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Abstract

Robust Control of Nonlinear Systems in the Presence of Uncertainties

Any mathematical model that is adopted for the purposes of design is, at best, an
approximation to reality. However, despite the existence of such mismatch between the
plant and its model, the engineering system should still be stable and achieve some
prespecified performance. Different robustness measure bounds and synthesis techniques
have been developed. A promising area is the so-called deterministic theory, where the
uncertainties incorporated in the system are described only in terms of the bounds on their
possible size, and the objective is to find a class of controller which cari achieve some
prescribed behaviour for all possible variations of the uncertainties within the prescribed

bounds. This has found wide applications in such areas as robotics and aircraft control.

The results presented here cover various novel techniques, which can be roughly divided
into two categories according to the concepts on which the techniques are based. One
category uses feedback linearisation, in which, besides a basic feedback linearisation
controller proposed for the nominal part of the system, additional control effort is
introduced to compensate the uncertainties in the system. The other category uses a
variable structure controller which is developed for the nominal part of the system, whilst a
variable feedback gain is employed to attenuate the effect of the uncertaintics. Both
techniques can be applied to effectively deal with systems in the presence of nonlinearity

and uncertainty, and some stability theory can be developed.

The techniques developed here are concerned with both robust stability control design and
robust tracking control design for SISO and MIMO nonlinear uncertain systems where

closed loop stability can be guaranteed and robustness is shown.

For illustrative purposes, a second order system, with uncertain pole location and non-
minimum phase properties, is adopted to demonstrate the performance of the techniques.
Some applications are also included in the thesis, and it is shown that the techniques

developed here are an improvement on previously developed methods.
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0.1

Preface

Motivated by the theoretical and practical importance of robust control in engineering, it is
proposed to investigate the robust control problem for nonlinear uncertain systems, and
also to seek to develop more robust and intuitive methodologies than those currently in

use, and to relax some of the conditions imposed.

MAJOR CONTRIBUTIONS OF THE RESEARCH
The major contributions described here may be summarised as follows:

® Firstly, the so-called matching conditions have been relaxed further and further.
Initially, the condition that the modulus of the input mapping matching parameter is
less than unity is replaced by simply requiring that this parameter be greater than zero.
This difference leads to a new control law which is related to both the bounds of the
uncertainties in the system and to the nominal control component, so that the effect of

the uncertainties can be effectively attenuated by the proposed control.
@ Secondly the technique can be extended to more general cases where the matching
conditions are not met. So a unified control can be found for the following cases:
¢ The uncertainties satisfy the matching conditions, and the modulus of the input mapping
matching parameter is less than unity or greater than zero;
» Either the state mapping uncertainty or the input mapping uncertainty satisfies the matching
conditions, but not both;
¢ The uncertainties lie in the span of the input mapping, but neither a continuous input
mapping matching parameter nor a continuous state mapping matching parameter exists;
¢ None of the uncertainties satisfy matching conditions;
® The results are intuitive, and the performance is robust. Two typical forms of controller
are discussed in chapters 4 and 5, in which one, additive compensation, uses the idea of

an additional control component to compensate both the effect of state mapping

uncertainty and the effect of input mapping uncertainty via the nominal control. The

— X —



Preface Xii

other, multiplicative compensation, adopts concepts from adaptive control where
feedback gain is variable instead of constant. Both methods can be understood as

employing extra control effort to compensate for the effect of uncertainties.

@ One of the most important results in this thesis is the application to multi-input
systems. The technique developed for the single-input case has been extended to the
multi-input case without further conditions being placed on either the system or the
uncertainty. The principle is exactly the same except that it uses more mathematical
concepts. The control law is similar to that developed for single-input systems. The
regulation as well as the tracking problems for both single and multi-input systems are
considered, and robust control laws are developed for both.

® Robustness is demonstrated by simulation using a simple second order system, in which
the uncertainty in pole location can be effectively controlled even for the case where the
open loop pole is believed to be in the left half, but is in fact in the right half of the
complex plane. Furthermore the well-known non-minimum phase problem is treated as

a special kind of uncertainty.
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Chapter 1  Introduction 2

1.1 CURRENT RESEARCH

THE objective of control design can be stated as follows: given a physical system to
be controlled and performance specifications, construct a feedback control law to
make the closed loop system display the desired behaviour.

In general, a physical plant has very complex dynamics, and is also affected by the
environment in which it works. So, when a real plant is modelled, an assessment of the
errors must be made. The causes of such errors in the open loop system are typically
limited model information, modelling inaccuracy and disturbances. Unknown or varying
parameters resulting from poorly understood physical phenomena are examples of model
information uncertainty, while linear approximation, order reduction, and neglected
coupling terms are examples of model inaccuracy. Any mathematical model adopted for
control design therefore is, at best, an approximation to reality. However, despite the
presence of such uncertainties, the system should still be stable. A critical property of a
feedback system is its robustness, that is, its ability to reduce the sensitivity of the system
to variations of system parameters and to unmodelled dynamics. In pure model-based
control, the control law is based only on a nominal, linear in many cases, model of the
physical system. How the control system will behave in the presence of model
uncertainties and unmodelled dynamics is not clear at the design stage, and the stability of
the closed loop system cannot be guaranteed. A nominal model based controller, or a linear
controller based on inaccurate or obsolete values of the model parameters, or a nonlinear
controller without consideration of the structure and size of uncertainties may exhibit
significant performance degradation or even instability. Therefore, robust control of
systems in the presence of nonlinearity and uncertainty is of great significance in practice,

and many researchers and designers, from such broad areas as flight control, robotics,
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process control, and biomedical engineering, have shown an interest in the development
and applications of robust control methodologies for nonlinear uncertain systems.

The problem of robust design of control systems, otherwise described as reliable
design in the presence of uncertainty, has been studied, for many years, without
conspicuous success. Because of this, engineers have turned to techniques such as fuzzy
logic and statistical metric spaces involving knowledge based systems. Little intuitive
understanding of the process results. Even the linear problem isn't easy whilst the nonlinear
problem with uncertain perturbation is made more difficult because systems with
nonlinearity and uncertainty can exhibit more complex behaviour than linear systems, and
many of the established techniques are based on the assumption of exactly known models
and parameters. Quite apart from the undesirability of this, problems of modelling errors
tend to become submerged in the overall technique.

The last two decades have seen major progress in the analysis and synthesis theory
of systems with nonlinearity and/or uncertainty, utilising many advanced mathematical
concepts, and different robustness measure bounds. These include stochastic control
theory, if a prior statistical characterisation of the uncertainties is available, as well as
deterministic methods, where such statistics are unavailable but precise bounds on
uncertainties are known. Where deterministic theory is used, the objective is to find a class
of controllers which can achieve some prescribed behaviour for all possible variations of
the uncertainties within the prescribed bounds, often termed 'guaranteed performance’,
which indicates that the resulting closed loop system will exhibit certain desirable
properties for all admissible uncertainties. When the bounds of the uncertainties are known,
the controller guarantees that the states of the system enter a particular vicinity of the
equilibrium state after a finite period of time and remain there, and also guarantees that the
state trajectory will be kept arbitrarily close to the equilibrium point if started close to it.

One of the best developed techniques in the frequency domain is quantitative

feedback theory, denoted QFT, which was first proposed by Horowitz and Sidilll in 1972
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for single-input single-output (SISO) single-loop linear time-invariant minimum phase
plants with large uncertainty. The theory has been extended to other system types. These
include linear time-variant, nonlinear, multi-input multi-output (MIMO) and non-
minimum phase plants. The key tool is the conversion of the initial set of plants into an
equivalent set of linear time-invariant SISO plants. Schauder's fixed point theorem is used
to justify the equivalence. The principle of QFT is to use pointwise design, i.e., repeat the
design procedure in the same manner at sufficient frequency points separately to permit
drawing a continuous curve of the bound, and to achieve the performance prespecified for
large uncertainty. Pointwise design provides designers with the opportunity to make some
tradeoffs between the loops, compensator complexity, and bandwidth economy, and
between the extent of plant uncertainty, tolerances and feedback cost. But it also produces
the problems that the size of the manipulated regions on the Nichols chart may be
inconveniently large. Since QFT was proposed in 1972, many advances have been made,
and many application examples have been published.

The development of H.. optimal control theory!*3! can be seen as a return to the
ideas and principles established by Bodel®l in the 1940s, but one which also led to
considerable generalisations of these ideas. Notions such as the sensitivity function and
stability margins, which were rather eclipsed by LQG theory, which dominated the 1960s
and 1970s, have been re-established as central to the theory, and have been successfully
extended to multivariable systems. The theoretical key to these extensions has been the
introduction of the 'infinity norm' of a transfer function matrix G (written IIGll..) as a
measure of its gain. The set of (linear) stable multivariable systems, whose infinity norms
are finite, forms what mathematicians call a 'Hardy space', which has been given the name
'H..", and it is this which gives much of recent robust control theory its name. If all we
know about some input (which may be a vector of inputs, and 'input' includes 'disturbance’)
is that it belongs to a specified set, and if we measure the size of output signals in similar

ways, then the infinity norm of the transfer function relating the input to the output is the
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worst-case gain between the two. The term 'H.. problem' arises from the fact that, for a
closed loop system with plant P and feedback control K, we are minimising lIG;(P,K)Il..
over all G;(P,K) where F, represents the transfer function matrix of external inputs to the
output errors, such that G;(P,K)e H.. and the feedback combination of P and K is internally
stable. Use of the infinity norm therefore makes it possible to formulate realistic 'worst-
case' performance specifications as mathematical problems to which theoretical solutions
can be found. The theory is of great interest because it gives solutions to realistic robust
control problems, posed as H.. optimisation problems. The application of the theory to
control problems originated with Zames!’l. In fact recent developments have shown the
theory to have remarkable similarities with the LQG theory. A consistent term for the LQG
problem, which is sometimes used, is 'H, problem’, since that requires the minimisation of
1G;(P,K)Il; over all Gi(P,K)eH,, again with the constraint of internal stability. LQG
problems can even be seen as special cases of H., problems.

The most useful and general approach for studying nonlinear systems is Lyapunov
stability theory, which was introduced in the late 19th century by the Russian
mathematician Alexandr Mikhailovich Lyapunov. Basic Lyapunov theory consists of two
methods, the indirect method and the direct method. The indirect method, often called the
linearisation method, states the stability properties of a nonlinear system in the vicinity of
an equilibrium point by analysing those of its linearised approximation, while the direct
method draws conclusions from the original system directly by constructing a scalar
function for the system and examining the function's time variation.

There are two major time domain techniques for the design of controllers for
nonlinear systems displaying significant uncertainties. One is the variable structure control
(VSC) approach, which can be applied to highly nonlinear systems, and results in
robustness to model errors, parameter variations and unknown disturbances. The VSC
approach was first proposed in the 1950's by Utkin, and has been developed over several

decades, see Utkinl89), Zak et q/l1%111 and Sira-Ramirez(!2l. Essentially, VSC uses a high-
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speed switching control law to drive the nonlinear plant's state trajectory onto a specified
and designer-chosen surface in the state space (called the sliding or switching surface), and
to maintain the trajectory on this surface for all subsequent time. The plant dynamics
restricted to this surface represent the control behaviour of the system. By properly
choosing the switching surface, VSC attains the conventional goals of control such as
stabilisation, tracking, and regulation. The main result is that the controlled system is
insensitive to certain parameter variations and disturbances while the trajectory is on the
switching surface. The variable structure technique is now well developed, Zak et all13.14],
in that by properly choosing the switching surface, the original system can be decomposed,
by a transformation, into two sub-systems, the fast one which describes the motion of the
system off the switching surface, and the slow one which describes the motion on the
switching surface, whilst the stability properties of the systems can be justified by
Lyapunov theory.

Another method for synthesis of nonlinear uncertain systems based on Lyapunov
stability theory was proposed by Gutman!!Sl, Leitmann et qll1617.18191 and other
authors(20-26], The design is based on the constructive use of Lyapunov stability theory.
Roughly speaking, a Lyapunov function for a nominal system (i.e., the certain part of the
real system) is employed as a candidate Lyapunov function for the actual uncertain system
with control, and a robust control strategy can be developed so that it can guarantee a
negative derivative of the Lyapunov function along all possible solutions in the presence of
uncertainties. The success of the method depends crucially on the satisfaction of additional
a priori assumptions on the nature of the uncertainties. These assumptions essentially
restrict the structure and/or size of the uncertainties in the system. In the case of many of
the previous references, these restrictions have been appropriately referred to as matching
conditions, which means that the uncertainties originate directly through the control
variable, i.e., the uncertainties lie in the span of the nominal input mapping. Such

conditions make analysis and synthesis much easier, but they are often not met in practice.
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Recently, a number of papers have appeared which take mismatched uncertainties into
account, but do so in a variety of ways. One wayl!%1920] ig to decompose the system
uncertainties into a matched part and a mismatched part, and treat them separately. Usually
some limitation must be imposed on the mismatched part of the uncertainties, say, a
critical 'mismatched threshold' on the allowable size. Another approachl2!l is to consider
mismatched uncertainties in the state mapping but not in the input mapping, whilst a third
wayl?2231 is to convert the mismatched uncertain system into a matched one by a change of
basis and translation of the state.

Robust control differs from model-based control in that it is based not only on
consideration of the nominal model, but also on some characterisation of the model
uncertainties. By the nominal model is usually meant the model obtained by various
identification techniques, the parameters of which are given by the nominal values. Such a
model is not unique, as we might adopt different nominal models for easing the control

design and for simplifying the uncertainty description.

1.2 THE OBJECTIVE OF THE RESEARCH

Motivated by the aforementioned theoretical and practical considerations, it is
proposed to investigate some nonlinear design techniques already developed, and also to
seek to develop more robust and intuitive methods for systems with nonlinearity and
uncertainty. Intuitive methods are very important because feedback tends to be counter-
intuitive and this makes design, which is inevitably interactive (between computer and
operator), even more difficult.

The objective of this research is to study the synthesis problem of nonlinear
uncertain systems in a deterministic way, the problem statement being similar to that of

Leitmann et a/'6.17]] but differing fundamentally in the control strategy.
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Nonlinear uncertain systems can be generally represented as
x(t) = f(x)+g(Xut)+AL(x,y,)+Ag(x,v,0u(t)+5(t)
where f(x)+g(x)u(t) is the certain part of the system, often termed the 'nominal system’;
Af(x,y,t), Ag(x,Y,t) represent uncertainties incorporated in the system; E(t) denotes the
external disturbance; v is a lumped uncertain element.

Roughly speaking, there are two ways of dealing with the robust design problem;
one phase design and two phase design. One phase design is founded on the intuitive fact
that any uncertainty should be effectively compensated by the designed controller. In order
to achieve this, control effort must be introduced in addition to the main control
component designed for the nominal part of the system. Based on this concept, the
conventional controllers obtained for the nominal part of the system may be modified by
introducing an extra control component, or employing a variable feedback gain instead of a

constant one.

uft 30

x(t)

Fig 1.1 One phase design

For example, the controlled inputs may be of the form
u(t)=u, (t)+u,(t)
where u,(t) is obtained for the nominal system according to one of various design theories,
without consideration of any uncertain element, (for example, to linearise the nominal

system, and place the closed loop poles in desired positions); and u,(t) is the additional
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feedback control to compensate for the effect of uncertainties in the system. The stability
of the overall system can be guaranteed by this combined feedback control. Usually, one
phase design synthesises a closed loop system with respect to the original nonlinear
uncertain system directly. In general, u,(t) is related to the nominal control u,(t) as well as
to the uncertainty bounds on Af and Ag, because not only the effect of the uncertainty in the
state mapping Af(x,y,t), but also the effect caused by u,(t) through the uncertainty in the
input mapping Ag(x,7Y,t) should be compensated.

The two phase method differs from the one phase method in that two feedback
loops are included, and each of them is designed separately according to different theories,
and will therefore meet different requirements. This design procedure usually involves the
transformation of the original system to new coordinates and linearisation of this new
system at the first stage. The development of controllers using various established

synthesis techniques occurs at the second stage.

Fig 1.2 Two phase design

The feedback control is usually of the following form
u(t)=u(x,v); v()=v(x,w)
where u(t) is developed in the first phase. This may be done, for instance, according to the

feedback linearisation technique. The system undergoes a coordinate transformation and is



Chapter 1  Introduction 10

then linearised, such that a new system with a linearised nominal part and some
uncertainties, usually nonlinear, is obtained. In the second phase, the controller design will
be carried on with respect to this new system, and the objective is to obtain a feedback
controller such that the closed loop system performs in the desired manner.

The results presented in this thesis are concerned with both methodologies. At first,
a simple case is considered, in which the structures of the uncertainties are assumed to
satisfy the so-called matching conditions, but unlike the assumption made by Barmish et
all'l, it is not required that the uncontrolled nominal system should be stable or
precompensated to be stable, and it is not required that the matched form of uncertainty
bounds should be less than 1; instead a weaker and more flexible condition, is imposed. A
set of robust feedback controllers are obtained by extending the feedback linearisation
technique, and using Lyapunov stability theory, which results in a practically stabilised
closed loop system, even for nonlinear systems with unstable nominal part, in the presence
of significant parameter tolerances and external disturbances. Compared with the technique
of Barmish et alll7l, some significant improvements have been made in that less severe
matching conditions have been assumed. More importantly, such improvement enables us
to extend the technique to more complicated systems in which the uncertainties do not
meet the so-called matching conditions. This kind of uncertainty is considered throughout
the rest of the work, and new control techniques are obtained. These may be applied to
various cases, such as, where although the uncertainties lie in the span of the input
mapping, so satisfying the generalised matching assumption, there are no continuous
functions p and q such that the uncertainties are of the desired form, which has been
assumed for the matching conditions, or where the uncertainties may only satisfy partial
matching conditions, or even where the uncertainties do not satisfy any matching
assumption. The techniques appear to represent a significant advance on previous results,
with no restriction on the size of the uncertainty bounds, except for a weak and flexible

condition imposed on the uncertainty in the input mapping.
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A novel robust technique has also been proposed, where the problem statement is
similar to that above, but differs fundamentally in the control strategy. The design
procedure utilises concepts of sliding mode from the theory of variable structure systems,
and concepts of practical stabilisation from the theory of Leitmann et @ll16.17.181 but shows
obvious differences from them, in that, instead of the assumptions of pre-compensation on
the nominal part of the system and matching conditions on the uncertainties, only a rather
weak condition is imposed on uncertainties with no further assumptions. The proposed
control is of variable structure, and can also be used to deal with nonlinear systems with
both matched and mismatched uncertainties. This development results in some advantages
in that it avoids the requirement for proper choice of some design constants, thus easing
the design problem. It is also shown that the controller has the same structure as the one
developed for the nominal system where no uncertainty is explicitly considered, the only
difference being that the former has a variable controller gain, which depends on the
known uncertainty bounds, and the latter has a constant one. The method has been
extended to the multi-input case and this also is fully described in the sequel.

Finally, the robust tracking problem has been investigated for nonlinear uncertain
systems. A robust stability controller is first proposed for SISO systems, and extended to
the MIMO case. The proposed design method is divided into two phases. Firstly, the
original nonlinear uncertain system is transformed into new coordinates using differential
geometric theory, and a new system model, which has a linearised nominal part and
nonlinear uncertainties, is obtained. Secondly, a robust variable-structure-like controller is
developed, and the feedback gain is related to the uncertainty bounds. Stability of the
closed loop system is justified by using Lyapunov stability theory. The results are obtained
separately, for the cases where the uncertainties are assumed to satisfy the generalised
matching assumption, as well as where they do not. It is also shown that the tracking errors
depend crucially on the amplitudes of the mismatched part of the uncertainties. When only

matched uncertainties are present, the tracking errors will converge to zero. However when



Chapter 1  Introduction 12

both matched and mismatched uncertainties are present, the tracking errors cannot
converge to zero, but converge in a finite time, to a ball with a finite radius that depends
only on the bounds of the mismatched uncertainties. The internal dynamics are also
considered. For asymptotic minimum-phase systems, the internal states will also converge
to a ball with the radius depending on the bound of the desired state trajectory.

Throughout the thesis, for simplicity, a typical second order linear system is
utilised to illustrate the usage of the developed methodologies and some engineering
control problems, such as uncertain pole locations, non-minimum phase, and parameter
variations, are discussed. Moreover, applications of the proposed techniques to some more
practical nonlinear uncertain systems are described, and simulation results are included to

show the effectiveness of the proposed techniques.

1.3 AN OVERVIEW OF THE THESIS

The thesis consists of nine chapters, each of which starts with a short introduction
providing the background for the main issues and techniques to be discussed, and a brief
summary is also included in each chapter.

Chapter 2 introduces the class of nonlinear systems to be considered, and also
describes the types of uncertainty which may occur. Charter 3 describes the concepts of
stability and boundedness, and presents the major analytical tools that are required
subsequently. Chapters 4~7 are the main results of the thesis. Various proposed robustness
techniques are presented one by one. In chapter 4, the techniques based on feedback
linearisation are described for matched uncertainties first and mismatched ones thereafter.
Chapters 5 and 6 describe the techniques of variable-structure-like control, chapter 5
providing the technique for single input systems, while chapter 6 is concerned with multi-

input systems. These results are obtained by using the one phase design method. Unlike the
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previous three chapters in which only the regulation problem is discussed, chapter 7
discusses the robust tracking control problem using the two phase design method. Chapter
8 presents some applications of the aforementioned techniques, to some practical nonlinear
uncertain system models, and simulation results are given. The last chapter concludes the
techniques developed, and some remarks on possible future work in this area are made
from the point of view of the author.

The thesis concentrates on nonlinear uncertain systems in continuous-time form.
Even though most controllers are implemented digitally, nonlinear physical systems are
continuous in nature, while digital controllers may be treated as continuous-time systems
in analysis and design if high sampling rates are used. The thesis also pays more attention
to uncertainties than to nonlinearities, because robustness means the ability to reduce the
sensitivity of the system to any uncertainties in the system, regardless of whether the

system is linear or nonlinear.
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2.1 INTRODUCTION

PHYSICAL systems are inherently nonlinear. Thus, strictly speaking, all control
systems are nonlinear to some extent. Nonlinear uncertain systems can be modelled
by nonlinear differential equations. The nonlinear system may be reasonably approximated
by a linearised system only when the operating range is small, and the nonlinearities are
smooth. This is not always the case, and then nonlinear control techniques are necessary.
On the other hand, the mathematical models used to describe physical systems may
also be imprecise. Model imprecision may come from actual uncertainty about the plant
(e.g., unknown plant parameters), or from the intentional choice of a simplified
representation of the system's dynamics (e.g., linear approximation, order reduction, and
neglected coupling terms). Therefore discrepancies between the model and the real system
exist. Any mathematical model adopted for control design is, at best, an approximation to
reality. However, despite the presence of such uncertainties, the final design should still

result in a stable system.

2.2 NONLINEAR UNCERTAIN SYSTEM MODELS

We consider a class of nonlinear systems modelled by the following equations
x(t)=F(x)+G(x)u(t) (2.1)
y(®=H(x)

where F(-) and G(-) are C= vector fields on R", H(-) is a C= scalar field on R", and x, y and
u are the state, output and admissible control having appropriate dimensions. It is assumed

that the functions F(-) and G(-) are Caratheodory functions, i.e., for all te R they are
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continuous in xe R", and for all x they are Lebesgue measurablel®1®in t.
If some uncertain elements exist, we can then write

X(O)=F(X,1,0+G(X,y,Du(t)+&(t) (2.2)

y(O=H(x)
All the uncertainties in the system are represented by a lumped uncertain element ye R?,
which could be an element representing unknown constant parameters and inputs; or could
be a function y(t):R—R’, representing unknown time varying parameters and inputs; or
could be a function y(t,x,u):RXR"xR™—R", representing nonlinear elements which are
difficult to characterise exactly; and E(-) represents external disturbance which could be
either deterministic or stochastic, but is normally stochastic.

For ease of design, the system model is usually decomposed into two parts; the
certain part and the uncertain part, and then formulated as

x(t)= f(x)+g(X)u(t)+Af(X,y,t)+Ag(X,y,t)u(t)+E(t) (2.3)
y(®)=h(x)
where F(x,7,t)=f(x)+Af(x,7,t)
G(x,y,0=8(X)+Ag(x,Y:t)
Here f(-) and g(-) represent the nominal part of the system, which is independent of the
uncertain elements, and Af(-,-,-) and Ag(-,,*) indicate the uncertainties in the state and input
mapping respectively. The system (2.1) is called the nominal version of (2.3).

Such a decomposition is not unique. One way to perform this decomposition is to
choose the certain parts f and g such that the uncertain parts Af and Ag satisfy some
desirable conditions, as will be seen in the sequel. Moreover, the certain part,
f(x)+g(x)u(t), is not necessarily required to be a part of the actual dynamics, but could have
been added for controller design purposes in the event of the absence of a suitable nominal

portion for which some existing techniques can be applied or for which a Lyapunov

o Lebesgue Measurable:
A set S is said to be Lebesgue measurable if the inner measure of S equals the outer measure.
A function f(x) defined on a measurable set SCR is said to be Lebesgue measurable on § if, for each real number A,
the set of points x€ S such that f{x)>A is measurable.
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function could be readily found. Here y(t)e R” is a lumped uncertain parameter, such that

Af(x,y,t) and Ag(x,y,t) are bounded. These bounds are given V(X,t)e R°xR by

0y A{ M NAR X YOy} (2.4)

@y A{ M AG (X YDl .y} (2.5)
and

@ & {MBE O gy} (2.6)

where the functions m, , w,, and w; are presumed deterministic and known.

Note that the bounds ®,s and w,, could either be functions of x and t, or acceptable
constants satisfying conditions (2.4) and (2.5) if there is not enough information to define
these functions explicitly.

Next we introduce some useful concepts to describe the characteristics of the

system and the classification of the uncertainties in the system.

DEFINITION 2.1. (Index of a Vector)

Let the nominal system (i.e., the certain part of the system) of (2.3) have relative
order v<n (as defined in appendix A). An uncertainty vector field I'(x,y) is said to have an
index k<v with respect to the system if

I'(x,y)e Ker{dh(x), dL;h(x), - - - - - - , dLXTh(x)} (2.7)

The index of the uncertainty vector I'(x,y) with respect to the nominal system is

simply the number of times the system output must be differentiated with respect to time

before the first appearance of the uncertainty terms.

2.3 NONLINEARITIES

Nonlinearities can be classified as inherent (natural) and intentional (artificial).

Examples of inherent nonlinearities include centripetal forces in rotational motion, and
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Coulomb friction between contacting surfaces. Usually, such nonlinearities have
undesirable effects, and controllers have to properly compensate for them. Intentional
nonlinearities, on the other hand, are artificially introduced by the designer. Nonlinear
control laws, such as adaptive control laws and variable structure control laws, are typical
examples of intentional nonlinearities. Nonlinearities can also be classified in terms of
their mathematical properties, as continuous and discontinuous. Because discontinuous
nonlinearities cannot be locally approximated by linear functions, they are also called 'hard'
nonlinearities. Hard nonlinearities (e.g., backlash and stiction) are commonly found in
control systems, both in small range operation and large range operation. Whether a system
in small range operation should be regarded as nonlinear or linear depends on the
magnitude of the hard nonlinearities and on the extent of their effects on the system
performance.

The behaviour of nonlinear systems, however, is much more complex than that of
linear systems. Because of the lack of linearity and of the associated superposition
property, nonlinear systems may respond to external inputs quite differently from linear
systems. Nonlinear systems frequently have more than one equilibrium point, so different
initial conditions could lead to different steady state conditions. Furthermore the stability
of nonlinear systems may depend on the initial conditions. Nonlinear systems can display
oscillations of fixed amplitude and fixed period without external excitation. These
oscillations are called limit cycles, which are different from sustained oscillations in
marginally stable linear systems, in that the amplitude of the self-sustained excitation is
independent of the initial condition, and not easily affected by parameter changes.
Nonlinear systems can also display a phenomenon called chaos, by which we mean that the
system output is extremely sensitive to initial conditions. The essential feature of chaos is
the unpredictability of the system output. Even if we have an exact model of a nonlinear
system and an extremely accurate computer, the system's response in the long-run still

cannot be well predicted. Some other interesting types of behaviour, such as jump
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resonance, subharmonic generation, asynchronous quenching, and frequency-amplitude
dependence of free vibrations, can also occur and are important in some system studies.
The above description should provide ample evidence that nonlinear systems can exhibit

considerably richer and more complex behaviour than linear systems.

2.4 UNCERTAINTIES
2.4.1 Description of Uncertainties

Uncertainties arise from practical control problems. A 'real world' physical plant
contains very complex dynamics, and is also affected by the environment in which it
works. When an attempt is made to control a plant, it is desirable to describe it from prior
knowledge in mathematical terms. No nominal model should be considered without an
assessment of its errors. This is because: @ Our knowledge of the physical mechanisms of
the plant is limited, and it is not possible to obtain all the desired information about plant
dynamics. @ Our ability to represent the physical mechanisms of the plant is so limited
that we could not formulate all dynamics of the plant without any error. It is, for example,
difficult to model the high-frequency dynamics of a plant. @ It should also be considered,
to what extent the model can be dealt with by theories presently available. It is common
that a quite accurately modelled nonlinear element is treated as a linear one, or a quite
complicated model is replaced by a simple one because our design techniques cannot deal
with complex models effectively, and sometimes, we may deliberately choose to ignore
various known dynamics in order to achieve a simple nominal model. We call these errors
'the model uncertainties’. The discrepancy between the plant and its model, i.e., model
error, is one of the most important uncertainties in control problems. From a control point
of view, model inaccuracies can be classified into two kinds: structured (or parametric)

uncertainties and unstructured uncertainties (or unmodelled dynamics). The first kind
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corresponds to inaccuracies in the terms actually included in the model, while the second
kind corresponds to inaccuracies in (i.e., underestimation of) the system order for linear
cases and to inaccuracies in the number and the type of terms of the model for nonlinear
cases. Another kind of uncertainty arises from external disturbances. The variations of the
plant environment will affect the plant dynamic characteristics. The disturbances are either
deterministic but unknown, or stochastic, but most of them are not exactly measurable,

hence unmodelled.

2.4.2 Requirements on the Uncertainties: Matching Conditions

The control of systems which contain uncertainties can in general be treated in two
different ways: from a stochastic point of view or from a deterministic one. Where the
deterministic technique is used the uncertainties are described only in terms of bounds, i.e.,
the maximum and minimum values, and no assumptions are made concerning the statistics
of the uncertain parameters. Instead, the uncertainties may satisfy some prespecified
conditions, such as matching conditions, which require that they must lie in the span of the
nominal input mapping g(-).

DEFINITION 2.2. (Matching Assumption)

For the nonlinear uncertain system of the form (2.3), if the uncertainty vector fields

Af(x,y,t) and Ag(x,y,t) satisfy

Af(x,y,t) and Ag(x,y,t)e span{g(x)} (2.8)
it is said that the system has matched uncertainties.
DEFINITION 2.3. (Generalised Matching Assumption)

Assume that the nominal part of the system (2.3) has relative order v, and the
uncertainties Af(x,y,t) and Ag(x,y,t) are smooth vector fields with indices v, and v,. If

min{v,, v, }20-1 (2.9)

then it is said that the uncertainties satisfy generalised matching conditions.
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REMARK 2.1:
¢ By uncertainties satisfying matching conditions, it is meant that they enter the system only through
the nominal input mapping of the system. It is worthwhile to point out that definition 2.3 is a
generalisation of the so-called matching assumption of definition 2.2.
In order to develop the results of the following chapters, we introduce the more
intuitive form on matching conditions made by Barmish et alf?, and some other relaxed

versions made in this thesis.

DEFINITION 2.4. (Matching Conditions)
For the system of the form (2.3), suppose there exist continuous functions, p(x,Y,t)
and q(x,Y,t), such that the uncertain vectors can be expressed as
Ag(x,,)=g(x)-q(x,7,t) (2.10)
Af(x,y,t)=g(x)-p(x,Y,1) (2.11)

The system is then said to satisfy the complete matching conditions.

DEFINITION 2.5. (Incomplete Matching Conditions)

For the system of the form (2.3), suppose there exists a continuous function q(x,7,t)

such that

Ag(x,7,0)=g(x)-q(X,7,t) (2.12)
or p(x,Y,t), such that

Af(x,Y,0)=g(X) p(X,7,t) (2.13)

hold. The system is then said to meet incomplete matching conditions.

DEFINITION 2.6. (Mismatched Uncertainties)

For the system of the form (2.3), if there are no continuous functions q(x,y,t) and
p(x,Y,t) such that (2.10) or (2.11) holds. The system is then said to have mismatched
uncertainties.

In order to achieve desired control, some further conditions must be imposed on the

system uncertainties as follows.
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ASSUMPTION 2.7. (Conditions on the Uncertainty in Input Mapping)

For the nonlinear uncertain system of the form (2.3), if the uncertainty in input
mapping is matched, then it is also assumed that the function q satisfies either of the
following conditions

la(x,7:0l<1 (2.14)
qx,y,t)>0 (2.15)
Otherwise, if the uncertainty in input mapping is mismatched, then it is assumed that either

of the following conditions

L, V-L AgV>O (2.16)
or

L, VI>|Ly, VI (2.17)
holds.
REMARK 2.2:

e In assumption 2.7, it is clear that condition (2.15) can be regarded as the matched form of (2.16),
because if Ag satisfies the matching conditions, then Ag=g-q, and it follows that
L VL AgV=(LgV)2 -q>0, so q>0 holds.

o Similarly, if Ag satisfies the matching conditions, then condition (2.17) becomes

ILgVI>ILAgVI=ILgVI~Iql, implying that Iql<l holds. So condition (2.17) can be regarded as the

mismatched extension of condition (2.14).

2.4.3 A Further Discussion of Matching Conditions and an Example

The matching conditions are the basis of robust control of uncertain systems at
present. Most proposed control techniques for uncertain systems use these conditions. For
clarity of exposition, we use a simple linear system to discuss these conditions further and
make some important observations about the structure of the uncertainties.

Consider the following second order linear system with transfer function
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k 1 S+k2

SO = Gy

(2.18)

The state variable form is as follows

7:(1 _ all 312 Xl bl)
(ij (azl 322)(X2)+(b2 u(®) (2.19)

y(=x,
where if
o=+, (2.20)
B=tuk, (2.21)
then
ay+a,=-0 (2.22)
8158178115, =P (2.23)
a,,b,-2,,b,=k, (2.24)
b=k, (2.25)

Case 1. If a,,=0; a;,=1; k=0, then a,,;=-B, a,,=-a, b,=0, b,=k,, therefore

x (0 1 Yx) (0
(}-{ )_( o -B)(x2)+(k2 u(t) (2.26)
If the open loop pole assumed to be at -, is in fact at -ft;, and if the value of the

numerator coefficient of s is k; rather than k,, the system may be regarded as uncertain and

of the following form

@z(g }B](Q}(]gz)u(t)+(Aocx1?-ABx2)+(A(1)(2)u(t) | 2.27)

where Aa=(a-a), AB=(8—f"), and Ak,=k;-k,.

Clearly, the uncertainties here do lie in the span of the input mapping g(x), so that
the existence of matched uncertainties can be concluded. But in order to deal with such a
system with input mapping uncertainty, more restrictions described in assumption 2.7 must
be placed on the uncertainties, i.e., |q|=|Aky/k,|<1 or Ak,/k,>0 is required. We may satisfy
the condition, Ak,/k,>0, by expressing the input mapping as k,=k,+Ak, as above, and
choosing k, properly such that q=Ak,/k,>0 holds.
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Case 2. If a,,=a,,=a#0, o2 24(B+a?) and k,=1, then

3 -oc-'\/ocz -4(B+a?)

a,, = 5 (2.28)
- w/ 2 _4(B+a2
iy = a2 () (2.29)
b, =k, (2.30)
k
b2=___(k2‘2222 ) (2.31)

Again, uncertainty in one of the open loop pole positions results in uncertainty in f.

Supposing k,=0, we have

R EI S W R i)
where a,;, a,,, b, are nominal values resulting in the nominal eigenvalue -L,, a,}, a,, are
real values resulting in the true eigenvalue -y;, and Aa,;=a;-a;;, Aa,,=a,,-a,, are the
uncertain parameters.

If the assumed open loop pole position -, is correct, but k;<0, this results in a non-

minimum phase control problem. It may be regarded as an uncertain problem and the

following system results

Gl)z(a:ll ;)@;}@)mo+@E;)u(t) (2.33)
where b,=1/a, Ab,=k,, and Ab,=a,,k,/a.
Clearly, in both cases, the uncertainties do not satisfy the matching conditions
given in definitions 2.4, but each case does satisfy the conditions of definition 2.5. It is
therefore said that the system has partially matched uncertainties.

If an open loop pole is not in the nominal position -l,, and non-minimum phase

occurs, i.e., k;<0, on the one hand, the system can be written as

. X .
C’il)z(az? ai)@*@i)“(”+(A2§;)+(Ab2)“<0 (2.34)

where b;=k;, b,=1/a, and Ab,=a,,k,/a. On the other hand, it can also be expressed as
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F( o Jonk e ho{aae Mo @s9
where b,=1/a, Ab,=k,, and Ab,=a,,k,/a.
Although the uncertainties in (2.34) lie in the range of the nominal input mapping
g(x) and generalised matched uncertainties can be concluded, there do not exist functions p
and g such that the conditions (2.10) and (2.11) hold. However, they can be treated as

mismatched uncertainties as in (2.35) if either of the conditions (2.16) and (2.17) given in

assumption 2.7 is satisfied.

