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A b s t r a c t

Using voice characteristics to verify identity is an emerging science, reporting ever- 
lower error rates. This project investigates the application of this technology to 
unattended secure banking, such as automated teller machines. The aim was not 
to produce a final system but to create a verifier with parameters which could be 
varied to investigate the effects. Following Furui (1981) and Bernasconi (1990), 
the text-dependent, dynamic time-warping (DTW) platform was chosen.

To help evaluate changes to the verifier configuration, methods of assessment 
based on the separation between genuine and impostor DTW (dissimilarity) score 
distributions are proposed. These offer alternatives to the often-quoted but 
sometimes uninformative equal-error rate. A technique of generating speaker- 
specific but globally adjustable thresholds is presented for occasions when error 
rates are of interest. Also, two databases, one with over 200 speakers, have been 
collected.

Enrolling customers record several versions of the same word or phrase and 
these are used to make a characteristic template. Four different approaches are 
examined: two keep all of these initial tokens separate but the performance gain 
over the other two (combination) methods of Bernasconi and Furui -  whose 
approach suffers from arbitrary treatment of initial data -  does not merit the 
extra computation when verifying.

As expected, long utterances are found to work better than short ones, up to a 
point, probably about 2 seconds. However, combining DTW scores for sequences 
of individual short words may be as effective.

Traditional techniques for weighting the distance measure treat each vector 
dimension in isolation but by considering their combined effect on the separation 
between score distributions, when generated either by genetic algorithm or purely 
randomly, great gains may be made.

In practice, a central database of speech would be necessary to calibrate such
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a system for each enrolling user. Also, to provide high security, the text to be 
spoken should consist of a sequence of randomly-chosen short words, such as the 
digits. Personalised modification of the input speech through the use of weighting 
functions is found to stabilise the verifier performance and reduce error rates to 
a level likely to be acceptable to financial institutions.
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C h a p t e r  1

I n t r o d u c t i o n

Speaker verification is the process of verifying a person’s identity using only their 
voice characteristics. Since the 1930’s, the general topic of speaker recognition 
has been investigated in various forms and with varying degrees of success. 
Initially motivated by forensic science, attempts were made to produce a visual 
representation of a voice (a ‘voiceprint’) which could then be compared with 
another by an ‘expert’. The implied comparison with fingerprints is not valid 
because fingerprint patterns do not vary with age and no cases of duplication 
have been reported. In contrast, current methods of characterising voices have 
never been proven to be unique and every system subjected to long-term tests 
has been susceptible to error due to a significant variation in each individual’s 
voice. This project investigates automatic (computer-based) speaker verification 
(ASV) as a method of securing unattended banking transactions, probably based 
on automated teller machines (ATMs).

Personal identification numbers (PINs) are currently used as the security 
measure in ATMs. Often, this causes problems, both for customers and for the 
banks because PINs are easily forgotten, especially if a customer has several to 
remember. The banks are (privately) very concerned by apparently unauthorised 
‘phantom’ withdrawals and seek to complement or replace the PIN with another 
form of identification. Biometric measures truly represent identity and cannot 
be transferred from person to person so tests of hand geometry, patterns of palm 
veins, retinal scans and signature verification have all been proposed but have 
been generally rejected as impractical or unlikely to be accepted by customers.

Over a third of the world’s ATMs are produced in the Dundee manufacturing 
facility of NCR and, aware of the potential market for machines with extra 
security, they provided funding for this project. The aim was not necessarily to
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C H A P T E R  1. I N T R O D U C T I O N 2

produce a speaker verification system to be incorporated into their machines but 
to find out about the mechanism by which such systems work and the feasibility 
of using such technology in the near future. However, many of the obstacles to 
a high-street implementation of ASV are not covered in this report. Noisy traffic, 
and passers-by create a cluttered and unpredictable background sound level and 
an investigation into effective pre-processing in itself would merit a Ph.D. Also, 
the effects of ageing and the extent to which a speaker’s psycho-physical state 
(illness, stress or intoxication) is reflected by voice condition are beyond the scope 
of this project.

S t r u c tu r e  o f  t h e  th e s is

Each chapter describes an individual element of the development or testing. 
Chapter 2 presents a review of current ASV technology to provide a backdrop 
against which this work may be viewed, and introduces the elements of the system 
used for testing in later chapters. Chapter 3 describes the speech database used 
in these tests and the verification system itself is described in detail in Chapter 4.

Several methods exist for assessing the performance of a speaker verification 
system and these are defined in Chapter 5 along with new methods developed for 
this project. These assessment methods allow detailed treatment in Chapters 6, 7 
and 8 of experiments relating to utterance length and content, reference template 
construction and discrimination optimisation respectively. Chapter 9 brings 
together the most positive features of these experimental systems to describe 
an optimised but practical verifier before Chapter 10 concludes.



C h a p t e r  2

R e v i e w  o f  s p e a k e r  v e r i f i c a t i o n  t e c h n o l o g y

Since the early 1960s published reports have become increasingly common about 
the broad area of speaker recognition. Speaker identification (SI) determines 
which of a closed set of candidates is speaking; speaker verification (SV) is a 
simpler task where a specific identity is claimed and the decision to accept or 
reject the claim is based on the speaker’s voice. Compared to SV, the potential 
applications of SI are fewer and less commercial but most of the developed systems 
could be modified easily to perform either task. For this reason, this chapter 
reviews the development of both technologies referring to published reports and 
commercial products. This provides a context in which to view the findings of 
later chapters.

2 .1  L i te r a tu re  su rv e y

When reading the literature it is difficult to make meaningful comparisons 
between systems because there are no standard procedures for testing and 
reporting results. This is not surprising because there are so many variables 
in any system, such as quality of the speech signal, number of enrolled speakers, 
number of trials conducted, quantity of data for training and testing, parameters 
used to represent the speech and the time taken to make a decision. These are 
all important factors in determining the usefulness of a system.

2 .1 .1  S p e e c h  f e a t u r e s

Most recognition systems work with features extracted from the speech waveform, 
comparing those of an unknown speaker with feature templates constructed

3



C H A P T E R  2. R E V I E W  O F  S P E A K E R  V E R IF IC A T IO N  T E C H N O L O G Y  4

during enrollment of registered users. The dissimilarity of the two is quantified 
and, in the case of verification, determines whether or not the claimant is accepted 
or rejected.

The speech features, in almost all of the reported strategies, are obtained 
by frequency-domain analysis, due to the way in which speech is produced. Air 
flows through the vocal tract, which begins at the vocal cords, ends at the lips 
and includes all the articulators (such as the tongue and teeth) in between. 
The vocal tract acts as a filter with resonances and anti-resonances according 
to the dimensions of the throat and the positions of the articulators. Since these 
are physiological factors, usually beyond conscious control, they are thought 
to be specific to each person. Thus, the frequency spectrum of an utterance 
should contain indications of the speaker’s identity, as well as the text spoken. 
Intuitively, averaging spectra over several phonetically varied sentences should 
highlight characteristics of the speaker rather than the text. Early attempts at 
speaker recognition (Pruzansky 1963, Hollien and Majewski 1977) operated on 
this principle but generally gave way to analysis of shorter periods (frames), to 
improve system response times.

Several methods of estimating the speech spectrum (which is concentrated 
mostly in the 50-5000 Hz range) are available. The most direct method is filter- 
bank analysis where the speech is applied to a parallel array of band-pass filters, 
with each band covering successive frequency ranges. Considered together, the 
outputs of the filters form a histogram, showing the relative concentration of 
speech energy across the spectrum. The centre-frequencies of the filters are 
sometimes spaced linearly (Doddington 1985) but often use non-linear scales such 
as mel (Rose, Fitzmaurice, Hofstetter and Reynolds 1991) or Bark to match the 
sensitivities of the human ear. Generally, no other allusions to human hearing 
have been made until recently: Colombi et al (1993) and Anderson and Patterson
(1994) extracted voice features using models of the human auditory system 
(specifically, the behaviour of the basilar membrane) but found the potential 
rewards are currently outweighed by the extra computational burden.

Short-time Fourier transforms (including cosine and sine transforms) offer 
very detailed spectral estimates and efficient software implementations have been 
developed. However, analysis by linear predictive coding (LPC) is more common, 
as it ignores much of the redundancy inherent in speech whilst representing
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efficiently the principal features. LPC models only the vocal tract and not 
the excitation source (glottal wave). A further transformation leads to cepstral 
coefficients which have been shown to be superior for recognition (Atal 1974). 
Cepstral parameters can also be obtained via the Fourier transform (Rudasi 
and Zahorian 1991). The cepstrum represents a greatly smoothed version of 
the spectrum but on a logarithmic scale, thus emphasising peaks and troughs. 
Also, the logarithm allows deconvolution of frequencies by subtraction and this 
property is often used to remove the invariant channel characteristics to make 
the system less context-sensitive.

2 . 1 .2  C o m p a r i s o n  m e t h o d s

Verification is usually a process of comparing the speech features from an 
unknown speaker with those of the claimed identity. However, since the features 
are often only representative of a short excerpt of speech, comparison over an 
entire utterance is not straightforward. Many of the methods used in speaker 
recognition have a history of application in word recognition problems. Li and 
Wrench (1983) first applied the technique of vector quantisation (VQ) to speaker 
identification. The features extracted from speech are stored inexactly as the 
vectors in a small set or codebook which are closest to those actually uttered. 
Soong, Rosenberg, Rabiner and Juang (1985) performed more extensive tests 
using VQ codebooks for short utterances (the digits) and found that 10 different 
digits offered better discrimination than 10 repetitions of the same digit. The 
best digit was nine, due to the nasal coarticulation, which is hard to modify 
consciously. A later study (Soong and Rosenberg 1986) found that information 
about how the cepstral coefficients changed from frame to frame could be 
combined with their instantaneous values for improved performance.

For text-dependent verification, the method of template matching is appro­
priate, where input speech is compared with a model of the correct word spoken 
by the claimed identity. Unfortunately, there can be considerable variation in the 
way someone says a word or phrase, noticeable even in two consecutive utteran­
ces. Other than changes in inflection or pitch, subtle timing differences (which 
are not constant throughout an utterance) contribute most to this variation. The 
technique known as dynamic time-warping (DTW) has been developed (Sakoe
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and Chiba 1978) which allows a localised tolerance in the matching of corresp­
onding portions of utterances. In effect, the time-axis of one utterance undergoes 
a series of localised compressions and expansions to match the time-axis of the 
other utterance. These axis alterations are defined by a warp-path, along which 
the local distances (between the feature vectors for corresponding frames) may 
be accumulated to give a global distance, or difference between the utterances.

Although used mostly for word recognition (Myers, Rabiner and Rosenberg 
1981), DTW has also been applied successfully to speaker verification, first 
by Furui (1981). Velius (1988) and Bernasconi (1990) used DTW systems as 
a basis for investigating properties of cepstral coefficients.

Hidden Markov models (HMMs) have also been associated with word re­
cognition but increasingly are being applied to speaker recognition, both text- 
dependent (Zheng and Yuan 1988, Netsch and Doddington 1992) and text- 
independent (de Veth and Bourlard 1994). The HMM approach can be likened 
to a (less constrained) DTW comparison of a test utterance (as a sequence of 
feature vectors) with a compressed reference template for the same word, con­
sisting of only a single vector for each sub-word unit. Grant (1991) gives a good 
introduction to HMMs and DTW.

The connectionist approach to speaker recognition using artificial neural 
networks (ANNs) is comparatively new, first proposed by Oglesby and Mason
(1988). Their results for text-dependent speaker identification were comparable 
with a VQ system (Oglesby and Mason 1989). Information about the general 
population or a confusible subset (Oglesby and Mason 1990) is included in each 
speaker’s model so that areas of overlap can be ignored and speaker-specific 
information can be highlighted. Bennani and Gallinari (1991) combined several 
neural networks with each assigned a sub-task of the overall identification, i.e. an 
unknown speaker is first classified by gender then dialect. This modular approach 
makes each task easier and reduces the training time of each network.

2 .2  C o m m e rc ia l su rv e y

A search of the appropriate databases1 for patents relating to speaker verification 
revealed that many of the leading electronics/communications companies in the

1 Conducted in 1992 through Dialog Information Systems.
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world have worked in this area yet few have made any systems commercially- 
available. This section describes companies who have worked on a commercial 
product and have reinforced their marketing material with published papers. (A 
more comprehensive listing of interested companies may be found in Hannah 
(1992).)

2 .2 .1  A T & T

AT&T Bell Laboratories have been studying speaker recognition since the early 
1970’s and have been associated with published papers covering almost every 
technique. Recently the HMM-based system described by Rosenberg, Lee and 
Gokcen (1991) was incorporated into an automatic teller machine and the results 
of initial field trials were reported by Jacobs and Setlur (1994). Each user 
was prompted to speak a randomly-selected 4-digit utterance and was allowed 
3 attempts to match their own pre-recorded reference material. Testing is on­
going but the reported results are not extensive enough to determine the feasibility 
of the system. A major factor to be overcome is the hardware: currently the 
system uses a dedicated digital signal processor and 1 MB of static memory.

2 .2 .2  B r i t i s h  T e l e c o m

British Telecom supplied the Royal Bank of Scotland with speaker verification 
technology in 1988 and began testing it for use in their telephone banking system, 
which included word recognition also. Few technical details of the system are 
available but field trials conducted by the bank in 1991 concluded that enrolled 
customers were rejected too frequently for use with the general public. However, 
the system was considered to be successful for internal bank use by about 
100 members of staff.

2 .2 .3  E n s ig m a

Ensigma Ltd. are a telecommunications consultancy who patented a speaker 
verification algorithm in 1990 and developed the system described by Carey, 
Parris and Bridle (1991) into a product, available as software or on a plug-in 
card for a personal computer. The system uses two hidden Markov voice models: 
one for the enrolled customer and one for the general population. If the speech of
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an unknown user is closest to the world model then the speaker is rejected. In a 
pilot study using 6 speakers, verification typically took less than 10 seconds; users 
were prompted to say 5 randomly-selected digits and the results were encouraging.

Ensigma have not developed this product any further and do not have the 
resources to market it but it is currently being used by the Australian Prison 
Service for their ‘home arrest’ scheme.

2 . 2 . 4  L e r n o u t  &  H a u s p i e

The Belgian company Lernout & Hauspie provide several different applications 
of voice technology and their speaker verification system is designed to work with 
strings of digits spoken over the telephone. The implementation uses HMMs 
and is available as software for a specific digital signal processor. Recently, the 
results of experimenting with different types of HMMs were reported (de Veth 
and Bourlard 1994).

2 .2 .5  L o g ic a  C a m b r i d g e

The speaker verification system is one of several telephony services offered by 
Logica and uses the Fourier-Bessel series to estimate the probability of DTW 
distances being attributable to the templates for a given speaker (Gaganelis 
and Frangoulis 1991). The system has been tested with 60 speakers, who were 
prompted to speak 4 words. In 1992, Logica were still experimenting with the 
system; since then, no further developments have been published.

2 .3  C h o o s in g  a s y s te m  t o  s im u la te

This project required the use of a verification system and it was decided to 
implement a DTW-based system following Bernasconi (1990), whose system was 
itself based on that of Furui (1981). Both of these studies highlighted many 
different possible configurations which could be investigated and modified. Also, 
it was important that a system with a realistic chance of eventual application 
should be studied, especially since the interest of the project sponsors was more 
than just academic. Both of the systems produced low error rates, which did 
not rise inexorably over time. A full description of the simulation is described
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in Chapter 4 and subsequent chapters discuss modifications with a view to 
improvements.



C h a p t e r  3

S p e e c h  D a t a

Chapters 6, 7 and 8 describe experiments which test the system performance 
under various conditions. In each case, to make qualitative assessments, it was 
necessary to use the same input data. The absence of a suitable, available, 
recognised standard set of data forced the collection of local databases. A small 
database was formed for initial experiments but later, to test the extension of the 
initial findings to a wider population, another (larger) database was collected. 
This chapter describes the attempts to obtain a standard database and gives 
details of content, conditions and constructional difficulties of the locally-gathered 
databases.

3 .1  E x is tin g  sp e e c h  d a ta b a s e s

When this project reached the stage of reporting results at conferences, an 
approach was made to the UK National Physical Laboratory (NPL) who 
maintained an archive of miscellaneous public-domain speech data (Goldsmith 
1989). None was suitable for this project, having either too few speakers or only 
isolated words or not enough repetitions of each word by each speaker. At the 
time (1992), the NPL was trying to start collaboration amongst UK research 
establishments, commercial and academic, who were collecting their own speech 
databases independently, at considerable expense and effort, and probably not 
following a standard procedure. Recording enough utterances for each speaker 
to a consistent standard is difficult due to varying background noise, varying 
channel characteristics (if recording over telephone lines), and the unpredictable 
colouration of speech caused by varied emotional states. The NPL project known 
as SCRIBE was started with plans to record and document speech data at six

10
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or seven sites in the UK. Unfortunately, the envisaged standard, multi-purpose, 
computer-readable database was never developed, and the Speech Technology 
section of the NPL has since closed.

A similar fate has befallen a European initiative to define a standard 
assessment methodology for speaker verification systems. Funding for the project 
was diverted by ESPRIT to activities with more immediate commercial returns, 
although after the first year, a number of recommendations for a standard 
database were drawn up (Bimbot 1994).

In recent years, a number of databases have been made available; Godfrey, 
Graff and Martin (1994) review five databases in this category. In particular, the 
TIMIT database has been used in many published reports but was not available 
to this project in 1992.

3 .2  S m a ll d a ta b a s e

The small database was collected by recording people who visited the research 
laboratory and consists of 5 males and 5 females saying the phrase ABCDEFG 
20 times each. By chance, most of the speakers are from different places but none 
has a strong enough accent to suggest an overly influential role in the verification. 
The age range of the speakers is about 19-40.

Speech was captured using an in-house program which controlled a Texas 
Instruments TMS320C25-based card installed in a PC. The speech is transferred 
in real time to the PC’s memory before being written to disk as a binary file, 
using an in-house format (described in Appendix A) hereafter referred to as IDF2. 
Although the card has many facilities for signal processing, only the analogue- 
to-digital converter chip (a Burr-Brown PCM75JG, 16-bit resolution) was used. 
All the signal-processing was implemented in software to minimise the unit cost 
of the verifier, which would be a primary consideration when applied to each 
machine in a network of ATMs.

Each speaker’s contribution was recorded in a single session with a short 
interval half-way through to prevent speaker fatigue. All of the speakers were 
familiar with the project although only 3 had any knowledge of speech science. 
The timescale of the session was set by the speaker in that they controlled the

2IDF stands for integer data file, apparently.
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start of each (fixed-duration) audio capture, although it was checked immediately 
by the author to ensure that the entire utterance had been recorded. The audio 
capture package was also used later by the author to remove silences preceding 
and following the actual speech. This end-point detection process may also be 
automated but at the risk of less accurate delineation of speech (see Chapter 4).

Speech technology systems generally compromise accuracy for processing 
speed. Both are equally important because immediacy is one of the attractions 
of a speech interface although there is little point if the speech is not interpreted 
correctly. This compromise is quantified usually by the specification of operating 
conditions, such as the required sound quality and the response time of the 
system.

Assessments of speech quality are based on the extent and detail of spectral 
features which are included (or not excluded) in the given bandwidth. Recordings 
covering 0-12 kHz would give hi-fi quality speech because virtually all the spectral 
information is included but even half of this bandwidth would give ‘good’ quality 
speech. Telephone-quality speech (covering approximately 300-3400 kHz) is 
usually intelligible for conversation despite the omission of the information needed 
to discriminate between certain sounds (such as / f /  and /s /). Human listeners 
are able to recognise voices on the telephone and many studies, such as Furui 
(1981) and Soong et al (1985) have demonstrated the principles of automatic 
speaker verification using similar restricted bandwidth speech.

For this project, an upper frequency limit of about 4 kHz was chosen originally, 
so that speech of a reasonable quality could be used. Sampling at 10 kHz would 
then satisfy the well-known Nyquist criterion in terms of completely describing 
the signal, but to eliminate the possibility of aliasing error the low-pass filter must 
effectively block frequencies approaching 5 kHz (Lathi 1989, pages 66-67). To 
this end, a 2-pole Butterworth filter was included in a purpose-built microphone 
pre-amplifier unit constructed using op-amps (Horowitz and Hill 1989, pages 272- 
276). The cut-off frequency of 3030 Hz ensured substantial attenuation at 5 kHz.

This is approaching the minimum bandwidth thought to be necessary for 
successful voice analysis (O’Shaughnessy 1987, page 256) and perhaps highlights 
the need for a different filter design. However, there are many standard methods 
each with advantages and disadvantages and choosing amongst them is a topic 
which occupies many volumes of electronic engineering texts. For this application,
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the Butterworth method is attractive because it offers a maximally-flat pass-band, 
thus minimising distortion of the spectral characteristics of a speaker’s voice.

The recordings were made in a quiet, but not sound-proof, laboratory 
environment. In practice, the verifier could be expected to work in very non- 
deterministic noisy environments such as busy streets, train stations etc. but 
successful extraction of the speech from such a background signal merits a research 
project in itself! Consequently, the verifier in this study assumes ‘clean’ speech 
(with a high signal-to-noise ratio) as input. To aid in this, the microphone chosen 
was unidirectional (Tandy 33-984C, manufactured by Shure) and speakers were 
encouraged to go as close as was comfortably possible. It sometimes took quite 
an effort to ensure subjects maintained a steady distance from, and angle to, 
the microphone but the automatic scaling of the signal (described in Chapter 4) 
should minimise these effects.

3 .3  L arg e  d a ta b a s e

The small database lacked speakers and utterances but was considered sufficient 
to demonstrate the effects of basic changes of the verifier’s configuration. Howe­
ver, the results of experiments obtained with it left some degree of doubt about 
their applicability to a large population -  a major consideration for this project. 
A temporary part-time employee was recruited to collect a much larger database 
which could also be used for future speech projects at UAD and NCR.

In order to allow the possibility of future recordings by these speakers, names 
and contact addresses were noted. The speakers were also asked their country of 
birth, first language, accent and voice condition, which most described as ‘normal’ 
although some mentioned having hay fever, asthma or a cold. The Human 
Factors group at NCR also took the opportunity to canvass the contributors 
on their feelings about using voice to control an ATM. This took the form of nine 
multiple-choice questions plus a space for ‘other comments’. Finally, the speakers 
were asked if their occupation involved extensive use of the telephone and also to 
indicate their approximate age by ticking one of five ranges.

Recording sessions took place in a quiet laboratory in the University and 
in various rooms at the NCR plant, not guaranteed to be quiet. To encourage 
people to contribute to the database, the names were entered into a draw for
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two attractive prizes3. Over a period of several months, about 300 speakers 
were recorded. Most of them were students or staff at the University or NCR 
employees. Each recording consists of 140 utterances: 20 repetitions of a short 
phrase, plus 10 repetitions of each of 12 short words. The inclusion of the 
short phrase was to allow continuation of experiments with the single-phrase 
small database; the short words were for use in a different verification scheme 
where the system would prompt for individual words. The words used were the 
names of the digits i.e. one, two, • • •, nine, plus zero, oh and nothing, so that 
the database could be used at a later date to test a word-recognition system, 
also for potential inclusion in an ATM. It was decided that the short phrase 
should be the name of some well-known person, so that the speakers would be 
familiar with it, without feeling self-conscious about saying it. The name Sir 
Winston Churchill was chosen, since it satisfied this criterion and also has some 
local historical significance4. Although this phrase contains 3 separate words, 
they were spoken as a continuous phrase in all observed cases.

Experience of collecting the small database suggested some changes in 
procedure. Instead of capturing directly to the computer, a Digital Audio 
Tape (DAT) recorder (SONY DTC-750), which samples at studio-quality 48 kHz 
and has built-in anti-alias filters, was used. This is advantageous because no 
bandwidth restrictions are imposed on the data at the time of recording; the 
speech could be used in many different experiments which might require different 
sampling rates and bandwidths. Also, an attachment was made which positioned 
a thin ring at a fixed distance (4 inches) from the front of the microphone, 
to act as a target ‘mouthpiece’. These attempts to normalize the speaking 
distance were a response to suggestions that at close range, a dynamic microphone 
becomes sensitive to velocity, not pressure, resulting in occasional excessive 
plosive ‘pop’. A corresponding normalization of speech amplitude did not occur 
but as mentioned before, this is compensated for by automatic scaling of the 
signal. For these recordings, a new dynamic microphone (AKG D190E) was 
obtained and a suitable interface to the DAT recorder was built around the 
HXP006 pre-amplifier module, supplied by ILP Electronics Ltd.

It was decided to record all 140 utterances in a single session, due to the

3A pair of active speakers, and a portable CD player.
4The people of Dundee were castigated by Winston Churchill when they failed to return him 

as sitting MP in 1922.
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difficulties in scheduling, and finding people who would commit to, multiple 
sessions. The timescale of the recordings was set by a computer running a 
program which simply prompted for each word, with a specified delay between 
prompts, which could be changed at the speaker’s request. A 10-second interval 
incorporating a count-down to the resumption was inserted half-way through the 
sequence. The whole procedure took 4 minutes on average, and was captured as 
a single continuous DAT recording. The computer display was chosen to try to 
put the speakers at ease; the screen was divided into two horizontal areas, the top 
half blue and the bottom half green, resembling abstractly a countryside view. 
The words to be spoken were displayed in the centre of the screen, following a 
predetermined random order, the same sequence for all speakers.

The tape and track references of each speaker’s recording were stored on a 
database, along with the questionnaire results. After several months, 290 speakers 
had contributed. Each speaker’s contribution was played back through a 
120-4200 Hz band-pass filter into a TMS320C25-based card in a PC running 
Hypersignal. By sampling at 10 kHz, the entire 4 minute recording was captured 
directly to disk as a single file, in proprietary Hypersignal TIM format. A program 
was written which would read in portions of this file and display the waveform 
on the screen. A mouse could then be used to select the approximate end-points 
for each word. Teams of UAD technicians segmented each of the 290 TIM files 
into individual word-length IDF files, which were automatically named xxx.y, 
where xxx is a unique number (padded with leading zeros if necessary) given to 
each speaker, and y is the number of the utterance in the 140-long sequence. 
This naming convention allowed test programs to select automatically the file 
corresponding to a particular utterance by a specific speaker.

The disk capacity required to store all 140 files for each speaker is 4-5 MB. 
A partition of a 3 GB disk is used to accommodate all 290 speakers, with each 
speaker’s files contained in a separate directory. This format allows further use 
of the database for future projects.

3 .4  C ritic a l a p p ra isa l  o f t h e  la rg e  d a ta b a s e

A major criticism of both databases is that they were recorded on a single-session 
basis. Several studies suggest that results obtained with such data will indicate
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an upper bound of performance, which would degrade with time (Bernasconi 
1990, Furui 1974). Apart from the ageing process, there are many factors which 
influence inter-session vocal variations, such as emotional state, level of tiredness 
and time since eating or drinking. However, at this stage of the project, even 
an optimistic assessment of performance is useful to determine the value of 
proceeding further.

For this reason, it would be desirable to use the ‘cleanest’ possible speech for 
testing the verifier, despite the adversity of the expected operating conditions. 
To test robustness, varying levels of background noise could be added, but could 
not be removed. It was therefore a disappointment to find that many of the 
recordings contained extraneous material ranging from the sounds of closing doors 
(UAD recordings) to Tannoy announcements (NCR recordings). There are also 
a few instances of background conversation. In most cases, the speech signal is 
much stronger than the background noise and is assumed to be unaffected. It 
is possible that construction of a desk-top recording booth may have prevented 
these problems but the price per square metre of acoustic-deadening material 
put this option beyond the project’s budget. Also, the original specification of 
the database equipment included the possibility of recording at several sites so 
portability was an issue.

The database should have been checked more frequently during its collection, 
although this is not always guaranteed to detect problems. At some of the 
data collection locations, the noise of the fan in the PC running the prompting 
program has been recorded on the tape. Investigations suggest that the noise is 
actually vibration ‘conducted’ by the desk and the microphone stand. Listening 
to the tapes in situ understandably failed to detect this phenomenon which 
was discovered by visual inspection of the signal. The noise looks like 50 Hz 
mains hum, which indeed is also present in some recordings, probably due to 
electrical equipment at NCR. The presence of some such constant frequency 
could falsely partition the data set, similar to the ‘great divide’ in the TIMIT 
database (Godfrey et al 1994) so when being captured to disk, a high-pass filter 
with a cut-off frequency of 120 Hz was applied. This attenuated the mains hum 
and its first harmonic, and the test results described in later chapters do not 
exhibit any data partitioning.

Before speaker verification could be applied to ATMs, tests would be necessary
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to ensure equal success rates for speakers of all accents and ethnic origins, 
to prevent offending true customers. However, in compiling the database, an 
emphasis was placed on collecting as many recordings as possible, regardless 
of accent etc. As a result, the speaker set is geographically focussed on 
Dundee/Angus although the cosmopolitan nature of both recording sites has 
ensured some miscellany. The verification task is made harder by this focus and 
in practice it is likely that potential impostors would have the same accent as 
their victim. The banks have indicated to NCR that, at present, most cash- 
card fraud takes place within social groups and families. This highlights another 
drawback of the database: all of the contributors spoke naturally and there were 
no deliberate attempts at impersonation. This would have to be investigated 
before a verification system could be implemented for public use.

Automatic prompting by computer has the advantages of being silent (sup­
posedly!) without the risk of losing the place, as might happen if reading from a 
printed page. However, the speaker’s perceived lack of control could be expected 
to add tension to an already unnatural situation. Again, this scenario would 
occur in the envisaged application but it would have been preferable to remove 
as many negative effects as possible at this stage of the research.

The DAT recorder provided a high-quality, manageable data-storage system. 
Unfortunately, the data gatherer was unaccustomed to its use and appears to have 
allowed single utterances to be erased occasionally. For some speakers, the 140th 
utterance is missing and a likely explanation is that when the ‘stop’ button is 
pressed after a recording, the tape unwinds slightly, and the subsequent recording 
overlaps.

The potential exists for computer control of the DAT recorder due to the 
ability to write machine-readable index codes on the tape. This could have saved 
hundreds of man-hours by automating the transfer of the 4-minute recordings 
on tape to the 140 word-length files on disk. Unfortunately, the only facility 
for remote control of the DAT recorder is the infra-red handset. Construction 
and programming of a computer peripheral device to emulate these signals was 
beyond the scope of this project.

When the recordings were being segmented into individual files, the techni­
cians noted those most prominently affected by any of the problems mentioned 
above. Rather than checking every file to see what could be salvaged, it was
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decided to limit the test data to that produced by speakers whose 140 utterances 
were reported to be error-free. This reduced the effective speaker set to 214: 
148 males and 66 females. A summary of both databases is given in Table 3.1.

Database
small large

Number of speakers 10 214
Males/females 5/5 148/66
Bandwidth 0-3 kHz 120-4200 Hz
Sampling rate 10 kHz 10 kHz
Environment quiet lab varied
End-point detection fine coarse
ABCDEFG 20 0
Sir Winston Churchill - 20
one - 10
two - 10
three - 10
four - 10
five - 10
six - 10
seven - 10
eight - 10
nine - 10
zero - 10
oh - 10
nothing - 10

Table 3.1: Characteristics and content of the large and small speech databases used in 
this project.
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V e r i f i e r  O p e r a t i o n

As mentioned in Chapter 2, the system described by Bernasconi (1990) seemed 
suitable for an investigation into the effects of modifying certain parameters, 
common to many verifiers. The design is basically a pattern-matching procedure 
applied to two feature sets. One set is extracted from the speech of an unknown 
user and the other is a reference template for the registered customer whose 
identity is being claimed. This template is itself constructed using speech recorded 
in an enrollment session; several methods for this are described in Chapter 7.

Figure 4.1 illustrates the verification procedure. DTW (dynamic time­
warping) produces a single score which reflects the level of mismatch between the 
test and reference feature patterns. The features used are cepstral coefficients 
derived from LPC (linear predictive coding) of short segments of speech. In a 
practical system, the score would be passed to some decision-making mechanism 
along with a pre-determined threshold, and the unknown speaker would be 
accepted or rejected. However, reliably determining the threshold is very 
difficult and is beyond the scope of this project, which seeks to demonstrate 
optimisations for potential -  not final -  speaker verification systems. Instead, 
ways of interpreting the score and assessing potential error rates are discussed in 
Chapter 5.

This chapter describes each stage of the verification process in detail, begin­
ning with the treatment of a captured utterance to make it suitable for feature 
analysis.

19
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Captured Utterance

s c o r e

Figure 4.1: The processes of the verifier used in this project.

