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&( A bstract
Robust Control o f Nonlinear Systems in the Presence o f Uncertainties

Any mathematical model that is adopted for the purposes of design is, at best, an 
approximation to reality. However, despite the existence of such mismatch between the 
plant and its model, the engineering system should still be stable and achieve some 
prespecified performance. Different robustness measure bounds and synthesis techniques 

have been developed. A promising area is the so-called deterministic theory, where the 
uncertainties incorporated in the system are described only in terms of the bounds on their 
possible size, and the objective is to find a class of controller which can achieve some 
prescribed behaviour for all possible variations of the uncertainties within the prescribed 
bounds. This has found wide applications in such areas as robotics and aircraft control.

The results presented here cover various novel techniques, which can be roughly divided 
into two categories according to the concepts on which the techniques are based. One 
category uses feedback linearisation, in which, besides a basic feedback linearisation 
controller proposed for the nominal part of the system, additional control effort is 
introduced to compensate the uncertainties in the system. The other category uses a 

variable structure controller which is developed for the nominal part of the system, whilst a 
variable feedback gain is employed to attenuate the effect of the uncertainties. Both 
techniques can be applied to effectively deal with systems in the presence of nonlinearity 
and uncertainty, and some stability theory can be developed.

The techniques developed here are concerned with both robust stability control design and 
robust tracking control design for SISO and MIMO nonlinear uncertain systems where 
closed loop stability can be guaranteed and robustness is shown.

For illustrative purposes, a second order system, with uncertain pole location and non

minimum phase properties, is adopted to demonstrate the performance of the techniques. 
Some applications are also included in the thesis, and it is shown that the techniques 
developed here are an improvement on previously developed methods.

- I I -
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Preface
Motivated by the theoretical and practical importance of robust control in engineering, it is 
proposed to investigate the robust control problem for nonlinear uncertain systems, and 
also to seek to develop more robust and intuitive methodologies than those currently in 
use, and to relax some of the conditions imposed.

0.1 M a j o r  C o n t r i b u t i o n s  o f  t h e  R e s e a r c h

The major contributions described here may be summarised as follows:

(D Firstly, the so-called matching conditions have been relaxed further and further. 
Initially, the condition that the modulus of the input mapping matching parameter is 
less than unity is replaced by simply requiring that this parameter be greater than zero. 
This difference leads to a new control law which is related to both the bounds of the 
uncertainties in the system and to the nominal control component, so that the effect of 
the uncertainties can be effectively attenuated by the proposed control.

d) Secondly the technique can be extended to more general cases where the matching 
conditions are not met. So a unified control can be found for the following cases:

• The uncertainties satisfy the matching conditions, and the modulus of the input mapping 

matching parameter is less than unity or greater than zero;

• Either the state mapping uncertainty or the input mapping uncertainty satisfies the matching 

conditions, but not both;

• The uncertainties lie in the span of the input mapping, but neither a continuous input 

mapping matching parameter nor a continuous state mapping matching parameter exists;

• None of the uncertainties satisfy matching conditions;

® The results are intuitive, and the performance is robust. Two typical forms of controller 
are discussed in chapters 4 and 5, in which one, additive compensation, uses the idea of 

an additional control component to compensate both the effect of state mapping 

uncertainty and the effect of input mapping uncertainty via the nominal control. The

- x i



P reface XII

other, multiplicative compensation, adopts concepts from adaptive control where 
feedback gain is variable instead of constant. Both methods can be understood as 
employing extra control effort to compensate for the effect of uncertainties.

© One of the most important results in this thesis is the application to multi-input 
systems. The technique developed for the single-input case has been extended to the 
multi-input case without further conditions being placed on either the system or the 
uncertainty. The principle is exactly the same except that it uses more mathematical 
concepts. The control law is similar to that developed for single-input systems. The 
regulation as well as the tracking problems for both single and multi-input systems are 
considered, and robust control laws are developed for both.

© Robustness is demonstrated by simulation using a simple second order system, in which 
the uncertainty in pole location can be effectively controlled even for the case where the 
open loop pole is believed to be in the left half, but is in fact in the right half of the 
complex plane. Furthermore the well-known non-minimum phase problem is treated as 
a special kind of uncertainty.
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Chapter
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Introduction
V___________________________ )

Overview
This chapter gives a general introduction to the main developments 

in robust control of nonlinear uncertain systems, and describes 

current knowledge.

Outline
/  Current Research 

/  The Objective of the Research 

/  An Overview of the Thesis
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1.1 Current  Research

THE objective of control design can be stated as follows: given a physical system to 

be controlled and performance specifications, construct a feedback control law to 

make the closed loop system display the desired behaviour.

In general, a physical plant has very complex dynamics, and is also affected by the 

environment in which it works. So, when a real plant is modelled, an assessment of the 

errors must be made. The causes of such errors in the open loop system are typically 

limited model information, modelling inaccuracy and disturbances. Unknown or varying 

parameters resulting from poorly understood physical phenomena are examples of model 

information uncertainty, while linear approximation, order reduction, and neglected 

coupling terms are examples of model inaccuracy. Any mathematical model adopted for 

control design therefore is, at best, an approximation to reality. However, despite the 

presence of such uncertainties, the system should still be stable. A critical property of a 

feedback system is its robustness, that is, its ability to reduce the sensitivity of the system 

to variations of system parameters and to unmodelled dynamics. In pure model-based 

control, the control law is based only on a nominal, linear in many cases, model of the 

physical system. How the control system will behave in the presence of model 

uncertainties and unmodelled dynamics is not clear at the design stage, and the stability of 

the closed loop system cannot be guaranteed. A nominal model based controller, or a linear 

controller based on inaccurate or obsolete values of the model parameters, or a nonlinear 

controller without consideration of the structure and size of uncertainties may exhibit 

significant performance degradation or even instability. Therefore, robust control of 

systems in the presence of nonlinearity and uncertainty is of great significance in practice, 

and many researchers and designers, from such broad areas as flight control, robotics,
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process control, and biomedical engineering, have shown an interest in the development 

and applications of robust control methodologies for nonlinear uncertain systems.

The problem of robust design of control systems, otherwise described as reliable 

design in the presence of uncertainty, has been studied, for many years, without 

conspicuous success. Because of this, engineers have turned to techniques such as fuzzy 

logic and statistical metric spaces involving knowledge based systems. Little intuitive 

understanding of the process results. Even the linear problem isn't easy whilst the nonlinear 

problem with uncertain perturbation is made more difficult because systems with 

nonlinearity and uncertainty can exhibit more complex behaviour than linear systems, and 

many of the established techniques are based on the assumption of exactly known models 

and parameters. Quite apart from the undesirability of this, problems of modelling errors 

tend to become submerged in the overall technique.

The last two decades have seen major progress in the analysis and synthesis theory 

of systems with nonlinearity and/or uncertainty, utilising many advanced mathematical 

concepts, and different robustness measure bounds. These include stochastic control 

theory, if a prior statistical characterisation of the uncertainties is available, as well as 

deterministic methods, where such statistics are unavailable but precise bounds on 

uncertainties are known. Where deterministic theory is used, the objective is to find a class 

of controllers which can achieve some prescribed behaviour for all possible variations of 

the uncertainties within the prescribed bounds, often termed 'guaranteed performance', 

which indicates that the resulting closed loop system will exhibit certain desirable 

properties for all admissible uncertainties. When the bounds of the uncertainties are known, 

the controller guarantees that the states of the system enter a particular vicinity of the 

equilibrium state after a finite period of time and remain there, and also guarantees that the 

state trajectory will be kept arbitrarily close to the equilibrium point if started close to it.

One of the best developed techniques in the frequency domain is quantitative 

feedback theory, denoted QFT, which was first proposed by Horowitz and Sidi[11 in 1972
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for single-input single-output (SISO) single-loop linear time-invariant minimum phase 

plants with large uncertainty. The theory has been extended to other system types. These 

include linear time-variant, nonlinear, multi-input multi-output (MIMO) and non

minimum phase plants. The key tool is the conversion of the initial set of plants into an 

equivalent set of linear time-invariant SISO plants. Schauder's fixed point theorem is used 

to justify the equivalence. The principle of QFT is to use pointwise design, i.e., repeat the 

design procedure in the same manner at sufficient frequency points separately to permit 

drawing a continuous curve of the bound, and to achieve the performance prespecified for 

large uncertainty. Pointwise design provides designers with the opportunity to make some 

tradeoffs between the loops, compensator complexity, and bandwidth economy, and 

between the extent of plant uncertainty, tolerances and feedback cost. But it also produces 

the problems that the size of the manipulated regions on the Nichols chart may be 

inconveniently large. Since QFT was proposed in 1972, many advances have been made, 

and many application examples have been published.

The development of HL optimal control th e o ry ^  can be seen as a return to the 

ideas and principles established by Bode[6] in the 1940s, but one which also led to 

considerable generalisations of these ideas. Notions such as the sensitivity function and 

stability margins, which were rather eclipsed by LQG theory, which dominated the 1960s 

and 1970s, have been re-established as central to the theory, and have been successfully 

extended to multivariable systems. The theoretical key to these extensions has been the 

introduction of the 'infinity norm' of a transfer function matrix G (written IIGIL) as a 

measure of its gain. The set of (linear) stable multivariable systems, whose infinity norms 

are finite, forms what mathematicians call a 'Hardy space', which has been given the name 

'H J, and it is this which gives much of recent robust control theory its name. If all we 

know about some input (which may be a vector of inputs, and 'input' includes 'disturbance') 

is that it belongs to a specified set, and if we measure the size of output signals in similar 

ways, then the infinity norm of the transfer function relating the input to the output is the



C hapter 1 In troduction 5

worst-case gain between the two. The term 'PL problem' arises from the fact that, for a 

closed loop system with plant P and feedback control K, we are minimising IIGi(P,K)IL 

over all Gi(P,K) where Fi represents the transfer function matrix of external inputs to the 

output errors, such that G i(P,K)g Hm and the feedback combination of P and K is internally 

stable. Use of the infinity norm therefore makes it possible to formulate realistic 'worst- 

case' performance specifications as mathematical problems to which theoretical solutions 

can be found. The theory is of great interest because it gives solutions to realistic robust 

control problems, posed as PL optimisation problems. The application of the theory to 

control problems originated with Zames[7]. In fact recent developments have shown the 

theory to have remarkable similarities with the LQG theory. A consistent term for the LQG 

problem, which is sometimes used, is 'H2 problem', since that requires the minimisation of 

IIGi(P,K)II2 over all G i(P,K)g H2, again with the constraint of internal stability. LQG 

problems can even be seen as special cases of PL problems.

The most useful and general approach for studying nonlinear systems is Lyapunov 

stability theory, which was introduced in the late 19th century by the Russian 

mathematician Alexandr Mikhailovich Lyapunov. Basic Lyapunov theory consists of two 

methods, the indirect method and the direct method. The indirect method, often called the 

linearisation method, states the stability properties of a nonlinear system in the vicinity of 

an equilibrium point by analysing those of its linearised approximation, while the direct 

method draws conclusions from the original system directly by constructing a scalar 

function for the system and examining the function's time variation.

There are two major time domain techniques for the design of controllers for 

nonlinear systems displaying significant uncertainties. One is the variable structure control 

(VSC) approach, which can be applied to highly nonlinear systems, and results in 

robustness to model errors, parameter variations and unknown disturbances. The VSC 

approach was first proposed in the 1950's by Utkin, and has been developed over several 

decades, see Utkin!8*9!, Zak et afil0'n \  and Sira-Ramirez!12!. Essentially, VSC uses a high
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speed switching control law to drive the nonlinear plant's state trajectory onto a specified 

and designer-chosen surface in the state space (called the sliding or switching surface), and 

to maintain the trajectory on this surface for all subsequent time. The plant dynamics 

restricted to this surface represent the control behaviour of the system. By properly 

choosing the switching surface, VSC attains the conventional goals of control such as 

stabilisation, tracking, and regulation. The main result is that the controlled system is 

insensitive to certain parameter variations and disturbances while the trajectory is on the 

switching surface. The variable structure technique is now well developed, Zak et a/!13-141, 

in that by properly choosing the switching surface, the original system can be decomposed, 

by a transformation, into two sub-systems, the fast one which describes the motion of the 

system off the switching surface, and the slow one which describes the motion on the 

switching surface, whilst the stability properties of the systems can be justified by 

Lyapunov theory.

Another method for synthesis of nonlinear uncertain systems based on Lyapunov 

stability theory was proposed by Gutman!15!, Leitmann et a /[16’17’18>19], and other 

authors!20"261. The design is based on the constructive use of Lyapunov stability theory. 

Roughly speaking, a Lyapunov function for a nominal system (i.e., the certain part of the 

real system) is employed as a candidate Lyapunov function for the actual uncertain system 

with control, and a robust control strategy can be developed so that it can guarantee a 

negative derivative of the Lyapunov function along all possible solutions in the presence of 

uncertainties. The success of the method depends crucially on the satisfaction of additional 

a priori assumptions on the nature of the uncertainties. These assumptions essentially 

restrict the structure and/or size of the uncertainties in the system. In the case of many of 

the previous references, these restrictions have been appropriately referred to as matching 

conditions, which means that the uncertainties originate directly through the control 

variable, i.e., the uncertainties lie in the span of the nominal input mapping. Such 

conditions make analysis and synthesis much easier, but they are often not met in practice.
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Recently, a number of papers have appeared which take mismatched uncertainties into 

account, but do so in a variety of ways. One way!18’19*20] is to decompose the system 

uncertainties into a matched part and a mismatched part, and treat them separately. Usually 

some limitation must be imposed on the mismatched part of the uncertainties, say, a 

critical 'mismatched threshold' on the allowable size. Another approach!21] is to consider 

mismatched uncertainties in the state mapping but not in the input mapping, whilst a third 

way!22’23! is to convert the mismatched uncertain system into a matched one by a change of 

basis and translation of the state.

Robust control differs from model-based control in that it is based not only on 

consideration of the nominal model, but also on some characterisation of the model 

uncertainties. By the nominal model is usually meant the model obtained by various 

identification techniques, the parameters of which are given by the nominal values. Such a 

model is not unique, as we might adopt different nominal models for easing the control 

design and for simplifying the uncertainty description.

1.2 The  Objective  of t h e  Research

Motivated by the aforementioned theoretical and practical considerations, it is 

proposed to investigate some nonlinear design techniques already developed, and also to 

seek to develop more robust and intuitive methods for systems with nonlinearity and 

uncertainty. Intuitive methods are very important because feedback tends to be counter

intuitive and this makes design, which is inevitably interactive (between computer and 

operator), even more difficult.

The objective of this research is to study the synthesis problem of nonlinear 

uncertain systems in a deterministic way, the problem statement being similar to that of 

Leitmann et but differing fundamentally in the control strategy.
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Nonlinear uncertain systems can be generally represented as 

x(t) = f(x)+g(x)u(t)+Af(x,y,t)+Ag(x,y,t)u(t)+£(t) 

where f(x)+g(x)u(t) is the certain part of the system, often termed the 'nominal system'; 

Af(x,y,t), Ag(x,y,t) represent uncertainties incorporated in the system; ^(t) denotes the 

external disturbance; y is a lumped uncertain element.

Roughly speaking, there are two ways of dealing with the robust design problem; 

one phase design and two phase design. One phase design is founded on the intuitive fact 

that any uncertainty should be effectively compensated by the designed controller. In order 

to achieve this, control effort must be introduced in addition to the main control 

component designed for the nominal part of the system. Based on this concept, the 

conventional controllers obtained for the nominal part of the system may be modified by 

introducing an extra control component, or employing a variable feedback gain instead of a 

constant one.

For example, the controlled inputs may be of the form 

u(t)=u1(t)+u2(t)

where u^t) is obtained for the nominal system according to one of various design theories, 

without consideration of any uncertain element, (for example, to linearise the nominal 

system, and place the closed loop poles in desired positions); and u2(t) is the additional
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feedback control to compensate for the effect of uncertainties in the system. The stability 

of the overall system can be guaranteed by this combined feedback control. Usually, one 

phase design synthesises a closed loop system with respect to the original nonlinear 

uncertain system directly. In general, u2(t) is related to the nominal control u t(t) as well as 

to the uncertainty bounds on Af and Ag, because not only the effect of the uncertainty in the 

state mapping Af(x,y,t), but also the effect caused by ut(t) through the uncertainty in the 

input mapping Ag(x,y,t) should be compensated.

The two phase method differs from the one phase method in that two feedback 

loops are included, and each of them is designed separately according to different theories, 

and will therefore meet different requirements. This design procedure usually involves the 

transformation of the original system to new coordinates and linearisation of this new 

system at the first stage. The development of controllers using various established 

synthesis techniques occurs at the second stage.

The feedback control is usually of the following form 

u(t)=u(x,v); v(t)=v(x,w)

where u(t) is developed in the first phase. This may be done, for instance, according to the 

feedback linearisation technique. The system undergoes a coordinate transformation and is
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then linearised, such that a new system with a linearised nominal part and some 

uncertainties, usually nonlinear, is obtained. In the second phase, the controller design will 

be carried on with respect to this new system, and the objective is to obtain a feedback 

controller such that the closed loop system performs in the desired manner.

The results presented in this thesis are concerned with both methodologies. At first, 

a simple case is considered, in which the structures of the uncertainties are assumed to 

satisfy the so-called matching conditions, but unlike the assumption made by Barmish et 

al[ll\  it is not required that the uncontrolled nominal system should be stable or 

precompensated to be stable, and it is not required that the matched form of uncertainty 

bounds should be less than 1; instead a weaker and more flexible condition, is imposed. A 

set of robust feedback controllers are obtained by extending the feedback linearisation 

technique, and using Lyapunov stability theory, which results in a practically stabilised 

closed loop system, even for nonlinear systems with unstable nominal part, in the presence 

of significant parameter tolerances and external disturbances. Compared with the technique 

of Barmish et some significant improvements have been made in that less severe 

matching conditions have been assumed. More importantly, such improvement enables us 

to extend the technique to more complicated systems in which the uncertainties do not 

meet the so-called matching conditions. This kind of uncertainty is considered throughout 

the rest of the work, and new control techniques are obtained. These may be applied to 

various cases, such as, where although the uncertainties lie in the span of the input 

mapping, so satisfying the generalised matching assumption, there are no continuous 

functions p and q such that the uncertainties are of the desired form, which has been 

assumed for the matching conditions, or where the uncertainties may only satisfy partial 

matching conditions, or even where the uncertainties do not satisfy any matching 

assumption. The techniques appear to represent a significant advance on previous results, 

with no restriction on the size of the uncertainty bounds, except for a weak and flexible 

condition imposed on the uncertainty in the input mapping.
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A novel robust technique has also been proposed, where the problem statement is 

similar to that above, but differs fundamentally in the control strategy. The design 

procedure utilises concepts of sliding mode from the theory of variable structure systems, 

and concepts of practical stabilisation from the theory of Leitmann et 0 /1 1 6 .1 7 ,1 8 ^ but shows 

obvious differences from them, in that, instead of the assumptions of pre-compensation on 

the nominal part of the system and matching conditions on the uncertainties, only a rather 

weak condition is imposed on uncertainties with no further assumptions. The proposed 

control is of variable structure, and can also be used to deal with nonlinear systems with 

both matched and mismatched uncertainties. This development results in some advantages 

in that it avoids the requirement for proper choice of some design constants, thus easing 

the design problem. It is also shown that the controller has the same structure as the one 

developed for the nominal system where no uncertainty is explicitly considered, the only 

difference being that the former has a variable controller gain, which depends on the 

known uncertainty bounds, and the latter has a constant one. The method has been 

extended to the multi-input case and this also is fully described in the sequel.

Finally, the robust tracking problem has been investigated for nonlinear uncertain 

systems. A robust stability controller is first proposed for SISO systems, and extended to 

the MIMO case. The proposed design method is divided into two phases. Firstly, the 

original nonlinear uncertain system is transformed into new coordinates using differential 

geometric theory, and a new system model, which has a linearised nominal part and 

nonlinear uncertainties, is obtained. Secondly, a robust variable-structure-like controller is 

developed, and the feedback gain is related to the uncertainty bounds. Stability of the 

closed loop system is justified by using Lyapunov stability theory. The results are obtained 

separately, for the cases where the uncertainties are assumed to satisfy the generalised 

matching assumption, as well as where they do not. It is also shown that the tracking errors 

depend crucially on the amplitudes of the mismatched part of the uncertainties. When only 

matched uncertainties are present, the tracking errors will converge to zero. However when



C hapter 1 In troduction 12

both matched and mismatched uncertainties are present, the tracking errors cannot 

converge to zero, but converge in a finite time, to a ball with a finite radius that depends 

only on the bounds of the mismatched uncertainties. The internal dynamics are also 

considered. For asymptotic minimum-phase systems, the internal states will also converge 

to a ball with the radius depending on the bound of the desired state trajectory.

Throughout the thesis, for simplicity, a typical second order linear system is 

utilised to illustrate the usage of the developed methodologies and some engineering 

control problems, such as uncertain pole locations, non-minimum phase, and parameter 

variations, are discussed. Moreover, applications of the proposed techniques to some more 

practical nonlinear uncertain systems are described, and simulation results are included to 

show the effectiveness of the proposed techniques.

1.3 An Overview  of th e  Thesis

The thesis consists of nine chapters, each of which starts with a short introduction 

providing the background for the main issues and techniques to be discussed, and a brief 

summary is also included in each chapter.

Chapter 2 introduces the class of nonlinear systems to be considered, and also 

describes the types of uncertainty which may occur. Charter 3 describes the concepts of 

stability and boundedness, and presents the major analytical tools that are required 

subsequently. Chapters 4~7 are the main results of the thesis. Various proposed robustness 

techniques are presented one by one. In chapter 4, the techniques based on feedback 

linearisation are described for matched uncertainties first and mismatched ones thereafter. 

Chapters 5 and 6 describe the techniques of variable-structure-like control, chapter 5 

providing the technique for single input systems, while chapter 6 is concerned with multi

input systems. These results are obtained by using the one phase design method. Unlike the
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previous three chapters in which only the regulation problem is discussed, chapter 7 

discusses the robust tracking control problem using the two phase design method. Chapter 

8 presents some applications of the aforementioned techniques, to some practical nonlinear 

uncertain system models, and simulation results are given. The last chapter concludes the 

techniques developed, and some remarks on possible future work in this area are made 

from the point of view of the author.

The thesis concentrates on nonlinear uncertain systems in continuous-time form. 

Even though most controllers are implemented digitally, nonlinear physical systems are 

continuous in nature, while digital controllers may be treated as continuous-time systems 

in analysis and design if high sampling rates are used. The thesis also pays more attention 

to uncertainties than to nonlinearities, because robustness means the ability to reduce the 

sensitivity of the system to any uncertainties in the system, regardless of whether the 

system is linear or nonlinear.
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2.1 INTRODUCTION

PHYSICAL systems are inherently nonlinear. Thus, strictly speaking, all control 

systems are nonlinear to some extent. Nonlinear uncertain systems can be modelled 

by nonlinear differential equations. The nonlinear system may be reasonably approximated 

by a linearised system only when the operating range is small, and the nonlinearities are 

smooth. This is not always the case, and then nonlinear control techniques are necessary.

On the other hand, the mathematical models used to describe physical systems may 

also be imprecise. Model imprecision may come from actual uncertainty about the plant 

(e.g., unknown plant parameters), or from the intentional choice of a simplified 

representation of the system's dynamics (e.g., linear approximation, order reduction, and 

neglected coupling terms). Therefore discrepancies between the model and the real system 

exist. Any mathematical model adopted for control design is, at best, an approximation to 

reality. However, despite the presence of such uncertainties, the final design should still 

result in a stable system.

2.2 N onlinear  U ncertain  System  M odels

We consider a class of nonlinear systems modelled by the following equations 

x(t)=F(x)+G(x)u(t) (2.1)

y(t)=H(x)

where F(-) and G(-) are C~ vector fields on Rn, H(-) is a C~ scalar field on Rn, and x, y and 

u are the state, output and admissible control having appropriate dimensions. It is assumed 

that the functions F(-) and G(-) are Caratheodory functions, i.e., for all te  R they are
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continuous in xe Rn, and for all x they are Lebesgue m easurable^0 in t.

If some uncertain elements exist, we can then write

x(t)=F(x,y,t)+G(x,y,t)u(t)+£(t) (2.2)

y(t)=H(x)

All the uncertainties in the system are represented by a lumped uncertain element ye Rr, 

which could be an element representing unknown constant parameters and inputs; or could 

be a function y(t):R->RT, representing unknown time varying parameters and inputs; or 

could be a function y(t,x,u):RxRnxRm->RY, representing nonlinear elements which are 

difficult to characterise exactly; and !;(•) represents external disturbance which could be 

either deterministic or stochastic, but is normally stochastic.

For ease of design, the system model is usually decomposed into two parts; the 

certain part and the uncertain part, and then formulated as

x(t)=f(x)+g(x)u(t)+Af(x,y,t)+Ag(x,y,t)u(t)+^(t) (2.3)

y(t)=h(x)

where F(x,y,t)=f(x)+Af(x,y,t)

G(x,y,t)=g(x)+Ag(x,y,t)

Here f(*) and g(-) represent the nominal part of the system, which is independent of the 

uncertain elements, and Af(-,v ) and Ag(-,v) indicate the uncertainties in the state and input 

mapping respectively. The system (2.1) is called the nominal version of (2.3).

