For a better indication of the real-world performance impact, standard HTTPS

benchmarking — downloading static content over encrypted connections in each

configuration tested — gives indicative throughput speeds.

5.12 Security Testing

While web server performance testing is a well studied and long-established field

(Trent and Sake 1995, Banga and Druschel 1999), security is more nebulous. In this

context, the architecture is intended to provide isolation, and substantial literature

has already studied the various possible routes to accessing SMRAM (Wojtczuk

and Rutkowska 2009 — cache aliasing, MTRR manipulation; Furtak et al. 2014

— early BIOS implementations which neglected to enable D_LOCK timeously). It

can also be verified empirically that the SMRAM-protected data/code is not ex-

posed, even to the kernel (via a scan of the Linux /dev/mem device, which can

CHAPTER 5. METHODOLOGY 56

be configured to expose the kernel’s view of the entire memory space). Since the

SMM protected data has no functioning address except while the processor is ex-

ecuting in SMM, exploits such as Spectre cannot access this data. (Physical level

attacks such as RowHammer or address line fault injection could still be effective;

potential countermeasures to such attacks are discussed in section 3.4.)

5.13 Summary

A set of experiments is described which will serve to explore the functionality of

SMM in this context and test the hypothesis presented earlier, while also quanti-

fying the performance impact of each approach.

6
Results

6.1 Introduction

This chapter describes the experimental results obtained, with an explanation of

the testing methodology used to obtain them.

57

CHAPTER 6. RESULTS 58

6.1.1 Processor Level Backdoor

This experiment successfully demonstrated a proof of concept simulation of a

processor-level backdoor, exploitable from unprivileged code (including Javascript

executing within an unprivileged sandbox within a web browser) yet undetectable

without specific prior knowledge of the backdoor details.

For demonstration purposes, a file was encrypted using the command line

OpenSSL tools on an unmodified Windows XP virtual machine (as provided by

Microsoft). Cryptographic verification of the system confirmed it was unmodified,

and malware scans were negative, as the only modification was to the simulated

processor core itself.

After the encryption operation had been performed, the demonstration web

page was loaded in the Internet Explorer web browser. The page loaded normally,

with no abnormalities visible to the user — but the encryption key used in the

previous stage was now shown to have been covertly uploaded to the web server,

encoded within the URL of an image on the page.

The example code to exploit this appears in Listing 6.1, producing an HTTP

request as shown in Listing 6.2.

6.1.2 TLS — Protocol Verification

Once the HTTP-over-TLS (HTTPS) server was implemented, a variety of protocol

interactions were tested. Initially standard HTTPS clients (wget, curl, Mozilla

Firefox and Google Chrome) were used, and any issues encountered resolved; after

this, the more comprehensive industry standard test suite SSL Labs from Qualys

was employed, with results shown in Figure 6.3.

CHAPTER 6. RESULTS 59

Listing 6.1: Floating point backdoor exploit
// Perform the r i g g e d FDIV fou r t imes :
var a =1.91207592522993E+306/1.91207592522993E+306;
var b=1.91207592522993E+306/1.91207592522993E+306;
var c =1.91207592522993E+306/1.91207592522993E+306;
var d=1.91207592522993E+306/1.91207592522993E+306;
i f (a !==1) { // Resu l t w i l l be 1 on untampered CPU

var k=a . t o S t r i n g (16)
+ ’ , ’+b . t o S t r i n g (16)
+ ’ , ’+ c . t o S t r i n g (16)
+ ’ , ’+d . t o S t r i n g (1 6) ; // Concatenate the 4 va lu e s

// Now put that key in the URL o f the f i r s t image :
document . images [0] . s r c =’?n=’+k ;

}

Listing 6.2: Resulting HTTP request to server
GET / f l o a t b a c k . php?n=efbeadde ,77665544 , bbaa9988 , f f e e d d c c

HTTP/1 .1

CHAPTER 6. RESULTS 60

Figure 6.3: Qualys SSL Labs test results

The “T” score indicates a Trust issue — the test server is not configured with

a publicly trusted certificate, issued by a genuine Certification Authority such as

Verisign or LetsEncrypt — but all cryptographic and protocol aspects are correct;

the test suite proceeds to simulate the cryptographic handshakes of a variety of

common browsers. With the exception of Google Chrome on Windows XP Service

Pack 3, which experiences a handshake failure, all compatible clients negotiate and

connect correctly.

6.2 Micro-benchmarks

One important comparison is between the two full mode transitions (SMM and

kernel mode) — particularly with the KAISER/KPTI enhanced isolation added

CHAPTER 6. RESULTS 61

to the latter as mitigation to the Spectre/Meltdown exploits. (The getpid system

call was chosen as the most trivial, since it only copies a non-sensitive constant

integer; the open system call will be reading the file system cache, which is not

readable from user mode, so incurs greater overhead in a full transition to restore

access to kernel data.)

Since the secured server being developed in this project achieves the security

benefits by transitioning into SMM before performing each signing operation, the

relative performance impact of this change is indicated by the relationship between

the ‘signing’ and ‘SMM’ figures: the signature operation in isolation takes a little

less than the round-trip to and from SMM, 1.6 million processor ticks versus 2.4

million.

In normal usage getpid is faster than this, avoiding a system call entirely by

returning the process’s own copy of this value directly via a mechanism known as

vDSO (Virtual Dynamic Shared Object).

The timing figures are shown in Table 6.1. Unfortunately the X200 system

failed during testing, so further results could not be recorded; the remaining tests

had to be performed on the fallback system alone, the T60.

SMI calls caused the unmodified T60 control laptop to freeze; this appears to

be a known long-standing issue with the stock Lenovo BIOS (Ubuntu 2011).

The relative performance of the two hardware test platforms is indicated by

comparing the first two columns (indicating the T60 has just under half the speed

of the X200 on system calls), while comparing the two pairs of T60 figures (‘T60’

represents the test code running directly under Linux, ‘T60 Qemu-VM’ represents

the same code executed under Qemu-VM simulation) indicates the relative per-

formance penalty of the simulation system itself: approximately three orders of

CHAPTER 6. RESULTS 62

magnitude slowdown (a factor of 1,000). On the most trivial system call, the addi-

tional overhead of simulation dominates (as shown by the much smaller difference

between getpid and open/close times), but the relative performance of SMI invoc-

ation and open/close calls is more similar: 88 times slower in simulation versus

149 times slower on bare metal.

Statistics on the distribution of timings are shown in Table 6.2 and Table 6.3,

obtained from running the output of the code in Appendix B through the Perl

Statistics::Descriptive::Full library.

The maximum times for all operations are extreme outliers — around 3-5

million ticks on bare metal, around four times as high under KVM. Each indicates

the test application was interrupted during that operation for something of the

order of 2-20 ms.

The additional KVM overhead is most apparent when comparing the getpid

operations (a median more than 17 times slower), closing to a factor of 7 for

open-close and no discernable difference on cryptographic operations performed

in userspace.

The SMI transition overhead is less uniform, with the upper quartile more than

55% higher than the lower — an interesting characteristic, worthy of further study

elsewhere.

Operation X200 T60 T60 Qemu-KVM
Units µs µs TSC µs TSC
NOP SMI 448 Not available 1310 2.4m
open/close 3 7.1 3900 26 26k
getpid 0.4 1.1 620 21 12k
Signing Not available 878 1.606m 905 1.65m

Table 6.1: Execution time for system calls and SMI invocations

CHAPTER 6. RESULTS 63

Operation Minimum 1st Quartile Median 3rd Quartile Maximum
getpid 1133 1155 1155 1155 5211503
open-close 6347 6479 6512 6545 3776872
sign 1534995 1542285.25 1544378 1547757.75 2924856

Table 6.2: Execution time (TSC ticks) on bare metal

Operation Minimum 1st Quartile Median 3rd Quartile Maximum
getpid 20229 20295 20317 20361 33031357
open-close 44902 45397 45496 45595 29565196
sign 1536480 1543069 1546578 1596921 12533972
SMI 2235276 2326436.75 2921712.5 3618389 26339800

Table 6.3: Execution time (TSC ticks) under KVM

6.3 Macro-benchmarks

The performance recorded is shown in Figure 6.4.

The performance overhead of simulation as opposed to direct execution is ap-

parent. Across the range of request sizes tested, physical hardware is consistently

and proportionally faster than simulated. As the request size increases, the differ-

ence between SMM and other modes diminishes to less than 10% at the largest size,

one MiB. Reasons for this, and the implications, are discussed in subsection 7.2.5.

6.4 Summary

Experiment 1 demonstrated the feasibility of a well concealed backdoor existing

only on a hardware level, with no software modifications of any kind: a useful

result in itself, confirming the importance of either being able to trust your CPU,

or having robust precautions such as full airgap isolation in place, even after the

sensitive information appears to have been discarded: small amounts of informa-

CHAPTER 6. RESULTS 64

1k 10k 100k 1M
0

500

1,000

1,500

Response size

R
eq

ue
st

s
pe

r
se

co
nd

Performance in each configuration

T60 0
T60 1
Q 0
Q 1
Q 2

tion, such as the cryptographic keys being captured and then exfiltrated in this

demonstration, can be covertly retained indefinitely for later retrieval.

Experiment 2 determines the mode transition costs for SMM entry and exit:

non-trivial, but comparable to the time cost of the signing operation being protec-

ted, and substantially lower than for entry to Intel’s SGX particularly when trans-

ferring any amount of data to the protected ‘enclave’ environment. (SMM can

access shared data directly without performance penalty, while SGX’s transition

costs increase rapidly to 250 ms for relatively modest buffer sizes.) Experiment 2

also validates the use of SMM simulation for later tests and development work,

since relative performance on non-trivial operations appears consistent within a

factor of two of bare metal execution.

Experiments 3a-3c combine to demonstrate a working HTTPS server and es-

tablish an upper bound on the performance or latency cost of isolating the keys in

two different ways, validating the original hypothesis about SMM’s suitability for

this technique. At the smallest extreme of payload sizes, where the cryptographic

CHAPTER 6. RESULTS 65

handshake for each new connection dominates, the additional SMM overhead is

of a similar magnitude; as the size increases, the impact of this extra overhead on

overall throughput rapidly diminishes.

7
Discussion

7.1 Introduction

This chapter analyses the experimental results described previously and describes

their implication in the context of this research, along with discussion of potential

further work building on this foundation.

66

CHAPTER 7. DISCUSSION 67

7.2 Analysis of Results

7.2.1 Experiment 1: Backdoor

The floating-point backdoor experiment demonstrated a useful outcome in simula-

tion: a hardware-only modification, exploitable from an unprivileged web page yet

undetectable without specific prior knowledge of the backdoor’s implementation.

7.2.2 Experiment 2: Microbenchmark

This experiment explored the performance impact of each transition round-trip

between SMM and userspace code, compared to that of trivial and non-trivial

system calls (which require an analogous transition to/from ring 0, kernel mode).

On a kernel with Spectre/Meltdown mitigation in place as detailed in section 2.5,

causing the memory mappings to be flushed on every transition, a non-trivial

operation (open and close a cached file) is almost a full order of magnitude slower

than a trivial one (getpid, which just copies the integer process PID from the

kernel task_struct). Executing an SMI on the first test platform is two orders of

magnitude slower still — 448 µs — but this is fast enough for over 2,000 transitions

per second: sufficient to justify proceeding to stage 3 without further performance

optimisation yet. (For comparison, Intel’s SGX enclave is reported in (Gjerdrum

et al. 2017) to take as much as 250 ms with half-megabyte buffers, almost three

orders of magnitude slower than SMI entry, and substantially slower even without

significant data transfer — on an Intel Core i5-6500 CPU at 3.20 GHz with four

logical cores and 2×8 GB ofDDR3 DIMM DRAM, significantly faster hardware

than used for these SMM tests.)

CHAPTER 7. DISCUSSION 68

The simulation platform used for later testing was significantly slower than

running on bare hardware, but for non-trivial operations the relative performance

was still comparable.

Performance aspects and possible future optimisation opportunities are noted

later in this chapter.

7.2.3 Experiment 3a: Protocol Handling

Once developed, the experimental server was validated with a variety of common

HTTPS client programs (curl, wget, Mozilla Firefox and Google Chrome), then

tested more thoroughly using the Qualys SSL Labs test, as noted in chapter 6.

The server was operating without a publicly trusted certificate in place, but was

otherwise fully compliant, attaining an ‘A’ score for the SSL/TLS implementation

and completing all but one of the applicable simulated crytographic handshake

sequences successfully. (That exception was an old version of Google Chrome from

2016 on Windows XP Service Pack 3; as Mozilla Firefox on the same platform and

newer versions of Chrome on other platforms interoperate correctly, this issue did

not seem worthy of closer examination for now.)

7.2.4 Experiment 3b: Process-isolated Key Handling

This verified the feasibility and performance impact of segregating the private key

handling from other web server functionality, compared to the typical approach

of handling keys directly within the main server. When the Heartbleed bug was

discovered, allowing an attacker to read arbitary blocks of memory from within

the target process, this approach led to many keys being compromised and forcing

CHAPTER 7. DISCUSSION 69

urgent revocation and replacement.

By generating and holding the private key in a separate process, this would

have been mitigated: some confidential information could still have been exposed,

but the server keys at least would have remained safe — and the same isolation

approach could be extended for other sensitive data such as credit card numbers

or unencrypted passwords.

7.2.5 Experiment 3c: HTTPS Performance Testing

With a working HTTPS implementation using SMM security, full service testing

and comparison against the non-SMM options gives the best indication of SMM’s

performance impact in the worst case. (As noted later, multiple options exist for

reducing this impact if necessary.)

The relative performance on simulated hardware corroborates the micro-

benchmark results: performing the cryptographic handshake computations in

SMM approximately halves the rate at which handshakes are performed, causing

a corresponding slowdown on the smallest requests (where this aspect dominates

the overall server performance), falling to around 10% with 1 MiB requests.

The effect of size is to be expected: SSL/TLS uses two levels of encryption.

First, the connection is established using public key cryptography. This handshake

process negotiates two pairs of keys which are then used to encrypt and sign the

data exchanged, and has a fixed computational cost regardless of the volume of

data transferred later. Secondly, the request and response are encrypted and signed

using those keys, taking time proportional to the volume involved. So, on small

requests the former aspect dominates performance; on larger requests, the latter

CHAPTER 7. DISCUSSION 70

becomes dominant.

The performance shown on the smallest requests, 572 1k requests per second, is

also consistent with the bare metal SMM transition measurements from experiment

2 of 448 µs on a processor with approximately twice the performance (a higher

clock speed and faster memory bus).

7.3 Hypothesis

The initial hypothesis was that SMM can be used to protect sensitive data such

as cryptographic key material in a web server environment. The experimental

results shown previously demonstrate that the approach is technically feasible,

quantifying the performance impact — variable, determined by the size of objects

being retrieved, from a worst case 50% slowdown on very small sizes, falling to

10% at 1 MiB.

7.4 Performance

7.4.1 Batch signing

The proof of concept server under test here performs a single cryptographic opera-

tion on each entry to SMM, then returns immediately. For a busy server, batching

up operations and checking for additional queued requests before returning would

allow the entry cost to be amortised across multiple requests, boosting throughput

significantly.