4 .1  S ile n c e  d e le tio n

As mentioned in Chapter 3, a captured utterance exists as a computer file in IDF 
format, which is simply a 16-byte header (with duration information and the 
sampling rate) followed by the raw data. The data are stored as a sequence of 
signed integers, equi-spaced samples of the input signal. In most cases, these data 
contain not only the speech but also signals preceding and following the speech; 
technically this is background noise although it is often referred to as ‘silence’. 
This is due to the speech-acquisition process which must start slightly before, 
and continue slightly after, the actual utterance to ensure that the complete text 
is captured.
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To prevent wasteful analysis of non-speech portions of the captured signal, 
an attempt is made to locate the start and finish of the speech within the 
data sequence. Accurate end-point detection is also important for correct time- 
alignment of test and reference tokens in the DTW stage, which is central to 
accurate verification. End-point detection is a special case of silence deletion, 
which removes portions of silent data anywhere in the captured utterance, for 
example, between words. In both cases, the signal is analysed in short segments 
(groups of samples) usually about 10-20 ms long. Each segment is classified as 
speech or non-speech according to certain of its characteristics and (sometimes) 
those of neighbouring segments. The task of silence deletion is deceptive in its 
apparent simplicity: over the course of this project, several different approaches 
have been tried with varying levels of complexity and success.

4.1.1 Multi-threshold technique

The strongest indicator of speech or non-speech is the instantaneous signal 
magnitude, provided that the recordings exhibit a high signal-to-noise ratio. 
This was true of the earliest recordings used in this project, which were highly 
supervised, and a correspondingly simple algorithm was developed based on 
thresholding the energy profile of the data. Similar, more sophisticated methods 
are described by Lamel, Rabiner, Rosenberg and Wilpon (1981) and Dermatas, 
Fakotakis and Kokkinakis (1991).

The energy E  of a finite segment of the signal is defined (O’Shaughnessy 1987, 
page 42) as:

£  =  I > « 2 (4.1)
i—1

where X{ is the zth of N  samples in the segment. The squaring operation prevents 
the addition of negative values to what is essentially an accumulation of the 
amplitudes of samples in the segment. A similar measure, the average amplitude 
A, is preferred because it uses no multiplication and is therefore faster to compute.

A  =  JT E  I Xi l (4-2)
i= 1

With N  = 100 and sampling at 10 kHz, each segment is 10 ms, short enough for 
precise location of end-points but long enough to include contextual information.
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For example, a segment consisting mostly of low-level samples would probably 
not be corrupted by a few high-level samples due to a noise spike.

The method is illustrated in Figure 4.2. The average amplitude for each 
segment is calculated and placed in an array, which gives an approximate profile 
of the signal energy over the entire utterance. A coarse estimate of the start-point 
of the speech is obtained by working forward through the array until the major 
threshold is exceeded; this can then be adjusted finely by working backwards 
until A  falls below the minor threshold. All of the segments preceding this point 
can then be discarded. The combination of thresholds helps to prevent breath 
noise corrupting the delineation of the speech. A similar process is applied to the 
end of the utterance, but working backwards then forwards.

9.2  -------------- 1-------------- 1-------------- 1-------------- 1-------------- 1-------------- 1-------------- r

1 1 1 1 1 1 i i
0 0.2  

2 .75  -------------- 1-------

0 .4  0 .6  0 .8  1.0 1.2 1.4
T im e (s)

----- 1---------------1-------------- 1-------------- 1-------------- 1-------------- 1-----------

] .6 1 .8  2 .0  

1---------------1---------------

0 0 .2  0 .4  0 .6  0 .8  1.0 1.2 1 .4  1.6 1 .8  2
T im e (s)

Figure 4.2: The multi-threshold method was used in the initial demonstration versions 
of the verifier. The text was the speaker’s full name, in this case Malcolm Ian Hannah. 
The lower plot shows the contour of average amplitude and broken horizontal lines 
show the major and minor thresholds. The broken vertical lines project the detected 
end-points onto the plot of the actual utterance.

The major threshold T m aj or is calculated using one of two different criteria,
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depending on the nature of the data.

Trmajor
A  > 183 mV 
otherwise

(4.3)

where A is the mean value of A, and xmax is the maximum sample value observed, 
over the entire recording. In both cases, the minor threshold Tmin0r =  ^Tmajor.

Exclusively using one or other of these criteria to determine Tmajor produced 
inconsistent results. Checking that A > 183 mV ensures that A  is calculated 
mostly from speech rather than background noise, which could arise if a person 
spoke too quickly, softly or far from the microphone. The thresholds and 
relationships between them were determined empirically with fairly ‘clean’ speech. 
Predictably, such a simple approach does not perform well with speech recorded 
with less supervision where artifacts such as mouth clicks and ‘tu ts’ have a 
greater influence and can confuse an energy-based algorithm. Consequently, this 
approach was used only for the first demonstration versions of the verifier; later, 
more sophisticated techniques were developed.

4.1.2 Double-parameter approaches

Amplitude alone will not always distinguish speech from silence so several 
algorithms using additional signal parameters have been proposed as robust end­
point detectors. Rabiner and Sambur (1975) and Gan and Donaldson (1988) 
make use of the relatively high zero-crossing rate exhibited by the signal during 
weak fricatives which may be used to differentiate them from background noise. 
The zero-crossing rate Z  of a segment of N  samples is defined as:

most situations, although the modelling of the background sound is important. 
Rabiner and Sambur (1975) use the initial samples of the file for this purpose 
but this assumption may not hold when recordings are taken in public places

N

z  = Y ,* i

where Zi =
1 if XiXi-1 < 0 
0 otherwise

(4.4)

Algorithms which work with both A  and Z  profiles can usually cope well in
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from speakers who have little experience of the system. Also, the algorithm 
is non-causal (involves searching forwards through the data), which limits the 
possibilities for real-time implementation, a potentially serious consideration. For 
most of the experiments in this project, the Gan and Donaldson (1988) approach 
was taken, which does not suffer from these limitations.

The idea is similar to that of Ney (1981), who identified a number of states, and 
allowable transitions between them which could describe the utterance. Recently, 
similar approaches using a state machine (Mauuary and Monne 1993) and a 
hidden Markov model (Acero, Crespo, de la Torre and Torrecilla 1993) have been 
reported. Also, Haigh and Mason (1993) implemented end-point detection using 
VQ models for speech and non-speech represented by cepstral coefficients, but 
without extensive testing.

The method seems appropriate for the ATM application because it was 
designed for nearly real-time deletion of silence from digitally-encoded voice 
mail messages. For the experiments in this project, only the initial and final 
silence/speech transitions were of interest and real-time operation was not 
appropriate as the speech was being recorded onto DAT. (As mentioned in 
Chapter 3, the data recorded for the initial tests were manually delineated; only 
the recordings of the large database required automatic end-point detection.)

The algorithm classifies segments of speech using A  and Z  defined above5. 
One of two adaptive thresholds for A  is used to detect possible speech/silence 
transitions, depending on the classification of the current segment. The thresholds 
adapt (to varying signal conditions) because they are related to the average value 
of A  for the 10 most-recent silent segments. The 10 A  values are stored in a 
continuously-updated FIFO (first in, first out) buffer. This gives some immunity 
to variations in the background noise level and prevents pre-speech breath noise 
corrupting the true start-point of an utterance.

A segment may also be classified as speech if Z  > Zs\\, a predetermined upper 
limit on Z  during silent segments. The threshold conditions for both A  and Z  
must apply for a (definable) number of contiguous segments before any or all 
of them are classed as speech. After some experimentation it was found that 
allowing Zs\\ to adapt, using another FIFO buffer, improved accuracy in cases 
where the speech is quite soft and there is noticeable background noise. Since Z

5 Actually, the equation for Z given by Gan and Donaldson (1988) is wrong.
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tends to fluctuate more rapidly than A, storing more than 5 values in the buffer 
confused the algorithm.

The volume of utterances used in the large-scale tests prevented the possibility 
of checking the end-point detection of any more than a sample of the database. 
Most cases were adequate but it has been noted that even the modified algorithm 
is still very dependent on the initial values given to the parameters such as the 
transition thresholds and the default numbers in the FIFO buffers. If these are 
set up to give good results for particular recording conditions, the same level 
of performance cannot be guaranteed for other recordings. Unfortunately, the 
method is not adaptive enough.

Also, although there is no requirement to classify the first segment as silence, 
incorrectly marking it as speech -  perhaps due to some background noise -  causes 
an irretrievable misclassification of the start point. This is because the simplified 
approach employed here identifies the start-point of the utterance as the first 
segment to be labelled ‘speech’ (and the end-point as the last). The algorithm 
itself is less reliable at the start of the file because the FIFO buffers are still filled 
with their default values and no adaptation has taken place.

To analyse the variable behaviour of the program, an option was added for 
printing a file which logged the values of A  and Z  for each segment. Inspection 
of this file usually allowed accurate delineation of the speech, even in cases where 
the automated method had failed. The start-points, which seem to be harder for 
the algorithm to detect, are indicated by a few segments of higher than normal Z  
followed by a sharp rise in A. The dependence on initial parameters prevents the 
program from detecting this pattern in some cases. The ability, in most cases, 
to find manually the silence/speech transitions from the log file suggested that a 
pattern-recognition procedure might cope with such diverse signal conditions.

4.1.3 Artificial neural network

Artificial neural networks (ANNs) are often useful where a decision must be made 
by considering several factors or trends which a single algorithm may be unable 
to identify. The silence deletion problem seemed to be in this category so an 
ANN was generated using the Neural Works program and was trained with a few 
(about 5) sample files. In each case, the full captured signal was presented in 
segments of 100 samples, along with a desired output, either 0 or 1, depending
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on whether the segment was to be regarded as silence or speech. The ANN was 
a back-propagation type, with 100 inputs, 15 elements in the hidden layer, and 
a single output. After training, the network was exported as a C source file and 
was linked into an executable.

The utterances were to be used in experiments investigating different methods 
of reference template construction (described in Chapter 7). The experiments 
used the longest available utterance (Sir Winston Churchill) and it had been noted 
that only the start-point needed to be identified. The problem was simplified even 
further by allowing the initial /s /  to be removed.

The system seemed to work well but slowly, although this can be attributed 
mostly to the 99% overlap of analysis segments. Also, the computation for each 
segment involves multiplying large arrays by floating-point weights. Experiments 
with reduced segment sizes were still slow compared to the method described 
in Section 4.1.2. Since there were only 20 files to be processed for each of 
214 speakers, the time factor was not critical but for other experiments with 
the digits, the ANN method was too slow to be useful.

The methods of silence deletion are summarised in Table 4.1.

Text method points detected
speaker’s name multi-threshold start & end
ABCDEFG manual start &; end
digits (Gan and Donaldson 1988) start &; end
Sir Winston Churchill ANN start only

Table 4.1: The methods of silence deletion applied to the texts of the small and large 
databases. The Sir Winston Churchill utterances had only the silence preceding the 
speech removed.

4.1.4 Speech analysis

Following silence deletion, the utterance itself is considered to be purely speech 
from a single speaker: no corrective attempts are made when these ideal
conditions do not apply. To prepare the speech for input to the comparison stage, 
the data are scanned to find the maximum amplitude, which is used to scale all 
the samples to be between —1 and 1. There are two reasons for this: firstly, 
it compensates for inter-utterance variations in speech amplitude and secondly,
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it prevents any numeric overflow that might occur in the subsequent analysis 
processes. Until this stage, the speech samples are stored as signed integers but 
scaling converts them to single-precision floating-point values.

Linear predictive coding

As mentioned in Chapter 2, the most favoured method of extracting vocal 
tract information from the speech signal is based on linear predictive coding 
(LPC). The topic is covered extensively in the literature (Atal and Hanauer 
1971, Makhoul 1975) but briefly, LPC models the vocal tract as an all-pole filter 
excited by either quasi-periodic pulses from the vocal cords (voiced speech) or 
turbulent air-flow (unvoiced speech). During certain sounds, such as nasals, it 
is known that the vocal tract transfer function also contains zeros but generally 
these can be represented by combinations of poles.

For most speech sounds the shape of the vocal tract is almost constant 
over short periods of time (10-30 ms) and analyses of the vocal tract tend 
to be unchanged over this period. It is therefore sufficient to examine the 
speech signal in similar small frames. This is illustrated in Figure 4.3. In 
this project the frame size is 250 samples, equivalent to 25 ms. Each frame 
is represented by 12 LPC coefficients generated using the maximum entropy 
method (Press, Teukolsky, Vetterling and Flannery 1988). This is better known as 
the harmonic-mean method of computing the reflection coefficients of the lattice 
representation of the vocal tract filter, and as such, is guaranteed stable and needs 
no windowing (Makhoul 1977).

Time-normalised cepstral coefficients

The p LPC coefficients an are transformed to p cepstral coefficients cn using the 
following recursive routine (Furui 1981).

n—1
cn = an + £ ( i  -  k/n)akcn- k 1 < n < p (4.5)

l
The cepstrum is the inverse Fourier transform of the logarithm of the 

magnitude of the frequency response of the vocal tract filter. The cepstral 
coefficients are widely used for speaker verification as they offer improved 
discrimination over LPC coefficients (Atal 1974). The reasons for this are not
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Figure 4.3: Utterances are analysed in 25 ms frames, such as that shown in the 
lower plot. The similarity between the first and second halves of the frame reflect 
the periodicity which characterises voiced speech. (The frame is a portion of the / i /  
vowel in Sir Winston Churchill.) In this case the pitch period is approximately 12.5 ms, 
corresponding to a frequency of 80 Hz.

well-understood but one explanation is that differences between spectra become 
more prominent on a logarithmic scale due to the wider dynamic range.

Incorporating the logarithm operation in the frequency domain also allows 
deconvolution of time-signals by spectral subtraction or equivalently, truncation 
of the cepstrum. This has direct relevance to speaker verification where the 
vocal tract characteristics may be separated from those of the excitation, which 
does not generally carry much speaker-specific information. To a large extent, 
this deconvolution is already performed by LPC which models the vocal tract 
regardless of excitation. For this reason, LPC-derived cepstral coefficients are 
more correctly known as pseudo-cepstral coefficients.
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For each frame of the utterance, the 12 pseudo-cepstral coefficients are 
calculated and stored as a single vector, so called because the coefficients 
may be regarded as the co-ordinates of a point in 12-dimensional space. A 
vector is generated for each complete frame of the utterance and by summing 
them and dividing by the number of frames, an average cepstral vector is 
obtained. Subtracting this average vector from each vector in the sequence 
(utterance) normalises the signal with respect to channel characteristics such as 
the microphone response and background noise. Such aspects would be roughly 
constant over one utterance but may vary between utterances, thus introducing 
dissimilarities which are unrelated to the speaker’s voice. The use of such time- 
normalised cepstral (TNC) coefficients is widespread and good results have been 
reported (Atal 1974, Furui 1981) although recently it has been suggested that 
the cepstral normalisation may be harmful when working with short utterances 
which do not allow reliable estimation of the channel (Furui 1994, Naik, Assaleh 
and Mammone 1994).

The transformation of the sampled utterance to a sequence of TNC vectors 
effectively compresses the speech to about one-tenth of the original size: each 
frame of 250 integers (2 bytes) is represented by 12 floating-point numbers 
(4 bytes). The elimination of redundant information allows the comparison 
process to focus only on important features, thus offering rapid matching. Also, 
since reference tokens are formed in much the same way -  usually combinations 
of TNC vector sequences, as described in Chapter 7 -  storage capacity is crucial 
where such identity tokens may be stored on a card.

4 .2  C o m p a riso n  p ro c e ss

The key task in the verifier is the comparison of a test token with a reference 
token. This verifier uses the dynamic time-warping (DTW) method although 
as mentioned in Chapter 2, there are several other applicable methods, such as 
vector quantisation (VQ) and hidden Markov modelling. A good introduction to 
DTW is given by Owens (1993, pages 140-146) and variations of the technique 
are detailed by Myers et al (1981). Appendix B describes mathematically the 
implementation used for this project.

DTW gives a measure of the similarity between two speech signals and allows
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the verifier to decide if they have been spoken by the same person. The similarity 
is assessed in terms of the geometrical distance between corresponding pairs of 
feature vectors. However, a simple frame-by-frame comparison is not sufficient 
because variations in speaking rate could mean that the nth frame of the test 
token does not really correspond to the nth frame of the reference token, even if 
the texts and speakers are the same. Each TNC vector only represents 25 ms so 
even slight variations in speaking rate -  unnoticeable to a human listener -  could 
cause errors.

Simply expanding or compressing the time axis of one utterance to match that 
of the other is usually not sufficient because the variations in speaking rate are not 
linear. DTW provides a dynamic solution by performing localised compression or 
expansion as required. In this application, the tokens are not actually compressed 
or expanded but the frame-wise distances are calculated as if they had been.

Figure 4.4: The initial stages of DTW. Each reference frame is matched against a test 
frame by searching in a range equivalent to 225 ms. The best match within this range 
sets the centre of the search range for the next reference frame, e.g. if c is the best 
match in column 1, then the search in column 2 is centred on d.

DTW is usually described using a grid of points such as that shown in 
Figure 4.4. The point (i,j) represents the distance between frame i of the 
reference token and frame j  of the test token. The aim of DTW is to determine
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an optimal path -  given certain constraints -  through the grid. This warp path 
describes a mapping between the test and reference tokens designed to maximise 
their similarity. The process begins by comparing the first reference frame to the 
first few test frames. In theory, if the texts are the same, the first frames will 
already coincide but in practice this is rare due to the approximate nature of 
the start-point detection. Following Bernasconi (1990), the initial search range 
was chosen to be 9 frames (equivalent to 225 ms), i.e. frame 1 of the reference 
token is compared with frames 1-9 of the test token, as shown in Figure 4.4. The 
closest matching frame is then chosen as the centre of the range to be searched to 
match the second frame of the reference token. For example, the lowest distance 
in column 1 may be at the point marked c which means that frame 7 of the test 
token best matches frame 1 of the reference token. Frame 2 of the reference token 
is then compared to 9 frames of the test token, centred on frame 7, i.e. frames 3- 
11.

In searching column 2 for the lowest distance, the distances in column 1 are 
taken into account because the aim is to find the minimum distance path through 
the entire grid. However, certain slope constraints are applied to ensure that the 
warp path is monotonic: otherwise, some backwards talking would be implied! In 
common with Bernasconi (1990) and others, the slope constraints used are those 
suggested by Itakura (1975). In Figure 4.4, these conditions allow point d to be 
reached only via points a, b or c. Also, no more than one repetition of a single 
frame (e.g. c to d) is allowed.

The process continues until either the last reference or last test frame has been 
matched. The warp path may then be obtained by working backwards from this 
point through the grid to the start, passing through local minima. However, in 
this application, the important feature of DTW is the overall distance between 
the two utterances, referred to as the score. This is equal to the accumulated 
distance calculated at the last local minimum in the grid, normalised to the 
number of frames in the reference token. According to the principle of dynamic 
programming, the final local minimum is guaranteed to be the end of the best 
warp path within the given constraints.

This DTW method is essentially the unconstrained end-points, local minimum  
(UELM) method (Rabiner, Rosenberg and Levinson 1978). Other methods exist 
but UELM has the advantages of a fixed maximum number of frame comparisons
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and no restrictions on the relative durations of test and reference. Most 
importantly, the need for exactly end-pointed utterances is relaxed somewhat. 
The major disadvantage is that the search for local minima limits the search range 
for the globally optimum path. However, this is unavoidable without searching 
the entire grid.

4.2.1 Modifications to the dynamic time-warping method

Recently, variations on the DTW theme have been published which in future 
work, could be applied to the current method.

Since the warp path is a straight line at 45° to each axis when both utterances 
are exactly the same, it has been suggested that the level of geometric deviation 
from this path could indicate the mismatch between utterances. Booth, Barlow 
and Watson (1993) used various properties of the warp path as well as the score 
to identify a speaker. However, the increase in accuracy is slight: the extra 
computation is not.

Irvine and Owens (1993) used a verifier similar to this one and found that warp 
paths with unconstrained slopes produced better matches than the constrained 
case. This simplification was justified by noting that in a text-dependent verifier 
the local deviations from the ideal warp path are expected to be small and that 
the constraints may prevent finding the best match when the end-point detection 
is less than optimal.

Angus and Whitaker (1987) suggested a simplification to improve speed. 
Frame comparisons are aborted when the calculated distance exceeds some 
threshold; a fixed, penalty distance is used instead. The assumption is that 
high-distance points in the grid will not be included in the path so calculating 
precise details is a waste of time. However, finding a robust, reliable computation­
cancelling threshold may be difficult.

4 .3  D e c id in g  t o  a c c e p t  o r re je c t

The output from the DTW process is a score, a number corresponding to the 
dissimilarity of the two voice patterns: zero for an exact match, higher scores 
indicating progressive degrees of mismatch. The decision to accept or reject the 
unknown speaker depends on whether the score is below or above some threshold.
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As mentioned at the beginning of this chapter, most of the experiments 
presented here do not make an accept/reject decision; rather, score distributions 
for the genuine speaker and impostors are compared. However, certain results to 
be discussed in Chapter 7 do make use of error rates, for which a threshold is 
required.

4.3.1 Furui’s threshold

Previous research has not really produced a sound method of determining 
thresholds. For example, Furui (1981) suggested calculating the threshold for 
speaker j ,  Tj, using the formula:

T j  =  a ( f i  imP)j — Cimp,^) +  b (4 -6 )

where is the mean of the distribution of impostor scores for speaker j ,  and 
^impj is the standard deviation of the same distribution. For each speaker, values 
for a and b are found such that the resulting threshold produces equal rates 
of false-acceptance and false-rejection errors. These local constants are then 
averaged over all speakers to give global constants, with which each speaker’s 
threshold is re-calculated.

Furui’s formula contains two empirically-determined constants a and b, which 
are rather arbitrary and whose final values are calculated with the assumption 
that the relationship between the score distributions of genuine speaker and 
impostor is the same for all enrolled speakers. Many studies, e.g. Thompson 
and Mason (1994), have found that this is not the case, with certain enrolled 
speakers being more ‘identifiable’ than others. (They are sometimes referred 
to in the literature as ‘sheep’, as in the phrase “separating the sheep from the 
goats”.)

4.3.2 Thresholds based on ranked impostors

For this project, a new technique based on the ranking of impostors for each 
speaker is used to generate speaker-specific thresholds. This would allow a 
strategy of grouping together enrolled speakers of similar characteristics with 
a view to optimally separating them (described in Chapter 9). A similar method 
was employed by Booth et al (1993).
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For any given speaker, each impostor’s average score (over all verification 
attempts) was stored and used as a sort key to rank the impostors in descending 
order of similarity to the genuine speaker. This produces a list of impostors most 
likely to be falsely verified as that speaker. Speaker-specific thresholds are then 
set to be equal to the nth closest impostor’s average score, as shown in Table 4.2. 
This method provides a mechanism for biasing the verifier toward either false 
acceptance or false rejection by increasing or decreasing n.

It should be noted that although n is essentially an index into a list of 
impostors, negative values of n are allowed: the corresponding threshold is 
calculated by subtracting the closest impostor’s average score from that of the nth 
closest impostor. The difference is then subtracted from the closest impostor’s 
average score to give the threshold.

IMPOSTOR.AVG
300
320
350

n calculation threshold
-3 300 -  (350 -  300) 250
-2 300 -  (320 -  300) 280
-1 300 -  (300 -  300) 300

1 - 300
2 - 320
3 - 350

Table 4.2: For each speaker, the file impostor.avg contains a list of average impostor 
scores, sorted in ascending order. The ranked impostor method determines a threshold 
by indexing into this list. A ‘mirror image’ of the differences between the first and nth 
lines of the list list allows negative indices.

Repeating experiments with varying threshold levels can produce charts (see 
Chapter 7) showing the interaction of false accept and false rejection, which would 
allow the system tolerance to be tuned according to the application.

The definition of error rates and alternative methods of assessing the verifier 
performance are given in Chapter 5.
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A s s e s s i n g  P e r f o r m a n c e

As mentioned in Chapter 4, verification is based on the degree of mismatch 
between test and reference tokens, reflected (in this project) by the DTW score. 
An operational verifier would decide to reject or accept the speaker by comparing 
this score with some threshold. Two possible errors may occur: false acceptance 
(FA) or false rejection (FR). Varying the threshold changes the probability of 
occurrence of either error, at the other’s expense.

To compare the performance of different verifiers, or different configurations 
of the same verifier, the equal-error rate (EER) is often used. This is derived by 
setting the threshold at such a point that the probability of FA equals that of 
FR. However, this can sometimes give a distorted evaluation because the error 
rates are unreliably estimated with small test databases.

This chapter begins by examining the EER before deriving alternative perfor­
mance metrics which are then demonstrated to be more suitable for predicting the 
verifier performance from limited test data. These new methods will dominate 
assessments of verifier performance in later chapters where experimental results 
are reported. Also included will be a discussion of the jackknife technique of 
artificially enlarging a small data set.

5 .1  T ra d it io n a l  a s s e s s m e n t

A general statement of the accuracy of a verification system must cover both FA 
and FR errors because it is possible to bias the decision towards minimisation of 
one at the expense of the other. Hence, the EER is often quoted but this implies 
the existence of some threshold value of DTW scores. That is, an identity claim 
from an individual is accepted (or rejected) if the verification score is less than

35
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(or more than) the threshold. This can be demonstrated by examination of the 
interaction of the FA and FR rates as the threshold is varied. A typical case 
is illustrated in Figure 5.1. Low thresholds limit the acceptance rate -  false or 
otherwise -  and the rejection rate is correspondingly high. The converse is true 
when the threshold is high. The error rate at the intersection of the two curves 
is the equal-error rate.

Threshold

Figure 5.1: Typical interaction of the FA and FR error rates as the accept/reject 
threshold is varied. The intersection marks the equal-error rate; in this case, about 4%.

Strictly speaking, this point represents the equal average-error rate because 
the figure is arrived at by taking average FA and FR rates across the whole 
speaker set, for various thresholds. This is not the same as finding the EER for 
each individual then presenting the average; that would be the average equal- 
error rate. Indeed, at the EER point in Figure 5.1, there is no guarantee that 
the FA and FR rates are equal, for any of the individual speakers. However, this 
approach is much easier; given any threshold, the FA and FR rate can always be 
calculated. Finding the average EER would entail finding the true EER for each 
speaker, which itself is not easy because it is an iterative process: estimating 
the threshold and assessing the error rates until they are equal. In fact, the 
error rates cannot ever be guaranteed to be equal because the FR rate will be 
quantised coarsely due to the limited number of self-test scores (15 for most of 
the experiments in this project).
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5.1.1 Speaker-specific thresholds

Due to the inherent variability of individual voices, a single, global threshold 
cannot be guaranteed optimal for every speaker; instead, individual thresholds 
are needed. This is because the typical range of scores for one speaker may 
not be the same as for another speaker. For instance, for speaker 053 the self­
test scores range from 100-180 and the impostor scores range from 180-580; yet 
for speaker 054 the corresponding ranges are 50-100 and 110-450. An absolute 
threshold, such as 105 or 180 say, would be inappropriate for at least one of these 
speakers.

To illustrate the effect of universally applying an absolute threshold, consider 
Figure 5.2 which shows the correlation between speakers in the large database, 
according to the tests described in Chapter 7. Referring to the horizontal and 
vertical axes as x and y respectively, each point (x , y) represents the average score 
for speaker y ‘impersonating’ speaker x. However, only points representing scores 
less than 180 are shown. (The threshold value of 180 was chosen to show only a 
certain amount of detail and was arrived at empirically.)

Figure 5.2: Each co-ordinate represents the correlation between a pair of speakers: 
a black dot is shown if the average score for one speaker (‘impostor’) impersonating 
another (‘genuine’) is less than 180. The varying levels of detail for different genuine 
speakers indicates that such a universally applied threshold is inappropriate.

If this universal threshold was appropriate, only the y = x line would be 
apparent but there are plenty of other correlations shown in Figure 5.2. Indeed, 
there are 5 prominent vertical stripes relating many impostors to speakers 054,
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086, 117, 184 and 204. However, it should not be be concluded that these speakers 
are easily impersonated by the others; although each point in the stripe indicates 
that an impostor scored (on average) less than 180, in all of these cases the 
speaker’s own score is the lowest. One of the results of the experiments described 
in Chapter 7 is an ordered listing of the speakers, ranked according to how reliable 
verification is for them. According to the listing, only 1 of these 5 speakers is 
amongst the worst of the test set; the reason for the stripes is simply that the 
ranges of scores (both genuine and impostor) are lower.

Conversely, for some genuine speakers, there is no y = x dot in Figure 5.2. 
Again, this is due to the unsuitable threshold; for these speakers even their own 
average scores are higher than 180. Checking the ranked listing reveals that most 
of the speakers are not especially poor in terms of verifier performance and this 
again confirms the need for speaker-specific thresholds.

The reason for the variation in typical score ranges amongst speakers is 
not clear. It is to be expected that one speaker’s range of self-test scores will 
differ from that of another speaker because this is a typical effect of sampling 
the population. However, it is surprising to find that the range of impostor 
scores should somehow be linked to the genuine scores; it is not obvious why the 
impostors en masse should get lower scores when impersonating different people, 
as illustrated in Figure 5.3. Basing the reference template on atypical utterances 
is a possible explanation. Chapter 7 examines various methods of constructing 
the template although not this particular aspect which would need further work 
to investigate.

Given the need for speaker-specific thresholds, a mapping to these from an 
apparently linear scale is offered by the ranked impostor method (described in 
Chapter 4) and this allows a permissible error-rate strategy to be set globally but 
vary locally. The majority of error rates quoted in this report are assessed on 
thresholds based on this method.

5 .2  S c o re  d is t r ib u t io n s

Describing the verifier performance in terms of error rates has the disadvantage 
that the method of generating the threshold is implicitly included in the 
assessment. Also, different verifier configurations may all report zero errors for
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Figure 5.3: The gap between (abstract) genuine and impostor distributions is the same 
for speaker A as it is for speaker B, although the ranges of scores are different. The 
impostor distribution seems to shift en masse to maintain the distance from the genuine 
distribution.

a speaker although the configurations are not all equally good: the probability 
of error really needs to be considered. This is especially important when testing 
with databases composed of restricted populations. For an ATM application, the 
target customer population is so large that even the large database (described in 
Chapter 3) falls into this category.

An alternative approach is to consider the underlying statistics of the 
distributions of verifier scores for the speaker under test (designated genuine) 
and the other speakers in the test population (designated impostors). A typical 
pair of distributions is shown in Figure 5.4 which was generated as a result of one 
of the experiments of Chapter 7 using the Sir Winston Churchill utterances from 
the large database.

The distributions are shown as histograms with each column representing the 
number of scores observed in a range of 25 units. (The reader should recall from 
Chapter 4 that the verifier score comes from the DTW distance measure which is 
zero for a perfect match and higher for progressive degrees of mismatch.) Most 
of the experiments with the large database produce a much smaller distribution 
for the genuine speaker than for the impostors, making it difficult to see if they 
overlap. In Figure 5.5 the data of Figure 5.4 are reproduced on a larger scale
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Figure 5.4: The score distributions for speaker 100 are typical in that they overlap 
slightly, although this is not clear from the graph.

so that the shape of the genuine distribution is clearer and the overlap is more 
obvious.

score

Figure 5.5: Typically, the distributions of genuine and impostor scores overlap slightly, 
indicating that setting a threshold anywhere would cause at least one error, either FA 
or FR.

The overlap is shown as columns for both the genuine and impostor scores 
in the same range (centred on 200). This would not always guarantee that the 
two distributions actually overlap, merely that both have values in a common 
range, but inspection of the raw data confirms overlap in this case. (There are 
4 impostor scores lower than the highest genuine score.) Even if there was no 
actual overlap, the probability of overlap is high, given that there are 39 impostor 
scores in the same range as the highest genuine score.

One of the best speakers, in terms of verifier performance, is speaker 239. 
Figure 5.6 (again, magnified for clarity) shows the corresponding score distribu­
tions which are clearly separate, so that a threshold set anywhere between the
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maximum genuine score and the minimum impostor score would produce zero 
errors.
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Figure 5.6: The verifier performs well for speaker 239, as demonstrated by the 
separation between the genuine and impostor distributions.

Besides the separation between distributions, the shape is also of interest. For 
speaker 100 the impostor distribution is skewed left, indicating that the majority 
of impostors are closer to, rather than further from, the genuine speaker; for 
speaker 239 the impostor distribution is almost normal.

At the other extreme, speaker 123 was among the worst of the test population, 
as illustrated in Figure 5.7. Again, the scale has been altered to show the two 
genuine speaker scores above 400, much displaced from the rest of the genuine 
distribution. Such outliers indicate stark differences between test and reference 
utterances, possibly due to artifacts of the recordings (see Chapter 3) or poorly 
constructed reference templates (see Chapter 7). (Speaker 123 is used in a case 
study of correcting for outliers in Section 8.2.1.)