Such a decomposition is not unique. One way to perform this decomposition is to 

choose the certain parts f  and g such that the uncertain parts Af and Ag satisfy some 

desirable conditions, as will be seen in the sequel. Moreover, the certain part, 

f(x)+g(x)u(t), is not necessarily required to be a part of the actual dynamics, but could have 

been added for controller design purposes in the event of the absence of a suitable nominal 

portion for which some existing techniques can be applied or for which a Lyapunov

°  Lebesgue M easurable:
A  s e t  S  i s  sa id  to  b e  L e b e s g u e  m e a s u r a b le  i f  th e  in n e r  m e a su r e  o f  S  e q u a ls  th e  o u te r  m e a su r e .
A  f u n c t io n / ( x )  d e f in e d  o n  a  m e a su r a b le  se t  S c R  is  s a id  to  b e  L e b e s g u e  m e a s u r a b le  o n  S i f ,  fo r  e a c h  r e a l n u m b e r  X,  
th e  s e t  o f  p o in ts  x e  S su ch  th a t /(x )> A , is  m e a su r a b le .
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function could be readily found. Here y(t)e R7 is a lumped uncertain parameter, such that 

Af(x,y,t) and Ag(x,y,t) are bounded. These bounds are given V(x,t)e RnxR by

0>ifA{m^r|Afk(x,Y,t)|k=I2...n)} (2.4)

...J (2.5)

Mwwou*...,n)} (2.6)

where the functions coM, coAg and cô  are presumed deterministic and known.

Note that the bounds coM and coAg could either be functions of x and t, or acceptable 

constants satisfying conditions (2.4) and (2.5) if there is not enough information to define 

these functions explicitly.

Next we introduce some useful concepts to describe the characteristics of the 

system and the classification of the uncertainties in the system.

D efinition 2.1. (Index o f  a  V ector)

Let the nominal system (i.e.t the certain part of the system) of (2.3) have relative 

order u<n (as defined in appendix A). An uncertainty vector field T(x,y) is said to have an 

index k<D with respect to the system if

r(x,v)eKer{dh(x), dLfh (x ) ,............, dLkf-‘h(x)} (2.7)

The index of the uncertainty vector T(x,y) with respect to the nominal system is 

simply the number of times the system output must be differentiated with respect to time 

before the first appearance of the uncertainty terms.

2.3 N onlinearities

Nonlinearities can be classified as inherent (natural) and intentional (artificial). 

Examples of inherent nonlinearities include centripetal forces in rotational motion, and
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Coulomb friction between contacting surfaces. Usually, such nonlinearities have 

undesirable effects, and controllers have to properly compensate for them. Intentional 

nonlinearities, on the other hand, are artificially introduced by the designer. Nonlinear 

control laws, such as adaptive control laws and variable structure control laws, are typical 

examples of intentional nonlinearities. Nonlinearities can also be classified in terms of 

their mathematical properties, as continuous and discontinuous. Because discontinuous 

nonlinearities cannot be locally approximated by linear functions, they are also called 'hard' 

nonlinearities. Hard nonlinearities (e . g backlash and stiction) are commonly found in 

control systems, both in small range operation and large range operation. W hether a system 

in small range operation should be regarded as nonlinear or linear depends on the 

magnitude of the hard nonlinearities and on the extent of their effects on the system 

performance.

The behaviour of nonlinear systems, however, is much more complex than that of 

linear systems. Because of the lack of linearity and of the associated superposition 

property, nonlinear systems may respond to external inputs quite differently from linear 

systems. Nonlinear systems frequently have more than one equilibrium point, so different 

initial conditions could lead to different steady state conditions. Furthermore the stability 

of nonlinear systems may depend on the initial conditions. Nonlinear systems can display 

oscillations of fixed amplitude and fixed period without external excitation. These 

oscillations are called limit cycles, which are different from sustained oscillations in 

marginally stable linear systems, in that the amplitude of the self-sustained excitation is 

independent of the initial condition, and not easily affected by parameter changes. 

Nonlinear systems can also display a phenomenon called chaos, by which we mean that the 

system output is extremely sensitive to initial conditions. The essential feature of chaos is 

the unpredictability of the system output. Even if we have an exact model of a nonlinear 

system and an extremely accurate computer, the system's response in the long-run still 

cannot be well predicted. Some other interesting types of behaviour, such as jump
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resonance, subharmonic generation, asynchronous quenching, and frequency-amplitude 

dependence of free vibrations, can also occur and are important in some system studies. 

The above description should provide ample evidence that nonlinear systems can exhibit 

considerably richer and more complex behaviour than linear systems.

2.4 U ncertainties

2.4.1 Description of Uncertainties

Uncertainties arise from practical control problems. A 'real world' physical plant 

contains very complex dynamics, and is also affected by the environment in which it 

works. When an attempt is made to control a plant, it is desirable to describe it from prior 

knowledge in mathematical terms. No nominal model should be considered without an 

assessment of its errors. This is because: (D Our knowledge of the physical mechanisms of 

the plant is limited, and it is not possible to obtain all the desired information about plant 

dynamics. (D Our ability to represent the physical mechanisms of the plant is so limited 

that we could not formulate all dynamics of the plant without any error. It is, for example, 

difficult to model the high-frequency dynamics of a plant. (D It should also be considered, 

to what extent the model can be dealt with by theories presently available. It is common 

that a quite accurately modelled nonlinear element is treated as a linear one, or a quite 

complicated model is replaced by a simple one because our design techniques cannot deal 

with complex models effectively, and sometimes, we may deliberately choose to ignore 

various known dynamics in order to achieve a simple nominal model. We call these errors 

'the model uncertainties'. The discrepancy between the plant and its model, i.e., model 

error, is one of the most important uncertainties in control problems. From a control point 

of view, model inaccuracies can be classified into two kinds: structured (or parametric) 

uncertainties and unstructured uncertainties (or unmodelled dynamics). The first kind
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corresponds to inaccuracies in the terms actually included in the model, while the second 

kind corresponds to inaccuracies in (/.<?., underestimation of) the system order for linear 

cases and to inaccuracies in the number and the type of terms of the model for nonlinear 

cases. Another kind of uncertainty arises from external disturbances. The variations of the 

plant environment will affect the plant dynamic characteristics. The disturbances are either 

deterministic but unknown, or stochastic, but most of them are not exactly measurable, 

hence unmodelled.

2.4.2 Requirements on the Uncertainties: Matching Conditions

The control of systems which contain uncertainties can in general be treated in two 

different ways: from a stochastic point of view or from a deterministic one. Where the 

deterministic technique is used the uncertainties are described only in terms of bounds, /.<?., 

the maximum and minimum values, and no assumptions are made concerning the statistics 

of the uncertain parameters. Instead, the uncertainties may satisfy some prespecified 

conditions, such as matching conditions, which require that they must lie in the span of the 

nominal input mapping g(-).

D efinition 2 .2 . (Matching Assumption)

For the nonlinear uncertain system of the form (2.3), if the uncertainty vector fields 

Af(x,y,t) and Ag(x,y,t) satisfy

Af(x,y,t) and Ag(x,y,t)e span{g(x)} (2.8)

it is said that the system has matched uncertainties.

D efinition 2.3. (Generalised, Matching Assumption)

Assume that the nominal part of the system (2.3) has relative order \), and the 

uncertainties Af(x,y,t) and Ag(x,y,t) are smooth vector fields with indices v l and v>2. If 

minlDj, d2}>o-1 (2.9)

then it is said that the uncertainties satisfy generalised matching conditions.
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R emark 2 . 1 :

• By uncertainties satisfying matching conditions, it is meant that they enter the system only through 

the nominal input mapping of the system. It is worthwhile to point out that definition 2.3 is a 

generalisation of the so-called matching assumption of definition 2 .2 .

In order to develop the results of the following chapters, we introduce the more 

intuitive form on matching conditions made by Barmish et al[2\  and some other relaxed 

versions made in this thesis.

D efinition 2.4. (Matching Conditions)

For the system of the form (2.3), suppose there exist continuous functions, p(x,y,t) 

and q(x,y,t), such that the uncertain vectors can be expressed as

Ag(x,y,t)=g(x)-q(x,y,t) (2.10)

Af(x,y,t)=g(x)-p(x,y,t) (2.11)

The system is then said to satisfy the complete matching conditions.

D efinition 2.5. (Incomplete Matching Conditions)

For the system of the form (2.3), suppose there exists a continuous function q(x,y,t) 

such that
Ag(x,y,t)=g(x)*q(x,y,t) (2.12)

or p(x,y,t), such that

Af(x,y,t)=g(x)*p(x,y,t) (2.13)

hold. The system is then said to meet incomplete matching conditions.

D efinition 2 .6 . (Mismatched Uncertainties)

For the system of the form (2.3), if there are no continuous functions q(x,y,t) and 

p(x,y,t) such that (2.10) or (2.11) holds. The system is then said to have mismatched 

uncertainties.

In order to achieve desired control, some further conditions must be imposed on the 

system uncertainties as follows.
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A ssumption 2.7. (Conditions on the Uncertainty in Input Mapping)

For the nonlinear uncertain system of the form (2.3), if the uncertainty in input 

mapping is matched, then it is also assumed that the function q satisfies either of the 

following conditions

|q(x,y,t)|<l (2.14)

q(x,y,t)>0 (2.15)

Otherwise, if the uncertainty in input mapping is mismatched, then it is assumed that either 

of the following conditions

LgV’LAgV>0 (2.16)

or

|LgV|>|LAgV| (2.17)

holds.

R emark 2 .2:

• In assumption 2.7, it is clear that condition (2.15) can be regarded as the matched form of (2.16), 

because if Ag satisfies the matching conditions, then Ag=g-q, and it follows that 

LgV-LAgV=(LgV)2 -q>0, so q>0 holds.

• Similarly, if Ag satisfies the matching conditions, then condition (2.17) becomes 

ILgVI>ILAgVI=ILgVMql, implying that Iqkl holds. So condition (2.17) can be regarded as the

mismatched extension of condition (2.14).

2.4.3 A Further Discussion of Matching Conditions and an Example

The matching conditions are the basis of robust control of uncertain systems at 

present. Most proposed control techniques for uncertain systems use these conditions. For 

clarity of exposition, we use a simple linear system to discuss these conditions further and 

make some important observations about the structure of the uncertainties.

Consider the following second order linear system with transfer function
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G(s) =
kiS+k2

(S + |I1)(S + |L l2)

The state variable form is as follows

(2.18)

11 a12

X2^ V%1 a22 /V X 2

y(t)= x1

, y M
'2/

U(t)

where if
a= |a i+ (i2 

P = t l , | X 2

then

(2.19)

(2.20)

(2 .21)

an +a22= “a  (2-22)

ai2a2i“aiia22= "P (2.23)

ai2^2_a22^1= -̂2 (2.24)

b ^ k j  (2.25)

Case 1. If an =0; a12= l; k^O , then a21=-(3, a ^ - a ,  bj=0, b ^ k j ,  therefore

/v

Va2
0

-a
1 3

-P L2y+ 1 ^  |u(t) (2.26)

If the open loop pole assumed to be at is in fact at -fij, and if the value of the 

numerator coefficient of s is k2 rather than k^, the system may be regarded as uncertain and 

of the following form

i _ (  0 1  ̂

: «  -Py
+ U(t) +

( 0
^ A a x j + A f J x ^  ^ A k j+

0 3
u(t) (2.27)

where Aa=(ot-a'), Ap=(p~P'), and Ak2=k2-k2.

Clearly, the uncertainties here do lie in the span of the input mapping g(x), so that 

the existence of matched uncertainties can be concluded. But in order to deal with such a 

system with input mapping uncertainty, more restrictions described in assumption 2.7 must 

be placed on the uncertainties, i.e., Iq H A k /k Jc l or Ak2/k2>0 is required. We may satisfy 

the condition, Ak2/k2>0, by expressing the input mapping as k^k^+Akj as above, and 

choosing k2 properly such that q=Ak2/k2>0 holds.
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Case 2. If a12=a21=a^O, a 2>4(p+a2) and 1^=1, then 

-a - '\ /a 2-4(p+a2)
an = ‘

a22—'
-a+ '\/a2-4(p+a2)

t>i=k i

( V ^ i )b2=
42

(2.28)

(2.29)

(2.30)

(2.31)

Again, uncertainty in one of the open loop pole positions results in uncertainty in f. 

Supposing kj=0, we have

x. 41 V-

a ^22/ VA2
+ 1 lu(t) + "Aan x i"

VAa22X2y
(2.32)

where an , a2 2, b2 are nominal values resulting in the nominal eigenvalue -[Lv  a/j, a ^  are 

real values resulting in the true eigenvalue -\i[, and Aa11=a1'1-a11, Aa22=a22-a22 are the 

uncertain parameters.

If the assumed open loop pole position -\ix is correct, but k x<0, this results in a non

minimum phase control problem. It may be regarded as an uncertain problem and the 

following system results

27
_ | an a Vx

a ^ lA ^ y
+

0
u(t) +

(Ab,
,Ab2yu(t) (2.33)

where b2= l/a , A b^k j, and Ab2=a22k 1/a.

Clearly, in both cases, the uncertainties do not satisfy the matching conditions 

given in definitions 2.4, but each case does satisfy the conditions of definition 2.5. It is 

therefore said that the system has partially matched uncertainties.

If an open loop pole is not in the nominal position -|xv and non-minimum phase 

occurs, i.e., ^ < 0 , on the one hand, the system can be written as

 ̂ A

L27

I all A

a &21 J x  ̂;+ lb
fA a

Vu 2 7
u(t) +

.x An'M
vAa22x2S

+
r 0 
,Ab2 u(t) (2.34)

where bj=kj, b2=l/a, and Ab2=a22k1/a. On the other hand, it can also be expressed as
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x.
41 a

h i
+

(P
b2yu(t) +

f A a , n x i

A ^ x 2J
u(t)

where b2= l/a , A b ^ p ,  and Ab2=a22k1/a.

(2.35)

Although the uncertainties in (2.34) lie in the range of the nominal input mapping 

g(x) and generalised matched uncertainties can be concluded, there do not exist functions p 

and q such that the conditions (2.10) and (2.11) hold. However, they can be treated as 

mismatched uncertainties as in (2.35) if either of the conditions (2.16) and (2.17) given in 

assumption 2.7 is satisfied.

2.5  Sum m ary

The matching conditions play a key role in various robust synthesis techniques, and 

mismatched uncertainties are much more difficult to deal with than matched uncertainties. 

In terms of these definitions, the system (2.3) can be expressed in various forms as follows:

CD Matched Uncertainties:

x(t)=f(x)+g(x)u(t)+g(x)- { p(x,y,t)+q(x,y,t)u(t)} (2.36)

© Partially Matched Uncertainties:

x(t)=f(x)+g(x)u(t)+Af(x,y,t)+g(x)-q(x,y,t)u(t) (2.37)

or x(t)=f(x)+g(x)u(t)+g(x)*p(x,y,t)+Ag(x,y,t)u(t) (2.38)

(D Mismatched Uncertainties:

x(t)=f(x)+g(x)u(t)+Af(x,y,t)+Ag(x,y,t)u(t) (2.39)

The objective of robust control theory is to find a family of controllers for 

nonlinear uncertain systems, subject to various uncertainties either matched, partially 

matched or mismatched, which guarantees that any given system has desired stability 

properties for any initial condition (x0,t0)e RnxR and all uncertain elements y(t)e Ry.
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3.1 Introduction

GIVEN a control system, the first and most important question about its various 

properties is whether it is stable, because an unstable control system is typically 

useless and potentially dangerous. Stability properties characterise how a system behaves if 

its state is initiated close to, but not precisely at, a given operating point. Qualitatively, a 

system is described as stable if, initiating the system somewhere away from, but near, its 

desired operating point, implies that it will stay around the point ever after, unless 

disturbed, in which case it will, after the effect of the disturbance has passed, tend to the 

region of the operating point.

The most useful and general approach for studying the stability of nonlinear 

systems is the theory introduced in the late 19th century by the Russian mathematician

A.M.Lyapunov. Lyapunov's work, The General Problem of Motion Stability, introduces 

two methods for stability analysis (the so-called linearisation method and the direct 

method) and was first published in 1892. The linearisation method draws conclusions 

about a nonlinear system's local stability around an equilibrium point from the stability 

properties of its linear approximation, while the direct method is not restricted to local 

motion, and determines the stability properties of a system by constructing a scalar 

function for the system and examining the function's time variation. For over half a 

century, however, Lyapunov's pioneering work on stability received little attention outside 

Russia. Many refinements of Lyapunov's methods have since been made. Today, 

Lyapunov's linearisation method has come to represent the theoretical justification of linear 

system theory, whilst Lyapunov's direct method has become the most important tool for 

nonlinear system analysis and design. Together, the linearisation method and the direct 

method constitute the so-called Lyapunov stability theory.
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The objective of this chapter is to provide the basic mathematical preliminaries for 

the development of the main results in the following chapters. To avoid excessive 

mathematical complexity, this chapter presents only the major concepts of Lyapunov 

stability theory, and some extended results on system stability frequently used in the 

analysis and design of nonlinear uncertain systems.

3.2 Lyapunov  Stability  T heory

Basic Lyapunov theory consists of two methods, the indirect method and the direct 

method. The indirect method, or linearisation method, states that the stability properties of 

many nonlinear systems in the vicinity of an equilibrium point are essentially the same as 

those of its linearised approximation. The method serves as the theoretical justification for 

applying linear theory to physical systems, which are always inherently nonlinear. In using 

the direct method to analyse the stability of a nonlinear system, the idea is to construct a 

scalar 'energy-like' function (a Lyapunov function) for the system, and to see whether it 

decreases. The power of this method comes from its generality; it is applicable to all kinds 

of control systems, be they time-varying or time-invariant, finite dimensional or infinite 

dimensional. Conversely, the limitation of the method lies in the fact that it is often 

difficult to find a Lyapunov function for a given system, and that sufficient conditions are 

not generally necessary conditions.

3.2.1 Concepts of Stability

Some concepts of system stability and instability are now introduced.

D efinition 3.1. (Equilibrium Point)

Given a dynamic system of the form
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x(t)=F(x) (3.1)

a state x* is an equilibrium state (or equilibrium point) of the system if once x(t) becomes 

equal to x*, it remains equal to x* for all future time.

D efinition 3.2. (Autonomous and Non-autonomous Systems)

A nonlinear system is said to be autonomous if it does not depend explicitly on 

time. Otherwise the system is called non-autonomous.

The fundamental difference between autonomous and non-autonomous systems lies 

in the fact that the state trajectory of an autonomous system is independent of the initial 

time, while that of a non-autonomous system is generally not. This clearly makes the 

stability analysis of non-autonomous systems more complicated than that of autonomous 

systems.

D efinition 3.3. (Stabilityv &)

Given a non-autonomous system as follows

x(t) = F(x,t) F(0,t)=0 (3.2)

consider the stability problem in the vicinity of the equilibrium point x=0.

(D If, for any R>0, there exists r(R,to)>0 depending only on R and to, such that 

||x(0)||<r(R,to) => ||x(t)||<R Vt>to (3.3)

then the equilibrium is said to be stable.

(D If x=0 is stable, and r(R)>0 is independent of initial time to, then the equilibrium 

is said to be uniformly stable.

(D If x=0 is stable, and there exists r(to)>0 such that

||x(0)||<r(to) => I|x(t)||—>0 as t-*»  (3.4)

then the equilibrium is said to be asymptotically stable.

<D If x=0 is stable, and there exists r>0 independent of initial time to, such that 

||x(0)||<r => ||x(t)||—>0 as t->°° (3.5)

then the equilibrium is said to be uniformly asymptotically stable.

(D If x=0 is stable, and for any initial state x(0)=x0, such that
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||x(t)||->0 as t->°o (3.6)

then the equilibrium is said to be globally uniformly asymptotically stable.

© If there exists a>0, and also for any R>0, there exists r(R)>0 such that

||x(0)||<r(R) => lIxOOpRe-0̂  Vt>to (3.7)

then the equilibrium is said to be exponentially stable.

®  If there exists a>0, and also for any r>0, there exists R(r)>0 such that

||x(0)H<r => |[x(t)||<R(r)e0C(tto) Vt>to (3.8)

then the equilibrium is said to be globally exponentially stable.

®  If, for some R>0, there exists r>0 no matter how small r is, such that

llx(0)||<r ^  ||x(t)||>R Vt>to (3.9)

then the equilibrium is said to be unstable.

R emark 3.1:

• Essentially, stability (also called Lyapunov 

stability) means that the system trajectory can 

be kept arbitrarily close to the origin by 

starting sufficiently close to it. Asymptotic 

stability means that the equilibrium point is 

stable, and that in addition, states started close 

to 0 actually converge to 0 as time t goes to 

infinity. An equilibrium point which is 

Lyapunov stable but not asymptotically stable 

is called marginally stable. Exponential

stability means that the state vector of a system converges to 0 faster than a given exponential 

function with constants a  and R.

• Uniform stability means that the stability property of a system is independent of the initial time t0, 

so the uniform stability of a non-autonomous system is equivalent to the stability of an autonomous

Fig. 3.1 Concepts of stability 
a — asymptotically stable 
b — marginally stable 

c — unstable

one.
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•  Finally, global stability means that the stability property holds for any initial state x0, i.e., the 

whole state space. In contrast, local stability is only concerned with a finite domain around the 

equilibrium point x=0.

3.2.2 The Direct Method of Lyapunov

The direct method of Lyapunov attempts to make a statement on the stability of the 

equilibrium directly without any knowledge of the solutions of the system. The basic 

philosophy of Lyapunov's direct method is the mathematical extension of a fundamental 

physical observation; if the total energy of a system is continuously dissipated, then the 

system, whether linear or nonlinear, must eventually settle down to an equilibrium point. 

Thus we may infer the stability of a system by examining the variation of a single 'energy- 

like' scalar function without requiring explicit knowledge of solutions. This energy 

function has two properties. The first is a property of the function itself; it is strictly 

positive unless all state variables are zero. The second is a property associated with the 

system dynamics; the function is monotonically decreasing when the states vary along the 

system dynamics. The first property is formalised by the notion of positive definite 

functions, and the second is formalised by the so-called Lyapunov functions.

D e f i n i t i o n  3.4. (Positive Definite Function^1’4])

If, for any vector x, a scalar continuous function V(x) is such that

V(x)>0 Vx*0; V(0)=0 (3.10)

then it is said to be positive definite (p.d.).

A few concepts, such as negative definite, positive (negative) semi-definite, can be 

defined similarly.

D e f i n i t i o n  3.5. (Lyapunov Function)

If the function V(x) is positive definite and has continuous first partial derivatives 

with respect to x, and if its time derivative along any state trajectory of the system is
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negative semi-definite, i.e.,

V(x)>0 Vx*0 (3.11)

V(x)<0 (3.12)

then V(x) is said to be a Lyapunov function for the system.

T heorem 3.6. (The Direct Method of Lyapunov)

Assume that there exists a scalar function V(x)

V(x)>0 Vx*0 (3.13)

with continuous first partial derivatives. Then, Vx?0 

<D if the time derivative

V(x)<0 (3.14)

it follows that the equilibrium at the origin is stable;

(D if the time derivative

V(x)<0 (3.15)

and

V(x,t)->°° as ||x||-^oo (3.16)

then the equilibrium at the origin is asymptotically stable in the large®.

R emark 3.2:

• Many Lyapunov functions may exist for the same system. For instance, if V is a Lyapunov 

function for a given system, so is V'=b-V\ where b is any strictly positive constant and a is any 

scalar (not necessarily an integer) greater than or equal to one. More importantly, for a given 

system, a specific Lyapunov function may yield more precise results than other choices.

• It is important to realise that the theorems of Lyapunov are all sufficiency theorems. If for a 

particular choice of Lyapunov function candidate V, the conditions on V are not met, one cannot 

draw any conclusion on the stability or instability of the system.

• Usually, Lyapunov stability theorems have local and global versions. The local versions are 

concerned with stability properties in the vicinity of the equilibrium point and usually involve a

o In the large means that the domain of definition is the entire state space.
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locally positive definite function, whilst the global version satisfies all the conditions of the local 

versions, and needs additional requirements on the function, i.e., V(x)— as llxll—>oo.

T heorem 3.7. (Necessary and Sufficient Conditions for Exponential Stability^1!)

Given a system of the form (3.2), if F(x,t) has continuous and bounded first partial 

derivatives with respect to x and t, for x in a certain ball BK centered at the origin, and all 

t>0, then the equilibrium point at the origin is exponentially stable if and only if there

exists a Lyapunov function V(x,t) and some positive constants v l5 v2, v3, v4 such that

xe Bk, and Vt>0

v 1||x |P<V (x,t)<v2||x|P (3.17)

V (x,t)<-v3||x|P (3.18)

a v
ax ^ " x" (3.19)

R emark 3.3:

• In this theorem, the vJlxll can be replaced by class-k  ̂ functions® Vj(||x||), and the system is still 

globally exponentially stable.

• The theorem provides us with necessary and sufficient conditions for a Lyapunov function to exist, 

so that it can be used as a converse theorem to examine the existence of a Lyapunov function. This 

means that, for an exponentially stable system, if there are class-k  ̂functions v,, v2, v3, v4, then a 

Lyapunov function which satisfies conditions (3.17)~(3.19) exists.

3.2.3 Existence and Construction of Lyapunov Functions

All theorems of Lyapunov theory make a basic assumption; an explicit Lyapunov 

function is somehow known. The question is therefore how to find a Lyapunov function 

for a specific problem. Yet there is no general way of finding Lyapunov functions for

© D efinition (class-k„ function)111:
If v(-) is a strictly continuous non-decreasing function, and satisfies v(0)=0 and liiDv(e)=°°, then it can be written 
as v(-)ek_ and called a class-lc. function.
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nonlinear systems. This is a fundamental drawback of the direct method. Therefore, faced 

with specific systems, one has to use experience, intuition, and physical insights to search 

for an appropriate Lyapunov function.