2.5 SUMMARY

The matching conditions play a key role in various robust synthesis techniques, and
mismatched uncertainties are much more difficult to deal with than matched uncertainties.

In terms of these definitions, the system (2.3) can be expressed in various forms as follows:

@ Matched Uncertainties:
X(O=FX)+gX)u(t)+gX)- { px,v.0+qx,y,Hu(t) } (2.36)
@ Partially Matched Uncertainties:
X()=F(x)+gX)u(t)+Af(x,y,t)+g(X)-q(x,y,t)u(t) (2.37)
or x(D)=f(x)+g(x)u(t)+g(X)-p(X,7,.H)+Ag(X,y,t)u(t) (2.38)

® Mismatched Uncertainties:
X(t)= f(x)+g(x)u(t)+Af(X,y,t)+Ag(x,y,tu(t) (2.39)
The objective of robust control theory is to find a family of controllers for
nonlinear uncertain Systems, subject to various uncertainties either matched, partially
matched or mismatched, which guarantees that any given system has desired stability

roperties for any initial condition (X,,t,)e R"xR and all uncertain elements y(t)e R".
prop y orto Y
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3.1 INTRODUCTION

GIVEN a control system, the first and most important question about its various
properties is whether it is stable, because an unstable control system is typically
useless and potentially dangerous. Stability properties characterise how a system behaves if
its state is initiated close to, but not precisely at, a given operating point. Qualitatively, a
system is described as stable if, initiating the system somewhere away from, but near, its
desired operating point, implies that it will stay around the point ever after, unless
disturbed, in which case it will, after the effect of the disturbance has passed, tend to the
region of the operating point.

The most useful and general approach for studying the stability of nonlinear
systems is the theory introduced in the late 19% century by the Russian mathematician
A.M.Lyapunov. Lyapunov's work, The General Problem of Motion Stability, introduces
two methods for stability analysis (the so-called linearisation method and the direct
method) and was first published in 1892. The linearisation method draws conclusions
about a nonlinear system's local stability around an equilibrium point from the stability
properties of its linear approximation, while the direct method is not restricted to local
motion, and determines the stability properties of a system by constructing a scalar
function for the system and examining the function's time variation. For over half a
century, however, Lyapunov's pioneering work on stability received little attention outside
Russia. Many refinements of Lyapunov's methods have since been made. Today,
Lyapunov's linearisation method has come to represent the theoretical justification of linear
system theory, whilst Lyapunov's direct method has become the most important tool for
nonlinear system analysis and design. Together, the linearisation method and the direct

method constitute the so-called Lyapunov stability theory.
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The objective of this chapter is to provide the basic mathematical preliminaries for
the development of the main results in the following chapters. To avoid excessive
mathematical complexity, this chapter presents only the major concepts of Lyapunov
stability theory, and some extended results on system stability frequently used in the

analysis and design of nonlinear uncertain systems.

3.2 LYAPUNOV STABILITY THEORY

Basic Lyapunov theory consists of two methods, the indirect method and the direct
method. The indirect method, or linearisation method, states that the stability properties of
many nonlinear systems in the vicinity of an equilibrium point are essentially the same as
those of its linearised approximation. The method serves as the theoretical justification for
applying linear theory to physical systems, which are always inherently nonlinear. In using
the direct method to analyse the stability of a nonlinear system, the idea is to construct a
scalar 'energy-like' function (a Lyapunov function) for the system, and to see whether it
decreases. The power of this method comes from its generality; it is applicable to all kinds
of control systems, be they time-varying or time-invariant, finite dimensional or infinite
dimensional. Conversely, the limitation of the method lies in the fact that it is often
difficult to find a Lyapunov function for a given system, and that sufficient conditions are

not generally necessary conditions.

3.2.1 Concepts of Stability

Some concepts of system stability and instability are now introduced.

DEFINITION 3.1. (Equilibrium Point)

Given a dynamic system of the form
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x(t) =F(x) 3.1
a state x* is an equilibrium state (or equilibrium point) of the system if once x(t) becomes

equal to x*, it remains equal to x* for all future time.

DEFINITION 3.2. (Autonomous and Non-autonomous Systems)

A nonlinear system is said to be autonomous if it does not depend explicitly on
time. Otherwise the system is called non-autonomous.

The fundamental difference between autonomous and non-autonomous systems lies
in the fact that the state trajectory of an autonomous system is independent of the initial
time, while that of a non-autonomous system is generally not. This clearly makes the
stability analysis of non-autonomous systems more complicated than that of autonomous
systems.

DEFINITION 3.3. (Stability(131)
Given a non-autonomous system as follows
x(t)=F(x,t) F(0,t)=0 (3.2)
consider the stability problem in the vicinity of the equilibrium point x=0.

@ If, for any R>0, there exists 1(R,t,)>0 depending only on R and ty, such that

IxOll<r®R,t) = [x@®l<R  Vito (3.3)
then the equilibrium is said to be stable.

@ If x=0 is stable, and r(R)>0 is independent of initial time ty, then the equilibrium
is said to be uniformly stable.

® If x=0 is stable, and there exists r(to)>0 such that

IxO)ll<r(to) = [Ix(®)]I->0 as t—eo (3.4)
then the equilibrium is said to be asymptotically stable.

@ If x=0 is stable, and there exists r>0 independent of initial time to, such that

IxO)l<r = |[x(t)]|-0 as t—eo (3.5)
then the equilibrium is said to be uniformly asymptotically stable.

® If x=0 is stable, and for any initial state x(0)=x,, such that
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[Ix(D)I-0 as t—eo (3.6)
then the equilibrium is said to be globally uniformly asymptotically stable.
® If there exists >0, and also for any R>0, there exists r(R)>0 such that
IxO)ll<cR) = [Ix(Dll<Rett)  Vity (3.7)
then the equilibrium is said to be exponentially stable.
@ If there exists a>0, and also for any r>0, there exists R(r)>0 such that
[xO)ll<c = [Ix®llsR@)et) Vit (3.8)
then the equilibrium is said to be globally exponentially stable.
If, for some R>(0, there exists r>0 no matter how small r is, such that
xO)ll<c = [IX®IR Vit (3.9)

then the equilibrium is said to be unstable.

REMARK 3.1:

e Essentially, stability (also called Lyapunov
stability) means that the system trajectory can
be kept arbitrarily close to the origin by
starting sufficiently close to it. Asymptotic
stability means that the equilibrium point is
stable, and that in addition, states started close
to 0 actually converge to O as time t goes to Fig. 3.1 Concepts of stability

infinity. An equilibrium point which is a— asymptotically stable

b — marginally stable

Lyapunov stable but not asymptotically stable ¢ — unstable

is called marginally stable. Exponential

34

stability means that the state vector of a system converges to 0 faster than a given exponential

function with constants ot and R.

¢ Uniform stability means that the stability property of a system is independent of the initial time t,

so the uniform stability of a non-autonomous system is equivalent to the stability of an autonomous

one.



Chapter 3 Lyapunov Stability Theory 35

e Finally, global stability means that the stability property holds for any initial state x,, i.e., the

whole state space. In contrast, local stability is only concerned with a finite domain around the

equilibrium point x=0.

3.2.2 The Direct Method of Lyapunov

The direct method of Lyapunov attempts to make a statement on the stability of the
equilibrium directly without any knowledge of the solutions of the system. The basic
philosophy of Lyapunov's direct method is the mathematical extension of a fundamental
physical observation; if the total energy of a system is continuously dissipated, then the
system, whether linéar or nonlinear, must eventually settle down to an equilibrium point.
Thus we may infer the stability of a system by examining the variation of a single 'energy-
like' scalar function without requiring explicit knowledge of solutions. This energy
function has two properties. The first is a property of the function itself; it is strictly
positive unless all state variables are zero. The second is a property associated with the
system dynamics; the function is monotonically decreasing when the states vary along the
system dynamics. The first property is formalised by the notion of positive definite

functions, and the second is formalised by the so-called Lyapunov functions.

DEFINITION 3.4. (Positive Definite Function!!4])
If, for any vector X, a scalar continuous function V(x) is such that
V>0  Vxz0; V(0)=0 (3.10)
then it is said to be positive definite (p.d.).
A few concepts, such as negative definite, positive (negative) semi-definite, can be

defined similarly.

DEFINITION 3.5. (Lyapunov Function)
If the function V(x) is positive definite and has continuous first partial derivatives

with respect to x, and if its time derivative along any state trajectory of the system is
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negative semi-definite, i.e.,
V(x)>0 Vx#0 (3.11)
V(x)<0 (3.12)

then V(x) is said to be a Lyapunov function for the system.

THEOREM 3.6. (The Direct Method of Lyapunov)
Assume that there exists a scalar function V(x)
V(x)>0 Vx#0 (3.13)
with continuous first partial derivatives. Then, Vx#0
@ if the time derivative
V(x)<0 (3.14)
it follows that the equilibrium at the origin is stable;
@ if the time derivative
V(x)<0 (3.15)
and
V(X,t) o  as [[x][—ee (3.16)

then the equilibrium at the origin is asymptotically stable in the large®.

REMARK 3.2:

e Many Lyapunov functions may exist for the same system. For instance, if V is a Lyapunov
function for a given system, so is V'=b-V*, where b is any strictly positive constant and a is any
scalar (not necessarily an integer) greater than or equal to one. More importantly, for a given
system, a specific Lyapunov function may yield more precise results than other choices.

e It is important to realise that the theorems of Lyapunov are all sufficiency theorems. If for a
particular choice of Lyapunov function candidate V, the conditions on V are not met, one cannot
draw any conclusion on the stability or instability of the system.

e  Usually, Lyapunov stability theorems have local and global versions. The local versions are

concerned with stability properties in the vicinity of the equilibrium point and usually involve a

®  1In the large means that the domain of definition is the entire state space.
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locally positive definite function, whilst the global version satisfies all the conditions of the local

versions, and needs additional requirements on the function, i.e., V(X)—oo as lIxll—oo.

THEOREM 3.7. (Necessary and Sufficient Conditions for Exponential Stabilityl])

Given a system of the form (3.2), if F(x,t) has continuous and bounded first partial
derivatives with respect to x and t, for x in a certain ball By centered at the origin, and all
t20, then the equilibrium point at the origin is exponentially stable if and only if there
exists a Lyapunov function V(x,t) and some positive constants v;, V,, V,, Vv, such that for

xe By, and V=0

VIXIP S V(x,t) <v,|Ix]|? (3.17)
V(x,t) <-V;[x][2 (3.18)
oV
II§||SV4IIXII (3.19)
REMARK 3.3:

* In this theorem, the v/lixll can be replaced by class-k functions® v(lIxll), and the system is still
globally exponentially stable.

e  The theorem provides us with necessary and sufficient conditions for a Lyapunov function to exist,
so that it can be used as a converse theorem to examine the existence of a Lyapunov function. This
means that, for an exponentially stable system, if there are class-k_ functions v,, v,, v,, v,, then a

Lyapunov function which satisfies conditions (3.17)~(3.19) exists.

3.2.3 Existence and Construction of Lyapunov Functions

All theorems of Lyapunov theory make a basic assumption; an explicit Lyapunov
function is somehow known. The question is therefore how to find a Lyapunov function

for a specific problem. Yet there is no general way of finding Lyapunov functions for

@  DEFINITION (class-k.. function):
If v(+) is a strictly continuous non-decreasing function, and satisfies v(0)=0 and limv(g)=co, then it can be written
as v(-)e k. and called a class-k.. function.
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nonlinear systems. This is a fundamental drawback of the direct method. Therefore, faced
with specific systems, one has to use experience, intuition, and physical insights to search

for an appropriate Lyapunov function.

THEOREM 3.8. (Lyapunov Function for Linear Time-invariant Systems!134])
Given a linear system of the form x=Ax, a quadratic function
V(x)=xPx (3.20)
is a Lyapunov function, if P is a symmetric positive definite matrix satisfying
AP+PA=-Q (3.21)
where Q is a symmetric positive definite matrix.
Obviously, if P is positive definite, then V(x)>0 Vx=0, and it follows that
V(x) = XPx+x"Px = -x"Qx<0 Vx0 (3.22)
if Q is positive definite. The global asymptotic stability of the linear system is therefore
guaranteed. One way of constructing a Lyapunov function is to derive P from a chosen
positive definite matrix Q. Any positive definite matrix Q can be used to determine the
stability of a linear system. A simple choice of Q is the identity matrix.
In some circumstances, instead of choosing Q to be the identity matrix, a special
form of matrix P may be assumed such that the chosen Lyapunov function can meet certain
requirements. The following theorem states that a positive definite diagonal matrix P

exists.

THEOREM 3.9. (Lyapunov Function with a Diagonal Matrix P)
For a linear system x=Ax, a positive definite diagonal matrix P satisfying (3.21)
can be found

@ if A is generally of the form

ap 42 . ... A
dy1 A . ... Ay

A=| | ) (3.23)
4y Ao ., .. A4

with all the diagonal elements non-zero; or
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@ if A is of controllable canonical form

°1 0

A=| : - (3.24)
0 -1
a; a . .. .a,
a transformation § can be defined such that a new system with the state matrix
A=3AJ" (3.25)

can be obtained, where all the diagonal elements of A are non-zero. In both cases, a
Lyapunov function of the form (3.20) can be defined.

Actually, a transformation of the following form

ﬂcl
T, T, O
J=| . . (3.26)
Tp Ty, oo T,
with inverse of the form
Tl
LT T O
3= Lo (3.27)
O ..
T
can be defined, such that a matrix of the form (3.24) can be transformed into
5'11 512 O
A=3A3"'= a?‘ = (3.28)
. ﬁn-l.n
By ceeeeeees A

where all diagonal elements &0 (i=1, 2, - - -, n) by properly arranging the elements of 3.
If the elements of 3 are chosen to be
T=3T,/2, (=1,2,- -, n-1) (3.29)
where T, may be any positive constant, a diagonal matrix P can then be defined as

P;=-Q;/28; (i=1,2,--,n) (3.30)
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where Q is a symmetric positive definite matrix, whose diagonal elements are given by
L=-=xQ. (i=1,2, -, n-1, j=i+l) (3.31)
i
with Q,, a positive constant, such that P is positive definite and satisfies the Lyapunov
equation (3.21).
The following example demonstrates the application of the theorem.

Given a 5%-order linear stable system with the state matrix of the form

01000 o 1 0 0 0
sf00 100l 0o 0o 1 0 o0
Slooo 1ol o o o 1 o0
0000 1 o 0 0 0 1

a a, a; a, as -1800 -2250 -1168 -293 -32

define a transformation of the form (3.26) with the inverse (3.27) as follows

1 00 00 vt, 0 0 0 ©
7T, 0 00 1, 1, 0 0 0
3=|7t, 17, 1T 0 0 S'=| 0 -yt Y1z 0O O
7T T, T, O 0 0 -ty Yty O
T T T T, T 0 0 0 -1/ts 1/Ts

The original state matrix can be transformed into the following form

4, 4, 0 0 0
1 8y 8 0 0
SAS1=|d3 &3 33 d34 O
g A A3 Ay Ay
451 ds7 83 dss  Ass

>
1l

T/ T/

T/ T/l
= -1/ T/-T/T

T/ T/-T/T3

U@/ a/T) T/ T-T B+ (ay/T—a3/13)

0 0 0

To/T3 0 0

To/T3-Ta/ T4 T3/14 0
T3/ Ta/T4-T4/Ts T4/Ts

T/ -Ta/ T+ (3/T3—Au/T4)  T3/Ta-Ta/TsH(au/T4—a5/15)  Ta/Ts+as

It is possible to choose T, (i=1,2,3,4,5) such that the elements in the bracket of the above matrix are zero

4. 5 85 5.5 4 4 &
T L T, T T T Ty T
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It follows that, for a positive constant T (here let 1,=1)
T4, = a4-T5/a5=9.156
T3 = a3T4/a, = a3 /a,xa, T /ag = a,-T/as = 36.500
T,= 8,15 /a3 = 4, /a;XayTs/as = 2,15 /a; = 70.313
T,=a,T,/a, = a,/ayXa,Ts/ag= a,-Ts/as = 56.250
The transformation is therefore obtained as follows
56250 O 0 0
56.250 70.313 0 0
8 =(56.250 70.313 36.500 0

56.250 70.313 36.500 9.156 O
56.250 70.313 36.500 9.156 1.000

0
0
0

0018 0 0 0 0
-0.014 0014 0 0 0
3'=| 0 -0.027 0027 0 O
0 0 -0.109 0.109 O

0 0 0 -1 1

by which the original system can be transferred to the following form

U T 0 0 0
-11/12 TI/T2-T2/T3 TQ/T:; 0 0
A=3A31= -11/"52 ’C1/T2-T2/’C3 TQ/T3-T3/T4 T3/T4 0

T/t T TfTs TfT3-Ta/Ts TafTs-TafTs  TalTs
T/ W/l T/13-T3/Ts T3/T4-TafTs TalTs+ay

d; 4y 83 0 0
=18 8y &3 g O
ap Q& &3 Ay A
4 8p 83 Ay A5

-0.800 0.800 0 0 0
-0.800 -1.126 1.926 0 0
=[-0.800 -1.126 -2.060 3.986 0
-0.800 -1.126 -2.060 -5.170 9.156
-0.800 -1.126 -2.060 -5.170 -22.874

From the results, all the diagonal elements of the above matrix A are non-zero. It is now possible
to define a positive definite diagonal matrix P such that the Lyapunov equation (3.21) is satisfied.

According to (3.31), let Q;,=3. Then we have

—_ a,,-8,, —_ - 584, —
Q22_ = xQ11 =4.224 Q33_ —532.(,]22 ><Q22- 13.212
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_ A58, _ __ A58 _
Quy=— 25 Qs =64.163 Q5= 5755 xQy = 502,117

Then, according to (3.30), the diagonal matrix P can be obtained

1.875 0 0 0 0
0 1.875 0 0 0
P=[ O 0 0 0
0 0 3%07 6.205 0
0 0 0 10.990

Such a matrix satisfies the following Lyapunov equation

2a,,Py, )P 1 +a;, Py 4;1P33 a;1Pay ;1 Pss

aoP1+a; Py 23Py APy t+iyyPs3 poPus aPss

A'P+PA = ay1Ps3 Ap3Pay+yP33 2833P33 34P33+833P44 d33Pss
a1 Py APy 34P33+d33P 44 2844P 4 845P44+844P55

a11Pss aPss d33Pss A45Pag+844Pss 2455Pss

-3.000 0 -2.565 4964  -8.792
0 -4.224 0 -6.990 -12.379
=|-2.565 0 -13.211 0 -22.640
-4.964 -6.990 0 -64.163 0
-8.791 -12.379 -22.640 0 -502.117

=-Q

where it is clear that Q is positive definite with eigenvalues: A,=1.6967, A,=3.3675, A,=12.6755,

A,=65.3476, A;=503.6378, and hence P can be used as a candidate Lyapunov function.

THEOREM 3.10. (Lyapunov Function for Nonlinear Systems!151)

For a given function

x=fx), fl0)=0

if
VF(x)+ Vf(x)<0 (3.32)
a Lyapunov function for this system is then given by
V) =f1(x)-f(x) (3.33)
Proof: From definition (3.33), obviously
VX)=fT1x) fx)=1fx)P>0  Vx#0 (3.34)

V(x) =f (%)~ fx) +F (%) F(x)
=f1(x) (Vf+V /) f(x)<0 (3.35)0
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3.2.4 System Analysis and Control Design Based on Lyapunov Functions

Lyapunov functions are primarily used for stability analysis of systems, but
sometimes they can provide an estimate of the transient performance of stable systems. In
particular, they can allow estimation of the convergence rate of linear or nonlinear systems

which are asymptotically stable.

THEOREM 3.11. (Convergence Rate Estimation!1])

If, for a given system, a Lyapunov function V(t) can be found that satisfies the

following inequality

V(t)+0-V(1)<0 (3.36)
then

V(B)LV(0)-e™ (3.37)
The Lyapunov function V(t) can be guaranteed to exponentially converge to zero at the
convergence rate .

The above theorem implies that, if V(x) is a non-negative function, the satisfaction
of (3.37) guarantees the exponential convergence of V(x) to zero. The reciprocal of o can
be regarded as the largest time constant of the system in some region in the state space. In
using Lyapunov's direct method for stability analysis, it is often possible to manipulate
V(t) into the form of (3.36). In such a case, the exponential convergence rate of the state
may then be determined. For instance, let us consider a linear system. The Lyapunov

function is V(t)=x"Px, and the time derivative is

V(t)=-x‘QxS-Kmin(Q)xTx=-Mk (P)x'x <

lmin(Q) _
A‘max(P) max V(t) B -a.V(t)

= xmax(P)
then V() <V(0)-e™
where a=A_;,(Q)/A,,.<(P). This, together with the fact that V(t)=x"Px>\,,;,(P)x"x, implies

that
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I S\VO)/ A (P T (3.38)

i.e., the state x converges to the origin at a rate of at least ¢//2.

In using Lyapunov's direct method for system analysis, it has been implicitly
assumed that certain control laws have been chosen for the system, and the problem is to
justify the stability of the given system. However, in many control problems, the task is the
converse; that is, to find an appropriate control law for a given system, such that the closed
loop system is stable.

There are basically two ways of using Lyapunov's direct method for control design,
and both involve trial and error. The first technique hypothesises one form of control law
and then requires the finding of a Lyapunov function to justify the choice, while the second
technique, conversely, requires hypothesising a Lyapunov function candidate and then
finding a control law to make this candidate a true Lyapunov function.

The controller design methods to be described in the following chapters are all

based on the second usage of Lyapunov's direct method.

3.3 EXTENSION OF THE LYAPUNOV METHOD

There are some systems for which the desired state of a system may be unstable in
the sense of Lyapunov, and yet the system may behave sufficiently well near this state that
this performance is acceptable, or the output of the system may not converge to the origin,
but is nevertheless bounded. The boundedness of all solutions of a system is also a kind of
stability, and of great importance in practice, particularly for robust control of nonlinear
uncertain systems. These investigations are basically independent of Lyapunov theory, but
the analogy to Lyapunov's direct method is obvious, and is emphasised by the fact that the
boundedness of the states can be interpreted in the sense of a stability property of the

trivial solutions.
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As a simple example of an investigation of boundedness, La Sallel?] studies van der
Pol's equation to show that near the origin the damping is negative and the origin is
unstable, but by selecting the parameters properly any degree of boundedness desired can
be obtained.

Barmish et all’l discuss another very simple example

x(t) =x(t)+y(t)+u(t)

with x(t;)=1 and uncertainty y(t) such that ly(t)I<1. Suppose the control is selected as a
linear feedback of the form u(t)=kx(t) with k<-1. Then, if a state x(t)<-1/(1+k) is reached,
an admissible uncertainty y(t)=1 results in the final state away from zero. The system is
therefore not asymptotically stable. Although uniform asymptotic stability cannot be
guaranteed, it is nevertheless possible to drive the state to an arbitrarily small

neighbourhood of the origin. A kind of stability is then achieved.

3.3.1 Boundedness

Stability and even asymptotic stability by themselves may not be suitable
descriptions of the stability properties of a practical system. Consider now stability in the
sense of Lagrange, or more simply boundedness, which has been commonly used in robust

stability control.

DEFINITION 3.12. (Boundedness!2571)
Consider a system
x(t) =F(x,t)
with any solution x(-):[to,t,]—=R", X(t5)=x,, and any initial condition (x,,t))e R"xR
@ If, for a given number >0, there exists a constant R(r,t))>0 depending on r and
initial time t, such that
Ixliss = IIx@IsSR(r,ty) Vit (3.39)

then it is said that x(t) is bounded.
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@ If, for r>0, there exists a constant R(r)>0 depending only on r such that
Ixpllsr = [Ix(D)[[<R(T) Vit, (3.40)
then it is said that x(t) is uniformly bounded.
@ Given >0, if there are positive numbers d and T(r,t,) which may depend on r
and t,, such that
lIxollsr = [Ix(®li<d Vit +T(r,t) (3.41)
then it is said that x(t) is ultimately bounded with the bound d.
@ If the system is ultimately bounded, and T can be chosen to possibly depend on r
but not on t,, such that
[xO)lsr = |x@[sd Vi2ty+T(r) (3.42)
then it is said that x(t) is uniformly ultimately bounded with the bound d.
REMARK 3.4:
e The concept of boundedness differs from the
traditional Lyapunov-type stability. Lyapunov's
theorems draw conclusions about system stability

from the signs of the function V(t) and its time

derivative V(t) in the neighbourhood of the origin,

Fig. 3.2 The concept of boundedness

whilst this method applies this idea to the case
where the signs of the function V(t) and its time
derivative V(t) are considered not in the neighbourhood of the origin but exterior to a certain
hyper-sphere. If it can be concluded that all the state trajectories penetrate those hyper-surfaces on
which V(t) is constant from the outside to the inside, then consequently, all solutions with bounded
initial states are bounded themselves for sufficiently large time t. These results are analogous to
Lyapunov's direct method in that the boundedness of the states can be interpreted in the sense of a
stability property of the trivial solutions.

e In contrast to marginal stability, where given a number R>0 there exists a number r(R)>0 such that

lIx(to)ll<r = lIx(t)II<R Vt>ty, boundedness is defined as: given a number r>0, there is a R(r)>0 such
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that lIx(tp)ll<c = lx()IKR Vt>ty. This difference could be very significant in describing the

stability properties of a system.

To characterise the different types of boundedness by means of Lyapunov's direct
method, a function V(x,t), which has all the aforementioned properties, is introduced. In

what follows, we also call the function V(x,t) a Lyapunov function.

THEOREM 3.13. (Boundedness!?!)
A domain € containing the origin is defined as
Q: [x®I<R  Vitt, (3.43)
Assume that, throughout the outside of , a Lyapunov function V(x,t) with the property
vyl S V.0 < vy(lIxll) (3.44)
exists, where v, and v, are continuous positive increasing functions.
If the time derivative of the Lyapunov function is such that
® V(<0 (3.45)
it is said the solutions are uniformly bounded; or
® VO =<-v(ixi) (3.46)
where V(||x|[) is a positive continuous function, it is said the solutions are uniformly

ultimately bounded.

3.3.2 Practical Stabilisability

As already mentioned, in using the direct method of Lyapunov for robust control
design, a candidate Lyapunov function is hypothesised and then a control law is developed
to make this candidate a real Lyapunov function, so that the closed loop system is

practically stable. The concept of practical stabilisability is now introduced.

DEFINITION 3.14. (Practical Stabilisability!’!)

A nonlinear uncertain system of form

x(t) =F(x,Y,t)+G(x,y,t)u(t)+E(t) (3.47)
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is said to be practically stabilisable if, given any d>0, any admissible uncertainty y(-)e R,
and any initial condition (x,,t))e R"XR, there exists a control law u(t):R"xR—R, for which
the following properties hold:

® Existence of solutions: the closed loop system possesses a solution

x(): oty ] =R X(to)=X,

@ Uniform boundedness: given any r>0, any solution x(-): [t;,t;]=R", x(t5)=x,

there is a constant 0<d(r)<ee such that
Ixpllsr = IIx()I<d@) Ve [ty,t] (3.48)

® Extension of solutions: every solution x(-) can be continued over te [ty,o0);

@® Uniform ultimate boundedness: given any d'2d, any r>0, and any solution
x(*):[tg,t; 1R, x(t5)=x,, there is a finite time T(d',r)<eo, possibly dependent on r but not on
to, such that

Ixllsr = lx@®d" Vit +T(d'r) (3.49)

® Uniform stability: given any d'>d and any solution x(-): [t,,t,]—>R", X(t5)=x,,

there is a constant r(d')>0, such that
Ixpll<r(d) = lx(®li<d' Vit (3.50)

The problem then is to find a family of controllers for the nonlinear uncertain

system, which guarantees that the system is practically stabilisable for any initial condition

(Xpotg)€ R™R and all uncertain elements y(t)e R".

3.4 SUMMARY

Stability is a fundamental issue in system analysis and control design. Various
concepts of stability must be defined in order to accurately characterise stability in
nonlinear uncertain systems. Since analytical solutions of nonlinear differential equations

usually cannot be obtained, Lyapunov stability theory is of major importance in system
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analysis and control design. However, asymptotic stability may not be applicable to some
real systems, especially for some nonlinear systems in the presence of uncertainties.
Practical stability is therefore defined and often used in robust design. Although slight
differences exist theoretically between the two definitions, the procedure for use is the
same, i.e., construction of a Lyapunov function and examination of its time derivative. The
direct method of Lyapunov is applicable to essentially all dynamic systems, but it suffers
from the common difficulty of finding a Lyapunov function for a given system.

The controller design methods to be described in the following chapters are all
actually established by constructive use of Lyapunov's direct method, and based on a
fundamental concept: a system admits a control law such that the Lyapunov function for
the nominal system (i.e., the certain part of the system) is also a Lyapunov function

candidate for the uncertain system (i.e., the overall system with uncertainties).
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4.1 INTRODUCTION

AS pointed out in chapter 1, the objective of control design can be stated as follows:
given a physical system to be controlled and the specifications of its desired
behaviour, construct a feedback control law to make the closed loop system display the
desired behaviour. In pure model-based nonlinear control, such as the basic feedback
linearisation approach, the control law is based on a nominal model of the physical system.
How the control system will behave in the presence of model uncertainties is not clear at
the design stage. In robust nonlinear control, such as the techniques described here, the
controller design is based on consideration of both the nominal model and some
characterisation of the model uncertainties (such as knowledge of the load to be picked up
by a robot). Robust nonlinear control techniques have proven very effective in a variety of

practical control problems.

Although Lyapunov's direct method originated as a method of stability analysis, it
can be used for other problems in system control. One important application is the design
of various control strategies, and another is justification of system robustness when
uncertainty is considered. The idea is to formulate a scalar positive function of the system
states, and then choose a control law to make this function decrease. A nonlinear control
system thus designed will be guaranteed to be stable despite the presence of some uncertain
but bounded elements. Such a design approach has been used to solve many complex
design problems, for instance, in robotics and aircraft control.

Feedback linearisation is an approach to nonlinear control design which has
attracted a great deal of research interest in recent years. The central idea of the approach is
to algebraically transform nonlinear system dynamics into a (full or partial) linear

equivalent one of a simple form so that well-known and powerful linear control techniques
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can be applied to complete the control design. More precisely, the nonlinearities in a
system can be cancelled by properly chosen nonlinear feedback so that the closed loop
dynamics are of linear normal form. The principle of feedback linearisation and the
associated mathematical concepts from differential geometry are briefly reviewed in
appendix A.

This chapter provides detailed discussion of robust stability control design for SISO
nonlinear uncertain systems based on the feedback linearisation technique. Section 4.2
presents the major results of this chapter, in which the technique proposed by Barmish et
al? is first introduced. This is based on matching assumptions. Subsequently, an improved
version is proposed where only matched uncertainties are considered, and then step by
step, the technique is extended to systems with partially matched and then mismatched
uncertainties. Whatever the uncertainties are, a unified result is achieved. Section 4.3 gives
a brief description of system stability properties under the robust control laws developed.
For illustrative purposes, a second order system is used to demonstrate the robustness of
the techniques and simulation results are included in section 4.4. Finally, in section 4.5, a

brief summary is made of the proposed techniques.

4.2 CONTROL DESIGN BASED ON FEEDBACK LINEARISATION

Nonlinear systems in the presence of uncertainties are now considered. In general,
feedback linearisation relies on the system model both for the controller design and for the
computation of a new set of states. If there are uncertainties in the model, e.g.,
uncertainties regarding the values of parameters, they will cause errors in the computation
of both the new state vector and of the control input. Robust control is now attempted by
applying the aforementioned feedback linearisation technique to nonlinear systems with

uncertainties of the form
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x(1)=F(x,v,.)+G(x,y,Hu(t)

y(H=H(x)

where v is a lumped uncertain element. Let ¥ denote the nominal value of y. The following

4.1)

control strategy is proposed.
®© Transforming the original nonlinear system into a new one of linearisable
nominal form;
@ Designing a control law to linearise the nominal nonlinear system;
® Placing the cloSed—loop poles of the linearised nominal system at prescribed
positions;
@ Compensating the effect of uncertainties.
Thus, according to the feedback linearisation theory in appendix A, a coordinate
transformation
=y(x7) <  x=ylzy)
is defined with the choice of
Vi (%, 7)=LETH(x) (k=1,-,)
where v is the relative order. Such a transformation leads to a system with the following
external dynamics in the new coordinate z:

z(t)=f(z)+g(Z)u(t)+Af(z,y,t) +Ag(z,y,H)u(t)

4.2)
y(=h(z)
where the kth entries of vectors f and g are
f (@)+Af (z,7,)=L{Hoy1(2,7) (4.3)
B (k=1,----,0)
2 (2)+Ag (Z,y,)=L L% Hoy1(2,7) 4.4)

where the certain part of the system, whose structure and parameters are precisely known,
is represented by f, g and h, whilst Af and Ag represent the uncertainties in the state and
input mapping respectively.

This system is now in input-output linearisable form, and the feedback linearisation

technique is applicable to the certain part.
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In what follows, it is assumed that the given nonlinear uncertain system is of, or has
been transformed to be of, the input-output linearisable form. Furthermore, it is also
required that the given nonlinear system is asymptotically minimum phase if the relative
order v<n, i.e., the internal dynamics of the system are asymptotically stable, so the
stability of the internal dynamics is assumed.

In accordance with the stability theory described in chapter 3, the following

definition, which will be employed to develop all the results in this section, is introduced.

DEFINITION 4.1. (Stability Margin)
For a given nonlinear system
2(t) =f(z,u) =f(2) + g(2)u(t)

if a state feedback u(t) can be found such that the following inequalities

v,(llzlh) £ V(z) <v ,(llzl) 4.5)
V@) .
LV= aiZ) z<v(lzl)  (Vz#0) (4.6)

hold, where V(z) is the Lyapunov function of the closed loop system, and v;(-) satisfying

vi(0)=0 4.7
, (=1,2)
gg‘gvi(g) =oo (48)

are strictly increasing continuous functions. Then the closed loop system is said to have
stability margin v.

The theorems described in this section enable us to achieve our aims with only very
weak conditions on the nature and size of the uncertainties. The condition on the size is
only that the uncertainties are bounded and that the bounds are known. No limit is placed
on the size of the bounds. The theorems also enable us to take advantage of any matching
which may be present. They involve the extension of the Lyapunov function for the
nonlinear, but now linearised, certain part of the system, to the overall nonlinear uncertain
system. The control signal will generally be of the following form

u(t)=u, (t)+u,(t) (4.9)
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where
- 2‘)’, o, - Lkh(z)
u (t) — k=0 1
1 V-
ocuoLgL ¢ h(z)

(4.10)

is state feedback obtained according to feedback linearisation theory with v(t)=0, that
causes the closed loop system of the certain part of (4.2) to achieve a definite stability
margin, and
uy(t) =-p(2)-L,V(2) (4.11)
is used to compensate for any uncertainty in the system.
A simple identity, which will be used throughout the rest of this section, is now

introduced

L2 b @Y @ )
af — b =15~ 2 a§—2b <1p (4.12)

4.2.1 A Preliminary Technique

For completeness, the technique developed by Barmish et all?! is described without

proof.

THEOREM 4.2. (Matched Uncertainties: Case 1)

Consider a nonlinear uncertain system, incorporating some bounded uncertainties
with matching conditions (2.10)~(2.11) of definition 2.4, and also condition (2.14) of
assumption 2.7, rewritten as follows

la(x,y,bl<1 (4.13)
of the form
2 =f(2)+g@uO+2@)- {pz .+ y.Hu® } (4.14)
Suppose the uncontrolled nominal part of the system, z(t)=f(z), is stable or pre-stabilised.
Then the system (4.14) is stabilisable if the input is of the form
u(t)=-p(2)-L,V(2) (4.15)
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where, for a Lyapunov function V(z) defined for z=f(z),
2

p(z)2 7 (Cz'lefpV) (T-0y >0 (4.16)
holds, where
LVa E)_V g (4.17)
g’ <oz
LV a4 a—V°f (4.18)
=0z

are the Lie derivatives of the Lyapunov function V(z) with respect to g and £, and

, & P (4.19)
o & e laE Y0l <1 (4.20)

are the bounds of the uncertainties in the system (4.14), and
C.<l;
either C;#0 or C,#0;

C,#0 whenever %ig[}[mg/ L;V] does not exist;

C,/(1-C)<(voviov,)(d).