For example, performing a batch of 10 signatures per transition could be ex-

pected to effectively reduce the transition overhead by 90% (at the expense of a

CHAPTER 7. DISCUSSION 71

slight increase in latency to assemble each batch), rendering the overhead negligible

(around 1%) for 1 MiB files.

7.4.2 Multiple cores/threads

In the standard Coreboot SMI handler, all cores receiving an SMI suspend execu-

tion until the handler routine completes execution on one core: the rest execute

a REP NOP or PAUSE opcode (f3 90), which halts execution on that core until the

next memory bus activity. The source code indicates this is done ‘for security

reasons’ (Google 2013) without elaboration.

Allowing concurrent execution of SMM and non-SMM code may have security

implications as implied by Google’s Coreboot documentation, but multiple cores

could be used to perform multiple crytographic operations in parallel to improve

performance without creating additional issues.

7.5 Hardware alternatives

The primary alternative to this approach, where enhanced security is needed com-

pared to direct key handling without extra isolation, is to use a dedicated crypto-

graphic hardware device. Some PCs and servers are now equipped with a TPM

(Trusted Platform Module), which provides a dedicated cryptographic and storage

facility, with a fixed set of algorithms, limited storage and minimal performance

(Bajikar 2002).

More advanced high-performance devices were commonly used for high-end

services (Anderson et al. 2006) for a combination of performance and security

reasons, but by 2007 software exploiting GPU acceleration reached comparable

CHAPTER 7. DISCUSSION 72

performance to dedicated hardware (Manavski 2007), eroding this advantage even

before mass-market processors were optimised for this.

For the most sensitive applications, an HSM still offers security benefits, par-

ticularly where performance is less critical — Certification Authorities use them

to handle their long-validity signing keys, where the economic damage from any

compromise would pose an existential threat to that company, the global DNS

root, banks. Being specialist hardware, pricing is rarely public, but recent eBay

listings offered two Thales devices for $3,999.00 and $5,999.00 for their nCipher

nShield 500 and 6000 units respectively.

This work, then, occupies a middle ground between the high cost high security

specialist devices and the more limited security protection of conventional software

implementations; as noted in section 8.3, this approach could also be combined

with the intrusion countermeasures of HyperCheck/HyperGuard in future to en-

hance this security.

7.6 Security

The focus of this research was on protection against various classes of memory

attack such as buffer overflows, DMA attacks and cache manipulation.

On the experimental hardware platform used (and the majority of PCs) the

BIOS is stored in a Flash memory chip which can be reprogrammed directly in soft-

ware with only root privileges, which would allow an intruder with such access to

replace or modify the SMM cryptographic code and thus replace the cryptographic

keys with ones they could access. There are two well-established mitigations for

this: either hardware write protection (for example, some Chromebook devices

CHAPTER 7. DISCUSSION 73

have a screw which physically connects or disconnects a pin on the Flash chip to

prevent unwanted modification regardless of access privileges); others allow write

access to the BIOS only during a short window after reset, so updates are first

downloaded to RAM, then the system is rebooted. At each boot, the existing

BIOS checks for cryptographically signed updates waiting in RAM, and applies

the update if present; this way, barring either compromise of the signing keys

(Leyden 2017) or an exploit in the update mechanism, any intruder could only

apply an authorised update to the BIOS, not their own arbitrary updates. Both

mitigations could, of course, be combined if desired.

The test platform uses a relatively old processor design, predating Intel’s ad-

dition of the RDRAND and RDSEED random number generation instructions. For the

purposes of these experiments a simple pseudo-random number generator was used.

For any real deployment a secure high quality random number generator should

be substituted to avoid introducing weak or predictable keys; the special-purpose

instructions are available within SMM and would provide sufficient entropy on a

processor supporting them.

The attack surface of the cryptographic code running in SMM is intentionally

minimal, performing no network access: any attacker, having already obtained

privileged access to the target system, probing the SMM code would have access

only to a signing operation, allowing them to provide a 256 bit value and request a

signature of that. They could use this to obtain their own certificate corresponding

to the protected private key (of course, any user connecting to the server also has

access to download the certificate in use), and complete handshakes using that key

as long as they maintained access to the compromised system — but this gives no

persistence to the attacker, since the key itself remains protected.

CHAPTER 7. DISCUSSION 74

7.7 Summary

The initial hypothesis from section 1.3 is confirmed by experiments demonstrating

a functional web server using cryptographic keys secured through SMM isolation,

and an indicative upper bound is established on the resulting performance penalty

through multiple benchmarks.

8
Summary, Conclusions

8.1 Introduction

The starting hypothesis from section 1.3 was:

Secure isolation can be practically implemented using only the long-

established Systems Management Mode mechanisms, giving better se-

curity isolation than existing techniques such as process separation.

75

CHAPTER 8. SUMMARY, CONCLUSIONS 76

The performance impact of SMM has been explored both on bare hardware and

in virtualised form, and a proof of concept server demonstrated and benchmarked

successfully.

Even on relatively old legacy hardware, with additional overhead, the perform-

ance impact due to SMM isolation was not prohibitive — approximately doubling

the CPU time per handshake operation, causing a performance penalty falling from

50% on the smallest payload sizes (where the handshaking process dominates the

overall workload) to 10% at 1 MiB. Opportunities for mitigating this perform-

ance loss further are also identified, with micro-benchmarking figures giving some

indication what performance gain could be expected from this.

8.2 Dissemination

This work has already been depicted in a variety of conference poster presentations

and internal events. A paper was prepared and submitted for the ESSoS confer-

ence in Germany, but that conference was cancelled at short notice; revision and

resubmission of this paper for publication in an alternative venue is a promising

course of action.

The two main pieces of source code used in this project are incorporated as

appendices to this thesis; upon completion of the publication and review process,

the full project code will be publicly released to enable easy re-use in future devel-

opments.

Some practical issues encountered during testing have already been shared with

the LibreBoot team and are being addressed separately (in particular, the current

build tooling is fragile, easily getting into a state in which compilation no longer

CHAPTER 8. SUMMARY, CONCLUSIONS 77

succeeds).

8.3 Further Work

This work has confirmed the potential for new uses of SMM in a security context,

beyond that established by work such as (Wang, Stavrou and Ghosh 2010) on

SMM protection of hypervisor and system integrity previously.

The experimentation also identified significant limitations in current SMM un-

derstanding and tools — since other research has focused so heavily on virtualisa-

tion, hypervisors and OS-level development, the lowest level firmware components

have been largely neglected. Bugs in this area, when found in open source pro-

jects such as Qemu or production equipment such as the Thinkpad T60 used here,

are often neglected and worked around by avoiding use of those features (for ex-

ample, disabling the SMM-related power management functions on the T60 when

encountered) rather than fixed, since these have been seen as low priority issues.

In recent months news such as Spectre and Meltdown have brought new at-

tention to this area, researching low level hardware bugs and protection. Unlike

reactive patching, SMM isolation provides proactive protection against issues of

this type — hopefully this will bring new attention and resources to this previously

overlooked area, improving security for us all.

8.3.1 Intrusion countermeasures

The HyperGuard/HyperCheck projects leveraged SMM as an integrity checking

mechanism to detect and alert compromises of a system. These integrity checks

could in future be incorporated within this work: not only would the keys in SMM

CHAPTER 8. SUMMARY, CONCLUSIONS 78

remain protected, the compromise would be detected and appropriate responses

could be triggered, such as alerting the operator, clearing other data from the

system as a precaution and shutting down or suspending the compromised machine

to preserve evidence and prevent further exploitation.

8.3.2 Operation batching

As noted in subsection 7.4.1, significant gains in throughput are likely (in a server

situation) from performing multiple cryptographic operations per transition to

SMM and back: rather than passing individual requests immediately, combine

the requests into sets and process a full set each time. This would amortise the

transition cost across however many connection handshakes are being performed

in that batch, trading increased throughput for increased latency determined by

the batch size.

8.3.3 Multi core support

The SMI handler code in Coreboot pauses all cores on entry to SMM until the

one active handler completes processing. Google’s documentation indicates this

is for ‘security reasons’ without elaboration — isolation between cores is a sub-

ject of active research at present, so avoiding concurrent execution entirely is a

conservative response at the expense of some loss of throughput. With the im-

plementation of batched request handling, effective use of multiple cores could be

made without introducing new potential vulnerabilities since the code executing

on each core would be at the same privilege level anyway. Processor core counts

continue to increase, particularly in server environments, so the benefits here will

CHAPTER 8. SUMMARY, CONCLUSIONS 79

increase accordingly.

8.3.4 Additional algorithm support

This project’s proof-of-concept code implemented only 256 bit elliptic curve sign-

ing, to demonstrate an application using SSL/TLS with ECDHA-SECP256R1-

AES256-SHA256, sufficient for contemporary web browsers and benchmarking

tools with HTTPS — generalisation to other key sizes and cryptographic al-

gorithms would improve practical applications of this work in future.

8.3.5 Other applications and protocols

Particularly with the inclusion of other algorithms, the key protection and handling

techniques demonstrated here could be applied to other protocols and applications

such as SSH authentication, cryptocurrency transactions or a credential store akin

to Microsoft’s Credential Guard (which uses a special-purpose virtual machine to

isolate credentials from the primary OS on desktop systems).

The two-level keying of DNSSEC (Eastlake 1999), in which each domain has a

persistent Key Signing Key (KSK, to which the parent domain contains references)

and a shorter duration Zone Signing Key (ZSK), could lend itself well to this

system: each DNS server could generate a fresh ZSK within an SMM enclave on

startup and export only the public key portion, with a more isolated (and hence

less vulnerable to attack) system holding the KSK’s private portion, needed only

to sign a fresh ZSK when one of the DNS servers is installed or reset. This would

allow DNS content to be updated more easily than the full offline signing currently

used for sensitive domains with low update frequency.

CHAPTER 8. SUMMARY, CONCLUSIONS 80

8.3.6 Persistent storage

For the web server demonstrated in this project, creating a fresh keypair on initial-

isation is sufficient, but a mechanism for secure information persistence would be

useful for other applications such as authentication. This could be a remote server

(as in the case of credential caching, where a physically secured authentication

server issues the transient tokens for client devices to retain and reuse, perhaps

within a container such as Credential Guard), or a local component such as a or

simply a non-volatile storage chip with access gated by the SMIACT control line,

so only code executing within SMM can access it — similar to the mechanism

already used to guard the system firmware against unauthorised updates.

8.3.7 SMM experimentation kit

Firmware experimentation still has practical barriers to overcome compared with

application and operating system development. Early firmware inadvertently al-

lowed the replacement of the SMI handler code by leaving the D_LOCK flag

clear, enabling early SMM keyloggers and ‘bootkits’ to be installed without modi-

fying the system firmware itself — a security issue, hence urgently patched, but

also beneficial to experimenters. Restoring the legitimate uses of this without also

restoring the security problems would be useful: perhaps a physical key or cir-

cuit jumper to permit experiments. Alternatively, a system which made use of

SMM enclave code could be built with a cryptographic key, allowing signed code

to be loaded (with appropriate verification) to configure or enhance functionality

without replacing the system BIOS.

Open source projects such as Qemu, Bochs and CoreBoot/LibreBoot have

CHAPTER 8. SUMMARY, CONCLUSIONS 81

been invaluable in this work; commercial hardware developers such as Intel have

high precision simulators of their hardware for internal development use, and the

MPTLSim project (Zeng et al. 2009) led to the open-source MARSSx86 project

(Patel et al. 2011), but this appears to have ceased development in 2012.

As noted previously in section 8.2, the public release of the software developed

in this project is planned, hopefully in the form of a ‘kit’ to facilitate future

firmware and SMM experimentation, making this much more accessible for future

academic and open-source development.

Appendices

82

A
API Design

The design of the SMI component’s interface was driven by a preference for sim-

plicity and a minimal attack surface, derived after study of some existing uses of

SMI — in particular, a keylogger and the published information about simulating

legacy (pre-USB) keyboards for operating systems lacking USB support such as

MS DOS.

Required interactions:

• Generate keypair

83

APPENDIX A. API DESIGN 84

Offset (bytes) Size (bytes) Content
0 64 Public key (output)
64 32 SHA-256 hash to be signed (input)
96 32 Signature (output)

Table A.1: Message passing area layout

• Export public key

• Sign message

For this project, a single ‘mailbox’ page (4096 bytes) of memory sufficed. The

first two operations (generating a keypair and exporting the public key portion)

are combined.

For TLS/SSL purposes, signing a message (which may be of variable length)

consists of first hashing the message to produce a fixed-size message digest, then

signing that digest value with the private key.

A page of memory is requested from the operating system, locked in memory

with the mlock system call, then the underlying physical page address (determined

by looking the virtual address up in /proc/self/pagemap) is communicated to

the SMM handler. (Being ‘below’ the operating system, the SMM handler is not

subject to the virtual address mappings.)

The interface, as implemented in the do_smmcrypto function in the code shown

in Appendix F, requires loading a randomly chosen signature value (0x9a69ec01)

into the ECX register and the page location into EBX before triggering an SMI.

For the purposes of this work, a single TLS algorithm combination was chosen:

SHA-256 hashing with ECDSA on the SECP 256R1 elliptic curve, known as

ECDSA_SECP256R1_SHA256 — this is sufficient to provide compatibility with mod-

ern browsers for testing purposes, while the generalisation to different algorithms

APPENDIX A. API DESIGN 85

and key sizes is clear but not directly beneficial at this stage.

When first called, a keypair is generated and written to the start of the commu-

nications page. The server code uses this key to generate an unsigned Certificate

Signing Request, then calls the SMM handler a second time to sign this request.

For public use, at this point the signed request would be sent to a Certifica-

tion Authority, who would perform some checks and sign the request using their

own private key to produce a publicly-trusted certificate chain; for experimental

purposes, signing the certificate request using the same key again is sufficient,

producing a ‘self-signed’ key.

For each new network connection, the signing function is invoked again, after

writing the SHA256 hash of the message to be signed into the buffer. As noted in

subsection 7.4.1, overall throughput could be improved in future (at the expense

of some extra latency) by signing more than one message per invocation.