T heorem 3.8. (Lyapunov Function for Linear Time-invariant Systems[li3’4})

Given a linear system of the form x=Ax, a quadratic function

V(x) = xTPx (3.20)

is a Lyapunov function, if P is a symmetric positive definite matrix satisfying

ATP+PA = -Q (3.21)

where Q is a symmetric positive definite matrix.

Obviously, if P is positive definite, then V(x)>0 Vx=£0, and it follows that

V(x) = xTPx+xTPx = -xTQx<0 Vx^O (3.22)

if Q is positive definite. The global asymptotic stability of the linear system is therefore 

guaranteed. One way of constructing a Lyapunov function is to derive P from a chosen 

positive definite matrix Q. Any positive definite matrix Q can be used to determine the 

stability of a linear system. A simple choice of Q is the identity matrix.

In some circumstances, instead of choosing Q to be the identity matrix, a special 

form of matrix P may be assumed such that the chosen Lyapunov function can meet certain 

requirements. The following theorem states that a positive definite diagonal matrix P 

exists.

T heorem 3.9. (Lyapunov Function with a Diagonal Matrix P)

For a linear system x=Ax, a positive definite diagonal matrix P satisfying (3.21) 

can be found

(D if A is generally of the form

'*n a12 . . . . aln'

A =
a21 a22 • • • • a2n

^2 . . . . y

with all the diagonal elements non-zero; or
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if A is of controllable canonical form

A =
0 1 o

(3.24)
0  • l

Vai a2 . . . . a* ;

a transformation 3  can be defined such that a new system with the state matrix

A = 3 A 3 ‘1 (3.25)

can be obtained, where all the diagonal elements of A are non-zero. In both cases, a 

Lyapunov function of the form (3.20) can be defined.

Actually, a transformation of the following form

3 = % h 0
(3.26)

^ P  2̂ >

with inverse of the form

3'1 =

(v\
_ T - 1  T - l  U2’ l 2

0

0
(3.27)

_T-1 T-l 
l n ’ l n

can be defined, such that a matrix of the form (3.24) can be transformed into

(n,

A =3A 3‘1 =

a i l  a i2 

2̂1 2̂2 2̂3 0

An-l.n

*nl

(3.28)

where all diagonal elements ^*4) (i=l, 2, • • *, n) by properly arranging the elements of 3. 

If the elements of 3  are chosen to be

xi = ai^ n/an (i=l, 2, • • •, n-1) (3.29)

where xn may be any positive constant, a diagonal matrix P can then be defined as

Pii = -Qii/2aii (i=l, 2, • • •, n) (3.30)
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where Q is a symmetric positive definite matrix, whose diagonal elements are given by

Qii= - | £a LxQii <i=1-2- • • j=i+1)aji aii
(3.31)

with Qu  a positive constant, such that P is positive definite and satisfies the Lyapunov 

equation (3.21).

The following example demonstrates the application of the theorem.

Given a S^-order linear stable system with the state matrix of the form

(0 1 0 0 f  0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1

u a2 a3 84 asJ 'l 00 0 0 -2250 -1168 -293 -32 J

define a transformation of the form (3.26) with the inverse (3.27) as follows
0 0 0 0\ 1̂/Xi 0 0 0 0 >
x2 0 0 0 -1/X2 1/X2 0 0 0
^ 2 3̂ 0 0 3'1 = 0 -1/X3 1/X3 0 0
h  3̂ *4 0 0 0 -1/X4 1/X4 0
h  *3 4̂ 1 ° 0 0 -1/X5 l/t5,

The original state matrix can be transformed into the following form

A = 3 A3'1 =

% 1 a 1 2  0 0 0  ^

a 2 1 a 22 a 23 0 0

a 3i a 3 2  5 3 3 a 34 0

^41 ^42 ^ 4 3 a 44 **45

â 5 i a 52 a 53 a 54 a s L

-X i /T 2 X l/X 2

- X l / t 2 T 1 /T 2 -T 2 /T 3

^ 1  h i X1 /T 2 -T 2 /X 3

-T i / t2 X1 /T 2 -X2 /T 3

v-T i/T 2 + ( a i / X i - a 2 / t 2) T i/T 2 -T 2 /T 3 + (a 2 /T 2 -a 3 /T 3 )

0 0 0
T2/T3 0 0

T2/T3-T3/T4 T3/T4 0
X2/X3-T3/X4 X3/X4-X4/X5 X4/X5

<T2/'T3-t3/'T4+(a3/T3-a4/T4) V V ^ S + ^ V - a s / X s )  V L + a5y

It is possible to choose i { (i=l,2,3,4,5) such that the elements in the bracket of the above matrix are zero

£]__ ^ 2  _£2 _£3 _ ^ 4  _£4 _ q
^1 ^2 ^2 ^3 ^3 ^4 \  ^5
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It follows that, for a positive constant t5 (here let t 5=l)

4̂ = = 9.156

”T3= 3̂‘̂ 4/^4 = ^3 /^xa^'T^/a^ = a3-,T5/a5 = 36.500 

t2= a ^ /a g  = a2 /a3xa3-'T5/a5 = a2-'i5/a5 = 70.313

Ti = ar T2/a2 = ai / a j x a j ' = a1-T5/a5 = 56.250

The transformation is therefore obtained as follows

56.250 0 0 0 0
56.250 70.313 0 0 0
56.250 70.313 36.500 0 0
56.250 70.313 36.500 9.156 0

^56.250 70.313 36.500 9.156 1.0 0 0 )

0.018 0 0 0 0
-0.014 0.014 0 0 0

0 -0.027 0.027 0 0
0 0 -0.109 0.109 0

l  0 0 0 -1 U

by which the original system can be transferred to the following form

' - V ' T  2 T 1 / T 2 0 0 0
'T i / T 2 - T 2/'T3 V L l 0 0
T i / T 2 - t 2 / T 3 T 2 / T 3 - T 3 / T 4 T 3 / T 4 0

- T i / T 2 T 2 / T 3 - T 3 / T 4 T 4 / T 5

-TTi / T 2 T l / T 2 - T 2 / T 3 T 2 / T 3 - T 3 / T 4 X } / t 5 + a 4

% 1  a 12 0 0 0 ^
an a22 ^23 0 0

an a22 a33 a34 0

all a 22 a 33 S44 a45
^ 1 1  a22 a33 344 ass,

-̂0.800 0.800 0 0 0 >
-0.800 -1.126 1 .926 0 0
-0.800 -1.126 -2 .060 3.986 0
-0.800 -1.126 -2 .060 -5.170 9.156

V-0.800 -1.126 -2 .060 -5.170 -22.874)

From the results, all the diagonal elements of the above matrix A are non-zero. It is now possible

to define a positive definite diagonal matrix P such that the Lyapunov equation (3.21) is satisfied.

According to (3.31), let Qn =3. Then we have

Q„ =— =4.224 
22 f2i-an 11

Q _i2i222.xQ„= 13.212 
33 a32>a22 22
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Q4 4 -
a43*%3

xQ33 = 64.163 Q55 = a45'a55
%4'a44

xQ44 = 502.117

Then, according to (3.30), the diagonal matrix P can be obtained

^1.875 0
0
0

3.207
0

0 0 >
0 1.875 0 0
0 0 0 0
0 0 6.205 0

l  0 0 0 10.990j

Such a matrix satisfies the following Lyapunov equation

ATP+PA =

 ̂ 2an Pn a12P n+a11P22 S11P33 S11P44 allP55
a i2Pn+anP22 2S22P22 •̂23? 22"̂ * 33 222P44 a22P55

S11P33 S23P22+ 2̂2P33 2II33P33 a34P33+a33?44 ^33? 55
allP44 S22P44 a34P33+a33P44 2a/[/|P/|/| a4sP44+a44P55

v S11P55 222P55 a33P55 a45P44+a44P55 2&55P55

^-3.000 0 -2.565 -4.964 -8.792 N
0 -4.224 0 -6.990 -12.379

-2.565 0 -13.211 0 -22.640
-4.964 -6.990 0 -64.163 0

V-8.791 -12.379 -22.640 0 -502.117,

=-Q

where it is clear that Q is positive definite with eigenvalues: ^=1.6967, 2.2=3.3675, 9i3=12.6755, 

X4=65.3476, X5=503.6378, and hence P can be used as a candidate Lyapunov function.

T heorem 3.10. (Lyapunov Function for Nonlinear Systems 1̂ >5l) 

For a given function 

x=/(x), / ( 0)=0

if

V / T(x)+ V /(x)< 0

a Lyapunov function for this system is then given by 

V (x )= /T(x)-/(x)

Proof: From definition (3.33), obviously 

V(x) = /  T(x) /(x) = I l/(x) 112>0 V x?4)

V(x) = / T(x) */(x) + / T(x) -/(x) 

= / T(x)(V /T+V /)/(x)<  0

(3.32)

(3.33)

(3.34)

(3.35) 0
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3.2.4 System Analysis and Control Design Based on Lyapunov Functions

Lyapunov functions are primarily used for stability analysis of systems, but 

sometimes they can provide an estimate of the transient performance of stable systems. In 

particular, they can allow estimation of the convergence rate of linear or nonlinear systems 

which are asymptotically stable.

THEOREM 3.11. (Convergence Rate EstimationM)

If, for a given system, a Lyapunov function V(t) can be found that satisfies the 

following inequality

V(t)+a-V(t)<0 (3.36)

V(t)<V(0)-e-at (3.37)

The Lyapunov function V(t) can be guaranteed to exponentially converge to zero at the 

convergence rate a .

The above theorem implies that, if V(x) is a non-negative function, the satisfaction 

of (3.37) guarantees the exponential convergence of V(x) to zero. The reciprocal of a  can 

be regarded as the largest time constant of the system in some region in the state space. In 

using Lyapunov's direct method for stability analysis, it is often possible to manipulate 

V(t) into the form of (3.36). In such a case, the exponential convergence rate of the state 

may then be determined. For instance, let us consider a linear system. The Lyapunov 

function is V(t)=xTPx, and the time derivative is

V (t)= -x^Qx < -kmin(Q)xTx =- s  - T ^ V G ) = ' a 'V(t)^■'rnax'D Anax'*/

then V(t)<V(0>e-at

where a=Xmin(Q)A,max(P). This, together with the fact that V(t)=xTPx>Xmin(P)xTx, implies

that
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llxII^V v (0 )A jni„(P)-e’?t (3.38)

i.e.y the state x converges to the origin at a rate of at least a/2.

In using Lyapunov's direct method for system analysis, it has been implicitly 

assumed that certain control laws have been chosen for the system, and the problem is to 

justify the stability of the given system. However, in many control problems, the task is the 

converse; that is, to find an appropriate control law for a given system, such that the closed 

loop system is stable.

There are basically two ways of using Lyapunov's direct method for control design, 

and both involve trial and error. The first technique hypothesises one form of control law 

and then requires the finding of a Lyapunov function to justify the choice, while the second 

technique, conversely, requires hypothesising a Lyapunov function candidate and then 

finding a control law to make this candidate a true Lyapunov function.

The controller design methods to be described in the following chapters are all 

based on the second usage of Lyapunov's direct method.

3.3 Extension  of th e  L yapunov  M ethod

There are some systems for which the desired state of a system may be unstable in 

the sense of Lyapunov, and yet the system may behave sufficiently well near this state that 

this performance is acceptable, or the output of the system may not converge to the origin, 

but is nevertheless bounded. The boundedness of all solutions of a system is also a kind of 

stability, and of great importance in practice, particularly for robust control of nonlinear 

uncertain systems. These investigations are basically independent of Lyapunov theory, but 

the analogy to Lyapunov's direct method is obvious, and is emphasised by the fact that the 

boundedness of the states can be interpreted in the sense of a stability property of the 

trivial solutions.



C hapter 3  L ya p u n o v  Sta6iC ity Lfteory 45

As a simple example of an investigation of boundedness, La Salle[2] studies van der 

Pol's equation to show that near the origin the damping is negative and the origin is 

unstable, but by selecting the parameters properly any degree of boundedness desired can 

be obtained.

Barmish et a f 1̂ discuss another very simple example 

x(t) =x(t)+y(t)+u(t)

with x(to)=l and uncertainty y(t) such that ly(t)l<l. Suppose the control is selected as a 

linear feedback of the form u(t)=kx(t) with k<-l. Then, if a state x(t)< -l/(l+k) is reached, 

an admissible uncertainty y(t)=l results in the final state away from zero. The system is 

therefore not asymptotically stable. Although uniform asymptotic stability cannot be 

guaranteed, it is nevertheless possible to drive the state to an arbitrarily small 

neighbourhood of the origin. A kind of stability is then achieved.

3.3.1 Boundedness

Stability and even asymptotic stability by themselves may not be suitable 

descriptions of the stability properties of a practical system. Consider now stability in the 

sense of Lagrange, or more simply boundedness, which has been commonly used in robust 

stability control.

D efinition 3.12. (Boundedness^2’5̂ )

Consider a system 

x(t) = F(x,t)

with any solution xOdtodJ-^R", x(to)=x0, and any initial condition (x0,to)e RnxR

<D If, for a given number r>0, there exists a constant R(r,to)>0 depending on r and 

initial time t0 such that

||x0||<r => ||x(t)||<R(r,to) Vt>to (3.39)

then it is said that x(t) is bounded.
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(D If, for r>0, there exists a constant R(r)>0 depending only on r such that

||x0||<r => ||x(t)||<R(r) Vt>to (3.40)

then it is said that x(t) is uniformly bounded.

(D Given r>0, if there are positive numbers d and T(r,to) which may depend on r 

and to, such that

l|x0ll^r => ||x(t)||<d Vt>to+T(r,to) (3.41)

then it is said that x(t) is ultimately bounded with the bound d.

© If the system is ultimately bounded, and T can be chosen to possibly depend on r 

but not on t0, such that

||x(0)||<r => ||x(t)||<d Vt>to+T(r) (3.42)

then it is said that x(t) is uniformly ultimately bounded with the bound d.

Remark 3.4:

• The concept of boundedness differs from the 

traditional Lyapunov-type stability. Lyapunov's 

theorems draw conclusions about system stability 

from the signs of the function V(t) and its time

derivative V(t) in the neighbourhood of the origin,

whilst this method applies this idea to the case FiS- 3 -2 The concept of boundedness

where the signs of the function V(t) and its time

derivative V(t) are considered not in the neighbourhood of the origin but exterior to a certain 

hyper-sphere. If it can be concluded that all the state trajectories penetrate those hyper-surfaces on 

which V(t) is constant from the outside to the inside, then consequently, all solutions with bounded 

initial states are bounded themselves for sufficiently large time t. These results are analogous to 

Lyapunov's direct method in that the boundedness of the states can be interpreted in the sense of a 

stability property of the trivial solutions.

• In contrast to marginal stability, where given a number R>0 there exists a number r(R)>0 such that 

llx(to)ll<r => llx(t)ll<R Vt>to, boundedness is defined as: given a number r>0, there is a R(r)>0 such
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that llx(to)ll<r => llx(t)ll<R Vt>to. This difference could be very significant in describing the 

stability properties of a system.

To characterise the different types of boundedness by means of Lyapunov's direct 

method, a function V(x,t), which has all the aforementioned properties, is introduced. In 

what follows, we also call the function V(x,t) a Lyapunov function.

T h e o r e m  3.13. (BoundednessM)

A domain £2 containing the origin is defined as

Q: ||x(t)||<R  Vt>to (3.43)

Assume that, throughout the outside of Q, a Lyapunov function V(x,t) with the property 

v 1(I|x||) < V(x,t) <v2(||x||) (3.44)

exists, where and v2 are continuous positive increasing functions.

If the time derivative of the Lyapunov function is such that 

<D V (t)<0 (3.45)

it is said the solutions are uniformly bounded; or

© V(t)<-v(||x||) (3.46)

where v(||x||) is a positive continuous function, it is said the solutions are uniformly 

ultimately bounded.

3.3.2 Practical Stabilisability

As already mentioned, in using the direct method of Lyapunov for robust control 

design, a candidate Lyapunov function is hypothesised and then a control law is developed 

to make this candidate a real Lyapunov function, so that the closed loop system is 

practically stable. The concept of practical stabilisability is now introduced.

D e f i n i t i o n  3.14. (Practical StabilisabilityW)

A nonlinear uncertain system of form 

x(t) =F(x,y,t)+G(x,y,t)u(t)+^(t) (3.47)
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is said to be practically stabilisable if, given any d>0, any admissible uncertainty y(*)e Ry, 

and any initial condition (x0,to)e RnxR, there exists a control law u(t):RnxR—>R, for which 

the following properties hold:

(D Existence o f solutions: the closed loop system possesses a solution 

x('):[to4i]->Rn x(to)=x0

(D Uniform boundedness: given any r>0, any solution x(-): [t^ tj]—>Rn, x(to)=x0, 

there is a constant 0<d(r)<°o such that

llx0ll<r => llx(t)ll<d(r) V teft^ tJ (3.48)

(D Extension of solutions: every solution x(-) can be continued over te  [to,©®);

© Uniform ultimate boundedness: given any d'>d, any r>0, and any solution 

x(0-[lo4i]^Rn, x(to)=x0, there is a finite time T(d',r)<°o, possibly dependent on r but not on 

1̂ , such that

llx0ll<r => llx(t)ll<d' Vt>to+T(d',r) (3.49)

© Uniform stability: given any d'>d and any solution x(*): [to,ti]->Rn, x(to)=x0, 

there is a constant r(d')>0, such that

llx0ll<r(d') => llx(t)ll<d' Vt>to (3.50)

The problem then is to find a family of controllers for the nonlinear uncertain 

system, which guarantees that the system is practically stabilisable for any initial condition 

(x0,to)e RnxR and all uncertain elements y(t)e RY.

3.4  Sum m ary

Stability is a fundamental issue in system analysis and control design. Various 

concepts of stability must be defined in order to accurately characterise stability in 

nonlinear uncertain systems. Since analytical solutions of nonlinear differential equations 

usually cannot be obtained, Lyapunov stability theory is of major importance in system
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analysis and control design. However, asymptotic stability may not be applicable to some 

real systems, especially for some nonlinear systems in the presence of uncertainties. 

Practical stability is therefore defined and often used in robust design. Although slight 

differences exist theoretically between the two definitions, the procedure for use is the 

same, i.e., construction of a Lyapunov function and examination of its time derivative. The 

direct method of Lyapunov is applicable to essentially all dynamic systems, but it suffers 

from the common difficulty of finding a Lyapunov function for a given system.

The controller design methods to be described in the following chapters are all 

actually established by constructive use of Lyapunov's direct method, and based on a 

fundamental concept: a system admits a control law such that the Lyapunov function for 

the nominal system (i.e., the certain part of the system) is also a Lyapunov function 

candidate for the uncertain system (i.e., the overall system with uncertainties).
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4.1 Introduction

AS pointed out in chapter 1, the objective of control design can be stated as follows: 

given a physical system to be controlled and the specifications of its desired 

behaviour, construct a feedback control law to make the closed loop system display the 

desired behaviour. In pure model-based nonlinear control, such as the basic feedback 

linearisation approach, the control law is based on a nominal model of the physical system. 

How the control system will behave in the presence of model uncertainties is not clear at 

the design stage. In robust nonlinear control, such as the techniques described here, the 

controller design is based on consideration of both the nominal model and some 

characterisation of the model uncertainties (such as knowledge of the load to be picked up 

by a robot). Robust nonlinear control techniques have proven very effective in a variety of 

practical control problems.

Although Lyapunov's direct method originated as a method of stability analysis, it 

can be used for other problems in system control. One important application is the design 

of various control strategies, and another is justification of system robustness when 

uncertainty is considered. The idea is to formulate a scalar positive function of the system 

states, and then choose a control law to make this function decrease. A nonlinear control 

system thus designed will be guaranteed to be stable despite the presence of some uncertain 

but bounded elements. Such a design approach has been used to solve many complex 

design problems, for instance, in robotics and aircraft control.

Feedback linearisation is an approach to nonlinear control design which has 

attracted a great deal of research interest in recent years. The central idea of the approach is 

to algebraically transform nonlinear system dynamics into a (full or partial) linear 

equivalent one of a simple form so that well-known and powerful linear control techniques
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can be applied to complete the control design. More precisely, the nonlinearities in a 

system can be cancelled by properly chosen nonlinear feedback so that the closed loop 

dynamics are of linear normal form. The principle of feedback linearisation and the 

associated mathematical concepts from differential geometry are briefly reviewed in 

appendix A.

This chapter provides detailed discussion of robust stability control design for SISO 

nonlinear uncertain systems based on the feedback linearisation technique. Section 4.2 

presents the major results of this chapter, in which the technique proposed by Barmish et 

al[2] is first introduced. This is based on matching assumptions. Subsequently, an improved 

version is proposed where only matched uncertainties are considered, and then step by 

step, the technique is extended to systems with partially matched and then mismatched 

uncertainties. Whatever the uncertainties are, a unified result is achieved. Section 4.3 gives 

a brief description of system stability properties under the robust control laws developed. 

For illustrative purposes, a second order system is used to demonstrate the robustness of 

the techniques and simulation results are included in section 4.4. Finally, in section 4.5, a 

brief summary is made of the proposed techniques.

4.2 Co ntrol  D esign  Based  on  Feedback  L in earisatio n

Nonlinear systems in the presence of uncertainties are now considered. In general, 

feedback linearisation relies on the system model both for the controller design and for the 

computation of a new set of states. If there are uncertainties in the model, e.g., 

uncertainties regarding the values of parameters, they will cause errors in the computation 

of both the new state vector and of the control input. Robust control is now attempted by 

applying the aforementioned feedback linearisation technique to nonlinear systems with 

uncertainties of the form
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x(t)=F(x,y,t)+G(x,y,t)u(t)
(4.1)

y(t)=H(x)

where y is a lumped uncertain element. Let y  denote the nominal value of y. The following 

control strategy is proposed.

CD Transforming the original nonlinear system into a new one o f linearisable 

nominal form;

® Designing a control law to linearise the nominal nonlinear system;

(3) Placing the closed-loop poles of the linearised nominal system at prescribed 

positions;

® Compensating the effect of uncertainties.

Thus, according to the feedback linearisation theory in appendix A, a coordinate 

transformation

z=\|/(x,y) x=\|T1(z,y)

is defined with the choice of

\j/k(x,y)=L^1H(x) (k=l,—,t>)

where v> is the relative order. Such a transformation leads to a system with the following 

external dynamics in the new coordinate z:

z(t)=f(z)+g(z)u(t)+Af(z,Y,t)+Ag(z,Y,t)u(t)
(4.2)

y(t)=h(z)

where the kth entries of vectors f and g are

fk(z)+Afk(z,y,t)=L^Ho\|/-1(z,y) (4.3)
„  ( k = l , . . . . , o )

gk(z)+Agk(z,y,t)=LGLp1Ho\(/-1(z,Y) (4.4)

where the certain part of the system, whose structure and parameters are precisely known, 

is represented by f, g and h, whilst Af and Ag represent the uncertainties in the state and 

input mapping respectively.

This system is now in input-output linearisable form, and the feedback linearisation 

technique is applicable to the certain part.
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In what follows, it is assumed that the given nonlinear uncertain system is of, or has 

been transformed to be of, the input-output linearisable form. Furthermore, it is also 

required that the given nonlinear system is asymptotically minimum phase if the relative 

order xxn, i. e., the internal dynamics of the system are asymptotically stable, so the 

stability of the internal dynamics is assumed.

In accordance with the stability theory described in chapter 3, the following 

definition, which will be employed to develop all the results in this section, is introduced.

D efinition 4 .1 . (Stability Margin)

For a given nonlinear system 

z(t) = /(z ,u)= f(z)+ g(z)u(t)

if a state feedback u(t) can be found such that the following inequalities

v 1(llzll)<V(z)<v2(llzll) (4.5)

a v ( z ) .
LyV = —g^ -'Z  < -v(llzll) (Vz*0) (4.6)

hold, where V(z) is the Lyapunov function of the closed loop system, and Vj(-) satisfying

Vi(0) = 0 (4.7)
(i=l,2)

limV:(e)=°° (4.8)
e—

are strictly increasing continuous functions. Then the closed loop system is said to have 

stability margin v.

The theorems described in this section enable us to achieve our aims with only very 

weak conditions on the nature and size of the uncertainties. The condition on the size is 

only that the uncertainties are bounded and that the bounds are known. No limit is placed 

on the size of the bounds. The theorems also enable us to take advantage of any matching 

which may be present. They involve the extension of the Lyapunov function for the 

nonlinear, but now linearised, certain part of the system, to the overall nonlinear uncertain 

system. The control signal will generally be of the following form

u(t)=u1(t)+u2(t) (4.9)
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where

u^t)
- I a k-L|h(z)k=0
cq/LgL^M z) (4.10)

is state feedback obtained according to feedback linearisation theory with v(t)=0, that 

causes the closed loop system of the certain part of (4.2) to achieve a definite stability 

margin, and

u2(t) = -p(z)*LgV (z) (4.11)

is used to compensate for any uncertainty in the system.

A simple identity, which will be used throughout the rest of this section, is now 

introduced

a£, -  b^2 =
a2 _b (  ~ a*'
4 b “ a2i a^ “ 2b

(b>0) (4.12)

4.2.1 A Preliminary Technique

For completeness, the technique developed by Barmish et aim is described without

proof.

Theorem 4.2. (Matched Uncertainties: Case 1)

Consider a nonlinear uncertain system, incorporating some bounded uncertainties 

with matching conditions (2.10)~(2.11) of definition 2.4, and also condition (2.14) of

assumption 2.7, rewritten as follows

|q(x,y,t)|<l (4.13)

of the form

z(t)=f(z)+g(z)u(t)+g(z)- {p(z,y,t)+q(z,y,t)u(t)} (4.14)

Suppose the uncontrolled nominal part of the system, z(t)=f(z), is stable or pre-stabilised. 