Proof: (See reference [2]) d

4.2.2 An Improved Technique with Matching Assumption

THEOREM 4.3. (Matched Uncertainties: Case 2)
Consider a nonlinear system, incorporating some bounded uncertainties with
matching conditions (2.10)~(2.11) of definition 2.4, of the form
2(t) = F(z,y,t,0) =f(2)+g()ut)+2(@) { p(z,7.t)+q(z.v,Hu(t) } 4.21)
as well as condition (2.15), i.e.,
q(x,Y,t)>0 (4.22)
Suppose the nominal system, i.e., the certain part of (4.21), denoted as f=f(z)+g(z)u(t), is

stable under the feedback of (4.10), and the closed loop system has stability margin v, then



Chapter 4 Robust Stability Control (I) — Scalar Input 58

the overall nonlinear system (4.21) is also stabilisable if the control is as follows
u(t) =u, (D+u,(t) =u, (1) —p(2)-L,V(2) (4.23)

and if a Lyapunov function V(z), for z=f+gu,, can be found such that

1
p(z) Zm ((0}2] + (Dq°l]%) >0 (4.24)

holds, where, for z#0

oV

LV2 58 #0 | (4.25)
oV = dV

LV 237 p= 2 (rguy) <zl (4.26)

are the Lie derivatives of the Lyapunov function V(z) with respect to g and f+gu,, and

0, & P (4.27)
o, & A YD) (4.28)

are the bounds of the uncertainties in the system (4.21), and C,, C, are any constants

satisfying
C<l (4.29)
either C;#0 or C,#0; (4.30)
C,#0 whenever li_r}x(l)[(mﬁ + 0, u})/L,V] does not exist; (4.31)
-C,v<C,<(1-Cyv 4.32)
C,/(1-C)<(voviov,)(d) (4.33)

Proof: A Lyapunov function for the linearised nominal system can be defined by
V(z)=zPz>0 Vz#0 and V(0)=0 (4.34)
where P is the solution of the Lyapunov equation A'P+PA =-Q, and Az=f+gu, is obtained
by applying the state feedback (4.10) to linearise the nominal part of (4.21). Q ié a positive
definite symmetric real matrix.
If the closed loop system has stability margin v, i.e., conditions (4.5), (4.6) of

definition 4.1 hold, then for the system with uncertainties, let
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oV
LpV=-

Z= (L¢V+L,V-u)+L, V-u,+L, V-(p+q-u) (4.35)
Considering (4.26), then

LpV=LV+{L,V-u,+L,V-p+L,V-q-u;+L,V-q-u,}
Using (4.11), for g>0,

LpV=LVHL,V-p—p-LV)*+q-[L,V-u,— p-(L,V)?]}

B 2 qui u?\2
LfV+{4 132(pLV ) I 112(LV 2p)}

(o .
<LV +—§+J—1 (4.36)

Here o, and o, are defined by (4.27) and (4.28).
Note the identity (4.12) has been used here. For properly selected C, and C,,
C,-C L V>0, let

W2 v}

Then (4.24) holds, and so
L,,VstV+C2—C1LfV=(1—Cl)LfV+C2 (4.38)
If C, and C, are chosen according to (4.29)~(4.33), then, bearing in mind that LfV<-v, it

follows that

C,-C,LV>0 (4.39)

LV<-(1-C)v(lzl) +C,<0 (4.40)
hold. The stability of the closed loop system of (4.21) is guaranteed. O
REMARK 4.1:

e  Note that this is different from theorem 4.2, in that the condition Iql<1 has been replaced by q>O0.
Although the condition appears a restriction on the system, it can be met by properly expressing

g(x) and Ag(x,y,t) when decomposing uncertain systems. On the other hand, theorem 4.3 is a great
advance over theorem 4.2 in that it provides us with an important basis from which to develop

more general techniques.
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e In(4.24), both ®? and w,u? are included in p(z). It follows that the technique compensates for the
effect of the uncertainty in thé state matrix Af as well as uncertainty resulting from the effect of
u, () acting through Ag, and stability of the closed loop system can be guaranteed for any bounded
uncertainties.

e  Compared with the approach of Barmish ez al where © <1 (and w «1 is highly desirable), it should
be noted that the factor (l—wq) has been removed from the denominator of p(z). This is of great
importance, because p(z) becomes large when _ tends to 1 if p(z) is dependent on such a term.

Here this is not so and ®, may even be equal to or greater than 1.

4.2.3 Control Techniques with Incomplete Matching Assumption

THEOREM 4.4. (Partially Matched Uncertainties: Case 1)

Consider a nonlinear system with mismatched uncertainty in the state mapping, but
matched uncertainty in the input mapping, i.e., the condition (2.12) of definition 2.5 is
satisfied. The system is of the form

() =F(z,y,t,u) =f(2)+g(2)u(t)+Af(z,Y,t)+2(z)-q(z,Y,t)u(t) (4.41)
The uncertainty in the input mapping is assumed to satisfy condition (2.15), i.e.,

q(x,Y,t)>0 (4.42)
Suppose the nominal system, i.e., the certain part of (4.41), is stable under the feedback of
(4.10), and the closed loop system has stability margin v. Then the system (4.41) is
stabilisable by feedback of the form

u(t) =u, () +u,(t) =u,() —p(2)-L,V(z) (4.43)
if a Lyapunov function V(z), for f=f+gu;, can be found such that

o1 Q2
P23, ) T VE

+ (oq‘ufJ >0 (4.44)

holds, where LgV;tO and LfV are defined by (4.25) and (4.26), and

n 10V oV
~ Y| max gV
s ék% azk| Y0e Az Y012 ) 3z ‘O)Af (4.45)
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o, & M3 |q(z,y,p) | (4.46)

are the bounds on the uncertainties, and C,, C, are given by (4.29)~(4.33).
Proof: Define a Lyapunov function V(z) of form (4.34) for the linearised nominal
system. If the closed loop system has a stability margin v, i.e., conditions (4.5) and (4.6)

hold, then for the system with uncertainties let

oV .
LV & = 2= (LV+LV-u Ly VAL V-uptL, Veu (4.47)

From partial matching condition (2.12)

LpV =L V+LsV+L, V-u,+L,V-q-(u;+u,)
Let

p=p"(LV)>0 (4.48)
where p">0. Then

u,(t)=-p"(LyV)*-L,V (4.49)
so that

LV =LV+{ Ly V=p"(Lp V)2 LV P+ (Ly Vi —p (L V)2 -(LV)?)

1 , 1 2
= LfV+ { 4p"(LgV)2_ p -(LgV)Z(LAfV —Zp"(LgV)Z)

W ML,V
+q[4p"(LAfv)2 u%

u? 2
(LgV-ul— m) ] }

where, once again, identity (4.12) has been used. Taking into account condition (4.42), it is

then possible to write

1 +O uf
4p"(L,V)* 9 4p"(LyV)?

L,VSLV+ (4.50)

Selecting C, and C, according to (4.29)~(4.33) such that Cz—ClLfV>0, and letting
1 u?
- - —_—1l .-

then

' 1 1 u%
PE3C,CLY) ((LgV)Z +0, (LAfv)z) (4.51)
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and so

1 LV
p(2)=p"(LyV)*2 4(C2_C1Lfv)(((LA§,))2 + Oy u) (4.52)

Because

oV 0 19V
" |, max _
LAfvs| aZAf(z,y,t)Isk%Iazkl IAf (z 7,0 < AL (z7,0)| = Qe

Iaz I YO RY

if p(z) is chosen to satisfy (4.44), it follows that inequality (4.52) holds, and
LpV<(1-C)LV +C,<-(1-Cv(llz|)+C, (4.53)

for all (z,t)e R"xR. It may therefore be concluded that, if C, and C, are chosen according to

(4.29)~(4.33) and bearing in mind that L,V<-v, then

C,-CL V> 0 (4.54)
LzV<-(1-C)v(llzl)+C, <0 (4.55)
Therefore the system (4.41) has been stabilised. O

THEOREM 4.5. (Partially Matched Uncertainties: Case 2)

Consider a nonlinear system with matched uncertainty in the state mapping, but
mismatched uncertainty in the input mapping, i.e., the condition (2.13) is satisfied. The
system is of the form

2(t) =F(z,y,t,0) =f(2)+g(2)u()+g(2) p(z.V,t)+Ag(z v, u(t) (4.56)
It is also assumed that the mismatched uncertainty satisfies condition (2.16)

L,V-L,, V20 (4.57)
Suppose the nominal system, i.e., the certain part of (4.56), is stable with the control
represented by (4.10), and has stability margin v. Then the system (4.56) is stabilisable by
the control

u(t)=u,(t) +u,(t) =u,(t)—p(2)-L,V(2) (4.58)

if a Lyapunov function V(z), for f=f+gu,, can be found such that

1 10,
P27, CLV)( > L,V 1)>0 (4.59)

holds, where LgV and LfV are defined by (4.25) and (4.26), and
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N | [CA 2] (4.60)

QAgékg‘ Iaz ImemlAgk(z,y,t) 12 ’ oz | “8e (“-61)

are the bounds of the uncertainties in the system. C,, C, are chosen according to conditions
(4.29)~(4.33).
Proof: The procedure of proof is similar to that of Theorem 4.4.
For the Lyapunov function of form (4.34) and the stability margin v, let
p=p"ILagVI>0 (4.62)
then
uy(t)=-p"IL,, VIL,V (4.63)
Using condition (4.57), results in
ILp VILV-Lp, V=IL,VI-(L, V)2
It follows that
LpV=LV+{LV-p~p"ILy V(L V)>+Ly V-u;—p“IL, VIL VL,V }

=L V+{L,V-p—p"ILy, V(L V)2+Ly,V-u—p-IL VI-(Ly, V)2 }

B p? p' lLAgVI p? 2
=LV (LsV'e =35, )
u? p IL A%
IV (Lag V'-35 IL VI) '}
2 u2
<
SLV+oL, LoVl 4 IL, VI
Let
W2 u?
Ty vi ALyl = Gl
and the desired result follows
I L VI
—n'. — |2+ —Ag Y
p@)=p"[LyeVI> 4(C2_C1Lfv)( T u1)>0 (4.64)

because L, V< Q. It follows that
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C,-C,L, V>0 (4.65)
LpV<-(1-C)v(lzI)+C,<0 (4.66)
The stabilisability of the system (4.56) is therefore guaranteed. )

4.2.4 Control Techniques without Matching Assumptions

THEOREM 4.6. (Mismatched Uncertainties: Case 1)
Consider a nonlinear uncertain system, incorporating some bounded uncertainties

which do not satisfy the matching conditions, of the form

z(t) =F(z,Y,t,u) = f(2)+g(2)u()+Af(z,Y,t)+Ag(z,y,tu(t) 4.67)
with the condition (2.16) of assumption 2.7

L,V-L,, V20 (4.68)
If the certain part of (4.67) is stabilised by the feedback control of (4.10) and has stability
margin v, then the nonlinear system (4.67) is also stabilisable by feedback of the form
(4.9)~(4.11), if a Lyapunov function V(z), for f=f+gu,, satisfying the conditions of
definition 4.1, can be found such that the inequality

1 Qx 10,
PD23T, LY ((LgV)Z L,V

u§)>o (4.69)

holds, where L,V and LV are the Lie derivatives of V(z) with respect to g and f+gu,
defined by (4.25) and (4.26), €, and QAg are the uncertainty bounds defined by (4.45) and

(4.61), respectively, and C,, C, are any constants satisfying (4.29)~(4.33).

Proof: The result follows easily from theorems 4.4 and 4.5. Define a Lyapunov
function V(z) for the linearised nominal system as above which satisfies conditions
(4.5)~(4.6). Suppose the closed loop system has stability margin v. In order to derive the

desired results, the following notations are needed

v oV
LV =o-Af Ly V=o—Ag

Then for the nonlinear system with mismatched uncertainties, we have
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v .
LV=o

Let p=p"(LyV)? Ly VI>0 (4.70)

2=(LV+L,V-u )+L V4L, V-uy+L, V-u

where p">0. Considering condition (4.68) and using the identity (4.12), it follows that
LFV=LfV+{ LV =p"(LpV)2 Ly V(L V)?
+Lpg Veu,—p" (L V)2 - [L V(L V)
SLVAH{[LgVI=p"(LpgV)? - |Lpg VI-(L V)2
HLpgVouy| —p" (L V)2 |Lg V- (Lpg V)2 }

)
2P'lLAgVI(LgV)2

1
=LV+ —p" LA V(L V)2 (|LA V-
M i P eV (]

u? p'(Ly V)L,V
Tap (Ly VL,V uj

(ILASV.ull 2p'(L V)2|L VI) }

2
<LV + 1 - 4.71)
4p'|LagVI(Lg Ve 4p'(LpcV)?Lg V]

Choosing C, and C, according to conditions (4.29)~(4.33), so that C,-C,L, V>0, now let

2
1 - <C,—-CLV
4p'|Ly VIL,V)? Tap (LAfV)2|L V|~
then
1 (LAfV)2 L VI
=p"(L,V)2-|L, V|2 g ]
Because
oV n gV
- —. max
]_’Af\,S aZAf(Z’Y’t) SkgllaZJ iAfk(ZsY’t)| IaZ | Y)e RVIA k(Z,'Yat)l
oV n 10V
LAgVS _a;Ag(Za’Yat) Skg,ll‘a—Zk"IAgk(za'Y’t)l - |aZ | ’Y(t)ER'YIAgk(Z”Y’t)l =3dpg

it follows that, if p(z) is chosen by inequality (4.69) according to the known bounds given
by (4.45) and (4.61), the inequality (4.72) holds obviously. We have
LpV<(1-C)HLV +C=-(1-Cy)v(llzf]) +C, <0 (4.73)
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The inequality above shows that the closed loop system of (4.67) is stable. a
The next theorem represents an extension of the preceding work to the problem of

stability in the presence of disturbances.

THEOREM 4.7. (Mismatched Uncertainties: Case 2)
Consider the same nonlinear uncertain system as that of theorem 4.6, with external
disturbance, as follows
() =F(z,Y,t,u) =f(2)+g(2)u(t)+Af(z,y,t)+Ag(z, 7, )u()+E(t) (4.74)
where E(t) represents external disturbances impinging on the system. If the closed loop
system of the nominal part of (4.74) is stable and has the stability margin v, then the
system (4.74) is also stabilisable by feedback of the form (4.9)~(4.11) if, for f=f+gu,, a

Lyapunov function V(z) satisfying conditions (4.5)~(4.8) can be found such that

(Qu? 194
P23, LYy ((LgV)Z it PO

(4.75)

holds, where L,V, LV, Q, Q,,.C; and C, are defined by (4.25), (4.26), (4.45), (4.61),

and (4.29)~(4.33) respectively, and

oV
MaX|E (o)) » El'wé (4.76)

=0

" 9V
Qéé%l‘a_zk

indicates the bounds of the external disturbances E(t) of the system (4.74).

Proof: Simply let
p(2) =p"(Lyge V)? |l VI 4.77)
The result is straightforward following the same procedure as that of theorem 4.6.

1 u?
+
4pMLp VL VY 4p™(Lye V) L,V

L,VSLV+

if p'>0. Let
1 N u?
4p"[Lp VI-(LV)?  4p" (L, V) -|L VI

SCZ_ClLfV

then

L V<(1-CPLV +C,<-(1-CV(|[2l]) +C, < 0 0
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REMARK 4.2:
e The result of theorem 4.7 is based on condition (2.16), where L,V-L,;V is assumed to be non-
negative. For any system which satisfies condition (2.16), stability of the closed loop system can
be guaranteed by the control of (4.75).

e Asamatter of fact, (2.16) is quite a strong condition, and hard to satisfy, because

oV oV’
LVL, V=—(g-AgH—
2V Ly V=" (eAgD =
where g-AgT is not generally symmetric and its symmetrised form may not be sign definite. The

results developed may then only be applicable to some special cases. So, a more general control

technique is needed to deal with the cases where condition (2.16) is not satisfied.

4.2.5 A Novel Control Algorithm for Mismatched Uncertainties

In what follows, we consider the case where condition (2.17) of assumption 2.7 is

assumed to be satisfied, instead of condition (2.16).

THEOREM 4.8. (Mismatched Uncertainties: Case 3)
Conéider a nonlinear uncertain system with mismatched uncertainties and

disturbances as follows

z(t) = f(z)+g(2)u(D)+ALf(z,7,0)+Ag(z,y,t)u(t)+E(t) (4.78)
with the condition (2.17) of assumption 2.7

IL VI>{L, VI (4.79)
If the closed loop system of the certain part of (4.78) is stabilised by the feedback control
of (4.10) and has stability margin v, then the nonlinear system (4.78) is also stabilisable by
feedback of the form (4.9)~(4.11), if a Lyapunov function V(z), for f=f+gu,, satisfying
conditions (4.5) and (4.6) of definition 4.1, can be found such that the feedback gain is of

the form

1 (Que,e)? 1Q,] 1 (Que Q
> +o_ A8 .2 +E | —7As
P(Z)—4(C2-C1LfV)((LgV)2 L ViY Vi, IL.VI ngVH“l' >0 (4.80)
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where L,V and L,V are the Lie derivatives of the Lyapunov function V(z) with respect to g
and f+gu, defined by (4.25) and (4.26), Q, ,, and Q}g are the uncertainty bounds given
by (4.45), (4.61) and (4.76), respectively, and C,, C, are any constants satisfying
(4.29)~(4.33).

Proof: Suppose a Lyapunov function satisfying conditions (4.5) and (4.6) can be
found, and stability margin v is achieved. Then for the nonlinear system with mismatched

uncertainties, let

P(2) =p"(LygeV)?-ILy, VI (4.81)
Uy (1) =-p" (Lpg,e V)2 IL VIV (4.82)
It follows that

LpV=LV+{LyeV—p"(Lye,e V)2 Ly VI (L, V)?
L, Vet (Lgg, e V)2 Lp VLo VL V) }
SLVH{|Ly e VI=p" (Lpg,e V)2 -[Lpg VI- (L V)2
H|Lgg Vouy | = p (g e V)2 L VI (Lpg V)2 1+ 2" (Lipg, e VI, V|- (L V)2
1

1
= —n'. . 2
LV Vit vy P sV gV (L VI 2p'|LAgV|(LgV)2)
03 PLue VLNV
AP L VYL,V T GO (LAf+cV)2|L 0l

+2p"(Lyg, e V)2 L VI (L V)?

It the following inequality

1
2P ILaVIL, V)

P [Lpg VI (L V)2 (ILag,VI-

P L VIILVI
) (ILAg -y 20 (LAf+§V)2|L VI)

220" (Lyg, V)2 L, VI- (L, V)? (4.83)

holds, then
u2

1
<
VLN oIV V) ¥ 39 (e VALV

(4.84)
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From (4.83), we have

1
2L VIL, V)

L g VI-(Lg V)?(ILpgse VI

(LaeVPILVL o
+ w2 (‘LAgV uy| 2p (LAf+§V)2|L Vl)

= (Lage V)AL g VI V)2HL, V(L V)?)

1 u% 1
+ i (T VIV * WAL vD) (L ViHILag V-l

22(L g, V)2 L VI-(Lp V)2 (4.85)
ie., 4p2 - (Lg,e V)2 -(ILpg VI V)2 = L VI(L o V)?)
—4p'(JL gy VIHIL g Vou ) + L uf )20
* ¢ ILa VIL, et (Late V)2 Ly VI

It is clear that if the following inequality ‘
P (Lag e V)2 (Il g VI V)2 =L VI(L o, V)2) = (I pg, e VIHL 5 Vo, )20

holds, then (4.83) and hence (4.84) are true. Bearing in mind (4.79), we can then say

IL a2 VI [u, |
= + 4.86
L VAL,V ((ngV)z LagVIL VT " V)LV (4:50)
Again from (4.84), let
‘ 1 u?
<C,-C,LV (4.87)

30 Lp VI L V)2 ' 4p (Lagy VR LV

where C,, C, are any constants satisfying (4.29)~(4.33), so that C,- ClLfV>O. Then

. 1 uj (4.88)
P EaC, CIM L VI VP T (V2 LV ‘
Considering (4.83) and (4.84), one may choose
pzmax{p;, p,}

where

e | |Lag,eVI o u
1L VL VI\ T V)2 L VI Vi (L VY2 L, V]

1 1 u?
P2= #C,CLY) (|LAgV| (L, vy * (Lage V2L VI)
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or simply let

1 1 u?
> + 1
P 4(C,-CiLyV) (lLAng'(LgV)?' (Lag,eV)? ‘|LgV|)

N 1 ILae e Vi N ||
L VIHL g VINeae VI? ILpg VIILL V] (Lge, e V)2 ILg VI

so that
p(z)=p"(Lyg,eV)?-|Lp VI

N 1 (LAf+§V)2 \ |LAgV|’u% + 1 |LAf+E_,VI+|LAgVI'|u1| >0
T4C,CLV)| (LgV)? 7 LVl )T ILVHLs VI LV IL VI

(4.89)
It follows that, if p(z) is chosen by inequality (4.80) according to the known bounds given
by (4.45), (4.61) and (4.76), the inequality (4.89) holds obviously. We have
LpV<(1-C)LV+C,<-(1-Cv(llzl)+C, < 0 (4.90)

The inequality above shows that the closed loop system of (4.78) is stable. O

COROLLARY 4.9. (Matched Uncertainties: Case 3)
If the uncertainties in system (4.78) satisfy matching conditions, it implies that
condition (4.79) can be written as
<1
the following feedback control exists
p(z)zm—;él—m(m§+ (oq-uf) +T[-agV|(1T0)(Q—(m"+ Oy Ju,[)>0 (4.91)
such that the nonlinear uncertain system is stabilisable.

REMARK 4.3:

e Ideally we wish to choose the control u(t) so that the feedback controlled system is uniformly
asymptotically stable about the equilibrium point. However to achieve uniform asymptotic stability
of an uncertain system one sometimes has to resort to controllers that can deliver too large or even
infinite control effort. To avoid such a control, the criterion has been relaxed from uniform

asymptotic stability to practical stability.
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* The results show that the proposed control cannot guarantee the asymptotic stability of the
closed loop system because L;V<0 only for lizIl>0. However, as will be shown in the following
section, practical stability is achieved. Therefore, the states of the system cannot go to zero as t
increases, but will converge to a closed ball B, with finite radius £>0, where € is a small positive

constant.

4.3 COMMENTS ON SYSTEM PERFORMANCE

In the last section, several new robust design techniques have been developed for a
rather general class of nonlinear system with either matched, partially matched, or
mismatched uncertainties. The stability of the closed loop system can be guaranteed if
these techniques are used. These results may be summarised, according to Lyapunov
stability theory, by the following inequalities:

vi(llzl) < V(@) <v,(lizll) (4.92)

V(z)=LV<(1- CPLNV+C, <-(1-Cpv(|lzl)+C,<0 (4.93)
subject to C,~C,L,V>0 with proper choice of C,; and C,. Here v is called the stability
margin achieved by using a feedback linearisation technique (4.10) to control the nominal

part of the system (4.2).

4.3.1 Practical Stability

Having these results available now makes it possible to apply directly the results of
Barmish et all?] to estimate the stability of the closed loop system in the sense of definition
3.14, i.e., practical stability, even though the systems considered are members of a much
broader class than those considered in Barmish et all?l. Here ultimate boundedness and

uniform ultimate boundedness of the closed loop system are considered.
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Consider again the nonlinear uncertain system of the form

2(t) =f(2)+g(2)u()+AL(z,Y,t)+Ag(zZ, Y, u(t)+E(t) (4.94)

Suppose z(-):[ty.t;1=R", z(t,)=z, is a solution of (4.94) under the feedback of (4.9), with

llzyll<r. Then select

{ (V'll'vz)(R) if r<r 105
lvlv)m iR (@5
where
'1~C
R= (‘; -Cf) (4.96)

Let TAmax{r,R}, so that ||z)||<T and R<T. Also according to definition (4.95),
()= (Vv
so that T<(v] -v,)(F)=d(r) because v,()<v,(T). Thus [Iz(t)l=lIzolI<T<d(r).
Suppose there is a t;>t,, such that ||z(t;)|[>d(r). Since z(-) is continuous and
IZ(t)IIST<d(r)<]|z(t)l, there is a t,e [ty,t5), such that [|z(t,)|[=T and [[z(D]|I=T Ve [t,,t5].
In view of (4.92) and (4.93)
Vi ([lz(t)ID < V(z(ty))

4
=V(z(t)+ [ V(z(t))dt

Y

t3
<V, (lzt)ID+ J T-(1 - COV(z(T)+C,ldT

H

SVZ(T)+f3[-(1 -C)OVR)+C,ldt

)

=V2(i‘)
Hence, ||z(ty)[I<(v1-v,)(F)=d(r). However this contradicts the supposition, hence
llz(®ll<d(r) Vie[tyt]
i.e., the system is uniformly bounded.

Again for a given number d'>(vi-v,)(R), define
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0 if rS(V'%ovl)(d')
T@,D)=1 VaO)=(v;v3-v(d) otherwise (4.97)
(1 —Cl)(v.\rzlovl)(d')—C2
with the proviso that
(1-CPV-v1v )(d)=C, >0 (4.98)

where R=(v4-v;)(d"), so that R>R and d(R)=(V-Vv,)(R)=d"
If <R, then |Izy||<R, hence lz(D)||ISd(R)=d" Vt=[t,,e<], so that T(d',r)=0. If r>R, and
lz(t)|[>R Vt=[t,,t,], then in view of (4.92) and (4.93)

v,z DV () =Vat)+ [V (z®)dt

L

t1
<v,(lz(t) )+ S T-(1-C)V(2(1))+C,ldt

Y

<V, O+T(d D) [-(1-C)VR)+C,]

N Vo(r) = (vi-v3-v ()
(I-Cp(v-v,-v )(d)-C,

=v,(r) [-(1-CV(R)+C,]

=V, (R)
That is, {|z(t,)|[SR. But this contradicts the assumption above. Hence there must exist a
t,e [t,.t;] such that ||z(t,)]|<R. Then, as a consequence of the uniform boundedness result
llz(t)l|<d(R)=d' Vt=t,. Hence
[lz@®)||l=d' Vit =t,+T(d'",r)

i.e., the system is uniformly ultimately bounded. O

4.3.2 Remarks

e If C, and C, are chosen according to (4.29)~(4.33), it then follows that
LV <-(1-C)-v(lz])+C,<0 (4.99)
holds; that is, LV lies in the shaded triangular area D in Fig. 4.1. The nonlinear

uncertain system (4.94) is therefore practically stabilisable by the family of
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controllers of form (4.9) with the feedback gain given by (4.16), (4.24), (4.44),
(4.59), (4.69), (4.75) or (4.80) whether the uncertainties satisfy the various
matching assumptions or not. The range of acceptable values for C, is indicated in
Fig. 4.1 for the case where v(llzll) is a positive constant.
e LzV<0 implies that
LV<-v(lizl)<0 (Viizli>e>0) ~ A
is always true, so the constant C, CyCiLyV LGV

satisfying (4.32) exists. On the

other hand, using (4.32) a larger

range of C, is possible if € is

allowed to be larger. This will (1-CY)LV +C,

allow greater tolerance on the

uncertainty bounds.
e For systems of the form (4.74), Fig.4.1 Determination of Parameter C, for the case
where v is a positive constant

if  the  various  matching

conditions are met, then the result derived in theorem 4.7, denoted by (4.75),

I (@ 194
P23, C LV ((LgV)Z Vit PO

may be written in unified form as follows

o Q2
P23, C LT Ve

mqouf)>0
p(2) Zm(mg + I'S—:\g,ll.uf}o
1
p(z) Zm(wg + u)q.uf) >0
It can be seen that the condition for mismatched uncertainties generalises the
conditions for partial matching and the conditions for partial matching generalise

the condition for matched uncertainties. Therefore, the condition indicated by

(4.75) in theorem 4.7 can be regarded as a generalisation of the results in the other
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theorems, such as theorems 4.3~4.6, where less stringent assumptions are made. It
is obvious that, when E(t)=0, we have the result of theorem 4.6; whenever
incomplete or complete matching conditions are met, then either Q/ff/(LgV)2=c0§ is
true, or 1Q, /IL VI=w, is true, or both are true, and it follows that the results of
theorem 4.4 or theorem 4.5 or theorem 4.3 hold. The condition (4.75) therefore
represents a unified controller structure for nonlinear systems whether the matching
conditions are completely satisfied, such as in theorem 4.3, partially satisfied, as in
theorems 4.4 and 4.5, or not satisfied as in theorems 4.6 and 4.7. Similarly, from
the result (4.80) of theorem 4.8, we can also derive other results subject to various
matching conditions which may be considered. Therefore similar remarks can be
made for the results obtained under the assumption of (2.17).

o The proposed techniques are a significant improvement over previous results, such
as Barmish et all?l. In theorem 4.3, although the matching conditions have been
assumed, the technique does not require that @, <1. Furthermore, in theorem 4.6, the
matching requirement is totally removed. In theorem 4.8, although a similar
assumption to that of Barmish et al has been made, the technique described here is
a significant improvement in that it is applicable to nonlinear uncertain systems in
the presence of mismatched uncertainties and disturbances.

e The fundamental idea behind all the theorems is that, by choosing a sufficient
stability margin, which can be achieved by applying a certain control strategy
(feedback linearisation) to the nominal system, then using sufficient feedback
compensation defined by (4.75) or (4.80), it is possible to reduce the effect of the
uncertainties on the overall system, so that the oyiginal stability margin is sufficient

to guarantee stability of the overall nonlinear uncertain system.
e To achieve the results of theorems 4.6~4.8, it is required that L,V#0 Vzz0. The
requirement can be met by properly choosing a suitable Lyapunov function for the

linearised nominal system. If a general form of the matrix P does not meet the
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requirement, then theorem 3.9 provides another way to choose such a Lyapunov
function. It is clear that, for a linear (or equivalently linearised) system z=f+gu=Az
with relative order v, if the matrix P is chosen to be diagonal, the partial derivative
of the Lyapunov function with respect to the states is then

0V/0z=2[p,,Z, PazZss * * * * PunZol
and bearing in mind that, for the system with relative order v, the input mapping
£(z) must be of the form

g(2)=[0,0,----, g,@]I
It follows that

oV
LgV =§'g(z)=2[p1121, P22Z2, " * s pm)Zn}[O, 0,---, g\)(z)]T

=2Dyu 2y E0(2) 20 Vz£0

4.4 ILLUSTRATIVE EXAMPLE

For illustrative purposes, we consider the second-order linear system discussed in

chapter 2 where

kIS+k2

GO = )G

The state variable form is usually of the form x(t)=f(x)+g(xX)u(t) with f(x)=Ax(t) and

£(x)=B, and the output y(t)=Cx=x, is chosen, where
a a b
A= 11 12) B=( 1) C= 1, 0
(321 4y b, 1, 0]
4.4.1 Matched Uncertainties

Let a;;=0; a;,=1; k,=0, so that a,;=-o, a,,=-B, b;=0, b,=k,, where o=[,+lL,,
B=p,H,. Therefore
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0= o o

Suppose now that uncertainty exists to the extent that |1, may be some other value

L, and k, may be some other value k. This results in a system with uncertainties

a2 e

where Ao=(a-at), AB=(B—B"), and Ak,=k;-k,.
Clearly, the uncertainties here satisfy the matching conditions defined in definitions
2.4 and 2.5. The techniques of theorem 4.2 and 4.3 may then be applied. u,(t) can be
designed via (4.10) as follows
Lh(x)=CAx Lhh(x)=CB=0 L$h(x)=CAZ%x L, L (x)=CAB#0
Therefore the relative order v=2. The state feedback is then of the form
u, (H)=(ct, CAB)1{ -C[o,+0r, A+0r,A2]x }
The following values were selected for simulation purposes: C,=0.3; C,=10, and
0,,=0; 0,=5; 0,,=1. This results in a closed loop system with poles A,=-2 and A,=-3, so
that, by solving Lyapunov matrix equation ATP+PA=-Q, a possible Lyapunov function for

the given closed loop system f=Ax+gu, is

0.2028 -0.1637)(X1j

V(x)=x"Px=[X,, X,] (—0.1637 0.4581 \x,

and so LV =2x"P(Ax+Bu,), L,V=2x"PB
The uncertainty compensation terms for the techniques described in theorems
4.2 and 4.3 are respectively

_ 2X"PB { w2 }
4(1-0,)[C,-C,2xP(Ax+Bu,)] ' “p

uz(t) =

OX'PB
90 =~ FC oA B (95 + @ vt

Simulation results are shown in Fig. 4.2, where a comparison of the technique of

theorem 4.3 with that of theorem 4.2 is given.
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(a) Technique of theorem 4.3; (b) Technique of theorem 4.2

Fig. 4.2 Case 1: Comparison of the technique of theorem 4.3 with that of theorem 4.2

From the results, certain observations are easily made. Firstly, when only
uncertainty on g(z) occurs, the technique of Barmish et al fails, so that the closed loop
response shows larger variations (i), or may become unstable, when the uncertainty
becomes quite large (ii), but the technique of theorem 4.3 is clearly successful; secondly,
when the uncertainty on both f(z) and g(z) occur, this technique results in better
performance than that of Barmish er al because the term g} included in the feedback

control makes such compensation more effective, especially, when o, is close to unity (iv).
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4.4.1 Partially Matched Uncertainties

Let a,,=a,,=a#0, 0? 24(B+a?) and k,=1; then
-oc—\/ o2 -4(B+a2) -oc+\/ o2 -4(B+a?) (kp+azk;)
an= > A = ) b;=k;, b,= a,
and then the system may be represented as

so=(% 2 R (e o

Similarly to case 1, if an open loop pole position is thought to be -L.,, but is in fact

2

k4

-W,, the uncertainty may be represented as

_[Aayx, (0
af= (Aazzxz) Ag= (Asz

where a,,, a,,, b;, b, are nominal values depending on the nominal eigenvalue -li,, a,}, a,,
are real values depending on the true eigenvalue -y, and Aa,;=a/\-a,;, Aa,,=a,,-a,,, and

Ab,=Aa,,k,/a are the uncertain parameters.
If, however, the open loop pole -u, is correct, but k,<0, this results in a non-

minimum phase problem. This difficult control problem is regarded as an uncertain
problem with Ag=[Ab,,Ab,]", where b,=1/a, Ab,=k,, and Ab,=a,,k,/a.

x1(t) (*10e1)

®
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Y RO R RS S

k0 B

1

P ; : : :
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'
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Fig. 4.3 Case 2: Mismatched uncertainty Af caused by uncertainty in pole location
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Clearly, in both cases, the uncertainties do not satisfy the complete matching
conditions, but they do satisfy the incomplete matching conditions (2.12) and (2.13)
respectively. It is therefore said that the system has partially matched uncertainties.

The feedback control can be designed via theorem 4.4 when the position of the pole
is uncertain even if it is unstable, and the simulation results are shown in Fig. 4.3. The
following values were selected: C,=0.3; C,=10, and o;=6; 0,=5; 0,=1. This results in a
closed loop system with poles: A,=-2 and A,=-3.

For the non-minimum phase problem, the control can be designed via theorem 4.5.
The following values were selected for simulation purposes: C,=0.3; C,=10; and o,=10;
0,=7; o,=1. This results in a closed loop system with poles A,=-2 and A,=-5.

A possible Lyapunov function for the given closed loop system is

0.1263 -0.0577)()(1)

VI =xPx=[x, , X, ](-0.0577 0.4449 )\x,

by solving ATP+PA=-Q, and condition (4.57) is of the form

0.0623 -0.1011)(x
L,V-LyV=4xPg-AgPx =[x, , X,] (-0.2430 0.3943)(?(;)

=0.0623x3+0.3943x3-0.3441x,x,
Itis clear that L, V-L,,V20 holds as long as x;x,<0.

The simulation results are shown in Fig. 4.3 and 4.4. From the simulation results, it
is clear that the applications of the techniques of theorem 4.4 and 4.5 result in satisfactory
performance, compared with the performance resulting from the application of the
feedback linearisation technique alone. For the feedback linearisation controller, although
the output of the system x,(t) does appear stable (Fig.4.4), the internal dynamic Xx,(t) is
highly unstable because of the presence of non-minimum phase, and hence an unstable
system results. In contrast, the techniques of theorem 4.4 and 4.5 result in a stable closed
loop system for both external and internal dynamics.

The simulation results of Fig. 4.4 show that theorem 4.5 is applicable and very

effective for the control of this non-minimum phase problem when x,x,<0 Vt>0.
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Fig. 4.4 Case 2: Mismatched uncertainty Ag caused by nonminimum phase dynamics, L,V-L,,V>0
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However, this is not a very practical case. For most practical systems, the trajectory
of the closed loop system could be any value in the admissible region of state space, and
may be unpredictable, particularly when some disturbances exist. Therefore, the general
situation where (2.16) is not satisfied is now considered, but it is assumed that the
uncertainty caused by non-minimum phase is such that condition (4.79) holds.

We now select C;=0.3; C,=100; A,=-2; A,=-3 and Lyapunov function

0.2028 -0.1638Yx
V(x)=x"Px =[x}, X,] (.0,1638 0.4580)()(;)

The simulation results are given in Fig.4.5, and the same conclusions as before can

be drawn.

4.4.1 Mismatched Uncertainties

If the open loop poles are uncertain and non-minimum phase occurs, the system can

be written as

. a;; a \x b Aa,x 0
X0 2( 5111 322)(X;)+ (b;)u(t)+(Aa;;X;J+(Ab2)u(t)

where b,=k;, b,=(1+a,,k,)/a, and Ab,=Aa,,k,/a.
Although the uncertainties lie in the range of the input mapping g(x), no functions
p and q exist such that Af=g-p, and Ag=g-q. Therefore they can only be treated as a special

kind of mismatched uncertainty. The system can be expressed as

. a a \(x 0 Aa, x Ab
CE Y ) TCE o Ty

where b,=1/a, Ab,=k,, and Ab,=(a,,+Aa,,)k,/a. Thus the uncertainties, satisfying condition
(2.16) or (2.17) in assumption 2.7, fall into the class of mismatched uncertainties.