5 .3  N ew  m e th o d s

Most of the experiments in this project avoid setting thresholds and estimating 
error rates since these aspects are important only during the final stage of 
development of a verifier. Recently, other researchers have expressed a similar 
opinion (Forsyth, Bagshaw and Jack 1994, Oglesby 1994). Instead, to estimate 
the verifier performance in its eventual application, the main focus is on the 
relative position and shape of the genuine and impostor score distributions, 
particularly the degree of separation and/or overlap for each speaker. To help in

sp ea k er  23 9  ------
im p o sto rs ------
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score

Figure 5.7: For speaker 123 the verifier performs poorly, indicated by two genuine scores 
well within the impostor range.

this assessment, two new figures of merit are employed: a version of the classical 
d! (borrowed from signal detection theory) and an ‘overlap’ function, F.

5.3.1 Using d !

The d' measure, from classical signal detection theory (Green and Swets 1966), 
assumes the existence of two response distributions (signal and signal-plus-noise, 
corresponding here to genuine and impostor) which are Gaussian and equal 
variance. Then:

d' =  fen|- (5.1)cr
where fis and fisn are the means of the signal and signal-plus-noise score 
distributions respectively, and a2 is the common variance. In the case of DTW 
scores for genuine speakers and impostors, the assumptions are invalid but d' 
seems nonetheless to provide a reasonably consistent measure of separation. 
The following modification of the original equation (5.1) compensates for the 
inequality of variances:

d! = Mirop /lsen (5.2)
D

where /ximp and (igen are the means of the impostor and genuine distributions 
respectively, and S  is the geometric mean of the standard deviations of the two 
distributions, given by /̂Ogen̂ imp- Unlike the situation in signal detection theory, 
d' can be negative in the (highly undesirable!) case that figen > /qmp.
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As mentioned before, the use of d! implicitly assumes that both distributions 
are Gaussian but this is generally untrue. The genuine distribution usually only 
contains 15 scores which is not enough to properly estimate its shape. Also, 
when any of the females in the small test population is designated as the genuine 
speaker, the impostor distribution is bimodal -  the lower mode being attributable 
to the female impostors. Although it may be expected that the female impostors 
would score lower than the males, such stark division is surprising. Although 
the author can detect no striking similarities amongst the five female speakers, 
perhaps the verifier can. This would explain why the effect is not repeated with 
the large database although another factor could be the ratio of males to females 
of about 2:1. Nevertheless, the d! figure is less reliable using speech from the 
small database when the genuine speaker is female.

5.3.2 Overlap function ( F )

A simpler, alternative measure of verifier performance, F, is based on the amount 
of overlap of the two score distributions. This is an easily-computed, ad hoc figure 
which has a valid range of [0,1], although this is split into two equal sub-ranges 
to cover the distinct cases of overlap and non- overlap, or (total) separation. F  is 
computed differently for each case (labelled Foveriap and Tkon-overiap) but increases 
linearly with verifier performance over the entire range. Fover\ap is inversely related 
to the probability of an impostor’s utterance producing a score that is within the 
range of the genuine speaker’s scores:

^overlap =  0.5 -  A  (5.3)

where /  is the number of ‘failures’ in terms of an impostor score being within 
the range of genuine scores while N{ is the number of impostor trials. In cases of 
non-overlapping distributions, F  expresses the separation between them as:

P non—overlap =  1 -
Gr

2  . T ■"  i min
(5.4)

where Gmax(> 0) is the maximum genuine score and Im-m is the minimum impostor 
score. The factor of 2 in equations 5.3 and 5.4 sets F  to be 0.5 at the overlap/non- 
overlap boundary.
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5.3.3 Ambiguity rate

Some of the results in Chapter 6 are expressed with ambiguity rates to compensate 
for the inability of d! to definitely indicate overlap of the score distributions. The 
ambiguity rate gives the ratio of scores within the ambiguous zone, i.e. between 
/ min and Gmax. Because this measure is based on the extreme points of the 
distribution, it can appear to overstate the extent of overlap. For instance, a 
single high genuine score within the range of impostor scores spoiling otherwise 
distinct distributions would have a very high ambiguity rate. However, with only 
15 scores to estimate the genuine distribution, single outlying scores cannot be 
neglected.

5.4 Jackknifing the genuine distribution

In common with many studies, the speech data used in this project suffers from 
a lack of recordings from each speaker; when designating one as genuine there 
are only a few utterances with which to estimate the genuine score distribution. 
One way of compensating for this is the jackknife technique, described by Miller 
(1974), which may be used to expand the number of apparent observations of 
some variable. In particular, experiments (such as those in Chapter 7) using the 
digits from the large database can benefit from this technique because they were 
only recorded 10 times each, and 5 of these are used as reference data.

Several variants of the basic method exist but the application in this project 
is as follows. With 10 genuine tokens G\, . . . ,  G ^, each one is left out in turn 
and tested against every possible reference template that can be made from the 
remaining 9 tokens. For example, since there are Q) =  126 different combinations 
of 5 tokens from a pool of 9, when G\ is left out, it is tested against templates 
Ri, . . . ,  i?i26j which are formed from G2, . . . ,  Gio- The process is repeated by 
testing G2 against R m , . . . ,  R252 which are combinations of G1 , G3, . . . ,  G i0 
and so on. The benefit of jackknifing is that the genuine distribution can be 
estimated with 1260 scores instead of 5 but in practice the 126 scores for each 
designated test token tend to be very similar to each other but not always to 
those of another test token. In effect, jackknifing produces 10 sub-distributions 
(each of 126 scores) which are not guaranteed to blend smoothly into a single 
genuine distribution.
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5.5 Comparison of the new methods

The d! rating is used extensively throughout this report since it describes the 
shape and separation of the distributions (neither neglecting nor emphasising 
outliers) as a single figure. The F  rating is mostly used in Chapter 8 where the 
experiments call for repeated assessments of performance within a short time. 
It is a second choice to d! when dealing with the small database because the 
rating is noticeably quantised due to the number of impostor scores appearing 
in the denominator. It has the advantage that separation or overlap is indicated 
by being, respectively, above or below 0.5. The ambiguity rate is rarely quoted 
but clearly signals undesirable score distributions which d! may fail to convey. 
In Table 5.1 all three ratings are given for the score distributions shown in 
Figures 5.4-5.7.

Figure d' F Ambiguity rate (%)
5.4 & 5.5 4.79 0.499 1.56
5.6 10.1 0.730 0.0
5.7 1.81 0.050 89.7

Table 5.1: Comparing assessment measures of the scores distributions from earlier 
figures.



C h a p t e r  6

U t t e r a n c e  C o n t e n t  a n d  D u r a t i o n

In designing a verifier for widespread public use, two main issues must be 
addressed: security, and convenience to the user. Both aspects must be considered 
when choosing the phrase to be spoken in a text-dependent verifier, such as that 
being used in this project. In terms of security, several papers (Soong et al 
1985, Velius 1988) have demonstrated that the verification text strongly influences 
reliability by recording different error rates for the same verifier and same speaker 
set but using different texts. However, it is not clear if this differential is due to 
the phonetic content and prosodic effects of the words or simply to their varying 
durations.

Prom everyday experience of recognising voices on the telephone, it is clear 
that longer utterances make the task easier. Also, it is known that utterance 
duration is an important factor in text -independent verification (Higgins and 
Wohlford 1986), but for maximum convenience to the user it would be desirable 
to use the shortest text possible so that the overall process is less time-consuming.

This chapter examines these aspects of the verifier with a series of experiments, 
with a view to assessing the feasibility of using randomly-prompted short 
utterances (such as the digits) as the verification texts.

6.1 Initial experiments

To test the effect of varying utterance duration on the verifier performance, 
recordings from the small database (see Chapter 3) were used. This database 
consists of 10 speakers saying the phrase ABCDEFG, which allowed the creation 
of texts of variable length by appropriate manual editing. It should be noted 
that an exactly linear measure of duration was sacrificed in order to preserve the

46
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continuity of natural speech, by segmenting at word boundaries.
Each experiment is a collection of trials, each of which consists of a number 

of tests. Each test compares the reference token for a specific person (designated 
as ‘genuine’) with another token, which may be from the genuine speaker (a 
self-test) or from the other speakers (an impostor test).

6.1.1 Experiment 1: forward segmentation

To obtain progressively longer tokens, the first n letters were extracted from the 
phrase, i.e. A, AB  and so on, until the full-length utterance was used. For each 
designated genuine speaker there were 7 trials, corresponding to the 7 different 
utterance lengths. Each trial comprised 15 self-tests and 135 (15 x 9) impostor 
tests. In each trial, the statistics of the distributions of genuine and impostor 
scores were recorded and provide the basis for analysis of the verifier using the 
d! figure, as described in Chapter 5. Figure 6.1 illustrates, for a typical speaker 
(JP), the changes that take place in these distributions as the utterance length 
is increased.

The first plot in the sequence of Figure 6.1 shows that both distributions 
are very narrow (apart from a single outlying impostor score), and their close 
proximity indicates poor discrimination, reflected in the low d' rating. However, 
the dynamic range of scores produced by the DTW process is small when short 
utterances are used and the fact that most of the genuine scores are below most of 
the impostor scores shows that some inherent characteristics are being detected.

When two words are used (AB), the impostor distribution begins to resemble 
a normal distribution but the shape of the genuine distribution remains the same 
as before, although it has shifted higher up the score axis. The shape is skewed left 
which is welcome because it means that most of the self-tests were categorized as 
genuine with a high degree of confidence: only a few produced scores high enough 
to be confused with impostors. These positive aspects produce a d' of 4.5 which 
is often high enough to suggest complete separation of the genuine speaker from 
the impostors, although not in this case.

Separation, however, is achieved using three words (ABC), and further 
skewing of the genuine distribution results in a d' of 5.5. This falls back to 5.0 
when using four words (ABCD) and the graph shows an overlap once more, 
although only one impostor score is in the overlapping area. However, the
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Figure 6.1: Each plot shows the verification text (top-right) and the resulting score 
distributions for the genuine speaker (solid lines) and the impostors (broken lines) and 
their means are indicated by arrows. The d! calculated for each pair is also given. Note 
that the first 2 plots use a smaller scale than the rest. The sequence shows a general 
trend of better discrimination with longer utterances, illustrated by the diverging means 
and the effective rejection of an increasing proportion of impostors.
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impostor distribution has changed significantly: it has become bimodal. This 
is typical for a female genuine speaker (as in this case), and, as discussed in 
Chapter 5, the d! rating is slightly less reliable. In terms of the number of 
impostor scores close to the highest genuine scores, the speaker discrimination is 
still improving. This is reinforced by the continued upward shift in the impostor 
mean.

For five words (ABODE), the d7 climbs again to 5.8 although the level 
of overlap is similar to the previous case. Again, the shape of the impostor 
distribution plays a part in this because the trough around the mean is less stark 
than the previous case so the d' is free to rise as the separation between the genuine 
and impostor means increases. This continues with the six-word text ABCDEF 
and because the trough is no longer centred around the mean, the highest d' of 
the series is attained. This situation reverses again in the final graph where the 
full utterance was used: the impostor distribution is now completely bimodal and 
the trough is close to the mean, resulting in the d' dropping again.

Over the entire sequence of graphs, three trends emerge:

• the means of the genuine and impostor score distributions increase at 
divergent rates;

• the proportion of the impostor population at risk of being falsely accepted 
decreases;

• the shapes of the distributions change: the genuine distribution becomes 
less skewed and more normal, and the impostor distribution becomes less 
normal and more bimodal (in this case).

If the first two trends are repeated across the speaker set, it may be concluded 
that performance improves with longer utterances. Rather than visually analysing 
the sequences of score distributions for each speaker, the d' obtained using each 
utterance-portion was calculated and plotted as a graph. Traces for all 10 speakers 
are shown together in Figure 6.2 to illustrate the general trend and also the 
variation across the speaker set.

It can be seen that the overall trend is for an increase in d' with increasing 
lengths of utterance. This is illustrated by the fact that the d' for ABCDEFG is 
higher than the d! for A, in every case. However, the rate of increase varies widely 
within the speaker set. For instance, the gradient of a straight line between the
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Text of verification token

Figure 6.2: Speaker separation (measured by d!) as a function of the number of words 
in the verification token. For all speakers, the overall trend is increasing but monotonic 
in only four cases (NT, AM, BK and FS). BK-TM are female; AF-NT are male.

first and last results for speaker BK is 0.44 but 0.96 for speaker NT. Similar 
statistics are not really valid for most of the other speakers because their results 
do not increase montonically. The most noticeable examples of this are AS and 
AF, for whom the d' drops dramatically between ABCDE and ABCDEF. In each 
case, inspection of the data revealed that the decrease in d' was due to a single 
atypical genuine score. Listening to the original speech files which produced the 
offending scores failed to provide any obvious clues as to the essential differences 
between them and those used in the construction of the reference template. There 
were no spikes or clicks and the (manually selected) end-points were accurate. 
Clearly, processing the speech to produce time-normalised cepstral coefficients 
allows the comparison mechanism to detect differences which the human listener 
cannot.

As mentioned in Chapter 5, the d! figure can be affected considerably in these 
cases even though the actual scores are acceptable. For instance, in the case of AS, 
the single outlying score was still substantially below the lowest impostor score. 
However, the reliability of dl as a measure of separation is not undermined by
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these cases: values of 5.5 and 7.3 (for AS and AF respectively) still suggest clear 
separation. Chapter 7 describes methods that may be employed to de-emphasise 
such isolated atypical utterances.

It is not clear why the rates of performance-gain should vary so widely across 
the speaker set. The implication is that for some speakers, adding more text adds 
less discriminating material than for others. This could be because of the speed 
of talking: three words for one speaker may take the same time as five words 
for another. However, inspection of the hand-segmented speech files does not 
support this theory. Although the slowest speaker on average took 25% longer 
than the fastest speaker to say the full utterance, most of the other speakers are 
near the middle of this range. The d! and average duration (over 15 utterances) 
for each speaker (saying the full phrase) is presented in Table 6.1 and shows no 
direct correspondence between speaking rate and d! .

subject d' average 
duration (s)

BK 4.39 2.15
FS 6.38 2.55
JP 5.69 2.3

KM 4.07 2.05
TM 6.22 2.225
AF 8.56 2.3
AM 3.93 2.225
AS 5.11 2.35
MH 8.11 2.35
NT 5.45 2.325

Table 6.1: For each speaker saying ABCDEFG, the speaker separation (measured by 
d') and duration (in seconds) averaged over 15 repetitions, is shown.

Five of the seven words in the verification text are taken from the E-set 
-  they all feature the / i /  vowel. It seems that for some speakers, repeating the 
sound several times adds no new information and hence increasing (this) utterance 
duration makes little difference. This could be due to an inherent variability which 
does not significantly decrease the confusability with the other speakers. In other 
words, regardless of the number of examples of their speech, no common theme 
emerges. In these cases, it is also likely that the reference template was unable to 
characterise the speaker. A corollary of this is that less animated speakers will not
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produce markedly higher scores with longer utterances. The DTW process would 
accumulate only small local distances due to the consistent /[ /  sound. This could 
explain the rising plot for AF (widely acknowledged as the possessor of a deadpan 
voice) and for MH and AS (the author and project supervisor respectively) who 
may have subconsciously spoken in a consistent manner.

6.1.2 Experiment 2: reverse segmentation

The finding of experiment 1 that the verifier’s performance improves with 
increasing utterance length could, in theory, be explained as an artifact of the 
position of specific words within the phrase. For instance, the later words 
in the phrase may carry more speaker-specific information than the earlier 
words. To test whether the performance depended on content rather than 
length, segmentation was also done starting from the phrase-end and producing 
progressively longer utterances by including only the last n words. (For example, 
G, FG, EFG, etc.) The results of this experiment are similar to those for 
the forward segmentation: an overall trend of improved performance with 
increased utterance length. Figure 6.3 shows the average d' values for both 
forward- and reverse-segmented utterances. For comparison, Figure 6.4 shows 
the corresponding average values of the overlap function F. The close agreement 
of results obtained with the two different measures is evidence of the improving 
effect on verifier performance of longer utterances.

Figure 6.3: Speaker separation (as measured by average d') as a function of the number 
of words in the verification token, for both forward- and reverse-segmented utterances.

The main difference between the results of this and experiment 1 is that reverse 
segmentation produced a slightly better one-word performance. One explanation
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Figure 6.4: Speaker separation (as measured by average F ) as a function of the number 
of words in the verification token, for both forward- and reverse-segmentation.

might be that G (/cfei/) with its two phonemes (and coarticulation between 
them) contains more speaker-specific information than the single-phoneme A. 
(Spoken in isolation, A tends to be a diphthong, but when followed by B, as 
in these recordings, this is less apparent.) Su, Li and Fu (1974) suggested that 
coarticulated sounds were good for verification because the movement of the 
articulators was rapid and difficult to modify consciously. Another possibility is 
that the first word in any connected-word utterance is not good for verification, 
perhaps as an effect of a high initial outflow of breath. In any event, the average 
performance using single-word tokens is poor.

6.2 Persevering with single-word tokens

Experiments 1 and 2 demonstrated that performance with single-word tokens is 
poor but the potential benefits of using such tokens warrant further investigation. 
A scheme whereby the ATM could prompt users to say single words chosen 
randomly from a finite set would be attractive for two reasons.

Firstly, the introduction of an unpredictable element in the verification text 
increases security against fraudulent access. In a text-dependent verifier such as 
the one used in this project, the risk exists that someone could ‘impersonate’ an 
enrolled speaker by simply using a recording of the text. Normally this would 
not pose a major threat since the frequency characteristics of the recording and 
playback devices would distort the ‘utterance’ sufficiently for the verifier to reject 
it. However, for the ATM application, the existence of multiple access points
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(all the machines on the network) requires that the verification system is able 
to disregard the frequency distortions introduced by using different microphones. 
As described in Chapter 4, this is achieved through the use of time-normalised 
cepstral coefficients; the associated security risk would be lessened with random 
texts.

Secondly, a sequential method (Bielby 1987) may be used where the machine 
continues to prompt for words from a pre-chosen set until the decision to accept 
or reject the speaker may be made with a specified confidence. This would allow 
banks to alter the level of security for different speakers or different locations, as 
appropriate. Convenience to the user could also be increased because, based on 
the results of experiments 1 and 2, for some speakers, as few as two words may 
be needed to verify identity.

6.2.1 Experiment 3: concatenated templates

With this scheme in mind, an experiment was devised in which the test data 
consisted of a single, connected utterance but the reference data consisted 
of concatenated templates for the individual words. This scheme does not 
incorporate the sequential process described above but instead assumes that 
the user would be prompted for a fixed number of words, randomly chosen 
but presented together. The use of individual templates allows a truly random 
selection of words for the verification phrase without the prohibitive capacity 
requirements of storing templates for every possible combination of words in the 
set. Presenting these words together as a single phrase is convenient for the user 
and less error-prone than prompting for and capturing several short utterances.

This experiment was conducted using new recordings from 5 of the 10 speakers 
saying each of the discrete words A to G five times. ABCDEFG was used as test 
data matched against the concatenated individual templates A+B+- • -+G, as 
illustrated in Figure 6.5.

The results (shown in Table 6.2) were very poor, none of them exhibiting 
any worthwhile degree of separation of genuine speaker and impostors. Given 
the findings of experiments 1 and 2, it might be expected that the verifier would 
perform poorly because it is merely combining several single-word results, each 
of which is itself poor. However, another possible reason could be that the 
DTW process is sensitive to the presence (or absence) of inter-word silence in
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Connected words spoken 
D A C G

DTW * score

D A C G

A  B  C  D  E  F  G  
Individual templates

Figure 6.5: In experiment 3, connected-word utterances are matched to a concatenation 
of templates for the individual words. The general scheme is indicated here for an 
example text DACG but the text used in the experiment was ABCDEFG.

the reference template if it is not duplicated in the test token. Although the 
individual templates were constructed from hand-segmented utterances, the joins 
in the concatenated reference token cannot be guaranteed to match those of the 
test token. Coarticulation between words in the test data further compounds this 
problem. In an attempt to exclude these effects, a fourth experiment was devised.

6.2.2 Experiment 4: discrete utterances

For the previous experiment, discrete words formed (by concatenation) the 
reference data; the test data were the full-length utterances as in experiments 1 
and 2. In this experiment, the discrete-word recordings provided both the test 
and reference tokens. This is illustrated in Figure 6.6.

After manual end-point detection, the first of the 5 tokens of each discrete 
word was taken as reference for that speaker. Thus, for each word and each 
speaker, there were 4 genuine and 20 impostor tests. The scores for these 
comparisons were totalled for the 7 discrete words A to G, and d! and F  values 
calculated. Table 6.3 shows the resulting d", values (the results for F  were 
essentially the same) and compares them with those found in experiment 1.
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subject
d!

Expt. 1 Expt. 3
MH 8.11 -0.63
JP 5.69 3.41
FS 6.38 3.43
AS 5.11 3.66
AF 8.56 2.89

average 6.77 2.55

Table 6.2: In experiment 3 connected-word utterances are matched against composite 
utterance-length templates made by concatenating templates for the individual words. 
This diminishes performance, as seen by the lower (average) d! ratings compared with 
(non-averaged) d! ratings for experiment 1.

subject
d'

Expt. 1 Expt. 4
MH 8.11 12.05
JP 5.69 7.16
FS 6.38 5.64
AS 5.11 6.15
AF 8.56 5.95

average 6.77 7.39

Table 6.3: d! resulting from summing scores for discrete-word matches (experiment 4) 
and by matching continuous utterances (experiment 1).

These results show that separation attainable by summing scores for discrete- 
word matches can at least equal that obtained with continuous-word templates 
and test data. This tends to confirm the interpretation of experiment 3 given 
above, i.e. that word-boundary differences between test and reference data can 
cause severe problems for verification. It could be argued that the good results 
of experiment 4 are due to the removal from the data set of the closest impostors 
for certain speakers: this experiment used only 5 of the original 10 speakers. 
However, the same condition applied in experiment 3, with considerably poorer 
results. Overall, the result is encouraging since it indicates that a practical system 
which operates by prompting the user for a number of discrete utterances in 
random order could work well.
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Individual words spoken

Individual templates

Figure 6.6: In experiment 4, a series of word-length utterances are matched to templates 
for the individual words. The scores are summed to give an overall score for the phrase. 
An example phrase DACG is shown here although the phrase ABCDEFG was used in 
the experiment.

6.3 Extensive tests (large database)

The findings of the previous experiments are encouraging but not convincing. 
The main detractions are a lack of subjects — at most, only 5 speakers of each 
gender — and impostor tests which greatly out-number self-tests. Consequently, 
the reliability of performance measures based on distribution-pairs suffers. To 
counter these negative aspects, further experiments were conducted using the 
large database (described in Chapter 3). The database comprises 10 recordings 
of the digits one, two, • • •, nine plus the words zero, oh and nothing by each 
speaker. Since the verifier is to be used in a financial context and current users 
are accustomed to typing identification numbers, the digits seem to be the natural 
choice for the verification vocabulary. Indeed, many published studies have used 
the digits as a test set (Buck, Burton and Shore 1985, Rosenberg and Soong 
1986, Irvine and Owens 1993).

Each speaker was ‘impersonated’ by over 200 impostors and the jackknife 
technique (described in Chapter 5) was applied to compensate for the lack of 
self-test data. The increased volume of data allows more general conclusions
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to be drawn but there is a price to be paid in terms of computation and storage 
requirements. With 25680 (12 x 10 x 214) utterances, it was absolutely necessary 
to use an automated system of silence deletion and, as noted in Chapter 4, doing 
this robustly is not trivial. Any results in this section are as much a test of the 
silence deletion technique as of the verifier. Of course, in a practical system, both 
would be crucial to highly accurate verification.

6.3.1 Experiment 5: relative usefulness of digits

It has been suggested that certain digits are more useful for speaker verification 
than others (Soong et al 1985). If this were true, it might be possible to selectively 
weight some digits so that the ‘random’ process would include them in the 
verification phrase more frequently. To test this, the d' figure was calculated 
for each speaker for each digit.

Since there are only 10 utterances of each digit by each speaker, the jackknife 
method was used to obtain a more general idea of the genuine speaker score 
distribution. This method is described more fully in Chapter 5 but, briefly, each 
utterance is taken in turn and tested against every possible reference template 
that could be constructed with 5 of the other 9 utterances. This creates 126 scores 
for each of the 10 utterances, 1260 genuine scores in total. The distribution of 
these scores is considered as the genuine distribution and its statistics (mean and 
standard deviation) are used in the calculation of d'.

Applying the jackknife technique to the 10 genuine utterances effectively 
produces 1260 reference templates for that speaker. Producing the impostor 
distribution by testing every impostor utterance against all of these templates 
would generate almost 3 million scores, and is therefore impractical. Instead, it 
was decided to choose just one of the genuine speaker’s templates: the template 
which produced a self-test score nearest to the average. Thus, for each speaker 
and digit, a d' was calculated based on the distributions of 1260 genuine scores 
and 2130 impostor scores. (The scores themselves were written as text files, 
compressed and archived to be used in later experiments.) These figures were 
averaged across all speakers to produce an average d' for each digit. These are 
shown in Table 6.4, arranged in descending order.

The d' ratings in Table 6.4 indicate that the best performance is achieved 
using the word zero; six also works well. There are then six words which offer
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digit avg. d'
zero 2.83
six 2.63

seven 2.26
nine 2.25
five 2.19

eight 2.19
two 2.07

nothing 2.03
three 1.89
one 1.80
four 1.65
oh 0.81

Table 6.4: The average d! across all speakers in the large database for each digit. As 
expected, no single digit provides enough speaker-specific information to completely 
separate the genuine speaker from impostors (indicated by rf' <  4). However, there is 
a clear difference between best and worst.

equally average performance followed by three below average words. Finally, the 
word oh is clearly the least useful, with an average d! of 0.81; this again is a 
demonstration that short utterances offer little discrimination between speakers.

As can be seen from Table 6.4, the d! for every digit is considerably less 
than 4.0, the figure which generally corresponds to complete separation of the 
genuine speaker from impostors. This reinforces the findings of the previous 
experiments that a verification phrase consisting of a single digit would be 
insufficient. However, when the same results are plotted as a graph (Figure 6.7), 
it can be seen that the average d! figure is, in most cases, concealing the wide 
range of performance available for each digit.

In Figure 6.7, for each digit, a point is plotted with a ^-coordinate corresp­
onding to the d' for each of the 214 speakers. The concentration of most points in 
the middle of each range indicates that for most of the digits, the performance for 
most of the speakers was similar. The appearance of a few outlying results con­
firms the analysis of the previous experiments that the performance varies widely 
across the population. For most digits, the outlying results with a d! 4 suggest 
that complete separation is possible with only a single digit as a verification text. 
Also, analysis of the data shows that these outlying results, good and bad, are
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Figure 6.7: Each vertical line of points above the name of a digit represents the d! for 
each speaker for that digit. For all but one of the digits (oh), a few isolated observations 
of d' 4 suggests that for some speakers, pronounced separation is possible with only 
a single digit.

not exclusively attributable to the same speakers: certain digits are better than 
others for individual speakers. This development suggests an enhancement to the 
envisaged scheme: the verification texts could be prompted in a speaker-specific, 
weighted-random manner.

Checking the silence deletion algorithm

As mentioned in Chapter 3, the quality of the recordings varies widely across the 
database and this creates problems for the automatic location of the silence-to- 
speech transition. Before proceeding further with experiments using the digits, 
it was decided to check that the silence removal process had been sufficiently 
accurate: effective but without removing parts of the speech as well. To do this, 
a small subset (8 speakers) of the large database was taken. These speakers were 
chosen on the basis that the signal-to-noise ratio of their recordings was high, and 
comparable to each other’s. This ensured that the silence deletion process would 
affect the captured utterances in roughly the same way, in effect, a best-case 
scenario for applying the process to this database.

Scores of this subset were extracted from the score archives described in 
Section 6.3.1. A new figure of d' was calculated for each speaker; again, 
1260 scores make up the genuine distribution while 70 (7 x 10) scores are used 
to compute the statistics of the impostor distribution. The new d' ratings were 
averaged across all 8 speakers for each digit and are shown in Table 6.5.

Table 6.5 shows no improvement over the results with the entire database,
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digit avg. d'
four 1.47

seven 1.36
two 1.07

nothing 0.98
five 0.88
six 0.75

eight 0.70
nine 0.65
zero 0.59
three 0.57

oh 0.32
one 0.28

Table 6.5: The average d' for each digit using a subset of the large database, originally 
selected as a best-case scenario for the silence deletion algorithm as applied to these 
recordings.

given in Table 6.4. This is surprising since this was meant to be the best-case 
scenario. There are a few possible factors which could explain this finding. One 
is that the signal conditions play a large part in the comparison and since these 
recordings were all of the same quality, there is substantial confusion amongst 
them. This theory could also extend to the fact that all of the speakers are male, 
most of them with local accents. The fact that the number of scores contributing 
to the genuine distributions greatly out-numbers those of the impostors is also 
significant because of the possible distortion of the jackknife method.

The jackknife process is used to expand the apparent number of observations 
of the self-test score in order to obtain a reasonable estimate of its distribution, 
or relative frequency. In this case, this involves matching each utterance against 
every possible reference template not containing that utterance. This produces 
10 sub-distributions, each made up of 126 scores. Examination of all 1260 self­
test scores for a few speakers reveals that amalgamating these sub-distributions 
does not necessarily produce a smooth blend. For example, Figure 6.8 shows all 
1260 self-test scores for speaker 008 saying five. Vertical lines mark the boundaries 
of each of the 10 groups of scores. The contributions from 2 of the utterances 
(6 and 7) are clearly visible as being different from the other 8. Since an attempt 
is being made to characterise this speaker, in practice it might be allowable to
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discard these two uncharacteristic utterances. If this is done for this speaker, a 
great improvement in the corresponding d! is obtained: in the subset experiment 
the d! rises from 0.65 to 1.85. Eliminating the poor-scoring utterances reduced 
the mean and standard deviation of the genuine distribution.

250

Score

G enuine sp eak er’s  en ro llm en t u ttera n ce

Figure 6.8: The jackknifed genuine distribution is composed of 10 sub-distributions; the 
boundaries are marked with vertical lines. It is clear that bands 6 and 7 are different 
from the others.

Inspection of jackknifed distributions for a few other speakers and utterances 
revealed similar patterns, to lesser extents, but not in all cases. These findings 
raise questions about the validity of the jackknife process although it must be 
remembered that without it, the genuine distribution would have to be estimated 
with as few as 5 scores, which would be even less reliable.

6.3.2 Experiment 6: summation of single-word sequences

The results of experiment 5 reinforce the theory that single-word tokens generally 
cannot be used successfully as the verification text. Despite this, experiment 4 
found that summing the individual scores over enough words could produce 
complete separation. It was decided to test the validity of this finding by repeating 
experiment 4 using the large database. The scores for the individual words were 
already available, having been calculated in experiment 5 and stored in archive 
files. In theory it would be possible to generate a d! rating for each speaker 
‘saying’ any string of the 12 digits but in practice, the time and volume of results 
are prohibitive. To minimise the computation and simplify the analysis, three 
constraints were imposed.

• The speakers to be designated as genuine would be picked at random.
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• All 12 digits would be used, selected randomly but excluding repetitions 
within each string, i.e. each string was one of over 479 million permutations.

• Instead of using all 1260 jackknife self-test scores, a single sub-distribution 
(of 126 scores) was chosen (randomly) to represent the speaker. As 
mentioned previously, the 10 sub-distributions for a given speaker and digit 
are not guaranteed to have similar statistics so, for the sake of completeness, 
they should all be considered; random selection is an economical alternative.

The program was run for 5000 iterations, which should give, on average, about 
20 results per speaker. No efforts are made to prevent the same digit-string being 
used repeatedly for any given speaker; in the unlikely event of this happening, 
it is probable that a different sub-distribution would be selected for use as the 
genuine distribution. An example iteration is shown in Figure 6.9.

Jackknife distribution band

one two nothing

_________ \,£________

T
one
254_one_5.dat ~
254_one_impostor.dat
nine
254_nine_5.dat
254_nine_impostor.dat

calculate^ 
1-digit cT

~5C calculate^ 
.̂ 2 -digit cT

three
254_three_5.dat
254_three_impostor.dat

calculate^ 
.^ 12-digit d\

Figure 6.9: In experiment 6, the genuine speaker is selected randomly as is one of the 
speaker’s 10 sub-distributions. The d! is calculated for progressively longer portions of 
the randomly-ordered string of digits.