Then the system (4.14) is stabilisable if the input is of the form 

u(t)=-p(z)*LgV(z) (4.15)
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where, for a Lyapunov function V(z) defined for z=f(z),

p(z)>-
ge

4(C2-C1LfV)(l-co ) >0

holds, where
a v
d z

av
LfV = a 7 f

(4.16)

(4.17)

(4.18)

are the Lie derivatives of the Lyapunov function V(z) with respect to g and f, and

c°q 4 7® ^ lq(z’Y’t)l<1

(4.19)

(4.20)

are the bounds of the uncertainties in the system (4.14), and 

C j<1;

either C ^O  or C2̂ 0;

C2̂ 0 whenever lm[o)^/LfV] does not exist; 

C2/(l-C 1)<(vov2iov1)(d).

Proof: (See reference [2]) □

4.2.2 An Improved Technique with Matching Assumption

Theorem 4.3. (Matched Uncertainties: Case 2)

Consider a nonlinear system, incorporating some bounded uncertainties with 

matching conditions (2.10)~(2.11) of definition 2.4, of the form

z(t)=F(z,Y,t,u)=f(z)+g(z)u(t)+g(z){p(z,y,t)+q(z,Y,t)u(t)} (4.21)

as well as condition (2.15), i.e.,

q(x,Y,t)>0 (4.22)

Suppose the nominal system, i.e., the certain part of (4.21), denoted as/=f(z)+g(z)ui(t), is 

stable under the feedback of (4.10), and the closed loop system has stability margin v, then
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the overall nonlinear system (4.21) is also stabilisable if the control is as follows

u(t) = Uj (t)+u2(t)= Uj (t) -p  (z)-Lg V (z) (4.23)

and if a Lyapunov function V(z), for z=f+gul5 can be found such that

P(z)S4(C2-C1L/V )((oP + a)q-u^ >0 (4'24>

holds, where, for z^O 

3V
LsV A - ^ . g ^ 0  (4.25)

dV dV
L/V 4 9i"/ =  3 i" (f+gUl)<‘V(l|z|l) (4'26)

are the Lie derivatives of the Lyapunov function V(z) with respect to g and f+gu,, and 

wp 4  ™ ^IP (z.%t)l (4-27)

wq 4  |q(z,y,t)| (4.28)

are the bounds of the uncertainties in the system (4.21), and Cv C2 are any constants

satisfying

Q d  (4.29)

either C ^O  or C2̂ 0; (4.30)

C2̂ 0 whenever lim[(c0p + coq*Uj)/LfV] does not exist; (4.31)

-C1v < C 2< ( l - C 1)v (4.32)

C2/ ( l - C 1)<(vov2iov1)(d) (4.33)

Proof: A Lyapunov function for the linearised nominal system can be defined by 

V(z) = zTPz>0 Vz^O and V(0)=0 (4.34)

where P is the solution of the Lyapunov equation ATP+PA =-Q , and Az=f+gUj is obtained 

by applying the state feedback (4.10) to linearise the nominal part of (4.21). Q is a positive 

definite symmetric real matrix.

If the closed loop system has stability margin v, i.e., conditions (4.5), (4.6) of 

definition 4.1 hold, then for the system with uncertainties, let
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LFV -Z = (LfV + LgV-u1)+LgV-u2+LgV-(p+q-u)

Considering (4.26), then

LFV = L/V+{LgV.u2+LgV.p+LgV.q.u1+LgV.q.u2} 

Using (4.11), for q>0,

(4.35)

LFV=LfV+{LgV-p- p'(LgV)2+q-[LgV-u1-  p-(LgV)2] }

T -it f p 2 P / t P2\ 2 qu? q p . ^  U?x21 
" L/V +{4p  p2(p*Lgv  2 p ^ + 4p u f(L«V ‘u i 2p^ }

< L N + ^ + ^ f ^J 4p 4p

Here cop and coq are defined by (4.27) and (4.28).

(4.36)

Note the identity (4.12) has been used here. For properly selected C 2 and C2,

C2-C 1L/V>0, let

^ + ^ i < C 2- C 1L/ V4p 4p 2 1 /  

Then (4.24) holds, and so

(4.37)

LfV<L/V +C 2- C 1L/V = ( 1 - C 1)L/V + C 2 (4.38)

If Cj and C2 are chosen according to (4.29)~(4.33), then, bearing in mind that LyV<-v, it 

follows that

C2- C 1L/V >0 (4.39)

L^V < - ( l - C 1)v(||z||)+C2<0 (4.40)

hold. The stability of the closed loop system of (4.21) is guaranteed. 

R em ark  4.1:

□

• Note that this is different from theorem 4.2, in that the condition Iqkl has been replaced by q>0. 

Although the condition appears a restriction on the system, it can be met by properly expressing 

g(x) and Ag(x,y,t) when decomposing uncertain systems. On the other hand, theorem 4.3 is a great 

advance over theorem 4.2 in that it provides us with an important basis from which to develop

more general techniques.
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• In (4.24), both (Dp and coqû  are included in p(z). It follows that the technique compensates for the 

effect of the uncertainty in the state matrix Af as well as uncertainty resulting from the effect of 

Uj(t) acting through Ag, and stability of the closed loop system can be guaranteed for any bounded 

uncertainties.

• Compared with the approach of Barmish et a l where coq<l (and coq«l is highly desirable), it should 

be noted that the factor (l-coq) has been removed from the denominator of p(z). This is of great 

importance, because p(z) becomes large when coq tends to 1 if p(z) is dependent on such a term. 

Here this is not so and coq may even be equal to or greater than 1.

4.2.3 Control Techniques with Incomplete Matching Assumption

T heorem 4.4. (Partially Matched Uncertainties: Case 1)

Consider a nonlinear system with mismatched uncertainty in the state mapping, but 

matched uncertainty in the input mapping, Le., the condition (2.12) of definition 2.5 is 

satisfied. The system is of the form

Suppose the nominal system, i.e., the certain part of (4.41), is stable under the feedback of 

(4.10), and the closed loop system has stability margin v. Then the system (4.41) is 

stabilisable by feedback of the form

z(t)=F(z,y,t,u)=f(z)+g(z)u(t)+Af(z,y,t)+g(z>q(z,y,t)u(t)

The uncertainty in the input mapping is assumed to satisfy condition (2.15), i.e., 

q(x,y,t)>0 (4.42)

(4.41)

u(t)= u ! (t) + u2(t)= u2 (t) -  p (z>LgV (z) 

if a Lyapunov function V(z), forj6=f+gui, can be found such that

(4.43)

(4.44)

holds, where LgV^0 and LyV are defined by (4.25) and (4.26), and

(4.45)
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“<4S * q(z’Y,t)' (4.46)

are the bounds on the uncertainties, and Cj, C2 are given by (4.29)~(4.33).

Proof: Define a Lyapunov function V(z) of form (4.34) for the linearised nominal 

system. If the closed loop system has a stability margin v, Le., conditions (4.5) and (4.6)

hold, then for the system with uncertainties let 

3V .
L^V 4 ^ ‘z=(LfV+LgV *Ul)+L^ V+LgV*u2+LAgV-u

From partial matching condition (2.12)

LfV=L/V+LAfV+LgV-u2+LgV-q-(u1+u2)

Let

p=p'-(L4fV)2>0 

where p’>0. Then

u2(t)=-p'-(LAfV)2 -LgV

so that

(4.47)

(4.48)

(4.49)

LfV=L;V+{ LmV - p '-(LmV P <LgV)2+q(LgV -u -p '-(L MV)2 -(LgV)2) }

=LS + {  4p'-(LgV)2 “  P''(LsV)2( LAfV ~2p'-(LgV)2)

u? p'-(LMV)2 uf 2  i
q Up'-(L4fV)2 u\ VL«V 1 2p'-(LMV)2)  J /

where, once again, identity (4.12) has been used. Taking into account condition (4.42), it is

then possible to write

1 u2
L ^V -L /V + 4p..(L V)2+“ q- 4p'-(LitV)2 (4.50)

Selecting C 2 and C2 according to (4.29)~(4.33) such that C2- C 1L/V>0, and letting 

1 u?
;+ c o4p'.(LgV)2 4p'-(LAfV)2

then

p’>-
1 u

+C0,4(C2-CjLyV) ((L gV )2 ™ q (L ^V )2 (4.51)
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and so

p (z ) -p ,-(LAfV)2> 4 (c ^ CiL V̂ )^ (L^ v p  + °V u i) (4.52)

Because

LifV2
0 V I n rt V  n r )  V

^ A f(z j4 ) |^ E j^ |H A fk(z>Y4 )|< S jg -|-“ ^ |A fk(z,T,t)l=i2Af
OV 

\
av

if p(z) is chosen to satisfy (4.44), it follows that inequality (4.52) holds, and

LfV < (1 -C 1)L/V + C 2< -(1 -C 1)v(||z||)+C2 (4.53)

for all (z,t)e RnxR. It may therefore be concluded that, if C x and C2 are chosen according to

(4.29)~(4.33) and bearing in mind thatL/V<-v, then

C2- C 1L/V >0 (4.54)

LfV < -(l - C jMUzID+C, <0 (4.55)

Therefore the system (4.41) has been stabilised. □

THEOREM 4.5. (Partially Matched Uncertainties: Case 2)

Consider a nonlinear system with matched uncertainty in the state mapping, but 

mismatched uncertainty in the input mapping, /.<?., the condition (2.13) is satisfied. The 

system is of the form

z(t)=F(z,y,t,u)=f(z)+g(z)u(t)+g(z)-p(z,y,t)+Ag(z,y,t)u(t) (4.56)

It is also assumed that the mismatched uncertainty satisfies condition (2.16)

LgV*LAgV>0 (4.57)

Suppose the nominal system, i.e., the certain part of (4.56), is stable with the control 

represented by (4.10), and has stability margin v. Then the system (4.56) is stabilisable by 

the control

u(t)= u1(t)+u2(t)= u1(t)-p(z)-LgV(z) 

if a Lyapunov function V(z), forj^f+gUj, can be found such that

p(z) ^ ( c v c ^ V )
in

C02 + ,T . . .  u ,  

V p I L g v l  1

^L.u2 >0

(4.58)

(4.59)

holds, where LgV and L^V are defined by (4.25) and (4.26), and
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^Ag = Xk=l

av
dz. S |Ag^ t ) l 4

av
dz

COAg

(4.60)

(4.61)

are the bounds of the uncertainties in the system. C l5 C2 are chosen according to conditions 

(4.29M 4.33).

Proof: The procedure of proof is similar to that of Theorem 4.4.

For the Lyapunov function of form (4.34) and the stability margin v, let

p = pMLAgVI>0 (4.62)

then

u2(t) = -p'-ILAgVI-LgV (4.63)

Using condition (4.57), results in

|LAgV|-LgV-LAgV =|LgV|-(LAgV)2 

It follows that

L fV = LjV+{LgV-p -  p'- ILAgVI-(LgV)2 + LigV-Ul-  p'-ILAgVI-LgV-LAgV }

=L/V + {LgV-p-p'-ILigVKLgV)2+LAgV-uI-p '-ILgVKLAgV)2}

=L/V+ {
P’-IL^VI

(L g V p y4p'-ILAgVI p2 ' *- 2p'-ILAgVI

2 ___ p'.ILgVI
VIg

u2 P'.ILgVI uf 2 -j
+ 4p'-IL VI u2 t LAsv u i 2p'-IL V |/ /

<L,V+
CO. u

^ 4p'-ILAgVI 4p'*ILgVI

Let

;+■4p,.|LAgVI 4p'-ILgVI 

and the desired result follows

< c 2- c ,l ;v

p(z) -  p '|L AgV| ̂ 4(C2.CiL/V) (®p + l ! ^ r - u ? ) >0 (4.64)

because LAgV< QAg. It follows that



C2- C 1L/V >0 (4.65)

LfV<-(1 - C 1)v(||z||)+C2<0 (4.66)

The stabilisability of the system (4.56) is therefore guaranteed. □
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4.2.4 Control Techniques without Matching Assumptions

THEOREM 4.6. (Mismatched Uncertainties: Case 1)

Consider a nonlinear uncertain system, incorporating some bounded uncertainties 

which do not satisfy the matching conditions, of the form

z(t)= F(z,y,t,u)= f  (z)+g(z)u(t)+Af(z,y,t)+Ag(z,y,t)u(t) (4.67)

with the condition (2.16) of assumption 2.7

LgV-L4gV>0 (4.68)

If the certain part of (4.67) is stabilised by the feedback control of (4.10) and has stability 

margin v, then the nonlinear system (4.67) is also stabilisable by feedback of the form

(4.9)~(4.11), if a Lyapunov function V(z), for /=f+gul5 satisfying the conditions of 

definition 4.1, can be found such that the inequality

p(z)>;
1 (  0 2 IQ

' + ■ Ad.u2 >0 (4.69)'4(C2-CjLyV) ((LgV)2 ILgVI “i 

holds, where LgV and LyV are the Lie derivatives of V(z) with respect to g and f+gUj 

defined by (4.25) and (4.26), QM and QAg are the uncertainty bounds defined by (4.45) and 

(4.61), respectively, and C ls C2 are any constants satisfying (4.29)~(4.33).

Proof: The result follows easily from theorems 4.4 and 4.5. Define a Lyapunov 

function V(z) for the linearised nominal system as above which satisfies conditions

(4.5)~(4.6). Suppose the closed loop system has stability margin v. In order to derive the 

desired results, the following notations are needed

dV _
L- V = ^ - Af LasV:

dV
: a 7 'Ag

Then for the nonlinear system with mismatched uncertainties, we have
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LFV = ^ -z=(LfV+LgV.u1)+LAfV+LgV.u2+LAgV.u

Let p = p'.(LAfV)2.|LAgV |>0 (4.70)

where p'>0. Considering condition (4.68) and using the identity (4.12), it follows that 

LfV=LyV+{LafV-p'-(LifV)2-|LAgV|-(LgV)2

+LagV-u1-p '-(L AfV)2 -|LgV|-(LAgV)2}

<L/V+{ I^ V l-p H L ^ V )2-|LAgV|-(LgV)2

+|LAgV-u1|-p '-(L AfV)2-|LgV|-(LAgV)2}

=L/V +U p ’|LAgV|(LgV)2_P •ILasVI-(L8V>2 (lLAfV l - 2p'|LAgv |(L gV)2^

u2 p '^ V P lL ^ V l _______ u 2______

(l is 11 2p'(LAfV)2|LgV p  )

11?
(4.71)

+
4p'(LAfV)2|L V|

< L/Y +- +
4P'|LAgV|(LgV)2 4p'(LAfV)2|LgV|

Choosing Cl and C2 according to conditions (4.29)~(4.33), so that C2-C 1L/V>0, now let

1 n?
< c 2- c 1l/v+•

then

4p'|LAgV|(LgV)2 4p'(LifV)2|LgV|

p(z) = p'.(LAfV)2-|LAgV |> 4(C2,CiL/V)
'(LAfv )2 iLAav i ;
(LgV)2 + |L v | ‘U> >0 (4.72)

Because

9V n o v n o v
l mv < -^■Af(z,Y,t) < sk=l 9zk

•|Afk(z,y,t)| < £
k=l dzk

av n ov n ov
l a v <Ag g^Ag(z,y,t) <sk=l 9zk

*|Agk(z,y,t)| < I
k=l 9zt S |A& (Z’Y’t ) l= n Ag

it follows that, if p(z) is chosen by inequality (4.69) according to the known bounds given 

by (4.45) and (4.61), the inequality (4.72) holds obviously. We have

Lf V <(1 -C ^LyV +C 2< -(1 -C 1)v(||z||) +C2<0 (4.73)



C hapter 4 %oBust S ta b il i ty  ControC (I)— Scalar Input 6 6

The inequality above shows that the closed loop system of (4.67) is stable. □

The next theorem represents an extension of the preceding work to the problem of 

stability in the presence of disturbances.

T heorem 4.7. (Mismatched Uncertainties: Case 2)

Consider the same nonlinear uncertain system as that of theorem 4.6, with external 

disturbance, as follows

z(t)=F(z,y,t,u)=f(z)+g(z)u(t)+Af(z,y,t)+Ag(z,y,t)u(t)+^(t) (4.74)

where £,(t) represents external disturbances impinging on the system. If the closed loop 

system of the nominal part of (4.74) is stable and has the stability margin v, then the 

system (4.74) is also stabilisable by feedback of the form (4.9)~(4.11) if, for /=f+gu}, a 

Lyapunov function V(z) satisfying conditions (4.5)~(4.8) can be found such that

f(SW>2 in.j \1 (ilAf l£2A I ) 
0 (z)>----------------  --- Af+̂ —  2

|̂ (LgV )2 + ILgVI ui J>0 (4.75)

holds, where LgV, L^V, £2M, £2Ag,Cj and C2 are defined by (4.25), (4.26), (4.45), (4.61), 

and (4.29)~(4.33) respectively, and

a i l
k=l

dV
dz.

max
t>o fi(t)l4

dv
dz

COp (4.76)

indicates the bounds of the external disturbances ^(t) of the system (4.74).

Proof: Simply let

p(z) = p'.(LM̂ V )H L AgV| (4.77)

The result is straightforward following the same procedure as that of theorem 4.6.

l fv <l ;v +— ;— i ------- +----------^ — ■— -
F s 4 p'-|LAgV|-(LgV)2 4p'-(Lif+|V)2 -|LgV|

if p'>0. Let

-------------------+--------- —--------- < c —C L V
4 p'-|LAgV|-(LgV )2 4 p'-(LMHV )2 -|LgV| 2 1 f

then

LfV < (1 -C 1)L/V +C 2< -(1 -C 1)v(||z||)+C2 < 0 n
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R emark 4.2:

• The result of theorem 4.7 is based on condition (2.16), where LgY-LAgV is assumed to be non

negative. For any system which satisfies condition (2.16), stability of the closed loop system can 

be guaranteed by the control of (4.75).

• As a matter of fact, (2.16) is quite a strong condition, and hard to satisfy, because

where g-AgT is not generally symmetric and its symmetrised form may not be sign definite. The 

results developed may then only be applicable to some special cases. So, a more general control 

technique is needed to deal with the cases where condition (2.16) is not satisfied.

4.2.5 A Novel Control Algorithm for Mismatched Uncertainties

In what follows, we consider the case where condition (2.17) of assumption 2.7 is 

assumed to be satisfied, instead of condition (2.16).

THEOREM 4.8. (Mismatched Uncertainties: Case 3)

Consider a nonlinear uncertain system with mismatched uncertainties and 

disturbances as follows

If the closed loop system of the certain part of (4.78) is stabilised by the feedback control 

of (4.10) and has stability margin v, then the nonlinear system (4.78) is also stabilisable by 

feedback of the form (4.9)~(4.11), if a Lyapunov function V(z), fory^f+gu^ satisfying 

conditions (4.5) and (4.6) of definition 4.1, can be found such that the feedback gain is of 

the form

z(t) = f(z)+g(z)u(t)+Af(z,y,t)+Ag(z,y,t)u(t)+^(t) 

with the condition (2.17) of assumption 2.7 

|LgV|>|LAgV| (4.79)

(4.78)
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where LgV and LyV are the Lie derivatives of the Lyapunov function V(z) with respect to g 

and f+ g ^  defined by (4.25) and (4.26), £2Ag and are the uncertainty bounds given 

by (4.45), (4.61) and (4.76), respectively, and Cx, C2 are any constants satisfying 

(4.29M 4.33).

Proof: Suppose a Lyapunov function satisfying conditions (4.5) and (4.6) can be 

found, and stability margin v is achieved. Then for the nonlinear system with mismatched 

uncertainties, let

p(z) = p l.(LAf+̂ . | L AgVI 

u2(t) = -p'-(LAf̂ V )2.|LAgV|.LgV

(4.81)

(4.82)

It follows that

Lf.V=L/V+{LAtHV -p '-(L 4f+5V )^ |L 4gV K LgV)2

+L4gV -u-p '-(L Af+5V)2 -|LAgV|-LAgV-LgV )}

<L/V+{ i L ^ V l - p H L ^ V ) 2 •|LAgV|-(LgV)2

+|LAgV-u1|-p '-(L Af+̂ V)2 -|LgV|-(LAgV)2}+2p'-(LAf+̂ V)2|LgV|-(LAgV)2

+ 2p’-(LAf+6V)2 -|LgVKLAgV)2

If the following inequality

p'-|LAgVKLgV)2( | L ^ V | - 2p,|LJ |(LgV)2) 2

(ILigV-uJ 2p,(LAf̂ v ) 2|LgV |)

>2p'-(LAf+5V)2-|LgV|-(LigV)2 (4.83)

holds, then

LfV<L/V +V  4 --------------------------------  4_____________ i__________
Jf  4p'|LAgV|(LgV)2 4p'(LAf+̂ V)2|LgV|

1______  ______ uj
(4.84)
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From (4.83), we have

lL4gVH LgV)2(lLM+?v l-2 p '|L AgV|(LgV)2)

, (LAf+,V)2|LsV| u2 . 2

u? (J AgVu,| 2p'(LM+|V )2|LgVK

= (L4f+5V)2(|LigV|(LgV)2+|LgV|(L4gV)2)

1 1  2 i

+ 4 ^ ( l LAgVI(LgV)2 + (LM+5V)2ILAgVl) - ^ ( l LAt+5Vl+lLAgV'u il) 

^ (L ^ V P -I L g V I - t f^ V )2 (4.85)

4p'2 -(Lm+4V)2 •(|LAgV|(LgV)2- |L gV|(L4gV)2)

-4 p '( |L Af+5V|+|LAgV-u1|) + (|L AgV|(LgV)2 + ( L ^ V ) 2 |LAgV |) " °

It is clear that if the following inequality

P '(L AfHV)2-(|LAgV|(LgV)2- |L gV|(LAgV)2) - ( |L Af+5V|+|LAgV-u1|)>0 

holds, then (4.83) and hence (4.84) are true. Bearing in mind (4.79), we can then say

p’>- lLAf+£V! + w
|LgV H LAgV|^(LAf̂ V )2.|LAgV||LgV| (L ^ V )^  .|LgV| (4.86)

Again from (4.84), let 
1

+4P'*|LAgVKLgV)2 4p'.(LAf+̂ V)2 .|LgV| - ^ - C jL ^ V (4.87)

where Cj, C2 are any constants satisfying (4.29)~(4.33), so that C2-C 1L/V>0. Then 

1 ( 1  u? ^
p’>- +

4(C2-C,LjV) ^|LAgV|-(LgV)2 T (LAf+?V)2.|LgV| 

Considering (4.83) and (4.84), one may choose 

p'>max{p|, p2}

where

i_____r  iLM+evi . iui

>0 (4.88)

Pi =

P2=

+
|LgV |-|LAgV| ^ (L ^ V )2 •|LAgV||LgV| ( L ^ V ) 2 -|LgV|

1 ( 1 u
4(C2-C1L/V) yLAgVKLgV)2 ( L ^ V ) 2 *|LgV|
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or simply let

+ u
^C^-CjLyV) \JLAgV|*(LgV )2 T (LAf+5V)2.|LgV|

I W V I+■ |Uj|
|LgV H L AgV|^(LAf44V )2.|LAgV||LgV| ( L M+f . W - \ L gV \

so that

p(z) = pKLM+̂ V)2.|LAgV|

l.
>-
'4(C2-C1L^V)

(Lm+5V P |LigV |-uf| 
(LgV)* + |LgV| + 1

|LgV|-|LAgV|
ILAf^VIJL^VMujI

|LgV| |LgV|
>0

(4.89)

It follows that, if p(z) is chosen by inequality (4.80) according to the known bounds given 

by (4.45), (4.61) and (4.76), the inequality (4.89) holds obviously. We have

LfV ^ ( 1 — C^LyV+C2<-(1 —CyvfllzID+C, < 0 (4.90)

The inequality above shows that the closed loop system of (4.78) is stable. □

COROLLARY 4.9. (Matched Uncertainties: Case 3)

If the uncertainties in system (4.78) satisfy matching conditions, it implies that 

condition (4.79) can be written as

®,<i

the following feedback control exists

p ( z )  ^ ( C j - C jL yV ) ( c0p +  + |LgV |(l-coq) + °VlUlP > 0 (4*91)

such that the nonlinear uncertain system is stabilisable.

R em ark  4.3:

• Ideally we wish to choose the control u(t) so that the feedback controlled system is uniformly 

asymptotically stable about the equilibrium point. However to achieve uniform asymptotic stability 

of an uncertain system one sometimes has to resort to controllers that can deliver too large or even 

infinite control effort. To avoid such a control, the criterion has been relaxed from uniform 

asymptotic stability to practical stability.
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• The results show that the proposed control cannot guarantee the asymptotic stability of the 

closed loop system because LfV<0 only for llzll>0. However, as will be shown in the following 

section, practical stability is achieved. Therefore, the states of the system cannot go to zero as t 

increases, but will converge to a closed ball Be with finite radius e>0, where e is a small positive 

constant.

4.3 Com m ents on  System  Per fo r m a n c e

In the last section, several new robust design techniques have been developed for a 

rather general class of nonlinear system with either matched, partially matched, or 

mismatched uncertainties. The stability of the closed loop system can be guaranteed if 

these techniques are used. These results may be summarised, according to Lyapunov 

stability theory, by the following inequalities:

v 1(||z ||)<V (z)<v2(||z||) (4.92)

V(z)= L fV < (1 -C 1)L/V+C2< -(1 -C 1)v(||z||)+C2<0 (4.93)

subject to C2- C 1L/V>0 with proper choice of Cx and C2. Here v is called the stability 

margin achieved by using a feedback linearisation technique (4.10) to control the nominal 

part of the system (4.2).