B
Micro benchmarking code

#define _GNU_SOURCE /∗ See fea ture_tes t_macros (7)

∗/

#include <sys / s y s c a l l . h> /∗ For SYS_xxx d e f i n i t i o n s ∗/

#include <sys / time . h>

#include <s t d i o . h>

#include <s t d i n t . h>

#include <s t d l i b . h>

86

APPENDIX B. MICRO BENCHMARKING CODE 87

#include <un i s td . h>

#include <sys / i o . h>

#include <sys / s t a t . h>

#include <f c n t l . h>

#define uECC_CURVE uECC_secp256r1

#include ” micro−ecc /uECC. h”

stat ic uint64_t r d t s c () {

unsigned int lo , h i ;

__asm__ __volatile__ (” r d t s c ” : ”=a” (l o) , ”=d” (

h i)) ;

return ((uint64_t) h i << 32) | l o ;

}

#ifndef BATCHONLY

stat ic uint64_t ∗ l a p t i c k s ;

stat ic void i n i t t i c k (int n) {

l a p t i c k s=mal loc ((n+1)∗ s i zeo f (uint64_t)) ;

i f (l a p t i c k s==NULL) {

f p r i n t f (s td e r r , ”Out␣ o f ␣memory␣ f o r ␣ t i c k ␣

counte r \n”) ;

abort () ;

APPENDIX B. MICRO BENCHMARKING CODE 88

}

l a p t i c k s [0]= r d t s c () ;

}

stat ic void t i c k (int n) {

l a p t i c k s [n+1]= r d t s c () ;

}

stat ic void t i c k s t o p (const char ∗name , int n) {

FILE ∗ l og=fopen (name , ”a”) ;

i f (! l o g) {

p e r r o r (” open␣ l og ␣ f a i l e d ”) ;

f r e e (l a p t i c k s) ;

return ;

}

for (int i =0; i<n ; i++) {

f p r i n t f (log , ”%lu \n” , l a p t i c k s [i +1]− l a p t i c k s

[i]) ;

}

f c l o s e (l o g) ;

f r e e (l a p t i c k s) ;

}

#endif

APPENDIX B. MICRO BENCHMARKING CODE 89

stat ic int usage (const char ∗name) {

f p r i n t f (s td e r r , ” Usage : \ t%s ␣<mode>\n” ,name) ;

return 1 ;

}

stat ic int s i g n (int i t e r s) {

uint8_t pr ivate_key [uECC_BYTES] ;

uint8_t publ ic_key [uECC_BYTES∗ 2] ;

// 32 random b y t e s s t and ing in f o r SHA256 hash o f

pay load f o r benchmarking

uint8_t hash []={0 x6b , 0 x73 , 0 x0c , 0 x63 , 0 xe4 , 0 x1b , 0 x17

, 0 x10 , 0 x13 , 0 x18 , 0 xe9 , 0 x94 , 0 x89 , 0 x75 , 0 x4c , 0 xfe , 0

xde , 0 x29 , 0 x7e , 0 xf7 , 0 xfc , 0 xe1 , 0 xef , 0 x62 , 0 xc1 , 0

x68 , 0 x7c , 0 x05 , 0 x52 , 0 xf0 , 0 x37 , 0 x0a } ;

uint8_t s i g n a t u r e [uECC_BYTES] ;

uECC_make_key(public_key , pr ivate_key) ;

#ifndef BATCHONLY

i n i t t i c k (i t e r s) ;

#endif

for (int i =0; i<i t e r s ; i++) {

uECC_sign (private_key , hash , s i g n a t u r e) ;

#ifndef BATCHONLY

t i c k (i) ;

APPENDIX B. MICRO BENCHMARKING CODE 90

#endif

}

return 0 ;

}

stat ic int s t _ s y s c a l l (int i t e r s) {

pid_t pid ;

#ifndef BATCHONLY

i n i t t i c k (i t e r s) ;

#endif

for (int i =0; i<i t e r s ; i++) {

pid=s y s c a l l (SYS_getpid) ;

#ifndef BATCHONLY

t i c k (i) ;

#endif

}

return 0 ;

}

stat ic int do_smi (int i t e r s) {

i f (! ioperm (0xB2 , 1 , 1)) {

#ifndef BATCHONLY

i n i t t i c k (i t e r s) ;

#endif

APPENDIX B. MICRO BENCHMARKING CODE 91

for (int i =0; i<i t e r s ; i++) {

outb (1 ,0 xb2) ;

#ifndef BATCHONLY

t i c k (i) ;

#endif

}

return 0 ;

}

return 1 ;

}

stat ic int st_open (int i t e r s) {

int fd ;

#ifndef BATCHONLY

i n i t t i c k (i t e r s) ;

#endif

for (int i =0; i<i t e r s ; i++) {

i f ((fd=open (”/ e t c /passwd ” ,O_RDONLY)) !=−1)

{

c l o s e (fd) ;

}

#ifndef BATCHONLY

t i c k (i) ;

#endif

APPENDIX B. MICRO BENCHMARKING CODE 92

}

return 0 ;

}

stat ic int t imer (char ∗name , struct t imeva l ∗ tvs , uint64_t

t i c k s t a r t , int n , int rv) {

struct t imeva l end ;

long int d e l t a ;

i f (! rv)

t i c k s t o p (name , n) ;

uint64_t t i ck end=r d t s c () ;

ge t t imeo fday (&end ,NULL) ;

d e l t a=end . tv_sec−tvs−>tv_sec ;

d e l t a ∗=1000000;

d e l t a+=end . tv_usec−tvs−>tv_usec ;

f p r i n t f (s td e r r , ”%s : ␣%d␣ i t e r a t i o n s ␣ in ␣%ld ␣ us/%ld ␣

t i c k s ␣(=␣%ld ␣ ns ␣/␣%ld ␣ t i c k s ␣ per ␣ c a l l) \n” ,name , n

, de l ta , t i ckend−t i c k s t a r t , 1000∗ d e l t a /n , (t i ckend−

t i c k s t a r t) /n) ;

return rv ;

}

int main (int argc , char ∗∗ argv) {

struct t imeva l s t a r t ;

APPENDIX B. MICRO BENCHMARKING CODE 93

uint64_t t i c k s t a r t ;

i f (argc !=2)

return usage (∗ argv) ;

ge t t imeo fday (& s t a r t ,NULL) ;

t i c k s t a r t=r d t s c () ;

switch (∗ argv [1]) {

case ’ c ’ : // Cryp tograph i c s i g n i n g

ope ra t i on

return t imer (” s i g n ” ,& s t a r t , t i c k s t a r t , 1 000 ,

s i g n (1000)) ;

case ’ o ’ : // open−c l o s e pa i r

#ifndef BATCHONLY

i n i t t i c k (1000000) ;

#endif

return t imer (” open ” ,& s t a r t , t i c k s t a r t

, 1000000 , st_open (1000000)) ;

case ’ s ’ : // NOP s y s c a l l

#ifndef BATCHONLY

i n i t t i c k (1000000) ;

#endif

return t imer (” ge tp id ” ,& s t a r t , t i c k s t a r t

APPENDIX B. MICRO BENCHMARKING CODE 94

,1000000 , s t _ s y s c a l l (1000000)) ;

case ’ i ’ : // NOP i n t e r r u p t

#ifndef BATCHONLY

i n i t t i c k (1000) ;

#endif

return t imer (” smi ” ,& s t a r t , t i c k s t a r t , 1 000 ,

do_smi (1000)) ;

}

return 0 ;

}

C
C compiler

C compiler version information, as reported by ‘gcc -V’.

Using b u i l t−i n sp e c s .

COLLECT_GCC=gcc

COLLECT_LTO_WRAPPER=/usr / l i b / gcc /x86_64−l inux−gnu/6/ l t o−

wrapper

Target : x86_64−l inux−gnu

95

APPENDIX C. C COMPILER 96

Conf igured with : . . / s r c / c o n f i g u r e −v −−with−pkgve r s i on =’

Debian 6.3.0−18+ deb9u1 ’ −−with−bugur l= f i l e : /// usr / share

/doc/ gcc−6/README. Bugs −−enable−l anguages=c , ada , c++,

java , go , d , f o r t r an , objc , obj−c++ −−p r e f i x =/usr −−program−

s u f f i x=−6 −−program−p r e f i x=x86_64−l inux−gnu− −−enable−

shared −−enable−l i n k e r −bui ld−i d −− l i b e x e c d i r =/usr / l i b

−−without−inc luded−g e t t e x t −−enable−th r eads=pos ix −−

l i b d i r =/usr / l i b −−enable−n l s −−with−s y s r o o t=/ −−enable−

c l o c a l e=gnu −−enable−l i b s td cxx−debug −−enable−l i b s td cxx

−t ime=yes −−with−de f au l t−l i b s td cxx−ab i=new −−enable−gnu

−unique−o b j e c t −−d i s ab l e−vtab le−v e r i f y −−enable−l ibmpx

−−enable−p lug in −−enable−de f au l t−p i e −−with−system−z l i b

−−d i s ab l e−browser−p lug in −−enable−java−awt=gtk −−

enable−gtk−c a i r o −−with−java−home=/usr / l i b /jvm/ java

−1.5.0− gc j−6−amd64/ j r e −−enable−java−home −−with−jvm−

root−d i r=/usr / l i b /jvm/ java −1.5.0− gc j−6−amd64 −−with−jvm

−j a r−d i r=/usr / l i b /jvm−expo r t s / java −1.5.0− gc j−6−amd64 −−

with−arch−d i r e c t o r y=amd64 −−with−ec j−j a r=/usr / share /

java / e c l i p s e −e c j . j a r −−with−ta rge t−system−z l i b −−enable

−objc−gc=auto −−enable−mult ia r ch −−with−arch−32=i686 −−

with−ab i=m64 −−with−m u l t i l i b − l i s t=m32 , m64 , mx32 −−enable

−m u l t i l i b −−with−tune=g e n e r i c −−enable−check ing=r e l e a s e

−−bu i l d=x86_64−l inux−gnu −−host=x86_64−l inux−gnu −−

t a r g e t=x86_64−l inux−gnu

APPENDIX C. C COMPILER 97

Thread model : po s i x

gcc v e r s i o n 6 . 3 . 0 20170516 (Debian 6.3.0−18+ deb9u1)

D
Linux kernel

Linux kernel boot messages from the main test system used.

Linux v e r s i o n 4.9.0−8−amd64 (debian−k e r n e l @ l i s t s . debian .

org) (gcc v e r s i o n 6 . 3 . 0 20170516 (Debian 6.3.0−18+

deb9u1)) #1 SMP Debian 4 .9 .144 −3 .1 (2019−02−19)

Command l i n e : BOOT_IMAGE=/boot / vmlinuz −4.9.0−8−amd64 roo t=

UUID=68e52d36−4090−4d3e−95ae−eebd7 f623a9e ro q u i e t

x86/ fpu : Legacy x87 FPU det e c t ed .

98

APPENDIX D. LINUX KERNEL 99

e820 : BIOS−prov ided p h y s i c a l RAM map :

BIOS−e820 : [mem 0 x0000000000000000−0x000000000009e f f f]

u sab l e

BIOS−e820 : [mem 0 x000000000009f000−0x 0 0 0 0 0 0 0 0 0 0 0 9 f f f f]

r e s e r v e d

BIOS−e820 : [mem 0 x00000000000d2000−0x00000000000d3 f f f]

r e s e r v e d

BIOS−e820 : [mem 0 x00000000000dc000−0x 0 0 0 0 0 0 0 0 0 0 0 f f f f f]

r e s e r v e d

BIOS−e820 : [mem 0 x0000000000100000−0x 0 0 0 0 0 0 0 0 b f 6 c f f f f]

u sab l e

BIOS−e820 : [mem 0 x00000000bf6d0000−0x 0 0 0 0 0 0 0 0 b f 6 d e f f f]

ACPI data

BIOS−e820 : [mem 0 x00000000bf6df000 −0x 0 0 0 0 0 0 0 0 b f 6 f f f f f]

ACPI NVS

BIOS−e820 : [mem 0 x00000000bf700000−0 x 0 0 0 0 0 0 0 0 b f f f f f f f]

r e s e r v e d

BIOS−e820 : [mem 0 x00000000f0000000−0 x 0 0 0 0 0 0 0 0 f 3 f f f f f f]

r e s e r v e d

BIOS−e820 : [mem 0 x00000000fec00000 −0x 0 0 0 0 0 0 0 0 f e c 0 f f f f]

r e s e r v e d

BIOS−e820 : [mem 0 x00000000fed00000−0x00000000 f ed003 f f]

r e s e r v e d

APPENDIX D. LINUX KERNEL 100

BIOS−e820 : [mem 0 x00000000fed14000−0x 0 0 0 0 0 0 0 0 f e d 1 9 f f f]

r e s e r v e d

BIOS−e820 : [mem 0 x00000000fed1c000 −0x 0 0 0 0 0 0 0 0 f e d 8 f f f f]

r e s e r v e d

BIOS−e820 : [mem 0 x00000000fee00000 −0x 0 0 0 0 0 0 0 0 f e e 0 0 f f f]

r e s e r v e d

BIOS−e820 : [mem 0 x00000000f f800000 −0 x 0 0 0 0 0 0 0 0 f f f f f f f f]

r e s e r v e d

NX (Execute D i sab l e) p r o t e c t i o n : a c t i v e

SMBIOS 2 . 4 p r e s en t .

DMI: LENOVO 1951CZ1/1951CZ1 , BIOS 79ETE3WW (2 . 2 3)

09/12/2008

e820 : update [mem 0 x00000000−0x 0 0 0 0 0 f f f] u sab l e ==>

r e s e r v e d

e820 : remove [mem 0 x000a0000−0 x 0 0 0 f f f f f] u sab l e

e820 : l a s t_p fn = 0 xbf6d0 max_arch_pfn = 0 x400000000

MTRR d e f a u l t type : uncachable

MTRR f i x e d ranges enabled :

00000−9FFFF wri te−back

A0000−BFFFF uncachable

C0000−CFFFF wri te−p r o t e c t

D0000−DBFFF uncachable

DC000−DFFFF wri te−back

E0000−FFFFF wri te−p r o t e c t

APPENDIX D. LINUX KERNEL 101

MTRR v a r i a b l e ranges enabled :

0 base 000000000 mask F80000000 wr i te−back

1 base 080000000 mask FC0000000 wr i te−back

2 base 0BF700000 mask FFFF00000 uncachable

3 base 0BF800000 mask FFF800000 uncachable

4 d i s a b l e d

5 d i s a b l e d

6 d i s a b l e d

7 d i s a b l e d

x86/PAT: Con f i gu ra t i on [0 −7] : WB WC UC− UC WB WC UC−

WT

found SMP MP−t a b l e at [mem 0 x000f6810−0x000 f 681 f] mapped

at [f f f f 9 0 8 d 0 0 0 f 6 8 1 0]

Base memory t rampo l ine at [f f f f 9 0 8 d 0 0 0 9 9 0 0 0] 99000 s i z e

24576

BRK [0 x89934000 , 0 x 8 9 9 3 4 f f f] PGTABLE

BRK [0 x89935000 , 0 x 8 9 9 3 5 f f f] PGTABLE

BRK [0 x89936000 , 0 x 8 9 9 3 6 f f f] PGTABLE

BRK [0 x89937000 , 0 x 8 9 9 3 7 f f f] PGTABLE

BRK [0 x89938000 , 0 x 8 9 9 3 8 f f f] PGTABLE

BRK [0 x89939000 , 0 x 8 9 9 3 9 f f f] PGTABLE

BRK [0 x8993a000 , 0 x 8 9 9 3 a f f f] PGTABLE

RAMDISK: [mem 0 x35cc5000−0x 3 6 e 5 9 f f f]

ACPI : Ear ly t a b l e checksum v e r i f i c a t i o n d i s a b l e d

APPENDIX D. LINUX KERNEL 102

ACPI : RSDP 0x00000000000F67E0 000024 (v02 LENOVO)