The feedback control can be designed via theorem 4.8, where the following values
were selected: C;=0.3; C,=10, and 0;=6; 0,;=5; a,=1. This results in a closed loop system

with poles A,=-2 and A,=-3. Simulation results are shown in Fig.4.6.
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4.5 SUMMARY

In this chapter, a rather general class of nonlinear uncertain systems has been
considered, and robust feedback control laws have been obtained for different cases. The

techniques can be summarised as follows:

Algorithm:

@ Transform the original nonlinear uncertain system of form (4.1)
into a linearisable form (4.2);

® Obtain u, from (4.10) to linearise the nominal system, i.e., the
certain part of the nonlinear system (4.2);

® Select parameters o, (i=0,...,V}) for 1linearisation feedback
control (4.10) to place the nominal closed loop poles at desired
positions;

@ Define a Lyapunov function V(.) for the linearised certain part
of the system to be controlled;

® Determine P from (4.75), (4.80) or their simplified versions and
choose C,, C, from (4.29)~(4.33) to construct u,(t) such that LV

falls into the shaded area D in Fig.4.1.

Nonlinear state feedback, based on the feedback linearisation technique, is applied
to the certain part of the system, such that a desired stability margin for the nominal closed
loop system is achieved. Additional nonlinear feedback is introduced to compensate for
uncertainties, such as parametric uncertainties, external disturbances, and stability is
guaranteed via Lyapunov stability theory when some uncertainties are incorporated in the
system regardless of whether matching conditions are satisfied. Compared to other
developments based on Lyapunov theory, in particular that of Barmish et all2], significant
improvements have been made, in that the techniques can achieve far better results because

they can compensate not only for the effect of the uncertainty in the state matrix Af(x,7,t),
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but also for the effect caused by u,(t) through the uncertainty in the control matrix
Ag(z,y,t), even for the case of w>1 and for the case of mismatched uncertainty. The
technique described in theorem 4.7 generalises the results of theorems 4.3~4.6, whilst
retaining the concise statement of the algorithm, so that all results may be described in a
unified fashion for the following cases: (i) uncertainties in both the state and the input
mapping satisfying the matching conditions, (ii) only one of them satisfying the matching
conditions, and (iii) mismatch in both.

Theorem 4.8 retains the same problem statement and achieves the same system
performances as that of 4.7, but it does so by increasing the feedback gain for uncertainty

compensation. However theorem 4.8 is more generally applicable.
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5.1 INTRODUCTION

THE approach to robust control considered in this chapter is that of variable structure
~control. It resembles adaptive control in that the structure of the controller varies in
response to the changing state of the system in order to obtain the desired response. The
controller is, however, synthesised in a deterministic way. This is accomplished by using a
high speed switching feedback control which forces the trajectory of the system onto a
prespecified hypersurface in state space, where it is maintained thereafter.

For the class of systems to which it applies, variable structure control design
provides a systematic approach to the problem of maintaining stability and consistent
performance in the presence of modelling uncertainties. Furthermore, by replacing a pure
switching control by its smooth approximation, the relay chattering problem can be
alleviated. Variable structure control has been successfully applied to robot manipulators,
underwater vehicles, and power systems(!.2l,

The aim of this chapter is to investigate a synthesis problem of nonlinear uncertain
systems in a deterministic way, in which the problem statement is the same as that in the
last chapter, but a different type of controller is developed, so that different system
performance may result. No requirements are imposed on the structure and size of the
uncertainty, and no assumptions are made concerning precompensation of the nominal
system. A set of robust feedback controllers can be obtained, which results in a practically
stabilised closed loop system, even for nonlinear systems with unstable nominal part, in the
presence of significant mismatched parameter tolerances and external disturbance. It is also
shown that the controller has the same structure as that developed for the nominal system
where no uncertainty is explicitly considered; the only difference is that the former

employs a variable controller gain, which depends on the known uncertainty bounds, and
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the latter has a constant one. The design procedure is based on Lyapunov theory.

The primary concepts of variable structure control are presented in appendix B, and
form the basis for the development of the results of this chapter. Specifically, in section
5.2, the associated basic controller design for nominal systems is illustrated first, and then
two robust variable structure controllers for nonlinear systems with uncertainties are
developed. Section 5.3 describes the stability properties of the resulting controlled system,

and section 5.4 presents an illustrative example with simulation results.

5 .2 CONTROL SYNTHESIS
BASED ON VARIABLE STRUCTURE CONTROL

In this section the robust stability control problem for nonlinear systems in the
presence of uncertainties is still considered. The problem statement is the same as that of
chapter 4, but the control synthesis is based on variable structure control.

Although the ideal sliding mode may not occur when nonlinear systems are
subjected to uncertainties, the designs of this chapter guarantee the existence of a sliding
mode within a vicinity of the switching surface. The following control strategy is proposed:

® Design a switching surface to specify the closed loop system performance;

@ Construct a control law with variable feedback gain to steer the state to the

switching surface, and guarantee the existence of a sliding mode.

The results of this section enable us to achieve our aims with only very weak
conditions on the nature and size of the uncertainties. The technique is developed directly
for nonlinear systems with mismatched uncertainties, but it is clearly applicable to other
cases, such as partially matched or completely matched uncertainties. The control signal
will be of the following form

u(t)= ueq—[Lg(S]'1 -p-sign(o) (5.1
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where the feedback gain p>0 is developed in the sequel, and u,, is called the equivalent

control, and is given by

U, =-[Vo(x)-g(x)] - Vo(x)-f(x) =-(L,0) - Lo (5.2)
where Lo and L,0#0 are the Lie derivatives of o(x) with respect to f and g respectively.
DEFINITION 5.1. (Generalised Lyapunov Function)

A continuous function V(t), which depends on the chosen switching function 6(x),

can be defined as a generalised candidate Lyapunov function, if

VO L2-0°0>0 V(0300 and V| =0 (5.3)
with continuous derivative, such that, for X={x(t)e RnIO'(X)¢O, x(ty)=xX,}
vy =L x)<0 (5.4)

2 dt
holds.
Also, some conditions on the Lyapunov function similar to those in theorem 3.7 are

required. The following definition is therefore introduced.

DEFINITION 5.2. (Conditions on the Generalised Lyapunov Function)
We assume that the generalised Lyapunov function V(t) defined in definition 5.1
satisfies the following conditions
V(X < V© <v,dIx®)l) (5.5)
V() <-v3(lIx@®)I) +Vv4(Ix®OI) <0 (5.6)
where Vv.(+) (i=1,2) are continuous strictly increasing functions, with the properties v,(0)=0
and li_r,ﬂ\’i(s)”% and v, v, are positive continuous functions such that v,-v, is positive, so

(v5-v,)! is defined away from zero and is continuous.

5.2.1 Controller with Constant Feedback Gain

A well-known result in variable structure control for unperturbed nominal systems

is first stated, and the proof is included for the sake of completeness.
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THEOREM 5.3. (VSC for Nonlinear Systems without Uncertainty!?])
Consider a nonlinear system of the form
(1) =f(x)+g(x)u(t) (5.7
A set of states xeX, and a switching function o(x)=0 are defined to specify the desired

response of the closed loop system. Then a feedback controller of the form

(Lio+p-sign(o))
Lgc

u(t)=- (5.8)

exists such that the closed loop system is stable. Here p is any positive constant.

Proof: According to definition 5.1, consider a generalised Lyapunov function

candidate of the form
VO23-06600 VD 5 0x)0 (5.9)
The time derivative of V(t) is then

Vi)=0-6= G-g—:{f(x)+g(x)u(t) }=o- {Lio+L c-u(t)}

o1, )

Lgo

The closed loop system is therefore stable. d

5.2.2 Controller with Variable Feedback Gain

The major result concerned with the robust control of nonlinear uncertain systems

may be obtained in a similar fashion to that of theorem 5.3.

THEOREM 5.4. (VSC for Nonlinear Systems with Uncertainty: Case 1)
Consider a single input nonlinear system, incorporating some mismatched

uncertainties and external disturbances, of the form

x(t) = f(x)+g(x)u(t)+AL(X,Y,t)+Ag(X, Y, tu(t)+E(t) (5.11)
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where the uncertainties and disturbance are all bounded, and satisfy
L,0-L,,0620 (5.12)
Defining a switching function {c(x)=0 |x(t)e X}, a feedback controller

_ (Lo+p(x)-sign(o))
Lgc

u(t)= (5.13)

then exists such that the feedback system (5.11) is stable for any bounded uncertainties and

disturbance, if the controller gain is chosen as

1 LiG\2
p(x)Z\/ (QM+Q¢)2+§|QAg.Lgo|(-Lf—G) >0 (5.14)
4
where
1,02 g20 5.15
0258 (5.15)
dJdo
Lo =t (5.16)

are the Lie derivatives of o(x) with respect to f(x) and g(x), and, in general, Q, QAg and

€ are functions of (x,t) defined by

%190 ’ dc '
A ——|. Max -
Q2 k§1 Bxk| (e prl At Y01 ox | ©Paf >0 (5.17)

n1do oG
. max _
Qupt 2 axkl 7(t)e,q,lAgk(x,%t)lé’ | 93>0 (5.18)
2190 JG
——|.max Pt
Q‘iékg'llaxk 20 £l 2 ox ‘ ;>0 (5.19)

Proof: A continuous function o(x)=0 can be defined where xe X 1is a set of states
used to prespecify the performance of the closed loop system. According to definition 5.1,
a generalised Lyapunov function is of the form
V() £3-6(x)7>0 V(x,t) 3 6(x)%0
and satisfies inequality (5.5) for {xéXIG(x)#O}, so that, with the feedback of (5.13), the
time derivative of the Lyapunov function for the closed loop system obtained is given by

V() =0-6=0- g—z{ fx)+g(x)ut)+AFX, 7, +AZ(X,Y,Hut)+E() }
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=0-{Lo+L,0-u()+L40+L,,0-u(t)+L,c }

Lo+p(x)-sign(c) ‘ Lf<5+p(x) sign(c)
Lo +(LyO+L0)-Ly,0 }

=0 { Lio-L,o
Lo+p(x)- I%I f0+P(X)

Lgc +(L Afcs+L§c5)—L 2e0 Lgc

=0 { Lio-L,o il

p(x)0”
2|0l

=— p(x) +{0(LAf(r+LE )—

Lfc)_LAgO'-p(x)Gz}
2|o|

+
(Lo L,olo]

By using the identity (4.12), the second term in the above equality can be expressed as

1
(Lao+L0)2 o] 2PX) (Lao+Leo)2 o]\
- 5 (Lyo+L:0)-0—
2p(x) (Ly0+L:0)*-|o] p(x)
Lio\2 L0 Lo .\
it v P e ol
L0 Lio.2 “Lag® L,c C- L0
4p(x)- L, (-LAgo-.E.G.) o] 2p(x)- Lo
Considering condition (5.12), we may write the inequality above as
Lio.2
p(x) , (Lac+Lzo)lol ('LAgG'ITG) ot
Viox)] <~ o+ +
2ol © 2p(x) 4p(x)- L0
L,o
2 =v3[x(1), (O] +V,[x (1), Y()]<0 (5.20)
where we may identify
pXx)
vIx(©y0] 22 207 (5.21)
L:o\2
(Lao+LG)2 o] (L "’ﬁ) ol
V[x(D),7(D] & 2000 s (5.22)
()1
Lo

The problem is now to design a control such that the reachability condition (appendix B)
o(x)-6(x) <0 (5.23)
holds. Then the state trajectories will converge to o(x)=0, and are restricted to it for all

subsequent time. From (5.20) we have
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Lio.\2
-L4,00—) -
(Laso+Leo)?|o] ( Ag Lgo) lol p(x)

2

+ < :
ZP(X) 4 ( ).LAgO' zlol
P T
; 25 (Lo +Le0)? +L, oL (E)2
ie., P(x)"> (Ly0tLe0)? +5-Ly oLy ‘L,o
and so
(0> | (LyGHLoP+1L, 0L 022 >0 e
p(x aO+Le0)? +5 L0 ST > (5.24)

n
<2
k=1

00 00 Iaol
—. " |. max acd ISR
Because L AfGS'Bx Af(x,Y,t) 2 axkl 'y(t)eRVIAfk(X”Y’t)IS X W= Q¢

n 1 do Iac
991 max 0|
<k§1 axkl Ag (10l ox

L o<
29 =3 -Ag(X,Y,t) OCRY

"Wy, = QAg

Els}
ox

file]
Lo<[ &0 Max[e, (1)<

N0
< k§1 |a_Xk '(0& = .Q.é
it follows that if p(x) is chosen according to the known bounds given by (5.17), (5.18), and

(5.19), the controller gain is of the form (5.14), whose entries are all deterministic and

known. It is obvious that if

1 Lo
p(X) 2A\/(SlAf-}.ngﬂ)z +§ IQAngGI (_ TJE 2

1 Lo
then p(x)Z\/ (LM0+L§0)2+§LAgc-LgG(-Eg—0)2>0 (5.25)
holds, and it follows that the inequality
Lo
Qe 7)o
a0 . @uetQepdol Lo 1
V() <- -0 +
2lo] 20(x) 1000 2t
P IL ol
=-V;[[[x][]+v,lIxI[1<0 (5.26)

is true. Thus the controller has the following form

1 1 Lo, .
0@ =7 { Lio+\ [ (Qurt Q2 +51Q, Lool(- 7o) sign(@) } - (5.27)
g 4

and this results in a stable closed loop. )
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REMARK 5.1:

e The development of the results of theorem 5.4 is based on condition (5.12), where LgG-LAgG is
assumed to be positive. For any systems which satisfies condition (5.12), stability of the closed
loop system is guaranteed by the feedback control of (5.13).

e  Condition (5.12) may be satisfied by properly choosing the switching function o(x), especially for
the most common type of switching function 6(x)=Sx. Then do/0x=S and L c-L, 6=S(g-Ag")ST. It
is therefore possible to choose the elements of S such that condition (5.12) holds for the input
mapping of the given nonlinear uncertain system.

e If, for any given nonlinear uncertain system, no suitable switching function o(x) exists such that
both the prespecified system performance and condition (5.12) are satisfied, the result developed in
theorem 5.4 is not applicable. The following theorem is an alternative version of theorem 5.4,

which can be used to deal with the cases where condition (5.12) is not met.

5.2.3 Controller with Improved Variable Feedback Gain

THEOREM 5.5. (VSC for Nonlinear Systems with Uncertainty: Case 2)
Consider again the nonlinear uncertain system (5.11), and suppose the following
condition
IL,cl>2IL,0f (5.28)
is satisfied. For a defined switching function {c(x)=0 |x(t)e X}, a feedback controller

_ (Lo+p(x)-sign(0))
Lgc

u(t) = (5.29)

then exists such that the feedback system (5.11) is stable for any bounded uncertainties and

disturbance, if the controller gain is chosen to satisfy

Lf0)2+ QAf+§ILgOI+QAg|Lf0] S

1
02 [(Quer)+1Q,, L0 0  (5.30)

where L0, Lo are the Lie derivatives of 6(x) with respect to f(x) and g(x) defined by
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(5.15) and (5.16), and Q,, Q,, and €2, are the bounds of the uncertainties and disturbance
respectively, defined by (5.17), (5.18) and (5.19).

Proof: Consider a generalised Lyapunov function of the form (5.3) satisfying
inequality (5.5) for {xe X|o(x)0}, so that, with the feedback of (5.29), the time derivative
of the Lyapunov function for the closed loop system obtained is given by

V(t)=0-6

=0 {Lio+L,o-u(t)+Lyo+L 20 U(D+L0 )}

5. {Lfcs—Lgcy Lfo+;£:(ijgh(o) +Lyge0-Lo - Lfc+p s1gn(c) }
Lfcs+p~%I Lfc+p-|%|
=0- { Lo -L,0- Lo +L,,£0-L,, 0 T
pc®  |Laolpc®

- +
2|0 IL.ol-|ol

LfG ILAgGIP }
T,0 " oMo

+{0'L,:0- +0( -Ly,0 (5.31)

P
2o

By using identity (4.12), the second term in the above equality can be expressed as

(LAf+g0)2~IGI 2p (L..0)G (LAf+gG)2-I0I ;
2p (Lagse0)? -Jo] (7485 p
L.c.\2 ILA ol
.-_L_ .
+("LAg°L 0) lo] PIILol (Lo Lfc)c (Lo L ) |°|
|LA o| (L L&) 1l %YL o |LagOl
IL ol 80 2p- IL ol
We suppose that
1 2
2P (LyenG)-Gm (Lag+0)? o]
(Lage0)* <ol AR p
|| Lo.2 g
ILagol Loy
P ILol (L Lfc) (-Lygo Lo lol ILAgGI po’ (5.32)
* 80T /0T Lol Lol o]

LG5.\2
._L .
('LAgG LgO') Icl 2 ILgcl
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and also considering (5.6) of definition 5.7, we have

Lfc
P > (Laneo)* ol (oo ) ol

Viox)] <- 0] o+ R + ILAgGI
PIL,ol
é-V3[X(t),Y(t)]+V4[X(t),Y(t)] (5.33)
where Va[x(1),y()] & 2|0| o (5.34)
Lo\ 2
(Luccoriol 4O T0) 1
VX)) Ao |LAg0| (5.35)
ILgOI

Similarly to theorem 5.4, suppose the reachability condition V(t)=6-6<0 holds, i.e.,

VIS (x)] S-V3[x(0), YO+, [x(1),¥(£)]<0

Then the state trajectories will converge, and will be restricted to 6(x)=0. So we have

Lo
(-LyoT 'f—)2°lcl

(LAf+§0)2 ‘|o] P 2
20 ILAgGI ~72al °©
PILeol
L 02411, 0:L.o(- 02 >0 5.36
p> (Lg:£0) 5 LagO gG_Lgc > (5.36)

On the other hand, it can be shown that assumption (5.32) is true by developing the

following inequality if (5.28) is satisfied. Extending the inequality (5.32), we have

Lo 2
L G-L'O
1G_ILM+go|-|cl)2+|LAgo|(c_' %% Lol
2° b ngGIL o e

(Lass£0)? Lat:£O, |L A0l L.o)2 |L
>_1_0,2{[1+ Af+E _ IAfil]} II:SgGI 2{[ (4f§2) _l fol]}

L0l Lol
S b (O +'2,Ifg S0+ L+ + ] 5 ILaseol+ 5 ALeol] }

2
ILAEGIG
[Lgol
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. ILse0l 1 |Lagol IL4g0l
l.e., 2p2[(LAf+§ ) +2|Lg0'|(Lf0)2]+[2 ILgO'|] [ILAf+§0| |Lg0| ILf I] O

Obviously, if
1 [|Lagol |ILagol
{pl3 i [ILuseol+ g L]} 20

then the inequality (5.32) is true. We therefore obtain another feedback gain as follows
ILAf,,goI IL oL, ol Lo
HL,GHL,,0l

(5.37)

Simply by letting

Lo Af+§0l L cH+L, ol Lol

ZILgGI_ILAgGI

)2

’\/(LM+§0) +5L,0°L, c( (5.38)

both conditions (5.36) and (5.37) can then be satisfied. Because

D100 |8<5
721 max AY)
k=1 anI v(t)eR”flAfk(x’Y’t)ls ox

L <|Q§ Af
Afc— ox : (X,Y,

"Wy Q¢

|99 Iao
—|. max |es

dJo
L 0S5 28T,

"W, = QAg

o 0o
99| max e (i< |29, =
<k=1|8xk £0 € (DI | @

Jo
Lgc < Qg

it follows that if p is chosen according to the known bounds given by (5.17), (5.18), and

(5.19), we have the controller gain of the form (5.30), whose entries are all deterministic

and known. It is obvious that if we set

L.c |L c|+Q |L 0|
Q)2 +5[Q )2 ARG
)\/( Af- g) 2' Ag g l( ) 2IL I QAg

then (5.38) holds. Also it follows that the inequality
Lo

)ZII

PE) L, (@t Q)2 o] +(QAg

V() <- 0] 0+ 2000

=-V5[lIIx(O)]+v,[lIx()I1]<0 (5.39)

is true. The closed loop system is therefore stable. O
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5 .3 COMMENTS ON SYSTEM PERFORMANCE

The variable structure controller developed here results in a stable closed loop
system when mismatched uncertainties are included in the system. These results may be

summarised, according to Lyapunov stability theory, by the following inequalities:
Vi(IXID < V(x) < v, (I (5.40)

Vo)1 <-v3[lxOIN+v4lIx(£)I<0 (5.41)

5.3.1 Uniform Ultimate Boundedness

Having these results available now enables us to show that the system has the
property of uniform ultimate boundedness in the sense of definition 3.14. Let us denote by
O[x(t,ty,X0),0] 2 8(x,0) = inf][x—x]| (5.42)
the distance of the point x from the surface o(x)=0, where xe X are the states off the
switching surface in admissible domain €2, and xe X are the states on the switching surface.
In view of (5.40)
v,[8(x,0)] £ V(x) £Vv,[8(x,0)] (5.43)
Let R be the radius of the largest sphere in X, such that V(x)>0 and V(x)<O0.
Given a constant r>0, we define
d(®) = (v} -v,)(T) (5.44)
where Témax{r,R}. Consider now a solution x(t):[t,t,]—R", with x(t;)=x, such that
S[x(ty),0(xp)]<T.
Suppose there is a t;>t, such that x(t;)=x, and J[x(t;),0(x;)]>d(r). Since the
solution x(t) is continuous

3[x(ty),0(xx)] <r<T <(v-v,)(F) =d(r) <8[x(t3),0(x;)]
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Hence, there must exist a ty,e[tyt;), such that 8[x(t,),0(x,)]=d(r) and S[x(t),c(x)]=d(r)
Vte [ty,t,].
In view of (5.40) and (5.41)
Vi[8(x(t3),0(x3)]1 S V(ty)
t
=V(t)+) V(1)dt

t

i
<V, [8(x(tg),0(x)] +J [=V4(T)+v,(D)]dT

t

SV, (T)
ie., 6[x(t3),0(x3)]s(vf -v,)(T)=d(r). However this contradicts the supposition above, hence
S[x(H),6(x)] <d(r) Ve [t t;]
and the system is uniformly bounded.
Again if x(t):[ty,e0] =R, x(t))=x, is a solution of the system, such that

O[x(t,),0(x)]<r, then for a given number d'>(v] v )(R)

d[x(t),0(x)]<d' Vit +T(d',r)

where
0 if r<R

T(d',r) =1 V20)—Vi(R)
V3(R)—V4(R)

otherwise (5.45)

and R(V -v,)(d"), so that R>R and dR)=(v] -v,)R)=d">(V] -V)(R).
If r<R, then 8[x(t,),0(x,)]<R, hence, by the uniform boundedness result
o[x(t),0(x)] <d(R) =d' Vit
and obviously T(d',r)=0.
If >R, and supposing that J[x(t),6(x)]>R Vte[ty,t;], then bearing in mind
conditions (5.40) and (5.41), we have
vi[8(x(t,),0(x NI < V(1))

= V(%)+fV(r)dt

ty
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<V, [8(x(ty),0(x,)) ]+ f [—v;(D)+v,(T)]dT

t

SV T V3 R)+V,(R)]

Vo(D—Vi(R)

=Y+ R Va®)

[=V3(R)+V4(R)]
=v,(R)
That is, 8[x(t,),0(x;)]<R. But this contradicts the assumption above. Hence there must exist
a e [ty,t;] such that 8[x(t,),0(x,)]<R. Then, as a consequence of the uniform boundedness
result, 8[x(t),0(x)]<d(R)=d"' Vtt,. Hence
d[x(t),o0(x)] <d' Vit =t +T(d',r)

i.e., the system is uniformly ultimately bounded.

5.3.2 Remarks

e Comparing theorem 5.4 with theorem 5.3, the following fundamental conclusion is
drawn. The nominal system (5.7) admits control action of form (5.8) such that the
switching function 6(x)=0 is also a switching function for the uncertain nonlinear
system (5.11), and the same structured controller can be employed to achieve a
sliding mode along 6(x)=0 as long as the controller gain p(x) is chosen according to
(5.14) instead of being the constant of theorem 5.3.

e Compared with the techniques developed in chapter 4, the same design principle
has been used, and similar assumptions have been made concerning the
characteristics of the input mapping of the system. These conditions are as
follow:

LgV-LgV20 and  L,V£0
L,0:Lp,020 and Lyo020
It is necessary to choose a constant matrix S (for the case of linear switching

function) such that the assumed conditions, L;6-L4,6=S-gx S-Ag>0 and L,0=S-g+0,
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are true, whilst, in the former case, a special form of Lyapunov function is needed
(in most cases a transformation must be made, as discussed in chapter 4, in order to
find such a Lyapunov function) to guarantee L,V#0, and furthermore it may not be
possible to make L,V-Ls,V=0 only through choice of a Lyapunov function. It is
therefore concluded that the requirements here are less severe than those of chapter
4 and it is easier to implement the design.
e To apply the techniques developed in chapter 4, it is necessary to choose values of

two parameters C; and C, so that

C,-C,L V>0
and

LpV<(1-CPLV+C,<0
where

oV
LV =S = f=LV + LV <-v

L,V :‘3_1’ % =L V4L V+L, Vou, +L, V- (u +u,)

The present development avoids the requirement for proper choice of C, and C,,

thus easing the design problem further.

5.4 ILLUSTRATIVE EXAMPLE

We will consider the same example as the one in chapter 4 to illustrate the
application of the techniques developed here. Both open loop pole uncertainty and non-
minimum phase problems are considered. Although the uncertainties lie in the range of the
input mapping g(x), there do not exist functions p and q such that Af=g-p, Ag=g-q, so they
can only be treated as special kinds of mismatched uncertainties. The system can be

expressed as
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o~ G
(o e (A o
where Aa;=a;—a; (i,j=1,2)
b,=1/a,
Ab,=k,
Ab,=1/a;, ~1/a;,+a,k,/a;,
Thus, the system falls into the class of systems with mismatched uncertainties.
As the nominal part of this system is already in regular form, it can be directly
rewritten as
xI(t) =f1(x!, X2
X2(t) =f2(x1, x2) + g&(x!, x2)-u(t)
such that two sets of new states X!=x,, X?>=x, result, and we therefore have
fl(x)=a,,X;+a;,X, f2(x)=a,,X,+2,,X, g2(x)=b,
The switching function, independent of any uncertain element in the system, is chosen as
o(x)=0,(x;)—x,=0
such that a reduced order closed loop system of the form
X () =ayx; +ax, =a;,X,+a;,0, (x) =Ax;
results, where A is the closed loop pole. Here a linear switching function is chosen, i.e.,
G,(x;)=sx;, so s=(A-a;;)/a;,. From this, the closed loop pole may be placed at some desired
location by appropriate choice of s, and also condition (5.12) is satisfied. The nominal

system is chosen to be

(4732 1.000)(%,), (0
X®=1.000 -1.268 x, /F\1)*®
and s=2.2321 was chosen for simulation purposes. This results in a reduced order closed

loop system with pole A=-2.5. For the chosen switching function

o(x)=sx;—x,=Sx=0
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x1(t)
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Fig.5.1 Case 1: Variable structure controller with variable feedback gain, L.,6-L,,6>0
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the partial derivative with respect to x is do/dx=S=[2.2321, -1], thus
L,0:L),0=S-gxS-Ag =0
The controller with variable feedback gain, and for the sake of comparison, one
with constant feedback gain, are designed in accordance with theorem 5.4 and 5.3

respectively

1 1 Lo, .
u(®) == { Lo\ [ (Qurt Q4510 L ol(-0)? sign(o) }
g 8

1
u(t)= —ﬁ{ L;0+p-sign(o) }
g

Fig. 5.1 displays the results of simulation for the system. The responses of the
system with feedback of both constant gain and variable gain are depicted for different
parameter bounds. Use of the variable gain controller results not only in stable responses,
but also in fairly small errors, whilst use of the constant gain controller results in large
swings in the values of the states, and sometimes an unstable condition.

The second example is concerned with the case where condition (5.12) is not
satisfied. The same nominal model as that of first example is considered, but the real

system model is given by
o (4793 1.225Y(x) ( -0.1
x®={ 1225 0739 \x,)H0.756 )*®
This implies some uncertainties in both state mapping and input mapping
Af= -0.007 0.225 \(x,
—0.225 2.007 \x,
-0.1
Ag= (-0.244)

such that for the following switching function
o (xX)=sx;—x,=Sx=[2.2321,-1]x=0
Lg0°LAg0=-O.O208<O, but |Lg0|>2|LAgG|, so theorem 5.5 is applicable here.
The simulation results are shown in Fig. 5.2, and the same conclusions can be

drawn.
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5 .5 SUMMARY

In this chapter, the same problem as that of chapter 4 has been addressed, but a
different control strategy, variable structure robust control, is used to guarantee stability off

the switching surface. The techniques are summarised as follows:

Algorithm:

® Transform the original nonlinear uncertain system into a regular
form (see appendix B);

@ Design a switching function o(x) such that either condition
(5.12) or condition (5.28) is satisfied;

® Obtain a feedback control of form (5.13) with variable feedback
gain (5.14) subject to condition (5.12), or control (5.29) with

feedback gain (5.30) subject to condition (5.28).

The design procedure does not require the nominal dynamics to be either stable or
in some way precompensated, nor is there any requirement for the uncertainties to satisfy
the assumption of matching conditions. The control law is directly applicable to nonlinear
uncertain systems, even to the open loop unstable case, and the practical stability of the
closed loop system is guaranteed. The simulation results show that the controller
attenuates the effects of the uncertainty. On the other hand, the controller has the same
structure as that developed for the case without consideration of uncertainty. The
difference is that variable controller gains are employed, depending on the upper bounds of

the uncertainty and disturbance.
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This chapter describes a new robust control technique developed for

multi-input nonlinear systems with mismatched uncertainties. The
proposed technique utilises variable structure theory, and the design

is based on Lyapunov stability theory.
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6.1 INTRODUCTION

FEEDBACK control is now fairly well understood for large classes of nonlinear
systems with single inputs or uncoupled multiple inputs. For general multi-input
nonlinear systems, however, feedback control and especially robustness issues still
represent difficult problems, the urgency of which has been rendered more acute by the
recent development of systems with challenging nonlinear dynamics, such as robot
manipulators, high performance aircraft, and advanced underwater and space vehicles.

Some methodologies have been developed to deal with the robust control of multi-
input nonlinear systems in the time domain. One possibility is to decouple the system by
properly choosing a state transformation so that large scale nonlinear systems can be
decomposed into a number of sub-systems with only one input, and noninteracting
controllers can be found to control the new transformed systems. Another is called
generalised decentralised control where large scale nonlinear systems consist of a number
of sub-systems which have only single input, whilst the interacting terms are treated
artificially as uncertainties in the system. Both methods have some limitations, because
decoupling of input-output is hard to implement for general nonlinear systems, particularly
with uncertainties, while generalised decentralised control does not fully use the
information concerning interacting terms so that conservative design results.

In this chapter, a new robust control technique for multivariable nonlinear systems
in the presence of uncertainties and external disturbances is developed. In contrast to other
methods, the method developed here avoids decoupling or decentralising the system into
sub-systems, but synthesizes robust controllers directly with the original nonlinear
uncertain dynamics, thereby easing the design problem and utilising all available system

information. The proposed design technique does not require that the uncertainties should
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satisfy matching conditions, nor does it require that the nominal system should be stable or
pre-stabilised. Instead, only a rather weak condition is imposed on the uncertainties with
no further assumptions, and strong robustness is obtained. The robust control strategy is
still based on Lyapunov theory, and is established using concepts from variable structure
theory but with certain extensions. The control possesses a quite simple structure, and can
be used to effectively deal with MIMO nonlinear uncertain systems. A nonlinear example

is considered and simulation results are presented.

6.2 ROBUST CONTROL OF
MULTI-INPUT NONLINEAR UNCERTAIN SYSTEMS

To begin with, a general description of the system to be controlled is given, and an

assumption is made which is a simple extension of that for the single-input case.

6.2.1 System Description

Consider a multivariable nonlinear system with mismatched uncertainties of the

form

() =Fx,)+Gxu()+E() (6.1)

f, i1 - -+ - Bim
where Fxy)=| : Gx,Y)=

£, g1 -+ - Em
F(-,"):R"XR"SR", G(-, ):R*xR"'—=R™™, x(-)e R" is the state, and u(-)e R™ is the control input.

All the uncertainties in the system are represented by the lumped uncertain elements ye RY.
E(t) represents external disturbances which could be either deterministic or stochastic. The
only information assumed here is the knowledge of the bounds of y(t) and &(t). These

bounds are given by
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Dg(x) & {$2§7| Fx W =12, )} (6.2)
@c(t) & {8 E(O) | otz oy ) (6.3)

where @ represents supremum bounds. Furthermore we define a matrix

0(x) & {yfgi%ﬁij(xﬂ) | 1<isn 1jm }
and assume that the following condition

O5(x)-G(x,Y) > 0g(x)-06(x) >0 (6.4)
holds, where ¢ indicates the infimum bound of G, and the inequality of (6.4) means that
the quadratic form of these matrices satisfies the above inequality.

Here by mismatched uncertainties, it is meant that it is not required to decompose

the system (6.1) into the certain part and the uncertain part of the form

E(x,7) =F(x,¥)+AF(x,7)

G(x,7) =Gx,N+AGx,Y)
and that it is not necessary to represent the uncertainties by

AF(x,y) =G(x,M)df(x,)

AG(x,7) =G(x,7)0g(x,Y)

where ¥ is the nominal value of .

ASSUMPTION 6.1. (Conditions on the Input Mapping)
For a given system of form (6.1), it is assumed that the input mapping and its
infimum bound satisfy the following conditions:
@ all m non-zero eigenvalues of the following matrix
G(x,7)-95(x)e R™ (6.5)
are positive;
@ the minimum non-zero eigenvalue of the above matrix is sufficiently large that

the matrix
0G(x)-G(x,y) e R™™ (6.6)
is positive definite, i.e., its symmetrised form is positive definite;

® for a properly chosen switching surface
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o(x)=[0,(x), Oy(x), -+ - - - , (1"

the following matrix

Vo-G(x,7)-04(x)- V6T = 05(x,)- QL (x)e R™" 6.7)
is positive definite, where Vo is the Jacobian of ¢, and

0g(xY) £ Vo-G(x,) 6.8)
and

Q) & Vo-0(x) (6.9)

is a non-singular matrix, and is called the generalised infimum bound of wg(x,Y).

REMARK 6.1:

120

e  This assumption is concerned mainly with the characteristics of the input mapping of the given

system. In general, (oG(x,y)-Q;(x) is not symmetric, and its symmetrised form may not be sign-

definite. Fortunately, the switching function o(x) can usually be chosen so that condition (6.7)

holds.

e Inmost cases, linear switching functions o(x) of form

o(x!, x) =8, x'-x*=0 6.10)

are adopted, and the partial derivative of o(x) with respect to x is simply a constant matrix given

by Vo(x)=[S,,-I]. It is therefore possible to choose the elements of S, such that condition (6.7)

holds for the input mapping of the given nonlinear uncertain system.

e More specifically, for the given nonlinear uncertain system of form (6.1), if a coordinate

transformation z=T(x) can be found, such that the system can be transformed into the following

form

71 1 ) 0
(;2)= ng,g)q' (gz(z,y))v(t) (6.11)

where z=[z!, z2]T and v(t) are respectively the state and input of the system in new coordinates,

1(z,)eR™™, f2(z,7)eR™, and g¥(z,y)e R™" is non-singular. Then for the switching function (6.10),
Y

the matrix

W,(zY)-QL2) = Vo-G(z,) -9 [(z)-VoT
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0
= [Sp 'I]' (gZ(Z,'Y))'(os ¢g72.(z))'[sp 'I]T

=8%(z,¥)-0,2(2)
is required to be positive. From the discussion, it may be stated that if the signs of all elements of
G(x,Y) do not change for all admissible uncertainties, the condition (6.7) is met.
THEOREM 6.2.
For any matrices C, A, and any symmetric positive definite matrix B, if C'A is
symmetric and (ATA) ! exists, then
(CTA—CTBC) —(ATB"1A) (6.12)
is negative semidefinite.
Proof:
CTA—CTBC="(ATBA) —[CTA—5ATB1A] (ATB-1A)" [CTA —ATB-IA]T
=-(ATB1A) —{ CTA(ATB1A)TATC +(ATB-1A) (ATB-LA) | (ATB-1A)T
_%CT A(ATB-1A) 1(ATB-1A)T _-IE-ATB-I A(ATB-1A)1( ATc)T}
==(ATB'LA) —CTA(ATBIA) TATC —(ATB1A) +5-CTA +3ATC
If (ATA)1 exists, then
A(ATBIAYIAT=A(ATBIA) 1ATB-1(AAT)(AAT) IB=B
and so the above equality can be written as Touows
(CTA—CTBC) —{(ATB1A) =—[CTA —ATB1A](ATB1A) 1 [CTA —3ATB-1A]T
i.e., (CTA—C™BC) —%(ATB-IA) is negative semidefinite. O
The result of theorem 6.2 enables it to be concluded that for any vector z#0
Z7(CTA—CTBC)z <5 ZT(ATB-1A)z
80 it is possible to replace the right-hand side by the left-hand side in the development of
the next section. Obviously, this theorem is an extension of identity (4.12) for scalar case.
In order to proceed, some definitions are now made and some new matrices are

constructed by rearranging the elements of the existing matrices. Let
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n 06
(DF+§(X’Y)= -
O 0, £
Ha—xj'( +E)

so that

LF+§G = 0)F+§(X"Y)XImxl (6 13)
where I, A[1, - - - -,1]7, and also define w.(x,Y) by

w,(x,Y)=L,0 (6.14)
Similarly, let

ORI
2(x)= -
0 O, (x)

SO o(x) =2(x)XL (6.15)

and finally, let

[ul@ .0
U(t) = .
0 - ®

u(t) =UM)X (6.16)
With these definitions, the vectors Lg,:0, o(x) and u(t) may be represented by

diagonal matrices multiplied by a special kind of vector with all elements equal to unity.