For the first digit in the random permutation, the appropriate archived score 
files are retrieved and d! is calculated. The score files for the second digit are
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then added to those of the first and the d! for 2 digits is calculated. Addition 
of the score files takes place on a line-by-line basis i.e. the first genuine score 
for the first digit is added to the first genuine score for the second digit, and 
so on. The distribution statistics of these accumulated scores are re-calculated 
after every digit. The process continues until all 12 digits are used, at which 
point a d! rating will exist for a single-digit, a 2-digit string and so on up to a 
12-digit string. Two lines of information were appended to a results file after 
every iteration: the speaker number, the sub-band of the jackknifed genuine 
distribution, the randomly-ordered digit string and the d' computed for each 
length of string. Table 6.6 shows a portion of the results file in a tabular format. 
The abbreviations z, o and n represent zero, oh and nothing respectively.

254 1 9 4 5 z 0 n 6 8 2 7 3
/5 -0.16 0.53 0.66 1.40 1.68 2.49 3.60 3.89 4.48 4.68 4.91 4.40
116 5 1 z 2 8 n 7 4 6 0 9 3
/5 8.19 7.69 6.04 7.89 8.78 10.5 10.6 10.5 11.3 11.2 11.0 11.0
262 5 6 8 0 3 7 2 z n 1 4 9
/2 5.95 7.93 8.17 9.40 12.4 12.9 13.4 12.7 14.3 15.3 16.3 17.2

Table 6.6: A few examples of the results obtained in experiment 6. The words zero, 
oh and nothing are abbreviated z, o and n, respectively. Most cases show a general 
increase in d' with more digits in the string, although the rise is not guaranteed to 
be monotonic. The d' rating of 17.2 for speaker 262 indicates that stark separation is 
possible with this scheme.

All of the results were averaged to give a general indication of the speaker 
separation for each number of digits in the string. Figure 6.10 shows the steady 
increase in d' as more digits are added to the string.

Error bars are included in Figure 6.10 to show the wide range of performance 
across the speaker set which was also apparent in the small database tests. 
Although the maximum levels do not change substantially with different lengths 
of digit-strings, the minimum level increases to the point where, with 12 digits, 
the lowest d' is just below zero. However, this still represents poor performance, 
probably indicating speech data corrupted by noise or consistently poor end­
point detection or a jackknife distortion. Such distortions are also probably 
accountable for d' ratings approaching 20, which indicates exceptionally distinct 
score distributions. An example of the clear separation indicated by some of
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Figure 6.10: Summing the scores for individual word matches increases the discrimina­
tion of the verifier, on average.

the results in experiment 6 is shown in Figure 6.11 which illustrates the score 
distributions when the d' is 17.

score

Figure 6.11: An example of the discrimination achieved occasionally in experiment 6 
where the genuine scores are taken from a single sub-distribution of the jackknifed 
data. In this case (speaker 262 saying nine), the stark separation is reflected in the 
exceptionally high d' rating of 17.

It transpires that the curve of Figure 6.10 can be closely modelled by a 
function G of the number of digits, n, of the form:

G(n) = a +  becn

Using the Mathcad package, values of a = 7.75, b = —4.95 and c = —0.159 
were determined empirically and have been found to fit the curve very well. This 
is shown in Figure 6.12 which focuses on the [3, 7.5] range of d! to show the 
closeness of fit.
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7.5 
7

6.5 
6

A 55A v e r a g e  _ 
d' 5

4.5
4

3.5 
3

Figure 6.12: An exponential curve (broken line) very closely fits the points produced 
in experiment 6.

This model suggests a theoretical upper limit (d! = 7.75) on the verifier 
performance for an average speaker. This represents good separation but would 
require an infinite number of digits! Even 12 digits would not be a practical 
length of utterance. Perhaps of more interest is the fact that with only 3 digits 
the average speaker would be just separable (d! ^  4.5) from impostors.

6.4 Conclusions

Utterance length has been shown to have an important effect on speaker 
separation in text-dependent verification. Using continuous-word test and 
reference data, separation increases with utterance-length, although not at the 
same rate for all speakers and not always monotonically. The strong presence 
of the E-set in the verification text may be distorting the results of experiments 
using the small database.

In a practical system, it would be attractive to prompt the user for random- 
order utterances from a small vocabulary. Ideally, the words could be presented 
together so that the customer need only make a single continuous utterance. 
Experiment 3 investigated this but failed to find the scheme feasible. This is 
apparently because of the problem that word-boundary effects pose to the DTW 
verification technique. Simply totalling scores for matches between discrete-word 
reference and test data, however, was found to work well, in experiments using 
both databases.

This apparently contradicts the finding that single-word tokens are of little 
use in verification; simply accumulating poor scores would not be expected to

i i r

—
o___ _

.___ ____ _

4 5 6 7 8 9
N u m b e r  o f  d ig its  in  u ttera n ce

10 11 12
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produce a good score. However, to some extent, this is the basis of DTW, where 
individual local distances are summed over the entire token (albeit in an optimal 
manner). The incremental differences between the genuine speaker and an 
impostor eventually add up to a sufficient amount to discriminate between them. 
A possible explanation of this is that for any frame-to-frame comparison there is 
only a probability that the distance will be low if both frames are from the genuine 
speaker. In general, there is a smaller probability of small distances between 
frames of the genuine speaker and an impostor. So, increasing the number of 
observations increases the discrimination. Future work could examine this in 
more detail, possibly using the continuous Sir Winston Churchill utterances but 
assessing the discrimination on a frame-by-frame basis.



C h a p t e r  7

C o n s t r u c t i n g  R e f e r e n c e  T e m p l a t e s

The experiments described in Chapter 6 are based on a comparison between a 
test token and a reference template for the claimed identity. For the verifier to be 
consistently successful, it is vital that the reference templates are constructed 
properly from the training data. This chapter examines the following four 
methods of building such templates and assesses the corresponding verifier 
performance in each case:

• Furui (1981) method

• Bernasconi (1990) method

• mean separate score method

• majority decision method

The first two methods combine the original training data to form a single 
reference token; the latter two retain all the individual training utterances as 
distinct tokens which are used at verification time. The obvious disadvantages 
are the extra time needed to do five verifications instead of one, and the 
additional memory required to store the template data. These may be offset 
by greater flexibility in both the decision mechanism and any scheme which may 
be introduced for updating the templates to account for long-term variations in 
the customer’s voice. Also, storage may not be a major issue as the verifier would 
be incorporated into the next generation of ATMs which would use ‘smart’ cards 
with sizeable on-board memory.

6 8
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7.1 Methods

For both the initial (small database) and the extensive (large database) experi­
ments, the first 5 of each speaker’s 20 utterances were used to construct a template 
data set. These are then used as the reference against which all test tokens (ge­
nerated from the remaining 15 utterances of every speaker) are compared. No 
test token is ever used in the construction of any reference template. This regime 
was designed to minimise the complexity of the experimental arrangements and 
it is clear that the suitability of the first 5 utterances as reference material can­
not be guaranteed. Although the purpose of constructing a reference template is 
to characterise the speaker, the lack of multi-session recordings may cast doubt 
on the effectiveness. Single enrollment sessions are very desirable to minimise 
inconvenience to the customer.

The template data set may consist of a single token or a collection of several 
tokens, depending on the method chosen.

7.1.1 Method 1: Furui

Furui has worked extensively on speaker verification and his paper (Furui 1981) 
described a text-dependent DTW-based verifier which has served as the basis 
for many other researchers, such as Soong and Rosenberg (1986) and Gaganelis 
and Frangoulis (1991), including Bernasconi (see Section 7.1.2). It therefore 
seemed reasonable to include Furui’s method in this experiment. In his paper, 
Furui described a straightforward method of constructing a reference template, 
as illustrated in Figure 7.1. The first of the 5 reference utterances is designated 
the initial template, to which the second utterance is then time-aligned by DTW. 
An average of the two patterns is then taken to produce a new template, to which 
the third utterance is time-aligned. Again, an average is taken, and the process 
repeated until all 5 utterances have been combined into a single template.

Note that the length of the final template is equal to that of the initially- 
chosen utterance, irrespective of whether this utterance is typical in respect of its 
length.
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template

Figure 7.1: Furui’s method matches the test token T  with a single template formed 
by successive time-alignment and averaging procedures applied to the reference tokens 
Ri j •• • j R5 •

7.1.2 Method 2: Bernasconi

The verifier used by Bernasconi (1990) is very similar to that developed by Furui, 
although the means of template construction is different, as shown in Figure 7.2. 
Bernasconi’s method calculates DTW distances between all pairs of the original 
utterances so that, in the present case, each of the 5 utterances is compared to 
the remaining 4. The utterance with the lowest accumulated distance relative to 
remaining 4 is taken to be the centroid of the group. The remaining 4 utterances 
are then time-aligned to the centroid, before averaging all 5 to produce the 
template.

7.1.3 Method 3: mean separate score

One possible criticism of the first two methods is that they attempt to characte­
rise the speaker with a single template based on five tokens. What if one of the 
reference tokens was corrupted in some way, perhaps by a cough or stumbling 
over the words? Combining the original tokens into a single template which is 
influenced by such a ‘bad’ utterance may actually reduce the level of characteri­
sation. On the other hand, the existence of a bad reference token may actually
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Figure 7.2: Bernasconi’s method compares the test token T with a single template 
based on the reference token which is ‘nearest’ to all the others (the centroid).

be beneficial because it contains some variation of emotion or voice condition, 
which, although uncharacteristic of the initial recordings, may manifest itself on 
other occasions.

For these reasons, it was decided to keep all of the individual tokens separate 
and compare the test token with each of them. The resulting scores are then 
averaged to give an overall score. The scheme is illustrated in Figure 7.3.

7.1.4 Method 4: majority decision

By taking the mean of five separate scores, the previous method could be subject 
to distortion caused by extreme results. For instance, a single reference token 
could be so bad that it outweighed the other four good tokens, and vice versa. 
While this is unlikely, it highlights the ‘blindness’ of method 3 and the possible 
advantage afforded by a more natural decision-making strategy.

Method 4 offers this by taking the majority of the individual decisions: at 
least 3 of the 5 scores need to be ‘low’ for the speaker of the test token to be 
accepted. A pre-determined threshold for each speaker is used to decide if each 
individual score is low enough to be accepted. Tests with the small database use 
thresholds calculated using Furui’s formula (4.6) with a = 3.14 and b = 3.14; with
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Figure 7.3: The mean separate score method compares the test token T against each 
of the reference tokens Ri, . . . ,  R$. The overall score is the average of the individual 
scores.

the large database, the ranked impostor method (see Section 4.3.2) is employed. 
The complete majority decision method is illustrated in Figure 7.4.
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Figure 7.4: The majority decision method matches each reference token Rn with the 
test token T. The overall accept/reject decision follows the majority of sub-decisions.

The majority decision method formalises the requirements of the mean 
separate score method in that only 2 bad reference tokens are allowed, regardless 
of how good the others are. The converse is that 2 good reference tokens will still 
cause rejection even if the other 3 tokens are only slightly bad.

In order to compare this approach with methods 1-3 on the basis of d it is 
necessary to derive some overall score measure for a test utterance so that genuine
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and impostor score histograms can be constructed. This is done as follows. If 
the majority decision is ‘accept’, then the overall score is taken as the average 
of those (3 or more) individual verification scores which fall below the threshold. 
On the other hand, if the decision is ‘reject’, then those (3 or more) scores greater 
than the threshold are averaged to give the overall score.

7.2 Initial results (small database)

Initial tests of the different methods of template construction used the full-length 
recordings from the small database (described in Chapter 3) which consists of 
10 speakers saying ABCDEFG 20 times. For each speaker, the four methods 
were used to create four templates. In each case, speaker scores were collected 
and a d! figure computed. These are presented in Figure 7.5. In interpreting 
these figures, the reader should recall from equation 5.2 that a d! value of 5, 
for example, indicates that the separation of genuine and impostor distribution 
means is 5 times the assumed common standard deviation (as assessed from the 
geometric mean of the individual deviations).

The first 5 speakers (BK-TM) are female while the remaining 5 are male. 
Although there is an apparent tendency for the males to perform better than the 
females, the best performing males MH and AS are the author and his supervisor. 
Further, the best performing female (FS) is a speech therapist. Since 3 of the 
10 speakers have experience of speech technology, which seems to influence the 
results, no firm conclusions may be drawn about gender-related performance 
differences.

It can be seen that for some speakers (notably, JP, AF and AS), the method 
of template construction can greatly influence the verifier performance associated 
with those speakers. With the exception of AS and NT, method 1 gives the 
poorest results and this is reflected in the low mean d': as shown in Table 7.1. This 
table also shows the ambiguity rate (defined in Chapter 5) to give an indication 
of any overlap of the genuine and impostor score distributions. The ambiguity 
rate is markedly higher (indicating more overlap) for method 1 than for any of 
the other approaches.

The reason that method 1 performs poorly relative to method 2 is almost 
certainly a result of the fact that the first utterance is the initial reference,
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Figure 7.5: The bar charts show the d! calculated for each speaker using 4 different 
methods of template construction. The first 5 speakers (BK-TM) are female; the 
remaining 5 (AF-NT) are male. For some speakers, such as AS and AF, the type of 
template strongly affects performance.

regardless of its suitability. By taking the centroid of the training patterns as the 
basis for time-alignment, method 2 overcomes this problem. Methods 2 and 3 give 
roughly comparable results, indicating that choosing the centroid of the group of 
5 utterances (method 2) is similar in its effect to averaging scores (method 3). 
Method 4 produces the best speaker-separation, as indicated by the highest d' 
averaged over all speakers in Table 7.1.

Ffowever, the differences between methods 2, 3 and 4 are not statistically 
significant, according to the student’s t-test (Pipkin 1984). However, using the 
same test, it can be stated with 90% confidence that any of methods 2, 3 and 4 is 
significantly better than method 1. This hypothesis is supported by the ambiguity 
rates in Table 7.1, which suggest that method 1 is less reliable than the others 
but gives no clear indication as to which is best.

Method 4 (the majority decision) is based on deriving thresholds for each 
individual speaker. These thresholds offer a basis for estimation of false 
acceptance and false rejection rates (FA and FR respectively). Table 7.2
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Method Mean d' Ambiguity Rate (%)
1. Furui 5.2 10.8
2. Bernasconi 5.8 3.47
3. mean separate score 6.0 3.07
4. majority decision 6.2 3.20

Table 7.1: Comparing methods of template construction in terms of d! and ambiguity 
rate. Method 1 suffers from an emphasis of the first training utterance, regardless of 
suitability. The other methods are (statistically) significantly better.

shows such FA and FR figures both for the individual matches (to each of the 
5 templates) and for the overall score based on the majority decision. This table 
illustrates, as one might expect, the disparity of performance of the individual 
training tokens. Also, it shows the gain to be made using the majority decision 
-  in that this rule generally does only a little worse (if at all) than the best­
performing reference, but significantly better than the average across reference 
tokens. For instance, for speaker NT the average FA across the 5 reference 
tokens is 5.4%, but using the majority decision it is 0%. For the same speaker, 
the FR averaged across the 5 tokens is 8% while the majority decision reduces 
this to 1%. The sole exception to this generalization is the FR for speaker AM 
which averages 12% across the 5 individual reference tokens, but is 13% using the 
majority decision.

The expectation that method 2 would achieve a good compromise between 
accuracy and the computational convenience of a single-token template was borne 
out by the obtained results. Overall, it is apparent from Table 7.1 that the 
approaches to constructing a template data set that average the reference data 
to form a single pattern (methods 1 and 2, with an average d! of 5.5) do less well 
than those that retain the training data in their entirety (methods 3 and 4, with 
an average d! of 6.1). However, the latter methods entail greater computational 
complexity in terms of both storage space and processing time at verification.

7.3 Extensive tests (large database)

To find out if the results of the small-scale testing applied for larger populations 
the tests were repeated using the Sir Winston Churchill utterances from the large
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FA:FR (%)
Speaker r 2 Rs i?5 Majority decision

BK 5:13 0:20 1:7 0:7 0:47 0:13
FS 0:0 0:0 0:0 0:0 0:0 0:0
JP 1:0 1:0 1:0 6:0 2:20 1:0

KM 0:27 10:0 1:47 9:27 0:27 0:13
TM 1:0 1:0 0:0 4:0 0:0 1:0
AF 0:0 2:0 1:0 0:0 1:0 1:0
AM 4:20 8:7 2:7 8:13 15:13 4:13
AS 0:7 0:0 0:0 0:0 0:0 0:0
MH 1:0 1:0 0:0 0:0 0:0 0:0
NT 27:6 0:7 0:0 0:0 0:27 0:1

Table 7.2: Testing with the small database, false acceptance and rejection rates, 
FA:FR (%), for all five reference tokens R i ,  . . . ,  R 5, and for the majority decision 
(method 4).

database. These were chosen for two reasons. Being the longest utterances in the 
database, it seemed likely that the duration effects on performance described in 
Chapter 6 could be excluded. Also, there are 20 utterances from each speaker 
which allowed the first 5 utterances to be designated as reference data and the 
remaining 15 could be used to form test tokens, as in the initial tests. It was felt 
that 15 self-tests would be sufficient to give a reasonable estimate of the genuine 
distribution without any jackknifing. For each method of template construction, 
the following procedure was applied.

Each speaker in turn is designated as genuine and a reference template is 
constructed. The 15 self-test scores and 3195 impostor scores are recorded and 
from these data, a d! rating is computed. From each impostor’s 15 scores, the 
average score is calculated and used as a key to sort the list of impostors, as 
described in Section 4.3.2. This list of average impostor scores can then be used 
to generate speaker-specific accept/reject thresholds to be used in estimation of 
the error rates.

The false acceptance (FA) rate is calculated by re-examining all 3195 impostor 
scores and comparing them with the threshold. The false rejection (FR) rate is 
assessed similarly but checks the 15 genuine scores. The process is repeated using 
a few different thresholds. The average FA and FR rates (over all 214 speakers) 
for each threshold setting are plotted as a graph to show the interaction of the
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average error rates as the threshold is varied. The intersection of the FA and FR 
traces can be projected onto the vertical axis to determine the average equal-error 
rate (EER) and on the horizontal axis to indicate the corresponding threshold 
setting.

7.3.1 Furui method

Figure 7.6 shows plots of the FA and FR rates as the threshold is varied, according 
to the average score of the 7ith-closest impostor. For convenience, the impostor 
whose average score is used to set the threshold will be referred to as It. The 
crossing point of the two traces shows the EER as approximately 6%, which is 
achieved when each speaker’s threshold is set to the average score of their 6th- 
closest impostor (It = 6).

Figure 7.6: Interaction of error rates for the Furui method. The EER is approximately 
6% and is achieved by setting each speaker’s threshold to the average score of their 
6th-closest impostor.

The reader should recall from Section 4.3.2 that low (or negative) impostor 
rankings map to very high thresholds and tend to cause rejection of all speakers. 
In this case, the FA rate remains very near to 0% until It = —10 but at this point 
the FR rate is still above 20% -  unacceptably high. The FR rate only falls to
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below 10% when It = 1 and is below 5% when It = 40 but the rate of decrease is 
slow, unlike the corresponding increase in the FA rate.

The EER of 6% has been obtained a posteriori -  after the experiments -  but 
in practice this would be impossible. The sharp rise in error rates either side 
of the EER point suggests that a system using Furui templates would be very 
sensitive to poorly-predicted thresholds.

It should be remembered that the interaction of error rates only provides 
different perspectives on exactly the same data -  the distribution of speaker 
scores remains unchanged and in all cases can be expressed by the same d! rating. 
In this case, the d' is 4.9, which is an average of the d' ratings for all the speakers 
in the database. This is close to the corresponding rating of 5.2 using the small 
database.

The initial tests demonstrated the superiority of the other methods over the 
Furui method, probably due to the template being based on the centroid of the 
training data, rather than the first utterance. In these tests, the first utterance 
of Sir Winston Churchill is not the first in the recording session (see Chapter 3) 
and the negative effects may be less pronounced.

7.3.2 Bernasconi method

When Bernasconi templates are used (see Figure 7.7), the FR rate corresponding 
to zero-FA is about 17% -  better than the Furui method but still poor. The other 
extreme of performance is actually more likely to be of interest: the FA rate for 
0% FR. In this case, for FR rates approaching 2% (which might be acceptable 
in practice) the FA rates exceed 20%, which would still be a security risk.

The shape and slope of the curves is much the same as those for the Furui 
method, reflecting the similarity between the two approaches. However, for the 
Bernasconi method the EER is lower at around 4.5% (achieved with It =  4) and 
the average d' of 5.2 is higher. Both of these gains are marginal but together they 
indicate more reliable performance with Bernasconi templates.

7.3.3 Mean separate score (MSS) method

Figure 7.8 shows the error rate interaction when the mean separate score 
technique is applied. The picture is similar to that obtained with Bernasconi
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Figure 7.7: Interaction of error rates for the Bernasconi method. The equal-error rate is 
approximately 4.5% and is achieved by setting each speaker’s threshold to the average 
score of their 4th-closest impostor.

templates and the EER -  at just under 5% -  is also comparable. This is not 
surprising; assuming that in most cases all 5 reference utterances are fairly similar, 
combining them (using the Bernasconi method) should produce a template which 
is not markedly different from the individual tokens. In such cases, the distances 
between a test token and the individual reference tokens should be roughly 
the same. Thus, for speakers who provided consistent reference utterances, 
Bernasconi’s method and the MSS method will produce similar score distributions 
and this is borne out by the results.

The results for these methods are not identical because there are some cases 
where the reference tokens are not all alike; one or more of the training utterances 
being atypical of the group would also account for Furui’s method performing 
poorly although in these tests this is not as evident as in the initial tests. In such 
cases, Bernasconi’s method will effectively prevent any outliers from dominating 
the overall comparison because they would not be chosen as the centroid and 
would therefore be subject to considerable alteration as they are time-aligned with 
the centroid. On the other hand, the MSS method gives each of the individual 
scores equal priority, thereby allowing the possibility of an outlier corrupting the
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Figure 7.8: Interaction of error rates for the mean separate score method. The equal- 
error rate is approximately 5% when each speaker’s threshold is set to the average score 
of their 6th-closest impostor.

overall score, although this is unlikely because the averaging process would tend 
to increase the influence of the grouped scores rather than an outlier.

Figure 7.8 also shows that using the MSS method, the FA rate rises slightly 
more gently than it does using Bernasconi’s method, for corresponding FR rates. 
For instance, for FR=2% the FA rate is just over 20% but in the case of 
Bernasconi’s template, FA is over 30% for an FR rate of 2%. This highlights a 
potential benefit of the MSS approach because in any practical implementation, 
the threshold would be chosen somewhere in the region to the right of the 
EER point to limit the chances of true customer rejection. All of the error- 
rate interaction graphs so far have shown diverging rates of change in the error 
traces in this region: raising the threshold to reduce false rejections causes a 
disproportionate increase in false acceptances. This effect has been lessened by 
using the MSS method although it is still present and this highlights the difficulty 
of pre-determining accurate thresholds.

The MSS method appears to lie between the Furui and Bernasconi methods, 
both in terms of EER and also average d', which is about 5.0 but the differences 
are not of great statistical significance (see Section 7.3.6).
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7.3.4 Majority decision method

As mentioned in Section 7.1.4, the majority decision method requires a pre­
determined threshold. For these tests, the ranked technique can provide such 
a threshold but it may not be reliable because it has to be calculated using one 
of the other methods. The threshold is based on an impostor’s average score 
which may in fact typically lie in a different range for each template method. 
For instance, for speaker 192 a typical impostor score might be 400-650 when 
comparing against Furui templates but this might change to 500-800, say, when 
using the MSS method. The error rates presented in Figure 7.9 were calculated 
using the same thresholds as the Furui template method (Section 7.3.1), although 
for the reasons just stated, it was probably not the best choice. One of the 
first three methods had to be chosen to provide the thresholds but were the 
experiment to be repeated, the recommended method would be the MSS method 
since the range of scores typically matched that of the majority decision approach. 
Generally, the Furui and Bernasconi methods both produced scores in a different 
range than that of methods 3 and 4.

Figure 7.9: Interaction of error rates for the majority decision method but using 
thresholds taken from ranked impostor files derived using the Furui method. The 
equal-error rate is approximately 7%.

Interpretation of Figure 7.9 is not easy because the horizontal axis does not
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mean quite the same thing as it does in the previous diagrams. The slopes of 
the FA and FR traces seem gentler but this is probably because the horizontal 
gradations represent relatively smaller differences in the impostors’ average score. 
This is also the reason why the EER point occurs at I t = 88, an apparently much 
lower threshold than the other methods.

Despite using the ‘wrong’ method to generate the threshold, the error rates 
themselves are correct: the threshold is only a number and the percentage of test 
scores for any given speaker which exceed this number is constant, regardless of 
how the number is determined. The majority decision method is marginally the 
poorest of the template methods on the basis of EER which is about 7%. In 
contrast however, the d' rating is 5.6, the highest of all four methods. Again, 
however, determining the d' is not as straightforward as before and the figure 
can be called into question because it is directly dependent on the threshold. 
As mentioned in Section 7.1.4, the d' is calculated by taking the average of the 
scores which make up the majority of the decision: 3 or more scores below the 
threshold for an acceptance or 3 or more scores exceeding it for a rejection. For 
example, consider the case where the 5 genuine scores are 120, 125, 130, 150 
and 160. A threshold of 145 would force an acceptance decision and for the 
purposes of calculating the d' the score would be 125. If the threshold was then 
changed to 155, the decision would still be an acceptance but the ‘score’ would 
rise to 131.25, which could cause the d! rating to fall, despite the more assured 
decision (a majority of 4 instead of 3). The d' rating for this method is therefore 
variable and the figure mentioned above was calculated using thresholds for the 
EER point.

7.3.5 Three-tries scheme

Following suggestions from NCR that a practical system would allow 3 attempts 
before rejecting access, the results have been examined to assess the expected 
false rejection rate for each template method under such a scheme. There is 
some evidence to suggest that the false acceptance rate would not be increased 
significantly by allowing repeated impostor attempts because there appears to 
be only a subset of impostors with voice characteristics resembling those of 
the genuine speaker. Put simply, most genuine speakers are under threat of 
‘impersonation’ from only a few of their impostors.
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To illustrate, Figure 7.10 shows the distribution of speakers who were falsely 
accepted as speaker 132, using the Bernasconi template method. (After visually 
inspecting a few speakers’ results, speaker 132 was chosen since the effect is 
clearly visible. Speaker 132 may not be typical in this respect but the results of 
other speakers demonstrate the same effect to a lesser or greater extent.) Each 
impostor had 15 attempts and the height of each impulse corresponds to the 
number of those that were below the threshold. The threshold was set to the 
average score of the 4th closest impostor for speaker 132 since I t = 4 at the EER 
point for the whole database when using Bernasconi templates (see Section 7.1.2). 
All 57 falsely-accepted attempts are due to only 11 of the 213 impostors. This 
suggests that an impostor’s success depends less on the number of attempts than 
on an inherent similarity to the genuine speaker. The task of identifying, and 
compensating for, groups of similar speakers at the enrollment stage is examined 
in Chapter 8.

Speaker

Figure 7.10: The distribution of falsely-accepted impostors for speaker 132, using a 
Bernasconi template and a threshold set for the database-wide equal-error rate. 11 of 
the 213 impostors account for all 57 false acceptances.

Using the EER estimated from the graphs in Figures 7.1-7.4, the risk of false 
rejection using the 3-tries scheme was assessed for each speaker with each of the 
four template methods. The assessment is based on the number of self-test scores 
which exceed the personal threshold and would therefore be rejected using a 1-try 
scheme. For convenience, this will be referred to as nr. If nr < 2, the speaker 
would never be rejected under a 3-tries scheme (using this data). If nr >  3, 
then the probability of false rejection P r r  is the ratio of the number of possible 
combinations of 3 from the nr scores above the threshold to the total number of 
possible combinations of any 3 scores. This may be expressed as:
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f  nr
D _ \ 3
F f r ~  j e

Since there is a finite number of self-tests, Pfr is quantised (in this case, to 
14 levels). The number of speakers in each category is shown in Table 7.3 using 
each of the template methods. In each case, the vast majority of the database 
population may be categorised as ‘safe’ because fewer than 3 of their self-test 
scores exceed their personal threshold. This is especially pronounced for method 2 
(Bernasconi) where 199 speakers (93% of the population) are safe and Pfr > 1% 
for only 3 speakers. Further work is required to find out if the FA rate indeed 
remains unchanged (at 4.5%) by the 3-tries scheme. The other methods also show 
a considerable reduction of the FR rate from their respective equal-error rates but 
considerably more speakers are ‘at risk’ than with Bernasconi’s templates.

nr Pfr

Template method
1 2 3 4

0-2 0.000 188 199 184 184
3 0.002 10 8 4 7
4 0.009 5 4 7 8
5 0.022 6 1 7 4
6 0.044 2 1 2 3
7 0.077 - - 1 2
8 0.123 1 - 1 1
9 0.185 1 1 1 1
10 0.264 - - - -
11 0.363 - - 2 3
12 0.484 - - 2 1
13 0.629 1 - - -
14 0.800 - - 1 -
15 1.000 - - 2 -

Table 7.3: Using each template method, the risk of false rejection P FR is calculated 
based on n r , the number of each speaker’s 15 self-test scores which exceed their own 
threshold. For each template method, most of the 214 speakers are safe from false 
rejection when using a 3-tries scheme.
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7.3.6 Summary

Table 7.4 summarises the results of the extensive testing and shows, for each 
method, the mean d', EER (estimated from the graphs of average-error rate 
interaction) and the average probability of false rejection when using the 3- 
tries scheme. Presenting averages over the entire database can obscure possibly 
unacceptable extremes of performance but concise interpretation of the test 
results is otherwise very difficult, due to their large volume.

Method Mean d' Approx. EER (%) mean Prr (%) with 3-tries
1 Furui 4.9 6 0.57
2 Bernasconi 5.2 4.5 0.14
3 MSS 5.0 5 2.42
4 majority decision 5.6 7 1.09

Table 7.4: A summary of the verifier performance with 4 styles of reference template, 
after extensive testing. The figures shown are averages across all 214 speakers in the 
test database.

The means give some indication of the expected performance for a speaker 
selected at random from the population (assuming the database is representative), 
although for all 4 methods of reference construction there is a wide variation in 
performance across the data set. Regardless of method, some speakers produced 
no errors at all, whilst others always produced errors. As explained in Chapter 3, 
this could be due to artifacts of the speech preparation procedure, or perhaps an 
intrinsic confusability of certain speakers with others (reinforcing the “sheep and 
goats” theory). To illustrate this variation, Figure 7.11 plots the distributions 
of the d' ratings for the individual speakers for all 4 methods. The dark areas 
represent densely-packed d! ratings and it can be seen that the Furui method tends 
to compress these ratings into the most limited range, with only a few outliers at 
either extreme. The other methods show a single poorly-performing speaker (a 
data point at the low end of the range, distinct from the rest of the population) 
and more individuals achieving more emphatic degrees of separation (several data 
points at the high end of the range). This effect is particularly pronounced with 
the majority decision method and is reflected in the high average d' of 5.6, clearly 
separable from the other methods.

In terms of d', the majority decision appears to be more successful than the
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Figure 7.11: Showing the variation of d! across all 214 speakers in the data set. For 
each reference method the vertical lines are distributions.

other methods, and this is confirmed using tests of statistical significance based 
on z, the standard normal deviate (Pipkin 1984). It can be stated with over 
90% confidence that the method 4 results are superior to those of method 1; the 
margin over the other 2 methods is less clear, about 70% confidence. Some doubt 
still hangs over the usefulness of the d1 data for method 4 since it is dependent 
on the threshold but further work is required to test this.

In terms of the equal-error rate, methods 2 and 3 are of very similar ranking 
and the interaction of error rates for both methods is also similar. This ties 
in with the results using the small database that these two methods are almost 
identical, in most cases. The poorer showing for method 4 could be explained by 
the no-error cases resulting from better score distributions (higher d') than the 
no-error cases using other reference methods: such cases caused the original need 
for the d' measure. The EER has the advantage of indicating how many errors 
really did occur during testing but can be misleading about the general trend, 
which is more important considering that the scale of these tests is still small 
compared with the envisaged application.

If a scheme were adopted where a speaker would be allowed 3 attempts before 
being rejected, the Bernasconi system would give the highest safe-to-unsafe ratio. 
This is perhaps the most important aspect of all since the implication is that the 
Bernasconi method successfully characterises the speaker from the 5 enrollment 
utterances. However, this could be a direct consequence of the test and training 
data being recorded in the same session.
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7 .4  C o n c lu s io n s

Four different methods of template data set construction have been compared; 
two are established techniques and two were developed for this project, although 
they are quite intuitive and straightforward.