ACPI : XSDT 0x00000000BF6D1322 00008C (v01 LENOVO TP−79

00002230 LTP 00000000)

ACPI : FACP 0x00000000BF6D1400 0000F4 (v03 LENOVO TP−79

00002230 LNVO 00000001)

ACPI BIOS Warning (bug) : 32/64X l eng th mismatch in FADT/

Gpe0Block : 64/32 (20160831/ tb fadt −603)

ACPI BIOS Warning (bug) : Opt iona l FADT f i e l d Gpe1Block has

v a l i d Address but ze ro Length : 0 x000000000000102C /0x0

(20160831/ tb fadt −658)

ACPI : DSDT 0x00000000BF6D175E 00D467 (v01 LENOVO TP−79

00002230 MSFT 0100000E)

ACPI : FACS 0x00000000BF6F4000 000040

ACPI : FACS 0x00000000BF6F4000 000040

ACPI : SSDT 0x00000000BF6D15B4 0001AA (v01 LENOVO TP−79

00002230 MSFT 0100000E)

ACPI : ECDT 0x00000000BF6DEBC5 000052 (v01 LENOVO TP−79

00002230 LNVO 00000001)

ACPI : TCPA 0x00000000BF6DEC17 000032 (v02 LENOVO TP−79

00002230 LNVO 00000001)

ACPI : APIC 0x00000000BF6DEC49 000068 (v01 LENOVO TP−79

00002230 LNVO 00000001)

ACPI : MCFG 0x00000000BF6DECB1 00003C (v01 LENOVO TP−79

00002230 LNVO 00000001)

APPENDIX D. LINUX KERNEL 103

ACPI : HPET 0x00000000BF6DECED 000038 (v01 LENOVO TP−79

00002230 LNVO 00000001)

ACPI : SLIC 0x00000000BF6DEE62 000176 (v01 LENOVO TP−79

00002230 LTP 00000000)

ACPI : BOOT 0x00000000BF6DEFD8 000028 (v01 LENOVO TP−79

00002230 LTP 00000001)

ACPI : SSDT 0x00000000BF6F2655 00025F (v01 LENOVO TP−79

00002230 INTL 20050513)

ACPI : SSDT 0x00000000BF6F28B4 0000A6 (v01 LENOVO TP−79

00002230 INTL 20050513)

ACPI : SSDT 0x00000000BF6F295A 0004F7 (v01 LENOVO TP−79

00002230 INTL 20050513)

ACPI : SSDT 0x00000000BF6F2E51 0001D8 (v01 LENOVO TP−79

00002230 INTL 20050513)

ACPI : Loca l APIC addre s s 0 x f ee00000

No NUMA c o n f i g u r a t i o n found

Faking a node at [mem 0 x0000000000000000−0

x 0 0 0 0 0 0 0 0 b f 6 c f f f f]

NODE_DATA(0) a l l o c a t e d [mem 0 xbf6cb000−0 x b f 6 c f f f f]

Zone ranges :

DMA [mem 0 x0000000000001000−0 x 0 0 0 0 0 0 0 0 0 0 f f f f f f]

DMA32 [mem 0 x0000000001000000−0x 0 0 0 0 0 0 0 0 b f 6 c f f f f]

Normal empty

Device empty

APPENDIX D. LINUX KERNEL 104

Movable zone s t a r t f o r each node

Ear ly memory node ranges

node 0 : [mem 0 x0000000000001000−0x000000000009e f f f]

node 0 : [mem 0 x0000000000100000−0x 0 0 0 0 0 0 0 0 b f 6 c f f f f]

Initmem setup node 0 [mem 0 x0000000000001000−0

x 0 0 0 0 0 0 0 0 b f 6 c f f f f]

On node 0 t o t a l p a g e s : 783982

DMA zone : 64 pages used f o r memmap

DMA zone : 21 pages r e s e r v e d

DMA zone : 3998 pages , LIFO batch : 0

DMA32 zone : 12188 pages used f o r memmap

DMA32 zone : 779984 pages , LIFO batch : 31

Reserv ing I n t e l g r aph i c s memory at 0 x00000000bf800000−0

x 0 0 0 0 0 0 0 0 b f f f f f f f

ACPI : PM−Timer IO Port : 0 x1008

ACPI : Loca l APIC addre s s 0 x f ee00000

ACPI : LAPIC_NMI (acpi_id [0 x00] high edge l i n t [0 x1])

ACPI : LAPIC_NMI (acpi_id [0 x01] high edge l i n t [0 x1])

IOAPIC [0] : ap ic_id 1 , v e r s i o n 32 , addre s s 0 xfec00000 , GSI

0−23

ACPI : INT_SRC_OVR (bus 0 bus_irq 0 g l oba l_ i r q 2 d f l d f l)

ACPI : INT_SRC_OVR (bus 0 bus_irq 9 g l oba l_ i r q 9 high l e v e l

)

ACPI : IRQ0 used by o v e r r i d e .

APPENDIX D. LINUX KERNEL 105

ACPI : IRQ9 used by o v e r r i d e .

Using ACPI (MADT) f o r SMP c o n f i g u r a t i o n in f o rmat i on

ACPI : HPET id : 0 x8086a201 base : 0 x fed00000

smpboot : Al lowing 2 CPUs , 0 hotp lug CPUs

PM: Reg i s t e r ed nosave memory : [mem 0 x00000000−0x 0 0 0 0 0 f f f]

PM: Reg i s t e r ed nosave memory : [mem 0 x0009f000−0 x 0 0 0 9 f f f f]

PM: Reg i s t e r ed nosave memory : [mem 0 x000a0000−0x 0 0 0 d 1 f f f]

PM: Reg i s t e r ed nosave memory : [mem 0x000d2000−0x 0 0 0 d 3 f f f]

PM: Reg i s t e r ed nosave memory : [mem 0x000d4000−0x 0 0 0 d b f f f]

PM: Reg i s t e r ed nosave memory : [mem 0 x000dc000−0 x 0 0 0 f f f f f]

e820 : [mem 0 xc0000000−0 x e f f f f f f f] a v a i l a b l e f o r PCI

d e v i c e s

Booting p a r a v i r t u a l i z e d k e r n e l on bare hardware

c l o c k s o u r c e : r e f i n e d − j i f f i e s : mask : 0 x f f f f f f f f max_cycles :

0 x f f f f f f f f , max_idle_ns : 7645519600211568 ns

setup_percpu : NR_CPUS:512 nr_cpumask_bits : 512 nr_cpu_ids : 2

nr_node_ids : 1

percpu : Embedded 35 pages /cpu @f f f f 9 08db f400000 s105304

r8192 d29864 u1048576

pcpu−a l l o c : s105304 r8192 d29864 u1048576 a l l o c =1∗2097152

pcpu−a l l o c : [0] 0 1

Bu i l t 1 z o n e l i s t s in Node order , mob i l i t y grouping on .

Total pages : 771709

Po l i c y zone : DMA32

APPENDIX D. LINUX KERNEL 106

Kernel command l i n e : BOOT_IMAGE=/boot / vmlinuz −4.9.0−8−

amd64 roo t=UUID=68e52d36−4090−4d3e−95ae−eebd7 f623a9e ro

q u i e t

PID hash t a b l e e n t r i e s : 4096 (o rde r : 3 , 32768 bytes)

Calgary : d e t e c t i n g Calgary v ia BIOS EBDA area

Calgary : Unable to l o c a t e Rio Grande t a b l e in EBDA −

b a i l i n g !

Memory : 3052708K/3135928K a v a i l a b l e (6268K k e r n e l code ,

1161K rwdata , 2872K rodata , 1424K i n i t , 656K bss , 83220

K re se rved , 0K cma−r e s e r v e d)

Kernel / User page t a b l e s i s o l a t i o n : enabled

H i e r a r c h i c a l RCU implementat ion .

Build−t ime adjustment o f l e a f fanout to 64 .

RCU r e s t r i c t i n g CPUs from NR_CPUS=512 to

nr_cpu_ids =2.

RCU: Adjust ing geometry f o r rcu_fanout_lea f =64 , nr_cpu_ids

=2

NR_IRQS:33024 nr_i rqs : 440 16

Console : c o l o u r VGA+ 80 x25

c o n s o l e [t ty0] enabled

c l o c k s o u r c e : hpet : mask : 0 x f f f f f f f f max_cycles : 0 x f f f f f f f f

, max_idle_ns : 133484882848 ns

hpet c l o c k ev e n t r e g i s t e r e d

t s c : Fast TSC c a l i b r a t i o n us ing PIT

APPENDIX D. LINUX KERNEL 107

t s c : Detected 1828 .235 MHz p r o c e s s o r

E
Processor

Processor information, as reported by the Linux kernel in /proc/cpuinfo.

p r o c e s s o r : 0

vendor_id : Genu ine Inte l

cpu fami l y : 6

model : 15

model name : I n t e l (R) Core (TM) 2 CPU T5600 @

1 .83GHz

108

APPENDIX E. PROCESSOR 109

s t epp ing : 2

microcode : 0x57

cpu MHz : 1000 .000

cache s i z e : 2048 KB

p h y s i c a l id : 0

s i b l i n g s : 2

co r e id : 0

cpu c o r e s : 2

a p i c i d : 0

i n i t i a l a p i c i d : 0

fpu : yes

fpu_except ion : yes

cpuid l e v e l : 10

wp : yes

f l a g s : fpu vme de pse t s c msr pae mce cx8 ap i c

sep mtrr pge mca cmov pat pse36 c l f l u s h dts acp i mmx

f x s r s s e s s e 2 s s ht tm pbe s y s c a l l nx lm constant_tsc

arch_perfmon pebs bts rep_good nopl aper fmper f pni

dte s64 monitor ds_cpl vmx e s t tm2 s s s e 3 cx16 xtpr pdcm

lahf_lm k a i s e r tpr_shadow dtherm

bugs : cpu_meltdown spectre_v1 spectre_v2

spec_store_bypass l 1 t f

bogomips : 3656 .47

c l f l u s h s i z e : 64

APPENDIX E. PROCESSOR 110

cache_al ignment : 64

addre s s s i z e s : 36 b i t s phys i c a l , 48 b i t s v i r t u a l

power management :

p r o c e s s o r : 1

vendor_id : Genu ine Inte l

cpu fami l y : 6

model : 15

model name : I n t e l (R) Core (TM) 2 CPU T5600 @

1 .83GHz

s t epp ing : 2

microcode : 0x57

cpu MHz : 1000 .000

cache s i z e : 2048 KB

p h y s i c a l id : 0

s i b l i n g s : 2

co r e id : 1

cpu c o r e s : 2

a p i c i d : 1

i n i t i a l a p i c i d : 1

fpu : yes

fpu_except ion : yes

cpuid l e v e l : 10

wp : yes

APPENDIX E. PROCESSOR 111

f l a g s : fpu vme de pse t s c msr pae mce cx8 ap i c

sep mtrr pge mca cmov pat pse36 c l f l u s h dts acp i mmx

f x s r s s e s s e 2 s s ht tm pbe s y s c a l l nx lm constant_tsc

arch_perfmon pebs bts rep_good nopl aper fmper f pni

dte s64 monitor ds_cpl vmx e s t tm2 s s s e 3 cx16 xtpr pdcm

lahf_lm k a i s e r tpr_shadow dtherm

bugs : cpu_meltdown spectre_v1 spectre_v2

spec_store_bypass l 1 t f

bogomips : 3656 .47

c l f l u s h s i z e : 64

cache_al ignment : 64

addre s s s i z e s : 36 b i t s phys i c a l , 48 b i t s v i r t u a l

power management :

F
Multi-mode HTTPS server code

/∗

O r i g i n a l TLS s e r v e r example : h t t p s :// w i k i . o p e n s s l . org /

index . php/Simple_TLS_Server

C e r t i f i c a t e hand l ing : h t t p s :// s t a c k o v e r f l o w . com/ q u e s t i o n s

/16364522/how−do−i−crea te−a−s e l f −s igned−c e r t i f i c a t e −in

−openss l−p r og rama t i c a l l y−i−e−not

112

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 113

Main JS changes :

Sign wi th the key BEFORE d i s c a r d i n g i t (yes , RLY)

Stub out p t h r ead s − not used , a vo i d s SIGILL problem e a r l y

in dev

Enable SO_REUSEADDR

E l l i p t i c curve i n f o from :

h t t p :// fm4dd . com/ o p e n s s l / e c k e y c r e a t e . htm

CSR code from :

h t t p :// o p e n s s l . 6 1 0 2 . n7 . nabb l e . com/ crea te−c e r t i f i c a t e −

r eque s t−programmat ica l l y−using−OpenSSL−API−td29197 . html

∗/

#define PAGE_SHIFT 12

#i f d e f __GNUC__

define UNUSED(x) UNUSED_ ## x __attribute__ ((__unused__

))

#else

define UNUSED(x) UNUSED_ ## x

#endif

#include <s t d d e f . h>

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 114

#include ” micro−ecc /uECC. h”

#include ” sha −256.h”

#include <s t d i o . h>

#include <s t r i n g . h>

#include <un i s td . h>

#include <sys / so cke t . h>

#include <arpa / i n e t . h>

#include <o p e n s s l / s s l . h>

#include <o p e n s s l / e r r . h>

#include <o p e n s s l / x509v3 . h>

#include <sys /mman. h>

#i f d e f __linux__

#include <mal loc . h>

#include <sys / types . h>

#endif

#include <sys / s t a t . h>

#include <f c n t l . h>

// JS p r o t o t y p e f o r OPENSSL_cpuid_setup and

x509_diges t_s ign_a lgor i thm

void OPENSSL_cpuid_setup (void) ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 115

int x509_digest_s ign_algor i thm (EVP_MD_CTX ∗ ctx , X509_ALGOR

∗ a l g o r) ;

X509 ∗ owncert ;

uint8_t pr ivate_key [uECC_BYTES] ;

uint8_t publ ic_key [uECC_BYTES∗ 2] ;

EC_KEY ∗pubkey ;

#i f d e f USE_SMM

void ∗ m a i l s l o t=NULL;

#i f USE_SMM == 1

int i p c p i p e s [2] [2] ;

#endif

#i f USE_SMM == 2

stat ic uint8_t ∗commpage=0;

uint32_t pagenum ;

#endif

#endif

int s i g l e n (uint8_t ∗out , uint8_t s i g [uECC_BYTES∗ 2]) {

int l e n =0;

out [0]=0 x30 ;

out [2] = 2 ;

l en =3;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 116

out [l en++]=uECC_BYTES;

i f (s i g [0] >127) {

out [len −1]++;

out [l en ++]=0; // Zero pad f o r s i g n i n g hack

}

memcpy(out+len , s i g ,uECC_BYTES) ;

l en+=uECC_BYTES;

out [l en ++]=2;

out [l en++]=uECC_BYTES;

i f (s i g [uECC_BYTES] >127) {

out [len −1]++;

out [l en ++]=0; // Zero pad f o r s i g n i n g hack

}

memcpy(out+len , s i g+uECC_BYTES,uECC_BYTES) ;

l en+=uECC_BYTES;

out [1]= len −2;

return l e n ;