6.2.2 Robust Control Synthesis

THEOREM 6.3.
For a matrix G(x,y) and its infimum bound ¢5(x)e R™™ (n=m), and its generalised
form Q;(x)=Vo-¢(x) defined in (6.9)
® For the matrix A=¢L(x)-G(x,y), if its symmetric form A =(A+AT)2e R™™ jg
positive definite, then
06(x)-05(x)-G(x,1)-dg(x)e R

is non-negative definite.
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@ For the positive definite matrix 0g-Qj, i.e., (0" Q%) p.d., if
Al (@6 25)]>6>0 (6.17)
then the matrix
O Q26) 0625~ Q-6
is positive definite, i.e.,
2Z{ @FH(Q0) 06 QL - Q¢ QL}2>0 Vz#0 (6.18)
where @y(-) and A () indicate the spectral norm (greatest singular value) and minimum

eigenvalue of the respective matrices, and ¢ is a positive constant satisfying (6.17).

Proof:
@ Let A=¢5(x)-G(x,7), and A =(A+AT)/2. Let B=0,(x).
According to assumption 6.1, matrix Ae R™™ is positive definite, so it is obvious
that matrix BA BT is non-negative definite.
® Knowing that, for any matrix Ce R™", we have
A (Ollzl]? £ 2TCz < A (O)llzl? Vz0 (6.19)
if A [(wgQ0)1>c>0, then A (05" QD> [(05-Q1),1>¢>0, so

GAm (QGQG) } >0

Q0]
7T 0 Q=520 } 5 5 7T{ A (05 Q-2 T

O(€26)
ie., 04(Qg) 05" Q5 — Q56 QG

(6.20)

is positive definite. d
The problem now is, for a generalised Lyapunov function defined by

V() 25670-000>0 V() 300020 and V| =

to find a feedback control u(t) such that, for Xx={x(t)e R"|0(x)¢0, x(ty)=%X,}
V(x) =0"6=0"Vo- {FxN+GxNu®+E) }
=6"{Lgo+Lgo-ut)+Leo }
=T} =T (O O, e (X, 1)+ 06 (XY U(0) }Lpq <O (6.21)
That is, the matrix ZT(x){ 0p(x,y)+05(x,)U(t)} is required to be negative definite, so that

the system is stable. The following theorem solves this problem.
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THEOREM 6.4.
The multivariable nonlinear uncertain system of form (6.1) admits a feedback

control of form

U() =-(2+1)p)Qe(x)E(x) (6.22)
or written in vector form

u(®) =-(+1)p(x)QE(x)o(x) (6.23)
where the feedback gain

() =G (1 -y (O O 50T (6:24)

is a symmetric positive definite matrix, such that the matrix
=T () { 0g, e (X, V) +06(x,NUD) }
is negative definite(n.d.), i.e., the derivative of the Lyapunov function V(x)<0 Vx#0, so the

closed loop system is stable. Here

()] & diag(joyx)]) =sign[=(x)]-=(x) (6.25)
32 (@ 040 (1)
Zlox,| (e, 0
Qp,(x) & e (6.26)
0 >'i|ai"|-(cb +, (1))
=1 an Fj(X) é.i
nao' nao'l
E{BAXJ- .¢Gj1 (X) ¢ ocoee e J-=1a_xj .q)Gjm(X)
Qu(x) & 6.27)
n JG n Jo
EBJXJ . q)G,-l x) « - - j=]a__xfj“ . (l)Gjm(x)

O =M (€2°€20)
1 and ¢ are positive constants to be chosen by the designer.
Proof: V(x)=0"{ Lyo+Lso-u(t)+L.c }
=Ty U= (O[O, e (X NHOGENUM] Hip
=Ly { 2000, 6D~ DE R 06 (% NP HRIQEX)E)] Hi

According to theorem 6.3, the inequality
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L e { ORIQG (0] 0605,7)- QG () — Q6(X) G- QLX) } g 20
holds, and also note that
L { 06PCIREC) it DhininlPOO] T { 060 DQE ) },020
if p(x) and mg(x,y)-Qg(x) are positive definite. Let p(x)=p'(x)- ¢fp so that
V() =L { 2T X) 08, (%) = 2+ D X) 306X, )P () QEE)ZX) g
ST 2T 0p,£(x,7) — (+ 12T (X)Q6 ()P (IQEE)EX) g
=T { 22T (X)6Q6 (0P (OQ)Z(x)
+ 2T ()0, (x,1) — =T (X)6Q ()P (QEIZ(X) i
ST { -2E ()R ()P ()QGF)Z(X)

+ 508 N [CQP QLT g (3,1 Ny
according to theorem 6.2. Obviously, if Qg(x)p' (x)Q (x) is positive definite, so is
[Qe(x)p'(X)Q5(x)] ™, so that we can choose p'(x) as a positive definite symmetric matrix
such that the following matrix

25T () 6QG(X)P VQEX)EX) +5 0%, XN CRRP R QEF] g, £(x,7)
is negative definite, and so V(x)<0. Let

p(X)— [QG(X)] Qg e () EEMQECOT

Note here that 2(x), 0g(x) and |[=(x)| are diagonal matrices, so they will commute with one
another. Therefore

V(%) ST 2T(X)6Q6 ()P ()QE(K)2(x)
— O, (D[0P QT O (6,1) i
= Ty {3 QI =5 O, e KD g (1) i
= T | 5 Qe OO~ O, D, () Ot (x1)] H

where [£(X)|Q,¢(x) is positive definite.

For the it entry of the diagonal matrix I— g, (X)Qg,£(X)0p,¢(X),
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n JC, )
[Or:(XM]; (%555 (Fj(x,y)+§j(t)))

- o
2 ] n | 0G.
Ol (3 @ 0) |

>0 (6.28)

so, I—(DIE,,g(x,y)Qﬁ,ré(x)mﬁg(x, ) is positive definite. It follows that
' 1 ' )

-{ 22T () 6Q6 ()P ()QEH)EX) — 7 OF, £(x, 1) [¢Q6 ()P Q)] 0, :(x.1) }
is negative definite. Now the proof is completed and it is possible to conclude that

V(x)<0 (6.29)
and the system is stable. d
REMARK 6.2:

e The proposed control is of the form
W+

1 2
u(v=- T?'l[gc(x)]-lgm(x).sign[o(x)] (630)

in which the constant ¢ can be chosen by the designer to satisfy condition (6.17). For instance

@ G=¢2; then
1%+1) 1 .
U(O) = -~ 5O (] () signlo ()] 631)
@ ¢=1; then
241 2
w9 =220 (10, (-signlo()] 632

6.3 ILLUSTRATIVE EXAMPLE

Consider the following simple nonlinear plant of the form:

x(1) =F(x,1)+G(x,1)u(®)

a,;sin(x,)+apx, 0 0
where F(x,7)=| ayx1tazsxs Gx,y)=|b; O

] 1 1
431X +az3X; 0 by

in which the uncertainties have the following bounds:



Chapter 6  Robust Stability Control (111) — Multi-Input

ajie[-1, 1.2] apnell, 2] ay;€[10, 15] as;e[-20, -10]
ane[-6, -5] ape[10, 20] byie[1, 2] bsre 2, 10]
The nominal matrices can then be chosen to be

aysin(x))+a;,x, ) (0.1sin(x))+1.5x,
F(X,7)= 251X Tay3X; = 12.5X1-5.5X3

0 O 0 0
G(X,7)= b21 0 = 1.5 O
0 by) L0 6

As this system model is already in regular form, it can be directly rewritten as
kl(t) =F1(Xls Xza Y)
XX(1) =F,(x!, X2, 1) + Gy(x!, X2, y)-u(t)

such that two sets of new states X!=x,, X?=(x,, X5)"result, and we therefore have

F (x,y) =a;sin(xy)+[a},, 0] (Z)
F _[2 0 ay)(x,
2(%Y) 31 X0 433 J\X3

b 0
GZ(X;Y) = ( 61 b32)

A switching function is defined as follows

o(x)=0,x)—-x?=0

a,, .

;X ,;—=1sin(x;)

where G,(x1)= 1 4, I
$X )

The reduced order closed loop system (on the switching surface) is then

X
X, =a;,sin(x)+[a;,, 0]-(xz ) =a,sin(x;)+[a,,, 0]-0,(x!) =A-x!

127

$0, $;=Ma,,, and s, could be any value. Letting s,=-1, 5,=-0.7368, results in a closed loop

system with pole: A=-1.5. The partial derivative of the switching function is given by

a .
Vo= —l_a_]rlCOS(Xl) PO
-07368 -0 -1
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00
b= [l OJ
0 2

-1 0
QG=VG'¢G=(O _2)
(Pﬁzxmax(QG.Qé) =4

It is obvious that the matrix

(b, 0 -1 0
os=5" 1 J0 2)

128

is positive definite for byie[1, 2], bse[2, 10], and satisfies condition (6.7), so the

technique of theorem 6.4 is applicable here. We choose ¢<1.

xli)
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Fig. 6.1 Simulation results for the illustrative example
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The simulation results are shown in Fig. 6.1. From the results it can be seen that
although there are significant uncertainties in the system, the system has been stabilised

and good closed loop system performance has been achieved.

0.4 SUMMARY

In this chapter, the robust control problem for a class of multivariable nonlinear
systems in the presence of mismatched uncertainties has been addressed, and robust control
techniques have been developed. In contrast to previous work on the problem, there is no
requirement for decoupling the nonlinear uncertain system or decentralising the whole
system into several subsystems, no requirement for the nominal dynamics to be either
stable or in some way precompensated, and no requirement for matching assumptions on
uncertainties.

The design method is summarised as follows:

Algorithm:

® Transform the original nonlinear uncertain system into a regular
form;

@ Construct matrices for the supremum bounds of F(x,7Y), &(t) and
infimum bound of G(x,Y) satisfying conditions (6.2), (6.3) and
(6.4);

® Check that conditions (6.5) and (6.6) hold;

® Design a switching function o(x) such that condition (6.7) is
satisfied;

® Calculate the spectral norm of €);, and choose constants L and ¢
satisfying condition (6.17);

Construct new matrices of form (6.25), (6.26) and (6.27);
Obtain feedback control of form (6.23) with feedback gain

(6.24).
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7.1 INTRODUCTION

NLY the regulator problem® has been considered in previous chapters, the aim

having been to compensate uncertainties and drive the states of the system to zero.
Another important control aspect is the servo problem, i.e., trajectory tracking. The
objective is to make the states and outputs follow desired trajectories. In order to achieve
this, an ideal trajectory x¢ is introduced, and the control aims at driving the errors, e=x-x9,
towards zero.

In this chapter, the robust tracking control problem for a class of nonlinear systems
in the presence of uncertainties is investigated, and robust controllers are developed. The
proposed design procedure consists of two phases. Firstly, the original nonlinear uncertain
system is transformed into a new coordinate system using the feedback linearisation
technique such that a system with linearised nominal part is obtained. Secondly, a robust
variable-structure-like controller is developed based on Lyapunov stability theory, and the
feedback gain obtained is only related to uncertainty bounds. Results are obtained for the
cases where the uncertainties satisfy the generalised matching assumption as well as where
they do not. The controller possesses the same structure in each case, but the tracking
errors may be larger when mismatched uncertainties occur. It is also shown that the
tracking errors will converge to zero when only matched uncertainties are present, or to a
finite open ball with a finite radius in a finite time when mismatched uncertainties are
present, the radius of the ball depending only on the bounds of the mismatched
uncertainties. The internal dynamics are also considered, and under the assumption of
minimum phase, the internal dynamics will converge to a ball with finite radius which

depends on the bound of the desired trajectory.

® The regulator problem is sometimes referred to as the stability problem, whilst the servo problem is called the
tracking problem.
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7.2 RoOBUST TRACKING OF SISO SYSTEMS

We now consider SISO nonlinear uncertain systems of the form
(1) =F(x,+G(x,u()
y(®) =H(x)

where F(X,7):R'*XRT-R", G(x,7):R"xR'=R", x, y and u are the state, output and admissible

(7.1)

control respectively, having appropriate dimensions, and y(t) is a set of lumped uncertain
elements. It is assumed that the state and input mappings F(x,y) and G(x,y) are bounded,
and that the bounds are deterministic and known. These bounds will be described later.
In what follows, in order to investigate the stability properties and design the
feedback control, the following generalised Lyapunov function candidate is considered
V(1) =V, (D)+V,(t) =e™Pe +c%(t)/2 (7.2)
where o(t) is the chosen switching function, and P is obtained by solving Lyapunov matrix
equation ATP+PA=-Q, where A is the state matrix of linearised nominal system of (7.1), P
and Q are positive definite matrices having appropriate dimensions.
We define the notations
Magmy () =max(min){A()} (7.3)

to indicate the maximum (minimum) eigenvalue of a square matrix.

THEOREM 7.1. (Uniform Ultimate Boundedness of SISO Nonlinear Uncertain Systems)

For the SISO nonlinear uncertain system represented by (7.1), if the uncertainties
are bounded, then a variable structure controller can be found such that the output response
of the system will track a given desired trajectory, and the closed loop system is uniformly
ultimately bounded. Moreover, the tracking errors will @ converge to zero in a finite time
T and remain there when only matched uncertainties are present; or @ enter a ball By with

radius x in a finite time T(r,) and remain there when mismatched uncertainties are
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present. Here r is the bound of the initial state, and the radius x depends only on the

bounds of the mismatched uncertainties.

7.2.1 The Case of Matched Uncertainties

such that a given nonlinear uncertain system of form (7.1), with relative order v<n, in the

The following sixteen pages are concerned with the proof of this theorem.

According to theorem A.6 of appendix A, a coordinate transformation can be found

presence of only matched uncertainties, can be transformed into the following form:

then

where

are uncertainties in the system which clearly satisfy the generalised matching assumption

Zl(t) = Zz(t)

7,1 () =2, (0)

2,(0) =a(z,0)+b(z,0)-u()+8, (2,4,y)+0,(z,L,1)-u(t)

y(t) =h(z)
L®=9z0

1
u(t) = m{ -a(z,0)+v(t) }

2,() =2,(1)

7., (D) =2,(t)

zu(t) = V(t)+81 (Z:C7'Y)+62(Z,Ca’Y)'V(t)

y(t)=h(z)
Lt =4q(z,0)

e % a(z,f)
SI(Z’C”Y) - SI(Z’C’Y) 82(2’2;”7). b(Z t_,)
SZ(Z:C,'Y) = 82(Z7C7’Y)' b(zl C)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

of definition 2.3, and it is also required that 8,>0 (as assumed in assumption 2.7).
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Denote the tracking errors by the difference between the real state trajectory z(t)
and the given ideal trajectory zd(t)
e;(t) =7,()-z(t) i=1,2, -+, 0 (7.9)
then we have a new system with the tracking errors e(t) as the states and v(t) as the input

e;(t) = e,(t)

(D =e,(0

&,(D) =V(D) +8,(z,5,V)+8,(z.L,Y) V() —22() (7.10)

Lt =40

Define the following polynomial

PO)=A"T+a A2+ o ta
where a, (i=1,2, - - - -, v-1) are chosen such that p(A) is Hurwitz®. The switching function can
therefore be defined as follows

v-1
o(t)=e,(t) +k§1ak~eu_k(t) (7.11)

Using (7.10)

v-1 v-1
e, = eu(t)+k,§1 e, (1) —kg,l ae, 1 ()

v-1

= ‘kgl ak'eu_k(t) + G(t)
and the time derivative of the switching function (7.11) is

v-1

S(t) =2, (t) +k§1 a€, (1)

v-1
=V(O+8, (2L + 8@ LN VO ~2y(0) + T &, () (7.12)
The feedback control is chosen to be of the following form

v-1
V() =2,(0)= T aey 1 (0)=py-0() —p, sgn[a()]

v-1
=23(t)— kg,lak-éu_k(t)—pl-o(t)—pz-sgn[c(t)] (7.13)

® A Hurwitz polynomial is a polynomial having only roots with negative real part.



Chapter 7 Robust TracKing Control 137

where sgn(c) is the sign function of o(t). Therefore, from (7.12)
v-1
s = {251 = Z a8, (0 =p;-0() — pysgnlo(D)] }

v-1
+8,(z,57) +8,(z.Ly)v(t) —23(t) +k§1ak‘éu_k(t)

=-py-0(t) —p,-sgn[o(t)] +06,(z,L,Y) +8,(z,6,7)-v(t)

It is concluded that, for the robust tracking problem, the original nonlinear
uncertain system of form (7.1), subject to the generalised matching assumption, can be
linearised and transferred into a new system of form

&, (1) =e,(t)

éu-Z(tj = eu—l(t)

v-1
€y1 (D) =-k§1 ey () +0(t) | (7.14)
G(t) =-p;-0(t) —py-sgn[o(t)] +06,(z,5,Y) +0,(z,¢,7)-v () (7.15)

or written in compact form

é(t) = Ae(t) + Bo(t) (7.16)
6(t) =- py-6(t) —p,-sgn[o(t)] +8,(2,5,Y) +8,(z,L,Y)-v(t) (7.17)
where
0 1 0 0 e
A= - B= e ©
0 1 ; :
Ay Ayg e -3 €1

The new system can be regarded as two subsystems, where (7.16) has e(t) as the state and
o(t) as the input, and (7.17) has o(t) as the state and v(t) as the input.

All uncertainties (7.7), (7.8) are assumed bounded, and the bounds are given by

Az MK |8, (2,1 [ 20 (7.18)
A, 2 M [8,z.Lm)| 20 (7.19)

where A; and A,, which could either be functions of tracking errors e(t) and time t or

simply constants, are presumed deterministic and known.
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§1.  Stability on the Switching Surface
By stability on the switching surface, it is meant that o(t)=0. The Lyapunov
function, according to (7.2), is therefore given by
V(t)=e™Pe
Differentiating V(t) along e(t) and considering o(t)=0, gives
V(t) =¢"Pe +e™Pé =-e'Qe +2ePBo(t) <-A,,(Q)eTe <0
Obviously, whenever eTe=|le(t)[2>0, V(t)<0 Vt>0, because

An(Q>0 (7.20)
It is therefore concluded that the tracking error will converge to zero, i.e., the

system is asymptotically stable.

§2.  Stability off the Switching Surface

Initial conditions will not necessarily be on the switching surface, so the state

trajectory must be considered for o(t)0. The Lyapunov function is of the form
V(®) = V,(®)+V,() =ePe+5 ()
V(t) =V, () +V,(t) =€Pe+ePe+0(t)S(t)

= {&Pe +ePe—A(P)2(t) } +{ o()&(t) + Ay (P)S2() }

=V, (1) +V,(t) (7.21)
where V(1) =V, ()M (P)OA(t) (7.22)
V,(t) = V, (1) + Ay (P)oA(t) (7.23)

The two portions are now considered separately. Firstly

V(1) =€Pe+ePe—L(P)G%(t) = -€™Qe +2ePB 6(t) — A, (P) o2(t)
Note here that ||B]|=1, and

2e'PBo(t) < 2Ay(P)llell-loll < Ay (P)llell? + Ay (Pl

SO V1O A (QllelP+ Ay (Pllef?+ Ay (POl ~ Ay (P)S(1)
=-[An(Q—Ay(P)]llel? (7.24)
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Again for the second term of (7.21)
V(1) = () S(t) + A (P)O2(t)
=6(t){ -p,6-p,52n(0) +8,+8,[W(®) —p,6—p,52n(0)] } +Ap (P)G2(Y)
=-(p1+ 1ol 2-)62+8,6+8,] w(t)o- (p1+ o —2)62 | +2,,(P)G2(1)
where
w(t) =25(t) —glak'eu.m(t) (7.25)
and A, , A, are defined by (7.18), (7.19). Therefore

V;(t)s-(p1+ ol —2)624+.8,6+8,[ w(t)o— (p1+ll i )02 ] +(14+A) Ay, (P) 2

= B[pl " “ M(P)]02+{816_(1'B)[p1+ "I:;?.“ —kM(P)]O-Z}
+Alwtyo—[p,+ " " Ay (P)]o?l
1
—HA,W?
<-Bp,+ "‘;1’“ AP + ”Z (7.26)
2

where O<B<l is a constant. Note that the identity (4.12) has been used here. Then the

choice of

A2 AW?
pz+[pl—7»M(P)]IIGIIZ%\/ (1-[31)B+ 2BW 20 (1.27)

implies V,(t) <0, so that

V(1) = V,(0)+V,(0) S V(0 S-[hy(Q ~ My ()]l (7.28)
It is easy to see from (7.28) that, for any non-zero tracking error [|e||>0, we have V(t)<0 if

A (Q)V/A,(P)>1 (7.29)
This means that the error will tend to zero as time increases.

Now considering (7.27), let

P1=My(P)>0 (7.30)

Then
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Al Aw?
pzz%\/ 520 (7.31)

Such a choice of control v guarantees that the closed loop system is asymptotically stable.

REMARK 7.1:
e The results obtained show that the closed loop response of the nonlinear system (7.10) is

asymptotically stable with the choice of feedback gains (7.30) and (7.31) when the uncertainties

satisfy the matching conditions.

7.2.2 The Case of Both Matched and Mismatched Uncertainties

Applying the same coordinate transformation to a system where both matched and

mismatched uncertainties are present results in

&) =e,(t)+8,,,(z,5,Y,V)

€1 (D =e,(1)+06y ., 1(z,L,7,V)
&,(0) = V() +8,(Z.L1) +8,Z LNV ~25(0) (7.32)
y(®) =h(x)
L0=40)
where 8,(z,(,7) and 8,(z,(,y) represent the matched part of the uncertainties, and
8o (L 1,v) =85, (2,4,7) + 85 (2.0, 1)-V () k=12, -+, v-1) (7.33)

indicates mismatched uncertainties in the system. According to definition (7.11)
v-1

SO

v-1 v-1 v-1

&, (=€, ()+0.. +k§1 a,-€, (1) —g,l a e, ()= -kgl aeey  (D+0(t)+8,,

and hence

v-1

S(t) =¢,(t) +k§1 8y-€,, 1 (1)
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= V(t)+51(2,C,Y)+Si(z,C,Y)-V(t)—iS(t)+:§lak-éu_k(t)
= {0~ aey 1,10-py 00—y senlo] }

FBL LB VO D+ T ey asO+8g s ZL1V)
%-p1~c(t)—pz~sgn[0(t)]+5{(z,?;,v)+5£(z,c,v)-v(t) +§1ak-80,u-k(z,c,%v)
=-py-0()—p,-sgn[o(t)]

+[8,2.81) +§ak~5au-k(z,c,v>] 8,5 +§ak'85,n.k(z,c,v>]~v<t)
So, the system can be written in the following form
é(t) = Ae(t) + Bo(t) + 8y(z.5,Y.V) (7.34)
6(t) =-p-0(t) —p,-sgn[o ()] +8,(z,5,Y) +8,(2,,y)-v(D) (7.35)
where A, B and e are the same as those of (7.16) and (7.17) and
80=I80,1*** * Boprl”

and the matched uncertainties are

V-1
8,(z,,Y) =6, (z,L,y) + kglak-ésgm_k(z,z;,y) (7.36)

v-1
82(Z,Ca'Y) = 6;(Z9C"Y) + kgllak'ﬁ(z),v-k(z7C”Y) (7-37)

The uncertainties are still assumed to be bounded. The bounds of the matched part
d,, 8, are of the same form as (7.18), (7.19), and the bound of the mismatched part §, is
given by
0y(z,5,Y,V) =c, Izl +c,lIvliScy+c,llelf+c vl (7.38)
where ¢,=c,||z9|], ¢, and ¢, are all positive constants, and presumed known. It is reasonable
to assume that, for any properly designed robust control, the state outputs z(t) and the

controls v(t) are bounded. From (7.13)
V(D) =23 —a,e,~aye,  — - * + * —a, 1€,— P O(t)—p,-sgn[c(t)]

=23(t)-de+de—ae,~ae, — - - - —a, ,6,—P O(t)—p,-sgn[c(t)]
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where d=(d,,, d,,, -+ d,). Let
AC—41€, =0\ =« * —a 416y
={alen-1+azeu-2+ sy 1€ }—ale\)_a’len-l_ Tt Ty 46,
_ &-d, &y 1~Gyy -Gy
—'al{eu'l' a e‘)_1+ AR + a ez+ a Cl}
1 1 1
=-4, {eu"'aleu-l’*" sy, .0+ a\)—lel}
Z-al’G(t)
where
a,-d; - _
Ay.1-Gy o ~
a"_l =, < Ay =-a1, oFa,
_au-l PN ~ .
& =dya Ay 1=-a;°8,,
It follows that
.d ~
v(t) =z, (t)—de—(p,+a,)-o(t)~p,-sgn[o(t)] (7.39)

for a bounded ideal trajectory, |'z§’,(t)|<d. The control is then also bounded
IvOl <d+|all-llell +lp,+a; - lo®ll+p, (7.40)

so the bounds of the mismatched uncertainties can be given by

8y <cotcillell+cllv<Bo+Billell+Bolloll - (7.41)
where

Bo=Cotcy(d+p,) (7.42)

B, =c;+c,ljall (7.43)

B,=c,lp,+ayl (7.44)

Note here that inequality (7.40) implies that the control is bounded. This is an
essential condition for any acceptable design.
We now consider the stability properties of the system using the same form of

Lyapunov function (7.2) as before.
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§1.

Stability on the switching surface
From (7.2), V(t) =e™Pe as o(t)=0. Differentiating V(t) along e(t), we have
V(t) = ¢"Pe +e™Pé = —"Qe +2eP3, + 2e"PB o (t)
S-An(QeTe + 20 (P)-llefl{ By + By llell}

bearing in mind (7.41). It is also true that

SO

22m(P)Bollell < Ay (P)Bollell” + Ay (P)By

V(1) - { A (Q = Au(P)[Bo + 28,1 HielP+ Ay (P)B, (7.45)

To make V(t)<0, it is required that

An(Q
by > Bt 2B, (7.46)

and it is then concluded from (7.45) that whenever the tracking errors

Bo
;bm(Q)/ XM(P )_[Bo'*‘zB]]

llell> > >0 (7.47)

V(t)<0, and the system is stable.

REMARK 7.2:

§2.

The result obtained above means that any tracking error such that [le]f? is greater than

B, i
=N QP [By+2B,]

makes V()<0, so that the system is stable. These tracking errors will converge and be arbitrarily
close to @.

Let k= @+e, where € is an arbitrarily small positive constant. Then it is easy to see that the tracking
errors |le|* will converge to a ball B, with radius of k, which depends only on the bounds of the

mismatched uncertainties in the system.

Stability off the switching surface

The case of o(t)#0 is now considered. Here the state trajectories are not on the

switching surface.



Chapter 7 Robust Tracking Control 144

V(O = V,()+V,(t) =ePe+2-0%(1)

and
V(1) =V, (1)+V,(t) =&Pe +e™Pe + (1) (t)
={&Pe+e™Pe -2 (P)c2() } + { o () 6(t) + 2N, (P)G(1) }
= V() + V(1) (7.48)
where
V(1) = V() =24, (P)OX(t) (7.49)
V(1) = V(1) + 20y (P)02(t) (7.50)

For the first term
V,(t) =€&™Pe +e"Pé -2\ (P)02 = -e"Qe +2e P8, + 26 'PB G (1) — 2\, (P) 62
<-An(Qllef?+22(P)liell{ By + B, llell + B,lloll} + 22y P)lell- ol —2A(P)c?

where ||B[|=1 has been used. Now, using
20 (P)llellBo < Ay (P)Bollell2+ Ay (P)B,
20(P)B,lell 01 < Ay (PYB3llel2 + Ay (P02
D Pllell ol <Ay P)llell2 + Ay (P2
it follows that
V10 S A (Qllel? + Ay (P)[1+B+2B, +B3 ] el + Ay (P)By+2Ay (PIGI ~2hy(P) 5

=-[A(Q A (PY(1+Bo+2B,+B2) |lell2 + A (P)B, (7.51)
Again for the second term, we have
V, (1) = 6(t)S(t) + 20, (P)o2(t)

= o(t){-p,-0—p,5gn(0) +8, +8,[w(t)—p,-0—p,sgn(0)] } + 24, (P)o2(t)

_ P2\ ., _ P2
=-(p+ ol )o(t) +8,0(t) + 3, [ w(t)o(t) — (p,+ ol

)02] + 24, (P)G(t)
where
v-1
w(t) =23(t) — 2 8,801,4(1)

Using definition (7.18) and (7.19), and bearing in mind identity (4.12),
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V;(t)s-(pl+ 1ol 2-)02(t)+3,6+5,[ w(t)o(t)-(p,+ )02(t)]+2(1+A2)x (P)o2(t)

<-Blp,+ ” m 220 (P)]oX(0)+{ 5,0-(1-B)[p,+ | " —20(P)]o2(1) }
+Alw®)ot) -[p,+ " " 20 (P)]c2(B)]
' 2
-B —=+A,w?
<-Blpyt—=r " " —2M(P)]o?(t) + (7.52)

Pr
4[P1+ "0." 27‘M(P)]

where 0<f<1 is a positive constant. The choice of

Al Aw?
pz+[p1—2?xM(P)]IIcrll2%\f(1_[3‘)13 + "’BW 20 (7.53)

implies that V,(t)<0. It follows that

V() =V,[0)+V,(t) SV, (t)

<[ M (@) =y P (148,28, +B2) | llell + Ay (P) B, < O (7.54)
where the following condition
Ay (Q/A(P) > 1+B,+2B,+B3 (7.55)
is required to be true. It is therefore concluded that whenever
el > By (7.56)

Ao Qg P)~(1+B 2B, B2
then V(t)<0, i.e., the system is stable. We can choose

P, =2M(P)> 0 (1.57)

1 A A2W2
P2\t 20

(7.58)

REMARK 7.3:
e  From the discussion above, similar results to those for the case of only matched uncertainties are
obtained, and the control possesses the same structure as that developed for the case of matched
uncertainty. The difference is that the closed loop system cannot be asymptotically stable, but only

ultimately bounded.
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7.2.3 Internal Dynamics

No consideration of internal dynamics
{®=4¢z0 (7.59)
has been made so far. They may be of great importance and will now be investigated.
Suppose that the system is exponentially minimum-phase in some domain €2, so
that the zero dynamics of the system are exponentially stable in Q. According to theorem

3.7, there exists a positive definite function V() satisfying the following inequalities

V4lIZI? < Vo (©) <, lIEII? (7.60)
oV

5z 20.0 <-vsliclP (7.61)
aV,

eads T | <valiel (7.62)

for some positive constants v,, V2, vy and v, Differentiating V() along ¢ yields

Vo0 = aC =-q(z,8) =—=>4(0, C)+ {cI(Z 0-4q(0,0}

C ¢
<-Villgl+vlid-{lg(z, 0 -a 0,011}
It is also assumed that g is a Lipschitz vector function® because the states z, {, the state
mapping f, and the coordinate transformation  are all smooth, i.e., infinitely
differentiable. This implies that
llg(z,0)—g(0,0l < B-Iz|
sup 1220 a0

“(0e0 |¥4]

ie.,

(7.63)

where 0 is the Lipschitz constant. So

Vo(©) S -V3lIKh?+,4liKl]- -1z

® DEFNITION (Lipschitz Condition)/*!:
If the function f(x,t) is continuous in t, and if there exists a strictly positive constant L such that
(x5, 1)-f(x;,OISLIx,-x41
for all x, and x, in a finite neighbourhood of the origin and all t in the interval [t,,te+T], then f(x,t) is a Lipschitz

function. The equation x=f(x,t) has a unique solution x(t) for sufficiently small initial states and in a sufficiently
short time interval.
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In order to distinguish from the vector e=(e,,e,, * - -+ - - ,€,.1)7, define a new vector
e'=z-z9=(e,e, " £)T (7.64)
where z=e'+z4, ||z|]| <|le'[+l|zd], and the following row vectors
a=(a\)-l’ ceen al), b=(bu-1’ ceen, bl)
where b;=a,-1 (i=1, - - - -, v-1). We therefore have

lle'll = lle,+ae—bel| =llo-bel| <]lof| + blel (7.65)

v-1

where G=e“+ae=e\,+k§1ake“_k(t), and b=||b||. So we have

izl <lle'l+liz4ll <lioll+Dllell + ¢ (7.66)
where [|z4]|<c is bounded.

Vo(©) <-V3lltlP+v,lIKliolzll < -v3ligl2+ v liKl-0{lioll +bllell + ¢}

<-V3l[EIP + v SlIEl-lIoll+ v, OBl lell +v 4BliKlie (7.67)
Now we consider a Lyapunov function candidate of the following form

V(£) =V, (1) + V(1) + LV (1) (7.68)
where L is a strictly positive constant to be determined. The time derivative of V along the
trajectories of the system is

V(1) =V, () + V() + V(1)

=V, (1) -20(P)S2 +A(P)[le]l2 +V y()+3X((P) 02+1LV o ()-Ay (P)[lEl2—Ay (P) 52

=V, () +V,(t) + V,(t) (7.69)
where
V(D) = V()= 22 (P)G2(1) + Ay (P)]le]? (7.70)
V,(t) = V,(8) + 3, (P)oX(t) (7.71)
Vo(t) =V o(0) = Ay (PI[elP ~Ap (P)G2() (1.72)
It follows that

Vo) < { -yl +pv gl ozl - A (P)llell2 Ay (P) o2
<{-pvsllclz+pv Jcl-Oliol +bliell+ ¢l F - Ay (Pllell2— Ay (P)o?

= {-VapllEP -+ v, SN0l + v SHEl-Blell+ v SilKlle F-Ag(PlielP Ay (P)o?
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Because
1 2
pv, BliEhHioll < g (P) HAVE LI + Ay (Pl ol
1
v OBIEIHlel <=5 HAVEDZBRAIP + Ay (Pl
M
then
- 1
Vo(®) < Vs Vi (1482 HILP + v, Dlile <0
therefore
1 2 )
Vi > i) pv82(1+6%) >0
ie.,
4v i, (P)
O<h <1402
and
v O¢
el > 1 . N 5 >0
V3= Dy (P) LV 02(1+5?)
Let
_ davahy(P)
_—-—Vz S(1+57) (O<o<1)
then
v Oc 0
II?;II>—(1_OOV3 >
REMARK 7.4:

e  The result obtained here implies that there exists an open ball B, with finite radius

__v,0c
=)y,

(7.73)

(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

148

which depends on the bounds of the desired trajectory z¢ (f|lzdll<c), such that the state of the internal

dynamics will arbitrarily converge towards B.. So it is concluded that { is bounded as long as zd is

bounded.

e  After considering the internal dynamics, the total Lyapunov function is given by (7.70)~(7.72)
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instead of (7.49) and (7.50). Following the same procedure, it is therefore straightforward to extend

(7.55)~(7.58) to

A (Q/A(P) >2+B+2B,+B3 >0 (7.79)
By
2 .80
I QAP Bs2Brel) 750
p,=3%,P)>0 (7.81)
2 2
b2 3 (1%)[& * Azgv >0 (0<p<1) (7.82)

7.2.4 Estimate of Uniform Ultimate Boundedness

It is now possible to estimate the boundedness properties of the closed loop system.
It can be shown that the closed loop system is uniformly ultimately bounded when either
matched or mismatched uncertainties are present. Theorem 3.11 is required here.
The form of Lyapunov function to be used is
V(£) = V,(£) + V,(t) + LV,(t) (7.83)
Differentiating V(t) along the system trajectory results in
V() =V, () + V,(t) + V(1) = V(1) + V, () + V(1) (7.84)
Considering the results (7.77)~(7.82), we have V(t)<0 and V,(t)<0. It follows that
V() <V, (H)<- [xm(Q) —kM(P)(2+[30+2[31+[3§)] llell? + A, (P)B, <O (7.85)

For simplicity, denote

@, =A(Q) - Ay (P)(2+B+2B,+B2) >0 (7.86)

®= Ay (P)B,>0 (7.87)
then

V(t) -, |lefP+@, <0 (7.88)
ie.,

el > >0 | (7.89)

@,
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so there exists a closed ball with radius

_ %
K= o, +€ (7.90)

where € is an arbitrarily small positive number such that the tracking error [e]|> will enter
the ball and remain in it thereafter. So we say the output of the closed loop system is
ultimately bounded.