4.3.1 Practical Stability

Having these results available now makes it possible to apply directly the results of 

Barmish et «/[2] to estimate the stability of the closed loop system in the sense of definition 

3.14, le., practical stability, even though the systems considered are members of a much 

broader class than those considered in Barmish et al[2\  Here ultimate boundedness and 

uniform ultimate boundedness of the closed loop system are considered.
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Consider again the nonlinear uncertain system of the form 

z(t)=f(z)+g(z)u(t)+Af(z,y,t)+Ag(z,y,t)u(t)+5(t) (4.94)

Suppose z(-):[t0,ti]—>Rn, z(t0)=z0 is a solution of (4.94) under the feedback of (4.9), with 

llz0ll<r. Then select

Let f^max{r,R}, so that ||z0||<? and R<f. Also according to definition (4.95), 

d(r) = (v'11-v2)(r)

so that f<(v'i -v2)(f)=d(r) because v1(f)<v2(f). Thus ||z(t0)||=||z0||<f<d(r).

Suppose there is a t3 >t0, such that ||z(t3 )||>d(r). Since z(-) is continuous and 

||z(t0)||<?<d(r)<||z(t3)||, there is a i^e [ t ^ ) ,  such that ||z(t2)[|=Ie and ||z(t)||>r V te [ t^ y .

In view of (4.92) and (4.93) 

v 1(||z(t3)||)<V(z(t3))

d (r)= |
(v'i1*v2)(R) if

(v ’i*v2)(r) i f  r>R
(4.95)

where

(4.96)

s v 2(r)+ J[-( l-c ,)v (R )+ c jd T

=v2(r)

Hence, ||z(t3)||<(v11-v2)(f)=d(r). However this contradicts the supposition, hence

l|z(t)||<d(r) Vte [t0, t j

i.e., the system is uniformly bounded.

Again for a given number d'>(v11-v2)(R), define
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T(d',r) =
0

v2( r ) - (v 1-v-21-v1)(d')
(l-C jX v .v -^V jX cn-C ,

if r<(v'^v^Cd') 

otherwise
(4.97)

with the proviso that

(1 -CjXv-v^-VjXdO-C, >0 (4.98)

where R=(v21‘V1)(d'), so that r>r and d(R)=(v"11*v2)(R)=d'.

If r<R, then ||z0||<r , hence ||z(t)||<d(R)=d' Vt>[to,oo], so that T(d',r)=0. If r>R, and 

||z(t)||>R Vt>[to,tj], then in view of (4.92) and (4.93)

v1(l|z(t1)||)<V(z(t1))=V(z(t0))+}’V(z(T))dT
l0

V
2 v 2( ||z (g ||)+ J [ - ( l-C 1)v(z(t))+C2]d t

S V jW + ^d ’̂ t-d -C ^V fR j+ C J

v 2( r ) - (v I-v21-v,)(d') 
- v 2(rJ+(1_ Ci)(v v .̂  v )̂(dt)_ c ^ [ - ( I -C .M rH C J

= V j(R )

That is, [|z(t1)||<R. But this contradicts the assumption above. Hence there must exist a 

tjS [tgdj such that H z ^ p R . Then, as a consequence of the uniform boundedness result 

||z(t)||<d(R)=d' Vt>t2 - Hence

||z(t)||<d' Vt>tj=t0+T(d',r)

i.e., the system is uniformly ultimately bounded. □

4.3.2 Remarks

• If Cj and C2 are chosen according to (4.29)~(4.33), it then follows that

LfV < -(1 - C 1>v(I|z|I)+C2<0 (4.99)

holds; that is, LFV lies in the shaded triangular area D in Fig. 4.1. The nonlinear 

uncertain system (4.94) is therefore practically stabilisable by the family of
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controllers of form (4.9) with the feedback gain given by (4.16), (4.24), (4.44), 

(4.59), (4.69), (4.75) or (4.80) whether the uncertainties satisfy the various 

matching assumptions or not. The range of acceptable values for C2 is indicated in 

Fig. 4.1 for the case where v(llzll) is a positive constant.

LfV<0 implies that
L,V

LyV<-v(llzll)<0 (Vllzll>e>0 ) 

is always true, so the constant C2 

satisfying (4.32) exists. On the 

other hand, using (4.32) a larger 

range of C2 is possible if e is 

allowed to be larger. This will 

allow greater tolerance on the 

uncertainty bounds.

For systems of the form (4.74), 

if the various matching

Fig. 4.1 Determination of Parameter C2 for the case 
where v is a positive constant

conditions are met, then the result derived in theorem 4.7, denoted by (4.75),

P (Z )> ;
1 f t w  I , 'fV . u*'^(C.-QLyV^O^gV)2 ILgVI ui j  

may be written in unified form as follows 

1

>0

p(z)>

p(z)>

4(C2-C1L/V)

1

1 Q 2 A^Af o+ co *ur(L2V)2 q i >0

4(C2-C1L/V) co2 + i M u2
V P T IL VI >0

p(z) > 4(C2_c iL/V) (wp + >0

It can be seen that the condition for mismatched uncertainties generalises the 

conditions for partial matching and the conditions for partial matching generalise 

the condition for matched uncertainties. Therefore, the condition indicated by 

(4.75) in theorem 4.7 can be regarded as a generalisation of the results in the other
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theorems, such as theorems 4.3~4.6, where less stringent assumptions are made. It 

is obvious that, when ^(t)=0, we have the result of theorem 4.6; whenever 

incomplete or complete matching conditions are met, then either r 2 ^ /(L gV)2=C0 p is 

true, or l£2Agl/ILgVI=coq is true, or both are true, and it follows that the results of 

theorem 4.4 or theorem 4.5 or theorem 4.3 hold. The condition (4.75) therefore 

represents a unified controller structure for nonlinear systems whether the matching 

conditions are completely satisfied, such as in theorem 4.3, partially satisfied, as in 

theorems 4.4 and 4.5, or not satisfied as in theorems 4.6 and 4.7. Similarly, from 

the result (4.80) of theorem 4.8, we can also derive other results subject to various 

matching conditions which may be considered. Therefore similar remarks can be 

made for the results obtained under the assumption of (2.17).

The proposed techniques are a significant improvement over previous results, such 

as Barmish et al[2\  In theorem 4.3, although the matching conditions have been 

assumed, the technique does not require that coq< l. Furthermore, in theorem 4.6, the 

matching requirement is totally removed. In theorem 4.8, although a similar 

assumption to that of Barmish et al has been made, the technique described here is 

a significant improvement in that it is applicable to nonlinear uncertain systems in 

the presence of mismatched uncertainties and disturbances.

The fundamental idea behind all the theorems is that, by choosing a sufficient 

stability margin, which can be achieved by applying a certain control strategy 

(feedback linearisation) to the nominal system, then using sufficient feedback 

compensation defined by (4.75) or (4.80), it is possible to reduce the effect of the 

uncertainties on the overall system, so that the original stability margin is sufficient

to guarantee stability of the overall nonlinear uncertain system.

To achieve the results of theorems 4.6~4.8, it is required that LgW 0  Vz^O. The 

requirement can be met by properly choosing a suitable Lyapunov function for the 

linearised nominal system. If a general form of the matrix P does not meet the
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requirement, then theorem 3.9 provides another way to choose such a Lyapunov 

function. It is clear that, for a linear (or equivalently linearised) system z=f+gu=Az 

with relative order v, if the matrix P is chosen to be diagonal, the partial derivative 

of the Lyapunov function with respect to the states is then 

3V /3z=2[p,,zI, p22Z2 , ----- , pOTz J

and bearing in mind that, for the system with relative order v>, the input mapping 

g(z) must be of the form

g(z) = [0, 0, • • • •, g„(z)]T 

It follows that 

3V
L8V = -^--g (z)= 2[puz1, p22Z2 , • • •, p„„z„H0, 0, • • •, g„(z)]T 

= 2pw -z„-g^(z)^0 Vz*0

4.4 Illustrative  E xam ple

For illustrative purposes, we consider the second-order linear system discussed in 

chapter 2 where

G(s)= klS| k2(s+m xs+m )

The state variable form is usually of the form x(t)=f(x)+g(x)u(t) with f(x)=Ax(t) and 

g(x)=B, and the output y(t)=Cx=Xj is chosen, where 

*a.i i a.
a = i " *2

k“21 “22 b=i£ C=[l, 0]

4.4.1 Matched Uncertainties

Let an =0; a12= l; kj=0, so that a21=-a, a22=-(3, bj=0, b2=k2, where 

P=|lX1jlx2. Therefore
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x(t) =
(  0 1 ^

a  -p x : > £ |u(t)
Suppose now that uncertainty exists to the extent that m  may be some other value 

|ij, and k2 may be some other value k^. This results in a system with uncertainties

x(t) =
(  0 1 Y: 

a  -p X. r i b u(t) +
0

vAax1+Apx2J ^Ak^
0 ^

u(t)
Va2 J Va2,

where Aa=(a-a'), Ap=(p-P'), and Ak2=k -̂k2.

Clearly, the uncertainties here satisfy the matching conditions defined in definitions 

2.4 and 2.5. The techniques of theorem 4.2 and 4.3 may then be applied. Uj(t) can be 

designed via (4.10) as follows

Lfh(x)=CAx Lgh(x)=CB=0 L2h(x)=CA2x LgLfh(x)=CAB*0 

Therefore the relative order v>=2. The state feedback is then of the form 

u1(t)=(a2*CAB)-1 { -Ctcio+oq A +a2A2]x }

The following values were selected for simulation purposes: C^O.3; C2=10, and 

a 0=6; a {=5; a 2= l. This results in a closed loop system with poles \= -2  and ^ = -3 , so 

that, by solving Lyapunov matrix equation ATP+PA=-Q, a possible Lyapunov function for 

the given closed loop system ̂ =Ax+gut is

_  r Y 0 .2028 -0 .1637Y x ^  
V(x) = xT>x = [x1;x2] ^ 0 163? Q 4581 J ^ J

and so LfV = 2xTP(Ax+Bu1), LgV = 2xTPB 

The uncertainty compensation terms for the techniques described in theorems

4.2 and 4.3 are respectively

2xTPB
u2( t) = - 4(l-co )[C2-C12xtP(Ax+Bu1)]

. 2xTPB r . „!
UjW = _ 4[C2-C12xtP(Ax+Bu ,)] i wp + “ q'u iJ

Simulation results are shown in Fig. 4.2, where a comparison of the technique of

theorem 4.3 with that of theorem 4.2 is given.
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(i)
Uncertain Parameters: 

k2=l, k;=5

f-tj- ^

Kl(t)

System Outputs

time (sec)

Control Signals

(ii)
Uncertain Parameters: 

k ^ l, k'=6 ;

[ i = l ;  \i2=5;

K}(t)

System Outputs
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u(t)

Af=0

Ag=| 5

0 p = O

w =5q

Control Signals

Kl(t)

(iii)

Uncertain Parameters: 

k=l ,  k^=1.5; 

fjL,=l, |x;=-l; jh2=5;

Af=
1 0 x,+2 x2

a i 0
M o.5

CO =160
p

© =0.5q

u(t)
200

0

-200

-400

-600

-800

-1000

-1200

System Outputs

r h :
••j... ^Y=YJV'JVA'Aj;'YY^

2.0  4.0  6.0 8.0  10.0  12.0 14.0  16.0  18.0  20.0

time (sec) 

Control Signals



Chapter 4 4{pBust Sta6iCity ControC (I)— Scalar Input 80

(iv)

Uncertain Parameters: 

k ^ l.k ^ l.9 ;

f2=5;

Kl(t)

System Outputs

u(t) (*10e3)

0  2.0 4.0  6.0 8.0  10.0 12.0 14.0 16.0  18.0 20.0

time (sec)

Control Signals

(a) Technique of theorem 4.3; (b) Technique of theorem 4.2

Fig. 4.2 Case 1: Comparison of the technique of theorem 4.3 with that of theorem 4.2

From the results, certain observations are easily made. Firstly, when only 

uncertainty on g(z) occurs, the technique of Barmish et al fails, so that the closed loop 

response shows larger variations (i), or may become unstable, when the uncertainty 

becomes quite large (ii), but the technique of theorem 4.3 is clearly successful; secondly, 

when the uncertainty on both f(z) and g(z) occur, this technique results in better 

performance than that of Barmish et al because the term coquf included in the feedback 

control makes such compensation more effective, especially, when coq is close to unity (iv).
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4.4.1 Partially Matched Uncertainties

Let a12=a21=a^O, oc2>4(p+a2) and k2= l; then

-a--\/oc2-4(P+a2) -a + '\/a 2-4(p+a2) t (k2+a22ki)
an — 2  ’ ^ 2 2  2  ’ ki, b2 — 42

and then the system may be represented as

x(t) = 41 (V i  A
a u(t)

Similarly to case 1, if an open loop pole position is thought to be ~[LV but is in fact 

-\i[, the uncertainty may be represented as

Af=
fAan x i Ag = f  0 "l 

S KyA&22X2y

where an , a^ , bj, b2 are nominal values depending on the nominal eigenvalue -\iv a^ , a ^  

are real values depending on the true eigenvalue -\x[, and Aa11=a1'1-a11, Aa22=a2'2-a22, and 

Ab2=Aa22k1/a are the uncertain parameters.

If, however, the open loop pole -fij is correct, but k^O , this results in a non

minimum phase problem. This difficult control problem is regarded as an uncertain 

problem with Ag=[Ab1,Ab2]T, where b2=l/a, Abj=kj, and Ab2=a22k 1/a.

(i)
Uncertain Parameters:

kj=0;

p=l ,  p;=-l; p2=5; 0 1.0 2.0  3.0 4.0 5.0 6.0  7.0 8.0  9.0 10.0

time, (sec)

System Outputs
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Af=
-0.232x,
^2.232x2

Ag=0

co (20
Af"l30

co = 0q

u(t)

Control Signals

&(t)(*10el)

(ii)
Uncertain Parameters: 

k,=0; n,=l; jli2=5;

, _ f - l  0<t<2.5 5<t<7.5  
2.5<t<5 7 .5<t<10

System Outputs

Af= -0.232x,
2.232x2

Ag=0

co (20
Af"bo

co = 0q

u(t)

(a) The technique of theorem 4.4; (b) The technique of feedback linearisation alone

Fig. 4.3 Case 2: Mismatched uncertainty Af caused by uncertainty in pole location
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Clearly, in both cases, the uncertainties do not satisfy the complete matching 

conditions, but they do satisfy the incomplete matching conditions (2.12) and (2.13) 

respectively. It is therefore said that the system has partially matched uncertainties.

The feedback control can be designed via theorem 4.4 when the position of the pole 

is uncertain even if it is unstable, and the simulation results are shown in Fig. 4.3. The 

following values were selected: (^=0.3; C2=10, and a 0=6; oq=5; a 2= l. This results in a 

closed loop system with poles: Xx= - 2  and X^-3.

For the non-minimum phase problem, the control can be designed via theorem 4.5. 

The following values were selected for simulation purposes: C^O .3; C2=10; and oc0=10; 

aj=7; a 2= l. This results in a closed loop system with poles Xx= - 2  and A ^-5.

A possible Lyapunov function for the given closed loop system is

= 0.0623xf+0.3943x^-0.3441x1x2 

It is clear that LgV-LAgV>0 holds as long as XjX^O.

The simulation results are shown in Fig. 4.3 and 4.4. From the simulation results, it

performance, compared with the performance resulting from the application of the 

feedback linearisation technique alone. For the feedback linearisation controller, although 

the output of the system X j ( t )  does appear stable (Fig.4.4), the internal dynamic x2(t) is 

highly unstable because of the presence of non-minimum phase, and hence an unstable 

system results. In contrast, the techniques of theorem 4.4 and 4.5 result in a stable closed 

loop system for both external and internal dynamics.

The simulation results of Fig. 4.4 show that theorem 4.5 is applicable and very

by solving ATP+PA=-Q, and condition (4.57) is of the form

is clear that the applications of the techniques of theorem 4.4 and 4.5 result in satisfactory

effective for the control of this non-minimum phase problem when XjX2<0 Vt>0.
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Uncertain Parameters: 

kj=0; kJ=-2;

14=1; |-i2=5
0  1.0 2.0  3.0  4.0  5.0  6.0 7.0  8.0  9.0  10.0

thru (sec)

System states controlled by the technique of theorem 4.5

Af=0

Ag=| ' k; 
-1 .1 2 2 k;

co = 0
p

J  |k;'
®Ag-^U22lk;i.

Kl(t) (10e-l) &(t)(10e2)

System states controlled by feedback linearisation alone

u(t) (10e-l) u(t) (10e2)
1

(a) Technique of
0.8

theorem 4.5;
0.6 

0.4

(b) Technique of
0.2

feedback
o

linearisation alone
- 0.2

-0.4

0 1.0 2.0  3.0  4.0  5.0 6.0 7.0  8.0  9.0  10.0

time (sec)

Control Signals

Fig. 4.4 Case 2: Mismatched uncertainty Ag caused by nonminimum phase dynamics, LgV-LAgV>0
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However, this is not a very practical case. For most practical systems, the trajectory 

of the closed loop system could be any value in the admissible region of state space, and 

may be unpredictable, particularly when some disturbances exist. Therefore, the general 

situation where (2.16) is not satisfied is now considered, but it is assumed that the 

uncertainty caused by non-minimum phase is such that condition (4.79) holds.

We now select C^O .3; C2=100; A,j=-2; Xj=-3 and Lyapunov function

V (x )-x TP x -rx  x i r0.2028 -0.1638VxO v w - x  r x —Lx,, x2j^_0 1638 0.4580J ^ x J

The simulation results are given in Fig.4.5, and the same conclusions as before can 

be drawn.

4.4.1 Mismatched Uncertainties

If the open loop poles are uncertain and non-minimum phase occurs, the system can 

be written as

where b ^ k j, b2=(l+a22k1)/a, and Ab2=Aa22k 1/a.

Although the uncertainties lie in the range of the input mapping g(x), no functions 

p and q exist such that Af=g-p, and Ag=g*q. Therefore they can only be treated as a special 

kind of mismatched uncertainty. The system can be expressed as

where b2=l/a, Abj=kj, and Ab2=(a22+Aa22)k1/a. Thus the uncertainties, satisfying condition

(2.16) or (2.17) in assumption 2.7, fall into the class of mismatched uncertainties.

The feedback control can be designed via theorem 4.8, where the following values

were selected: (^=0.3; C2=10, and a 0=6; oq=5; a 2= l. This results in a closed loop system 

with poles \= -2  and X ^-3. Simulation results are shown in Fig.4.6.



C hapter 4 4(p5ust S ta b il ity  ControC (I)— Scalar Input 8 6

Uncertain Parameters: 

k =0; k,'=-0.5; 

|Lii=l; 1̂ 2=5

Kl(t)
0.1

0.05

-0.05 

-0.1 

-0.15

System states controlled by the technique of theorem 4.8

0  1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0  10.0

time (sec)

Af=0

Ag=| ' K
-1 .1 2 2 k;

cop=0

_ (  IkJI 
C°As-\v1 .1 2 2 lk;i

K)(t) &(t) (10 ell)

System states controlled by feedback linearisation alone

(a) Technique of 
theorem 4.8;

(b) Technique of
feedback linearisation 

alone

u(t) u(t) (Well)

Control Signals

Fig. 4.5 Case 2: Mismatched uncertainty Ag caused by nonminimum phase dynamics, ILgVI>ILAgVI
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(i)
Uncertain Parameters:

k=0; k|=-0.5; 

|H=1, |xj=-l; (r2=5;

& (t) K?(t)

System states controlled by the technique of theorem 4.8

Af= -1.646x,+0.414x2 
0.414x ,+3.646x2

Ag \-0.293+0.457k;

_f30A 
“ a-^50 J

j  |k;>
c°Ag_Vl-0.293l+l0.457k;i

Kl(t)(10el) *2(t)(10e2)
2

1.5

1

0.5

0

-0.5

-1

System states controlled by feedback linearisation alone

1.5

1

0.5

0

-0.5

(a) Technique of 
theorem 4.8;

(b) Technique of 
feedback linearisation 

alone

0  0.5 1.0 1.5 2.0  2.5  3.0  3.5 4.0  4.5  5.0

time (sec)

Control Signals
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(ii)
Uncertain Parameters:
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4.5  Sum m ary

In this chapter, a rather general class of nonlinear uncertain systems has been 

considered, and robust feedback control laws have been obtained for different cases. The 

techniques can be summarised as follows:

Algorithm:
© Transform the original nonlinear uncertain system of form (4.1) 

into a linearisable form (4.2);
@ Obtain ux from (4.10) to linearise the nominal system, i.e., the 

certain part of the nonlinear system (4.2);
© Select parameters cq (i=0,...,D) for linearisation feedback

control (4.10) to place the nominal closed loop poles at desired 
positions;

© Define a Lyapunov function V(*) for the linearised certain part 
of the system to be controlled;

© Determine p from (4.75), (4.80) or their simplified versions and
choose Cx, Cs from (4.29) ~ (4.33) to construct u2(t) such that LfV 
falls into the shaded area D in Fig.4.1.

Nonlinear state feedback, based on the feedback linearisation technique, is applied 

to the certain part of the system, such that a desired stability margin for the nominal closed 

loop system is achieved. Additional nonlinear feedback is introduced to compensate for 

uncertainties, such as parametric uncertainties, external disturbances, and stability is 

guaranteed via Lyapunov stability theory when some uncertainties are incorporated in the 

system regardless of whether matching conditions are satisfied. Compared to other 

developments based on Lyapunov theory, in particular that of Barmish et a l significant 

improvements have been made, in that the techniques can achieve far better results because 

they can compensate not only for the effect of the uncertainty in the state matrix Af(x,y,t),
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but also for the effect caused by ux(t) through the uncertainty in the control matrix 

Ag(z,y,t), even for the case of coq> l and for the case of mismatched uncertainty. The 

technique described in theorem 4.7 generalises the results of theorems 4.3~4.6, whilst 

retaining the concise statement of the algorithm, so that all results may be described in a 

unified fashion for the following cases: (i) uncertainties in both the state and the input 

mapping satisfying the matching conditions, (ii) only one of them satisfying the matching 

conditions, and (iii) mismatch in both.

Theorem 4.8 retains the same problem statement and achieves the same system 

performances as that of 4.7, but it does so by increasing the feedback gain for uncertainty 

compensation. However theorem 4.8 is more generally applicable.
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5.1  I n tr o d u c tio n

T HE approach to robust control considered in this chapter is that of variable structure 

control. It resembles adaptive control in that the structure of the controller varies in 

response to the changing state of the system in order to obtain the desired response. The 

controller is, however, synthesised in a deterministic way. This is accomplished by using a 

high speed switching feedback control which forces the trajectory of the system onto a 

prespecified hypersurface in state space, where it is maintained thereafter.

For the class of systems to which it applies, variable structure control design 

provides a systematic approach to the problem of maintaining stability and consistent 

performance in the presence of modelling uncertainties. Furthermore, by replacing a pure 

switching control by its smooth approximation, the relay chattering problem can be 

alleviated. Variable structure control has been successfully applied to robot manipulators, 

underwater vehicles, and power systems[1’2b

The aim of this chapter is to investigate a synthesis problem of nonlinear uncertain 

systems in a deterministic way, in which the problem statement is the same as that in the 

last chapter, but a different type of controller is developed, so that different system 

performance may result. No requirements are imposed on the structure and size of the 

uncertainty, and no assumptions are made concerning precompensation of the nominal 

system. A set of robust feedback controllers can be obtained, which results in a practically 

stabilised closed loop system, even for nonlinear systems with unstable nominal part, in the 

presence of significant mismatched parameter tolerances and external disturbance. It is also 

shown that the controller has the same structure as that developed for the nominal system 

where no uncertainty is explicitly considered; the only difference is that the former 

employs a variable controller gain, which depends on the known uncertainty bounds, and
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the latter has a constant one. The design procedure is based on Lyapunov theory.

The primary concepts of variable structure control are presented in appendix B, and 

form the basis for the development of the results of this chapter. Specifically, in section

5.2, the associated basic controller design for nominal systems is illustrated first, and then 

two robust variable structure controllers for nonlinear systems with uncertainties are 

developed. Section 5.3 describes the stability properties of the resulting controlled system, 

and section 5.4 presents an illustrative example with simulation results.

5 .2  Co ntro l  Synthesis

Based on V a r ia b le  Str u c tu r e  Co n tr o l

In this section the robust stability control problem for nonlinear systems in the 

presence of uncertainties is still considered. The problem statement is the same as that of 

chapter 4, but the control synthesis is based on variable structure control.

Although the ideal sliding mode may not occur when nonlinear systems are 

subjected to uncertainties, the designs of this chapter guarantee the existence of a sliding 

mode within a vicinity of the switching surface. The following control strategy is proposed: 

CD Design a switching surface to specify the closed loop system performance;

(D Construct a control law with variable feedback gain to steer the state to the 

switching surface, and guarantee the existence o f a sliding mode.

The results of this section enable us to achieve our aims with only very weak 

conditions on the nature and size of the uncertainties. The technique is developed directly 

for nonlinear systems with mismatched uncertainties, but it is clearly applicable to other 

cases, such as partially matched or completely matched uncertainties. The control signal

will be of the following form

u(t) = ucq- [ LgCT]‘‘ -p-sign(0 ) (5.1)
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where the feedback gain p>0 is developed in the sequel, and ueq is called the equivalent 

control, and is given by

U e q = -[Vato-gC*)]-1- Va(x)-f(x) = -(LgCj)'1 -Lfa  (5.2)

where Lfo  and Lga^0 are the Lie derivatives of g ( x )  with respect to f and g respectively.