The results of the initial test phase found superior overall performance when 
retaining the original reference tokens separate at verification time (Methods 3 
and 4), rather than averaging training data to yield a single reference pattern 
(Methods 1 and 2). The best performing technique (Method 4) applied a majority 
decision rule to the individual distance scores rather than simply averaging them 
as in Method 3 (MSS). However, these findings were not statistically significant 
and so the experiments were repeated with the large database.

The extensive experiments were less conclusive in that no single method 
performs best for every assessment: method 4 gives the best average d! and 
methods 2 and 3 produce the lowest EER. However, under a scheme which 
allows 3 attempts before rejecting access, method 2 (Bernasconi) clearly performs 
better than the others, with false acceptances below 5% for false rejections 
below 2%. In practice, this level of performance might be acceptable to the 
financial institutions.

Although the results for method 1 are not far behind the rest, it may be 
expected to perform poorly relative to method 2 because the first utterance is 
always chosen as the initial reference, regardless of its suitability. By taking 
the centroid of the training patterns as the basis for time-alignment, method 2 
overcomes this problem. Methods 2 and 3 give roughly comparable results, 
indicating that choosing the centroid of the group of 5 utterances (method 2) 
is similar in its effect to averaging scores (method 3).

Another topic for future investigation is the ease with which the templates 
of all the methods may be updated to compensate for the ageing process and a 
variety of moods. Methods 3 and 4 seem ideal for this purpose and could maintain 
a pool of template data patterns, which could be replaced if ‘better’ patterns were 
obtained through ordinary use of the verifier. This would be more difficult for 
methods 1 and 2 which might become so general that almost anyone would be 
accepted.

The Bernasconi template is reliable -  perhaps not optimal -  and will be used 
in all of the remaining experiments.
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W e i g h t i n g  t h e  D i s t a n c e  M e a s u r e

Chapter 4 described the process by which each speaker’s voice is represented by 
a sequence of cepstral vectors. In effect, these vectors describe a path through 
‘space’ which represents the speaker saying a particular utterance. Verification 
is then a matter of checking whether or not the vectors of the unknown speaker 
map to points along the path representing the claimed identity. Although it is 
difficult to apply such concepts to multi-dimensional space, the paths of impostors 
may perhaps cross, be parallel to, or deviate from the path of the true speaker, to 
greater or lesser extents. This perspective helps to explain the result of Chapter 6 
in that having more data -  either longer utterances or more utterances -  allows 
the typical difference between paths to be estimated more accurately. Similarly, 
Chapter 7 found that different ways of defining the true speaker’s path (different 
methods of constructing templates from training data) yield varying levels of 
accuracy.

Yet another optimisation method is available by emphasising or weighting 
some dimensions of the speaker space (corresponding in some abstract sense to 
voice features) with respect to others. This is accomplished at the DTW stage, 
which performs a frame-by-frame comparison of a test token and a reference 
template. At the frame level, the comparison is based on the distance between 
the test and reference cepstral vectors, calculated by squaring the differences 
between corresponding dimensions and summing for all n (=12, in this case) 
dimensions. The differences in each dimension i may be emphasised according to 
their perceived importance by multiplying by a weighting factor, Wi. The general 
expression for the local distance d between a test frame t and a reference frame r

8 8
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is then:
n

d = J 2 w i( t i - r i ) 2 (8.1)
i=l

Previous speaker verification studies using weighted cepstral distance measu­
res, such as those summarised by Velius (1988), have been successful in reducing 
error rates. However, the derivation of the weights has been based on assumptions 
rather than using an optimisation procedure to yield the best practical results. 
This chapter begins with experiments using the small database to compare the 
following weighting methods:

• inverse-variance function,

• inverse-expected-difference function,

• integer-valued weights chosen either by genetic algorithm (GA), or purely 
randomly;

• unweighted, or ‘uniform weighted’ (all weights set to 1).

The first two methods calculate the weight of each dimension as a deterministic 
function of the coefficient values of that dimension, and attempt to minimise inter­
session intra-speaker variability. The third method finds weights which achieve 
a maximal separation between the genuine speaker and the impostor set. For 
comparison, the results of the unweighted verifier (as used in previous chapters) 
are also included.

8.1 In itia l t e s t s

The initial tests use the full-length utterances (ABCDEFG) from the small 
database described in Chapter 3. For each of the 10 speakers, 5 utterances 
are used to make Bernasconi-style templates (see Chapter 7) and the remaining 
15 utterances are used for testing. In each case, the DTW process involved 
in making the templates uses unweighted distance measurements. The weights 
generated are speaker-specific.



C H A P T E R  8. W E IG H T IN G  T H E  D IS T A N C E  M E A S U R E 90

8.1.1 Inverse variance

The commonly-used Mahalanobis distance (O’Shaughnessy 1987, pp. 425-426) 
is based on the inverse of the covariance matrix for the individual cepstral

-  for instance, by a Karhunen-Loeve transformation -  the only non-zero elements 
of the matrix are those of the main diagonal, corresponding to the inverse 
of the variance of each coefficient. The work required to calculate either the 
full covariance matrix or the orthogonal cepstral coefficients has led to simpler 
weighting functions using only the inverse of the variance of each coefficient, 
originally by Tohkura (1986) but also used by Xu, Oglesby & Mason (1989) 
and Gaganelis and Frangoulis (1991).

In such a scheme, there is an assumption that features which remain consistent 
over an entire utterance, or over several utterances by the same speaker, may 
characterise that speaker. This theory was tested by observing the utterance-wide 
variance of each of the 12 time-normalised cepstral coefficients for every speaker’s 
test utterance. For each dimension, the resulting variances were averaged (over 
all 15 utterances) and the reciprocal of the average was used as the weight. This 
produced a single 12-element weighting vector for each speaker. The zth element 
of any speaker’s weighting vector is given by:

where tuj j  is the time-normalised cepstral coefficient in the zth dimension of 
frame /  of test utterance u. The number of frames in each utterance may be 
different; n indicates the actual number of coefficients summed. The weights for 
all 10 speakers are plotted on the same graph (Figure 8.1) to demonstrate the 
similarity of the function across the speakers. Clearly, the higher dimensions are 
weighted more heavily than the lower ones.

8.1.2 Inverse expected-difference

This function, as used by Furui (1981), normalises the dimensions by their so- 
called expected differences after time alignment, for the intra-speaker case. This 
ensures that cepstral coefficients may contribute equally to the overall distance 
measure, regardless of numerical scale, which is not an indicator of utility. Test

coefficients for each speaker. If the cepstral coefficients have been orthogonalised

(8.2)
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Figure 8.1: Each trace shows one speaker’s weights calculated with the inverse-variance 
function.

utterances from each speaker were time-aligned with their reference template and 
for each of the 12 dimensions, the average distance between corresponding frames 
was calculated over the entire utterance. Averaging over all 15 test utterances 
produced the expected differences for each dimension. The reciprocals of these 
were used as the weights. The ith weight for any speaker is given by:

~  = ~ rf,i) (8-3)wl ii u j

where tu,pu(/),i is the time-normalised cepstral coefficient in the ith  dimension of 
the frame in the wth test utterance when aligned with 77 , frame /  of the speaker’s 
reference template. (DTW is used to define pu( f ), the warp-path relating the 
/  frames of the template to test utterance u.) Although the number of points 
in the warp-path may vary for each of the test utterances, the actual number of 
distances in the summation is n. The weights are plotted in Figure 8.2 for all 
10 speakers to highlight the similarities with the inverse-variance case. Again, 
the highest weights are the strongest.

8.1.3 GA-generated weights

Using any of the traditional methods, each individual weight in the vector is 
calculated by applying the same, deterministic function which, despite having a 
basis in theory, nonetheless restricts the available solutions. An alternative is 
to allow the individual weights to be derived independently, yet applying them 
collectively as a vector. The genetic algorithm, suggested by Holland (1975) and 
examined in depth by Goldberg (1989) is one such method. Spillman (1993) gives
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Figure 8.2: The inverse-expected-difference weighting function, plotted for all speakers.

a concise introduction to genetic algorithms; the details are reviewed briefly here.
The GA is a directed search method based on the perceived evolutionary 

processes of nature. To search a large solution space, a group {population) of 
candidate solutions is generated randomly and the best-performing candidates 
are selected to generate the next population. The cycle continues for a specified 
number of generations or until an acceptable solution has been found. Each 
candidate solution is usually encoded as an integer in the form of a string of 
bits, representing the presence or absence of some feature, analogous to the 
chromosome in nature. In its simplest form, the GA consists of only three 
processes applied to the current group of chromosomes to generate the next 
population.

• Selection: the suitability {fitness) of each chromosome is assessed and used 
to choose parent chromosomes to shape the next generation.

• Mating: pairs of parents are combined to produce two new child chromo­
somes. The commonest approach is known as crossover, where each parent 
is divided at some randomly chosen point into a head and a tail. The child 
chromosomes are obtained by combining the head of one parent with the 
tail of the other, and vice versa.

• Mutation: individual bits in each new chromosome are inverted according 
to some pre-set probability. This can sometimes make the child exist in an 
entirely different region of solution space than either of the parents, thus 
allowing the algorithm to escape from regions of local -  but perhaps not 
global -  optima.
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The GA is not guaranteed to find an optimal solution but during latter genera­
tions most members of the population should exhibit properties characteristic of 
good solutions. In this application, the goal is to separate maximally the genuine 
and impostor score distributions but the extent of the optimum separation cannot 
be known in advance. Instead, the optimisation criterion is to find a weighting 
vector which produces significantly better separation than the unweighted case. 
The GA is an appropriate method of doing this, as no assumptions are made 
about which dimensions are important for verification, or about the properties of 
cepstral coefficients of those dimensions. The GA has no constraints on either the 
starting point or the extent of the search space of solutions, and should therefore 
be capable of finding high-performance weighting vectors, should they exist.

Implementation

For the genetic algorithm to generate weighting vectors, each weight was allowed 
to vary between 0 and 15 so that it could be encoded simply using 4 bits. By 
concatenating all 12 of the 4-bit weights, the weighting vector could be encoded 
as a 48-bit chromosome. In the general case, when using n-dimensional cepstral 
vectors, and allowing each weight to be quantised to m  levels, there are 2nIog2m 
different weighting vectors from which to choose. In this case, the range of 
choice is 248, which is clearly too large to search exhaustively6 as there is no 
guarantee (quite the opposite!) that the solutions are ordered (in terms of verifier 
performance) within this range. Traditional search methods, such as gradient 
descent, are therefore probably unsuitable but this type of problem is appropriate 
for solution using the GA.

A vital consideration when using a GA is the specification of the objective 
function which determines the fitness of a candidate solution. As mentioned 
above, this is assessed in terms of the separation of the score distributions for the 
genuine speaker and the impostors. Since fitness has to be repeatedly computed 
during each generation, while the GA is running, weighting vectors were assessed 
using the F  measure (described in Chapter 5) as this requires less computation 
than does d! . However, d', with its stronger resistance to outliers, was preferred 
for finally scoring what appeared to be the best weighting vectors.

6In fact, there are less than 248 unique solutions because some of the vectors are linearly 
dependent. For instance, vectors (1,1,1,1,1,1,1,1,1,1,1,1) and (2,2,2,2,2,2,2,2,2,2,2,2) 
both give identical separation statistics/error-rates when used as the weighting vector.
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Figure 8.3: The best weighting vectors found by the GA, for every speaker. Unlike the 
traditional weighting functions, no order or pattern is apparent.

Following the ‘Simple Genetic Algorithm’ of Goldberg (1989), the initial 
population of candidate vectors was generated by randomly setting bits in the 
chromosomes to 1 or 0 with equal probability. At each generation, only the three 
basic operators were employed: roulette-wheel selection, single-point crossover 
(with probability Pc) and mutation (with probability Pm). Various configurations 
were tried before settling on a population size of 32 with Pc — 0.7, Pm =  0.02 and, 
unless stated otherwise, the program ran for 50 generations. Other settings did 
not find better solutions within an acceptable time. The algorithm was coded in C 
and executed on a standard 80386-based PC with a floating-point co-processor.

For comparison with Figures 8.1 and 8.2, the best weighting vectors found by 
the GA for all speakers are plotted on a single graph: Figure 8.3. The pattern 
of weights that was apparent in the previous figures is not repeated. Indeed, the 
weights appear to be uncorrelated among all the speakers. This may be taken 
as evidence that a different weighting vector is needed for each individual. It is 
also interesting to see that, in general, the whole dynamic range of the weights is 
used, unlike the traditional methods.

8.1.4 Results

For each of the 10 speakers, the speaker separation was assessed using speaker- 
specific weights generated by the three methods described above. In the case of 
the GA, the vector used was the best one discovered within the first 50 generations 
on the basis of the F  measure. Table 8.1 shows the d'! ratings for each case and 
the corresponding results for the unweighted verifier are given for comparison.
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Speaker

Inverse-
Variance

Inverse-
Expected
Difference

Best GA Unweighted

AF 7.516 8.308 9.048 8.563
AM 3.920 4.088 4.115 3.927
AS 7.977 6.051 8.935 5.109
MH 8.798 7.674 8.498 8.106
NT 6.045 6.183 8.139 5.454
BK 4.215 4.911 4.847 4.392
FS 6.119 6.235 6.476 6.379
JP 5.322 4.398 5.398 5.687
KM 3.862 3.963 5.179 4.066
TM 5.626 6.237 6.798 6.215
Average 5.940 5.805 6.743 5.790

Table 8.1: The verifier was tested using four different weighting methods. In each 
case, the d! is shown for each speaker. Only the GA-derived weights offer significant 
performance improvement.

The d' rating is improved by inverse-variance weighting for only 3 speakers 
(compared to the unweighted results). Perhaps this is not surprising since cepstral 
coefficients which vary widely over an utterance may actually vary slowly from 
frame to frame: the variance would not then be a good indicator of the significance 
of the dimensions of speaker space. The inverse-expected-difference weighting 
scheme does slightly better as it improves the separation for 5 speakers; the 
average d' rating is marginally lower but the differences are not statistically 
significant.

In contrast, 9 of the 10 speakers benefit from the GA-derived weights; the only 
speaker who does not is JP, for whom none of the weighting schemes improve the 
speaker separation. At the other extreme, AS benefits markedly from any kind of 
weighting. The GA-derived weights significantly out-performed the other three 
methods (tested using the paired t-test), with an average d' of 6.743, a gain of 
nearly 14% on the next-best method: the inverse-variance.

8.1.5 GA versus random optimisation

To find out if the reason for the success of the GA was the random influence, 
a program was written which simulated the GA without any of the standard
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Speaker
Best
GA

Best
random

AF 9.048 9.548
AM 4.115 4.848
AS 8.935 9.129
MH 8.498 10.472
NT 8.139 8.737
BK 4.847 5.440
FS 6.476 7.577
JP 5.398 6.188
KM 5.179 4.354
TM 6.798 7.540
Average 6.743 7.383

Table 8.2: d! of score distributions for each speaker, comparing the GA-produced 
weights with random weights.

operators; this is equivalent to generating each population completely at random, 
with no regard for previous generations and fitness levels etc. The program was 
run for each subject in the database, producing 50 populations of 32 randomly- 
generated weighting vectors; again a record was kept of the best vectors for each 
subject, and the average fitness of each generation. Table 8.2 compares the best 
vectors for each speaker, as found by the GA and the random program.

From Tables 8.1 and 8.2, it is apparent that the randomly-chosen weights 
actually give greater separation between the average speaker and impostors than 
weights selected by any other method. This is quite surprising in itself; but also 
it raises questions about the mechanisms in the GA for converging on optimal 
solutions. Perhaps the GA found good vectors solely because of the randomness 
of the search? One way to test this is to examine the evolution with time 
(‘generation’) of average population fitness for both the GA and the random 
program. Figure 8.4 plots these quantities for a single speaker, for a cycle of 
50 generations.

Figure 8.4 shows that, for this speaker, average population fitness (measured 
using the F  function) follows a slightly upward trend, whereas the average fitness 
of each randomly-generated population remains at a fairly steady level. This 
pattern is typical of all the speakers in the small database, but for this speaker in
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Figure 8.4: Fitness (average F rating of the population at each generation) for both 
the GA and the random program, for speaker KM.

particular, the upward trend is pronounced7. To some extent, this result restores 
faith in the GA: it finds collections of good vectors at the expense of finding 
the single best-performing vector. However, for a banking application where 
fast training procedures would be essential, this rate of convergence may not be 
acceptable.

However, the slow convergence of the GA may well be due to the deliberately 
simple configuration. The concatenation of binary-encoded weights makes 
detection of successful schemata (similarity templates) difficult because at certain 
points in the chromosome, i.e. at weight boundaries, the adjacency of bits is 
meaningless. (For instance, the least significant bit of one weight is unlikely 
to act in conjunction with the most significant bit of a neighbouring weight.) 
Conversely, unless the crossover point is between weight boundaries, there is a 
risk that the disruption will cause the loss of good schemata rather than lead to 
better ones. Perhaps the use of position-constrained multi-point crossover would 
have helped (De Jong and Spears 1990). In any case, there seemed to be little 
purpose in experimenting further with the GA configuration when the random 
weights generation performed so well.

8.2 E x te n s iv e  t e s t s

Although the random vectors gave the best results, obtaining the weights for any 
given speaker entailed using the other speakers as impostors during training.

7An extra experiment was conducted for this speaker where the GA was left to run for 
200 generations; the average fitness continued to climb, finishing at about F  =  0.480.
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In the ATM application it would be impossible to obtain voice samples of 
every impostor but training with some standard fixed-size database would be 
feasible. Such a database would also be useful for determining each individual’s 
accept/reject threshold. By adopting the ranked-impostor threshold method 
(described in Chapter 4), a small subset of the database comprising potentially 
close impostors could be used to develop an optimised weighting vector for a 
speaker enrolling onto the system.

To test that such weights would not be too specific to the training group 
i.e. they would not increase the likelihood of accepting ‘unseen’ impostors, 
an experiment was conducted using the large database with speaker-specific, 
randomly-chosen vectors. The experiment is an extension to that carried out in 
Chapter 7 using the Sir Winston Churchill recordings and Bernasconi templates 
(the best-performing single-template method). Using the ranked impostor listings 
from that experiment, each speaker’s closest five impostors were identified and 
their utterances were collected to form the impostor test-set for that speaker.

Following the findings of Section 8.1.5, the weighting vectors were chosen 
using a simple random search procedure, as follows. Each of the 12 weights was 
generated as a random number between 0 and 15. Incorporating this weighting 
vector into the DTW stage, the F  rating was assessed based on the scores of the 
genuine speaker’s 15 self-tests and the 75 (5 x 15) scores of their own impostor test- 
set. The best vector found after 50 repetitions was then used to obtain new scores 
for the genuine speaker and the entire impostor set. (Trial and error suggested 
that 50 repetitions were sufficient to find good vectors, although obviously there 
is no guarantee that they are even near-optimal or indeed that any of them would 
improve on the unweighted verifier’s performance.) Based on these scores, new F  
and d! ratings were calculated for the genuine speaker and a new ranked impostor 
file was also generated. Thresholds derived from this file were applied to the new 
test scores and error rates for the weighted verifier were recorded. The entire 
procedure was performed for each of the 214 speakers in the database.

8.2.1 Results

To demonstrate the effect of incorporating weighting vectors, the results presented 
here are analogous to those in Section 7.3.2. Figure 8.5 shows the error-rate 
interaction as the accept/reject threshold is varied. The shape of the traces is
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similar to those in Figure 7.7 but there are some differences. The EER (at 2%) 
is substantially lower than the unweighted version (at 4.5%). The FA rate only 
approaches 0% when I t =  —40, in contrast to the unweighted case; conversely, the 
FR rate quickly falls below 1% as the threshold is increased but the unweighted 
verifier never reaches this level.

Figure 8.5: When weighting vectors are incorporated into the DTW stage of the verifier, 
error rates are lower than the corresponding unweighted verifier. Here, the EER is 
reduced to 2% from 4.4% in the unweighted case.

Over the whole database, the d! ratings are significantly higher (> 99% 
confidence, using the z-test) with the use of weighting vectors. This is illustrated 
by Figure 8.6 which shows the distribution of d! ratings for both the weighted 
and the unweighted verifier. The use of weights has boosted many of the poorer 
ratings, resulting in a higher mean (6.4 from 5.2) although the higher results 
are largely unchanged. This is confirmed by an examination of the results for 
all speakers, ranked by either the F  or d! ratings. The top of the weighted and 
unweighted listings are substantially the same, apart from a slightly different 
ordering of the ‘best’ speakers. In contrast, most of the ‘worst’ speakers (in the 
unweighted case) have such markedly improved ratings (after weighting) that 
they no longer occupy the bottom of the list; the speakers who have taken their 
places also have improved results but to a lesser extent.
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Figure 8.6: The distribution of d! for all speakers in the test set for both the unweighted, 
and the weighted verifier. The use of weights changes the distribution from skewed to 
normal, with improved results across the entire test set, especially for the poorest- 
performing speakers.

This agrees with the error-rate analysis in that the main gains appear to be in 
reducing the incidence of false rejection; the ‘worst’ cases without weighting were 
those where the genuine distribution exhibited one or two extreme outliers but 
was otherwise compact. Weighting tends to produce tighter clustering of the self­
test scores, thus reducing the FR rate and improving d! and F: the majority of 
speakers now have F  ratings exceeding 0.5 which indicates complete separation.

For comparison with Section 7.3.5, the results of applying a 3-tries strategy 
using both the weighted and the unweighted verifier are shown in Table 8.3. 
In this scheme, each speaker can have 3 verification attempts before rejection, 
so only those speakers with 3 or more scores above their own threshold are 
at risk. The thresholds are generated using the ranked impostor method such 
that the average speaker has equal FA and FR rates (as shown in Figure 8.5). 
Incorporating the weights allows 207 speakers to be classified as ‘safe’, 8 more 
than the unweighted case. Only 4 speakers have more than a 1% chance of false 
rejection, i.e. P r r  > 0.01.

The false rejection rate (averaged across the entire test-set) using the 3-tries 
scheme can be calculated using the data from the Table 8.3 as 0.29% for the 
weighted verifier and 0.14% for the unweighted verifier. This somewhat surprising 
result highlights the fact that for some speakers, the performance diminished with 
the introduction of the weighting vector. This is apparent from Table 8.3 which 
shows that two speakers have 10 self-test scores above their threshold. Inspection 
of the results for these subjects (speakers 250 and 284) reveals that none of
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nr Pfr
Verifier

Unweighted Weighted
0-2 0.000 199 207
3 0.002 8 -
4 0.009 4 3
5 0.022 1 1
6 0.044 1 1
7 0.077 - -
8 0.123 - -
9 0.185 1 -
10 0.264 - 2
11 0.363 - -
12 0.484 - -
13 0.629 - -
14 0.800 - -
15 1.000 - -

Table 8.3: The risk of false rejection PFR is calculated based on nr, the number of each 
speaker’s 15 self-test scores which exceed their own threshold. The number of speakers 
at risk is reduced to 7 when weighting vectors are used.

the 50 randomly-generated vectors performed better than the uniform weighting. 
(The F  and d! ratings using the best vector were lower than the unweighted 
case.) It is possible that allowing more ‘guesses’ would cause better vectors to be 
found but since only two speakers require it, 50 seems an appropriate default: a 
better strategy would be to use the results of the unweighted verifier as an initial 
reference against which the results with weights are compared.

Table 8.4 summarises the performance with and without weighting vectors.

Average
F d! EEE (%)

Unweighted 0.453 5.215 4.4
Weighted 0.539 6.359 2.0

Table 8.4: The verifier performance is superior using weighting vectors, as indicated by 
the higher average F and d! ratings and lower equal-error rate.
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8 .3  F u r th e r  a n a ly s is

To investigate the mechanism by which the results are improved, the score 
distributions for speaker 123 -  previously the worst speaker -  are shown in 
Figure 8.7 before and after weighting. In the unweighted case, two of the self-test 
scores for speaker 123 are extremely high (approximately 400) and cause ratings 
of F  = 0.05 and d! = 1.8, despite the other 13 acceptable scores. However, the 
use of the weighting vector apparently corrects the mismatch in these utterances 
and the genuine distribution becomes unified and completely separate from that 
of the impostors.

score

score

Figure 8.7: (a) Without weighting vectors, the results for speaker 123 are the worst in 
the test set: the two outlying scores over 400 cause very poor F and d! ratings, (b) 
The use of weights brings these scores back into the correct range and the genuine and 
impostor distributions become completely separate. (For clarity, the genuine scores are 
shown on a x20 scale.)

Listening to all 20 of speaker 123’s recordings revealed that 3 of the 5 which 
make up the template -  including the centroid, or dominant utterance -  have
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incorrectly-determined start points, leaving only Winston Churchill. (The reader 
should recall from Section 4.1.3 that (only) the initial / s /  of Sir Winston Churchill 
was sacrificed for the sake of uniformity from the automatic start-point detection 
routine.) It therefore seemed likely that the reference template did not include 
the ir but only Winston Churchill. Of the 15 self-test utterances, 2 were short 
and did not include the initial ir, but these were not the 2 problem utterances, 
both of which contained the full ir Winston Churchill without any extraneous 
material.

The DTW program was altered so that frame references and local distances 
along the warp-path were written to a file, and the self-tests for speaker 123 were 
repeated. It was found that the local distances for the two problem utterances 
were consistently higher than those of the other 13 utterances, at every stage 
of the warp-path: the poor (final) scores were not due to isolated periods of 
mismatch, such as might be caused by recording artifacts. It seemed likely that 
the problem utterances were being mismatched straight from the start of the 
warp, so the first few frames of these warp-paths were compared with those of 
the other utterances, as illustrated in Table 8.5.

From the table, the warp-paths for utterances 41 and 48 support the 
hypothesis that the reference template does not contain the ir of Sir because 
these utterances are matched to within one frame of the start of the template 
and still achieve a low score. The DTW procedure can compensate for the other 
utterances containing the full text by starting the warp ‘late’, i.e. matching the 
start of the reference template to frame 6, 7, 8 or 9 of the test utterance, in effect 
bypassing the ir. However, for the two problem utterances (103 and 121), the 
DTW routine has erroneously matched the start of the template with the start 
of the test utterance.

Perhaps this mismatch is not surprising. Most of the speakers in the database 
have some variety of Scottish accent and say Sir Winston Churchill as /sir wlnston 
tfArtfhil/. Since the initial /s /  is removed by the start-point detection routine, in 
the problem utterances the / i /  of ir is being matched with the / i /  of Winston in 
the reference template. After manually resegmenting the problem files to exclude 
all of the ir and then repeating the DTW comparisons with the template, the 
scores were drastically reduced (both to about 110) and were comparable to the 
rest of the genuine scores.
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Utterance Text Start of path Score
41 Winston Churchill 2, 3, 3, 5, 6 119
42 ir Winston Churchill 7, 9, 9, 11, 12 92
48 Winston Churchill 2, 3, 4, 6, 7 115
66 ir Winston Churchill 9, 10, 10, 12, 14 137
68 ir Winston Churchill 7, 9, 9, 11, 12 100
73 ir Winston Churchill 8, 10, 10, 12, 14 132
81 ir Winston Churchill 7, 8, 9, 10, 11 101
103 ir Winston Churchill 1, 2, 2, 3, 3 409
110 ir Winston Churchill 6, 7, 8, 9, 11 105
113 ir Winston Churchill 7, 9, 9, 10, 12 99
116 ir Winston Churchill 7, 9, 9, 10, 11 113
119 ir Winston Churchill 7, 9, 9, 10, 12 114
120 ir Winston Churchill 6, 7, 9, 10, 11 135
121 ir Winston Churchill 1, 2, 2, 3, 3 376
134 ir Winston Churchill 7, 8, 9, 10, 12 92

Table 8.5: Speaker 123’s self-tests. Utterances 103 and 121 produce scores which lie 
far outside the distribution of the others. The warp-paths of all the other full-text 
utterances begin a few frames ‘late’ -  i.e. not at frame 1 or 2 -  so that they match the 
reference template.

To understand how the weighting vector can accomplish this without reseg­
menting, consider the start of the DTW procedure in both the unweighted and 
the weighted case for utterance 103 by speaker 123, as illustrated in Table 8.6. 
(In the following discussion, (x,y) denotes the point in the warp-grid represen­
ting the distance between frame x of the reference template and frame y of the 
test utterance.) In the unweighted case, the first frame of the reference tem­
plate is matched against the first frame of the test utterance, as indicated by 
the lowest local distance of the 9 frames searched. Since DTW is a form of dy­
namic programming, the fact that (1,1) has the lowest local distance does not 
force the finally-chosen warp-path to start there. However, to a large extent, it 
does determine which areas of the grid will be searched. In contrast, by multi­
plying the local differences by the appropriate weighting vector, test frame 7 has 
a marginally lower distance and is chosen as the start of the first estimate of the 
warp-path. Further examination of the warp grids revealed that starting at (1,7) 
offers more scope to find better matches throughout the grid, and therefore achie­
ves a lower final score, more in keeping with the other non-problem utterances.
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In effect, starting the warp at (1,7) allows the matching procedure to ignore the 
extra material (the ir) at the start of the test utterance. (Actually, it is the lack 
of material at the start of the reference template which is being ignored.)

Test
frame

Local distance
unweighted weighted

9 22.8 180.4
8 12.2 82.0
7 9.1 56.8*
6 14.7 94.7
5 20.4 181.4
4 14.8 137.1
3 8.2 86.9
2 21.3 182.3
1 6.5* 63.7

Table 8.6: The first column of the weighted and unweighted DTW warp grids for 
utterance 103 by speaker 123. Use of the weights makes reference frame 1 slightly 
‘closer’ to test frame 7 than test frame 1. (The star indicates the lowest local distance 
in each column.) Starting the warp from (1,7) compensates for the material missing 
from the start of the reference template.

A similar correction may be obtained by modifying the DTW procedure to be 
more tolerant of timing mismatches. For each frame of the reference template, a 
group of frames in the test utterance is searched for the best match. In terms of 
the warp-grid, the centre of this vertical search range is the test frame which best 
matched the previous reference frame. By setting the search range to ±8 instead 
of ±4, the routine manages to quickly find the correct portion of the grid through 
which to ‘travel’, as shown in Table 8.7. The centre of the first search range is 
the point (1,9) and the lowest distance of the first column is found to be (1,1), 
as before. This dictates that the centre of the search range for the next column 
is (2,1) but only the points above this are examined, since there are no points 
below. Because the search range is now 8 instead of 4, the minimum at (2,9) is 
found. The search range in the next column is therefore centred on (3,9), which 
is on a discernible path of low distances through the grid.

The grid also illustrates the maximum local search range property of the local 
minimum method of DTW used here. The search range in column 4 is centred 
on the point (4,10) but frames 14-18 remain with their default (unmeasured)
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Test Reference frames
frame 1 2 3 4 5

18 oo oo oo oo oo
17 28 oo oo oo oo
16 46 oo oo oo oo
15 32 oo oo oo 65
14 27 oo oo oo 65
13 43 oo oo 59 46
12 33 oo oo 55 23
11 30 oo 50 33

*CO

10 33 oo 36 21* 36
9 23 13* 16* 47 78
8 12 15 29 96 110
7 9 38 66 86 100
6 15 45 65 73 92
5 20 34 47 55 81
4 15 38 50 66 96
3 8 23 40 71 85
2 21 32 56 00 oo
1 6* 18 oo oo oo

Table 8.7: By revealing more of the warp-grid (calculating more of the local distances), 
the DTW routine is able to find the correct path without using weights. The minimum 
distance in each column is denoted by a star; in column 2, the extra search range allows 
the routine to recover the correct path after the mismatch in column 1.

distances of oo. It is not worthwhile calculating the local distances at these points 
because their accumulated distances would have to be assessed along paths which 
include points which still have their (default) infinite values. This is due to the 
slope constraints imposed upon the warp-path (see Section 4.2) which dictate that 
a path to point (4,14), for instance, would have to pass through (3,12), (3,13) 
or (3,14). The accumulated distance at each of these points is also unknown 
because they, in turn, have infinite-valued predecessors. In such cases, working 
backward through the grid would add many more calculations, so points such 
as (4,14) remain un-assessed.