}

#i f d e f USE_SMM

#i f USE_SMM == 1

int worker_r , worker_w ;

uint8_t worker_c ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 117

void keyworker (int r , int w) {

uint8_t c= ’ \0 ’ ;

uECC_make_key(public_key , pr ivate_key) ;

memcpy(m a i l s l o t , public_key ,uECC_BYTES∗2) ;

i f (wr i t e (w,&c , s i zeo f (c))==−1) {

p e r r o r (” wr i t e ␣IPC␣ i n i t ”) ;

return ;

}

while (1) {

switch (read (r ,&c , s i zeo f (c))) {

case −1:

p e r r o r (” read ”) ;

// F a l l t hrough

case 0 : // EOF: shutdown g r a c e f u l l y

return ;

default : // Work to do ! Sign the message in

m a i l s l o t

uECC_sign (private_key , m a i l s l o t , m a i l s l o t +32) ;

i f (wr i t e (w,&c , s i zeo f (c))==−1) {

p e r r o r (” wr i t e ␣IPC”) ;

return ;

}

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 118

}

}

}

#endif

#i f USE_SMM == 2

int do_smmcrypto (void) {

int r e s u l t ;

/∗ C a l l SMI by w r i t i n g 0x01 to I /O 0 xb2 ∗/

__asm__ vo lat i l e (

”movl␣ $0x9a69ec01 ,%%ecx \n\ t ”

”movl␣%1,%%ebx\n\ t ”

” outb ␣%%al , $0xb2\n\ t ”

”movl␣%%ebx ,%0”

: ”=r ” (r e s u l t)

: ” r ” (pagenum)

: ” ecx ” , ” ebx ” , ”memory”) ;

f p r i n t f (s td e r r , ”SMM␣ re turned ␣%08x\n” , r e s u l t) ;

return r e s u l t ;

}

#endif

enum s s l_pr ivate_key_resu l t_t smm_sign (

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 119

SSL ∗ UNUSED(s s l) ,

u int8_t ∗out ,

s i z e_t ∗ out_len ,

s i z e_t max_out ,

uint16_t s ignature_a lgor i thm ,

const uint8_t ∗ in ,

s i z e_t in_len

) {

#i f USE_SMM == 0

uint8_t hash [3 2] , s i g [uECC_BYTES∗ 2] ;

#endif

switch (s i gna tu re_a lgo r i thm) {

case SSL_SIGN_ECDSA_SECP256R1_SHA256 :

f p r i n t f (s td e r r , ” s i g n (%lu ␣ bytes , ␣ a l g ␣%d) \n” ,max_out ,

s i gna ture_a lgo r i thm) ;

#i f USE_SMM == 0

calc_sha_256 (hash , in , in_len) ;

uECC_sign (private_key , hash , s i g) ;

∗ out_len=s i g l e n (out , s i g) ;

#e l i f USE_SMM == 1 // Use worker p roce s s

calc_sha_256 (m a i l s l o t , in , in_len) ;

i f (wr i t e (worker_w ,&worker_c , s i zeo f (worker_c)) != s i zeo f

(worker_c)) {

p e r r o r (”Worker␣IPC␣ e r r o r ”) ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 120

return s s l_ p r i v a t e_ ke y_ fa i l u r e ;

}

i f (read (worker_r ,&worker_c , s i zeo f (worker_c)) != s i zeo f (

worker_c)) {

p e r r o r (”Worker␣IPC␣ e r r o r ”) ;

return s s l_ p r i v a t e_ ke y_ fa i l u r e ;

}

∗ out_len=s i g l e n (out , m a i l s l o t +32) ;

#e l i f USE_SMM == 2

calc_sha_256 (commpage+(uECC_BYTES∗2) , in , in_len) ;

do_smmcrypto () ; // SMI magic pu t s s i g n a t u r e in

commpage now

∗ out_len=s i g l e n (out , commpage+(uECC_BYTES∗2) +32) ;

#endif

return s s l_pr ivate_key_succe s s ;

break ;

default :

f p r i n t f (s td e r r , ”Unknown␣ s i g n a t u r e ␣ a lgo r i thm ␣ reque s t ed :

␣0x%04x\n” , s i gna tur e_a lgo r i thm) ;

return s s l_ p r i v a t e_ ke y_ fa i l u r e ;

}

}

enum s s l_pr ivate_key_resu l t_t smm_decrypt (SSL ∗ UNUSED(s s l

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 121

) , uint8_t ∗ UNUSED(out) ,

s i z e_t ∗ UNUSED(out_len) , s i z e_t max_out ,

const uint8_t ∗ UNUSED(in) , s i z e_t in_len) {

f p r i n t f (s td e r r , ” decrypt(%lu ␣ in ,% lu ␣ out) \n” , in_len ,

max_out) ;

return s s l _ p r i v a t e_ ke y_ fa i l u r e ;

}

enum s s l_pr ivate_key_resu l t_t smm_complete (SSL ∗ UNUSED(

s s l) , u int8_t ∗ UNUSED(out) ,

s i z e_t ∗ UNUSED(out_len) , s i z e_t UNUSED(max_out)) {

return s s l _ p r i v a t e_ ke y_ fa i l u r e ;

}

const SSL_PRIVATE_KEY_METHOD smm_method = {

smm_sign ,

smm_decrypt ,

smm_complete

} ;

#endif

int c r ea t e_socke t (int port)

{

int s , r eu s e =1;

struct sockaddr_in addr ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 122

addr . s in_fami ly = AF_INET;

addr . s in_port = htons (port) ;

addr . s in_addr . s_addr = hton l (INADDR_ANY) ;

s = socke t (AF_INET, SOCK_STREAM, 0) ;

i f (s < 0) {

p e r r o r (” Unable ␣ to ␣ c r e a t e ␣ s o cke t ”) ;

e x i t (EXIT_FAILURE) ;

}

i f (s e t s o c k o p t (s ,SOL_SOCKET,SO_REUSEADDR,& reuse , s i zeo f

(r eu s e))) {

p e r r o r (” s e t s o c k o p t (SO_REUSEADDR) ”) ;

e x i t (EXIT_FAILURE) ;

}

i f (bind (s , (struct sockaddr ∗)&addr , s i zeo f (addr)) <

0) {

p e r r o r (” Unable ␣ to ␣ bind ”) ;

e x i t (EXIT_FAILURE) ;

}

i f (l i s t e n (s , 1) < 0) {

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 123

p e r r o r (” Unable ␣ to ␣ l i s t e n ”) ;

e x i t (EXIT_FAILURE) ;

}

return s ;

}

void i n i t _ o p e n s s l ()

{

SSL_load_error_str ings () ;

OpenSSL_add_ssl_algorithms () ;

}

void c l eanup_openss l ()

{

EVP_cleanup () ;

}

SSL_CTX ∗ crea t e_context ()

{

const SSL_METHOD ∗method ;

SSL_CTX ∗ ctx ;

method = SSLv23_server_method () ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 124

ctx = SSL_CTX_new(method) ;

i f (! c tx) {

p e r r o r (” Unable ␣ to ␣ c r e a t e ␣SSL␣ context ”) ;

ERR_print_errors_fp (s t d e r r) ;

e x i t (EXIT_FAILURE) ;

}

#i f d e f USE_SMM

SSL_CTX_set_private_key_method (ctx ,&smm_method) ;

#endif

return ctx ;

}

EVP_PKEY ∗ PrivateKey = NULL;

EVP_PKEY ∗ newerkey () {

#i f d e f USE_SMM

uint8_t o c t e t b u f f [1+uECC_BYTES∗2]={0 x4 } ;

#endif

EVP_PKEY ∗ pr ivkey=EVP_PKEY_new() ;

EC_KEY ∗k ;

int grp=OBJ_txt2nid (” prime256v1 ”) ;

// i n t grp=OBJ_txt2nid (” bra inpoo lP256r1 ”) ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 125

k=EC_KEY_new_by_curve_name(grp) ;

#i f d e f USE_SMM

// JS SMM b i t s l a t e r 2018−08−06:

const EC_GROUP ∗ pubkeygroup=EC_KEY_get0_group(k) ;

EC_POINT ∗ pubkeypoint=EC_POINT_new(pubkeygroup) ;

memcpy(o c t e t b u f f +1, public_key ,uECC_BYTES∗2) ;

EC_POINT_oct2point (pubkeygroup , pubkeypoint , o c t e t b u f f ,1+

uECC_BYTES∗2 ,NULL) ;

#endif

i f (! k) {

f p r i n t f (s td e r r , ”ECC␣ i n i t ␣ f a i l e d ␣ f o r ␣ group ␣%d␣ with ␣

e r r o r ␣%s \n” , grp , ERR_error_string (ERR_get_error () ,

NULL)) ;

return NULL;

}

EC_KEY_set_asn1_flag (k ,OPENSSL_EC_NAMED_CURVE) ;

#i f d e f USE_SMM

EC_KEY_set_public_key (k , pubkeypoint) ;

// X509_PUBKEY_set0_param(pub , OBJ_nid2obj (

NID_X9_62_id_ecPublicKey))

#else

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 126

i f (! EC_KEY_generate_key (k)) {

f p r i n t f (s td e r r , ”ECC␣ keygen ␣ f a i l e d \n”) ;

return NULL;

}

#endif

i f (! EVP_PKEY_assign_EC_KEY(pr ivkey , k)) {

f p r i n t f (s td e r r , ”ECC␣ conve r s i on ␣ f a i l e d \n”) ;

return NULL;

}

return pr ivkey ;

}

EVP_PKEY ∗newkey () {

RSA ∗ KeyPair ;

BIGNUM ∗BigNumber = NULL;

// Create the RSA key pa i r o b j e c t

KeyPair = RSA_new() ;

i f (! KeyPair)

return NULL;

// Create the b i g number o b j e c t

BigNumber = BN_new() ;

i f (! BigNumber)

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 127

return NULL;

// Set t he word

i f (! BN_set_word (BigNumber , 65537))

return NULL;

// Generate the key pa i r ; l o t s o f computes here

i f (! RSA_generate_key_ex (KeyPair , 4096 , BigNumber , NULL

))

return NULL;

// Now we need a p r i v a t e key o b j e c t

PrivateKey = EVP_PKEY_new() ;

i f (! PrivateKey)

return NULL;

// Assign the key pa i r to the p r i v a t e key o b j e c t

i f (! EVP_PKEY_assign_RSA (PrivateKey , KeyPair))

return NULL;

// KeyPair now b e l o n g s to PrivateKey , so don ’ t c l ean i t

up s e p a r a t e l y

KeyPair = NULL;

return PrivateKey ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 128

}

int s i g n c e r t (X509 ∗ Cert) {

EVP_MD_CTX ctx ;

void ∗ asn=Cert−>c e r t _ i n f o ;

ASN1_BIT_STRING ∗ s i g n a t u r e=Cert−>s i g n a t u r e ;

X509_ALGOR ∗ a l g o r 1=Cert−>cer t_ in fo−>s igna tu r e , ∗ a l g o r 2=

Cert−>s ig_a lg ;

const ASN1_ITEM ∗ i t=ASN1_ITEM_rptr(X509_CINF) ;

EVP_MD_CTX_init(&ctx) ;

Cert−>cer t_ in fo−>enc . mod i f i ed = 1 ;

// Sign i t w i th SHA−256 − i n l i n e d v a r i a n t o f X509_sign

f o r now

i f (! EVP_DigestSignInit (&ctx , NULL, EVP_sha256 () , NULL,

PrivateKey)) {

EVP_MD_CTX_cleanup(&ctx) ;

return 0 ;

}

unsigned char ∗ buf_in = NULL, ∗buf_out = NULL;

s i z e_t i n l = 0 , o u t l = 0 ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 129

/∗ Write out t he r e q u e s t e d c o p i e s o f t he

A l g o r i t h m I d e n t i f i e r . ∗/

i f (a l g o r 1 && ! x509_digest_s ign_algor i thm(&ctx , a l g o r 1)

) {

goto e r r ;

}

i f (a l g o r 2 && ! x509_digest_s ign_algor i thm(&ctx , a l g o r 2)

) {

goto e r r ;

}

i n l = ASN1_item_i2d (asn , &buf_in , i t) ;

o u t l = EVP_PKEY_size(PrivateKey) ;

buf_out = OPENSSL_malloc ((unsigned int) o u t l) ;

i f ((buf_in == NULL) | | (buf_out == NULL)) {

o u t l = 0 ;

OPENSSL_PUT_ERROR(X509 , ERR_R_MALLOC_FAILURE) ;

goto e r r ;

}

#i f d e f USE_SMM

smm_sign (NULL, buf_out ,& out l , out l ,

SSL_SIGN_ECDSA_SECP256R1_SHA256 , buf_in , i n l) ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 130

#else

i f (! EVP_DigestSign(&ctx , buf_out , &out l , buf_in , i n l))

{

o u t l = 0 ;

OPENSSL_PUT_ERROR(X509 , ERR_R_EVP_LIB) ;

goto e r r ;

}

#endif

i f (s i gna tu r e−>data != NULL)

OPENSSL_free (s i gna tu r e−>data) ;

s i gna tu r e−>data = buf_out ;

buf_out = NULL;

s i gna tu r e−>leng th = o u t l ;

/∗

∗ In the i n t e r e s t s o f c o m p a t i b i l i t y , I ’ l l make sure

t h a t t he b i t s t r i n g

∗ has a ’ not−used b i t s ’ v a l u e o f 0

∗/

s i gna tu r e−>f l a g s &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07

) ;

s i gna tu r e−>f l a g s |= ASN1_STRING_FLAG_BITS_LEFT;

e r r :

EVP_MD_CTX_cleanup(&ctx) ;

OPENSSL_free (buf_in) ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 131

OPENSSL_free (buf_out) ;

return (o u t l) ;

}

const unsigned char c e r t i s s u a n c e []= ” C e r t i f i c a t e ␣ I s suanc e ” ;

X509 ∗ C r e a t e C e r t i f i c a t e (const unsigned char ∗Country ,

const unsigned char ∗ State , const unsigned char ∗

Loca l i t y , const unsigned char ∗ OrganizationName , const

unsigned char ∗CommonName, const unsigned char ∗DNSName

, int S e r i a l , int DaysValid)

{

X509 ∗ Cert = NULL;

X509_NAME ∗Name = NULL;

RSA ∗ KeyPair = NULL;

BIGNUM ∗BigNumber = NULL;

int Succe s s = 0 ;

// Faux loop . . .

do {

// Create the c e r t i f i c a t e o b j e c t

Cert = X509_new () ;

i f (! Cert)

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 132

break ;

// Set v e r s i o n 2 , and g e t v e r s i o n 3

X509_set_version (Cert , 2) ;

// Set t he c e r t i f i c a t e ’ s p r o p e r t i e s

ASN1_INTEGER_set (X509_get_serialNumber (Cert) , S e r i a l

) ;

X509_gmtime_adj (X509_get_notBefore (Cert) , 0) ;