D efinition 5.1. (Generalised Lyapunov Function)

A  continuous function V(t), which depends on the chosen switching function g ( x ) ,  

can be defined as a generalised candidate Lyapunov function, if

V(t) • (J2(x) > 0 V(x,t) 3 a(x)*0 and V |a(;c)=0 = 0 (5.3)

with continuous derivative, such that, for X={x(t)e Rn|o(x)?*0, x(to)=x0)

V(t )= ~ -A .a 2(x)<0 (5.4)

holds.

Also, some conditions on the Lyapunov function similar to those in theorem 3.7 are 

required. The following definition is therefore introduced.

D efinition 5.2. (Conditions on the Generalised Lyapunov Function)

We assume that the generalised Lyapunov function V(t) defined in definition 5.1 

satisfies the following conditions

v 1(||x(t)||) < V(t) <v2(||x(t)||) (5.5)

V(t) <-v3(||x(t)||) +v4(||x(t)||) <0 (5.6)

where v^-) (i=l,2) are continuous strictly increasing functions, with the properties Vi(0)=0 

and lirnvi(e)=«x>, and v3, v4 are positive continuous functions such that v3-v4 is positive, so 

(v3-v4)_1 is defined away from zero and is continuous.

5.2.1 Controller with Constant Feedback Gain

A well-known result in variable structure control for unperturbed nominal systems 

is first stated, and the proof is included for the sake of completeness.
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T heorem 5.3. (VSC for Nonlinear Systems without UncertaintyPi)

Consider a nonlinear system of the form

x(t) = f(x)+g(x)u(t) (5.7)

A set of states xe X, and a switching function o(x)=0 are defined to specify the desired

response of the closed loop system. Then a feedback controller of the form 

, x (Lfa+p-sign(a))
u(t) = -  T rT (5.8)

exists such that the closed loop system is stable. Here p is any positive constant.

Proof: According to definition 5.1, consider a generalised Lyapunov function 

candidate of the form

V(t) A -  - g ( x ) 2> 0  V(x,t) 3 o(x)*Q (5.9)

The time derivative of V(t) is then
da

V(t) = a-G = G-^{f(x)+g(x)u(t) }= G- (LfG+LgG-u(t)}

=  G LfG -  L G
(LfG+p-sign(G))

L ga

= ~P’|g| < 0

The closed loop system is therefore stable.

(5.10)

□

5.2.2 Controller with Variable Feedback Gain

The major result concerned with the robust control of nonlinear uncertain systems 

may be obtained in a similar fashion to that of theorem 5.3.

Theorem 5.4. (VSC for Nonlinear Systems with Uncertainty: Case 1)

Consider a single input nonlinear system, incorporating some mismatched

uncertainties and external disturbances, of the form

x(t) = f(x)+g(x)u(t)+4f(x,Y,t)+4g(x,y,t)u(t)+q(t) ( 5 . 1 1 )
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where the uncertainties and disturbance are all bounded, and satisfy

Lga-LAga> 0 (5.12)

Defining a switching function {g (x)= 0  U(t)eX}, a feedback controller 

(Lfa+p(x>sign(a))
u(t) = -----, * (5.13)

then exists such that the feedback system (5.11) is stable for any bounded uncertainties and 

disturbance, if the controller gain is chosen as

where

p(x) (i2Af+ n ^ + jin Ag-Lgc | ( - i^ ) 2>0

3 a

3x

3a

L ga A - . g ^ 0

Lf<7̂ 3x f

(5.14)

(5.15)

(5.16)

are the Lie derivatives of a(x) with respect to f(x) and g(x), and, in general, £2^, £2Ag and

Qp are functions of (x,t) defined by

^ A f  =  X .
3a

k=l

Q Ag = ^  g k=l

9xk

3a
3x,

• ^ l A f k(x .Y-t)l =
3a
3x 

3 a
3x

« A f > 0

coAg>0

k=l 3 X r • T  &<*>!=
3a
3x co^>0

(5.17)

(5.18)

(5.19)

Proof: A continuous function a(x)=0 can be defined where x e x  is a set of states 

used to prespecify the performance of the closed loop system. According to definition 5.1, 

a generalised Lyapunov function is of the form

V(t) A |  -a(x)2>0 V(x,t) 3 a(x)?tO

and satisfies inequality (5.5) for {xeX|a(x)=£0}, so that, with the feedback of (5.13), the

time derivative of the Lyapunov function for the closed loop system obtained is given by
3o*

V(t) = a-a=a-^-{f(x)+g(x)u(t)+Af(x,Y,t)+Ag(x,y,t)u(t)+^(t)}
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= a- { L(0 +Lg0 -u(t)+L4f0 +L4g0 -u(t)+L 0̂ }

_ f ,  _ , _ Lf0+p(x)-sign(a) „ . Lfa+p(x)-sign(a) ■,
= 0  { Lf0 -L ,,a --------- --------------+(LMa+L5a)-L4ga ----------— --------- }

L gCT

Lfo+p(x>—- , -  r v .  |a| Lfa+p(x)-—
=  o  { L fO  - L g 0 ------- — --------- + ( L at0 + L 4o ) - L Ago --------- --------------- }

p(x)0 2 r p(x)0 2 Lf0 , Lag0 -p(x)0 2,
= ~ m  + 1  g , ( L Af0 + L g0 ) + 0 • ( - l a„o • -  ^ l o |  }

By using the identity (4.12), the second term in the above equality can be expressed as

(Lm0+L50)2-|o| 2 P(x)
2p(x) (L*0+L50 )H oK

(-LAgg-ri)"-lgl p(x)

r n  ,  ,  ( L A f O + L ^ o P - W f
( L ^ a + L ^ - a — p(x) y

LfO \2 , , g s L AgG f
+■

4p(x)
LAga

L g a

/ LfG \2
( - L Asa T ^ )  l° l

/  T L fG x

( - L * 0 T ^ a -

/  ,  L (0 . 2  A 2

(■L A8 a ' L ^ )  'la l

V
2p(x)

LAga
L„ct )

Considering condition (5.12), we may write the inequality above as
/  L fO  \ 2

,Vr , ,, „ P(X) 2  (LAf0+Lg0)2-|0| °
V[o(x)] < - ir -̂r*G + ------ -— -------+ •

2 | 0 | 2p(x)
4p(x)

L 4 g 0

4 - v 3[x(t),Y(t)]+v4[x(t),y(t)]<0 

where we may identify

v3[x (t) ,y (t )]A -^ .a 2

(LmG+Lfg)2-^! "̂LAgC LgcP 
v4[x(t),y(t)]A------ .  ,V  +■

2p(x)
4p(x)

LAgG

(5.20)

(5.21)

(5.22)

The problem is now to design a control such that the reachability condition (appendix B) 

g ( x ) - g ( x )  < 0 (5.23)

holds. Then the state trajectories will converge to g(x)=0, and are restricted to it for all 

subsequent time. From (5.20) we have
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( T ^f^ \ 2 | |
( L a O + L e f f ) 2 - |a |  | | a |  _ p ( x ) 2

2 p(x)
4 p ( x ) ' T ^

2 |o |

i.e., 

and so

p(x)2 >(Lifa+L?a ) 2 + y L Aga-Lga ( - i y ) 2

P(x) >A / (Lita+ U a)2 +^LAga-Lga ( - y ^ ) 2 > 0 (5.24)

Because L^a <

L  a <Ag

3 a
^•Af(x,y,t)

3 a
^•Ag(x,y,t)

" 3 a  
< L

k=l

< s
k=l

3 x k

3 a

.™ X|Afk(x,Y,t)|<

3 x ,
™ ^ l A g k (x ,Y ,t ) |<

3 a

3 x

3 a

®Af ^ A f

3 x

L ^ a <
3 a

3 x •«t)
” 3 a  

<  Ik=l 3 x ,

3 a

3 x
co^—

it follows that if p(x) is chosen according to the known bounds given by (5.17), (5.18), and 

(5.19), the controller gain is of the form (5.14), whose entries are all deterministic and 

known. It is obvious that if

P(x)>^J (Q M+Q;l)2+2 l^AgLga|(- Lg(y ) 2

A
l

3h
i /  (L ^ a + L y p -y  LAga-Lga ( - - ^ ) 2 >0 (5.25)then

holds, and it follows that the inequality 

V(t)<

L f q ^

p ( x )  _2 [  (Q A f+ Q a) 2 - |a |  U a

2| a | 2 p(x)
4p(x)

a 'Ag

l^ g ° l

=  - v 3 [ | | x | | ] + v 4 [ | | x | | ] < 0

is true. Thus the controller has the following form

U(t) = - L ^ - {  LP + s j (n Af+ a 5)2+|[£2AgLga | ( - ^ ) 2 -signfa) }

(5.26)

(5.27)

and this results in a stable closed loop. □
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R emark 5.1:

• The development of the results of theorem 5.4 is based on condition (5.12), where Lga-LAgcr is 

assumed to be positive. For any systems which satisfies condition (5.12), stability of the closed 

loop system is guaranteed by the feedback control of (5.13).

• Condition (5.12) may be satisfied by properly choosing the switching function o(x), especially for 

the most common type of switching function o(x)=Sx. Then 3o/3x=S and Lga-LAga=S(g-AgT)ST. It 

is therefore possible to choose the elements of S such that condition (5.12) holds for the input 

mapping of the given nonlinear uncertain system.

• If, for any given nonlinear uncertain system, no suitable switching function o(x) exists such that 

both the prespecified system performance and condition (5.12) are satisfied, the result developed in 

theorem 5.4 is not applicable. The following theorem is an alternative version of theorem 5.4, 

which can be used to deal with the cases where condition (5.12) is not met.

5.2.3 Controller with Improved Variable Feedback Gain

T heorem 5.5. (VSC for Nonlinear Systems with Uncertainty: Case 2)

Consider again the nonlinear uncertain system (5.11), and suppose the following 

condition

ILgo|>2ILAgo| (5.28)

is satisfied. For a defined switching function {g(jc)=0 |x (t)ex}, a feedback controller 

(Lf G+p (x) • sign(G))
u(t) = —

L g a

(5.29)

then exists such that the feedback system (5.11) is stable for any bounded uncertainties and 

disturbance, if the controller gain is chosen to satisfy

. /TT 1  | 0  y L fG ^ 2  Q ^ I L g G l+ Q A g lL f G l
P(x ) (^Af+^)2+ 2  I^Ag *L ga K L  G)  +  l|j^

2  §|Lbg |-Q
> 0  (5.30)

Ag

where LgG, LfG are the Lie derivatives of g(x) with respect to f(x) and g(x) defined by
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(5.15) and (5.16), and £2Ag and are the bounds of the uncertainties and disturbance 

respectively, defined by (5.17), (5.18) and (5.19).

Proof: Consider a generalised Lyapunov function of the form (5.3) satisfying 

inequality (5.5) for {xeX|G(x>£0}, so that, with the feedback of (5.29), the time derivative 

of the Lyapunov function for the closed loop system obtained is given by 

V(t ) = g -g

= a- { Lfa+Lga-u(t)+LAfa+LAga-u(t)+L4a }

Lfa+p-sign(a)
= a { L fcr-Lga -  L(J + L Af+^a _ L Aga -

Lfa+p-sign(a)

L g a

= a- { Lfa  -L  a-
Lfc+p

L g °

lol ,T _  ,  _  L (CT+P' | 0 | !
+LAf+  ̂ LAgG- T ^ j'Ag

L 8CT

pg2 lUggl-po2  

-  2 | a |  + 2  | L . a | - | a |

f  P g '̂ , L fO  |L Agc |  • p Ĝ i
+ { ° ' L ^ CT- ^ + a ( - L ^ a M ) }

}

(5.31)

By using identity (4.12), the second term in the above equality can be expressed as
1

(LMHa)2 -|a| 2 P
2 p (Lm+̂ c) 2 -|a| V

z LfGx2
( - L as°  L ^ )  M P ‘-

|L as o | (

( L ^ a p - l c J l  t

+ •
|L»a|

4p
|L Afig |

|L„a|
/  L fG  \ 2

| a |

/ LrG \
( - L ^ a V ) 0

, LfCT, 2  V
( V v >  -I°I

v
2 p

|L Agg |

I U a | J

We suppose that
1

2 p

+■

( L i f H a ) 2 - |a |

|L A(,® 1

p'|Lga|

( - L
L . g x 2

* 0 l £  - |0 |

( L ^ a ) - ® -

(

( - L AgCT

(LAfHCT)2 -|c|

L jG \ 2

LfG

L 6 CT
; ) a -

- | a |

V
2 p

|L Ago |

|Lga| J

> 2
ILA gO l-pO 2

|L„a||a| (5.32)
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and also considering (5.6) of definition 5.7, we have

1 > r n l ,  P 2 ( -L^ } -W
V[a(x)] <--TT-r-a + -------—------- +■

2 \a \ 2 p
4p

|L A8a |

|L„a|

4 -v3 [x(t),y(t)]+v4 [x(t),y(t)]

where v3 [x(t),y(t)] 4 - ^ f - a 2

( L M H a ) 2 - |a |   ̂ v ^  L g0 ;

/ Lfa  \ 2
( - L A g O - r - z )  - |a |

V4[x(t),y(t)] A-------^ -------+
4p

|L A gg |

|L„a|

(5.33)

(5.34)

(5.35)

Similarly to theorem 5.4, suppose the reachability condition V(t)=cr-G<0 holds, i.e., 

V[G(x)]<-v3[x(t),y(t)]+v4 [x(t),y(t)]<0

Then the state trajectories will converge, and will be restricted to o(x)=0. So we have

(LAf+cCJ)2 '|a| ( ‘L^ a L ^ ) '|CT| p 2 
+ ------------ it— — < - f - r - a2 p

4p
|L A8o |

|L„a|
2 | a |

L fa  2
P > \  (LAft!;a)2 + -L Aga-Lga (-— )z >0 (5.36)

On the other hand, it can be shown that assumption (5.32) is true by developing the 

following inequality if (5.28) is satisfied. Extending the inequality (5.32), we have

(

ILAftfJHop

r  p J
+■

|LAe0 |
|Le0 |

L, 0  . V

o —
|LAgCT' L ^ M a l 

|L Ae0 | 

|Lgo | J
2 p

1 2 { ( L M+| 0 F _ 2 j U f H 0 | } }

2 1L p2 p J J |Lga| 1L 4p2 p J J

=  a 2 { ^ [ ( L M+, 0 ) 2 + ^ A | ( L f0 ) 2]  +  [ i + J ^ ] - I [ | L 4fH 0 | + t g ! . | L f0 | ]  }

> 2
|L Agq | 0 2

|L.o|
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Le"  2 p2 [(Lm^ 0 )2 + 2|L„<t| (Lfo)2] + 1 + |L,!a|  ̂ p [ |LA f^°l+  |L,;a| 'lLfa l ] - °

Obviously, if

1  I U f .a U  r „  . | U Ea |

-l I U e a | ,  i

then the inequality (5.32) is true. We therefore obtain another feedback gain as follows

p> lL A f^ g ML ga l+ lL Agg ML fp l 

||L ga|-|LAEa|
(5.37)

Simply by letting

V ^gu rL-CT-LA„a2 lLga|-|LAgo|

both conditions (5.36) and (5.37) can then be satisfied. Because

da
dx

da
^•Af(x,y,t)

° da
< 1k=l Ox,

L a<
Ag

da
^•Ag(x,y,t)

" da 
< 1

k=l d x i

da
dx u g= U E

L ^ g <
da
dx •«t) <  £

k=l

da
Ox,

,max
t>0

Og

Ox co^= £X

it follows that if p is chosen according to the known bounds given by (5.17), (5.18), and

(5.19), we have the controller gain of the form (5.30), whose entries are all deterministic 

and known. It is obvious that if we set

V I , LfGv0 £2Af J L  G|+fX|L,G|

then (5.38) holds. Also it follows that the inequality

v ( t ) < . m . 0 ^ (Q * ^ v ; - i g i

4p(x)
2 |o| “ ' 2 p(x) ■ s

|L Ea |

=-v3 [llx(t)ll]+v4 [llx(t)ll] < 0  

is ttue. The closed loop system is therefore stable.

(5.39)

□
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5 .3  Co m m en ts  on System  Perfo rm ance

The variable structure controller developed here results in a stable closed loop 

system when mismatched uncertainties are included in the system. These results may be 

summarised, according to Lyapunov stability theory, by the following inequalities:

Vl(||x||)<V(x)<v2 (||x||) (5.40)

V[Q(x)] <-v3[||x(t)||]+v4 [||x(t)||]<0 (5.41)

5.3.1 Uniform Ultimate Boundedness

Having these results available now enables us to show that the system has the 

property of uniform ultimate boundedness in the sense of definition 3.14. Let us denote by

8 [x(t,to,x0),o] * 8 (x,a)=infl|x-j|| (5.42)

the distance of the point x from the surface a(x)=0 , where xeX  are the states off the 

switching surface in admissible domain £2, and xe  X  are the states on the switching surface.

In view of (5.40)

v1[8(x,g)] < V(x) < v2[8(x,g)] (5.43)

Let R be the radius of the largest sphere in X, such that V(x)>0 and V(x)<0.

Given a constant r>0, we define

d(r) = (v-Lv2)(r) (5.44)

where ?^max{r,R}. Consider now a solution xOMt^tJ-^R11, with x(to)=x0 such that 

8 [x(to),a(x0)]<r.

Suppose there is a t3>to such that x(t3)=x3 and 8 [x(t3),a(x3)]>d(r). Since the 

solution x(t) is continuous

8[x(t0),a(x0)] < r< f  <(V11 -v2)(r) = d(r) <8[x(t3),G(x3)]
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Hence, there must exist a t2e[t0 ,t3), such that 8 [x(t2),o(x2)]=d(r) and 8 [x(t),o(x)]>d(r) 

Vte [t t̂g].

In view of (5.40) and (5.41)

Vi[8 (x(t3),a(x3))] < V(t3)

= V(t0)+)-V(t)dx
*0

\
< v2[5(x(%),ct(x0))] +J [-v3(x)+v4(x)]dx

*0

^v2(r)

i.e., 8 [x(t3),o(x3)]<(v‘l1 -v2)(r)=d(r). However this contradicts the supposition above, hence 

8 [x(t),a(x)] <d(r) Vt<= [t̂ ,tj] 

and the system is uniformly bounded.

Again if x(t):[to,oo]^Rn 5 x(to)=xo is a solution of the system, such that 

8 [x(to),a(x0)]<r, then for a given number d'^v * -V2)(r)

where

8 [x(t),a(x)]<d' Vt>to+T(d',r)

T(d',r)

0

■ v2(r)-Vi(R) 
v3(r) - v4(r)

if r<R

otherwise (5.45)

and R̂ (v'̂  -v^d'), so that R>R and d(R)=(v'11 •v2)(R)=d'>(V11 -v2)(r).

If r<R, then 8[x(to),a(x0)]<R, hence, by the uniform boundedness result 

8[x(t),a(x)] < d(R) = d' Vt>to

and obviously T(d',r)=0.

If r>R, and supposing that 8 [x(t),a(x)]>R Vte [t^ J , then bearing in mind 

conditions (5.40) and (5.41), we have 

v 1[8 (x(t1),a(x1))]<V(t1)

= V(to)+jV(x)dx
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< v2[8(x(t0),a(x0))]+ /[-v 3(x)+v4(t)]dx
lO

<v2(r)+T(d',r)[-v3(R)+v4(R)] 

v2(r)-v,(R)
= v 2 ( r ) + v 3 ( r ) - v 4 ( r )  [ - v 3W + v 4 ( f i ) ]

=  V j(R )

That is, 8 [x(t1),a(x1)]<R. But this contradicts the assumption above. Hence there must exist 

a [to,tj] such that 8 [x(t2),a(x2)]<R. Then, as a consequence of the uniform boundedness 

result, S[x(t),a(x)]<d(R)=d' V t^ . Hence

8 [x(t),a(x)] <d' Vt^t^to+TCd'^)

i.e., the system is uniformly ultimately bounded.

5.3.2 Remarks

• Comparing theorem 5.4 with theorem 5.3, the following fundamental conclusion is 

drawn. The nominal system (5.7) admits control action of form (5.8) such that the 

switching function g(x) = 0  is also a switching function for the uncertain nonlinear 

system (5.11), and the same structured controller can be employed to achieve a 

sliding mode along g(x) = 0  as long as the controller gain p(x) is chosen according to 

(5.14) instead of being the constant of theorem 5.3.

• Compared with the techniques developed in chapter 4, the same design principle 

has been used, and similar assumptions have been made concerning the 

characteristics of the input mapping of the system. These conditions are as 

follow:

LgV-LAgV>0 and LgW 0

Lga-LAgG>0 and Lgo^0

It is necessary to choose a constant matrix S (for the case of linear switching 

function) such that the assumed conditions, Lgo-LAgG=S-gxS-Ag>0 and LgG=S-g9tO,
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are true, whilst, in the former case, a special form of Lyapunov function is needed 

(in most cases a transformation must be made, as discussed in chapter 4, in order to 

find such a Lyapunov function) to guarantee LgV?K), and furthermore it may not be 

possible to make LgV-LAgV>0 only through choice of a Lyapunov function. It is 

therefore concluded that the requirements here are less severe than those of chapter 

4 and it is easier to implement the design.

• To apply the techniques developed in chapter 4, it is necessary to choose values of 

two parameters C { and C2 so that 

Q - C j L y V ^  

and

LfY < (1-C 1)L/ V + C2<0

where

L/V = | ¥  •/= LfV + LgV-u, < -v

LfV = k '*= L/V+LifV+l^V-u, +LAgV-(U[+u2)

The present development avoids the requirement for proper choice of C { and C2, 

thus easing the design problem further.

5 .4  I llu s tr a tiv e  Exa m ple

We will consider the same example as the one in chapter 4 to illustrate the 

application of the techniques developed here. Both open loop pole uncertainty and non

minimum phase problems are considered. Although the uncertainties lie in the range of the 

input mapping g(x), there do not exist functions p and q such that Af=g-p, Ag=g*q, so they 

can only be treated as special kinds of mismatched uncertainties. The system can be 

expressed as
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x(t) = ln
l21

a 1 2

^ l l )

V v  A
+

VA2y

b 'i
b ;

u(t)

where

a n  a 12
l2 1 a 2 2 y

+

aij

b 2 = l / a i 2

2 )  

<ij=i,2 )

0  ^  . f A a j j X j + A a ^ x ^  f A b ^
U ( t ) +  A . a +  A U U( t )vAa21x1+Aa22x2J lAbV ^ u 2 y

A b ^ k j

Ab2=l/a1 2- l /a 12+a22k1/a12

Thus, the system falls into the class of systems with mismatched uncertainties.

As the nominal part of this system is already in regular form, it can be directly 

rewritten as

x 1(t)=f1(x1, x2)

x 2(t) = f  2(x1, x2) + g2(x1, x 2>u(t)

such that two sets of new states x 1=x1, x 2=x2 result, and we therefore have 

f 1(x)=a1 jX j+ a ^  f 2 (x)=a21x 1+a22x2 g2 (x)=b2

The switching function, independent of any uncertain element in the system, is chosen as 

o(x) = (Jj (.Xj) - x 2 = 0

such that a reduced order closed loop system of the form 

x f i)= n nXj + a12x2 = a11xi+a12a 1(xi ) =Xx2

results, where X is the closed loop pole. Here a linear switching function is chosen, i.e., 

a 1(xi)=sxi , so s=(A-an)/a12. From this, the closed loop pole may be placed at some desired 

location by appropriate choice of s, and also condition (5.12) is satisfied. The nominal 

system is chosen to be

f-4.732 l.OOOYxY (0
x(t)_l 1 . 0 0 0  -1.268 u(t)

and s=2.2321 was chosen for simulation purposes. This results in a reduced order closed 

loop system with pole A=-2.5. For the chosen switching function

o(x) = sxj-x2 = Sjc=0
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(i)

Uncertain Parameters: 

k = 0 ; kj=-0.185; 

1^=1; |X2 =5;

Kl(t)

System  State x }

- (  lki' ^
“V ^ l  .2681k; I)

Constant Feedback 

Gain: p=17

time (sec)

System  State x 2

(a)

The controller with 

variable feedback gain 

o f theorem 5.4;

(b)

The controller with 

constant feedback gain 

o f theorem 5.3;

u(t)

0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

time (sec)

C on tro l S ignal
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(ii)

Uncertain Parameters: 

k 1 = 0 ;

Hr=i> K = - i ;  p 2= 5 ;

Kl(t)

System  State

Af=
'-0.183xr 0.293x2
-0.293XJ+2.183X2

_( 3.299 
" 1 13.846

coV " (o .4 14

Constant Feedback 

Gain: p=27.1

& (t)

0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

tim e  (sec)

System  State x 2

(a)

The controller with 

variable feedback gain 

of theorem 5.4;

(b)

The controller with 

constant feedback gain 

o f theorem 5.3;

tim e  (sec)

C o n tro l S ignal
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(iii)

Uncertain Parameters: 

k =0; k;=-0.5;

m = i ,  jaJ= -1 ; m = 5 ;

Kl(t)

'-0 .183xr 0.293x2
-0.293XJ+2.183X2

Ag= K
-0 .414+ 1.295k,’

3.299  
“ 1.13.846

Ik; I
10.414+1.295k; I

Constant Feedback 

Gain: p=30

(a)

The controller with 

variable feedback gain 

o f  theorem 5.4;

(b)

The controller with 

constant feedback gain 

o f  theorem 5.3;

& (t)

System  State x 2

0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

tim e  (sec)

Control Signal

Fig.5.1 Case 1: Variable structure controller with variable feedback gain, Lga-L Aga> 0
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the partial derivative with respect to x is 3g/3x=S=[2.2321, -1], thus 

Lga-LAga=S-gxS-Ag>0

The controller with variable feedback gain, and for the sake of comparison, one 

with constant feedback gain, are designed in accordance with theorem 5.4 and 5.3 

respectively

Fig. 5.1 displays the results of simulation for the system. The responses of the 

system with feedback of both constant gain and variable gain are depicted for different 

parameter bounds. Use of the variable gain controller results not only in stable responses, 

but also in fairly small errors, whilst use of the constant gain controller results in large 

swings in the values of the states, and sometimes an unstable condition.