In this section, three methods of fixing the problem utterances for speaker 123 
have been found: manually resegmenting the file, using a weighting vector, and 
extending the DTW search range. In each case, the main effect seems to be 
a correction of the mismatch with the first frame of the reference template. If
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this is the only effect, using arithmetic alone, it should be possible to calculate 
a weighting vector which would separate maximally the two contending frames 
of the test utterance. As an example, consider ti and £7, vectors representing 
respectively the first and seventh frames of utterance 103 by speaker 123. The 
differences between the coefficients of these test vectors and the corresponding 
coefficients in the reference vector are shown in Table 8 .8 . Summing the columns 
for each vector a = (ti — r i )2 and b = (t7 — ri)2 gives, respectively, the local 
distances for points (1 ,1 ) and (1,7) in Table 8 .6.

vector
dimension

1 2 3 4 5 6 7 8 9 10 1 1 12

a = (t1 -  n f 0.3 0.1 0.5 0.1 2.9 0.2 0.0 0.6 0.0 0.1 1.6 0.0

r-H11>II 0.0 0.0 0.4 1 .2 0.3 0.8 0.2 0.1 0.2 4.3 0.8 0.8
a — b 0.3 0.1 0.1 -1 . 1 2.7 -0.6 -0.2 0.5 -0.2 -4.2 0.8 -0.8

Table 8.8: To force the warp-path to begin at (1,7) instead of (1,1), weights could 
be derived which maximised the distance between the first test frame (ti) and the 
first reference frame (ri). Also, the distance between t7 and 7~i should be minimised. 
Both these aims could be achieved by emphasising dimension 5 and de-emphasising 
dimension 10.

Vectors a and b differ substantially in only 2 dimensions: in dimension 5, t\ 
is further than t7 from 7*1 , but the reverse is true in dimension 10. Clearly, to 
make the DTW procedure favour t7 over £1} dimension 5 should be emphasised 
(weighted heavily) and dimension 10 should be de-emphasised. The differences 
in the other dimensions are comparatively small, so weighting them would have 
little effect. Row 3 of Table 8.8 therefore represents a set of ideal weights to 
distinguish t7 from t\. Raising the level of these weights to remove negative 
values, expanding the range to [0,15] and rounding to integers gives the vector 
^103 =  (93 9) 9, 6,14,7,8,10,8, 0,11,7). A similar process for the other problem 
utterance (121) produced the vector w\2\ = (7,6,10,2,2,0,6,6,6,1,15,10) and 
both of these arithmetically derived vectors are plotted with the randomly 
selected weights, wrand in Figure 8.8.

Neither of the weighting vectors produced by optimising for a single utterance 
is markedly more similar than the other to the randomly selected weighting vector, 
which was effectively optimised for all 15 utterances. There are differences and 
similarities amongst all three vectors but there seems to be a general agreement
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Figure 8 .8 : Three weighting vectors for speaker 123. Vectors W i03 and w 12 1 have been 
derived arithmetically, to force the correct starting point of the warp path for the 
problem utterances, 103 and 121. The directed random search scheme was used to 
generate u;rana-

about dimensions 4, 9, 10 and 11. The actual performance of the verifier using 
these vectors was assessed, and the results are shown in Table 8.9.

weights F d!
^ r a n d 0.611 6 .1 10

™ 103 0.549 5.695
Wl21 0.093 2.144
unweighted 0.050 1.806

Table 8.9: Without weights, the verifier performs poorly for speaker 123. Weights 
optimised for individual problem utterances, ^ 10 3  and 10 12 1 , offer very different 
performances. The best discrimination is obtained with u;rand, found by the directed 
random search.

Although the verifier performance using io103 is almost as good as using 
u;rand, Wl21 °ffers little improvement over the unweighted verifier. Examination 
of individual scores and warp-paths shows that although the starting point for 
utterance 121 is correct, utterances 73 and 81 start at the wrong point and 
accumulate very large scores. It seems therefore that choosing weights to fix 
specific mismatches between the template and individual utterances cannot be 
relied upon to improve performance generally. The random search routine uses all 
of the self-test utterances to find weights which fix problems without introducing 
others, by directing the search using the F  measure, which also checks for reduced 
impostor scores. This then raises the question of how weights generated in this
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manner would affect utterances (by the genuine speaker) which have not been 
included in the optimisation.

A similar analysis conducted for the second-worst speaker (098) found that 
a single utterance (66) was responsible for the very poor F  and d! ratings when 
no weights were used. With randomly selected weights this outlier was restored 
to the body of the genuine distribution by encouraging the warp-path to start 
at frame 1 instead of frame 8. With weights derived arithmetically to force 
this starting point, the score for one of the other utterances (73) was increased, 
creating another outlier. Although the F  and d! ratings were much improved 
over the unweighted case, complete separation of the genuine and impostor 
distributions was not achieved, as it had been using randomly selected weights.

Examination of the resulting warp-path showed that it had not been corrupted 
-  it started at the correct point -  but that 2 points in the path contained very 
large local distances. Indeed, these 2 points contributed to more than a third 
of the score (distances accumulated over the path). These large distances were 
due mainly to dimensions 6 and 11, both of which were weighted heavily using 
the arithmetically derived vector; the randomly selected vector also emphasises 
dimension 11 but is zero in dimension 6 and therefore prevents the distance from 
being large. This is more evidence that a weighting vector derived for a single 
utterance in isolation is not guaranteed to work for other utterances.

Interestingly, when the wide search-range version of the DTW procedure was 
applied (without weights) to speaker 098’s utterances, 3 outlying scores were 
produced. In each case, the starting point for the warp-path was wrong although 
the weights made the correct point the most attractive. However, as the DTW 
algorithm effectively searches backwards as well as forwards, it is possible for the 
path to pass through points which are not the lowest local distances. Apparently, 
a wider search range offers opportunities for the warp-path not only to correct 
itself, but also to stray.

Generally, the use of weights offers most improvement (of separation statistics) 
for ‘poor’ speakers but there are also marginal improvements for many of the 
speakers who were already completely (or mostly) separate from the impostors. 
This is at odds with the hypothesis that weights only allow errors to be fixed. 
One of the best speakers is 288, whose unweighted d ' and F  ratings were 9.9 
and 0.568 respectively. These both rose by about 7% with the use of randomly
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selected weights. With or without weights, all of the warp-paths start from the 
correct point. (The reference template was Winston Churchill and all the self-test 
utterances were ir Winston Churchill.)

score

score

Figure 8.9: Does the use of weights really improve the score distributions for
speaker 288?

Examination of the score distributions before and after weighting (Figure 8.9) 
actually suggests that perhaps the weights have not improved the separation, in 
terms of assessing the likelihood of error. The genuine speaker’s distribution is 
skewed right and the relative gap between the two distributions has decreased. 
Perhaps the capability of d! and F  to express separation gets saturated at some 
point, so that minor changes to already distinct distributions are not correctly 
reflected in the ratings. Further selection of weights directed by these ratings 
may then be unreliable.

Doubt therefore remains over the usefulness of weighting vectors for speakers 
who are already distinct from their impostors. However, the cases of speaker 123 
and 098 suggest that weighting vectors help the DTW procedure to match
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correctly similar phonemes at the start of the test and reference patterns, and 
maybe this also happens all along the warp-path. The effects may be less visible 
-  a lower local distance at one point, perhaps -  but equally valid for non-problem 
utterances.

8 .4  C o n c lu s io n s

Initial experiments with the small database found little performance gain when 
incorporating traditional weighting functions into the DTW distance measure. In 
contrast, when the weights were integer-valued and chosen by a genetic algorithm, 
the gains were significant. A fairer comparison might have included the Fisher 
linear discriminant which, like the GA, optimises on the training set: both 
the inverse-variance and the inverse-expected-difference weighting functions treat 
each dimension in isolation, thus limiting their influence. However, it was found 
that the GA’s success could be at least matched by a simple random search 
routine and rather than developing the admittedly simple GA configuration, 
random selection was used to find weighting vectors for each speaker in the large 
database.

The experiments with the large database were exactly the same as those in 
Chapter 7 using Bernasconi-style templates, so it was easy to study the effect 
of using the weighting vectors. Significant improvements were indicated by the 
generally higher F  and d! ratings and the lower equal average-error rate; the main 
beneficiaries seemed to be those speakers with the poorest unweighted results. 
Close examination of two cases revealed that the weighting vectors were correcting 
for inconsistent detection of the starting points of the utterances. This seems to 
be achieved by forcing the DTW algorithm to make the correct match between 
a frame in the reference template and one of two confusible frames in the test 
utterance. This process is easiest to detect at the start of a warp-path but may 
be active at every step, thus allowing improvement in cases where the match 
is already good. This would help to explain the results of the small database 
test because the utterances were edited manually so start-point detection errors 
should be small.

This simple, practical explanation should not make the use of such weighting 
vectors less attractive; quite the opposite actually, since their influence can be
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explained rationally to potential customers (e.g. financial institutions) without 
reference to the somewhat nebulous realms of multi-dimensional speaker space. 
There are two main implications for a practical system: storage space and training 
time. The identity token for each speaker would need to include the weighting 
vector as well as the reference template and acceptance thresholds but the (likely) 
implementation on a ‘smart card’ would allow this. After enrollment, the weights 
would need to be generated using a small subset of some database but this would 
be required to determine the speaker-specific thresholds anyway.

The experiments with the large database were conducted with the intention 
of discovering whether the weights were too specific to the impostors used in the 
optimisation process. However, the converse was completely overlooked; i.e. since 
the weights were based on an optimal clustering of all of the self-tests, they may 
not apply to other utterances by the true speaker. Again, the paucity of data 
for each speaker makes it hard to test this aspect but it certainly merits future 
examination.

Notwithstanding, it has been shown to be feasible and worthwhile to generate 
a weighting vector through a random selection process for every newly-enrolled 
speaker to the system.
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O p t i m i s i n g  t h e  V e r i f i e r

Previous chapters have examined isolated modifications to the verifier configura­
tion with a view to improving performance. Chapter 6 showed that the amount 
of data to work with may be as important as utterance length, and that the sum­
mation of scores for individual words (e.g. the digits) could work well. Chapter 7 
indicated that performance gains could be registered by keeping the reference 
utterances as separate tokens and comparing each of them to the test token. Ho­
wever, for less complexity the Bernasconi composite template seems adequate and 
only marginally less effective. Chapter 8 demonstrated that a random selection 
procedure could find weighting vectors for each speaker which could compensate 
for start-point detection errors and make the self-test scores more consistent with 
no adverse effect on the impostor distribution. This chapter describes an attempt 
to combine these techniques in a practical implementation for an ATM network.

9 .1  W e ig h tin g  v e c to rs  a n d  d ig its

There is currently much interest in using the digits to form the verification phrase, 
especially if they are chosen randomly at every access attempt (Rosenberg et al 
1991, de Veth and Bourlard 1994). Fraudulent access then requires sophisticated 
recording/replay equipment, the opportunity to record the customer saying all 
(ten or so) digits; and the customer’s bank card.

The experiment in Section 6.3.2 demonstrated that a series of digits can be 
used in place of a single long utterance as the verification phrase. It was decided to 
follow (Jacobs and Setlur 1994) and emulate the current ATM security system of 
personal identification numbers by using 4-digit verification phrases. To discover 
an optimum level of performance for a practical implementation, an experiment

113
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was conducted using the best 4 digits, each with its own weighting vector, for 
each of the 214 speakers in the large database.

9.1.1 Finding the  best digits

As a result of the experiments described in Section 6.3.1, file was produced with 
a line for each speaker showing the 12 digits ranked according to d! rating (best 
first). A fragment of the file is shown in Figure 9.1.

001 SEVEN NOTHING FOUR TWO ZERO NINE FIVE ONE THREE SIX EIGHT OH
002 NOTHING FOUR SIX THREE EIGHT FIVE ZERO TWO SEVEN ONE NINE OH
003 NINE SEVEN THREE FIVE ONE SIX FOUR NOTHING ZERO OH TWO EIGHT

289 ZERO TWO FIVE EIGHT NINE SIX NOTHING SEVEN FOUR THREE OH ONE
290 NOTHING TWO NINE SIX ZERO FIVE EIGHT SEVEN THREE ONE OH FOUR

Figure 9.1: The first and last few lines from a file containing the relative performance 
of the digits for each speaker. For example, speaker 001’s best and worst digits are 
seven  and oh, respectively.

For each speaker, the best 4 digits were used to simulate a verification 
procedure which prompts the user for a sequence of words, spoken individually. 
For example, speaker 001’s best four digits are seven, nothing, four and two. 
Table 9.1 shows the ‘popularity’ of each of the digits for selection as one of each 
speaker’s best 4 digits. The most popular best digits are zero and six whilst oh 
appears in only seven of the sequences.

9.1.2 W eights for each digit

As well as using the best 4 digits, the scheme was further optimised through 
the use of weighting vectors, specific to each speaker and each digit. In each 
case, the vector chosen was the best of 50 random selections, using the process 
described in Section 8.1.5. As before, each speaker’s nearest 5 impostors were used 
with the F  measure to determine the best weighting vectors. Ranked impostor 
listings were not readily available for the digits so the listings for Sir Winston 
Churchill were used instead, making the assumption that the rankings would not 
change much for different utterances. This assumption may be unjustified but
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digit
Occurrence as

best digit one of 4 best digits
zero 33 105
six 33 101
nine 16 91
nothing 21 82
seven 19 82
live 17 77
two 20 75
eight 22 69
four 16 62
one 9 57
three 8 48
oh 0 7

Table 9.1: Each digit’s usefulness gauged by frequency of occurrence in the best 4-digit 
strings for each speaker. The digit zero  is joint first (along with s ix ) as a speaker’s best 
digit, and is included somewhere amongst the best 4 for almost half of the 214 speakers.

the findings of Section 8.2.1 suggested that the weights mainly affect the genuine 
scores and the impostor scores merely act as an £anti-target’ for the optimisation 
process. In other words, the weights produce a tight clustering of self-test scores, 
whilst preventing any impostor scores from approaching the genuine distribution.

9 .2  M e th o d

Due to problems with some utterances failing to survive the automatic end-point 
detection routine, data from only 211 speakers were used. There are 10 utterances 
for each of the 4 digits in each speaker’s best sequence. The first 5 of these are used 
to form a reference template using the Bernasconi method, since the experiments 
of Chapter 7 suggested that it performed well and simplified the comparison 
process. All 10 utterances of each digit are used as test tokens, including the 5 
used to make the template. Thus, it may be expected that 5 of the genuine 
test scores for each digit are very low and the other 5 are somewhat higher. 
This causes an artificially low d! and so these absolute results are not directly 
comparable to results elsewhere in this report. (However, since the same process 
is applied to all speakers, it should be possible to draw conclusions about any
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trends which may appear.) Jackknifing might have solved this problem but time 
did not permit the further investigation of the technique needed to address the 
reservations expressed in Chapter 6.

The d! rating is calculated in two stages. First, the genuine speaker’s score 
distribution is generated, by comparing each test utterance with the template for 
that digit. The first score for the first digit is added to the first score for the second 
digit and so on, until there are 10 4-digit score-sums, as shown in Table 9.2. The 
process is repeated for all (210) impostors, producing 210 x 10 =  2110 impostor 
scores. A record is kept of the d! rating for each length of sequence, i.e. 1, 2, 
3 and 4 digits.

utterance seven nothing four two sum
1 188.1 229.6 148.3 174.5 740.4
2 170.6 209.1 120.2 229.1 729.1
3 171.0 181.1 113.4 164.7 630.1
4 126.1 246.1 123.9 316.0 812.1
5 116.5 517.3 144.0 118.0 895.8
6 232.4 240.8 211.1 147.0 831.4
7 280.1 415.8 151.9 154.8 1002.7
8 256.4 577.2 377.4 180.4 1391.3
9 303.1 512.3 207.7 162.9 1186.1
10 276.8 434.3 818.4 209.1 1738.7
mean 212.1 356.4 241.6 185.7 995.8
std. dev. 66.7 150.0 217.2 55.4 347.3

Table 9.2: The individual scores for speaker 001 ’s best four digits, and the sums for 
each of the 10 seven, nothing, four, two ‘sequences’.

For each speaker, a different weighting vector is used for each digit. Since the 
weighting vector multiplies the distances between frames, the score distributions 
for each digit are not guaranteed to lie within similar ranges, as shown in 
Figure 9.2. Normalising each set of scores by the magnitude of the weighting 
vector would be possible but is unnecessary because the effect is the same for 
both genuine and impostor scores and it is the scores, not the distributions, 
which are added together.
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Figure 9.2: The score distributions for each of speaker 001’s best 4 digits. A separate 
weighting vector is used with each digit, causing the absolute range of scores to differ 
from digit to digit.

9 .3  R e su lts

The d! was calculated for each speaker after each digit was added to the series. 
The distribution of d' ratings across the population at each stage of the series of 
digits is shown in Figure 9.3 by a vertical arrangement of diamonds. The dark 
areas are caused by many diamonds overlapping. The means of the distributions 
for each length of ‘utterance’ have been connected by lines, and there is a gradual 
increase as more digits are used.

As in Chapter 6, adding extra digits produces diminishing improvements 
in speaker separation, approaching a maximum mean d' of approximately 6.5. 
However, the statistical significance of these improvements also diminishes: 
performance with 4 digits is certainly better than a single digit but not definitely 
better than 3 digits.

Inspection of the d' sequences for individual speakers (Figure 9.4 shows six 
examples) shows a confusing picture: only 73 of the 211 (approximately one in
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Figure 9.3: The distribution of d! ratings across the population is shown as a vertical 
pattern at each stage of a speaker-specific sequence of words. Speaker- and word- 
specific weights were used: lines connecting the population means suggest that using 
more words improves the verifier performance but with diminishing returns.

three) rises montonically. For some speakers, in fact most, the d! using only a 
single digit is no worse than using four. This effect was apparent in the results of 
Section 6.3.2 but was attributed to the speaker-dependent variety of usefulness 
of the digits. It was hoped that choosing the best four digits would remove it but 
there are several factors at work here.

• For any given speaker, there is no guarantee that the weights found for each 
digit will produce the same degree of improvement. This is partly due to 
the optimisation process being based on random selection but even if every 
single vector was tried, parity of performance across the digits could not be 
guaranteed. So, for some speakers, the weights found for the second, third 
or fourth digits in their sequence cannot boost the performance of those 
digits to a level comparable to that of their best digit.

• A bad score at any point in the sequence ‘spoils’ all results later, but not 
earlier, in the sequence. This is because the new scores at each stage are 
added to the aggregate scores of the previous stages. Since each speaker’s 
digit sequence was chosen with the highest ranking digit first, the usefulness 
of each digit should decrease as the sequence lengthens. Thus, it becomes 
more unlikely that new scores could compensate for earlier poor scores.

• As noted in Section 8.2.1, occasionally the random routine is unable to 
find a better weighting vector than (1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1), even with 
50 attempts. It is therefore to be expected that the ordering of the best
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Figure 9.4: Six examples of d! sequences. In terms of final d! (for a 4-digit ‘utterance’), 
speakers 191 and 276 have the highest, speakers 013 and 010 have the lowest, 
and speakers 280 and 162 are intermediate. Only the top two speakers display a 
monotonically increasing dl.

digits for a speaker would be altered by the optimisations, and the spoiling 
effect (described above) would act against monotonicity.

• The scores are added together consistently, so that if the digit sequence is 
one six oh nine, then the score for the first one utterance is added to the 
score for the first six utterance, and so on. However, there is no relationship 
between these two utterances: although they are the first of each digit, 
their contexts (preceding and following words) in the original recording are 
probably completely different. Consequently, for a given speaker, the first 
one score may be lower than other one scores but when added to the first six
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score (which may be higher than average) the sum is neither high nor low. 
When two groups of numbers are added together, the ordering of each group 
cannot affect the mean of the sums but can affect the standard deviation, 
as shown with mock data in Table 9.3. Since these are the two factors used 
in calculating the d! rating (see Chapter 5), the ordering of the utterances 
for each digit -  currently arbitrary -  could affect the separation statistics 
of the sums.

set V a
A  =  (1,8) 4.5 3.5
B  = ( 9,6) 7.5 1.5
C = (10,14) 12 2
C' =  (7,17) 12 5

Table 9.3: Mock data-sets C = (A1 -1- B1,A 2 + B2) and C' = (Ai + B2,A 2 + BE) have 
the same mean fi, but different standard deviations, a.

The basis of this experiment is that a continuous text can be replaced 
effectively by a sequence of short words. The average d! rating for 4 digits with 
weighting vectors is 6.5, which is similar to the results using weights with Sir 
Winston Churchill, summarised in Table 8.4. However, as mentioned before, 
the d' ratings in this experiment are artificially high, so the performance here is 
probably not as good.

However, another comparison is possible: the previous results suggested 
that some speakers may be more identifiable than others. This was a possible 
explanation for the wide variation of performance across the population. If this 
is true regardless of the text used, then the speaker rankings for this experiment 
should be similar to previous rankings. Figure 9.5 compares the two rankings 
by plotting one along each axis. (The ranking for this experiment is based on 
the final d! rating for a 4-digit sequence.) If they were the same, or even similar, 
a line at 45° to both axes would be visible. This is not the case, indeed, quite 
the opposite: there is no correlation at all between the two rankings. Perhaps 
this is due to a text-dependent component of the scores for individual speakers: 
for some, certain sounds work well, because they highlight distinctive features of 
those speakers.
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Figure 9.5: Comparing speaker rankings for different texts.
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9 .4  C o n c lu s io n

The average d' ratings of this experiment cannot be compared readily with 
previous experiments but the upward trend and shape of the curve confirm the 
earlier findings that individual scores may be combined for improved performance, 
up to a point. This experiment suggests that, on average, the useful number of 
words is 3 or 4, when weighting vectors are used. However, the non-monotonicity 
of the ratings in many cases suggests that a decision made before all 4 words 
have been spoken may give better performance. In practice, this would mean 
pre-specifying some threshold of separation (in terms of F  or d', perhaps) which, 
if achieved, would ‘prematurely’ verify the identity.

Since the major effect of the weighting vectors seems to be finding good 
starting points for the DTW warp path, application to the digits is suitable: 
short utterances have a high risk of mistaken start- and end-points. Also, 
the consequences are probably worse than for longer words because a greater 
proportion of the word is affected.

In bringing together the insights gained from the previous chapters, this



C H A P T E R  9. O P T IM IS IN G  T H E  V E R IF IE R 122

experiment has demonstrated an improved verifier configuration which could be 
applied to customer-operated banking, but further investigation using more self­
test data is necessary.
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C o n c l u s i o n

The aim of this project was to investigate speaker verification with a view to 
incorporating the technology into an unattended banking service, such as an 
automated teller machine. The purpose was not necessarily to develop a viable 
system but to discover the mechanism by which voices can be matched, and to 
instate reliable methods of assessment for any system. Some progress has been 
made toward the former and the latter has been achieved by the collection of two 
speech databases and the definition of two methods of assessment which convey 
more useful information than the often-quoted equal-error rate.

10.1 E x p e r im e n ta l  re s u lts

Following a survey of published reports and commercially-available products, a 
basic text-dependent, template-matching (dynamic time-warping) verifier has 
been implemented in software. Subsequent to the implementation, a trend 
appeared in the literature towards using hidden Markov models (Rosenberg et 
al 1991) or artificial neural networks (Oglesby and Mason 1991) but recently the 
older approaches, such as vector quantisation (Fakotakis 1992) and DTW (Yu, 
Mason & Oglesby 1995) have been used successfully. Besides, the verifier chosen 
allowed several different aspects of the configuration to be modified, and the 
effects noted. A series of experiments have been conducted to try to determine 
how such a system could best be applied to an ATM. The main findings are as 
follows.

• Although differences between speakers may be observed and measured at 
the frame level, the reliability of the discrimination process increases with

123
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the addition of more data, up to a point. This does not necessarily mean 
that a long utterance must be used, but the discrimination power of short 
utterances may be combined to good effect. Thus, as Chapter 6 concluded, 
several individual digits may be used as the verification text. Such a scheme 
is appropriate for the ATM context and has also been adopted in studies of 
other verification systems.

• The method of building a representative template from a few training 
utterances can affect the verification performance. However, this may have 
as much to do with the emphasis given to individual training utterances 
rather than the method itself. Combining the training utterances into a 
single composite template is the most attractive scheme in practice because 
storage capacity in any system is likely to be limited, although less so 
in a smart-card implementation. Also, the speed of the transaction is 
important and although keeping the tokens as separate entities allows a 
more powerful decision-making procedure, it probably wouldn’t justify the 
extra complexity -  and time.

• In calculating the difference between feature vectors, the use of weights to 
emphasise certain dimensions can improve the reliability of the verifier. A 
random selection process guided by the separation of genuine and impostor 
characteristics was used to find individual weighting vectors for each speaker 
and the improvement was almost universal. The reason is that the weighting 
vectors are optimised to influence the warp paths for the training group so 
that the self-test scores are tightly clustered. This seems to allow more 
freedom for the DTW process to find the best match for the initial frames 
and thereby correct for inconsistently determined start- and end-points. 
Endpoint detection which worked for a variety of noise conditions and 
speech strengths was found to be a very difficult problem and the ‘safety 
net’ provided by the weights increases reliability.

10.2 E n v isag e d  sc e n a r io s

Bringing together all of these findings leads to the following recommended 
scenarios for applying speaker verification to ATMs.
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10.2.1 Enrollment

An enrolling customer attends an initial recording session at the local branch of 
the bank. A specific room or booth would probably be required to minimise 
background noise. A continuous recording of randomly-ordered digits would 
be taken, prompted automatically, such that each digit is spoken 20 times. A 
computer within the branch would construct a reference template for each of 
the digits, possibly using some form of jackknifing to detect and discard atypical 
utterances.

The template for each digit would then be transmitted to a central computer 
holding similar material for perhaps 200 other speakers. The central computer 
would determine the closest impostors to the newly-enrolled customer (probably 
the same impostors could be used for each digit) and with this information, 
weighting vectors for each digit would be selected using the random routine. The 
ranked listings would be recalculated using the weights and the threshold would 
be determined as the average score of the nth impostor, according to the level of 
security required by the bank.

The collection of templates, thresholds and weighting vectors would then be 
encrypted and sent back over the network to the bank branch and written onto 
the customer’s own personal smart card which would probably be used for other 
services also. The whole process would take about 10 minutes.

10.2.2 Verification

On presenting the smart card to the ATM, the user would be visually prompted 
to speak a digit, selected at random by the machine. The utterance would be 
recorded and as it is matched to the corresponding template (extracted from the 
card), another digit would be prompted. The process would continue until 4 digits 
have been compared. The scores of the individual matches would be summed and 
compared with the sum of the individual thresholds (stored on the card). If the 
score exceeds the threshold, the user may be prompted to speaker further digits, 
depending on the bank’s view of an acceptable true-customer rejection rate.
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1 0 .3  F u tu re  w o rk

This project has raised questions as well as answered them:

• Why do the ranges of scores vary from speaker to speaker? Section 5.1.1 
illustrated that for any given speaker, there is no standard range for either 
the genuine scores or the impostor scores, but that the absolute ranges did 
not affect verifier performance. Genuine and impostor tests have one thing 
in common: the reference template. It would be interesting to alter the 
construction of the template for each speaker to examine the affect on the 
score ranges. Changing the utterances selected to make the template, or 
changing the length of the template are two possibilities.

• What role could jackknifing play in similar experiments? Figure 6.8 showed 
that the jackknife technique applied here produced a large distribution 
of self-test scores which was itself made from many smaller, individual 
distributions, which are not always similar. However, this may be due to 
the scheme using, effectively, single-token templates; an alternative scheme 
may give different results. For instance, it would be possible to take every 
unique combination of 5 tokens, make a template and record the self-test 
scores for each of the remaining 5 tokens.

Jackknifing might also be used as a tool for selecting tokens to contribute 
to a template. Tokens with outlying sub-distributions may be discarded to 
produce a homogeneous template; or, they may be included to produce a 
comprehensive template covering several aspects of a person’s voice.

• How would the results change if Furui’s template method was optimised? 
Section 7.1.1 described how templates made this way are defined, to a 
large extent, by the initial token used in the construction. Using the small 
database, it would be possible to designate, in turn, each of the 20 tokens 
as the initial template, and discover a ‘best’ template, perhaps defined as 
the one giving the lowest average self-test score. Using these templates, 
the Furui method might compare more favourably with the others. The 
findings could be checked by extending this approach to the Sir Winston 
Churchill experiments.
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• Why do the false acceptance and false rejection rates diverge rapidly on 
either side of the equal error-rate point? This is illustrated in Figure 7.6, 
for example. Such figures could be replotted using linear numerical scales 
to find out if this phenomenon is due entirely to the method of generating 
the thresholds. Sensitivity to poorly-estimated thresholds would be an 
important consideration in any practical system.

• How much do the speaker rankings vary from one template construction 
method to the next? Figure 7.5 shows that for some people, the verifier 
performance can be influenced strongly by the template method. However, 
Figure 7.10 shows that many of the verification errors are due to a small 
group of ‘likely’ impostors for a given individual genuine speaker. These two 
findings may be at odds with each other: are speaker rankings a function of 
the template method, or are some people are just more difficult to identify?

• How would performance vary with time? Collection of recordings from 
a set of subjects at regular intervals over several years could be used to 
test methods of keeping the reference templates up-to-date, and the rate of 
updating necessary to maintain performance could be checked.

• What effect do the weighting vectors have on ‘unseen’ utterances from the 
genuine speaker? Are they too specific to the training set? Is there a method 
for updating the weights in the same way as the reference template? Again, 
more recordings are needed.

• What is the best verification scenario in terms of the interface to the ATM? 
Using a telephone handset would allow prompting by voice, but would this 
be acceptable to customers? How many digits should be prompted? A 
sequential decision strategy might mean shorter verification times for many 
customers. Also, how many re-tries should be allowed after rejection? These 
issues would need to be examined in conjunction with public field trials.

More work on endpoint detection is also needed if a template-matching 
process is to be used, although this itself may indicate the unsuitability for this 
application. Further speaker verification experiments have already begun in this 
department using neural networks and testing with speakers who are available for 
re-recording (Finan, Sapeluk and Damper 1996). Whether the questions raised
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in this report can be answered in time for the inevitable widespread introduction 
of smart cards remains to be seen.



A p p e n d i x  A

R e s o u r c e s

For this project, two speech databases were collected and many analysis and 
display programs were written. This appendix describes their whereabouts and 
operation, to aid reproduction of the major experiments.

A . l  S m a ll d a ta b a s e

In C:\BERLIN\ on the machine labelled MC1213, there are sub-directories A, B, 
etc. These contain TNC files (20 for each speaker) named xxyz.TNC where xx 
are the initials of the speaker, y is the last letter in the utterance and z is the 
utterance number.

A .2 L arg e  d a ta b a s e

On the machine labelled MC1252, there are two installed hard drives, one desig­
nated C and another partitioned as D and E. Many of the analysis programs 
written for this project also make use of drive F, a ramdisk for storage of 
intermediate results.

In the root directory on drive D, there are sub-directories labelled Cxxx, where 
xxx is the reference number of a person. The numbers range from 001 to 300. 
Within each of these directories, there are IDF files corresponding to each of the 
140 words recorded for that speaker. Section A.4.1 describes the IDF format.
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A.2.1 Full tex t recordings

In D:\E_BACKUP\CUT\, there is an archived directory structure for each speaker, 
containing IDF and TNC files for all 20 utterances (Sir Winston Churchill). Also 
included are the impostor score and ranking files compared against each template 
(4 methods of construction) and statistics files for randomly-generated weighting 
vectors.

To perform the experiments, the TNC files for all speakers were copied to 
D:\E_BACKUP\TNCS\ as 7 archive files. (It was necessary to use several files 
because DOS allows a maximum of 1024 files in a directory.) Batch files to 
load them to the ramdisk are in the same directory, and in the directory above, 
the file BATS. ZIP contains more batch files to run various experiments.

A.2.2 Digits

All of the tests using digits were conducted after making the digits TNC database. 
There are 4 archive files in E:\DIGITS\ which accomplish these tasks.

BIGTEST. ZIP contains the following files.

• MASTER.BAT calls MULTIGCC.BAT once and MULTIJK.BAT 12 times.

• MULTIGCC.BAT calls GCC.BAT for each speaker. This gets IDF files from 
D: \Cxxx\ and cuts the leading silence off using EPD3. EXE. IDF2TMC. EXE is 
then called to convert the shortened speech files to cepstral coefficients.

• MULTIJK.BAT calls JK.BAT for each speaker, which produces from their 
10 utterances a jack-knifed score distribution, which is stored as RESULT. DAT 
in E:\DIGITS\0NE\001\, for example. A summary of RESULT.DAT is stored 
in DATSTAT. OUT, in the same directory.

In MAKEMEAN.ZIP, MULTIGM.BAT calls GM.BAT for every speaker. GM.BAT calls 
GMP. BAT for every digit, for the given speaker. GMP. BAT calls GET_MEAN. EXE which 
reads RESULT.DAT for the specified digit and speaker, and finds out which of the 
1260 jackknife templates produced scores closest to the distribution mean. The 
template is recreated and stored in E:\DIGITS\0NE\001\, for example.