Furthermore, if the error [le]|* enters the ball B, in a finite time, it is said that the
system is uniformly ultimately bounded. Now let us try to find the time period required for

the tracking errors |lel] to reach the surface of the ball B,.

d[e™Pe]

Vi) =——— <-@jlelP +0, <0 (7.91)
So we have

dllel* _ -@lle|*+® . .

T ;»m(P) L= |le]2+ @, <0 (7.92)
where

@, =d,/A(P) (7.93)

Do=D/A(P) (7.94)

The solution of this differential inequality is
D, D, '
lelp <—g-+lleolP - -] €716 (7.95)
1 1 .
An estimate of the time required for the trajectory to enter the ball B, is T(r,x), where

1 D 1D, 1 -
T(r,¥)<—rLn =—-Ln 1+—8- (7.96)
1

O K—Dy | D
and [le[|><r is the bound of initial values of e(t).

So, it is concluded that, under the feedback control of (7.13), the closed loop output
response of the nonlinear uncertain system will follow the given ideal trajectories, and the
tracking errors e(t) are uniformly ultimately bounded, i.e., converge to a ball B, with
radius of k within a finite period of time T(r,x) where r is the bound of initial states. This

completes the proof of theorem 7.1.
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7.3 ROBUST TRACKING OF MIMO SYSTEMS

We now consider MIMO nonlinear uncertain systems of the form
x(t) =F(x,7) +Gx,7)u(t)
y(®) =H(x)
where F(x,7):R"xXR"=R", G(x,y):R"*XR'-R™™, H(x):R"—»R™, X, y and u are the state, output

(7.97)

and admissible control, respectively, having appropriate dimensions, all the uncertainties
represented by the lumped uncertain elements ye RY are assumed to be bounded, and the

bounds are presumed deterministic and known.

7.3.1 Transformation of MIMO Nonlinear Uncertain Systems

For the MIMO case, we consider the transformation of square systems, i.e., systems
with the same numbers of inputs and outputs. Applying the results of theorems A.13
(relative order) and A.14 (coordinate transformation) in appendix A to a MIMO nonlinear
uncertain system, the system equations can be put into a nominal form, with (z,{) as new
coordinates. Specifically, the external dynamics of the i subsystem with relative order

V,(i=1,2,~--,m) can be expressed as follows

Zi,'l)i -1 (t) = Zj,\)i(t)

2, () =2,(2,0) +j=z1 by (2.0)-u;(0) + 8, (z.5,Y) +§1 8,2z 510 () (7.98)

i) =hy(2) (i=1,+-, m) (7.99)
where 8, , and §;, are matched uncertainties, and the internal dynamics are of the form

2(t) =q(z,0) +p(z,0)u(t) (7.100)

with k=l, e, N0 and i:l, ceeem
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q(2,0) =Ll (x) Pri(z.0)=LsL(®)
The feedback control
u(t) =—ITTA+ITv(t) (7.101)

renders the (n-v) states { unobservable. Here
A= {L;iHiOW‘l (Z)I i=1,,m } eR™

1= { LGjL‘;j;'IHio\p-l(z)l w1 } e R™m

oo, =1,

We define a m dimensional vector switching function as follows

G(t)=[61,62” ° '90m]T

where
‘\.)i-l
GO =en M+ LaxcCins ) (=12, m) (7.102)
v;-1 v;-1 v;-1
Then éi,\)i -1 (t) = Ci’ui(t) + k§1 ai’k’ei,\)i _k(t) _kgl al"k‘ Ci’\,i _k(t) = _kzll ai’k' Gi,\,i _k(t) + Gl(t)

and the time derivative of the switching function (7.102) is given by

;-1

G,(H) = éj,ui(t) +k§1 ai,k’éj,ui x(®)

m v;-1
=v(0+8,@LD 4 4@LVVO-2, O+ Zayct, ®  (7.103)
where 51,1, 6,-,2]- are of the form (7.7) and (7.8). We adopt feedback control of the form
d ;-1
v(t) ={ Z; () _kg‘l ;€041 (D) } —p1-0(t)—p,-sgnlo(t)]

=w(t)—p,-o(t)-p,-sgn[o(t)] (7.104)

where w(t) is a m dimensional vector, and p,, p, are square matrices of the form

2 @
(1) o o .
p ] 0 p 11 plm
P1= O to. ’ P,= :
€y) () 2
pm pml T pmm

and sgn(o) is the sign function of o(t). From (7.103), we therefore have
v;-1 m
s =12, - Tyt 1(0)-pY0i(0) -2 p-sgn[o(0)] }
= J=

m v;-1
+ Sj'l(Z,C,'Y) +J_§18j,2j(z,€’7) ’Vj(t) - Z?'ui(t) +k§i aj,k'éj,ui Q)
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=-pYoi(t) ~j§i p$-sgnlo(V] +6;,(z,L,7) +§i 8 23(2.81)-v{(1)

It is straightforward, following the procedure for the SISO case, to write the

system, with tracking errors as new states, as follows:

€;1(D) =¢;,(t)

éi»“i -1(0 = ej,oi(t)

'l)i-l

éi,Ui (t) = _kZ:] a]-’k@i,ui (t) + G(t) (7. 105)
5.(t) =—pVo;(t) _Ei p$-sgnlo(®)] +6; ,(z,5,7) +j§1 8;.5(2,5,1)-vi(t) (7.106)
The whole system can be written compactly as
E(t) = AE(t) + Bo(t) (7.107)
6(t) =-p1-0(t) - p,-sgn[o(t)] +8,(z,5,Y) +8,(z,L,7)- V(1) (7.108)
where
A=diag{A.} B=diag{B,} E=[E;, - - - B,
0 1 0 Ci1
: : 0 : Ci2
Ai = . T Bl =l . El = J
R R i R R R Ci-1

The elements of p, and p, are to be determined later.
When mismatched uncertainties are present, the system becomes

E(t) = AE(t) + Bo(t) + 0(z,4,Y,v) (7.109)

6(t) =—p,-o(t)—p,-sgn[o(t)] +08,(z,,Y) +0,(z,,7)-v(t) (7.110)
where o represents the mismatched uncertainties, whilst 6, and J,, the matched
uncertainties, may be of different forms to those in (7.108). Alternatively, (7.110) may be
expressed as

6(t) =—p-0(t) +8,(z,L,7) +8,(z,{,Y)-[w-p-0(1)] (7.111)
where p=p,+p,y = (7.112)

% = diag[o,()]



Chapter 7 Robust TracKing Control 154

WZ[WI, W27 M Wm]T

;-1
wi(t) = Z‘i"ui(t) —kg,l 83 €i0, ks (@ G=1,2,---,m) (7.113)
v(t)=w-p-o(t) (7.114)

Therefore
6(1) =[8,(2.L1) +8,(zL VW] - [1+8,(z.LM]-p-0(t)
=0,(2,5,7)— 0,(2,5,7)-p-0 (1) (7.115)
where ®,=0,+0,we R™, w,=I+0,& R™™. It is required that all uncertainties in the system

are bounded, i.e.,

A2 {218, 2.0 |t} (7.116)
AZ é {;ggf; | 82,jj(Z’C7’Y) I i=1,2,-~',m,j=l,2,m,m} (7.1 17)

where A, and A,, which could either be functions of e(t) and t or only constant scalars, are
positive definite matrices and assumed to be deterministic and known, such that
Q, =[A+A,Iw][] (7.118)
Q,=1-A, (7.119)
are positive definite. Furthermore, the mismatched uncertainty is also bounded, i.e.,
o(z,6,Y,v) < By + By llell + B,lloll (7.120)

where 3, B,, B, are positive constants.

7.3.2 The Case of Both Matched and Mismatched Uncertainties

THEOREM 7.2. (Uniform Ultimate Boundedness of MIMO Nonlinear Uncertain Systems)
For MIMO nonlinear systems in the presence of uncertainties, if the uncertainties
are bounded, then a variable structure controller can be found such that the output response
of the closed loop system will track a given desired trajectory, and furthermore the closed
loop system is uniformly ultimately bounded. Moreover, the tracking errors will @

converge to zero in a finite time and remain there when matched uncertainties only are



Chapter 7 Robust TracKing Control 155

present; or @ enter a ball B, with radius x in a finite time T(x,r) and remain there should

mismatched uncertainties be present, where the radius k depends only on the bound of the

mismatched uncertainties.

A Lyapunov function, V(t)=V1(t)+V2(t)=eTPe+-§-GT0', is considered, and the

derivative of V(t) is given by

where

V(t) = V,(t)+ V,(t) = Pe+ePe+076
={ePe+ePe-2M,(P)o7c } +{ 076 +2),,(P)oTG }

=V, (1) +V,(t) (7.121)
V(0 =V,(t)-2A,(P)c"C (7.122)
V,(t) = V,(1) +2A,(P)0’C (7.123)

The first part can be written

V,(t) =&™Pe +ePé-2A,,(P)c"c
= (eTA™+0"B™+w")Pe +e™P(Ae + Bo + w) -2\, (P)cT0
= (e"A"Pe +e"PAe) + (6"B™Pe +ePB0) + (w'Pe +ePw) -2, (P)c™C
=-e'Qe +2e"PBo+ (w™Pe +ePw)-2\,(P)0"C

Note that |[B||I=1, so that

26'PBG < 2k (P)BIl 70 < 24y (P)-[-eTe +3-57G] =hyy(P)-[eTe + 070

W™Pe +e"P0=2ePw< 2A,(P)-[lell- [ B,+B,llell + B,lloll]

where (7.120) has been used, and

SO

Then

2?Vl\/[(P)llellﬁo < KM(P)BO||C||2+7\,M(P)BO
20(P)B,llell lloll < Ay (P)B3lleliz+ Ay (Pl o2

0"Pe +ePW< Ay(P)-[ By +2B,+B3le"e + Ay (P)By+Ay(P)-07C

V10 <A (QlelF+Ay(P) [14+8,+2B, +B3 ] lellP +Ay (P)By+2A 14 (P)6T6-2A14(P) 0

= [ A Q =My P)(14+ B+ 2B, + B2 Tllell+ Ay (P)B, (7.124)
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In order to proceed, the following notations are defined
z =diag{o;}
o=xxI_, (7.125)

ws=diag{w, }

W; =0sxI, (7.126)

Qg =diag{€Q,}

Q=QxI_, (7.127)
where I, &[L,----,17".

The second part can be dealt with as follows
V(1) =0T()6(t) + 20 (P)o"C
= GT{ ;- W,-p-0(t) } +2\(P)o'C
=12 (05—, p-=1L + 215, 5" A (P)-= T (7.128)

the notations (7.125)~(7.127) having been used here. Let

p=p"[I-A,]"=p"Q] (7.129)
and suppose that it is positive definite, and that, for matrix ®,-Q;, its symmetrised form is
also positive definite. Then, for a constant ¢ satisfying the following condition

Al (00,:2)) ] >G>0
the matrix

Al 2, 3]-0y- Q= Q6
is positive definite. Define @f=A,,(2,-Q}), so that we can substitute (¢-Q,-p"Q))/@2 for
®,-p"-Q] in V,(t). It therefore follows that

.0O..0-Qf
ETG 2 P34

V,(® <T, 0 f oo~ o
M

s+ 2L, A P)Z L

0007
Ty T[S )]s
M

mx1

2
=lem{fcoa—zT[(p%Qz(p'—“’—g‘QalzxM(Pm'J)Q;]z}Imxl

2
Let p'—(p—gM 5 20(PYQS =p" (12+1) (7.130)
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ie., p'= p"(12+1)+ : lexM(P)QT (7.131)
Vv, <1, {=0s- z( sz"(m2+1)sz =,
1xm{ l’ ZPHQ;Z+Z 0‘)8 T( QZ p"Q;)E}Imxl

Q ) 0} T

Using the results of theorem 6.2, it is easy to show that the choice of
"__ (PM

lxm{ -2 (Pi'QZ p"Q;E+O)5(4

p"= 5 Q) Qe 1QT (7.132)

makes the above inequality negative as follows

mx1

nQT A1
VO ST { 02 50, el af(4- 22052 ) o )1
O Pm
— 23T 5 (pM 1 10TOT
=I,., {-= or g B, T

«Q, “’M MO0 EHQTQ]
g ) (DS}Imxl

T
+lem{(‘08 2
Pu

=T {395 0RO 05},
=T § 59 BI(-0}Q205) } 1,1 < 0 (7.133)
For the i entry of the matrix I-w[Q 7wy, it is clear that
1-[@i(x, ],/ 1], >0 (i=1,2,++-, m) (7.134)
S0, the matrix is positive definite. It follows that
V)=V, (0)+V,0) = V() +V©)<0 (7.135)

and the system is stable. Furthermore, if

A (QAy((P) > 1+ B+ 2B+ P2 (7.136)

then

V(©) V(0 -[An(Q) - Ay (P)(1+ B+ 28,4+ B ] llel2 + A (P)B, <0 (7.137)

and so
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llefl>>

Bo
0 7.138
A Qg -1 +Bot 2B +BD) (7.138)

The same conclusion as that of the SISO case can now be drawn. The tracking errors will

converge to an open ball By with radius

" By
A QA (P)—(1+Bo+2B,+B3)

We can further show that the closed loop system is uniformly ultimately bounded,

(7.139)

with a finite time period

T(t) <L 2120 | Ly oy, IK 7.140
,K) < L0 E s n 1+— (7.140)
where @, =,/ (P) - (7.141)
o= 0 /A, (P) (7.142)

So we have

2

2
p= {—;’%Q-;ngrlg;(ml) +%M— T2 (P }- QL

2 2 1
- ("QM Q{5 sl + 20 ()T} (7.143)

v(t) =w(t)-p(x)o

2 2
—w(t)- (‘;M Q{5 Lo +20, P o

=w(t)—p;-o(t)—p,-sgn[o(t)] (7.144)
where
_ 0%
P1=" 2 2Au(P) (7.145)
C+Dod
p2=___21g(pM QQ, (7.146)
and
]01[1. 0 0,
[Z1o= . ¢ [=sgn[o(t)] O
0 o' )\o

m
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7.3.3 Consideration of Internal Dynamics

Unlike the SISO case, the internal dynamics of MIMO systems are usually related
to the control u(t). Using the nomenclature of appendix A, they are of the form
L0 =4(z.0)+pz.0u(t) . (7.147)
where ¢(z,{)e R™, p(z,{)e R®“*™ In order to take the internal dynamics into account, it is
required that the internal dynamics be of the form
L =90

ie., PO =Ll (0)=0  (<i<m 1<ksn-v) (7.148)

According to the feedback linearisation theory of appendix A, if, for the given system, the

input mapping
g.ll s s = . gl!n
Gxy)=| ! Dl 8l
gnl AR gnm

is involutive, then condition (7.148) holds.

In this case, we may take the internal dynamics into account by assuming that the
system is exponentially minimum-phase, i.e., the zero dynamics of the system is
exponentially stable, and that conditions (7.60)~(7.62) hold. The same form of the
Lyapunov function as that for the SISO case of form (7.68) is adopted here. Following the
same procedure as that of the SISO case, similar results are obtained.

Assume that g(z,{) is a Lipschitz vector function, and the Lipschitz constant is

defined as follows

o= sup 14&0 —aO0l

T @heQ lizll

Differentiating V() along ¢ yields

. Vv, oV aV
Vo© =750 =75a0.0+75{a0-90.0)

<VllEPV gl { g (2,0~ (0,01 } S =VallElP+v,lIgll-0- 1zl
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Define a new vector e'=z-z4=(e,,e,,  * - - * * ,&,)T, so that we have, for [|zdl|<c
lle'll = lle+ae-be|| = [lo-befl < |ic] + bllell
lizll <lle'll +liz4ll < lloll + bliell +¢
Vo(©) S—VlILlP+v IEidlizll < =v3IicR+ v licl-0{lloll+ bliell +c}
<=V3llEIRP+ v, L lofl + v, BbIE|-llell + v, Bliclle (7.149)
Considering the Lyapunov function (7.68), the time derivative is given by
V(1) =V, (1) + V(D) + 1LV, (t)

=V (1) =20, (P)S2 +Ay,(P)[lell2 +V () +3A, (P) 52+ V o ()-Ap (P [lEll2 -Apy (P) 52

=V, (1) +V,(t) + V(1) (7.150)

where V(1) = V(1) = 2 (P)5%(t) + Ay (P)le]l2 (7.151)
V, (1) = V,(t) + 34, (P)02(t) (7.152)

V() = V(1) — Ay (P)l[el]> — Ay (P)G2(1) (7.153)

Form (7.149) and (7.153), it follows that the same results as those for the SISO case can be

obtained as follows:
_ 4ov, A (P)

H—W (O<o<1) : (7.154)
O
IICII>%3—>O (7.155)

Again considering (7.151) and (7.152), it is straightforward to extend the results

without consideration of the internal dynamics obtained previously as follows:

Bo
An(Q)/ A (P )_(2"‘[30"‘2[31‘*‘[3%)

lleli? > >0 (7.156)

where
A Q) (P) >2+B,4+2B,+B2>0 (7.157)
and
2
Q
p;=3 ) QA (P)>0 (7.158)
_ (+DeH(Q,)

Po=——g e — % %20 (7.159)
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7.4 RESULTS AND REMARKS

161

The results developed for the case of mismatched uncertainties are now compared

with those for the case of only matched uncertainties, and some comments are made.

7.4.1 Main Results for SISO Systems

In the Presence of Matched Uncertainties |In the Presence of Mismatched Uncertainties
On the A (Q)
> B, +2B,>0
Switching *a(@>0 E
} Bo
S
HECe >0 el > QAP B728,T
o(t)=0
Q An(Q)
—itmm >1 m > 1+B0+2|31+B§>0
Off the lel2>0 lel?> By
Switching A QP (14BG3 28 +52)
Surface  |P1=My(®)>0 p, =2A,(P)>0
6(1)%0 ) 2 A >
— 1 A A,w?
P22 PP+ B >0 (0<B<l) P27 (1_[‘3)[5 +=5 >0 (0<p<l)
(o) Q)
"P) >2 ) > 2+[30+2[51+[52>0
Bo
lle>>0 llel*>
_ A QA P-(24B 2B, +BD)
Off the
Switching P, =2Ay(P)>0 P =30(P)>0
Surface 1 A} Ayw? 1 Al Aw?
> >0 (0<P<«1 = 1
oo |72 NTPBTF =0 OPD o2\ [ =20 (0<beD
with internal
4o Ay(P) 4ovsAy(P)
dynamics u= Voo(1+b2) (O<o<l) H= V(1457 (O<a<1)
1> >0 vade
14 (1 a)v ICI>=—=== G—oyv, >0
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7.4.2 Main Results for MIMO Systems

In the Presence of Matched Uncertainties | In the Presence of Mismatched Uncertainties
On the (e))
>B.+28,>0
Switching 2(Q>0 Ma(P) Ps*28,
T 10 lelP> i
o(1)=0 Tl QA P)[B+2B] ~
An(Q) Q)
m->1 ) > 1+8,+2B,+B2>0
Off the B
. lel?>0 flell*> .
Switching KE(Q)/AM(P)—(1+BO+2B,+[32)
Surface 2
_ om(C2,)
N e Y p,= (pM( ) o @50
C+Dou( Q) C+Don(Qy)
p2=TgMz—Qz‘Qaz 0 pz=—2%—29; Q;20
A(Q) Q)
NG ) YWl >2+f,+2,+B2>0
lef?>0 lelf>> i p
Off the xm(Q)/xM(P)—(2+ﬁo+2|3,+[32)
Q)
Switching |P1=27 ¢ 4 Au(®>0 = (pM( D) QA (P)>0
Surface
@+1D)oi(Qy)
o(t)#0 Pz=#ﬂ; 2,20 2:—(L2+ 1;?5‘@2) Q)Q.>0
with internal Aoy, (P)
) 3/M 4orva,
dynamics  |M =I5 T4p2) (O<o<D) p= 7% (0<a<1)
v, 0c¢ v, 8¢
181> g, >0 15>~ >0

7.4.3 Remarks

e When mismatched uncertainties are present in the system, the size of tracking errors

llell becomes larger than that when only matched uncertainties are present, and the
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feedback control gain p, is also larger in order to overcome these additional
uncertainties. The feedback gain of the discontinuous part p, is expressed in the
same form, but does not have the same value because the uncertainty bounds are
different in this case.

e The size of the tracking error |le]] depends on the bounds of the mismatched
uncertainties, but not on the matched part. It also depends on the ratio éf the
minimum eigenvalue of the matrix Q and the maximum eigenvalue of P, which are
only related to the control design of the nominal system. They can be regarded, in a
sense, as a kind of 'stability margin' for the nominal system.

e When only matched uncertainties are present, the size of the tracking error [e]| can
be made zero, because for any [le]|2>0, V(t)<0, meaning that the chosen Lyapunov
function guaraﬁtees that any non-zero tracking error will converge to zero in finite
time, i.e., the closed loop system is asymptotically stable. When both matched and
mismatched uncertainties are present, the tracking errors usually become larger than
those when only matched uncertainties occur, and cannot be made zero at any time.
However, there exists a closed ball B, with radius

. By
A
- (B 288

+& >0 (e>0)

such that whenever |22k, V(t)<0, implying that the tracking error will converge to
and enter the ball B, and remain in it thereafter. Thus the closed loop system is
uniformly ultimately bounded.

e It is assumed that the mismatched uncertainties in the system are bounded, i.e., 3,
B,. B, are finite positive scalars, and that the bound should be sufficiently small
such that the condition A (Q)/Ay(P)>1+B,+2B,+B2>0 can be satisfied. This
condition is a sufficient condition for theorems 7.1 and 7.2, which state that the

measure of mismatch must be less than the critical mismatch threshold

A, (Q)/Ay(P). (See Leitmann et all+5))
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7.5 ILLUSTRATIVE EXAMPLE

The same SISO second order linear system as that used in the previous three
chapters is considered here to illustrate the application of the technique developed in this
chapter. Similarly, the effects of open loop pole location uncertainty and non-minimum

phase are considered. The state space model of the system is of the form

oo (A ap )X

o )G
_(an ap )X 0) Aa, x4 +Aa12x2) ( )
_(aZI 321)( )+(b2 O+ (Aazlx +Aayx, ®

y(t)=h(x) =X,

where Aay=a;-a; (,j=1,2)
b,=ky/a,
Ab, =k,

Ab, = (k, +ayk,)a;,-k,/a,,
The required coordinate transformation may be defined as follows:
z,=h(x) =X, = X, =2,
z,=Lh(x)=a,,;x;+a,,X, & X,=(-a,,2,+2,)/a;,
Such a transformation enables us to obtain a system with new coordinates as follows
7,(t) = 2,4+0,(2,Y,1)

7,(t) =a(2)+b(Z)u(t)+3,(z,1)+0,(z,y)-u(t)

where a(z) = (215812113221 H(2+25,)2,
~ Aa,;
and Bo(z,Yw) = (Aay - A Aalz)z +—= zZ+Ab u(t) = 81(z,1)+0(zy)u(t)

Sl(z,'y)z[au(Aa” —L Aa12)+a12(Aa21 u Aazz)]z +( Aa12+Aa22)zz
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8,(z,Y)=a,,Ab,+a,,Ab,

Feedback control of the form

u(t)= {-a@)+v(v)}

b()

converts the system into the following form
2,(t) =2,48,(z,Y,v)
z,(t) =v()+3,(z,1)+8,(z,7)v(t)

where So(2,Y,V) = [5 (z,y)-02 X(z,y): —Ei(%] 8g(z,y)v(t)
81<z,v>=Sl<z,v>—’82(z,v)o%(§)l

2(2’7) SZ(ZaY) b()

Thus, in general, the uncertainty 6, which does not satisfy the generalised
matching assumption, is the mismatched part, while the uncertainties 8,, 8, which satisfy
the matching conditions, represent the matched part of the uncertainties. The system
therefore falls into the class of systems with mismatched uncertainties.

Let the ideal trajectory to be tracked be yd(t)=r(t). Then z{(t)=yd(t)=n(t),
Z3(t)=yd(t)=n(t), and the tracking errors become

e, (t) =z,(H)-z3(t) =z,(t)-w(t)
e,(t) =2, ()-z5(t) =2, ()-(t)
The system model can be written as
&,(t) =e,+0,(z,7,V)
&,() =V()+8,(z,)+8,(z,Y)-v(D)-Z5(t)
Define a switching surface
o(t) =e,(t)+a,-e,(1)=0
so that
v(t) =Z5(t)-a,-e,()-p-0(t)-p,-sgn[o(t)]
where a, will be determined according to the polynomial

bA)=A+a,=0
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which is the characteristic equation of the reduced order closed loop system. We therefore
have

e,(t) =—a,-¢,+0(t)+d,(z,Y,V)

6(t) =—p;-6(t)-p,-sgn[o(t)]+3,(z,7)+06,(z,)-v(t)

i.e., A=-a,. Here

8,(zy) =8.(zy)+a, 84z y) =[5, 2 +a, Sy -8,z 1) +a, Sz )] %é)l

8,(z,Y)=8,(z,)+a,-83(z,Y) =

lz) [Sz(z,y)+a1-gg(z,y)]

The solution of the Lyapunov equation ATP+PA=-Q is that P=1/2a, for Q=1, and

therefore A, (P)=1/2a, and A ;; ,(Q)=1. Now we can choose the feedback gains to be

p1=2D(P)=l/a,>0  p,>\[AREAW220  (for B=0.5)

where A, and A, are the bounds on the matched uncertainties, presumed deterministic and

known. The bounds on the mismatched uncertainties, on which the tracking errors depend,

are given by
Bz 1) = Bl ) Bonle ) BT By
_ Ay, (21921-21,22))Z, +(y,+2,)Z,,  Ab,
=[(s2;,- Aalz) Z+——2,-Aby- a,b, ]+ a0,
=[(Aa11—&Aalz~Ab a12a21 a11322) 1+(Aa12 Ablau"'am) 2,]+ Ab, v
a2 a0, a12b,

<cotcllell+c, vl

<Bo+Bllel+B,lioll

where

CO=CI||Zd||

ayy A128,1-y;3p] |Ady, ay;+ay,
12 1202 12 1202
Ab, |

Ch=|———
2 |a12b2
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Bo=cqtc,y(d+py)
By =cy+c,llall (G=-a3)
By=calps+ayl
and the bounds of the matched uncertainties, on which the feedback gains are based, are

a
0,(z,Y) = [311(Aa11—a_1121A312)+a12(A321 Aazz)]z "'( Aa12+Aa22)22

(312321'311a22)zl+(a11+322)22

ajyb,

—(a;,Ab,+a;,Ab,)

-a
=[all(Aa“ Aa12)+a12(Aa21 1Aam) (a;,Ab,+a,,Ab, )—1232:21311&22]2

a a+
H(5 A0, HAay,—(a;1AD; +a,,Ab,) ;l”)zzsA1
12 12%2

Ab,
0,(z,y) =(a;;Ab;+a,,Ab,) bz_A

It is clear that 8,(z,y)>0 because a,;<0, Ab,=k,<0, Ab,>0, a,,>0 and b,>0.

7.5.1 Matched Uncertainties

Let a;,=0; a;,=1; then a,;=-a, ay,=-B, b,=0, b,=k,, where a=p;+H,, B=pHL,, and
-l,, -, are the assumed locations of the open loop poles. We first consider the case of
minimum phase, so let k;=0. One of the open loop poles however is assumed to be at -1, in
the complex plane but is in fact at -l;, whilst the parameter k, is also assumed uncertain,

having an actual value k,. This therefore results in a system with only matched

uncertainties of the form

R Y () 1S SN (WP L PP

where Ao=(o-0'), AB=(B-f"), and Ak,=k,-k,, and Aa,;=Aa,,=Ab,=0.
Fig. 7.1 displays the simulation results where only matched uncertainties occur.
The responses of the system are depicted for both stability (regulator) and tracking (servo)

problems.
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Uncertain Parameters:
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Fig.7.1 Case 1: Simulation results for robust tracking with matched uncertainties

7.5.2 Mismatched Uncertainties

The second case to be considered is non-minimum phase, and also one of the open

loop poles has location -p; while it is assumed to be -p;. The system is

oo (A ap\(X). (0 Aa, x,+Aa,,x, | (Ab,
x(© _(321 a21)(x2)+(b2)u(t)+(Aa21xl+A322x2j+(Ab2 u®
Let a,,=a,,=a#0, 02 24(B+a2) and k,=1. Then b, =k, , b,=(k,+a,,k,)/a,,, and

a,,= [-oc-’\/oc2 -4(B+a2)]/2 8y, = [-(x+\/oc2 -4(B+a2)]/2
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Fig.7.2 Case 2: Simulation results for robust tracking with mismatched uncertainties

Fig.7.2 displays the results of simulation for the system with mismatched
uncertainties, where both regulator and tracking problems are considered.

Observe that the closed loop system maintains stability in every circumstance,
regardless of the presence of uncertainties resulting from open loop pole position
uncertainty and non-minimum phase dynamics. It can be seen that the controllers obtained
via theorem 7.1 and 7.2 attenuate the effect of the uncertainties effectively, and the
responses of the closed loop system do follow the given trajectories. Another interesting

fact is that the tracking errors of the closed loop system converge to zero in the first case,
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where only matched uncertainties occur (Fig.7.1), whilst the tracking errors cannot reach

zero in the second case, where mismatched uncertainties are present (Fig.7.2).

7.6 SUMMARY

In this chapter, the robust tracking problem for a class of SISO and MIMO
nonlinear systems in the presence of matched and mismatched uncertainties has been
addressed, and robust tracking techniques have been developed.

The algorithm for the SISO case can be summarised as follows, and the similar

algorithm for the MIMO case can be obtained according to the discussion of section 7.3.

Algorithm for SISO Systems:

@® Transform the original nonlinear uncertain system into the form
of (7.4);

® Design a switching function o(x) such that the regular form
(7.16) and (7.17) can be obtained;

@ Construct bounds for the matched uncertainties of the form
(7.18) and (7.19);

@® cCalculate the ideal trajectory y%(t) to be tracked;

® Obtain a feedback control of the form (7.5) where v(t) is given
by (7.13) with feedback gains of the form (7.30) and (7.31);

® Check the performance of the closed loop system by considering
the open ball with radius (7.90) and the time to reach the ball

(7.96);

It is concluded that the tracking errors will converge to zero in the matched
uncertainty case, whilst the errors cannot reach zero in the mismatched uncertainty case.
However, the techniques proposed guarantee that the responses of the closed loop system
follow the prescribed trajectory, and the tracking errors are uniformly ultimately bounded

whenever matched or mismatched uncertainties are present.
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8.1 INTRODUCTION

IN this chapter it is shown how, on the basis of the concepts introduced and developed
in the previous four chapters, a number of relevant synthesis problems, such as
practical stabilisation and robust trajectory tracking, can be solved for some real systems in
the presence of uncertainties and disturbances under the mild assumptions that have been
made in the previous chapters. Four application examples, which are either linear or
nonlinear and are highly affected by either matched or mismatched uncertainties, are given
here: a simple one link robot arm containing uncertain parameters and unknown
disturbances; a crane system lifting an unknown load; a six-plate gas-absorber system with
mismatched uncertain parameters; and a two-link robot manipulator subject to uncertain
load mass. Botﬁ practical stabilisation and robust trajectory tracking problems are
considered.

The behaviour of the systems is investigated by simulation and shown to be of the

desired form.

8.2 smmuLAaTIONS
8.2.1 A Simple Robot Arm

The first example to be considered is that of a simple robot arm which is assumed
to be one link. This is a commonly chosen example and our method may then be compared
with other techniques. The system is shown in Fig. 8.1.

Assume that m and / represent the mass and, respectively, the length of the mass

centre of the link subjected to a control moment delivered by a DC motor, where the DC
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motor is armature controlled, and the motor inertia is negligible compared with the link
inertia. The DC motor may be modelled as follows. The torques delivered by the motor
and applied to the robot arm are

Tp=K,1 8.1

T,=N-T,=N-K-1 (8.2)
respectively, and the dynamical equation for the motor is

V=Li+RI+K_N-0 (8.3)
where I is the armature current, N is the gear ratio, 0 is the angular position of the link, and

K., is the motor constant.
The dynamics of the robot arm can be described by the equation
T,=—I2m-§ + mg-sin(6) (8.4)
Now, the following state variables are introduced: x,=0 the angular position, x2=é

the angular velocity, x,=I the armature current, and so the following equations describe the

system
Xy 0
x(t) = K;sin(x)+K,X5 [+ 0 [u(t) (8.5)
KX, +K X, Ks

y(®=h(x)=x,

The parameters of the

nominal  system  are S
mg \\ L
given by EAN
g e
Kl =T PIVOT POINT = I=Pm
10K (the moment of inertia for
2= l21nm A point mass on massless shaft)
Control Voltage
) 10Kn v
37 L
K 4= -% DC Motor
_1
Ks=¢ Fig. 8.1 One link robot arm
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§1.  Parameter Uncertainties

It is assumed that the robot arm is modelled with only one link, but in fact it has
two degrees of freedom, i.e., it can be rotated and it can also be extended or retracted. Such
a problem is dealt with here by applying feedback control only to rotation and considering
translation as a perturbation. The mass will vary, depending on the load carried, and the
position of the centre of mass will change if the link is extended or retracted. The design
must of course accommodate these uncertainties. The parameters K, and K,, which depend
on the mass m and the length /, are then uncertain, and are denoted as K,=Kj+Ak, and K,=
K3+Ak;. The system model is first transformed into new coordinates z by a coordinate
transformation of the form

=Y (x)=L¥'h(x)  (k=123)

and a new state space model is obtained as follows

Z 0 0
. Do Ak
z(t)= “ + 0 Ju®)+H (Ak, —%Aka)sm(zl) +T§2Z3
[K{cos(z,)+K3K;]z, KoK
+K4[z5-KSsin(z,)] 2 0
y(t) =z, (8.6)

The system model is of the regular form. It is obvious that a nonlinear system with
mismatched uncertainties results, and therefore the technique described in theorem 4.4 is
applicable here.
The following values were chosen for simulation purposes: /=1~1.2m, m=1~1.8kg,

which are uncertain but bounded, and

g=9.8m/s?, K_,=0.INm/A=0.1vs/rad, R=1Q, L=5mH
The nominal values of the parameters are then

K$=8.909, K35=0.590, K;=-200, K,=-200, Ks=200
The uncertain parameters are K,=K;+Ak, e [8.167, 9.8] and K,=K3+Ak,€ [0.386, 1].

The closed loop poles of the system are chosen as: A,=-0.8+j2, A,=-0.8-j2 and
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A,=-8, resulting in the following controller parameters: 0,=37.12, o,;=17.44, 0,=9.6, 0;=1.

By solving Lyapunov equation ATP+PA=-Q, a Lyapunov function may be obtained

5.1575 3.3060 0.0050 \/z,
V(z) = 2Pz =[z,, 2,, z5] | 3.3060 3.3806 0.0476 || z, 8.7)
0.0050 0.0476 0.0322 /\z,

The simulation results are shown in Fig. 8.2 and 8.3. Comparisons of the technique
via theorem 4.4 with the feedback linearisation technique alone are given. The control
based on theorem 4.4 clearly results in better performance than that resulting from the

application of feedback linearisation alone.

l;=1.1m; 08

m=1.4kg; 08 i :
04 ’\ ............ \ ‘ ........................ l ........................ e .-
Real Values: \, ;

ylt)
Simulation Parameters: 12 = E ; ; :
Nominal Values: 1 S S — ‘ --------------------------------- _@
: ®

02 [+
t=0sec, I=1.2m; NE
m=1.8kg N
02 |+ : :
t=3sec, /=1.1m; o : : : :
m=1.4kg o 12 24 36 48 60 72 84 96 108 120
t>6sec, I=1m; time (sec)
m=1kg System Outputs
u(t)
5
0
(@
5
The technique of
-10 |-
theorem 4.4;
45 |-
(b)
201
The feedback
linearisation technique |’
alone ® o 1i2 24 36 4:8 sjo 7:2 84 9..6 16,8 120
time (sec)
Control Signals

Fig. 8.2 Result 1: Comparison of the present technique with the feedback linearisation technique alone
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y(t)
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os [\ \

System controlled by 02
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; 02 : : : : 5
theorem 4.4 subject to 0 12 24 3 48 60 72 84 96 108 120
time (sec)

various uncertain

System Outputs x,
parameters

(a) I=1.2m; m=1.8kg;

(b) I=1.2m; m=1kg;

(c) I=1m; m=1.8kg;

(d) I=1m; m=1kg

20 :
@ ® @O . . O
30 - - = . : : ¢
0 12 24 36 48 6.0 72 84 96 108 120
time (sec)
Control Signals

Fig. 8.3 Result 2: Control of the one link robot arm subject to different uncertainties

From Fig.8.3, it can be seen that, although the system is subject to significant
uncertainty, the system outputs are stable and good performance is indicated. The design is

therefore robust in the sense implied here.

§2. Uncertain Disturbances

We consider the same system model subject to an uncertain disturbance as follows
X, 0 0 0 0
x(t)=| K;sin(x)+K,X5 [+| 0 [u(t)+| Kecos(St)cos(x;) |+| 0 |u(t)+| &)
K3Xy +K4X5 Ks K7X, + KgXs Ko 0
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where the uncertain parameters are assumed to be of the form

a 1
-7 K;=-10K,K,, Kg=-K¢R Ky=-A®)

K¢ =
Here 4 is a constant equal to the amplitude of the uncertainty, A(1/L) indicates the
variations of L; E(t) is band limited white noise.