The second example is concerned with the case where condition (5.12) is not 

satisfied. The same nominal model as that of first example is considered, but the real 

system model is given by

such that for the following switching function 

o(x)=sxi-x2=Sx=[2.2321,- l]x=0

Lgcr-L AgG=-0.0208<0, but |Lgo|>2|LAga|, so theorem 5.5 is applicable here.

The simulation results are shown in Fig. 5.2, and the same conclusions can be

This implies some uncertainties in both state mapping and input mapping

drawn.
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Kl(t)

Uncertain Parameters: 

k 1= 0 ; k j= - 0 . 1 ; 

^ = 1 ,  |x ;= - l;  i i2= 5;

System  State x x

Af=
-0.007x,+0.225x2
0.225xt+2.007x2

Ag“ V -0 .184+ 0 .603k ]J

® M - { l2 .2 S 0 )

J  'k; 1
coAg-^ |-0 .1 8 4 + 0 .6 0 3 k ;i

Constant Feedback 

Gain: p=17

(a)

The controller with 

variable feedback gain 

o f theorem 5.5;

(b)

The controller with 

constant feedback gain 

o f theorem 5.3;

& ( t)

System  State x 2

u (t)

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

tim e  (sec)

Control Signal

F ig.5.2 Case 2: Variable structure controller with variable feedback gain, Lga-LAga < 0 , |Lga|>2ILAga |
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5.5 Su m m a r y

In this chapter, the same problem as that of chapter 4 has been addressed, but a 

different control strategy, variable structure robust control, is used to guarantee stability off 

the switching surface. The techniques are summarised as follows:

A l g o r i t h m :

© T r a n s f o r m  t h e  o r i g i n a l  n o n l i n e a r  u n c e r t a i n  s y s t e m  i n t o  a  r e g u l a r  

f o rm  ( s e e  a p p e n d i x  B ) ;

® D e s i g n  a  s w i t c h i n g  f u n c t i o n  o ( x )  s u c h  t h a t  e i t h e r  c o n d i t i o n  

( 5 .1 2 )  o r  c o n d i t i o n  ( 5 .2 8 )  i s  s a t i s f i e d ;

© O b t a i n  a  f e e d b a c k  c o n t r o l  o f  f o r m  ( 5 .1 3 )  w i t h  v a r i a b l e  f e e d b a c k  

g a i n  ( 5 .1 4 )  s u b j e c t  t o  c o n d i t i o n  ( 5 . 1 2 ) ,  o r  c o n t r o l  ( 5 . 2 9 )  w i t h  

f e e d b a c k  g a i n  ( 5 . 3 0 )  s u b j e c t  t o  c o n d i t i o n  ( 5 . 2 8 ) .

The design procedure does not require the nominal dynamics to be either stable or 

in some way precompensated, nor is there any requirement for the uncertainties to satisfy 

the assumption of matching conditions. The control law is directly applicable to nonlinear 

uncertain systems, even to the open loop unstable case, and the practical stability of the 

closed loop system is guaranteed. The simulation results show that the controller 

attenuates the effects of the uncertainty. On the other hand, the controller has the same 

structure as that developed for the case without consideration of uncertainty. The 

difference is that variable controller gains are employed, depending on the upper bounds of 

the uncertainty and disturbance.
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1

R o b u s t  S t o b i l i t y  C o n t r o l  ( III )

Overview
This chapter describes a new robust control technique developed for 
multi-input nonlinear systems with mismatched uncertainties. The 
proposed technique utilises variable structure theory, and the design 
is based on Lyapunov stability theory.
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6.1  I n tr o d u c tio n

F EEDBACK control is now fairly well understood for large classes of nonlinear 

systems with single inputs or uncoupled multiple inputs. For general multi-input 

nonlinear systems, however, feedback control and especially robustness issues still 

represent difficult problems, the urgency of which has been rendered more acute by the 

recent development of systems with challenging nonlinear dynamics, such as robot 

manipulators, high performance aircraft, and advanced underwater and space vehicles.

Some methodologies have been developed to deal with the robust control of multi

input nonlinear systems in the time domain. One possibility is to decouple the system by 

properly choosing a state transformation so that large scale nonlinear systems can be 

decomposed into a number of sub-systems with only one input, and noninteracting 

controllers can be found to control the new transformed systems. Another is called 

generalised decentralised control where large scale nonlinear systems consist of a number 

of sub-systems which have only single input, whilst the interacting terms are treated 

artificially as uncertainties in the system. Both methods have some limitations, because 

decoupling of input-output is hard to implement for general nonlinear systems, particularly 

with uncertainties, while generalised decentralised control does not fully use the 

information concerning interacting terms so that conservative design results.

In this chapter, a new robust control technique for multivariable nonlinear systems 

in the presence of uncertainties and external disturbances is developed. In contrast to other 

methods, the method developed here avoids decoupling or decentralising the system into 

sub-systems, but synthesizes robust controllers directly with the original nonlinear 

uncertain dynamics, thereby easing the design problem and utilising all available system 

information. The proposed design technique does not require that the uncertainties should
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satisfy matching conditions, nor does it require that the nominal system should be stable or 

pre-stabilised. Instead, only a rather weak condition is imposed on the uncertainties with 

no further assumptions, and strong robustness is obtained. The robust control strategy is 

still based on Lyapunov theory, and is established using concepts from variable structure 

theory but with certain extensions. The control possesses a quite simple structure, and can 

be used to effectively deal with MIMO nonlinear uncertain systems. A nonlinear example 

is considered and simulation results are presented.

6 .2  R obust Co n tr o l  of

M u l t i- Input N o n lin ea r  Un c er ta in  System s

To begin with, a general description of the system to be controlled is given, and an 

assumption is made which is a simple extension of that for the single-input case.

6.2.1 System Description

Consider a multivariable nonlinear system with mismatched uncertainties of the

form

x(t) =F(x,y)+G(x,y)u(t)+£(t) (6.1)

f ' l
^gll • • • • glm^

where F(x,y) = G(x,y) = : m = u(t) = •

\ U  V gnl • • • • gnm /  \ § n /  V W

F(v):RnxRy->Rn> G(v):RnxRr->Rnxm, x(-)e Rn is the state, and u(-)<= Rm is the control input. 

All the uncertainties in the system are represented by the lumped uncertain elements ye RY. 

^(t) represents external disturbances which could be either deterministic or stochastic. The 

only information assumed here is the knowledge of the bounds of y(t) and ^(t). These 

bounds are given by
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( 6 . 2 )

(6.3)

where O represents supremum bounds. Furthermore we define a matrix

WX) 4 ( ™ A j ( x . Y )  I l<iSn,lSjSm )

and assume that the following condition 

<|> J(x)-G(x,y) > (j) J(x)-(t>G(x) > 0 (6.4)

holds, where (j> indicates the infimum bound of G, and the inequality of (6.4) means that 

the quadratic form of these matrices satisfies the above inequality.

Here by mismatched uncertainties, it is meant that it is not required to decompose 

the system (6 . 1 ) into the certain part and the uncertain part of the form

where y is the nominal value of y.

A ssumption 6.1. (Conditions on the Input Mapping)

For a given system of form (6.1), it is assumed that the input mapping and its 

infimum bound satisfy the following conditions:

CD all m non-zero eigenvalues of the following matrix

are positive;

(D the minimum non-zero eigenvalue of the above matrix is sufficiently large that 

the matrix

F(x,y)= F(x,y)+AF(x,y) 

G(x,y)= G(x,y)+AG(x,y)

and that it is not necessary to represent the uncertainties by

AF(x,y)= G (x,y)S«x,y) 

AG(x,y)= G ( x , y ) 5 , ? ( x ,y )

G(x,y) -<t>J(x)e Rnxn (6.5)

(|)(!.(x).G(x>Y)€Rmxm

is positive definite, i.e., its symmetrised form is positive definite; 

d) for a properly chosen switching surface

( 6 . 6 )
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o(x) = [aj(x), a 2 (x),........., am(x)]T

the following matrix

Vo-G(x,y) -(^(x)-VoT = coG(x,y)-^(x)G Rmxm (6.7)

is positive definite, where Vo is the Jacobian of a, and

cog(x,y)4 V g-G(x,y) (6 .8 )

and

&g(x) 4 Vo-(|)g(x) (6.9)

is a non-singular matrix, and is called the generalised infimum bound of coG(x,y).

R e m a r k  6 . 1 :

•  T h is  a ssu m p tio n  is co n ce rn ed  m a in ly  w ith  th e  c h a rac te r is tic s  o f  th e  in p u t m a p p in g  o f  th e  g iv e n  

sy stem . In  g en e ra l, coG(x ,y )-O j(x ) is  n o t sy m m etric , an d  its  sy m m etrise d  fo rm  m a y  n o t b e  sign - 

d e fin ite . F o rtu n a te ly , th e  sw itch in g  fu n c tio n  o (x )  c a n  u su a lly  b e  ch o sen  so th a t c o n d itio n  (6 .7 ) 

ho ld s.

•  In  m o s t cases, lin e a r  sw itch in g  fu n c tio n s  a (x )  o f  fo rm

a ( x ! , x 2) =  S j-X1 - x 2 = 0  (6 . 1 0 )

a re  ad o p ted , an d  th e  p a rtia l d e riv a tiv e  o f  o (x )  w ith  re sp e c t to  x  is  s im p ly  a  c o n s ta n t m a tr ix  g iv e n  

b y  V a(x )= [S !,-I] . I t  is  th e re fo re  p o ss ib le  to  ch o o se  th e  e lem e n ts  o f  Sj such  th a t c o n d itio n  (6 .7 ) 

h o ld s  fo r  th e  in p u t m ap p in g  o f  th e  g iv en  n o n lin e a r  u n ce rta in  sy stem .

•  M o re  sp ec ific a lly , fo r  th e  g iv en  n o n lin e a r  u n c e r ta in  sy s tem  o f  fo rm  (6 .1 ), i f  a  c o o rd in a te  

tran sfo rm atio n  z= T (x ) can  b e  found , su ch  th a t th e  sy stem  c a n  b e  tran sfo rm ed  in to  th e  fo llo w in g  

fo rm

w h ere  z= [z ’ , z2]T an d  v(t) a re  re sp e c tiv e ly  th e  s ta te  an d  in p u t o f  th e  sy stem  in  n ew  c o o rd in a te s , 

/ 7(z ,y )e  R(n'm), / 2(z ,y )e  Rm, an d  g2(z ,y )s  R1"*™ is n o n -s in g u la r. T h e n  fo r  th e  sw itch in g  fu n c tio n  (6 .1 0 ), 

th e  m a trix

coG(z ,y )-n f(z )  =  V a -G (z ,y )  -<|£(z )• V c f
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=  [ s „ - i ] - ( s 2(" Y)) - ( o , ^ ( z ) ) . [ s „ - i r

= g 2( Z/YWj2(z)

is req u ired  to  b e  p o sitiv e . F ro m  th e  d iscu ss io n , i t  m a y  b e  s ta te d  th a t i f  th e  s ig n s o f  a l l  e lem e n ts  o f  

G (x ,7 ) d o  n o t ch an g e  fo r a ll ad m iss ib le  u n ce rta in tie s , th e  co n d itio n  (6 .7 ) is m e t.

Theorem 6.2.

For any matrices c ,  A , and any symmetric positive definite matrix B , if c ta  is 

symmetric and (A^ ) - 1 exists, then

(CtA -C tBC)—j-(AtB-!A) (6.12)

is negative semidefinite.

Proof:

CTA - C TB C = y ( A TB -1A ) - [ C TA - Y A TB -1 A ] ( A ^ A ) - 1 [ C ^ A - y A T B ^A ] 7  

= ■ - { ctA(AtB-1A)-1AtC + y (AtB-1A)(AtB-1A)-1(AtB-1A)t

-YCta (atb-1a)-1(atb-1a )t- y a tb-1a (atb-1a)-1(atc)t }

=■j Ca ^ a ) - c ta (a tb -1a ) - 1a tc  -  j (a tb - 1a )  +  y c Ta  + i * ATc  

If (ata)- 1 exists, then

a (atb-1a )-1at= a (atb-1a)-1atb-1(aaT)(aaI)-1b = b 

and so the above equality can be written as ronows

(C t A -  CTB C ) - t CAtB -‘A ) = -  [C TA  -  y AtB - 'A ] (A TB - 'A ) - ' [C t A  - j A tB -‘ A ]t 

i. e . , ( c ta  -  c tb c )  —j ^ a ^ - * a )  is negative semidefinite. □

The result of theorem 6.2 enables it to be concluded that for any vector ẑ O 

zt(cta - ctbc)z < yzt(atb-1a)z

so it is possible to replace the right-hand side by the left-hand side in the development of 

the next section. Obviously, this theorem is an extension of identity (4.12) for scalar case.

In order to proceed, some definitions are now made and some new matrices are 

constructed by rearranging the elements of the existing matrices. Let
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% f § ( x ,  Y )=

V
so that

0
A

J

L p + | 0 :=  %+5(x,Y)xImxi (6.13)

where Imx]4[1, • • •,1 ]T, and also define coG(x,y) by

co0 (x,y)=Laa (6.14)

Similarly, let

" o , ( x ) ^
0

Z(x) =
0

so g ( x )  = (6.15)

and finally, let

X © 0  N
U(t) =

o '  '

u(t)=U(t)xImxl (6.16)

With these definitions, the vectors Lp+̂ a, a(x) and u(t) may be represented by 

diagonal matrices multiplied by a special kind of vector with all elements equal to unity.

6.2.2 Robust Control Synthesis

Theorem 6.3.

For a matrix G(x,y) and its infimum bound (|)G(x)e Rnxm (n>m), and its generalised 

form £ 2 g ( x ) = V g -(|)g ( x )  defined in (6.9)

(D For the matrix A=(|)J(x)-G(x,y), if  its symmetric form As=(A+AT)/2e Rmxm is 

positive definite, then

is non-negative definite.

RnXn
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<D For the positive definite matrix coG-£2J, i.e., (coG-£2J)s p.d., if 

Xm[(coG ^ 5 ) s] ><5 > 0  

then the matrix

(6.17)

is positive definite, i.e.,

zT{cpI5I(^G)*coG* n j-Q G-(;-^J}z> 0  \fz*0  (6.18)

where (pM(*) and Xm(-) indicate the spectral norm (greatest singular value) and minimum 

eigenvalue of the respective matrices, and q is a positive constant satisfying (6.17).

Proof:

(3) Let A=<|>J(x)*G(x,y), and A s=(A+AT)/2. Let B=(|)G(x).

According to assumption 6.1, matrix AeRmxm is positive definite, so it is obvious 

that matrix BASBT is non-negative definite.

<D Knowing that, for any matrix Ce Rnxn, we have

U C ) l |z | |2 <  zTC z < Am(C)||z|F Vz*0 (6.19)

if Xm[(coG-nj)J>q>0 , then ?im(coG-aj)>?im[(coG-^J)s]>q>0 , so

■ f „  n T ^ G ^ ^ G  1  T f ^  f  0 T>. ^ Q g O S )  1

* “ b ‘° °  < P ^ ( « g )  '  ’ K « 0 a - O a )  , p ^ ( n 0 ) ' z  > 0
( 6 . 2 0 )

i . e ., ^ g ‘9 * ^ g

is positive definite. □

The problem now is, for a generalised Lyapunov function defined by 

V(t) g t ( x > a(x)>0 V(x,t) 3 a(x)*0 and v | a W = 0  = 0

to find a feedback control u(t) such that, for X={x(t)e Rn|a(x)?t0, x(t0)=x0}

V(x) = aT*a=aT-Va* { F(x,y)+G(x,y)u(t)+^(t)}

= aT- { LFa+LGa-u(t)+L^a }

=Ilxm-5:T(x){coF+̂ (x,y)+coG(x,y)U(t)}-Imxl<0 (6.21)

That is, the matrix ET(x){cOp(x,y)+coG(x,y)U(t)} is required to be negative definite, so that 

the system is stable. The following theorem solves this problem.



C h a p ter 6  % p6u st S ta 6 itity  ControC (III)  —  M uCti-lnput 124

T heorem 6.4.

The multivariable nonlinear uncertain system of form (6.1) admits a feedback 

control of form

U(t) = -(i2+1) p (x)£2G(x)E(x) (6.22)

or written in vector form

u(t) = - (i2+1) p (x)£2j(x) g ( x )  (6.23)

where the feedback gain

p(x) = ^ - [ £iG(x) ] - 1 •nF+,(x).|X(x)|-‘[ ^ ( x ) ] - 1 (6.24)

is a symmetric positive definite matrix, such that the matrix 

zT(x) {coF+̂ (x,y)+coG(x,y)U(t)}

is negative definite(n.d.), i.e., the derivative of the Lyapunov function V(x)<0 Vx?4), so the 

closed loop system is stable. Here

|z(x)| A diag(|ai(x)|) = sign[E(x)] *i:(x) (6.25)

A
i
j=i

V

3 o 1

dx; ■(®F(x)+ 0£.(t)) 0
A

0 da
d x :

•(® F.(x)-HD5j(t)) J

^ g ( x ) A

/ “ d a .  , “ d a .  . \
^ d T ’^G  (x) 'j=l O A j jm

n da
^ d T ’^G  (x)j=l O A j jm y

9 m  ~~ ^ m a x ( ^ G‘^ ?

(6.26)

(6.27)

i and q are positive constants to be chosen by the designer.

Proof: V(x) = aT* { LFa+LGa*u(t)+L^o }

= Iixm{ s T(x)[coF̂ (x,Y)+coG(x,y)U(t)] >1^

= Ilxm { zT(x)o)p^(x,y)-(i2+l)zT(x)coG(x,y)p(x)nJ(x)E(x)]} Imxl

According to theorem 6.3, the inequality
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Ilxm{(pM[i 2 G(X)]'®G(x.7)'£iG(x) - i l G(x)-<;-i i G(x) ^ x l  ^ 0

holds, and also note that

!ixm{ C0 G(x,Y)p(x)nJ(x) Jinx, >Xmil,[p(x)]-I,xm{ C0 G(x,y)!aJ(x) }lm x l> 0  

if p(x) and 0 )G(x,y)-Oj(x) are positive definite. Let p(x)=p'(x)-(p^, so that

V (x) = x̂m { sT(x)cOp (̂x,y) -  (i2+l)i:T(x)(pIJIcoG(x,y)p'(x)aJ(x)2:(x)} Imxl 

^ ̂ xm { s T(x)c0 F+̂ (x,y) -  (i2+l )ET(x)(;nG(x)p,(x)aJ(x)5:(x)} 1^

= Ilxm{ - ^ T(x) ^ g(X)P'(x)^ g(X)2(X)

+ET(x)coF+̂ (x,y)-zT(x)<;0 G(x)p’(x)0 G(x)z(x) } lmxl

^Ilxm{-12£T(X)(5QG(X)P,(X)QG(X)2:(X)

+-4^Pf^(x»T)[<5!̂ g(x)P,(x)q g( x ) ]" 1 ®Pf§(x»Y) ) lmxl 

according to theorem 6.2. Obviously, if 0 G(x)p'(x)0G(x) is positive definite, so is 

[QG(x)p'(x)0 G(x)]‘1, so  that we can choose p'(x) as a positive definite symmetric matrix 

such that the following matrix

-i2zT(x)(;OG(x)p,(x)O;(x)E(x)+7 C0^^(x,y)[(;OG(x)p,(x)Oj(x)]-1c0 F+̂ (x,y) 

is negative definite, and so V(x)<0. Let

p(x)= - ^ - [n G(x) ] 1a FH(x)-|i:(x)r1[a ' ( x ) ] - 1

Note here that z(x), C0 p(x) and |£(x)| are diagonal matrices, so they will commute with one 

another. Therefore

V(x) < -Ilxm{  i2DT(x)i;i2 G(x)p,(x)£2 Q(x)x(x)

—J'“ J+5(x,Y)[qnG(x)p’(x)nG(x)]‘1wF+4(X’'y)}lmxi

=  - I lx m { Y £ ^ F(x ) | i : ( x ) | - ' | x o ^ . ?( x )Y )[£ 2 F( x ) | i ( x ) r 1 ] ' 1 (Opf4 (x ,Y ) } I „D<I

=  - ! ix m  ( Y i 2 F+5 ( x ) |J : ( x ) |[ I  -  coJH ( x ,Y ) £ i ^ ( x ) c O p +5 ( x ,Y ) ] } I ^ ,

where |s (x)|Of+̂ (x) is positive definite.

For the ith entry of the diagonal matrix I-coJ+̂ (x)Op+̂ (x)cOp+̂ (x),
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[ Q ^ ( x , Y ) ] j

[^ F + ^ (x)]j

( F j ( x  >y)-*-£.j ( t ) )  Y
= 1 -  a 1- , . 1-------------------4 ^  > o3a.

3 T ( 0 F.(x)+<D6(t))
J

(6.28)

so, I-coJ+̂ (x,y)12p+̂ (x)coF+̂ (x,y) is positive definite. It follows that

- { i2zT( x ) ^ G(x)p'(x)nJ(x)i:(x) —^ ^ (x ,y ) [ ( ;^ G(x)p,(x )^ (x )]-1coF̂ (x,y)} 

is negative definite. Now the proof is completed and it is possible to conclude that

Y(x)<0 (6.29)

and the system is stable. □

R em a r k  6 .2:

• The proposed control is of the form

u(t)= - [^ W l- ’O ^W -signloM ] (6.30)

in which the constant c, can be chosen by the designer to satisfy condition (6.17). For instance 

®  <;=<Pm’ tb e 11

u(t) = - - ^ ^ - [ Q G(x)]"1n F+̂ x)*sign[a(x)] (6.31)

(D 9=1; then

u(t) = - d 2+i)q>M
2 i

[f2G(x)]'1QF+̂ (x)-sign[a(x)] (6.32)

6 .3  Illustrative  Exam ple

Consider the following simple nonlinear plant of the form: 

x(t)=F(x,y)+G(x,y)u(t)

'a1,1sin(x1)+a1'2x2N O O

where F(x,y) = a21xi+a23x3
V a31Xl+a33X3 >

G(x,y) = b2'i 0

v 0  b3'2>

in which the uncertainties have the following bounds:
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a^e [-1, 1.2] *{2e  [1, 2] a^e [10, 15] a^e [-20, -10]

a2’3G [-6 , -5] a3’3<E [10, 20] b^e [1, 2] b3'2e  [2, 10]

The nominal matrices can then be chosen to be

^uSinCx^+a^x^ '0.1sin(x1)+1.5x2>
F(x,y) = a2ix i+a23x3 = 12.5xj-5.5x3

 ̂ a31xl+a33x3 j v -15XJ+15X3 j

( 0  0 ) r o  o)
G(x,y) = b2j 0 = 1.5 0

 ̂0  b32> l o  6  J

As this system model is already in regular form, it can be directly rewritten as 

x 1(t)=F1(x1, x 2, y)

x2(t) = F^x1, x 2, y) + G^x1, x2, Y)-u(t)

such that two sets of new states x^Xj, x 2=(x2, x3)T result, and we therefore have
( x  \

Fi(x,y) = a11sin(x1)+[a12, 0 ] 2
VX3 J

F2(x,y) = Xi + a 23^

a33>

G2 (x,Y) = [ b021

A switching function is defined as follows

a ( x )  =  a 1 (jci ) - x 2 = 0

where o l(x1) =
r  an . f

*12

V

a

s ^ x2 1 J

The reduced order closed loop system (on the switching surface) is then

fx
dfci = a11sin(jci)+[a12, 0 ]- 2 =a 11sin(xi)+[a12, 0 ]-a1(xi)=^-xi

\ X 3 j

so, Si=k/a.i2, and s2 could be any value. Letting Sj=-1, s2=-0.7368, results in a closed loop 

system with pole: X=-1.5. The partial derivative of the switching function is given by

Vg =
 ̂ -0.7368

- 1  0

0  - 1

\

)
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( o  (A  

l o
V0  2 j

Q a = Va-(l)0=
f-1 0 
K0  -2

9 m  “  ̂ m a x (^ G * ^ G ^  ~  4  

It is obvious that the matrix

CO .QT J - V i  0 Y-1 0 
i2 o ^  0  - b i j f i  - 2

is positive definite for b2'ie[l, 2], b32e[2, 10], and satisfies condition (6.7), so the 

technique of theorem 6.4 is applicable here. We choose £<1.

0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0

time (sec)

S y stem  S ta te  Xj(t)

K?(t)

S y stem  S ta te  x 2(t)
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The simulation results are shown in Fig. 6.1. From the results it can be seen that 

although there are significant uncertainties in the system, the system has been stabilised 

and good closed loop system performance has been achieved.

6 .4  Sum m ary

In this chapter, the robust control problem for a class of multivariable nonlinear 

systems in the presence of mismatched uncertainties has been addressed, and robust control 

techniques have been developed. In contrast to previous work on the problem, there is no 

requirement for decoupling the nonlinear uncertain system or decentralising the whole 

system into several subsystems, no requirement for the nominal dynamics to be either 

stable or in some way precompensated, and no requirement for matching assumptions on 

uncertainties.