X509_gmtime_adj (X509_get_notAfter (Cert) , (long) (60 ∗

60 ∗ 24 ∗ (DaysValid ? DaysValid : 1))) ;

Name = X509_get_subject_name (Cert) ;

i f (Country && ∗Country)

X509_NAME_add_entry_by_txt (Name , ”C” , MBSTRING_ASC,

Country , −1, −1, 0) ;

// JS 2018−02−05 Add (S) t a t e and (L) o c a l i t y f i e l d s to

g e t v a l i d CSR

i f (S ta te && ∗ State)

X509_NAME_add_entry_by_txt (Name , ”ST” , MBSTRING_ASC

, State , −1, −1, 0) ;

i f (L o c a l i t y && ∗ L o c a l i t y)

X509_NAME_add_entry_by_txt (Name , ”L” , MBSTRING_ASC,

Loca l i t y , −1, −1, 0) ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 133

X509_NAME_add_entry_by_txt (Name , ”OU” , MBSTRING_ASC,

c e r t i s s u a n c e , −1, −1, 0) ;

i f (OrganizationName && ∗ OrganizationName)

X509_NAME_add_entry_by_txt (Name , ”O” , MBSTRING_ASC,

OrganizationName , −1, −1, 0) ;

i f (CommonName && ∗CommonName)

X509_NAME_add_entry_by_txt (Name , ”CN” , MBSTRING_ASC

, CommonName, −1, −1, 0) ;

X509_set_issuer_name (Cert , Name) ;

// Set t he DNS name

i f (DNSName && ∗DNSName)

{ X509_EXTENSION ∗ Extens ion ;

char Buf f e r [5 1 2] ;

// Format the va l u e

s p r i n t f (Buf fe r , ”DNS:% s ” , DNSName) ;

Extens ion = X509V3_EXT_conf_nid (NULL, NULL,

NID_subject_alt_name , Bu f f e r) ;

i f (Extens ion)

{

X509_add_ext (Cert , Extension , −1) ;

X509_EXTENSION_free (Extens ion) ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 134

}

else {

f p r i n t f (s td e r r , ”SAN␣ ex t en s i on ␣ f a i l e d ! \ n”) ;

}

}

// JS key hand l ing

PrivateKey=newerkey () ;

f p r i n t f (s td e r r , ”Key␣ c r ea t ed ␣ at ␣%p\n” , PrivateKey) ;

// Set t he c e r t i f i c a t e ’ s p u b l i c key from the p r i v a t e

key o b j e c t

i f (! X509_set_pubkey (Cert , PrivateKey))

break ;

i f (! s i g n c e r t (Cert))

break ;

// PrivateKey now b e l o n g s to Cert , so don ’ t c l ean i t

up s e p a r a t e l y

// A c t u a l l y reused l a t e r ! PrivateKey = NULL;

// Success

f p r i n t f (s td e r r , ” Cert ␣ c r e a t ed ␣OK\n”) ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 135

Succe s s = 1 ;

} while (0) ;

// Things we a lways c l ean up

i f (BigNumber)

BN_free (BigNumber) ;

// Things we c l ean up on ly on f a i l u r e

i f (! Succe s s)

{

f p r i n t f (s td e r r , ” C e r t i f i c a t e ␣ i n i t ␣ e r r o r : \ n”) ;

ERR_print_errors_fp (s t d e r r) ;

i f (Cert)

X509_free (Cert) ;

i f (PrivateKey)

EVP_PKEY_free (PrivateKey) ;

i f (KeyPair)

RSA_free (KeyPair) ;

Cert = NULL;

}

// Return the c e r t i f i c a t e (or NULL)

return (Cert) ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 136

}

void con f i gu r e_cont ex t (SSL_CTX ∗ ctx)

{

SSL_CTX_set_ecdh_auto (ctx , 1) ;

/∗ Set t he key and c e r t ∗/

i f (SSL_CTX_use_certif icate (ctx , owncert) <= 0) {

ERR_print_errors_fp (s t d e r r) ;

e x i t (EXIT_FAILURE) ;

}

i f (SSL_CTX_use_PrivateKey (ctx , PrivateKey) <= 0) {

ERR_print_errors_fp (s t d e r r) ;

e x i t (EXIT_FAILURE) ;

}

// JS 2018−02−05 Use decen t c i p h e r s on ly !

SSL_CTX_set_cipher_list (ctx , ”EECDH+AESGCM:EDH+AESGCM:

AES256+EECDH: AES256+EDH:ECDH+AES128 :RSA+AES128”) ;

}

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 137

void p r i n t c s r () {

X509_REQ ∗ req ;

i f (! (req=X509_to_X509_REQ(owncert , PrivateKey , EVP_sha256

()))) {

f p r i n t f (s td e r r , ” Fa i l ed ␣ to ␣ i n i t i a l i s e ␣CSR\n”) ;

} else {

PEM_write_X509_REQ(s tde r r , req) ;

X509_REQ_free (req) ;

}

}

#i f d e f USE_SMM

#i f USE_SMM == 2

stat ic int init_smm () {

int mapfd ;

uint64_t pagedata ;

i f ((commpage=memalign(1<<PAGE_SHIFT,1<<PAGE_SHIFT))) {

memset (commpage ,11 ,1<<PAGE_SHIFT) ;

i f (! mlock (commpage,1<<PAGE_SHIFT)) {

i f (! ioperm (0xB2 , 1 , 1)) {

i f ((mapfd=open (”/ proc / s e l f /pagemap” ,O_RDONLY))

==−1) {

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 138

p e r r o r (” Could␣ not ␣ a c c e s s ␣/ proc / s e l f /pagemap : ”) ;

} else {

i f (pread (mapfd ,& pagedata , s i zeo f (pagedata) , ((

uint64_t) commpage)>>(PAGE_SHIFT−3))==s i zeo f (

pagedata)) {

p r i n t f (”Page␣ data : ␣0x%016 l x \n” , pagedata) ;

i f (pagedata & 1ULL<<63) { // Page p r e s en t in

b i t s [0 : 5 4]

pagedata &= (1ULL<<55)−1; // Ex t rac t j u s t

t he page number b i t s

// pagedata<<=PAGE_SHIFT;

i f (pagedata <(1ULL<<20)) {

pagenum=pagedata ;

c l o s e (mapfd) ;

f p r i n t f (s td e r r , ” M a i l s l o t ␣ page ␣ e s t a b l i s h e d ,

␣ v i r t u a l ␣%p␣ p h y s i c a l ␣0x%08x” , commpage ,

pagenum) ;

do_smmcrypto () ;

f p r i n t f (s td e r r , ” Pub l i c ␣key␣ r e t r i e v e d , ␣

f i r s t ␣ o c t e t ␣ i s ␣%02x\n” ,∗ commpage) ;

memcpy(public_key , commpage ,uECC_BYTES∗2) ;

return 1 ;

} else {

f p r i n t f (s td e r r , ”Workspace␣ page ␣%lx ␣ o u t s i d e

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 139

␣bottom␣4␣Gb\n” , pagedata) ; // 714000

}

}

}

c l o s e (mapfd) ;

}

}

munlock (commpage,1<<PAGE_SHIFT) ;

}

f r e e (commpage) ;

commpage=0;

}

return 0 ;

}

#endif

#endif

const unsigned char

country []= ”GB” ,

s t a t e []= ” Scot land ” ,

c i t y []= ” Perth ” ,

orgname []= ”James␣ Suther land ” ,

commonname []= ”home . deadnode . org ” ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 140

int main (int UNUSED(argc) , char ∗∗ UNUSED(argv))

{

struct t imeva l tv ;

int sock ;

SSL_CTX ∗ ctx ;

#i f d e f USE_SMM

m a i l s l o t=mmap(NULL,4096 ,PROT_READ|PROT_WRITE,

MAP_ANONYMOUS|MAP_SHARED, −1 ,0) ;

i f (m a i l s l o t==MAP_FAILED) {

p e r r o r (”mmap() ␣ f a i l e d ! \ n”) ;

return −1;

}

#i f USE_SMM == 0 // I n l i n e mode

uECC_make_key(public_key , pr ivate_key) ;

#e l i f USE_SMM == 1 // Forked mode

i f (p ipe (i p c p i p e s [0])==−1 | | p ipe (i p c p i p e s [1]) ==−1) {

p e r r o r (” p ipe ”) ;

return −1;

}

switch (f o r k ()) {

case −1:

p e r r o r (” f o r k ”) ;

return −1;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 141

case 0 : // Become worker p roce s s

c l o s e (i p c p i p e s [0] [1]) ;

c l o s e (i p c p i p e s [1] [0]) ;

keyworker (i p c p i p e s [0] [0] , i p c p i p e s [1] [1]) ;

return 0 ;

default :

c l o s e (i p c p i p e s [0] [0]) ;

c l o s e (i p c p i p e s [1] [1]) ;

worker_r=i p c p i p e s [1] [0] ;

worker_w=i p c p i p e s [0] [1] ;

i f (read (worker_r ,&worker_c , s i zeo f (worker_c)) != s i zeo f (

worker_c)) {

p e r r o r (”Worker␣ i n i t ”) ;

return −1;

}

memcpy(public_key , m a i l s l o t ,uECC_BYTES∗2) ;

break ;

}

#else // True SMM!

i f (! init_smm ()) {

return −1;

}

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 142

#endif

#endif

OPENSSL_cpuid_setup () ;

i n i t _ o p e n s s l () ;

ge t t imeo fday (&tv ,NULL) ;

owncert=C r e a t e C e r t i f i c a t e (country , s t a t e , c i t y , orgname ,

commonname , commonname , tv . tv_sec , 3 6 5) ;

p r i n t c s r () ;

c tx = crea te_context () ;

c on f i gu r e_cont ex t (ctx) ;

sock = crea t e_socke t (4433) ;

/∗ Handle connec t i ons ∗/

while (1) {

struct sockaddr_in addr ;

u in t l en = s i zeo f (addr) ;

SSL ∗ s s l ;

const char r e p l y [] = ”HTTP/1 .0 ␣200␣OK\ r \nContent−Type :

␣ t ex t / p l a i n \ r \n\ r \n” ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 143

int c l i e n t = accept (sock , (struct sockaddr ∗)&addr , &

l en) ;

i f (c l i e n t < 0) {

p e r r o r (” Unable ␣ to ␣ accept ”) ;

e x i t (EXIT_FAILURE) ;

}

s s l = SSL_new(ctx) ;

SSL_set_fd (s s l , c l i e n t) ;

i f (SSL_accept (s s l) <= 0) {

ERR_print_errors_fp (s t d e r r) ;

}

else {

char b u f f [1 0 2 4] ;

int n , fd ;

n=SSL_read (s s l , bu f f , s i zeo f (b u f f)) ;

i f (n>0) {

i f ((fd=open (” index . html ” ,O_RDONLY)) !=−1) {

struct s t a t s b u f f ;

i f (f s t a t (fd ,& s b u f f) !=−1) {

void ∗ b u f f=mal loc (s b u f f . s t _ s i z e) ;

i f (b u f f) {

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 144

read (fd , buf f , s b u f f . s t _ s i z e) ;

SSL_write (s s l , r ep ly , s i zeo f (r e p l y)) ;

SSL_write (s s l , bu f f , s b u f f . s t _ s i z e) ;

f r e e (b u f f) ;

} else {

f p r i n t f (s td e r r , ”OOM! \ n”) ;

}

} else {

p e r r o r (” f s t a t (index . html) ”) ;

}

c l o s e (fd) ;

} else {

p e r r o r (” index . html ”) ;

}

}

}

SSL_free (s s l) ;

c l o s e (c l i e n t) ;

}

c l o s e (sock) ;

SSL_CTX_free (ctx) ;

c l eanup_openss l () ;

APPENDIX F. MULTI-MODE HTTPS SERVER CODE 145

}

Glossary

ACME Automatic Certificate Management Environment.

AES Advanced Encryption Standard.

AESKEYGENASSIST AES Key Generation Assist, the instruction used to

expand raw AES encryption keys to the full schedule used for encryption.

ARM Advanced RISC Machines/Acorn RISC Machines.

ARMORED An implementation of the TRESOR encryption on ARM platforms.

ASLR Address Space Layout Randomisation.

BIOS Basic Input/Output System, the system firmware on the IBM PC.

CA Certificate Authority.

CATT CAn’t Touch This, a RowHammer attack mitigation.

CDN Content Delivery Network.

CLI CLear Interrupt flag x86 instruction.

146

Glossary 147

CPU Central Processing Unit.

CPY CoPY instruction.

CS Code Segment/Code Selector register on x86.

CSR Certificate Signing Request.

CVE Common Vulnerabilities and Exposures.

DCI Direct Connect Interface, an Intel debugging extension to USB 3.

DDoS Distributed Denial of Service attack.

DMA Direct Memory Access.

DNS Domain Name System.

DOS Disk Operating System.

DoS Denial of Service attack.

DRAM Dynamic Random Access Memory.

FDIV Floating Point Division x86 instruction.

FPGA Field Programmable Gate Array.

FROST Forensic Recovery Of Scrambled Telephones.

GMU George Mason University, Virginia, USA.

HSM Hardware Security Module.

Glossary 148

HTML HyperText Markup Language.

HTTP HyperText Transfer Protocol, RFC 2616 and subsequent.

HTTPS HTTP Secure.

IBM International Business Machines.

ICE In Circuit Emulation.

ICEBP ICE BreakPoint.

IEEE Institute of Electrical and Electronics Engineers.

IN INput instruction.

IOMMU I/O Memory Management Unit.

IOPB I/O Permissions Bitmap.

IOPL I/O Privilege Level.

IOV I/O Virtualisation.

JIT Just In Time.

JTAG Joint Test Action Group.

KAISER Kernel And user Space Isolation.

KPTI Kernel Page Table Isolation.

LOADALL Load All register contents x86 instruction.

Glossary 149

MCH Memory Controller Hub.

MIPS Microprocessor without Interlocked Pipeline Stages, also MIPS Technolo-

gies.

MIT Massachussetts Institute of Technology.

MTRR Memory Type Range Register.

OS Operating System.

OUT OUTput.

OUTB OUTput Byte x86 instruction.

PCI Peripheral Component Interconnect.

RAM Random Access Memory.

RDS ReaD Select.

RSM ReSuMe x86 instruction for returning from SMM.

SGI Silicon Graphics Inc.

SGX Software Guard Extensions.

SMBASE SMRAM BASE address register.

SMEP Supervisor Mode Execution Prevention.

SMI System Management Interrupt.

SMIACT SMI Active.

Glossary 150

SMM System Management Mode.

SMRAM System Management RAM.

SMRAMC SMRAM Control register.

SNI Server Name Indication, RFC 3546, Transport Layer Security (TLS) Exten-

sions.

SPE Synergistic Processing Element.

SSL Secure Sockets Layer.

STI SeT Interrupt flag x86 instruction.

TCB Trusted Computing Base.

TLB Translation Lookaside Buffer.

TLS Transport Layer Security.

TPM Trusted Platform Module.

TRESOR TRESOR Runs Encryption Securely Outside RAM.

TSEG Top Segment.

TSS Task State Segment.