The variable structure controller of theorem 5.4, with variable feedback gain, is
employed here. Suppose it is required that the closed loop system behave as a linear
(reduced order) system. If the switching function is chosen to be

6(x)=0,(X, X,) X3 =0

the reduced order dynamics are

X X2 X
1
= ) = (8.8)
Thus
K, . 109 o,
(O (X) =-K—1'SIH(X1) 5 'Xl—'K—'XZ
2 2 2
K, . 04] o,y K; .
O(X) =-%sin(X;) — 7= X;—%— Xy — X3 = -z -8in(x;) - S-x =0
(0 =-RhsinGx,) = X~ Xy =X = -k sin(xy)
where

o4y )
S=('K; ok '1)
and therefore
do ( Ky oy % )
ox TUROSIR, Ky
The uncertainty bounds can be determined as follows

Q= I%IIKﬁHu Q,,=IKo| Q= lg_i 8

where pL>max|[K;X, +K¢X,|, €>max|E(t)]. The controller gain is then given by

L
p(x,t,0) =\/ (I%|-IK6|+u+|g—§l-é)2+% |K9|-|Lg0|(%)2 >0 (8.9)
g

The following values were chosen for simulation purposes: /=1m, m=lkg,

£=9.8m/s2, J=1Nms?/rad, K_=0.1Nm/A=0.1Vs/rad, R=1Q, L=5mH.
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(i)
2
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Fig. 8.4 Result 3: Comparison of variable structure controllers of constant gain with that of variable gain
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Fig. 8.4 displays the results of simulation for the system. From the results, the
responses of the system with feedback of both variable gain and constant gain are depicted
for different parameter bounds. It can be seen that the controller obtained from theorem 5.4
works well, in contrast to the constant gain controller of theorem 5.3, which leads to large

tolerances in the first case (i), and even an unstable response in the second case (ii).

8.2.2 A Crane System

The second example to be considered is concerned with the application of the
technique of theorem 4.6 to a crane system.

It is likely that the

mass to be lifted by a crane
Gear Ratio=N
will vary greatly from time
to time and may not be

precisely known, and this

uncertainty  must  be 0

accommodated by the DC Motor Load

design. Furthermore the

Mgr

effective shaft stiffness

Fig. 8.5 A crane system to lift an unknown load
will vary during operation

controlled by a series-wound DC motor

because when large loads

are encountered the whole mounting tends to flex. Attempts to measure shaft stiffness are
affected by the state of the system and typically quite significant differences in the
measured value results. Also the motor constant depends upon the relationship between
field strength and motor current and this varies considerably between low and high

currents because of magnetic saturation. It should be noted that cranes employ series-

wound DC motors so the field and armature current is the same. Finally armature
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resistance is far from constant, not only because of heating effects, but also because it
represents both eddy current and hysteresis losses in addition to the ohmic resistance. This
variation is predictable to some degree where motors operate at constant speed, but in
servo applications this is not the case. Here we only assume that the load to be lifted is
unknown, ignoring other uncertainties. The system, subject to unknown load mass, may be

described as follows

J,%?’:T, T, (8.10)
T, =k,(0,,/N—®) (8.11)
UL (8.12)
T =k I (8.13)
LS +RI+k,0,=V (8.14)

where J,, J, and w, ®_, are the moments of inertia and the angular velocities of the load
rotating mechanism and the motor rotor respectively; k; is the shaft stiffness; N and o are
constants denoting the gear ratio and gearbox efficiency per unit respectively;\ L and R
represent the combined field and leakage inductance and the resistance o% /the motor
armature respectively, and

km-=k~I (8.15)

where k represents the motor constant, so that

T, =k I=kI? (8.16)
The model may be rewritten as
Xy 0 0
a;X+a,X, 0 d,
x(t)= X4 +1 0 Jui)+| O | (8.17)
a;X,+a,X,+asx} 0 0
asX5+2;X4X5 bs 0

y(=x,
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by choosing the states (x;, X;)=(8,, 6,,) and (x,, x,)=(6, 6,) the angular positions and

angular velocities, and xs=I the armature current. The system parameters are given by

ks k ks ks

S
e Ay =——— A, =— 4=-—
1777, 27N 3TN YT 0N
k R k 1 1
8,5=ﬁ aﬁ=-r a7=-f b5=-L— dz:Tl

The system model is first transformed to new coordinates according to the

coordinate transformation defined in chapter 4, and a new state space model is obtained as

follows
( “ ) /0 0
“ 0 d,
. Z
2(t) = * +| 0 fuw+| 0 |E
Zs
d,
01 Z1+00pZ3+ 03 Z5+ 04 Z1 Zp+0l5Z2 Z3 \B / 0
\ +06Z9Z5+ 0072124+ 0lgZ3Z4+0l9ZgZs )
y( =2, (8.18)

which is of linearisable form with new state z(t) and input v(t), where o (i=1,----9) and P
are transformed coefficients depending on the coefficients a, (i=1,--7) and bs of the
original system, d,=a,, d,=a%, and v(t) is the new input.

It is obvious that the uncertainty, E=M-g-r, does not satisfy the matching conditions
of definition 2.4 or 2.5. In order to apply the results of theorem 4.7 to this problem, the

transformation of the form

56.250 O 0 0 0
56.250 70.313 O 0 0
3 =56.250 70.313 36.500 O 0
56.250 70.313 36.500 9.156 O
56.250 70.313 36.500 9.156 1.000

0018 0 0 0
0014 0014 0 0O
gl=| 0 -0.027 0027 O
0 0 -0.109 0.109

0
0
0
0
0 0 0 -1 1
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is introduced, so a diagonal matrix P is obtained according to theorem 3.9 as follows

1875 0 0 0 0
0 1875 0 0 0
P=l 0 0 3260 0 0
0 0 0 6205 0
0 0 0 0 10.990

A Lyapunov function is then defined, and therefore the technique described in theorem 4.7
is applicable.
The following values were chosen for simulation purposes:
J;=1000kg m?, J =0.2kgm?, k,=0.6x108Nm/rad, £k=0.25
N=500, a=0.8, R=10Q, L=20mH, g=9.81m/s?, r=0.25m
and the load mass to be lifted is
M=0~2500 kg

Simulation results are given in the following figure.

y(t)

10 ; 3 3
Uncertain Parameters: 0 —— — -

@ 10 :
M:Mm=2500kg 073 [ TSSO H0y SV SEOUSURNS NUUSSNN: SUUUUUNUS HONUURURE SOOI SURUISRUNOE SOOI SRR
(b) B0 [ Eeeree e AAAAAAAAAAAA
M=M_=M_, +M_,)/2 e : .
© S i e S PECHNNC IR I s S S
M=M . =0Okg o 120 20 3:0 W0 5:0 %0 7io 80 sio 00

time (sec)
System Outputs

Fig.8.6 Result 4: Control of the crane system subject to various loads

From the results, although there are some static errors for the system output which
depend on the amplitudes of disturbances, here the unknown load, satisfactory
performance is achieved when the system is subjected to large variations of the load mass,

here from 0 kg to 2500 kg.
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8.2.3 Six-Plate Gas-absorber System

189

A gas absorber tower is an important element in several chemical processes. A

typical gas absorber system consists of a number of vertically arranged plates enclosed

within a chemical tower, as shown diagrammatically in Fig.8.7.

The chemical reactions which
take place in the tower are affected by
the inlet feed compositions
corresponding to a downward liquid
stream and an upward vapour stream.
These reactions may give rise to
instability if the inlet feed compositions
are not properly chosen, and therefore
stabilisation and control of such reactions
is an important problem.

A six-plate gas-absorber system

u

(Leaving Liquid)

(Liquid)

(Vapour)

(Mixed Gas)

Fig. 8.7 Gas absorber Tower

is considered. A detailed description of such a system may be found in Darwish et ali?l.

The system is modelled by
x=Fx,7)+G(x,y)u(t)

where
F(x,y)=Ax
( -dy(1+dy) dy 0
did, -dy(l4dp g,
Ae 0 didy  _d,(1+dy)
0 0 dyd,
0 0 0
\ o0 0 0

d;
-d2(1+d1) d2
did, -dy(1+d;)  dy

o O o O

0 did;  -dy(1+dy) /

(8.19)

(8.20)
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(dld2 0
0 0
0 0
G(x,y)=B= o o (8.21)
0 0

\ 0 dya/
where d; and d, depend on the inlet vapour and liquid hold up on each plate (h,h,), the
flow rates of inlet liquid absorbent and inlet gas stream(L,L,), and also the ratio of
liquid/vapour compositions al?l. These parameters cannot be calculated with sufficient
accuracy to be used in online controllers. Consequently, we consider that the parameters d,
and d, undergo 25% variation about their nominal valuest®! which are chosen to be
d,;=0.849 d,=0.634
with a=0.72. Then

(—1.17+’Y1 0.63+Y, 0 0 0 0 \
0.54+y; -1.17+y; 0.63+y2 O 0 0
0 0544y -1.17+y 063412 0 0
A= 3 0 (8.22)
0 0 0.54+y; -1.17+y; 0.63+Y;
0 0 0 0.54+y; -1.17+y1 0.63+7;
\ 0 0 0 0 0.54+y; -1.17+7 )
/ 0.54+y, O \
0 0
° ° 8.23
B(y)= 0 0 (8.23)
0 0
\_ 0 0.88+s/
where the uncertain parameters are given by
-0.46 £v,<0.39
-0.235 <v4<0.303
-0.158 £y, <0.158 (8.24)
-0.219 £v5<0.221
-0.235 <£v;<0.303

A transformation of the form
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( 0 1 0 0 O O\
0O 0 1 0 0 0
0 0 1 0O
= 0 0 0 1 (8:25)
1 0 0 0 0 0
\0 0 0 0 0 1/
is defined, such that the regular form of the system may be written as
xX!(t) =F,(x1, x2)
X2(t) =F,(x1, x2,7) + G,(x1, x2,y)-u(t) (8.26)

where the new states each represents a set of states X'=(x,, X3, X4, X5)7, X>=(X;, X,)T, and the

state and input mapping are
Fi(x,7) = A XA X

Fy(x,7) = Ay X1+A, X2

0 0

0.54+’Y3 ‘1.17+’Y1 063+’Yz 0
0.54+’Y3 '1.17+’Y1 O.63+’Y2

0.54+y; -1.17+y

|

where
(—1.17+71 0.63+y,
A, =
1 0
\ 0 0
(0.54+y; 0
0 0
AIZ_ 0 0
\_ 0 0.63+,
A 0.63+y, 0 O 0
270 0 0 0 0.54+y
-1.174+7 0
AZZ_
0 -1.17+7
and

G 0.54+'Y4 0
L0 0.88+ys
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respectively. This is a linear system with uncertain parameters which do not satisfy
matching conditions. A switching function is designed as
o(x)=0,(x)—-x2=0

where

S11 S12 Sl3 Spp)| x
61(X1)=S'X1=( 3

821 Spp Sp3 Spu

(8.27)

The reduced order closed loop system resulting from the above switching function is

1
X1=A X+A,X2= [A,ALl (;{J:AGXI

Let S=

-2495 -0.849 -0.789 0
0 -0.929 -1.178 -0.547

resulting in a closed loop system with poles A,=-2.6958, A,=-1.7271, A; ,=-0.979+j0.292.

The partial derivative of the switching function is given by

v -2.495 -0.849 -0.789 0 -1 0
o= 0 -0.930 -1.178 -0.547 : 0 -1

0.54+min(y,) 0
o 0 0.88-+min(ys)

04 = Kmax{QdQL} =Aax{ VG-¢G~¢2-V0T} =0.4369
We check that

0.54+y, 0 0.54+min(y,) 0
0 Q=

0 0.88+Ys 0 0.88+min(ys)
((0.538+7,)(0.303) 0
- 0 (0.88+75)(0.661)

is positive definite, so condition (6.17) is satisfied, and choose
6=0.09 <A, {0 Q]}=0.0918
The simulation results are as follows. Good closed loop system performance is

clearly indicated.
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Fig. 8.8 Result 5: Control of the six-plate gas-absorber system

8.2.4 Two-Degree-of-Freedom Manipulator

195

Robot manipulators are familiar examples of trajectory-controllable mechanical

systems. However, their nonlinear dynamics present a challenging control problem, and it

is even harder when significant uncertainty is present.

Consider, for instance, a planar, two-link articulated manipulator, whose position

can be described by a 2-vector of the polar coordinates, and whose actuator inputs consist

of a 2-vector of torques applied at the manipulator joints. The dynamics of this simple
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manipulator are strongly nonlinear,

Load Mass: M

and include uncertainties caused by
the load mass to be carried, which is
not accurately known.

The control objective is to
force the load with uncertain mass,

whose trajectory is indicated by polar

coordinates, to follow a prescribed

trajectory in the Cartesian (yy,y2)-

plane. The planar tracking problem

of a two-degrees-of-freedom Fig. 8.9 Manipulator with two degrees of freedom

manipulatorl*l can be modelled by

( 2 ) 0

. 0

X X +M(x,+2)X5 ) 0

X, w+M — u,
X, Xy 0 . u,
X, 22X, MO Fa)X,X, 0 T+, HUXHM(X, +a)?

T HIXHM(X +a) )
(8.28)

where (x;,X;)=(r,8) are the polar coordinates of the mass centre of the arm, and
(xz,x4)=(i,é); L is the mass of the arm; M is the mass of the load; a is the distance from arm
mass centre to the load; J; the moment of inertia of the rotation mechanism about the
vertical axis through O; J, the moment of inertia of the arm about the vertical axis through
the arm mass centre.

For the purposes of illustration, it is presumed that all parameters in the model are
precisely known with the exception of the constant load mass M which is subject to
bounds: 0< M, ;, <M<M

where M, and M, , are known constants.

max? max

We therefore have a nonlinear uncertain system, and the technique developed for

MIMO systems in chapter 7 may be applied to the synthesis of this robust tracking problem.
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The system is already in the regular form, so it can be expressed, with z as new
coordinate, as follows
2,1 () =7,(t)
z,,(0) =a(2) + b2 (1) + 8, ;21 + 8, ut)  (=1,2) (8.29)
YD =2,
where the new states are z, =X, z,,=X,, Z,=X3 Z,,=X4, the outputs y,=x;, y,=X;, the

uncertainties caused by unknown load mass Sl,l(z,y), Sl,z(z,y), and

XM (% a)x]
a,(z)= M, (8.30)
1
bl(z)=u+_1v[0 , (8.31)
4(2) = T UM (x +a)? (8.32)
1

where the nominal value of unknown mass is My@=M,_,+M,;)/2. The feedback

min
linearisation is therefore of the form
1@ 0 Y{-a,@)+v,
u(t) =—TI'1TA+ITv(t) = (8.34)
0 by(2)) \Fay(z)+v,
The ideal trajectories denoted by y§{.(t) and y§ (t) are defined as a straight line path
AB in the Cartesian (y;,yz)-plane, from the initial rest position A, with coordinate
(Y1.4» Y2,4)» to prescribed final rest position B, with coordinates (y; 5, ¥, ), in a prescribed
time T. A pair of Cartesian coordinate functions which characterises a straight line path

from point A to point B is given by

Yia t<ty
Yiatki(t-t)? to<t<ty+T/4
yi (=1 ¥iatkl(t-t)3—2(t-t5-T/4)°] t+T/ASt<t+3T/4  (8.35)

Yiatkil(t-t)32(t-to-T/4)+2(t-t5-3T/H)]  to#3T/ASI<t+T

YiB t>ty+T
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for i=1,2, where k;=16[y; 5-y; ,1/(3T?).

Coordinate y (m)
12
an
1L
08 |-
06 |-
04 |
02}
@0
0 \
05 3 35
Coordinate x (m)
(i) A straight line load path
Coordinate y (m)
5
@4
4+
(1.53)
3k
21
42
11
)
0 1 1 1 1 1 1 !
05 1 15 2 25 3 35 4 45
Coordinate x (n)

(ii) A combined straight line load path

Fig. 8.10 Ideal trajectories to be tracked by the two joint manipulator

The corresponding polar coordinate form is then given by

yi® =28 =\ (yd V+(yd,)? (8.36)

yi(0) =24 ;=tanr (y§o/yi.) (8.37)
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and the tracking errors are defined as
&;;(t) =z;;-2{; (i,j=1,2)

The variable structure controller is therefore of the form

© (Vl) [Z(li,z(t)_al,l'elz(t)] [p(}) 0 Yo szl) szg Gy
v(t)= =l - - sgn
V2) \Z3,(0-ay,-55(t) 0 pQ)\o, 2 pY O,

We define a vector of switching functions as follows

(GIJ [el,z(t)+a1’lel,1(t)J
o(t)= = =0 (8.38)
G,) \Cr2()+ay,€5,(t)
resulting in a closed loop system of the form
B(t) = AE(t) + Bo(t) (8.39)
6(t) =—p;-0(1) —p,-sgn[o(D)] +8,(z,6,7) +8,(z.LY)-v(D) (8.40)

where

(*1 O (10 _(ens
{5 1) oe(e)

The feedback gains p;, p, can be obtained according to theorem 7.2 as follows

A(23)

pr=2 2 2 (P)>0 (8.41)

(241D (QD)
pP2= 21@

Q020 (8.42)
where €, and €, are matrices depending on the uncertainty bounds A;, A, and also [w],
02(Q,)=A(€23) the spectral norm of €,, and Ay(P) is given by max{1/2a, , 1/2a,, }.

The following numerical values are taken throughout the simulation: p=100 kg,
J,=J,=100 kg m?, a=1 m.

The tracking errors are measured by the norm

lle®li =\/[Y‘1i,c_(21,1+a)003(22,1)]2'*[Y%,c‘(zl,ﬁ'a)Sin(zz,l)]2 (8.43)

The results are shown in Fig. 8.11 and Fig. 8.12, where in case 1, the straight line
path of Fig.8.10(i) is tracked with the mass Okg<M<100kg; and in case 2, the combined
straight lines path of Fig.8.10(ii) is tracked with the mass Okg<M<200kg.
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Fig. 8.11 Result 6: Robust tracking of straight line trajectory
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Fig. 8.12 Result 7: Robust tracking of the combined straight line trajectory
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8.3 SuMMARY

In this chapter, the robust control techniques developed in previous chapters have
been applied to the control of four different systems, where both stability and tracking
problems are considered. The first two examples are SISO nonlinear systems in the
presence of uncertainties which do not satisfy matching conditions. The third example is a
chemical process which is MIMO, assumed linear, but highly uncertain and mismatched,
and also open loop unstable. The last example is concerned with robust tracking of a two-
degree of freedom manipulator with some uncertainties caused by unknown load mass.
The simulation results show the great robustness of the techniques to the various
uncertainties in the systems. The control techniques guarantee the stability of the closed
loop systems and also achieve good performance both in regulation, for instance, examples
1, 2 and 3, and in tracking, for instance, example 4. In contrast to previous work on the
problem, the main emphasis here is that, firstly, there is no requirement for the nominal
dynamics to be either stable or in some way precompensated, and secondly, neither is it
required that matching assumptions be met. The simulation results show that the controller
attenuates the effects of the uncertainties and the stability of the closed loop system is

guaranteed.
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9.1 CoNcLUSIONS

IN pure model-based control, the control law is based on a nominal model of the
physical system, i.e., the model used is assumed precisely known. How the control
system will actually behave in the presence of parametric uncertainties and unmodelled
dynamics is not clear at the design stage, and the stability of the closed loop system cannot
be guaranteed. Robust control requires that the controller is based on consideration of both
the nominal model and some characterisation of the uncertainties in the system. Despite the
presence of such uncertainties, the system should still be stable and achieve some
prescribed performance. By robust control, we usually mean two different but related
aspects; stability robustness and performance robustness. A critical property of a feedback
system is its robustness, particularly with respect to stability; i.e., its ability to reduce the
sensitivity of the system to any mismatch between the plant model and the real plant. But
stability alone is insufficient and some performance criteria must be met. Therefore, the
robust control of nonlinear systems in the presence of uncertainties is of great significance
in practice.

Motivated by this crucial requirement, a rather general class of nonlinear uncertain
systems has been investigated, where the systems are described by differential equations
which contain parameters whose values are not precisely known. Robust feedback control
laws have been derived whose structures depend on the known bounds of the uncertainties,
where the control laws are based on Lyapunov stability theory. The objective of the design
is, firstly, to guarantee the stability of the closed loop system, i.e., stability robustness, and
secondly to achieve some desired performance, i.e., performance robustness.

All the techniques described in this thesis are based on Lyapunov stability theory,

so that stability is the central result even where large uncertainty tolerance is required. On
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the other hand, performance robustness is also achieved by the design. More specifically,
when designing a control law, a nominal control is obtained first, which guarantees the
closed loop behaviour of the nominal system, and then an extra control effort is introduced
to counter the effect of uncertainties. In this case, two situations may occur: the first is that
the control may fully compensate the uncertainty such that the output of the closed loop
system finally achieves the desired performance prescribed for the nominal control, whilst
the second is that the output of the closed loop system may not finally reach the ideal
performance prescribed for the nominal control, but settle down in the vicinity of it. This is
called boundedness. In this work, it has been shown that all techniques can achieve a
system with uniformly ultimately bounded behaviour. Boundedness is also a kind of
performance robustness in the sense that if, for a particular control problem, the bound is
sufficiently small throughout the control process so that it is acceptable, it can also be
concluded that performance robustness can be guaranteed. For instance, in using the
variable structure control of chapter 5, the crucial problem is to ensure the stability of the
states to the chosen switching surface. Once the states reach the surface, the motions to the
equilibrium point can be guaranteed by the switching surface in the sense of the sliding
mode. It is clear that stability robustness is guaranteed by the motion of the first part, from
anywhere off the switching surface to the switching surface, whilst performance robustness
is guaranteed by the motion of the second part, from anywhere on the switching surface to
the equilibrium point.

Several new concepts are developed here. These are additive compensation and
multiplicative compensation, indicating two different types of controller. By additive
compensation it is meant that based on a nominal control, an extra control term is added in
order to compensate uncertainties, for instance, the methods of chapter 4, whilst by
multiplicative compensation it is meant that an extra feedback control gain is used to
replace one in the nominal control, for instance, the methods of chapter 5. These two

different concepts lead to different control strategies.
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Further important concepts are one phase ﬁnd two phase design. The results
presented in this thesis are concerned with both methodologies, so that the regulation
problem and the servo problem are solved, where the former is based on one phase design,
and the latter on two phase design. It should be noted that the robust tracking algorithms
have been successfully used for regulation problems.

The following concluding remarks can therefore be made. Firstly, it should be
emphasised here that there is no requirement for the nominal dynamics to be either stable
or in some way pre-stabilised. The synthesis can be applied directly to the original system
no matter whether the open loop system is stable or not. Secondly, there is no requirement
for the uncertainties to satisfy the matching conditions. These conditions have been relaxed
so that the condition Iq(x,y,t)I<1 is replaced by q(x,y,t)>0. This difference results in a new
control law which depends both on the bounds of the uncertainties in the system and on the
nominal control component. Such a relaxed condition enables the technique to be extended
to the following more general cases: @ where the uncertainties satisfy the matching
conditions, but q(x,y)>0; @ where only one of the uncertainties Af(x,y) and Ag(x,y) satisfies
matching conditions; @ where the uncertainties lie in the span of the input mapping
(matching assumption), but there are no continuous functions p(x,y) and q(x,y), such that
the uncertainties are of the form Af(x,y)=g(x)-p(x,y), Ag(x,y)=2(x)-q(X,y); ® where no
matching conditions are satisfied.

Two typical forms of controller are discussed in chapters 4 and 5, in which one
uses the idea of an additive control component to compensate the effect of Af(x,y) and of
the nominal control u,(t) through Ag(x,y), called here additive compensation, while the
other adopts concepts from adaptive control where feedback gain is variable instead of
constant, called here multiplicative compensation. Both methods can be understood as
employing extra control effort to compensate for the effect of uncertainties.

One of the most important results in this thesis is the technique applied to multi-

input systems. The technique developed for the single-input case has been extended to the
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multi-input case without further restriction on the nature of the system or the uncertainties.
To be precise, there is no requirement for decoupling the nonlinear uncertain system or
decentralising the whole system into several subsystems, and no requirement for
decomposing the system model into a nominal part and an uncertain part. The control law
is similar to that for single-input systems, and the principle is exactly the same though
more mathematical concepts are used.

The robust tracking problem is also discussed in detail for both single-input and
multi-input systems, and significant developments are made. The proposed control
guarantees the uniform ultimate boundedness of the closed loop system. When only
matched uncertainties are present, the tracking errors can be rendered zero within a finite
time, whilst when both matched and mismatched uncertainties are present, the tracking
errors cannot be made zero, but converge to an open ball B, and remain there.

The robustness of the proposed methods has been shown by simulation using a
simple second order linear system, in which uncertainty in open loop pole location can be
effectively treated even for the case where the open loop poles are assumed negative but
are in fact positive, and more interestingly, the well-known non-minimum phase problem
has been considered as a special kind of uncertainty and effectively controlled by the

proposed techniques, particularly the techniques of chapters 5 and 7.

0 5 SUGGESTIONS FOR FURTHER WORK

In the last two decades, many researchers and designers, from such broad areas as
aircraft and spacecraft control, process control, robotics, and biomedical engineering, have
been concerned with the development and applications of robust control methodologies,
and robustness measure bounds and synthesis techniques have been developed in the time

domain as well as in the frequency domain.
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The techniques described are based on the fundamental assumption that the bounds
of the uncertainties are precisely known. This is not always the case. There may be some
physical systems which contain uncertainties with unknown bounds or the bounds may
vary from time to time depending on the working environment. In the first case, the
methods cannot be used, whilst in the second case, although the largest possible bounds
can be used to develop the controller, too conservative control may result. In these
circumstances, an adaptive mechanism is advisable, using measured states or output values
of the system, to identify the bounds of the uncertainties, and hence to determine the
control feedback gains according to the methods developed here. This idea is not new, but
here we only estimate the bounds of the uncertainties not the parameters of the system,
resulting in easier implementation.

Another possible area of investigation is the use of output feedback alone. In many
cases, although the states of systems are physically meaningful, they aren't measurable. It
is therefore possible to use the following two techniques: one is the state observer, in
which estimates of the system states can be obtained from measured output values by using
an online state estimator, and the other is output feedback control which could be done
following a similar procedure to that of state feedback control but with a proper description
of the relationship between the output and the input of the systeﬁ. o ,

Finally, it may also be interesting to refine the robust tracking control strategies,
which only include information about the bounds of the matched uncertainties in the
control, but not that of the bounds of the mismatched part, so that the closed loop response
cannot reach zero when mismatched uncertainties are present. It is possible to do this by
considering the mismatched uncertainties when constructing the control, so that the effect
of mismatched uncertainties on the response of the closed loop system may be reduced,

and hence the open ball, to which the output will be restricted, is reduced in size.
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#  Overview
In these appendices, some preliminary results, which have been used in the
thesis, are provided. For simplicity, most results are mentioned in the form of
theorems without proof, and some commonly used references are listed. A
software package, which has been developed for simulation purposes during

research, is also introduced here.
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FEEDBACK LINEARISATION

Feedback linearisation is an approach to nonlinear control design which has attracted a great deal
of research interest in recent years. The central idea of the approach is to algebraically transform
nonlinear system dynamics into a (full or partial) linear equivalent of a simple form, so that well-
known and powerful linear control techniques can be applied to complete the control design. More
precisely, the nonlinearities in a system can be cancelled by properly chosen nonlinear feedback so
that the closed loop dynamics are of linear normal form. Within this framework, the technique

includes two major parts: input-state and input-output linearisation.

The feedback linearisation approach, based on differential geometric theory, is one of the most
systematically developed areas in nonlinear control theory. The primary idea can be found in
Porter!), Tokumaru et al?, Krener®, Brockett™], and significant contributions to this area were
made by Su¥), Hunt et al'¥, Isidoril”], and Vidyasagari®l. The distinctive feature of the method is
that it allows one to develop nonlinear versions of several well-known results for linear systems,
such as controllability, observability ezc. The basic tools of the method are vector fields and their

derivatives.

Feedback linearisation has been successfully applied to important classes of nonlinear systems (so-
called input-state linearisable minimum phase systems). There are, however, a number of
shortcomings and limitations associated with the feedback linearisation approach; for instance, it

does not guarantee robustness in the presence of parameter uncertainty or disturbance.

Intuitive Concepts and Mathematical Tools

Some mathematical tools from differential geometry are now introduced. To limit the conceptual
and notational complexity, we discuss these concepts directly in the context of nonlinear dynamic

systems (instead of general topological spaces).

Some Definitions of Lie Algebra
In describing the mathematical tools, we shall call a vector function f: R"—R" a vector field, which

is a column vector on R, i.e.,
(XXX )
f(x)= : eR"
£(X X500 )

Similarly, a one form ¢(x) on R"is defined as ¢: R"—>R", which is a row vector, i.e.,

¢(x) = [q)l(xl,xz’...xn)’q)z(xl,xz’...xn), ...... s q)n(xvxz,...xn)] eR"
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We shall only be interested in smooth vector fields (or one forms), by which we mean that each

component of the function f (or ¢) has continuous partial derivatives of any required order or is

infinitely differentiable, denoted C”. Evidently, the product of a one form and a vector field
<0, f>= k§,1<|>k(x)~fk(x) (A1)
is a scalar field of the arguments x=(x,,X,,---x ), called the inner product.

Given a smooth scalar field h(x) of the state, the gradient of h is represented by a row vector (one
form) and denoted by Vh

h (dh oh
Vh K (— ---- )GR" (A2)

T ox \ox, ox
Similarly, given a vector field f(x) on R", the Jacobian of f is represented by a mxn matrix and
denoted by Vf

of1 ofy

Lo &

af 1 n
Vf=—a =| : eR™ (A.3)

| ¥ I

ol oo

DEFINITION A.1: (Lie Derivative of a Scalar Field)

Given f, a C” vector field on R, and h, a C” scalar field on R, the Lie derivative of h with respect
to f is defined as
Lh(x)=<Vh(x), f(x)> (A4

where <-,-> denotes the inner product, i.e.,

. 3h
<Vh(x), f(x)>= k§1 9%, £ (x)

The Lie derivative is also a C” scalar field on R. Thus, one can inductively define higher order Lie
derivatives as follows:
Lih(x) =L [L{ ' h(x)]=<VL{'h(x), f(x)> k=1,2,---) (A.5)
Writing L?h(x) =h(x), then
Lh(x)=Lh(x)

: (A.6)
Lih(x)=LLE h(x)
Similarly, if g is another vector field, then we may define another Lie derivative as
L,Lh(x)=<V(Lh), g> (A7)

DEFINITION A.2: (Lie Derivative of a Vector Field)

Given f, g C” vector fields on R, the Lie bracket is defined as
[f, gl=ad(g)=Vg f-Vfg (A.8)
This is also called the Lie bracket and is also a C™ vector field on R". Successive Lie brackets can

be defined as follows:
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[f’[f’[f’ Y [f’g]]=adl;(g) (k=1$21 et ) (A9)

Therefore, writing ad}(g)=g, we have
ady(@)=I[f.g]

(A.10)

adi(9)=[f,ad{" ()]

A.1.2 Diffeomorphisms and State Transformations
The concept of diffeomorphism in differential geometry can be viewed as a generalisation of the

familiar concept of coordinate transformation.

DEFINITION A.3: (Differentiable Map with Differentiable Inverse)
A function y(x): R"—>R", defined in a region Q on R, is called a diffeomorphism if it is smooth,
and if its inverse ! exists and is smooth. Furthermore, if the Jacobian matrix of Vy is non-
singular at every point x in Q, then y(x) defines a local diffeomorphism in €. If the region € is the

whole space R", then y(x) is a global diffeomorphism.

A global diffeomorphism is rare, and therefore one often looks for a local diffeomorphism. A
diffeomorphism can be used to transform a nonlinear system into another system, which may be

nonlinear or linear, in terms of a new set of states.
DEFINITION A.4: (Relative Order)
Consider a SISO nonlinear system described by a set of differential equations of the form
(1) =Fx)+G(x)u(t)

y(®)=H(x)
where xe R", ue R, ye R are state, control and output of the system respectively, with F(x) and G(x)

(A.11)

being smooth vector fields, H(x) a smooth scalar field, and F(0)=0. If there exists a positive integer

v<n such that
LLEH(x)=0 (k=0,1,...,0-2) (A.12)
LoLE H(x) %0 (A.13)
then it is said that the system has relative order (or relative degree) v.
The relative degree v of a linear system can be interpreted as the excess of poles over finite zeros
in the transfer function. In particular, any linear system in which v is strictly less than n has finite
zeros in its transfer function. If however v=n, the transfer function has no finite zeros. For
nonlinear systems, the relative order simply means the number of differentiation of output y(t)

required for the input u(t) to appear.

THEOREM A.5: (Full State Transformation)
An n®-order nonlinear system of form (A.11) with relative order v=n, can be transformed into

input-state linearisable form by a diffeomorphism defined by
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=y (x) & x=y;!(z) (k=1,2,----, n) (A.14)
with the choice of

¥, (x)=LE'HR) (A15)
A new system of the following normal form

z,(t) =z,(t)

,,(0=2,0

z () =a(z)+b(z)u(t) (A.16)

y(©=h(z)
results, where z is the new state representation of the system, and

a(z)=LgHoy'(z) (A.17)

b(z) =LcLE'Hoy'(2) (A.18)

Proof: A set of diffeomorphisms of the form (A.15), z=y,(x)=L5'H(x) (k=1,2,,n), exists for
systems with relative order v=n, such that the gradient of y is given by

dy, = VLE'H(x)
thus

1= 3 M IR on (12 (A.19)
SN S i
Since y(x) is independent of u and the system has relative order v=n, using notation <-,->, it is
concluded that <dys,,, G>=0. Therefore
z,=<dy,, F>=LtHoy ') =y, | k=1,2,....,n-1) (A.20)
and
z.=<dy,, F+Gu>=<dy,, F> + <dy , G>u
= LIH(x) + L L}'H(x)-u(t)
= LiHoy @) + L L% Hoy'@)-u(t)
= a(z) + b(z)u(t) (A.21)
Thus, if y, is known, then v, -+, and y, can be found by Lie differentiation, and the system can

be transformed to the linearisable nominal form (A.16). 0

THEOREM A.6: (Partial State Transformation)

For an n"-order nonlinear system of form (A.11) with relative order v<n, define a coordinate

transformation

@0=yx) << x=y'(0) (A.22)
which results in a new system of the following normal form:

z,()=2z,(1)

3 ©=2,0
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A2

A.2.1

z,(1)=b(z,0)+a(z,0)u(V) (A.23)

{=4@0

y(®=h(z)
with the choice of the transformation v as follows

2=V, (x) =L H(x) (k=1,2, -+ -+, V) (A.24)
where z and ( are the new state representations of the system, g indicates the internal dynamics,
and

a(z,0)=LyHoy'(z,0) (A.25)

b(z,0)=LeLE Hoy'(z,0) (A.26)

Note that, in the transformed system with (z,{) as new state coordinates, the first v equations are in
companion form, while the last n-v equations are not related to the system input u. To show that
the nonlinear system can indeed be transformed into this normal form usually involves showing
that the components z, (k=1,---,0) are independent (and thus are eligible to serve as a subset of the
state vector), and that n-v other variables z, (k=v+1,----,n) can be found to complete the state

vector. The formal proof can be found in many references, for instance Isidori™.

Linearisation of SISO Nonlinear Systems

The linearisation problem for single-input single-output nonlinear systems is now considered. By
linearisation we mean that a linear differential relation between the states or output and a new
input v can be generated by proper design of the control law. Note that the input-state linearisation
problem is usually concerned with how to define a function M(x) such that all the states of the
given nonlinear system can be completely linearised with 1(x) as the output of the system. Here
we will not discuss this general problem, but only discuss the method by which a given nonlinear

system with a prespecified output function H(x) is linearised.

Input-State Linearisation
In order to proceed with a detailed study of input-state linearisation, a formal definition of this

concept is necessary:

DEFINITION A.7: (Input-State Linearisation)

A single-input single-output nonlinear system of form (A.11) with F(x) and G(x) smooth vector
fields, is said to be input-state linearisable if there exist a region Q in R", a diffeomorphism
y: Q—R’, and a nonlinear feedback control law

u=o(x)+pfx)v (A.27)
such that the new state variables z=y(x) and the new input v satisfy a linear time-invariant relation
of the form

z=Az+bv (A.28)
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where

0 1 0

A=l 1 o - 0 | oee|?

SO -0 ..t .. Oy o,
z and v are called the linearising state and control respectively, and o (k=0,1,---, n) are constants
to be chosen such that A is Hurwitz.
The objective now is to find a set of diffeomorphisms z,=y,(x) (k=1,2,*-,n) for the nonlinear
system (A.11) such that the system can be transformed to be of the linearisable form, and
furthermore to find a feedback control such that the system is linearised. Two questions arise when

such transformations are considered; what classes of nonlinear systems can be input-state

linearised, and how can a transformation be found?