DIGITZPS. ZIP contains batch files to create 5 archives called 1. ZIP,.. .,5. ZIP 
in each of the digit sub-directories in E:\DIGITS\. TESTDIGS.ZIP contains the
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following batch files, which can be used to perform unweighted tests for all 
speakers saying all the digits (Chapter 6). The results of these tests are stored in 
E:\DIGITS\STA\ as ALL.DP (a list of d! ratings for each speaker and each digit) 
and ONE. ZIP, etc. which contains distribution statistics for each speaker and digit.

• STARDIGS.BAT makes 6 directories on F, labelled REFS, TNC1-TNC5. Copies 
♦.ZIP from E:\DIGITS\TEMPLATE\ to F:\REFS.

• ALLLOOP. BAT calls MULTILP one, MULTILP two, etc.

• MULTILP.BAT unzips all the test TNCs for the given digit, e.g. l.Z IP  in 
E: \DIGITS\ONE\ to F : \TNC1, before calling LOOP. BAT for each speaker. The 
resultant statistics files are archived as ONE.ZIP etc., in E:\DIGITS\STA\.

• L00P.BAT extracts ONE.TNC from F:\REFS\001.ZIP and renames it to 
001R.TNC. Copies DATSTAT.OUT fromE:\DIGITS\0NE\001\ to 001SELF.DAT 
in the root directory of F, then executes FTEST 001. The results are archi­
ved as 001ZDAT.ZIP in D:\DIGITS\IMPDATS\ONE\ and temporary statistics 
are saved as F : \001 . STA etc.

In C:\TCPP\MALC\CONCAT\, MISCDIG.EXE is used to perform tests using con­
catenated digit scores. There are too many combinations of digit strings, speakers 
and bands of the jackknifed distributions to test exhaustively, so these are selected 
randomly. The program takes one argument, an integer which specifies how many 
thousands of iterations to perform. The program should be run from the ramdisk, 
and uses the RESULT.DAT files from E:\DIGITS\0NE\001\, for example. Also, im­
postor score archives, such as 001ZDAT.ZIP from D:\DIGITS\IMPDATS\ONE\, are 
used. Results are appended to the text file C:\MISCDIG.RES. Copies of this file 
can be found in E:\DIGITS\RES\.

Weighted digits
C9.EXE in C:\TCPP\MALC\C9\ reads LISTINGS.DPS in the same directory, to 
produce BESTDIGS.TXT, which contains the list of 12 digits, ranked by decreasing 
performance, for each speaker. This file may then be read by RAND0M2. EXE (in 
C:\TCPP\MALC\RAND0M2\) which extracts the first (best) 4 digits per speaker, 
and generates 50 random weighting vectors for each. Each vector for each 
digit is tested using the 5 impostors closest to the given speaker, taken from
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BERNASCO/IMPOSTOR. AVG which may be found in each speaker’s archive file 
(such as 001. ZIP) in D:\E_BACKUP\CUT\. Digit reference templates are archived 
in C:\TCPP\MALC\DIGREFS\DIGREFS.ZIP and test utterances are taken from 
E:\DIGITS\0NE\001\, for instance.

The results are stored as BESTDIGS.STA, which is a text file containing 
4 lines for each speaker. Each line has the speaker’s code, a digit name, 
the best weighting vector (expressed a string of 12 hexadecimal digits) and 
F  and d! ratings (assessed using the subset of impostors). WDIGITS.EXE 
in C:\TCPP\MALC\WDIGITS\ is used to assess the performance with all the 
impostors, using the concatenated scores scheme. The results are appended to 
C:\WDIGITS.RES.

A .3 U tili t ie s

The following executable files are stored in D:\EXES\.

• IDF2TNC converts IDF to TNC based on linear predictive coding.

• CATIDF concatenates 2 IDF files.

• TIMEDIT allows graphical display and editing of large TIM (Hypersignal) 
files. Sections are written as IDF files.

• FLIPDAT reverses a TIM or IDF file.

• DAT2TXT converts either TIM or IDF to text files.

• TNC2TXT converts TNC to a text file.

• REFC0N2 prompts for IDF files and makes a Furui reference template.

• REFC0N3 makes a Bernasconi template from 5 IDF files.

• REFC0N4 makes a Bernasconi template from 5 TNC files.

• WARP6 compares 2 TNC files using dynamic time-warping and displays the 
result graphically. Requires EGAVGA. BGI in the same directory.

• C0MPARE2 compares 2 TNC files but appends the result to a file called 
RESULT.DAT.
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A .4  In -h o u se  file fo rm a ts

Two file formats commonly used in this project have been established in this 
department. The IDF format is due to Turnbull (1991); the TNC format is 
original.

A.4.1 IDF form at

Each integer data file consists of a 16-byte header followed by n  2-byte signed 
integers, where n is the number of samples in the recording. The header format 
is shown in Table A.l. The first item is the number of 16-byte paragraphs 
that the file occupies, including the header itself. The next item represents the 
sampling frequency, f s, encoded as floor((l — 5 x 106) / / s), where floor(:r) returns 
the largest integer < x.

type bytes description
unsigned int 1,2 paragraphs

int 3 ,4 frequency
int 5, 6 scale
- 7-16 not used

Table A.l: Header format of integer data file (IDF)

A.4.2 TNC form at

Time-normalised cepstral coefficients are stored in TNC files, consisting of a 10- 
byte header followed by data. The first two bytes represent an integer n, which 
is the number of frames into which the original utterance was split for analysis. 
Next, two (4-byte) floating point numbers represent possible lower and upper 
thresholds which may be embedded with a reference template, thus allowing 
3 verification decisions: accept, reject or try again. (Currently, these thresholds 
are not used, and all TNC files have both thresholds set to zero.) Immediately 
following the header are the 12 coefficients (48 bytes) for each of the n frames.
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D T W  E Q U A T I O N S

Let r; and t j be p-dimensional vectors representing the ith reference frame and 
j th  test frame, respectively. (In this project, p = 12.) The distance <5̂  between 
them is defined as:

6a = - U J 2- (B.i)
k = 1

This is equivalent to the square of the Euclidean distance; the square root 
operation is omitted to reduce computation.

Dynamic time-warping is usually described in terms of an M  by N  grid (M  ref­
erence frames, N  test frames) of points (z, j) , each representing a distance ditj , 
defined as:

dij —
6ij Tmin(dj_i j, di—i j —2) — 0

(B.2)
$ij T  m in (d j_ ijj _ i ,  di—\ j —2) 1 — 1

where Hi is a check to ensure that a candidate path through the grid cannot 
make two consecutive horizontal transitions.

Hi =
1 min(dj_i)j, d{—i j —2) — di—ij
0 otherwise

(B.3)

The first step is to find the best match to T\ from the first 2e+ 1 frames of the test 
token. This search range is defined as c ±  e, where c is the centre point. In this 
project, e =  4 and ci, the centre of the first search range, is 5. At each iteration, 
the centre of the next search range, q+ 1 is chosen such that:

di min di ,•
( c i - e ) < j < ( c i + e )

(B.4)
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where dij is calculated according to equation B.2. Implemented as a computer 
program, the initial conditions:

and Ho = 0 ensure that the routine can start to search the grid. (MAXFLOAT 
is the compiler’s maximum floating-point number.) Each column is searched 
(incrementing i) until either % = M  or c = N. The overall distance, D , between 
the reference and test tokens is the distance accumulated at the final point in the 
path, normalised by dividing by the number of contributing local distances:

0
MAXFLOAT i ^ O

(B.5)

D  —  i .c A f in a l - (B.6)
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ABSTRACT

U tterance length  is  know n to b e an im portant factor in  text- 
independent speaker verification . H ere, w e  exam ine the effect 
o f length on speaker separation for text-dependent verification . 
W hen both test data and tem plates are continuous-w ord strings, 
separation increases w ith  length  w ith apparent saturation at 
about 2  seconds. S im ulating a  p o ssib le  practical scenario using  
continuous-w ord test data and tem plates form ed b y concate­
nating discrete w ords d id  not ach ieve u sefu l separation for the 
longest tokens, apparently becau se o f  w ord-boundary effects. 
W hen test data and tem plates are d iscrete-w ord w ith  m atch­
ing scores accum ulated over th e m axim um  len gth , how ever, 
separation w as good .

K eyw ords: Speaker verification , text-dependent verification , 
utterance length .

1 INTRODUCTION

A ttem pts to v erify  a  p erson ’s id en tity  u sin g features extracted  
from sam ples o f  their sp eech  im p lic itly  assum e that there is 
little  or no overlap o f  statistica l d istributions o f  such  features 
betw een the individual and th e rest o f  the population [1 ]. M any 
studies o f  text-independent verification  (e .g . [2]) h ave reported  
that utterance len gth  is  an im portant factor in  determ ining the 
degree o f separation o f  the tw o d istributions. W e explore  
here th e effect that utterance length  has on  perform ance in  the 
case o f  text-dependent verification . F o llow in g  [1] and [3 ], 
our verifier em ploys dynam ic tim e-w arping m atching o f test 
and reference utterances represented as sequences o f  cepstral 
coefficien ts obtained from  linear prediction  an alysis.

T his paper is  structured as fo llo w s. T he details o f  the 
speech data used  and o f  the verifier em p loyed  are described  
in  Section s 2 and 3 resp ectively . S ection  4  d iscu sses the 
m eans o f  assessin g  verification  perform ance w h ile  section  5 
describes our 4  experim ents and their resu lts. F in ally , S ection  6 
concludes.

2 SPEECH DATA

Speech data for experim ents 1 and 2  (see  b elow ) w ere  
recorded from  10 young adults, 5  m ale and 5 fem ale, in  a quiet 
laboratory. A n an ti-alias filter w ith  4  kH z cu t-o ff w as used  
prior to  sam pling at a  rate o f  10 kH z and resolu tion  o f  16 b its.

E ach su b ject spoke the phrase ( ‘tex t’) ABCDEFG 2 0  tim es; 
each  utterance took  n o m ore than 3 seco n d s. U sin g  the sam e 
tex t for a ll subjects a llo w ed  u s to  d esign ate any subject as a 
genuine speaker and the other n in e as impostors, although a ll 
w ere speaking naturally. U tterances w ere then segm ented  (see  
S ection  5) to  produce tokens o f  varying len gth . A dditional 
recordings w ere m ade b y  a  su b set o f  th e orig in al 10 speakers 
to  p rovid e the data for experim ents 3 and 4 .

E ach token w as an alysed  in  25  m s n on -overlapping fram es 
u sin g  the la ttice m ethod o f  12th-order lin ear p red iction an alysis. 
E ach fram e is then describ ed  b y a  vecto r  o f  12  cepstral co e f­
fic ien ts, obtained using th e recursion d escrib ed  in  [4]. Each  
cepstral vector is then n orm alised  b y  subtracting from  each  
vector the average vector fo r the w h o le  utterance. T he tim e 
seq u en ce o f  norm alised vectors form s th e input to th e verifier.

3 VERIFIER OPERATION

T he verifier is  an u n -op tim ised  version  based  on  the princi­
p les d eta iled  in  [1] and [3]. It re lies on  m atching a  test utterance 
to  referen ce patterns ( ‘tem p lates’) u sin g  d ynam ic tim e-w arping  
(D T W ) to  produce a  score, w here 0  in d icates a  p erfect m atch 
and higher scores in d icate p rogressive d egrees o f  m is-m atch. 
E xcep t in  experim ent 4 , a  referen ce pattern for a  g iven  speaker 
and utterance is  actually b ased  on 5 rep etition s o f  that utterance 
b y that speaker. E ach repetition  is  D T W -m atched to  every  
other, and the utterance w ith  th e lo w est accum ulated  score is 
adjudged to  be the centroid  o f  the group. T h e other 4  utterances 
are then tim e-align ed  to  th e centroid  and a ll 5 averaged to  form  
th e tem plate. N on e o f  th e utterances u sed  in the construction  
o f  the tem plate are ever u sed  in  testin g .

4 ASSESSING PERFORMANCE

T he perform ance m etric trad itionally u sed  in  speaker ver­
ification  is  the error rate. H ow ever, there are tw o p o ssib le  
typ es o f  error, fa lse  acceptance and fa lse  rejection . A  general 
statem ent o f  the accuracy o f  a  system  m ust cover both cases 
b ecau se it is  p o ssib le  to b ias th e d ecisio n  tow ards m inim isation  
o f  on e error at the exp en se o f  the other. H en ce, the equal-error 
rate is  o ften  quoted, w here the p robability  o f  each type o f  error 
is  the sam e, but th is im p lies the ex isten ce  o f som e threshold  
valu e o f  speaker scores. T hat is , an id en tity  claim  from  an
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standard d eviation s o f  the tw o d istributions. N o te  that (unlike 
the situation  in  sig n a l d etection  theory) d ' can  be negative in 
the (h igh ly  undesirable!) ca se that pgcn >

20
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Figure 1: Typical distributions o f genuine and impostor scores (solid  
and broken lines, respectively).

ind ividual is  accep ted  (or rejected) if  the verification  score is 
less than (or m ore than) the threshold.

D u e to the inherent variab ility  o f  individual v o ice s, a  sin­
g le , g lob al threshold cannot b e guaranteed optim al for every  
speaker, instead , in d ivid u al thresholds are n eeded . H ow ever, 
the thresholds sh ou ld  th em selves depend on the distribution o f  
scores produced b y  th e m atching procedure -  such as th ose  
show n in  F igure 1 -  and so  cannot be se t in  advance. A lso , 
if  to ta l separation (non-overlap) o f  score distributions occurs, 
the degree o f  separation cannot be con veyed  b y  sim p ly  quoting 
a zero error rate -  y et tw o  system s w hich  avoid  errors w ith  a  
lim ited  test set m ay w e ll n ot produce equal error rates in  their 
eventual application . F or th ese reasons, w e fee l that setting o f  
thresholds and estim ation  o f  error rates is  ill-a d v ised , excep t 
during the final stage o f  developm ent o f  a  verifier. Instead, w e  
focu s on  the separation and/or the overlap o f  score distributions 
for th e genuine speaker and the im postors. To h elp  in this 
assessm en t, w e em p loy  tw o figures o f  merit* a version  o f  the 
cla ssica l d! and our ow n  ‘overlap’ function , F.

4.1 Using d!

T he d' m easure from  c la ssica l signal detection  theory [5] 
assum es the ex isten ce  o f  tw o response distributions (sign a l and 
sign a l-p lu s-n o ise, corresponding here to genuine and im postor) 
w hich are G aussian and equal variance. Then:

J /  _  ~ M«wl
a

4.2 Overlap Function (F )

W e h ave d evelop ed  an alternative m easure o f  verifier per­
form ance based  on  the so -ca lled  ‘o verlap ’ fu nction , F. This 
is  an easily-com p u ted , ad hoc figu re w h ich  has a  valid  range 
o f  [0 ,1 ], although th is is  sp lit in to tw o equal sub-ranges to 
cover the d istin ct ca ses o f  overlap  and non-overlap , or (total) 
separation. F  is  com puted d ifferen tly  fo r  each  case (labelled  
Fover lap and Fnon-overiap) but increases lin early  w ith verifier 
perform ance over th e en tire range. Fm eriap is  in versely  related  
to the probability o f  an im p ostor’s utterance producing a  score 
that is  w ith in  the range o f  the gen u in e speaker’s scores:

Fover lap =  0 .5  — (1 )

w here /  is  the num ber o f  ‘fa ilu res’ in  term s o f  an im postor 
score being w ith in  the range o f  genuine scores w h ile W* is  
the num ber o f  im postor trials. In ca ses o f  non-overlapping  
distributions, F  exp resses the separation b etw een  them  as:

F non—overlap = 1 - GENr,
2 • IM P „ (2)

w here GENmax(>  0 ) is  the m axim um  gen u in e score and 
IMPmin is  the m inim um  im postor score. T h e factor o f  2  in  
equations 1 and 2  sets F  to b e 0 .5  a t the overlap/non-overlap  
boundary.

5 EXPERIMENTS

To provide flex ib ility  for testin g  our text-dependent verifier, 
the sam e tex t w as spoken by a ll th e su b jects in the first 
tw o experim ents. T h e phrase ABCDEFG w as chosen  for the 
fo llo w in g  reasons. T he fin al verifier system  w ould  (id eally) 
n ot u se input any lon ger than th is (about 3  secon d s); the text is 
fam iliar enough for th e subjects to  speak naturally; and it  could  
b e segm ented  ea sily  to  produce tokens o f  varying length. (It 
should  be noted  that an exactly  lin ear m easure o f  length w as 
sacrificed  in  order to  preserve th e con tin u ity  o f  natural sp eech , 
b y segm enting at w ord boundaries.)

w here p, and f itn are the m eans o f  the sign al and sign al-p lu s- 
n oise score d istributions resp ectively , and cr2 is the com m on  
variance. In our ca se , the assum ptions are in valid  but d' 
seem s non eth eless to  p rovid e a  reasonably con sisten t m easure 
o f separation. W e h ave m odified  the original to  com pensate for  
the in equality  o f  variances thus:

fHmp ~  Pgend = -------- ^ --------

w here mmp and pgen are the m eans o f  the im postor and genuine 
distributions resp ectively , and S  is  the geom etric m ean o f  the

5.1 Expt. 1: Forward Segmentation

To obtain p rogressively  lon ger tok en s, th e first n  letters 
w ere extracted  from  the phrase, i.e . A , AB and so  on , until the 
fu ll-len gth  utterance w as used . F or each  designated  genuine 
speaker and for each  length  o f  utterance, there w o e  15 se lf­
tests and 135 (15  x  9 ) im postor tests. T h e scores from  these  
tests w ere p lotted  as histogram s for a n a ly sis o f  th e genuine and 
im postor distributions, as d ep icted  in F igu re 1.

Inspection  o f  the histogram s revealed  a  com m on pattern: the 
genuine speaker’s d istribution  is narrow er and has a  low er mean
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Figure 2: Speaker separation (as measured by average d') as a function 
o f the number of letters in the verification token. Error bars show the 
range o f d' values.

than that o fth e  im postor set. T his is  to b eex p ected  i f  the verifier  
w orks correctly and the subjects in  the database represent a  
broad population. A lso , ju d gin g  b y the area o f  overlap  o f 
the the d istributions, th e perform ance o f  the verifier appeared  
to im prove as lon ger tokens w ere used . T his observation  is  
confirm ed b y exam ination o f  both o f  the perform ance m easures 
defined in  S ection  4  ab ove. F igure 2  sh ow s a  graph o f  d1 
(averaged over a ll subjects) again st the num ber o f  letters in  
the verification  token. T he error bars in the graph in d icate the 
range o f  values over a ll the su bjects. It w as found  that values 
o f  d! ab ove (approxim ately) 4  corresponded w ith  com plete  
separation. It can b e seen  that the overall trend is  for an increase 
in  d' w ith  length . T here is  som e su ggestion  o f  saturation at 
n — 5 letters (about 2  secon d s o f  sp eech ). A lthough the data 
are n ot show n here, for som e individuals o n ly  2  letters w ere 
needed  to g ive com p lete separation.

5.2 ExpL 2: Reverse Segmentation

To test that the above resu lt w as n otan  artifact o f  the p osition  
o f sp ecific  w ords w ithin the phrase (i.e . depended cm content 
rather than len gth ), segm entation  w as a lso  done starting from  
the phrase end and producing p rogressively  lon ger utterances 
b y includ ing o n ly  the la st n  w ords. T he resu lts o f  this 
experim ent are sim ilar to  th ose for the forw ard segm entation: 
viz. an  overall trend o f  im proved perform ance w ith  increased  
utterance length . F igure 3 sh ow s the average d' valu es for both  
forw ard- and reverse-segm en ted  utterances. For com parison, 
F igure 4  show s the corresponding average va lu es o f  the overlap  
function  F. T he c lo se  agreem ent o f  results obtained w ith  the 
tw o d ifferent m easures is  ev id en ce o f  the im proving e ffect on  
verifier perform ance o f  longer utterances.

T he m ain d ifference betw een the results o f  th is and experi­
m ent 1 is that reverse segm entation  produced a  slig h tly  better 
one-w ord  perform ance. O ne explanation  m ight b e that G is  
a  p h on etically  richer w ord (contain ing m ore speaker-specific  
inform ation) than A . A nother p o ssib ility  is  that the first word in  
a  connected-w ord utterance is  n ot good  for verification , perhaps

Figure 3: Speaker separation (as measuredby average d ') as a function 
o f the number o f words in the verification token, for both forward 
(crosses) and reverse (boxes) segmented utterances.

lJO

0 -----------------------------------1 ans4.tr of letters mutteewee 7
Figure 4: Speaker separation (as measuredby average F) as a function 
o f the number o f words in the verification token, for both forward 
(crosses) and reverse (boxes) segmentation. The horizontal line at 
F =  0.5  corresponds to zero error rate.

as an e ffec t o f  a  h igh  in itia l ou tflow  o f  breath. In any even t, the 
average perform ance u sin g sin gle-w ord  tokens is  poor.

5 3  Expt. 3: Concatenated Templates

W e en v isa g e a  practical application  o f  speaker verification  
w orking w ith  the user prom pted to  enter short sequ en ces o f  
con n ected  w ords in random  order. M atching in  th is case  
w ou ld  h ave to  b e again st referen ce m od els for the individual 
w ords in  the phrase. T hus, the test data cou ld  co n sist o f a  
sin g le , con n ected  utterance but the referen ce data m ight con sist 
o f  concatenated  tem plates for the in d ivid u al w ords prom pted. 
G iven  th e find ings o f  experim ents 1 and 2 , it  m igh t be exp ected  
that th e verifier w ou ld  perform  p oorly  b ecau se it  is  m erely  
com b in in g several sin g le-w ord  resu lts, each  o f  w hich  is  itse lf  
poor.

To test th is, a  su b set o f  5 o f  th e 10 speakers in  the orig in al 
database provided  additional recordings o f  5 repetitions o f  the 
iso la ted  w ords A , 5 ,  e tc ., up to  G. A fter m anual endpoint 
d etection , the utterances w ere concatenated  and com bined  as 
described  in  section  3 ab ove to form  another referen ce tem plate 
o f  ABCDEFG for each subject. T he n ew  tem plates w ere tested  
w ith  the sam e data as in experim ents 1 and 2 . T he resu lts w ere
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Figure 5: Typical genuine and corresponding impostor distributions 
produced in Experiment 3.

indeed very poor, none o f  them  exh ib itin g  any w orthw hile 
degree o f  separation o f  gen u in e speaker and im postors. A  
typ ical pair o f  distributions is sh ow n  in  F igure 5 .

T he distribution for the im postors w as largely unaffected by 
the u se o f  the new , concatenated  tem plates but the genuine d is­
tribution sh ifted  considerably in  th e d irection  o f m uch increased  
average score. In e ffect, the gen u in e speaker w as no longer 
distinguishable from  the im postors. A s m entioned b efore, high  
perform ance w as not exp ected  but the average valu es o f d! and 
F  w ere in  fact low er than the sin g le-w ord  valu es in  the previ­
ous experim ents, suggestin g other factors w ere at w ork. For 
exam ple, a  tim e-lap se betw een  the recordings o f  the reference 
and test m aterial is  know n to  reduce perform ance [6 , p . 4 9 8 ]. 
A lso , from  a separate experim ent, w e  h ave d iscovered  that the 
verifier is sen sitive to  the p resen ce (or absen ce) o f inter-w ord  
silen ce  in  the referen ce tem plate i f  it  is  n ot duplicated in the 
test token. In an attem pt to  ex clu d e th ese effects, w e devised  a  
fourth exp erim en t

5.4 Expt. 4: Discrete Utterances
F or the previous ex p erim en t th e subjects had been recorded  

5 tim es saying each o f  the d iscrete w ords A to  G, and these 
recordings form ed (b y concatenation) the reference data for  
verification. T he test data w ere the fu ll-len gth  utterances as 
in experim ents 1 and 2 . In  this ex p erim en t the discrete-w ord  
recordings provided both the test and referen ce tokens.

A fter m anual end-point d etection , th e first o f  the 5 tokens 
o f each d iscrete w ord w as taken as referen ce for that speaker. 
T hus, for each w ord and each speaker, there w ere 4  genuine 
and 2 0  im postor tests. T he scores for th ese com parisons w ere 
totalled  for the 7  d iscrete w ords A to  G , and d' and F  values 
calculated. Table 1 sh ow s the resu lting d! values (the results 
for F  w ere essen tia lly  the sam e) and com pares them  w ith those 
found in experim ent 1.

T he results in  Table 1 show  that separation attainable by  
sum m ing scores for d iscrete-w ord  m atches can at least equal 
that obtained w ith  continuous-w ord  tem plates and test data. 
T his tends to confirm  the interpretation o f  experim ent 3 g iven  
above, i.e . that w ord-boundary d ifferen ces betw een test and 
reference data can cau se severe problem s for verification. 
O verall, the result is encouraging sin ce  it  indicates that a  
practical system  w hich operates b y  prom pting the user for a  
num ber o f  d iscrete utterances in random  order could  w ork w ell.

subject E xpt. 4 E xpt. 1
M H 12.05 8 .11
JP 7 .1 6 5 .6 9
FS 5 .64 6 .3 8
A S 6 .15 5 .1 1
A F 5.95 8 .5 6

average 7 .3 9 6 .7 7

Table 1: d! resulting from summing scores for discrete-word matches 
(Expt. 4) and by matching continuous utterances (E xpt 1).

6 CONCLUSIONS

U tterance length  has been show n to  h ave an im portant 
e ffec t on  speaker separation in  text-d ep en d en t verification. 
U sin g  continuous-w ord test and referen ce data, w e find an 
in crease in  separation w ith  length; there is  so m e su ggestion  o f  
saturation at about 2  secon d s duration. In  a  p ractical system , 
it  w ou ld  b e attractive to prom pt the u ser fo r  random -order 
utterances from  a  sm all vocabulary. W e w o e  u n su ccessfu l in  
com paring continuous utterances w ith  concaten ated  tem plates 
in  th is settin g . T his is  apparently b eca u se o f  the problem  
that w ord-boundary e ffects p o se to our verifica tion  technique. 
Sim p ly totallin g scores fo r  m atches b etw een  discrete-w ord  
referen ce and test data can , how ever, w ork  w e ll.
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A bstract

Previous studies have indicated that speaker-verification errors may be minimised by emphasising, or 
weighting, some speech features with respect to others. Traditionally, cepstral coefficients are used as 
the features and each weight is calculated using some deterministic function based on the variance of 
the features. Here, we consider derivation of the weights as an optimisation problem, where the goal 
is to separate maximally the feature distributions of the genuine speaker and the impostors. We use a 
genetic algorithm (GA) to derive these weights, and find the resulting verifier performance exceeds that 
obtained using traditional weighting functions by a significant margin. However, the success of the current 
implementation of the GA seems largely attributable to the random influence on the candidate vectors.

1 Introduction
Speaker-verification systems attempt to distinguish between the genuine individual and an impostor by 
comparing features extracted from samples of their speech. Atal (1974) demonstrated that accurate 
verification can be achieved by using cepstral coefficients to represent the speech features and by emphasising 
or weighting some of these features with respect to others. These findings have been confirmed by 
other researchers such as Velius (1988), who compared several different methods of deriving the cepstral 
weights. Most of these methods calculate the weight of each dimension as a deterministic function of the 
coefficient values of that dimension, and attempt to minimise inter-session intra-speaker variability. However, 
determination of the weight values can be considered as an optimisation problem, where the goal is to achieve 
a maximal separation of speech features between the genuine speaker and the impostor set. In this paper, 
we explore the use of a genetic algorithm (GA) to derive these weights, and compare the resulting verifier 
performance with that obtained using traditional weighting functions.

The paper is structured as follows. The details of the speech data used and of the verifier employed 
are described in Sections 2 and 3 respectively. Section 4 discusses the means of assessing verification 
performance while section 5 describes the methods of deriving the weights. The results of each method are 
presented in Section 6 and are discussed further in Section 7. Finally, Section 8 concludes.

2 Speech Data
Speech data for the experiments described in this paper were recorded from 10 young adults, 5 male and 
5 female, in a quiet laboratory. An anti-alias filter with 4 kHz cut-off was used prior to sampling at a rate 
of 10 kHz and resolution of 16 bits. Each subject spoke the phrase ( ‘text’) A B C D E F G  20 times; 5 of these 
repetitions were used to form a reference template as described below, with the remaining 15 used for testing. 
Using the same text for all subjects allowed us to designate any subject as a genuine speaker and the other 
nine as impostors, although all were speaking naturally. Consequently, for each subject in the database, there



Figure 1: Topical distributions of genuine (solid line) and impostor (broken line) scores. The distributions are actually 
histograms (with a bin width of 25) with the mid-ordinates of each bin value joined into a line for clarity. The bimodal 
impostor distribution is typical when the genuine speaker is female.

were 15 genuine verification attempts and 135 (15 x 9) ‘impostor’ attempts. Although this is by no means 
an exhaustive test set, we consider it sufficient to demonstrate unequivocal changes in the performance of the 
verifier.

Each utterance was analysed in 25 ms non-overlapping frames using the lattice method of 12th-order 
linear predictive coding. Each frame was then described by a vector of 12 cepstral coefficients, obtained 
using the recursion described by Atal (1974). The average vector for the whole utterance was then subtracted 
from each individual vector to produce a time sequence of normalised cepstral vectors, which formed the 
input to the verifier.

3 Verifier Operation
The verifier is an un-optimised version based on the principles detailed in Furui (1981) and Bernasconi 
(1990). It relies on matching a test utterance to reference patterns ( ‘templates’) using dynamic time-warping 
(DTW) to produce a score, where 0 indicates a perfect match and higher scores indicate progressive degrees 
of mis-match. As stated above, the reference template for each speaker was formed using a subset of 5 of 
their utterances; each was DTW-matched to every other, and the utterance with the lowest accumulated score 
was adjudged to be the centroid of the group. The other 4 utterances were then time-aligned to the centroid 
and all 5 averaged to form the template. None of the utterances used in the construction of the template were 
ever used in testing.

4 Assessing Performance
The performance metric traditionally used in speaker verification is the error rate. However, there are two 
possible types of error: false acceptance and false rejection. A general statement of the accuracy of a system 
must cover both cases because it is possible to bias the decision towards minimisation of one error at the 
expense of the other. Hence, the equal-error rate is often quoted, where the probability of each type of error 
is equalised by the setting of an appropriate decision threshold. That is, an identity claim from an individual 
is accepted (rejected) if the verification score is less than (more than) the threshold.



Due to the inherent variability of individual voices, a single, global threshold cannot be guaranteed optimal 
for every speaker; instead, individual thresholds are needed. However, the thresholds should themselves 
depend on the distribution of scores produced by the matching procedure -  such as those shown in Figure 1 
-  and so cannot be set in advance. Also, if total separation (non-overlap) of score distributions occurs, the 
degree of separation cannot be conveyed by simply quoting a error rate of zero -  yet with a limited test set a 
zero error rate is not uncommon. For these reasons, when considering verifier performance, we focus on the 
separation and/or overlap of score distributions for the genuine speaker and the impostors. To help in this 
assessment, we employ two figures of merit: a version of the classical d' and our own ‘overlap’ function, 
F. Most of the results in Section 6 quote values of d' because it includes a measure of dispersion of the 
distributions. Where speed is important, such as in determining the fitness of a candidate weighting vector, F 
is used since it is simpler to compute.

4.1 Using d’

The d' measure from classical signal detection theory (Green and Swets 1966) assumes the existence of two 
response distributions (signal and signal-plus-noise, corresponding here to genuine and impostor) which are 
Gaussian and equal variance. Then:

_ | M a n  | 
a

where f i3 and f isn are the means of the signal and signal-plus-noise score distributions respectively, and a  2 is 
the common variance. In our case, the assumptions are invalid but, as our results show, d ' seems nonetheless 
to provide a reasonably useful measure of separation. We have modified the original to compensate for the 
inequality of variances thus:

d! - Âimp pgen
s

where and /ijen are the means of the impostor and genuine distributions respectively, and S is the 
geometric mean of the standard deviations of the two distributions. Note that (unlike the situation in signal 
detection theory) d' can be negative in the (highly undesirable!) case that f igen > pimp.

4.2 Overlap Function (F )
We have developed an alternative measure of verifier performance based on the so-called ‘overlap’ function, 
F .  This is an easily-computed, ad hoc figure which has a valid range of [0,1], although this is split into two 
equal sub-ranges to cover the distinct cases of overlap and non-overlap, or (total) separation. F is computed 
differently for each case (labelled Fov eriap and Fnon- ov er/ap) but increases linearly with verifier performance 
over the entire range. Foveriap is inversely related to the probability of an impostor’s utterance producing a 
score that is within the range of the genuine speaker’s scores:

Foverlap — 0*5 (1)

where /  is the number of ‘failures’ in terms of an impostor score being within the range of genuine scores 
while N{ is the number of impostor trials. In cases of non-overlapping distributions, F expresses the 
separation between them as:

F-non—overlap = 1 - G E N n
2 • IMP„ (2)

where GENmax{> 0) is the maximum genuine score and IM P min is the minimum impostor score. The
factor o f 2 in equations 1 and 2 adjusts F  to be 0.5 at the overlap/non-overlap boundary.