TZ-RKP TrustZone-based Real-time Kernel Protection.

URL Uniform Resource Locator.

US United States.

Glossary 151

USB Universal Serial Bus.

VM Virtual Machine.

VRAM Video RAM.

WRS WRite Select.

Index

ACME, 54

AES, 4, 41, 42

AESKEYGENASSIST, 41

ARM, 19, 32, 34, 37

ASLR, 34

BIOS, 29, 31, 32, 55

CA, 47, 54

CDN, 36

CPU, 5, 19, 41, 63

CPY, 12

Credential Guard, 35, 38, 79, 80

CS, 33

CSR, 54

CVE, 4

DCI, 16

DDoS, 24

DMA, 4, 13, 16, 18, 31, 37

DNS, 54

DNSSEC, 79

DRAM, 14, 16

FDIV, 42

FPGA, 16

FROST, 37

GCHQ, 24

HSM, 22

HTML, 36

HTTP, 54

HTTPS, 40, 53, 55

HyperCheck, 32, 72, 77

HyperGuard, 32, 34, 72, 77

HyperVerify, 32

IBM, 12, 13

ICE, 29, 30

ICEBP, 30

152

INDEX 153

IEEE, 3, 17

IN, 46

IOMMU, 4, 37

IOPB, 46

JIT, 42

JTAG, 17

KAISER, 18

KPTI, 55

MCH, 30

MIPS, 19

MIT, 3, 12

MS-DOS, 29

MTRR, 55

NSA, 24

OS, 19

PCI, 13, 31

RAM, 5, 11, 14, 15, 46

RDRAND, 73

RDS, 12

RDSEED, 73

RDTSC, 44

SGX, 5, 6, 33

SMBASE, 30

SMEP, 33

SMI, 30, 31, 46, 53, 80

SMIACT, 31

SMM, 22, 29–32, 34, 45–47, 53–55

SMRAM, 30, 31, 45, 53, 55

SNI, 54

SPE, 34, 35

SSL, 36, 52, 53

TCB, 5

TLB, 19

TLS, 6, 22, 36, 52, 54

TPM, 71, 80

TRESOR, 36, 37

TRESOR-Hunt, 37

TSEG, 30

TSS, 46

TZ-RKP, 32

URL, 42

US, 32

USB, 16, 17

VM, 33

WRS, 12

Bibliography

Anderson, Ross and Markus Kuhn (1997). “Low cost attacks on tamper resistant

devices”. In: International Workshop on Security Protocols. Springer, pp. 125–

136.

Anderson, Ross et al. (2006). “Cryptographic processors-a survey”. In: Proceedings

of the IEEE 94.2, pp. 357–369.

Aublin, Pierre-Louis et al. (2017). “TaLoS: Secure and transparent TLS termina-

tion inside SGX enclaves”. In: Imperial College London, Tech. Rep 5.

Azab, Ahmed M et al. (2014). “Hypervision across worlds: Real-time kernel pro-

tection from the arm trustzone secure world”. In: Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security. ACM,

pp. 90–102.

Bajikar, Sundeep (2002). “Trusted Platform Module (TPM) based Security on

Notebook PCs — White Paper”. In: Mobile Platforms Group Intel Corporation

1, p. 20.

Ball, James, Julian Borger and Glenn Greenwald (Sept. 2013). Revealed: how US

and UK spy agencies defeat internet privacy and security. https : / / www .

154

https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security

BIBLIOGRAPHY 155

theguardian.com/world/2013/sep/05/nsa- gchq- encryption- codes-

security. (Visited on 08/03/2019).

Banga, Gaurav and Peter Druschel (1999). “Measuring the capacity of a Web

server under realistic loads”. In: World Wide Web 2.1-2, pp. 69–83.

Bar-El, Hagai et al. (2006). “The sorcerer’s apprentice guide to fault attacks”. In:

Proceedings of the IEEE 94.2, pp. 370–382.

Barde, Kaushik C (2014). Hypervisor security using SMM. US Patent 8,843,742.

Beekman, Jethro Gideon (2016). “Improving Cloud Security using Secure En-

claves”. PhD thesis. UC Berkeley.

Bell, C. Gordon and Allen Newell (1971). Computer Structures: Readings and

Examples. McGraw-Hill Inc.

Bernstein, Daniel (2013). https : / / twitter . com / hashbreaker / status /

378258465291915264. (Visited on 08/03/2019).

Blass, Erik-Oliver and William Robertson (2012). “TRESOR-HUNT: attacking

CPU-bound encryption”. In: Proceedings of the 28th Annual Computer Security

Applications Conference. ACM, pp. 71–78.

Brumley, David and Dawn Song (2004). “Privtrans: Automatically partitioning

programs for privilege separation”. In: USENIX Security Symposium, pp. 57–

72.

Cambridge University Press (2018). url: https://dictionary.cambridge.org/

dictionary/english/enclave#dataset-british (visited on 08/03/2019).

Chen, Guoxing et al. (2018b). “SGXPECTRE Attacks: Leaking Enclave Secrets

via Speculative Execution”. In: arXiv preprint arXiv:1802.09085.

https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://twitter.com/hashbreaker/status/378258465291915264
https://twitter.com/hashbreaker/status/378258465291915264
https://dictionary.cambridge.org/dictionary/english/enclave#dataset-british
https://dictionary.cambridge.org/dictionary/english/enclave#dataset-british

BIBLIOGRAPHY 156

Chen, Guoxing et al. (2018a). “SgxPectre Attacks: Leaking Enclave Secrets via

Speculative Execution”. In: CoRR abs/1802.09085. arXiv: 1802.09085. url:

http://arxiv.org/abs/1802.09085 (visited on 08/03/2019).

Churchhouse, Robert and RF Churchhouse (2002). Codes and ciphers: Julius

Caesar, the Enigma, and the Internet. Cambridge University Press.

Collins, Robert R. (Feb. 1996). Undocumented OpCodes: ICEBP. url: http://

www.rcollins.org/secrets/opcodes/ICEBP.html (visited on 06/03/2019).

— (Nov. 1997a). ICE Mode and the Pentium Processor. url: http : / / www .

rcollins.org/ddj/Nov97/Nov97.html (visited on 06/03/2019).

— (Sept. 1997b). In-Circuit Emulation: How the Microprocessor Evolved Over

Time. url: http://www.rcollins.org/ddj/Sep97/ (visited on 06/03/2019).

Cooke, Evan, Farnam Jahanian and Danny McPherson (2005). “The Zombie

Roundup: Understanding, Detecting, and Disrupting Botnets.” In: SRUTI 5,

pp. 6–6.

Copeland, B Jack (2010). Colossus: The secrets of Bletchley Park’s code-breaking

computers. Oxford University Press.

Corbató, Fernando J, Marjorie Merwin-Daggett and Robert C Daley (1962). “An

experimental time-sharing system”. In: Proceedings of the May 1-3, 1962, spring

joint computer conference. ACM, pp. 335–344.

Cranor, Charles D and Gurudatta M Parulkar (1999). “The UVM virtual memory

system”. In: In Proceedings of the 1999 USENIX Annual Technical Conference.

CVE-2017-5689: Intel Active Management Technology Authentication Flaw Lets

Remote and Local Users Gain Elevated Privileges (2017). Available from

MITRE, CVE-ID CVE-2017-5689. url: http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2017-5689.

https://arxiv.org/abs/1802.09085
http://arxiv.org/abs/1802.09085
http://www.rcollins.org/secrets/opcodes/ICEBP.html
http://www.rcollins.org/secrets/opcodes/ICEBP.html
http://www.rcollins.org/ddj/Nov97/Nov97.html
http://www.rcollins.org/ddj/Nov97/Nov97.html
http://www.rcollins.org/ddj/Sep97/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5689
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5689

BIBLIOGRAPHY 157

CVE-2018-1038: Microsoft Windows — Local Privilege Escalation (2018). Avail-

able from MITRE, CVE-ID CVE-2018-1038. url: http://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2018-1038.

CVE-2018-3665: Intel Core-based Processors ‘Lazy FPU Restore’ Lets Local Users

Obtain Potentially Sensitive FPU State Information on the Target System

(2018). Available from MITRE, CVE-ID CVE-2018-3665. url: http://cve.

mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3665.

DeBusschere, Eric and Mike McCambridge (2012). “Modern game console exploit-

ation”. In: Technical Report, Department of Computer Science, University of

Arizona.

Denning, Peter J. (Sept. 1970). “Virtual Memory”. In: ACM Comput. Surv. 2.3,

pp. 153–189. issn: 0360-0300. doi: 10.1145/356571.356573. url: http:

//doi.acm.org/10.1145/356571.356573 (visited on 08/03/2019).

Ding, Baozeng et al. (2013). “HyperVerify: a VM-assisted architecture for mon-

itoring hypervisor non-control data”. In: Software Security and Reliability-

Companion (SERE-C), 2013 IEEE 7th International Conference on. IEEE,

pp. 26–34.

Dornseif, Maximillian (2004). “0wned by an iPod”. In: Presentation, PacSec.

Ducklin, Paul. Sony PS3 hacked “for good” —- master keys revealed. url: https:

//nakedsecurity.sophos.com/2012/10/25/sony-ps3-hacked-for-good-

master-keys-revealed/ (visited on 26/02/2019).

Eastlake, Donald (1999). “RFC 2535: Domain name system security extensions”.

In: Obsoleted by RFC4033-4035. Updated by RFC2931, RFC3007, RFC3008,

RFC3090, RFC3226, RFC3445, RFC3597, RFC3655, RFC3658, RFC3755,

RFC3757, RFC3845.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1038
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1038
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3665
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3665
https://doi.org/10.1145/356571.356573
http://doi.acm.org/10.1145/356571.356573
http://doi.acm.org/10.1145/356571.356573
https://nakedsecurity.sophos.com/2012/10/25/sony-ps3-hacked-for-good-master-keys-revealed/
https://nakedsecurity.sophos.com/2012/10/25/sony-ps3-hacked-for-good-master-keys-revealed/
https://nakedsecurity.sophos.com/2012/10/25/sony-ps3-hacked-for-good-master-keys-revealed/

BIBLIOGRAPHY 158

Eclypsium (May 2018). System Management Mode Speculative Execution Attacks.

url: https://eclypsium.com/2018/05/17/system- management- mode-

speculative-execution-attacks/ (visited on 08/03/2019).

edepot.com. PlayStation 3 Secrets. url: http : / / www . edepot . com /

playstation3.html (visited on 26/02/2019).

Embleton, Shawn, Sherri Sparks and Cliff C Zou (2013). “SMM rootkit: a new

breed of OS independent malware”. In: Security and Communication Networks

6.12, pp. 1590–1605.

Furtak, Andrew et al. (2014). “Bios and secure boot attacks uncovered”. In: The

10th ekoparty Security Conference.

Ghedini, Alessandro. Make SSL boring again. url: https://blog.cloudflare.

com/make-ssl-boring-again/ (visited on 26/02/2019).

Gifford, David K. and John M. Lucassen (1986). “Integrating Functional and

Imperative Programming”. In: Proceedings of the 1986 ACM Conference on

LISP and Functional Programming. LFP ’86. Cambridge, Massachusetts, USA:

ACM, pp. 28–38. isbn: 0-89791-200-4. doi: 10.1145/319838.319848. url:

http://doi.acm.org/10.1145/319838.319848 (visited on 08/03/2019).

Giller, Brett (2015). “Implementing practical electrical glitching attacks”. In: Black

Hat Europe.

Gjerdrum, Anders T et al. (2017). “Performance of Trusted Computing in Cloud

Infrastructures With Intel SGX”. In: Proceedings of the 7th International Con-

ference on Cloud Computing and Services Science. Porto, Portugal: SCITE-

PRESS, pp. 696–703.

https://eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/
https://eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/
http://www.edepot.com/playstation3.html
http://www.edepot.com/playstation3.html
https://blog.cloudflare.com/make-ssl-boring-again/
https://blog.cloudflare.com/make-ssl-boring-again/
https://doi.org/10.1145/319838.319848
http://doi.acm.org/10.1145/319838.319848

BIBLIOGRAPHY 159

Google (2013). Coreboot SMM handler source. url: https : / / github . com /

coreboot / coreboot / blob / master / src / cpu / x86 / smm / smm _ module _

handler.c (visited on 06/03/2019).

Gotzfried, J and T Muller (2013). “ARMORED: CPU-bound Encryption for

Android-driven ARM Devices”. In: Availability, Reliability and Security

(ARES), 2013 Eighth International Conference on. IEEE, pp. 161–168.

Graham-Cumming, John. Incident report on memory leak caused by Cloudflare

parser bug. url: https://blog.cloudflare.com/incident-report-on-

memory-leak-caused-by-cloudflare-parser-bug/ (visited on 26/02/2019).

Gueron, Shay (2010). “Intel® advanced encryption standard (AES) new instruc-

tions set”. In: Intel Corporation.

Halderman, J Alex et al. (2009). “Lest we remember: cold-boot attacks on encryp-

tion keys”. In: Communications of the ACM 52.5, pp. 91–98.

Huang, Andrew (2002). “Keeping secrets in hardware: The Microsoft Xbox TM

case study”. In: International Workshop on Cryptographic Hardware and Em-

bedded Systems. Springer, pp. 213–227.

Hudson, Trammell and Larry Rudolph (2015). “Thunderstrike: EFI firmware

bootkits for apple macbooks”. In: Proceedings of the 8th ACM International

Systems and Storage Conference. ACM, p. 15.

IBM (1955). 704 Electronic Data-Processing Machine Manual of Operation. url:

http://bitsavers.org/pdf/ibm/704/24-6661-2_704_Manual_1955.pdf

(visited on 06/03/2019).

Intel Corporation. Intel® 64 and IA-32 ArchitecturesSoftware Developer’s Manual.

url: https://software.intel.com/sites/default/files/managed/39/

c5/325462-sdm-vol-1-2abcd-3abcd.pdf (visited on 26/02/2019).

https://github.com/coreboot/coreboot/blob/master/src/cpu/x86/smm/smm_module_handler.c
https://github.com/coreboot/coreboot/blob/master/src/cpu/x86/smm/smm_module_handler.c
https://github.com/coreboot/coreboot/blob/master/src/cpu/x86/smm/smm_module_handler.c
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
http://bitsavers.org/pdf/ibm/704/24-6661-2_704_Manual_1955.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

BIBLIOGRAPHY 160

Intel Corporation. Intel Platform Innovation Framework for EFI System Man-

agement Mode Core Interface Specification (SMM CIS) v0.9. url: https :

//www.intel.com/content/www/us/en/processors/itanium/efi-smm-

cis-v09.html (visited on 26/02/2019).

Kim, Yoongu et al. (2014). “Flipping bits in memory without accessing them:

An experimental study of DRAM disturbance errors”. In: ACM SIGARCH

Computer Architecture News. Vol. 42 3. IEEE Press, pp. 361–372.

Kingsbury, Alex (June 2009). The Secret History of the National Security Agency.

https://www.usnews.com/opinion/articles/2009/06/19/the-secret-

history-of-the-national-security-agency. (Visited on 28/06/2018).