THEOREM A.8: (Sufficient and Necessary Condition for Input-State Linearisation)
An n"®-order nonlinear system of form (A.11) is input-state linearisable if, and only if, the system
has relative order v=n with H(x) as the output of the system.

THEOREM A.9: (Input-State Linearisation)
The nonlinear system in the form (A.11), with relative order v=n, can be transformed into a
linearisable nominal form (A.16), and furthermore the system can be exactly linearised by state
feedback of the form

-3 o Litoyr) + o, v(0)

utt) = o, L L Hoy @)

(A.29)

where o (k=0,1,---,n) are constants with c,=1, such that the system will be converted to a linear
one with characteristic equation

S Ak =

;Z’oak Ax=0 (A.30)
where A, (k=1,..,n) are the eigenvalues of the linearised system.

Proof: Note here that according to the definition of the diffeomorphism (A.15)

LY'Hoy'@)=2, (k=1,2, -, n) (A31)
the system is transformed to new coordinates z. It is obvious that the control (A.29) is of the form
1 n-1
uO=57, 220z, + o la@+vO1} (A32)

such that the resulting closed loop system is governed by the equations
2,0 =12,(t)

5 (D=z(0)

z,(0) = -0z, -0 Z, -~ - - o

y(®)=h(z)

z +v(t) (A.33)
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REMARK A.1: v(t)

A2.2

i.e., is linear and controllable. Thus it is concluded that any nonlinear system with relative order
v=n in £ can be transformed into a system which, in the region £, can be exactly linearised by the
state feedback (A.29). 0

If we choose o =0 (k=0,--,n-1) in (A.29), the feedback control is then of the form

-LeHoy @) + v(t) _ -a(z)+v()
LL¥Hoy'(z) —  b(2)

u(t) =

and therefore an n®-order integrator results (Fig. A.1).

A dz,/dt z, z=y(t)

» The input-state linearisation is achieved

by a combination of a state transformation Fig. A.1 Exactly linearised system
and an input transformation, with state

feedback used for both. Thus it is a linearisation by feedback, or feedback linearisation, and is
exact linearisation. This is fundamentally different from a Jacobian linearisation for small range
operation on which linear control is based, where a curve is replaced artificially by a straight line
under some presumed conditions. Such an approximation is only useful in a small neighbourhood
around the operating point.

e In order to implement the control law, the new state components z, must be available. If they
are not physically meaningful or cannot be measured directly, the original state must be measured

and used to compute them from (A.14).

Input-Output Linearisation

The problem of input-output linearisation differs from that of input-state linearisation in that it is
not necessary to define a set of diffeomorphisms to transform the original nonlinear system into a
new one. The linearising operation is carried out directly with the original nonlinear system, and a
linear differential relation is created only between the output y and the new input v, regardless of

the nonlinear relationship between states and the input of the system.

THEOREM A.10: (Input-Output Linearisation!*! )

The nonlinear system of the form (A.23) can be input-output linearised by state feedback

. -3 0, LEH(X) + 0, v()
O =" T o

(A.34)

if and only if the nonlinear system has relative order 1<v<n. The closed loop system will be a

linear differential relation between the output y(t) and the new input v(t). The linearised system has

v eigenvalues A, (k=1,2,...,0) satisfying the following characteristic equation
S Ok =
k%“k Ax=0 (A.35)

where o =1, together with n-v unobservable eigenvalues A, (k=v+1,...,n).
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A3

Proof: The basic approach is simply to  v(t) - z, dz,/dt Z, z,=y(t)
BN R iCR

repeatedly  differentiate the output

function y(t) until it is explicitly related [

to the input u(t). Suppose the relative At = ge, )

order of the system is 1<u<n, then v+1<isn

denoting
y(©=H(x)=LgH(x) (A.36)
we differentiate the output function v times

Fig. A.2 Input-Output linearised system

OH
y(b) =% F+Gu)=LH)+LH)u(t) = LEH(x) (A.37)
where L H(x)=0, and
0
y()= x LIH(x) - (F+Gu) = L2H(x)+LLH(x)-u(t) = L2H(x) (A.38)
where LgLH(x)=0, until
d
yoOut) = P -L¥'H(x) - (F+Gu) = LH(X)+LLy H(x)-u(t) (A.39)
where LsL H(x)#0. Then the control law of the form
___l._ V. b2 k
u(t)= LR K) [-LpH(x) -goak-LFH(x)w(t)] (A.40)
yields the linear differential equation
v-1
yOt)+ kgo o, y® (0 = V(1) (A41)
The characteristic equation is therefore given by
2::00(](-?»“ =0 a

Zero Dynamics and Minimum Phase of Nonlinear Systems

We now introduce and discuss an important concept, zero dynamics, that in many circumstances
plays a role exactly similar to that of the 'zeros' of the transfer function in a linear system.

We have already seen from theorem A.9 that, if the relative order v=n, a nonlinear system is
completely input-state linearisable. This is not often the case in practice, particularly for the
system with a prespecified output function H(x). If the relative order v<n, this linearisation can
only be achieved partially, i.e., only some of the states are linearly related to the input after
coordinate transformation.

The states of the original system are decomposed into two parts, z and {, by the transformation
(A.22), in which z represents the states that are to be controlled to achieve desired output
performance, and { represents the states that cannot be directly controlled by feedback. They are
often referred to as external and internal dynamics respectively. Clearly, the stability properties of

the internal dynamics are crucial because a closed loop system which appears stable may include
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unstable internal dynamics. Since for linear systems the stability of the internal dynamics is simply
determined by the locations of the zeros, it is interesting to see whether this relation can be
extended to nonlinear systems. To do this it is necessary first to extend the concept of zero to
nonlinear systems, and then to determine the relation of the internal dynamics to this extended
concept of zero. A way to approach this is to define so-called zero-dynamics for a nonlinear

system.

DEFINITION A.11: (Zero Dynamics)

The zero dynamics of the nonlinear system (A.11) are the dynamics of the system subject to the

constraint that the external dynamics z be identically zero, i.e.,

£ =4¢0,0 (A.42)

REMARK A.2;

¢ The zero dynamics are an intrinsic feature of a nonlinear system, which do not depend on the
choice of control law or the desired trajectories.

e Examining the stability of the zero dynamics is much easier than examining that of the internal
dynamics, because the zero dynamics only involve the internal states (whilst the internal dynamics

are coupled to the external dynamics).

DEFINITION A.12: (Minimum Phase)

A nonlinear system is said to be (asymptotically) minimum phase if its zero dynamics are

(asymptotically) stable.

REMARK A.3:

A4

o If the relative degree v associated with input-output linearisation is the same as the order of the
system, the nonlinear system is fully linearised and this procedure leads to a satisfactory controller
(assuming that the model is accurate). If the relative degree is smaller than the system order, then
the nonlinear system is only partially linearised, and whether the controller can be applied depends
on the stability of the internal dynamics.

e The study of the stability of the internal dynamics can be simplified locally by study of the zero
dynamics instead. If the zero dynamics are unstable, different control strategies should be sought,
only simplified by the fact that the transformed dynamics is partly linear.

¢ To summarise, control design based on input-output linearisation can be done in three steps: @
differentiate the output y(t) until the input u(t) appears; @ choose u(t) to cancel the nonlinearities

and guarantee the stability of the system; @ study the stability of the internal dynamics.

Linearisation of MIMO Nonlinear Systems
The concepts discussed previously for SISO systems, such as input-state linearisation, input-

output linearisation, normal form, and zero dynamics, can be extended to MIMO systems. For the
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MIMO case, we consider the transformation of square systems, i.e., systems with the same

numbers of inputs and outputs. Such a transformation is now briefly discussed.

DEFINITION A.13: (Relative Order of MIMO Systems)
For the multivariable nonlinear system of form
x(t) =F()+G(x)u(t) (A43)
y,®=H,x)

YO =H_(x)
where xe R?, ue R™, The system is said to have relative order (v, V,, + « - - - ,0 ) if

LG1L‘;Hi(x) =0 k=0,1,++-+v,-2  1<i<m, 1<j<m) (A.44)
and the following matrix

(LG,L”&*Hxx) ----- Lg,L¥ 'H;(x) )
= : :
L L, () =+ Lg LY H, ()

is non-singular. The total relative order of the system is defined by

V=Y, <n (A 45)

How a normal form can be obtained for the system in a manner similar to the SISO case, is now

shown.

THEOREM A.14: (Coordinate Transformation>s1)
For the multivariable nonlinear system of form (A.43), if the system has relative order v where
1<v<n, then there exists a coordinate transformation
2=y(x) &  x=y'@)
Such a transformation leads to a new system representation with coordinates (z,{), where, related

to m inputs, z can be decomposed into m sets z, and each of them consists of v; states of form

2, 0=V, ®)=Ls Hoy"'(2) (=12, v, i=12, 0o, m) (A46)
Specifically

z, =H,0)  eeee z]M:L;le,(x)

zm’l=i-1m(x) ------ zm;=L‘}’;"le(x)

These are simply the outputs y; and their derivatives up to v; (i=1,----,m). Such a choice of new
state vectors enables us to write the external dynamics of the system as follows:

ii,l(t) = zl..z(t)

ii,nl-l(t) =z,,(t)

ii_vl(t)=ai(Z,C)+§biJ(z,C)-uj(t) (A4T)
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y,(0=h(z) (A.48)
where

a(2,)=LiHoy'(2)
(i=1,2’ ceen, m)
b, (&0 =L Ly Hoy @)

The internal dynamics are of the form

2(t) = q(z,0)+pz,0)u(®) (A.49)

with k=1, --- -, n-vandi=l,----, m
qk(Z,Q = chk(x)
p k,i(Z’ 0= LGle(x)

DEFINITION A.15: (The Involutive Property)
The set of m linearly independent vector fields g(x) is said to be a m-dimensional distribution, and
if it is possible to write
[gpgj] (X) = kleiJk(X)'gk(X) (ISIaj ’1L<m) (A-SO)
then the m-dimensional distribution is said to be involutive.

The concept of involution implies the solvability of a set of partial differential equations.

THEOREM A.16: (Condition on Internal Dynamics!”!1)
The internal dynamics of multivariable nonlinear systems are usually of the form
2(t)=q(2,0+p(z.Du(®) (A51)
If the vector fields g,,--, g_ are involutive, then
P (z0=Ls{,(x)=0 (1<ism 1<k<n-v)

hold. It follows that the internal dynamics are of the form

{©=4z0
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B.1

B.1.1

VARIABLE STRUCTURE CONTROL

The variable structure control approach was first introduced in the 1950's by the Russian scientist,
Utkin, and surveyed in Utkin'?, and has been well developed during the last three decades by
many contributors, see Zak?+3), The fundamental feature of this methodology is based on the fact
that once the system trajectory reaches a prespecified surface, o(x)e R™ in the state space, the
system will move or slide towards the equilibrium point along this surface. Here the term ‘surface'
represents a manifold in state space of lower dimensionality than the state space itself. The
performance of the system therefore depends only on the structure of the surface, and remains
insensitive to parameter variations and disturbances off the surface. All that is needed during the
design is to choose a desired switching surface and to guarantee that the system output converges
to this surface from anywhere in the admissible region Q of state space, and to guarantee that the

desired sliding motion exists, under the proposed control.

Two crucial problems arise: @ how to construct a continuous function, which is accessible, with
unique desired equilibrium point, such that the system behaves according to some properties
prescribed by the function; @ how to design a controller with switched feedback gain, such that the

state can be driven towards the chosen surface from anywhere in the admissible region £ of state

space; i.e., the stability of the state trajectory to the switching function is required.

We will consider nonlinear systems of the form

x(t) = fx)+g)u(t) (B.1)
where xe R", ue R™ are the state and control of the system respectively.

Sliding Mode
An important feature of variable structure systems is the sliding mode, by which we mean that,
under some circumstances, the state trajectory of the system slides over a demanded surface

despite disturbances acting on the system.

Switching Surface

A switching function 6(x)=0 is therefore required.

DEFINITION B.1: (Switching Surface)

For the system of (B.1), if there exists a surface
O, (xpX5..-Xp)
o(x) = : eR”
O (X, X50e0uX,,)
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B.1.2

independent of any uncertain elements in the system, such that it is accessible by the states of the
system from either side of it under the proposed control, then it is called a switching function or a
switching surface.

By properly choosing a switching surface, which may

. . . . . (x0,t0)
be either linear or nonlinear, desired behaviour of the

closed loop system consisting of a set of states G,(x.0=0
)‘( = {le(xj,xz,...x,,)=0} (B.Z) S(x,1)=0 .
X,
results. Here X is used to indicate a set of states which

arc on the switching surface o(x)=0, in order to

distinguish them from another set X, consisting of all 5, (x1)=0

states off the switching surface, i.e., 5(x)=0.

Slidin 2 Mo de Fig. B.1 Illustraflon.of the intersection
of two switching surfaces
After switching surface design, the next important

aspect of variable structure control i§ guaranteeing the existence of a sliding mode. Under variable
structure control, the real trajectory of the closed loop system is obtained by composing a desired
trajectory from the parts of trajectories of different structures corresponding to different control
actions. Such a motion along ¢(x)=0, which is not a trajectory of any of the structures, is called the
sliding mode. A sliding mode exists, if, in the vicinity of the switching surface, 6(x)=0, the tangent
or velocity vectors of the state trajectory always point toward the switching surface. Then if the

state trajectory intersects the switching surface, it remains within a neighbourhood of the region
{xlo(x)=0}.

DEFINITION B.2: (Sliding Mode Domain)

B.1.3

A domain  in 6(x)=0 is a sliding mode domain if for each £>0, a 6>0 exists such that any motion
starting within an n-dimensional 8-vicinity of Q may leave the n-dimensional e-vicinity of Q

only through the boundary of the n-dimensional e-vicinity intersected with Q.

Existence of a sliding mode requires stability of the state trajectory to the sliding surface o(x)=0 at
least in a neighbourhood of {x|o(x)=0}, i.e., the representative point must approach the surface at
least asymptotically. The largest such neighbourhood is called the domain of attraction.
Consequently, whenever the state trajectory intersects the switching surface, if the value of the
state trajectory remains within an € neighbourhood of X={x|o(x)=0}, then a sliding mode occurs. If

a sliding mode exists on 6(x)=0, then it is termed a sliding surface.

Reachability Condition
The existence problem of sliding mode resembles a generalised stability problem, hence the

Lyapunov direct method provides a natural setting for analysis. Specifically, stability to the
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switching surface requires selecting a generalised Lyapunov function V(t) which is positive

definite and has a negative time derivative in the region of attraction.

DEFINITION B.3: (Generalised Lyapunov Function)

A continuous function V(t), which depends on the chosen switching function o(x), can be defined

as a generalised candidate Lyapunov function, if

O % -0'(x)-0(x)>0  V(x,t) 3 6(x)»0 and V|m)=O =0 (B.3)
with continuous derivative, such that, for x={x(t)e R" | 6(x)20, x(t)=x,}
V()= %-—(;l't"c'(x)-c(x) =6"(x)-6(x) <0 (B4

holds.

DEFINITION B.4: (Reachability Condition)

B.2

For any accessible continuous function o(x)=0, a sliding mode exists if, and only if, for
x={x(®eR" | 6(x)20, x(t,)=x,}

o'(x)6(x) <0 (B.5)
or
6.x)<0 0,(x)>0
{_x ) ) (el ®6)
c,(x)>0 o,(x)<0
holds, where
. do(x) .
6(x) 4 at = Vox)-x(t)
This is called the reachability condition.
Graphically, off the switching surface, if V(t)>0 and o=

V()=0-6<0, the reachability condition holds. The
trajectory can therefore move while still pointing towards
the surface until reaching it. This guarantees that the
system state trajectory will approach the switching
surface and tend to remain there. From the above Fig. B.2 Tllustration of stiding conditions
discussion, it becomes clear that variable structure control

design can be divided into two phases. In phase one, the switching surface is constructed so that
the system restricted to the switching surface produces the desired behaviour. Phase two entails
constructing switched feedback gains which drive the system state trajectory to the switching

surface and maintain it there.

Design of the Switching Surface

We now consider the problem of switching surface construction for nonlinear systems of the form

(B.1).
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B.2.1

Equivalent Control

The method of equivalent control is a means for determining the system motion restricted to the

switching surface ¢(x)=0.

DEFINITION B.5: (Equivalent Control)

B.2.2

B.2.3

For a chosen switching surface c(x)=0, a feedback control of the form
Uq(0) =-[Vo(x)-2(0)]"- Vo (x)-f(x) B.7
is said to be the equivalent control to the system (B.1) in sliding mode, if Vo-g is non-singular.

Here Vo is the Jacobian of G.

The existence of the sliding mode implies both o(x)=0 and 6(x)=0 Vtt,. Therefore
6=Vo(x)-x = Vo(x)-[f(x)+gx)-u®)] =0
Clearly (B.7) solves this equation, and it is this which gives it the name equivalent control. It can

also be expressed in terms of the Lie derivative as follows:
ucq(t) = -(Lgcs)'1 ‘Lo

Reduction of Order
Although general nonlinear switching surfaces are possible, it may be appropriate to seek linear
ones in design. Morcover, for a large class of systems, design of linear switching surfaces proves
amenable to classical linear control techniques. Thus for clarity, convenience, and simplicity, we
may consider switching surfaces of the form

o(x)=Sx(t)=0 (B.9)
where S is a mxn matrix.
In sliding mode, the equivalent system must satisfy not only the n-dimensional state dynamics
(B.1), but also the m algebraic equaﬁons o(x)=0. The use of both constraints reduces the system
dynamics from an n" order model to an (n-m)* order one. Specifically, suppose the nonlinear
system is of the form (B.1) subjected to 6(x)=0, then, from o(x)=S-x(t)=0, it is possible to solve for
m of the state variables in terms of the remaining n-m, if rank[S]=m. To obtain the solution,
substitute these relations into the remaining n-m equations and the equations corresponding to the
m state variables. The resultant (n-m)® order system fully describes the equivalent system subject

to the restriction of o(x)=0.

Regular Form and Reduced Order Dynamics
The regular form of the nonlinear system (B.1) is defined by!®5!
x!(t) = f1(x!, x?)
X2(1) = £2(x!, x2) + g¥(x!, x2)-u(t) (B.9)

where x1e R™™ and x2eR™ are subsets of the system states x, f!, f2 are n-m and m smooth vectors
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respectively, and g? is a mxm non-singular smooth matrix. This regular form can normally be
obtained by using a properly chosen transformation to rearrange the order of the original states and

hence the state and input mappings of the original system.

THEOREM B.6: (Switching Surface)
For the nonlinear system of regular form (B.9), the switching surface can be generally defined as
o(x], x%)=0,(x)—S,-x*=0 (B.10)
so that an (n-m)® (reduced) order closed loop system results under the equivalent control
u, =[S, §2@I] - [Vo, 069 F1 (69— S, F2x9)] (B.11)
Here S, is an mxm non-singular matrix, and ©,(x?) is a smooth function to be chosen by the

designer such that the (n-m)® reduced order system has desired dynamics.

Proof: For the system of (B.9) on the switching surface, we have
o(x’, 2 = 0,(x)-S,-2*=0
x*= §,.0,(x)
Therefore on the switching surface, i.e., o(x* x9=0, the system can be written as
X0 =f'(xt, S3-0,x9) & Fix?)
A1) = £2[x%, S0, (¥0] + g2, S1-0,(eD]-ut) & FH)+ F2(xH-u(t)
and again we have
5(x1, %9 = Vo ()% - S,-%2= Vo, (x)- F1(x) = S, [ F 2D+ g2(x)-u())]=0
So the equivalent control is
u,, = [S,- 2201 - [Vo, @) F1 () S, F2x]
This results in a closed loop system of the form
(0 = ']t S1-0,(x)] 2 F1(x7) (B.12)
We can specify the performance of this closed loop system by properly choosing the matrix S,.
Suppose now that we want the system, when restricted to the switching surface ¢(x)=0, to behave
in a linear (reduced order) fashion. The reduced order dynamics are
TW=FlxH=A, x* (B.13)

where

0, O, ... -0
Then o,(x?) can be solved according to the equation above such that the desired system dynamics
are achieved, and the switching surface is therefore

o(x’, x)=06,(x) —S,-x*=0 (B.14) 3
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B.3

Synthesis of Controller with Switched Feedback Gain

The objective of the control is to make the state trajectory of the system converge to a chosen
switching surface and remain there so that a sliding mode occurs. The state trajectory of a variable
structure system will, in general, consists of two parts: a trajectory which is off the switching
surface but approaches it, and one on it. The designed control must guarantee that both parts of the
trajectories show satisfactory performance. More specifically, the control must first force the
trajectory, in a desired manner, to approach the switching surface whenever the states are off the
switching surface; on the other hand, it should also guarantee that the trajectory 'slides along' this
surface to the equilibrium point once the trajectory reaches the surface. The first task can be
achieved by applying a properly designed control to the system such that stability to the switching
surface exists, while the second task can be achieved by defining a desired switching surface such
that the trajectory will approach the unique equilibrium point whilst remaining on the switching
surface.

An ideal sliding mode exists only when the state trajectory of the controlled system satisfies
o(x)=0 Vt=t,. This requires infinitely fast switching in order to account for the presence of
uncertainties. This, of course, is not possible because of such things as delay, hysteresis, efc.,
which cause switching to occur at a finite rate. The trajectory may then not exactly rest on the
switching surface, but swings across it within a small region. This oscillation is called chattering.
Chattering is, in general, highly undesirable. This situation can be remedied by smoothing out the
control discontinuities in a boundary layer neighbouring the switching surface. On the other hand,
any disturbance acting on the system or parameter uncertainty may also make the states not exactly
rest on the switching surface, such that the actual trajectory does not move along the switching
surface perfectly but moves across it within a vicinity of it. Therefore, in actual variable structure

control, the sliding mode represents an idealisation.
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C  MATRIX THEORY

We now present some definitions and preliminary mathematics which are used in chapters 6 and 7
to develop the main results. For simplicity, we only mention the results and avoid the proofs which

can be found in the references!!-23l,

DEFINITION C.1: (Definiteness of Matrices*’)
Let <-,-> be an inner product. Then matrix Ae R™ is

@ positive definite(p.d.) or negative definite (n.d.) with respect to <-,-> if

Re<z, Az>>0 or <0 Vz£0 (C.1)
® positive semidefinite or negative semidefinite with respect to <-,-> if
Re<z, Az>>0 or <0 Vz#0 (C.2)

Note that this definition, differing from the usual form for definiteness of matrices in most
references, applies to general matrices that are not necessarily Hermitian. Particularly to matrices

that are real but not symmetric, we have the following theorem:

THEOREM C.2: (Definiteness of Square Matrices’!)
Any real square nxn matrix A can be expressed as the sum of a symmetric matrix and a skew-
symmetric matrix
A=(A+AN)/2+(A-AT)/2 (C3)
® The quadratic form associated with a skew-symmetric matrix is always zero;
@ The quadratic form of any square matrix A can be represented by that of a symmetric matrix.
In what follows, by saying that a square matrix is positive definite, we always mean that the

quadratic form of its symmetrised form is positive definite.

DEFINITION C.3: (Spectral Norm of Matrices!)

For any matrix A, the spectral norm (greatest singular value) is defined by

(A =lIAll =, (AAD)]* (Cc4
where M(A) indicates the eigenvalues of A. When A is a symmetric matrix, all the eigenvalues of A
are real and

oA =Al =\ (AAD]%=A_ (A) (C.5)

When A is a symmetric positive definite matrix, then all the eigenvalues of A are positive and real,
thus
(A = lIAll,= A, (AADTE=X_ (A) (C.6)

@A) =lIAT, =1/A_ (A) (C.7)
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The singular values of a matrix have many analogies with the eigenvalues of a Hermitian matrix.
The square of the singular value of A is the maximum eigenvalue of ATA. Unlike eigenvalues,
singular values can be used to study rectangular matrices; they are also always real, and less

sensitive to parameter variation than are eigenvalues.

LEMMA C.4:
For matrices A, BeR™"
@ if A is positive definite, then tr(A), det(A), A(A), and all principal minors are positive;
@ if A is positive definite, then A" exists and is also positive definite;
@ if A, B and A-B are positive definite, then B-1-A"! exists and is also positive definite;
@ if B is positive definite and A is any non-singular matrix, then (A'BA)" exists and is positive
definite;

® if B is symmetric, then (ATBA)" is also symmetric.

LEMMA C.5:
For a positive definite matrix Ae R™" and a Hermitian matrix Be R™",
@ the product A-B is a diagonalizable matrix, all of whose eigenvalues are real;
@ the matrix A-B has the same number of positive, negative and zero eigenvalues as B, i.e., A-B

has the same inertia as B

In(AB)={1,(B),i(B),i(B)} (C.8)

LEMMA C.6:

For matrices Ac R™" and Be R™" with m<n, BAe R™" has the same eigenvalues as ABeR™",
counting multiplicity, together with additional n-m eigenvalues equal to zero; that is,

D sV)=N""-p L (A) (C.9)

where p(-) is the characteristic polynomial of the matrix.
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D.1

D.2

A SIMULATION SOFTWARE PACKAGE

A brief introduction to simulation software, which was written for the purposes of simulation of

single-input single-output systems, is given here.

Introduction

Simulation tools are the most widely developed and available aids for CAD in control systems.
Although there are several software packages available for simulation purposes, for instance
MATLAB, they are not always appropriate. This package is developed for simulation purposes. It
is written on an IBM PC in the C language. It can be used to simulate single-input single-output
nonlinear uncertain systems with general analytic mathematical models. Several control strategies
have been included in the package, and new techniques can also be included in the package by
slightly changing the program. It is convenient to employ it as a tool when determining the

parameters of controllers and comparing the performances of different control techniques.

The features can be summarised as follows:

® Multi-menus are adopted to set-up all simulation parameters, and to view the structure and
parameters of the model;

@ A special type file is used to describe the system models. The package can parse the model file
and translate it into program code which can be understood and executed by the package;

@ A small editor is included in the package so that the model file can be revised on-line and the
model parameters can be changed during simulation;

@ Several control strategies have been included in the package so that comparisons may be made;

® Uncertainty bounds can be set to any values before starting simulation, and can be reset at any
time, in order to view the robustness of the selected controllers;

® Graphics can be shown simultaneously when the simulation is running so that the transient
process of the simulated system can be viewed at any time;

@ A data file will be created on disk once the simulation is finished. It can be used for other
purposes, for instance, drawing a graph either using other graphics software packages or this

package.

The Structure of the Package
The package consists of four parts which will be introduced as follows:
1. menu system; 2. model editor and parser;

3. graphics subroutine; 4. closed loop system computation.
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D.2.1
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1. Model file name
2. Data file name
3. Time period T
4. Sample clock3t
5. Data number n

1. Retrieve model
| 2. Edit model

3. Parse model

4. Save model

1. Differential geometric control
2, Variable structure control

3. Lyapunov stability control

4, Diffrential geometric & Lyapunov stability 1
5. Diffrential geometric & Lyapunov stability 2
6. Variable structure & Lyapunov stability

7. Variable structure with variable gain
8. Generalised variable structure control

1. View model structure
2. View model parameters

3. View uncertainty bounds
4. View control strategies

1. Draw current graphics
2. Draw new graphics

Fig. D.1 The menu system structure of the package

The package has been tested using several illustrative examples. Although there is sometimes a

memory problem which remains to be solved, it docs work correctly, and it has been found to be

useful.
Fig. D.1, D.2 and D.3 show the structure of the

menu system of this package.

Menu Structure

The menu system consists of two levels of
menus: mainmenu and submenus, which are
always shown on screen and provide a
convenient means to establish the simulation
environment at the start. There are 7 sets of

commands, which are organised as submenus.

Fig. D.2 Main menu
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The usage and features of these menus are

now introduced. ; S

1. Enter Simulation Parameters

. . 3 Retrieve model from: modell.mod
SUBMENU1: Enter simulation parameters jew | Write results to: model dat

3 Simulation time period T=10 sec

. . . ¥ Sample clock in second h=0.01sec

First of all, a model file must be indicated so Recorded data number n=200

ESC to Mainmenu SPACE reset data

that the package can load it from disk. The

model files usually have an extension of .mod.

A data file name should also be given so that a

data file will be created after simulation is
i Fig. D.3 (i). Enter simulation parameters
finished. For default, the data file has the same
name as the model file with an extension of .dat. Besides, before starting simulation, we should
give the following parameters: how long the simulation will last (time period T), how big the
computing time interval will be (sample clock &t), and how many data points will be picked up to

be recorded in the data file.

SUBMENU2: Build system model

Load a system model from the model file v
%] 2. Build System Model:

. . . Retrieve model from a file
which may be edited by using any word : Edit the existed model

I Parse source model to code
processor such as PCWRITE, Turbo C editor, Save system to file

ESC to Mai SPACE reset data

etc, and show the model structure after

loading successfully. The model structure and

parameters can also be changed using a smail

built-in editor if necessary. The correct model Fig. D3 (if). Build system model

can be saved on disk to update the original

one. Once the model has been built up correctly, it should be parsed into executable codes. A small
parsing program is already included in the package to translate the model file into a special kind of

program which is executable during simulation. Any parsing information will be shown on screen.

SUBMENU3: Set up uncertainty bounds

The uncertainty bounds can be set up before

starting simulation under this menu, which

e\ 3, Setup Uncertainty Bounds:

includes the bounds of uncertainties both in Jawy  meME mafl madd
. 50.0 0 10.0
the state mapping and the input mapping, as - 1000200 0

ESC to Mainmenu SPACE reset data

well as the bound on external disturbances,

which are of the form

o, ~maxIAf(x,y,0)!

o Ag=lIliu(|Ag(X,Y,t)| Fig. D.3 (iii). Setup uncertainty bounds

(oi=maxlé(t)l
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SUBMENU4: Choose control strategies

There are currently 8 control strategies available
in the package. All of them are designed for
simulation of single-input single-output systems.
Four of them are related to differential geometric
control theory and the improved versions, and
the others to variable structure control theory.
Any one of them can be selected to carry out the

simulation, and can be compared with others. In
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4. Choose Control Strategies:

1. Differntial geometric control (DG)
2. Varable structure control (VS)
3. Lyapunov stability controller (BCL)
4. DG & LSC for matched uncertainty
5. DG & LSC for mismatched uncertainty
6. VS & LSC for mismatched uncertainty
7. Variable structure with adaptive gain
8. Generalized variable structure

ESC to Mainmenu SPACE reset data

Fig. D.3 (iv). Choose control strategies

principle, any other control techniques in the time domain can also be included by slightly

changing the program.

SUBMENUS: View model and parameters

After setting up all parameters, we have a chance
to view the model which has been established
previously before starting simulation. Model
structure, model parameters, uncertainty bounds,
and control strategies can be checked, in order to
make sure that all parameters are correctly

given.

SUBMENUG6: Draw graphics on screen

This submenu provides us with a tool in graphics
mode either to review the results recorded on the
data file earlier or the simulation results
currently obtained. If there are more than one
series of data, we can choose any number of
curves and points for each curve to redraw

graphics on screen.

SUBMENUT7: Start simulation

D.2.2

After setting up the system model and all

:} 5. View Model and Paremeters:
1. View system model

2. View model parameters

3. View uncertainty bounds

4. View control strategies

ESC to Mainmenu SPACE reset data

Fig. D.3 (v). View model and parameters

] 6. Draw Graphics on Screen:
1. Draw current graphics
2. Draw new graphics

Please choose one number (1,2)

Fig. D.3 (vi). Draw graphics on screen

parameters required, simulation is started from here. The package will carry out simulation

according to the model, the parameters of the model, and the control strategies which have been

chosen.

Model Editor and Parser

Model editing and parsing are two of the most important features of the package.
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With the help of this, the package can be used for
the simulation of any kind of nonlinear uncertain
system model and any order system model,
assuming there are no memory limitations.

The model file can be written in the form shown in
Table D.1, using any word processor which can
produce text files, for instance, PCWRITE, Turbo
Editor. After loading the given model file, we can
edit it using a small built-in editor in order to
change the model structure or model parameter
values. The uncertainty bounds can also be changed
at this stage. It is especially convenient if we want
to carry out simulation for a newly developed
controller, because it is easy to change the
parameters and compare the behaviour of the
controller for different parameters.

The model file parser is another important feature
of this package. It will translate the model file,
which consists generally of many constants,
variables, functions and expressions, into executive
code, a special type of character string, which can
only be recognised by the computation subroutine
afterwards.

The translation process actually decomposes the
normal expressions into many small elements
which indicate one of the following simple
operations between two operands, addition,
subtraction, multiplication, division, exponentiation
and assignment of values. The executable codes are
shown in Table D.2.

When parsing the model, the memory can be
allocated dynamically according to the size and
complexity of the system model loaded into

memory.

Table D.1
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1.Model_dimension:
m=2
2.Initial_values:
x0={5,0}

3.Uncertainty_bounds:
dfmax={0,20.0}
dgmax={0.0,2}
Dmax={0,4}

4 .Lyapunov_matrix:
lyap={15.0,3,3,3}
phai={2,3,1}

5.Model_parameters:
k_1=2

6.System_model_matrix:
f(1)=x2

7.Switching_Function:

8.Control_action:

Table D.2

&2>#0;&1@514>#17;
—H#20*417>41; 0>#2;
&21>#3;6&22*&30>4#4;
5.0*&0>#18;
#18@56>#19;
&1@56>#20;
&23*H1O*#20>45;
&24>#6;&25>%7;
&26*&30>4#8;
&27*&30>49;
-&28*&1>#21;
&29*&2>#22;
#21-4#22>410;
-&28>#11;
~&29>#12;&1>#13;
&2>#14;61@514>4#23;
-&20*#23>#15;
&21>#16; !
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D.2.3

D.2.4

D.3

D.4

D.4.1

Graphics Subroutine

The package provides a function to show graphics when simulation is in progress. This makes it
easier to understand what is happening. The slightly difficult task in this stage is to find a correct
graphics ratio during simulation because we have no prior knowledge of the value range of the
system output. This subroutine possesses the capacity to find a suitable ratio for the fixed graphics

box at any simulation time to guarantee that graphics can always be drawn properly.

Closed Loop System Computation

This is used to do simulation according to the parameters set up. If we think of the executive codes
as a special kind of program, then this part can be regarded as a small interpreter, which tells the
computer what to do and where to put the results. After simulation is finished, it saves the results
in a prespecified data file which can be used either by the package or by other graphics packages,

for example, HG, FL., to draw graphics and so on.

The Block Diagram of the Package

The block diagram of this simulation

package is shown in Fig. D.4.

Example

A 3rd-order nonlinear uncertain system is

considered here for illustrative purposes.

System Model

X2 0
x(t)=| K,sin(x )+K,X; [+ 0 |u(t)
KX, +K, X, K,

0 0 0
+| K,cos(5t)cos(x,) |+ (O )u(t) +|e(t)
KX, +K X, K, 0

Initial values:  x,={r,0,0}

Uncertainty bounds:
maxI|Af(y)=[0,50,100]"
maxlAg(y)I=[0,0,20]"
maxI(t)I=[0,10,0]

Switching function;

o(x)=-K,sinx,-a,x,-a,X,-,X,=0

(al=2, a2=3, ;13:1) Fig. D.4. The block diagram of the package
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Lyapunov function:
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6.3835 3.1384 0.0036(x,
V(x)=xPx =[x, , X,, X, ]| 3.1384 4.1066 0.0204 | x,
0.0036 0.0204 0.0100 /\x

D.4.2 Model File

1. Model_dimension:
m=3

2. Initial_wvalues:
x0={-3.1415926,0,0}

3. Uncertainty_bounds:
dfmax={0,50.0,100.0}
dgmax={0,0,20.0}
Dmax={0,10.0,0}

4. Lyapunov_matrix:
lyap={6.384,3.139,0.004,
0.139,4.107,0.020,
0.004,0.020,0.010}
phai={276.89,202.7689,
102.0,1}
C={0.1,100}

5. Model_parameters:
k_1=9.8
k_2=10
k_3=-10
k_4=-10
k_5=10
k_6=50
k_7=20
k_8=20
k_9=20
k_a=0
k_b=10
k_c=0
alphal=2
alpha2=5

REFERENCES

[11 Turbo C User's Guide, Borland, version 2.0, 1988

3

alpha3=1
r(t)=0.0

. System_model_matrix:

f(l)=x2
f(2)=k_1l*sin(x1)+k_2*x3
£(3)=k_3*x2+k_4*x3
g(l1)=0

g(2)=0

g(3)=k_5

df (1) =0

df (2)=k_6*cos (5*time) *cos (x1)
df (3)=-k_7*x2-k_8*x3
dg(1)=0

dg (2)=0

dg(3)=k_9

D(l)=k_a*r(t)
D(2)=k_b*r(t)
D(3)=k_c*r(t)

. Switching_function:

Sigma=-k_1*sin(xl)-alphal*xl
-alpha2*x2-alpha3*x3
dsigma(l)=-k_1l*cos (x1)~alphal
dsigma (2)=-alpha2

dsigma (3)=-alpha3

. Control_action:

h (x)=x1

Lh (x) =x2
LLh(x)=k_1*sin(x1)+k_2%*x3
LLLh (%) =k_1*x2*cos (x1)
+k_2*k_3*x2+k_2*k_4*x3
LgLLh(x)}=k_2*k_5

[2] H. Schildt, Advanced Turbo C, Second Edition, 1989
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