Figure 2: Each trace shows one speaker’s weights calculated with the inverse-variance function.

5 Deriving the Weights
The DTW process performs a frame-by-frame comparison of a test token and a reference template. At the 
frame level, the comparison takes the form of a distance measurement, where the squared differences between 
corresponding dimensions are summed for all n (=12) dimensions. When weights are included, the general 
expression for the local distance d between a test frame t  and a reference frame r  is:

n
d = -  ri)2

i=l
Previous speaker-verification studies using weighted cepstral distance measures (such as those summarised 

by Velius in 1988) have been successful in reducing error rates. However, the derivation of the weights has 
been based on theoretical assumptions rather than using an optimisation procedure to yield the best practical 
results. In this paper, we will compare the GA-derived weights with two of these traditional measures: the 
inverse-variance function and the inverse-expected-difference function. We will also include results for the 
unweighted, or ‘uniform weighted’ case (all weights set to 1). Before discussing the results we define (except 
for the unweighted case) the various weighting schemes to be examined.

5.1 Inverse Variance
One common weighting function is the reciprocal of the intra-speaker variance of each dimension of the 
cepstral vector. This is an acknowledgement that feature differences in certain dimensions may be more 
significant than in other dimensions. There is also an assumption that features which remain consistent over 
an entire utterance, or over several utterances by the same speaker, may characterise that speaker. For each 
of the speakers in the database, the reciprocal of the variance of each normalised cepstral coefficient was 
calculated over each of 15 utterances and averaged to produce a set of inverse-variance weights for that 
speaker. The weights for all 10 speakers are plotted on the same graph (Figure 2) to demonstrate the similarity 
of the function across the speakers. Clearly, the first two dimensions are weighted much more heavily than 
the others.



Figure 3: The inverse-expected-difference weighting function, plotted for all speakers.

5.2 Inverse Expected-Difference
This function, as used by Furui (1981), normalises the dimensions by their so-called expected differences after 
time-alignment, for the intra-speaker case. This ensures that cepstral coefficients may contribute equally to 
the overall distance measure, regardless of numerical scale, which is not an indicator of utility. Test utterances 
from each speaker were time-aligned with their reference template and for each of the 12 dimensions, the 
average difference between corresponding frames was calculated over the entire utterance. Averaging over 
all 15 test utterances produced the expected differences for each dimension. The reciprocals of these were 
used as the weights in this case, and are plotted in Figure 3 for all speakers to highlight the similarities. As in 
the inverse-variance case, weights w\ and W2 are stronger than the rest.

5.3 GA-generated Weights
Using the above methods, each individual weight is calculated by applying the same, deterministic function 
which, despite having a basis in theory, nonetheless restricts the available solutions. An alternative is to allow 
the individual weights to be derived independently, yet considering them collectively as a vector. The genetic 
algorithm is an appropriate method of doing this, as no assumptions are made about which dimensions are 
important for verification, or about the properties of cepstral coefficients of those dimensions. The GA has no 
constraints on either the starting point or the extent of the search space of solutions, and should therefore be 
capable of finding high-performance weighting vectors, should they exist.

5.4 Implementation
For the genetic algorithm to generate weighting vectors, an appropriate form of coding must be found. We 
decided to allow each weight to vary between 0 and 15 so that it could be encoded simply using 4 bits. 
By concatenating all 12 of the 4-bit weights, the weighting vector could be encoded as a 48-bit string, or 
‘chromosome’ in GA terminology. In the general case, when using n-dimensional cepstral vectors, and 
allowing each weight to be quantised to m  levels, there are 2 n ,og2m different weighting vectors from which to 
choose. In our case, the range of choice is 248, which is clearly too large to search exhaustively1. Also, there 
is no guarantee (quite the opposite!) that the solutions are ordered (in terms of verifier performance) within

•in fact, there are less than 2 48 u n iq u e  solutions because some o f the vectors are linearly dependent. For instance, vectors 
x =  ( 1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 )  an d y  =  ( 2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 )  both give identical separation statistics/error-rates when used 
as the weighting vector.



Speaker

Inverse-
Variance

Inverse
Expected

Difference

Best
GA

Unweighted

AF 7.516 8.308 9.048 8.563
AM 3.920 4.088 4.115 3.927
AS 7.977 6.051 8.935 5.109
MH 8.798 7.674 8.498 8.106
NT 6.045 6.183 8.139 5.454
BK 4.215 4.911 4.847 4.392
FS 6.119 6.235 6.476 6.379
JP 5.322 4.398 5.398 5.687

KM 3.862 3.963 5.179 4.066
TM 5.626 6.237 6.798 6.215

Average 5.940 5.805 6.743 5.790

Table 1: d' of score distributions for each speaker, with different weighting functions.

this range. Traditional search methods, such as gradient descent, are therefore probably unsuitable but this 
type of problem is appropriate for solution using the GA.

Following the ‘Simple Genetic Algorithm’ of Goldberg (1989), our implementation was as follows. The 
initial population of candidate vectors was generated by randomly setting bits in the chromosomes to 1 or 
0 with equal probability. At each generation, only the three basic operators were employed: roulette-wheel 
selection, single-point crossover (with probability Pcross) and mutation (with probability P m). The results 
presented in Section 6 were obtained with a GA configured with a population size of 32, P cr0ss =  0.7, 
Pm =  0.02 and, unless stated otherwise, the program ran for 50 generations. The algorithm was coded in C 
and executed on a standard PC with maths co-processor.

A vital consideration when using a GA is the specification of the objective function which determines 
the fitness of a candidate solution. Clearly, in the present work, this should be some appropriate measure 
of verification performance. For the reasons given in Section 4, our objective function does not assess the 
‘accuracy’ of the system, but instead focuses on the separation of the score distributions for the genuine 
speaker and the impostor. Since fitness has to be repeatedly computed for each generation, while the GA was 
running weighting vectors were assessed using the F  value for the corresponding score distributions. Finally, 
however, d! was preferred for scoring what appeared to be the ‘best’ weighting vectors.

6  Results
For each of the 10 speakers, the speaker separation was assessed using 4 differently-derived weight vectors: 
inverse-variance, inverse-expected-difference, genetic algorithm and unweighted (all weights set to 1). In the 
case of the GA, the vector used was the best one discovered within the first 50 generations on the basis of the 
F  measure.

6.1 GA versus Traditional Methods
Table 1 shows the d! values for the best vectors that the GA found for each speaker and compares these with 
the corresponding values when using the traditional methods. We have found that d '  tends to range from 
approximately 3.0 (very poor performance) to about 10.5 (considerable separation of genuine and impostors). 
With this in mind, it can be seen that the GA-derived weights out-performed the three traditional methods, for 
each speaker, with an average d1 of 6.743, a gain of nearly 14% on the next-best method: the inverse-variance. 
It is also interesting to note that the unweighted verifier’s performance was only marginally worse than the 
traditionally-weighted verifiers.

For comparison with Figures 2 and 3, the best weighting vectors found by the GA for all speakers 
are plotted on a single graph: Figure 4. As can be seen, the pattern of weights that was apparent in the
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Figure 4: The best weighting vectors found by the GA, for every speaker. Unlike the traditional weighting functions, no 
order or pattern is apparent.

inverse-variance and inverse-expected-difference methods is not repeated. Indeed, the weights appear to be 
uncorrelated among all the speakers. This may be taken as evidence that different weighting vectors are 
needed for each individual. It is also interesting to see that, in general, the whole dynamic range of the 
weights is used, unlike the traditional methods.

6.2 GA versus Random Optimisation
To find out if the reason for the success of the GA was the random influence, we ran a program which 
simulated the GA without any of the standard operators; this is equivalent to generating each population 
completely at random, with no regard for previous generations and fitness levels etc. The program was run 
for each subject in the database, producing 50 populations of 32 randomly-generated weighting vectors; again 
a record was kept of the best vectors for each subject, and the average fitness of each generation. Table 2 
compares the best vectors for each speaker, as found by the GA and the random program.

From Tables 1 and 2, it is apparent that the randomly-chosen weights actually give greater separation 
between the average speaker and impostors than weights selected by any other method. This is quite surprising 
in itself; but also it raises questions about the mechanisms in the GA for converging on optimal solutions. 
Perhaps the GA found good vectors solely because of the randomness of the search? One way to test this is to 
examine the evolution with time ( ‘generation’) of average population fitness for both the GA and the random 
program. Figure 5 plots these quantities for a single speaker, for a cycle of 50 generations.

Figure 5 shows that, for this speaker, average population fitness (measured using the F  function) follows a 
slightly upward trend, whereas the average fitness of each randomly-generated population remains at a fairly 
steady level. This pattern is typical of all the speakers in the database, but for this speaker in particular, the 
upward trend is pronounced2. To some extent, this result restores faith in the GA: it finds collections of good 
vectors at the expense of finding the single best-performing vector.

6.3 Summary
Table 3 shows the best results averaged across all speakers, for each method. The results are expressed as 
both d! and equal-error rate (EER), since the latter is more familiar.

2 An extra experiment was conducted for this speaker where the GA was left to run for 200 generations; the average fitness continued 
to climb, finishing at about F  —  0.480.



Speaker
Best
GA

Best
random

AF 9.048 9.548
AM 4.115 4.848
AS 8.935 9.129
MH 8.498 10.472
NT 8.139 8.737
BK 4.847 5.440
FS 6.476 7.577
JP 5.398 6.188

KM 5.179 4.354
TM 6.798 7.540

Average 6.743 7.383

Table 2: d' of score distributions for each speaker, comparing the GA-produced weights with random weights.

0 5 10 15 20 25 30 35 40 45 50
generation

Figure 5: Fitness, averaged over the population at each generation, for both the GA (broken line) and the random program 
(solid line).

Weight derivation method average d! average EER (%)
Random 7.383 0.67

GA 6.743 0.67
Inverse-variance 5.940 2.67

Inverse-expected difference 5.805 2.67
Unweighted 5.79 2.67

Table 3: A summary of the verifier performance with various weighting methods. Figures are averages over all speakers.



7 Discussion
Why do random (or GA-produced) vectors do well? We can postulate that there exist a few simple rules 
relating a given pair of speakers to characteristics of cepstral coefficients. For instance, ‘to distinguish 
between speaker A and speaker B, maximise the ratio of the weights for coefficients 1 and 3 but minimise the 
ratio for coefficients 9 and 10’. These rules would themselves be based on the behaviour of the coefficients 
for several utterances by each individual speaker. Now, since there are 10 speakers in our database, it is 
possible that some of these speaker-specific rules actually overlap, resulting in conflicting speaker-pair rules. 
The GA (and random) vectors may be able to find some near-optimal compromise of all of these individual 
rules, but the traditional methods, which treat each dimension in isolation, cannot. One way to test this theory 
is to use the best vector for each speaker but compare with a different impostor set, because we may expect 
that a new set of impostors would bring a new set of compromised rules.

The apparently slow convergence of the GA may be attributable to the simplicity of the algorithm used. In 
the near future we intend to repeat this series of experiments but using more sophisticated genetic operators, 
such as elitism and multi-point crossover. Another enhancement would be to allow the chromosome to 
represent real-valued weights, although the current system does not seem to lack precision, so this will be 
given a low priority.

In a practical verification system, it is unlikely that a GA could be used on-line due to the required 
computer time and the unavailability of appropriate impostor data. However, we have observed that -  in cases 
of good speaker separation -  the genuine speaker distribution tends to be quite narrow. This means it might 
be possible merely to use the standard deviation of this distribution as the principal input to the objective 
function. We have already begun to work on this topic.

8 Conclusions
We have compared the performance of a speaker verifier using traditional weighting functions with one using 
GA-derived weights. In terms of speaker separation, and for our limited test set, we find the latter to be 
superior. However, we have also discovered that simply generating the weights at random can yield better 
performance than the GA-derived weighting vectors. This may reflect the simplicity of random optimisation: 
perhaps a different chromosome design or the use of different genetic operators would enable the GA to 
out-perform the random approach. The relative failure of the traditional methods may be the result of 
considering each dimension in isolation, which the random and GA program do not do.

References
A t a l , B.S. (1974) “Effectiveness of linear prediction characteristics of the speech wave for automatic speaker 
identification and verification”, Journal o f the Acoustical Society o f  America, 55, 1304-1312.

BERNASCONI, C. (1990) “On instantaneous and transitional information for text-dependent speaker verifica­
tion”, Speech Communication,9, 129-139.

FURUI, S. (1981) “Cepstral analysis techniques for automatic speaker verification”, I E E E  Transactions on 
Acoustics, Speech and Signal Processing, ASSP-29, 254-272.

GOLDBERG, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 
Reading, MA.

G r e e n , D.M. AND S w e t s , J.A. (1966) Signal Detection Theory and Psychophysics, John Wiley, New York, 
NY.
H O LLA N D , J.H. (1975) Adaptation in Natural and Artificia l Systems, University of Michigan Press, Ann 
Arbor, MI.
VELIUS, G. (1988) “Variants of cepstrum based speaker identity verification”, Proceedings o f  the I E E E
International Conference on Acoustics, Speech and Signal Processing, New York, NY, Vol. 5, 583-586.



E S C A  W O R K S H O P  O N  A U T O M A T IC  S P E A K E R  R E C O G N IT IO N , ID E N T IF IC A T IO N  A N D  V E R IF IC A T IO N
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in Speaker Verification
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A b s t r a c t —  T h i s  p a p e r  c o m p a r e s  4  d i f f e r e n t  w a y s  o f  u s i n g  
i n i t i a l  ( ‘t r a i n i n g ’) r e c o r d i n g s  a s  r e f e r e n c e  d a t a  ( ‘t e m p l a t e s ’) 
t o  b e  c o m p a r e d  w i t h  a  t e s t  t o k e n  f o r  s p e a k e r  v e r i f i c a t i o n .  
W e  s h o w  t h a t  m e r g i n g  t h e  o r i g in a l  t r a i n i n g  d a t a  i n t o  a  
s in g l e  t e m p l a t e  — a s  i n  2  o f  t h e  4  m e t h o d s  — i n c u r s  a  lo s s  
i n  s p e a k e r  d i s c r i m i n a t i o n  r e l a t i v e  t o  t h e  r e m a i n i n g  2  m e t h ­
o d s  w h ic h  r e t a i n  a l l  t h e  d a t a .  H o w e v e r ,  t h e s e  t e c h n i q u e s  d o  
h a v e  t h e  a d v a n t a g e  o f  r e d u c e d  c o m p u t a t i o n a l  c o m p l e x i t y  in  
t e r m s  o f  b o t h  s t o r a g e  r e q u i r e m e n t s  a n d  p r o c e s s i n g  t i m e  f o r  
v e r i f i c a t i o n .

T h e  b e s t - p e r f o r m i n g  o f  o u r  m e t h o d s  u s e d  a  d e c i s io n  r u l e  
in  w h i c h  6 0 %  o f  t h e  i n d i v i d u a l  m a t c h e s  t o  e a c h  r e t a i n e d  
t e m p l a t e  h a d  t o  s a t i s f y  a  t h r e s h o l d  c r i t e r i o n .  H o w e v e r ,  s t a t ­
i s t i c a l  s ig n i f i c a n c e  o f  t h e  s u p e r i o r i t y  o f  t h i s  i m p l e m e n t a t i o n  
r e l a t i v e  t o  t h e  n e x t - b e s t ,  w h i c h  t o o k  a  m e a n  o f  t h e  5 i n ­
d i v i d u a l  s c o r e s  a s  a  b a s i s  f o r  i t s  a c c e p t / r e j e c t  d e c i s io n ,  h a s  
n o t  y e t  b e e n  e s t a b l i s h e d .  T h i s  a w a i t s  f u r t h e r  w o r k  w i t h  a  
l a r g e r  d a t a b a s e .

K e y w o r d s —  S p e a k e r  v e r i f i c a t i o n ,  t e x t - d e p e n d e n t  v e r i f ­
i c a t i o n ,  r e f e r e n c e  t e m p l a t e .

1 .  I n t r o d u c t i o n

Most published studies of speaker-verification systems 
have tended to concentrate on optimising the performance 
of the matching process, in which a test utterance is com­
pared with reference data assumed to be representative of 
the given speaker. In text-dependent verification, these 
reference data are most usually held in the form of tem­
plates. However, for a verifier to be consistently successful 
it is vital that the templates are constructed properly from 
the training data. In this paper, we examine 4 methods of 
building reference templates and assess the corresponding 
verifier performance in each case. Following Furui [1] and 
Bernasconi [2], the verifier used in this study employs dy­
namic time-warping (DTW) matching of test and reference 
utterances represented as sequences of cepstral coefficients 
obtained from linear prediction analysis.

The paper is structured as follows. The details of the 
speech data used and of the verifier employed are described 
in Section 2. Section 3 discusses the means of assessing 
verifier performance while Section 4 describes the four dif­
ferent methods of constructing the template. The results of 
each method are presented in Section 5 and are discussed 
further in Section 6 .

M .I. H a n n a h  a n d  A .T . S a p e lu k  a re  w ith  th e  D e p a r tm e n t of E lec­
tro n ic  a n d  E le c tric a l E n g in e e rin g  a t  D u n d ee  In s t i tu te  o f Technology, 
B ell S tre e t, D u n d e e  D D 1 1 H G , S c o tla n d . E m a il: eerm ih @ u k .ac .d c t 
a n d  e e ta ts@ u k .ac .d c t resp ec tiv e ly .

R .I . D a m p e r  is w ith  th e  D e p a r tm e n t o f E le c tro n ic s  a n d  C o m p u te r  
Science a t  th e  U n iv e rs ity  o f S o u th a m p to n , S o u th a m p to n  S 0 9  5N H , 
E n g la n d . E m ail: r id @ u k .a c .so to n .e c s .

2 .  S p e e c h  D a t a  a n d  V e r i f i e r  O p e r a t i o n

Speech data for the experiments described in this paper 
were recorded from 10 young adults, 5 male and 5 female, 
in a quiet laboratory. An anti-alias filter with 4 kHz cut-off 
was used prior to sampling at a rate of 10 kHz and reso­
lution of 16 bits. Each subject spoke the phrase (‘text’) 
A B C D E F G  20 times; 5 of these repetitions were used to 
form a reference template as described below, with the re­
maining 15 used for testing. Using the same text for all 
subjects allowed us to designate any subject as a genuine 
speaker and the other nine as im posto rs , although all were 
speaking naturally. Consequently, for each subject in the 
database, there were 15 genuine verification attempts and 
135 (15 x 9) ‘impostor’ attempts. Although this is by no 
means a large test set, it should be sufficient to demonstrate 
unequivocal changes in the performance of the verifier.

Each utterance was analysed in 25 ms non-overlapping 
frames using the lattice method of 12 th-order linear pre­
dictive coding. Each frame was then described by a vec­
tor of 12 cepstral coefficients, obtained using the recursion 
described by Atal [3]. The average vector for the whole 
utterance was then subtracted from each individual vector 
to produce a time sequence of normalised cepstral vectors, 
which formed the input to the verifier.

The verifier is an un-optimised implementation based on 
the principles detailed in [1] and [2]. Sequences of cepstral 
vectors for the test input are matched to similar sequences 
for the reference data (templates) using dynamic time­
warping to produce a distance measure, or score, where 
0 indicates a perfect match and higher scores indicate pro­
gressive degrees of mis-match.

3 .  A s s e s s i n g  P e r f o r m a n c e

Our previous investigations [4], [5] have led us to develop 
methods other than the equal-error rate (EER), which is 
less than ideal for preliminary assessment of verifier per­
formance. This is because we are, at this stage, dealing 
with relatively small data sets. The basis of the problem 
with EER is that it is all too easy to obtain 100% cor­
rect classification (0 % error rate) with different implement­
ations, yet these implementations are not all equally good. 
We prefer to use some measure of the separation  of genuine 
speaker and impostor score distributions. Our chosen fig­
ure of merit is a version of d! from classical signal detection 
theory [6]. We use:

d1 — Mimp ~ Mgen ^
S

where fiimp and p gen are the means of the impostor and 
genuine distributions respectively, and S  is the geometric
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F ig . 1. D is tr ib u tio n s  o f  g e n u i n e  (so lid  line) a n d  i m p o s t o r  (b ro k en  
line) d is ta n c e  sco res fo r  fem a le  sp e a k e r  K M . T h e  d is tr ib u tio n s  
a re  a c tu a lly  h is to g ra m s  (w ith  a  b in  w id th  o f 25) w ith  th e  m id ­
o rd in a te s  o f each  b in  v a lu e  jo in e d  by  a  s t r a ig h t  line fo r  c la rity . 
W e refe r to  th e  reg io n  o f  overlap  b e tw een  th e  tw o  d is tr ib u tio n s  
as th e  a m b i g u o u s  z o n e .  T h e  b im o d a l im p o s to r  d is tr ib u tio n  is 
ty p ic a l w h en  th e  g e n u in e  sp e a k e r  is fem ale.

F ig . 2. D is tr ib u tio n s  o f g e n u i n e  (so lid  line) a n d  i m p o s t o r  (b ro k en  
line) d is ta n c e  sc o res fo r  m a le  sp e ak e r M H . N o te  t h a t  th e  im p o s­
to r  d is tr ib u tio n  is u n im o d a l in  th is  case, a n d  th e re  is n o  overlap  
o f genu ine a n d  im p o s to r  scores. T h is  l a t te r  fe a tu re  m akes u se  o f 
a n  e rro r  r a te  a s  a  f igu re  o f  p e rfo rm a n c e  p ro b le m a tic  (see te x t) .

mean of the standard deviations of the two distributions. 
Typical genuine and im postor distributions are shown in 
Figures 1 and Figures 2 for a female and male speaker 
respectively.

Note that d !  not only conveys information about the de­
gree of separation (or overlap) of the two distributions. Sig­
nificantly, it also includes a measure of their dispersions in 
terms of S . Further discussion of the use of d! can be found 
in [4], [5].

4 .  C o n s t r u c t i n g  t h e  R e f e r e n c e  T e m p l a t e s

In this work, we have used speech data recorded in an 
initial pre-testing (‘training’) session to construct a tem­
plate data set. These are then used as the reference against

which all test tokens are compared. The template data set 
may consist of a single token or a collection of several tok­
ens, although the initial recording session always involves 
5 repetitions of the same phrase, in this case A B C D E F G .  
Here, we assess 4 different ways of constructing the tem­
plate data set, namely:

• Furui method
• Bernasconi method
• Mean Separate Score (MSS) method
• 60% rule
The first two of these combine the original 5 utterances to 

form a single reference token; the latter two retain all 5 ut­
terances as distinct tokens which are used at verification 
time. The obvious disadvantage of the extra time needed 
to do 5 verifications instead of one may be offset by greater 
flexibility in both the decision mechanism and any scheme 
which may be introduced for updating the templates to 
account for long-term variations in the customer’s voice.

4-1 Method 1: Fu ru i

Furui [1] developed and tested techniques for imple­
menting each of the processes inherent in text-dependent 
speaker verification. His method of constructing a reference 
template is straight-forward, and is as follows. The first of 
the 5 reference utterances is designated the initial tem­
plate, to which the second utterance is then time-aligned 
by DTW. An average of the two patterns is then taken to 
produce a new template, to which the third utterance is 
time-aligned. Again, an average is taken, and the process 
repeated until all 5 utterances have been combined into a 
single template.

Note that the length of the final template is equal to that 
of the initially-chosen utterance, irrespective of whether 
this utterance is typical in respect of its length.

4-2 Method 2: Bernascon i

The verifier used by Bernasconi [2] is very similar to 
that developed by Furui, although the means of template 
construction is different. Bernasconi’s method calculates 
DTW distances between all pairs of the original utterances 
so that, in the present case, each of the 5 utterances is com­
pared to the remaining 4. The utterance with the lowest 
accumulated distance over the remaining 4 is taken to be 
the centroid of the group. The remaining 4 utterances are 
then time-aligned to the centroid, before averaging all 5 to 
produce the template.

4-3 Method 3: M S S

In this case, a test token is separately compared with 
each of the 5 initial reference utterances. The resulting 
scores are then averaged to give an overall score.

4-4 Method 4- 60% Ru le

This method is similar to the previous one in that a test 
token is separately matched against each of the 5 reference 
tokens. However, each of these verification scores is then 
compared to a pre-determined threshold. If 60% of the 
scores (i.e. for 3 or more of the 5 matches) are less than
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this threshold, an “accept” decision is signified; otherwise, 
the speaker is rejected.

The threshold for speaker j ,  T j , is calculated using the 
formula suggested by Furui [1]:

ddj — Q̂ Mimp,j împ,;) T b

where Himpj is the mean of the distribution of impostor 
scores for speaker j ,  and crimpy is the standard deviation 
of the same distribution. For each speaker, values for a 
and b are found such that the resulting threshold produces 
equal rates of false-acceptance and false-rejection errors. 
These local constants are then averaged over all speakers to 
give global constants, with which each speaker’s threshold 
is re-calculated.

In order to compare this approach with Methods 1-3 on 
the basis of d ', it is necessary to derive some overall score 
measure for a test utterance so that genuine and impostor 
score histograms can be constructed. This is done as fol­
lows. If the decision according to the 60% rule is “accept”, 
then the overall score is taken as the average of those (3 
or more) individual verification scores which fall below the 
threshold. On the other hand, if the decision is “reject”, 
then those (3 or more) scores greater then the threshold 
are averaged to give the overall score.

5. Results

The bar chart in Figure 3 shows d! computed for the 
score distributions for each speaker, using all 4 methods 
of template construction. In interpreting these figures, the 
reader should recall from equation 1 that a d! value of 5, 
for example, indicates that the separation of genuine and 
impostor distribution means is 5 times the common stan­
dard deviation (as assessed from the geometric mean of the 
individual deviations).

The first 5 speakers (BK-TM) are female while the re­
maining 5 are male. Although there is an apparent ten­
dency for the males to perform better than the females, 
the best performing males AS and MH are, in fact, two of 
the authors of this paper and are experienced in the use of 
speaker verification systems. Further, the best performing 
female (FS) is a speech therapist. None of the remain­
ing subjects have any significant speech science or speech 
technology expertise. Thus, it does not seem possible to 
draw any firm conclusions about gender differences from 
Figure 3.

It can be seen that for some speakers (notably, JP, AF 
and AS), the method of template construction can greatly 
influence the verifier performance associated with those 
speakers. With the exception of AS and NT, Method 1 
gives the poorest results and this is reflected in the low 
mean d1, as shown in Table I. This table also shows an 
ambiguity rate , which measures the percentage of obtained 
verification scores in the ambiguous zone, i.e. the range of 
score values bounded by the maximum genuine score and 
the minimum impostor score (see Fig. 1). Although this 
measure can be distorted by atypical outliers, it does indi­
cate any overlap of the distributions -  information which

Speaker

US Method 1 ££51 Method 2 WM Method 3 Method 4

Fig. 3. Bar charts showing d! for score distributions for each speaker 
using different methods of template construction. (See text for 
description of these methods. The first 5 speakers (BK-TM) are 
female; the remaining 5 (AF-NT) are male.)

TABLE I
Comparing methods of template construction in terms of d'

AND AMBIGUITY RATE.

Method Mean d! Ambiguity Rate (%)
1 5.2 10.8
2 5.8 3.47
3 6.0 3.07
4 6.2 3.20

d! does not convey. The ambiguity rate is markedly higher 
for Method 1 than for any of the other approaches.

The reason that Method 1 performs poorly relative to 
Method 2 is almost certainly a result of the fact that the 
first utterance is always chosen as the initial reference, re­
gardless of its suitability. By taking the centroid of the 
training patterns as the basis for time-alignment, Method 2 
overcomes this problem. Methods 2 and 3 give roughly 
comparable results, indicating that choosing the centroid of 
the group of 5 utterances (Method 2) is similar in its effect 
to averaging scores (Method 3). Method 3 (MSS) produces 
slightly better results, but (given the small size of our data 
sets) the difference is unlikely to be statistically significant. 
Our expectation was that Method 2 would achieve a good 
compromise between accuracy and the computational con­
venience of a single-token template, and this is borne out 
by the obtained results.

Method 4 produces the best speaker-separation, as indi­
cated by the highest d! averaged over all speakers in Table I. 
Again, however, this superiority is marginal and has not 
been subjected to a test of statistical significance. Further, 
ambiguity rate is slightly higher than for Method 3.

Method 4 (using the 60% rule) is based on deriving 
thresholds for each individual speaker. Given these thresh-
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T A B L E  II

False acceptance and rejection rates, FARrFRR (%), for all 
FIVE REFERENCE TOKENS 1-5, AND FOR THE 60% RULE (METHOD 4).

Speaker 1 2 3 4 5 60%
BK 5:13 0:20 1:7 0:7 0:47 0:13
FS 0:0 0:0 0:0 0:0 0:0 0:0
JP 1:0 1:0 1:0 6:0 2:20 1:0

KM 0:27 10:0 1:47 9:27 0:27 0:13
TM 1:0 1:0 0:0 4:0 0:0 1:0
AF 0:0 2:0 1:0 0:0 1:0 1:0
AM 4:20 8:7 2:7 8:13 15:13 4:13
AS 0:7 0:0 0:0 0:0 0:0 0:0
MH 1:0 1:0 0:0 0:0 0:0 0:0
NT 27:6 0:7 0:0 0:0 0:27 0:1

olds, we have a basis to estimate false acceptance and 
false rejection rates (FAR and FRR respectively). Table II 
shows such FAR and FRR figures both for the individual 
matches (to each of the 5 templates) and for the overall 
score based on the 60% rule. This table illustrates, as one 
might expect, the disparity of performance of the individual 
training tokens. Also, it shows the gain to be made using 
the 60% rule -  in that this rule generally does only a lit­
tle worse (if at all) than the best-performing reference, but 
significantly better than the average across reference tok­
ens. For instance, for speaker NT the average FAR across 
the 5 reference tokens is 5.4%, but using the 60% rule it is 
0%. For the same speaker, the FRR averaged across the 
5 tokens is 8 % while the 60% rule reduces this to 1 %. The 
sole exception to this generalisation is the FRR for speaker 
AM which averages 1 2 % across the 5 individual reference 
tokens, but is 13% using the 60% rule.

Overall, it is apparent from Table I that the approaches 
to constructing a template data set that average the refer­
ence data to form a single pattern (Methods 1 and 2, with 
an average d! of 5.5) do less well than those that retain 
the training data in their entirety (Methods 3 and 4, with 
an average d! of 6.1). However, the latter methods entail 
greater computational complexity in terms of both storage 
space and processing time at verification.

6 .  C o n c l u s i o n s  a n d  D i s c u s s i o n

We have compared 4 different methods of template data 
set construction and found superior overall performance 
when retaining the original reference tokens separate at 
verification time (Methods 3 and 4), rather than averaging 
training data to yield a single reference pattern (Methods 1 
and 2). The best performing technique (Method 4) applied 
a decision rule (in this case, the 60% rule) to the individual 
distance scores rather than simply averaging them as in 
Method 3 (MSS). However, because of the paucity of data 
in our study so far, statistical significance of the difference 
between Methods 4 and 3 has not been demonstrated.

An analysis was conducted, however, in which false ac­
ceptance and false rejection rates were estimated both for

the 5 individual templates matched separately and using 
the 60% rule. This analysis clearly revealed the gains which 
can be achieved by use of the 60% rule.

Further work is planned to study the sensitivity of these 
gains to the setting of the individual (single) thresholds. 
It may be that it is possible to do rather better in deriv­
ing a speaker threshold than using the method described 
in Section 4.4 above. We also intend to repeat the work 
described here on a larger database of speakers and utter­
ances, so enabling us to assess the statistical significance 
of the differences between methods of template data set 
construction.

Finally, we have initiated some work (not yet in re­
portable form) on the impact of long-term changes in the 
customer’s voice on verifier performance. We envisage a 
system in which poorly-performing templates in a pool of 
such reference tokens are identified and replaced by tokens 
derived from recent input to the system. The assumption 
is that the poor performance is a result of degradation with 
time, i.e. the current reference data are no longer represent­
ative of the user’s current voice. The principal finding of 
this paper is that retaining reference tokens in such a pool is 
beneficial for performance, relative to averaging these data 
(although there is a price to be paid in terms of increased 
computational complexity). We take this as encouraging 
for the prospects of our envisaged system.
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