Kirk, Jeremy (Dec. 2013). Report: NSA intercepts computer deliveries to plant

spyware. https : / / www . pcworld . com / article / 2083300 / report - nsa -

intercepts-computer-deliveries-to-plant-spyware.html. (Visited on

08/03/2019).

Kirk, Paul L (1953). Crime investigation; physical evidence and the police laborat-

ory. New York. Interscience publishers. Inc.

Kocher, Paul et al. (2018). “Spectre Attacks: Exploiting Speculative Execution”.

In: CoRR abs/1801.01203. arXiv: 1801.01203. url: http://arxiv.org/abs/

1801.01203 (visited on 08/03/2019).

Langner, R. (2011). “Stuxnet: Dissecting a Cyberwarfare Weapon”. In: IEEE Se-

curity Privacy 9.3, pp. 49–51. issn: 1540-7993. doi: 10.1109/MSP.2011.67.

Lauterbach GmbH (Nov. 2018). Debugging via Intel DCI User’s Guide. url: http:

//www2.lauterbach.com/pdf/dci_intel_user.pdf (visited on 08/03/2019).

https://www.intel.com/content/www/us/en/processors/itanium/efi-smm-cis-v09.html
https://www.intel.com/content/www/us/en/processors/itanium/efi-smm-cis-v09.html
https://www.intel.com/content/www/us/en/processors/itanium/efi-smm-cis-v09.html
https://www.usnews.com/opinion/articles/2009/06/19/the-secret-history-of-the-national-security-agency
https://www.usnews.com/opinion/articles/2009/06/19/the-secret-history-of-the-national-security-agency
https://www.pcworld.com/article/2083300/report-nsa-intercepts-computer-deliveries-to-plant-spyware.html
https://www.pcworld.com/article/2083300/report-nsa-intercepts-computer-deliveries-to-plant-spyware.html
https://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://doi.org/10.1109/MSP.2011.67
http://www2.lauterbach.com/pdf/dci_intel_user.pdf
http://www2.lauterbach.com/pdf/dci_intel_user.pdf

BIBLIOGRAPHY 161

Lawson, Nate (Jan. 2010). How the PS3 hypervisor was hacked. url: https :

//rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/

(visited on 08/03/2019).

Lawton, Kevin P. (Sept. 1996). “Bochs: A Portable PC Emulator for Unix/X”. In:

Linux J. 1996.29es. issn: 1075-3583. url: http://dl.acm.org/citation.

cfm?id=326350.326357 (visited on 08/03/2019).

Leyden, John (Nov. 2017). Hackers abusing digital certs smuggle malware past

security scanners. url: https://www.theregister.co.uk/2017/11/01/

digital_cert_abuse/ (visited on 06/03/2019).

Libreboot Project. Libreboot. url: https : / / libreboot . org/ (visited on

26/02/2019).

Lie, David et al. (2000). “Architectural support for copy and tamper resistant

software”. In: ACM SIGPLAN Notices 35.11, pp. 168–177.

Lipp, Moritz et al. (2018). “Meltdown”. In: arXiv preprint arXiv:1801.01207.

Liu, Fangfei et al. (2015). “Last-level cache side-channel attacks are practical”. In:

Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, pp. 605–622.

MachMetrics (July 2018). Website Size: The Average Web Page Size Is More than

2MB. url: https://www.machmetrics.com/speed-blog/website-size-

the-average-web-page-size-is-more-than-2mb-twice-the-size-of-

the-average-page-just-3-years-ago/ (visited on 06/03/2019).

Manavski, Svetlin A (2007). “CUDA compatible GPU as an efficient hardware

accelerator for AES cryptography”. In: 2007 IEEE International Conference

on Signal Processing and Communications. IEEE, pp. 65–68.

Mansfield-Devine, Steve (2015). “The Ashley Madison affair”. In: Network Security

2015.9, pp. 8–16.

https://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/
https://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/
http://dl.acm.org/citation.cfm?id=326350.326357
http://dl.acm.org/citation.cfm?id=326350.326357
https://www.theregister.co.uk/2017/11/01/digital_cert_abuse/
https://www.theregister.co.uk/2017/11/01/digital_cert_abuse/
https://libreboot.org/
https://www.machmetrics.com/speed-blog/website-size-the-average-web-page-size-is-more-than-2mb-twice-the-size-of-the-average-page-just-3-years-ago/
https://www.machmetrics.com/speed-blog/website-size-the-average-web-page-size-is-more-than-2mb-twice-the-size-of-the-average-page-just-3-years-ago/
https://www.machmetrics.com/speed-blog/website-size-the-average-web-page-size-is-more-than-2mb-twice-the-size-of-the-average-page-just-3-years-ago/

BIBLIOGRAPHY 162

Microsoft Corporation (Mar. 2017). Blocking the SBP-2 driver and Thunderbolt

controllers to reduce 1394 DMA and Thunderbolt DMA threats to BitLocker.

url: https://support.microsoft.com/en-us/help/2516445/blocking-

the-sbp-2-driver-and-thunderbolt-controllers-to-reduce-1394-d

(visited on 08/03/2019).

— (Mar. 2018). Setting Up Kernel-Mode Debugging over a 1394 Cable Manually.

url: https://docs.microsoft.com/en-us/windows-hardware/drivers/

debugger/setting-up-a-1394-cable-connection (visited on 08/03/2019).

Müller, Tilo, Felix C Freiling and Andreas Dewald (2011). “TRESOR Runs En-

cryption Securely Outside RAM.” In: USENIX Security Symposium, pp. 17–

17.

Müller, Tilo and Michael Spreitzenbarth (2013). “Frost”. In: Applied Cryptography

and Network Security. Springer, pp. 373–388.

Müller, Tilo, Benjamin Taubmann and Felix C Freiling (2012). “TreVisor”. In:

Applied Cryptography and Network Security. Springer, pp. 66–83.

Murase, Masana et al. (2009). “Effective Implementation of the Cell Broadband

Engine™ Isolation Loader”. In: Proceedings of the 16th ACM conference on

Computer and communications security. ACM, pp. 303–313.

Patel, Avadh et al. (2011). “MARSSx86: A Full System Simulator for x86 CPUs”.

In: Design Automation Conference 2011 (DAC’11).

Poskanzer, Jef. http_load. url: {https://acme.com/software/http_load/}

(visited on 26/02/2019).

Pratt, Vaughan (1995). “Anatomy of the Pentium Bug”. In: In TAPSOFT’95: The-

ory and Practice of Software Development. Springer Verlag, pp. 97–107. url:

http://boole.stanford.edu/pub/anapent.pdf (visited on 08/03/2019).

https://support.microsoft.com/en-us/help/2516445/blocking-the-sbp-2-driver-and-thunderbolt-controllers-to-reduce-1394-d
https://support.microsoft.com/en-us/help/2516445/blocking-the-sbp-2-driver-and-thunderbolt-controllers-to-reduce-1394-d
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-a-1394-cable-connection
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-a-1394-cable-connection
{https://acme.com/software/http_load/}
http://boole.stanford.edu/pub/anapent.pdf

BIBLIOGRAPHY 163

Provos, Niels (2000). “Encrypting Virtual Memory.” In: USENIX Security Sym-

posium, pp. 35–44.

Provos, Niels, Markus Friedl and Peter Honeyman (2003). “Preventing Privilege

Escalation”. In: Proceedings of the 12th Conference on USENIX Security Sym-

posium - Volume 12. SSYM’03. Washington, DC: USENIX Association, pp. 16–

16. url: http://dl.acm.org/citation.cfm?id=1251353.1251369 (visited

on 08/03/2019).

Qualys (2014). SSL Labs SSL server test. url: https://www.ssllabs.com/

(visited on 08/03/2019).

Rutkowska, Joanna and Rafał Wojtczuk (2008). “Preventing and detecting Xen

hypervisor subversions”. In: Blackhat Briefings USA.

Schwarz, Michael et al. (2017). “Malware Guard Extension: Using SGX to Conceal

Cache Attacks”. In: arXiv preprint arXiv:1702.08719.

SeaBIOS Project. SeaBIOS. url: https://www.seabios.org/SeaBIOS (visited

on 26/02/2019).

Seaborn, Mark and Thomas Dullien (2015). “Exploiting the DRAM rowhammer

bug to gain kernel privileges”. In: Black Hat, pp. 7–9.

Seo, Jaebaek et al. (2017). “SGX-Shield: Enabling address space layout random-

ization for SGX programs”. In: Proceedings of the 2017 Annual Network and

Distributed System Security Symposium (NDSS), San Diego, CA.

Shinagawa, Takahiro et al. (2009). “Bitvisor: a thin hypervisor for enforcing i/o

device security”. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS inter-

national conference on Virtual execution environments. ACM, pp. 121–130.

Smith, Sean W and Steve Weingart (1999). “Building a high-performance, pro-

grammable secure coprocessor”. In: Computer Networks 31.8, pp. 831–860.

http://dl.acm.org/citation.cfm?id=1251353.1251369
https://www.ssllabs.com/
https://www.seabios.org/SeaBIOS

BIBLIOGRAPHY 164

Suh, Edward et al. (2003). Hardware mechanisms for memory authentication. Cite-

seer.

Sullivan, Nick. Keyless SSL: The Nitty Gritty Technical Details. url: https :

//blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-

details/ (visited on 26/02/2019).

— The Results of the CloudFlare Challenge. url: https://blog.cloudflare.

com/the-results-of-the-cloudflare-challenge/ (visited on 26/02/2019).

Sutherland, James, Natalie Coull and Allan MacLeod (2014). “CPU covert channel

accessible from JavaScript”. In: CyberForensics 2014.

Tereshkin, Alexander (2010). “Evil Maid Goes After PGP Whole Disk Encryption”.

In: Proceedings of the 3rd International Conference on Security of Information

and Networks. SIN ’10. Taganrog, Rostov-on-Don, Russian Federation: ACM,

pp. 2–2. isbn: 978-1-4503-0234-0. doi: 10.1145/1854099.1854103. url: http:

//doi.acm.org/10.1145/1854099.1854103 (visited on 08/03/2019).

Trent, Gene and Mark Sake (1995). WebSTONE: The first generation in HTTP

server benchmarking.

Tzu, Sun (6th century BC). Sun Tzu Art of War. Vij Books India Pvt Ltd.

Ubuntu (May 2011). [Lenovo W520] laptop freezes on ACPI-related actions. url:

https : / / bugs . launchpad . net / ubuntu / +source / linux / +bug / 776999

(visited on 06/03/2019).

Ven, Adriaan van de et al. (2016). Supervisor mode execution protection. US Patent

9,323,533.

Wang, Jiang, Angelos Stavrou and Anup Ghosh (2010). “HyperCheck: A hardware-

assisted integrity monitor”. In: Recent Advances in Intrusion Detection.

Springer, pp. 158–177.

https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://blog.cloudflare.com/the-results-of-the-cloudflare-challenge/
https://blog.cloudflare.com/the-results-of-the-cloudflare-challenge/
https://doi.org/10.1145/1854099.1854103
http://doi.acm.org/10.1145/1854099.1854103
http://doi.acm.org/10.1145/1854099.1854103
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/776999

BIBLIOGRAPHY 165

Wang, Jiang et al. (2011). “Firmware-assisted memory acquisition and analysis

tools for digital forensics”. In: Systematic Approaches to Digital Forensic En-

gineering (SADFE), 2011 IEEE Sixth International Workshop on. IEEE, pp. 1–

5.

Wang, Shaoqiang, DongSheng Xu and ShiLiang Yan (2010). “Analysis and applic-

ation of Wireshark in TCP/IP protocol teaching”. In: E-Health Networking,

Digital Ecosystems and Technologies (EDT), 2010 International Conference

on. Vol. 2. IEEE, pp. 269–272.

Wetter, Dirk (Oct. 2016). Testing TLS/SSL encryption. url: https://testssl.

sh (visited on 06/03/2019).

Wojtczuk, Rafal and Joanna Rutkowska (2009). “Attacking SMM memory via

Intel CPU cache poisoning”. In: Invisible Things Lab.

Yee, Bennet (1994). “Using secure coprocessors”. PhD thesis. Citeseer.

Zeng, Hui et al. (July 2009). “MPTLsim: A Cycle-accurate, Full-system Simu-

lator for x86-64 Multicore Architectures with Coherent Caches”. In: SIGARCH

Comput. Archit. News 37.2, pp. 2–9. issn: 0163-5964. doi: 10.1145/1577129.

1577132. url: http://doi.acm.org/10.1145/1577129.1577132.

https://testssl.sh
https://testssl.sh
https://doi.org/10.1145/1577129.1577132
https://doi.org/10.1145/1577129.1577132
http://doi.acm.org/10.1145/1577129.1577132

	List of Tables
	Introduction
	Background
	Context
	Privacy and Integrity of Communications
	Minimum Privilege
	Defence in Depth — Fault Containment
	Minimal Trusted Computing Base

	Aim & Hypothesis

	Literature Review
	Introduction
	Historical Context
	Physical RAM
	Hardware Attacks
	Cold Boot Attack
	Rowhammer Attacks
	Bus Level Attacks
	Test Port Attack
	DMA Attack

	Context Switches and KAISER/KPTI
	Summary

	Security Requirements
	Introduction
	Scenario
	Threat Model
	RowHammer
	Spectre/Meltdown
	Summary

	Systems Management Mode for Security
	Introduction
	Origins
	SMRAM and privilege levels
	Bootstrapping SMM
	Other uses of SMM
	Security
	Forensics/Surveillance

	SGX
	Other Platforms
	Software Alternatives
	Credential Guard — VM isolation
	Process Isolation
	Encrypted Memory
	Encrypted Swap

	Summary

	Methodology
	Introduction
	Experiment 1: CPU Backdoor
	Experiment 2: Micro Benchmarking
	SMRAM and SMM
	Experiment 3a: Protocol Verification
	Tool: Wireshark
	Tool: Qualys

	Experiment 3b: Process Isolated Key Handling
	Experiment 3c: HTTPS Performance Testing
	Tool: http_load

	Server Implementation
	Enclave Implementation
	Certificate Signing
	Performance Testing
	Security Testing
	Summary

	Results
	Introduction
	Processor Level Backdoor
	TLS — Protocol Verification

	Micro-benchmarks
	Macro-benchmarks
	Summary

	Discussion
	Introduction
	Analysis of Results
	Experiment 1: Backdoor
	Experiment 2: Microbenchmark
	Experiment 3a: Protocol Handling
	Experiment 3b: Process-isolated Key Handling
	Experiment 3c: HTTPS Performance Testing

	Hypothesis
	Performance
	Batch signing
	Multiple cores/threads

	Hardware alternatives
	Security
	Summary

	Summary, Conclusions
	Introduction
	Dissemination
	Further Work
	Intrusion countermeasures
	Operation batching
	Multi core support
	Additional algorithm support
	Other applications and protocols
	Persistent storage
	SMM experimentation kit

	Appendices
	API Design
	Micro benchmarking code
	C compiler
	Linux kernel
	Processor
	Multi-mode HTTPS server code
	Glossary
	Index
	Bibliography