The design method is summarised as follows:

A lg o r i th m :

® T r a n s f o r m  t h e  o r i g i n a l  n o n l i n e a r  u n c e r t a i n  s y s t e m  i n t o  a  r e g u l a r  

f o r m ;

© C o n s t r u c t  m a t r i c e s  f o r  t h e  su p re m u m  b o u n d s  o f  F ( x , y ) ,  £ ( t )  a n d

in f im u m  b o u n d  o f  G ( x , y )  s a t i s f y i n g  c o n d i t i o n s  ( 6 . 2 ) ,  ( 6 . 3 )  a n d

( 6 . 4 ) ;

© C h e c k  t h a t  c o n d i t i o n s  ( 6 . 5 )  a n d  ( 6 . 6 ) h o l d ;

© D e s i g n  a  s w i t c h i n g  f u n c t i o n  a ( x )  s u c h  t h a t  c o n d i t i o n  ( 6 . 7 )  i s  

s a t i s f i e d ;

© C a l c u l a t e  t h e  s p e c t r a l  n o rm  o f  i20, a n d  c h o o s e  c o n s t a n t s  i  a n d  q 

s a t i s f y i n g  c o n d i t i o n  ( 6 . 1 7 ) ;

® C o n s t r u c t  n ew  m a t r i c e s  o f  f o r m  ( 6 . 2 5 ) ,  ( 6 . 2 6 )  a n d  ( 6 . 2 7 ) ;

® O b t a i n  f e e d b a c k  c o n t r o l  o f  f o r m  ( 6 . 2 3 )  w i t h  f e e d b a c k  g a i n

( 6 . 2 4 )  .
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7 .1  Introduction

O NLY the regulator problem® has been considered in previous chapters, the aim 

having been to compensate uncertainties and drive the states of the system to zero. 

Another important control aspect is the servo problem, i.e., trajectory tracking. The 

objective is to make the states and outputs follow desired trajectories. In order to achieve 

this, an ideal trajectory xd is introduced, and the control aims at driving the errors, e=x-xd, 

towards zero.

In this chapter, the robust tracking control problem for a class of nonlinear systems 

in the presence of uncertainties is investigated, and robust controllers are developed. The 

proposed design procedure consists of two phases. Firstly, the original nonlinear uncertain 

system is transformed into a new coordinate system using the feedback linearisation 

technique such that a system with linearised nominal part is obtained. Secondly, a robust 

variable-structure-like controller is developed based on Lyapunov stability theory, and the 

feedback gain obtained is only related to uncertainty bounds. Results are obtained for the 

cases where the uncertainties satisfy the generalised matching assumption as well as where 

they do not. The controller possesses the same structure in each case, but the tracking 

errors may be larger when mismatched uncertainties occur. It is also shown that the 

tracking errors will converge to zero when only matched uncertainties are present, or to a 

finite open ball with a finite radius in a finite time when mismatched uncertainties are 

present, the radius of the ball depending only on the bounds of the mismatched 

uncertainties. The internal dynamics are also considered, and under the assumption of 

minimum phase, the internal dynamics will converge to a ball with finite radius which 

depends on the bound of the desired trajectory.

® The regulator problem is sometimes referred to as the stability problem, w hilst the servo problem  is called the 
tracking problem.
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7 .2  R obust  Tr ack ing  of SISO System s

We now consider SISO nonlinear uncertain systems of the form 

x(t)=F(x,y)+G(x,y)u(t)
(7.1)

y(t)=H(x)

where F(x,y):RnxRT->Rn, G(x/y):RnxRT->Rn, x, y and u are the state, output and admissible 

control respectively, having appropriate dimensions, and y(t) is a set of lumped uncertain 

elements. It is assumed that the state and input mappings F(x,y) and G(x,y) are bounded, 

and that the bounds are deterministic and known. These bounds will be described later.

In what follows, in order to investigate the stability properties and design the 

feedback control, the following generalised Lyapunov function candidate is considered 

V(t) = y l(t)+V2(t) = eTPe+ c 2(t)/2 (7.2)

where a(t) is the chosen switching function, and P is obtained by solving Lyapunov matrix 

equation ATP+PA=-Q, where A is the state matrix of linearised nominal system of (7.1), P 

and Q are positive definite matrices having appropriate dimensions.

We define the notations

^M(m)() =max(min){^(*)} (7.3)

to indicate the maximum (minimum) eigenvalue of a square matrix.

T heorem 7.1. (Uniform Ultimate Boundedness o f SISO Nonlinear Uncertain Systems)

For the SISO nonlinear uncertain system represented by (7.1), if the uncertainties 

are bounded, then a variable structure controller can be found such that the output response 

of the system will track a given desired trajectory, and the closed loop system is uniformly 

ultimately bounded. Moreover, the tracking errors will (D converge to zero in a finite time 

T and remain there when only matched uncertainties are present; or (D enter a ball BK with 

radius k in a finite time T(r,k) and remain there when mismatched uncertainties are
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present. Here r is the bound of the initial state, and the radius k depends only on the 

bounds of the mismatched uncertainties.

The following sixteen pages are concerned with the proof of this theorem.

7.2.1 The Case of Matched Uncertainties

According to theorem A . 6  of appendix A, a coordinate transformation can be found 

such that a given nonlinear uncertain system of form (7.1), with relative order v<n, in the 

presence of only matched uncertainties, can be transformed into the following form:

z l(t) = z2(t) 

zv_1(t) = z (̂t)

zv(t) = a(z,0+b(z,0-u(t)+81(z,C,Y)+52 (z,C,Y)-u(t) (7.4)

y(t) = h(z) 

t(t)= q(z,Q

Let u(t) = ~b ( z ', 0  {-a(z,0 +v(t)} (7.5)

then

z1(t) = z2 (t) 

z ^ ^ z ^ t )

zu(t) = v(t)+51(z,C,Y)+S2(z,C,Y)*v(t) (7.6)

y(t) = h(z) 

C(t)=g(z,Q

where

(7.8)

(7.7)

are uncertainties in the system which clearly satisfy the generalised matching assumption 

of definition 2.3, and it is also required that 82>0 (as assumed in assumption 2.7).
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Denote the tracking errors by the difference between the real state trajectory z(t) 

and the given ideal trajectory zd(t)

then we have a new system with the tracking errors e(t) as the states and v(t) as the input 

e1(t)=e2 (t)

eu.1(t) = ev(t)

e (̂t) = v(t)+ 8 1(z,C,y)+8 2 (z>C,T)-v(t) -z^(t) (7.10)

C(t)=g(z,Q

Define the following polynomial 

p ( X ) = x v A + a i r - 2 + .......+ v i

where % (i=l,2 , ---- , u-1) are chosen such thatp(k) is Hurwitz®. The switching function can

therefore be defined as follows

(7.9)

o(t) = e„(t) + 2 ak-e1).k(t)
k=l

(7.11)

Using (7.10)

= - I a k-eu.k(t)+a(t)
k=l

and the time derivative of the switching function (7.11) is

a(t) = e1)(t) + S a k-ea).k(t)
k=l

= vtO+S^z^/y) + S2(z,C,y>v(t) -z^ t) + X ak-ev.k(t)
k=l

(7.12)

The feedback control is chosen to be of the following form

v(t) = Zy(t) -  Z a ^ e ^ t t )  - p r a(t) - p 2-sgn[o(t)]
k=l

= zj(t) -  E ak-e„.k(t) -  p, -a(t) -  p2-sgn [cx(t)]
k=l

(7.13)

® A Hurwitz polynomial is a polynom ial having only roots with negative real part.
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where sgn(a) is the sign function of a(t). Therefore, from (7.12) 

a(t) = { zj(t) -  X ak-ev.k(t) -  pj - a(t) -  p2 -sgn[a(t)]}
k = l

+ 8 t(z £ ,y )+ 8 2 (z,C,y)v(t) -  zj(t) + X ak-ev_k(t)
k = l

=- p, -c(t) -  p2 -sgn[o(t)] + + 8 2 (z,C,y)-v(t)

It is concluded that, for the robust tracking problem, the original nonlinear 

uncertain system of form (7.1), subject to the generalised matching assumption, can be 

linearised and transferred into a new system of form 

e1(t) = e2(t)

D-l
e u . 1( t )  =  - E a k * e u . k ( t ) + a ( t )

k = l

G ( t )  =  - p 1* a ( t ) - p 2 - s g n [ G ( t ) ] + 8 1 ( z , C , Y ) + 5 2 ( z , C , Y ) - v ( t )  

o r  w r i t t e n  i n  c o m p a c t  f o r m

e(t) =  A e (t)+ B a (t)

6 (t)=- p, -o(t) -  p2 -sgn[a(t)] + S^z^.y) + 8 2 (z,£,Y)-v(t)

where

A=
0 1

1

>1

B = • e = e 2

uJ

(7.14)

(7.15)

(7.16)

(7.17)

o
v-ai).i - a ^.2

The new system can be regarded as two subsystems, where (7.16) has e(t) as the state and 

o(t) as the input, and (7.17) has a(t) as the state and v(t) as the input.

All uncertainties (7.7), (7.8) are assumed bounded, and the bounds are given by

(7.19)

where Al and A2, which could either be functions of tracking errors e(t) and time t or 

simply constants, are presumed deterministic and known.
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§1. Stability on the Switching Surface

By stability on the switching surface, it is meant that o(t)=0. The Lyapunov 

function, according to (7.2), is therefore given by 

V(t)=eTPe

Differentiating V(t) along e(t) and considering a(t)=0, gives

V (t) = eTPe+ eTPe = -eTQe+ 2eTPB a(t) <-A,m(Q)eTe < 0 

Obviously, whenever eTe=||e(t)||2>0, V(t)<0 Vt>0, because

U Q ) > 0  (7.20)

It is therefore concluded that the tracking error will converge to zero, i.e., the 

system is asymptotically stable.

§2. Stability off the Switching Surface

Initial conditions will not necessarily be on the switching surface, so the state 

trajectory must be considered for a(t)^0. The Lyapunov function is of the form 

V(t) = V1(t)+V2(t)=eTP e + y a 2 (t)

V(t) = V1(t)+V2(t) = eTPe+eTPe+a(t)a(t)

= { eTPe+eTPe-XM(P)a2 (t)} +{ a(t)c(t)+XM(P)a2 (t)}

= v;(t)+ v ;a ) (7.21)

where v;(t) = V1(t)-XM(P)a2(t) (7.22)

v ;(t )= v 2 (t)+?iM(P)(T2(t) (7.23)

The two portions are now considered separately. Firstly

VJ(t) =eTPe+eTPe-^M(P)a2(t) = -eTQe+2eTPBo(t)-XM(P)a2(t) 

Note here that ||B||=1, and

2eTPBa(t)<2^.M(P)||e||-||o||<A.M(P)||e||2 +A.M(P)||a||2

so v;(t)<-Xm(Q)||e|P+X.M(P)||e|[2 +XM(P)l|cy|P-XM(P)cr2 (t)

=-[Xm(Q)-XM(P)]||e]|2 (7.24)
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Again for the second term of (7.21)

V̂ Ct) = o(t)a(t)+^M(P)a2(t)

= a(t){-p 1a - p 2sgn(a)+51 +52 [w(t)-p,CT-p2sgn(<r)] } +?iM(P)c72 (t) 

= -(Pi +-j^j-)w2 +SlCT+52 [w(t)CT-(p1 +-j^j-)o2] +XM(P)a2(t)

where
\>-i

w(t) = E ( t ) - £  at-e„ fc+1(t)
k=l

(7.25)

and Ax , A2 are defined by (7.18), (7.19). Therefore

v;(t)< -(p 1+-j^i-)<j2 +51CT+82 [w (t)a-(p 1+-j^j-)a2]+(l+A 2)XM(P)cr2

< ■P[pi+-j^j— V ( p ) ] o 2+ { 8 iC T -(l-P )[p i+ -j^ |-^ M (P )]o 2 }

+A2I w (t)a- [p,+-j^j—XM(P)] a 2 1

2 - P [ p i + - j | ^ | - V p )]CT2 +
T p " 1-^ 2

4[p‘+iS t"Xm(P)]
(7.26)

where 0<p<l is a constant. Note that the identity (4.12) has been used here. Then the 

choice of

p2+ [p i -XM(P)] I|CJ|| > A?
■ +  '

A~w2
> 0 (7.27)

2 V  d -P )P  P

implies V^t) <0 , so that

V(t)=V,(t)+V 2 (t) <Vj(t) <-[Xm(Q)-XM(P)]||e||2 (7.28)

It is easy to see from (7.28) that, for any non-zero tracking error ||e||>0, we have V(t)<0 if 

Xm(Q)/XM(P)>l (7.29)

This means that the error will tend to zero as time increases.

Now considering (7.27), let

p,=XM(P)>0 (7.30)

Then



C h a p ter 7  H (p5ust ‘T racking ControC 140

A? A2w2
--------— + — - — > 0d-P)P+ p - u ( 7 . 3 1 )

Such a choice of control v guarantees that the closed loop system is asymptotically stable. 

R e m a r k  7 . 1 :

•  T h e  resu lts  o b ta in ed  show  th a t th e  c lo sed  loop  re sp o n se  o f  th e  n o n lin e a r  sy s tem  (7 .10 ) is 

a sy m p to tic a lly  stab le  w ith  th e  ch o ice  o f  fe e d b ack  g a in s  (7 .30 ) an d  (7 .3 1 ) w h en  th e  u n ce rta in tie s  

sa tis fy  th e  m a tch in g  co n d itio n s.

7.2.2 The Case of Both Matched and Mismatched Uncertainties

Applying the same coordinate transformation to a system where both matched and 

mismatched uncertainties are present results in 

e 1(t) = e2(t) + 8oa(z,C,Y,v)

e ^ i ( t )  =  e u ( t )  +  8 0 jV _1 ( z , C / y , v )

e „ ( t )  =  v ( t ) + 8 j ( z , C , Y ) + 8 2 ( z , C , Y ) v ( t ) - z J ( t )  ( 7 . 3 2 )

y ( t )  =  h ( x )

C ( t ) = £ ( z , 0

where 8J(z ,£,Y) and 8 2(z,C/y) represent the matched part of the uncertainties, and

8 0 )k( z , C , Y , v )  =  8 J fk ( z , C , Y ) + 8 J ik ( z , C , Y ) - v ( t )  ( k = l , 2 , • • •, u - l )  ( 7 . 3 3 )  

indicates mismatched uncertainties in the system. According to definition ( 7 . 1 1 )

o ( t ) = e t)( t ) + I a k - e v . k ( t )
k=l

SO

d ( t )  =  e u ( t ) + X  a k - e w.k ( t )
k=l

a n d  h e n c e
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=  v ( t ) + 8 j ( z ,C ,Y ) + 5 2 ( z ,C ,Y ) * v ( t ) - z J ( t ) + X a k-e1).k( t )
k = l

=  { z J C O - X a ^ e ^ j C O - p j - C T C O - p j - s g n t a C t ) ] }
k = l

+ 8 j(z,C,Y)+82(z,C ,Y)*v(t)-zJ(t)+Xak*[e1).k+1(t)+ 80l).k(z,C,Y,v)]
k = l

D - l

= -pr a(t)-p 2 -sgn[a(t)]+Sj(z^y)+82 (z4y)-v(t)+2ak-80 u_k(z,C,y,v)
k = l

=  - p 1- a ( t ) - p 2* s g n [ a ( t ) ]

\)-l v-1
+ [8 j(z ,C ,Y ) + 1  a k-5 J  ^ ( z ^ / y ) ] + [ 5 2( z ,£ ,y ) + X  a k-5 20 v.k(z ,C ,Y ) ]-v ( t)

k = l k = l

So, the system can be written in the following form

e(t) = Ae(t) + Ba(t)+8 0(z,£,y,v) (7.34)

a(t) = -p1-a(t)-p 2 -sgn[CT(t)]+8 1(z,C,y)+8 2 (z^,y)-v(t) (7.35)

where A, B and e are the same as those of (7.16) and (7.17) and

^ 0  =  1̂ 0,1 ’ * ’ * *> ^ 0,d- J  

and the matched uncertainties are

^(z^Y) = 5i(z,C,Y) + X ak.5 .̂k(z,C,Y) (7.36)
k = l

S2 (z,C,y) = S;(z,C,y) + X ak-8 ^ .k(z,C,y) (7.37)
k = l

The uncertainties are still assumed to be bounded. The bounds of the matched part 

8 j, 8 2 are of the same form as (7.18), (7.19), and the bound of the mismatched part S0 is 

given by

8 0 (z,C,y,v) < cjlzll+c2 ||v|| <c0 +Cj||e||+c2|| v|| (7.38)

where c0=c1||zd||, cx and c2 are all positive constants, and presumed known. It is reasonable 

to assume that, for any properly designed robust control, the state outputs z(t) and the 

controls v(t) are bounded. From (7.13)

v ( t )  =  z ^ o - a ^ - a ^ . , --------------- a 1). 1e 2 - p 1- a ( t ) - p 2-sgn[C T (t)]

=  z J ^ - a e + a e - a ^ ^ - a j e ^ . ! au.1e2 -p i-a (t)-p 2 -sgn[a(t)]
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where 5 = (SX).1, a^2, • • • •, a t). Let

where

a t  aiC-o

={ 3ie„-i+32e„.2+ • • • +ax>-Iei } aie\) a 2 e v - l  *

r a 2 - S 1

=-ai R +  &i R i+ * + aj C2‘ ax 6 l /

= -a1 {e„+aiV ,+  --- • + a D -2 e 2 + a D - i e l  }

=  - a , - o ( t )

^ =ai ^  ^1—ar ai+ a 2

a i).i ^ i )_2 ~
^  =  a \)-2 ^  f l\)-2 = " a r  a \)-2 + a \)-1

—  a \)-l ^ D - l —  " a i * a i) - l

It follows that

v(t) = z^O-Se-Cpj+a^-cCO-p^sgnta^)] (7.39)

for a bounded ideal trajectory, |z (̂t)|< .̂ The control is then also bounded

|v(t)ll < d + p||.||e|| + |p 1+a1|-||a(t)|| + p2 (7.40)

so the bounds of the mismatched uncertainties can be given by

8 0 ^c0 +c1||e||+c2 ||v||<p0 +pi||e|| + p2 ||o|| * (7.41)

where

Po = co+c2(^+p2) (7.42)

Pi = c1+c2 ||a|| (7.43)

P2 = c2 lPi+ail (7-44)

Note here that inequality (7.40) implies that the control is bounded. This is an 

essential condition for any acceptable design.

We now consider the stability properties of the system using the same form of 

Lyapunov function (7.2) as before.



C h a p ter 7 3 (p 5 u st ‘T racking ControC 143

§1. Stability on the switching surface

From (7.2), V(t) = eTPe as a(t)=0. Differentiating V(t) along e(t), we have 

V (t) = eTPe+eTPe = -eTQe+ 2eTP80 + 2eTPB o(t)

- _̂ m(Q)eTe + 2  V(P)-lle|l { P0+ P Jell}

bearing in mind (7.41). It is also true that

2 XM(P)P0 ||e|| < VP)Pollell2 + V P )P o

V(t) <-{Xm(Q)-XM(P)[p0 + 2 P,] }||e||2 +XM(P)p0

To make V(t)<0, it is required that

and it is then concluded from (7.45) that whenever the tracking errors

l|e|P > Xm(Q)/XM(P)-[P0+2P1] > 0

V(t)<0 , and the system is stable.

(7.45)

(7.46)

(7.47)

R e m a r k  7.2:

•  T h e  re su lt o b ta in ed  ab o v e  m ean s  th a t an y  track in g  e rro r  such th a t Help is  g re a te r  th an

9  \ , ( Q y v p H P o + 2 P ,]

m a k es  V (t)< 0 , so th a t th e  system  is  s tab le . T h ese  track in g  e rro rs  w ill  c o n v e rg e  a n d  b e  a rb itra rily  

c lo se  to (p.

•  L e t k =  (p+e, w h ere  e is an  a rb itra rily  sm a ll p o s itiv e  co n s tan t. T h en  i t  is  e a sy  to  see  th a t  th e  track in g  

e rro rs  ||e ||2 w ill converge  to  a ba ll B K w ith  rad iu s  o f  k , w h ich  d ep en d s  o n ly  on  th e  b o u n d s  o f  th e  

m ism a tch ed  un ce rta in ties  in  th e  system .

§2. Stability off the switching surface

The case of a(t)^0 is now considered. Here the state trajectories are not on the 

switching surface.
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and

V(t) = V1(t)+V2 (t) = eTPe + y a 2(t)

V(t) = ■Vj(t)+V2 (t) =eTPe+eTPe+o(t)a(t)

= {eTPe+eTPe -2^ M(P)a2 (t)} + {a(t)a(t)+2^M(P)a2 (t)} 

= Vi(t)+v;(t) (7.48)

where

V J (t) = Vj (t) -  2^M(P)a2 (t) (7.49)

v;(t)= V 2(t)+2?iM(P)a2 (t) (7.50)

For the first term

v; (t) = eTPe+eTPe -  2Xm(P)g2 = -eTQe+ 2eTP50 + 2eTPBa(t) - 2 Am(P)g2

^ -^m(Q)l|e||2+ 2  VP)lle||{ P0 + Pillell + P2IMI} + 2  VP)lle|M|a|| - 2 ^M(P)a2

where ||B||=1 has been used. Now, using

2 V(P)l|e|IPo^M(P)Polle|l2 +a.M(P)Po 

2 V P )P 2lle|l INI < XM(P) PlHelP+Xm (P) ||ct F  

2XM(P)||e|| ||a|| <XM(P)||eF+XM(P)||a|P

it follows that

v ; ( t ) < - ^ m( Q ) | |e |P + ^ M ( P ) [ l + P o + 2 P 1 + P l ] | | e |P + X M( P ) P o + 2 X.M(P ) l |c r ||2 - 2 XM(P)<y2

= -[UQ)-^M(P)(l+Po+2P,+P22)]lle|l2 +^M(P)Po (7-51)

Again for the second term, we have

v;(t) = a(t)a(t)+2V(P)a2(t)

= a(t){-pr a - p 2 -sgn(a)+8 1 + 8 2 [w (t)-p 1-0 - p 2-sgn(a)] } + 2 \M(P)a2(t) 

= -(pi+-j^r)0 2 (t)+ 8 10 (t)+ 8 2 [w(t)a(t) - ( p1+-j^r)a 2] + 2 XM(p)a2(t)

where
\)-i

w(t) = zu( t ) -E a ke1, k+1(t)k=l

Using definition (7.18) and (7.19), and bearing in mind identity (4.12),
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V2(t)^-(pi+-j^j-)a2 (t)+8 ,CT+8 2 [w(t)0 (t)-(p1+-j^j-)a2 (t)]+2 (l+A 2)?iM(P)(j2 (t) 

< - ( 3 [ P l + - j g j — 2 XM( P ) ] c r 2 ( t ) + {  5 lCT- ( l - P ) [ P l + - j ^ — }

+A2 lw(t)a(t)-[Pl+-j^j—2XM(P)]a2 (t)l

P 2
^ -P[p i+ 1 ^ f  _2 XM(P)]cr2 (t) +■

P ^ +A2w 2

4 [Pi+1 mT 2:1m(P)]
where 0<p<l is a positive constant. The choice of

p2+[p,-2?iM( P ) ] | |a | |> 4 ^ t I
A? A2w2

+—%—  > o
m  p

implies that V2 (t)<0. It follows that

V(t) = V1(t)+V2(t)<V;(t)

^  - [^ m(Q) -  V P ) (  1 +Po+2P1+ p |) ]  Hell2 + V P ) P o  < 0 

where the following condition

k m( Q ) / \ M( P )  >  l + P 0+ 2 p j + P 2

is required to be true. It is therefore concluded that whenever

Pol|e|p >■ > 0
Xm( Q ) /X M( P ) - ( l + P 0+ 2 p i + P l )

then V(t)<0, i.e., the system is stable. We can choose 

p ,= 2 \ 1(P)>0

P 2 “
A, A2w2

> 0

(7.52)

(7.53)

d -P )P  P

(7.54)

(7.55)

(7.56)

(7.57)

(7.58)

R e m a r k  7.3:

•  F ro m  the d iscussion  ab o v e , s im ila r resu lts  to  th o se  fo r  th e  ca se  o f  o n ly  m a tch e d  u n ce rta in tie s  a re  

ob ta ined , and  th e  co n tro l possesses  the  sam e s tru c tu re  as  th a t d ev e lo p e d  fo r th e  c a se  o f  m a tc h e d  

u nce rta in ty . T h e  d if fe ren ce  is th a t th e  c lo sed  loop  sy s tem  can n o t b e  a sy m p to tic a lly  s tab le , b u t o n ly  

u ltim ate ly  bounded .
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7.2.3 Internal Dynamics

No consideration of internal dynamics

C(t)=g(z,0 (7.59)

has been made so far. They may be of great importance and will now be investigated.

Suppose that the system is exponentially minimum-phase in some domain Q, so 

that the zero dynamics of the system are exponentially stable in Q. According to theorem 

3.7, there exists a positive definite function V0 (C) satisfying the following inequalities

v 1 l l t l P < V 0( O < v 2||CIP ( 7 .6 0 )

^ • < 7 ( 0 , 0  < - v 3||CIP ( 7 .6 1 )

;>V
( 7 .6 2 )

for some positive constants v l5 v2, v3 and v4. Differentiating V0(0  along £ yields

av0 av0 av0 
v o( o = - ^ 2 -<?( z . o = - ^ 2 - 9 (a c ) + - ^ 2 {g t e o - ? ( ° , o }

v̂3iiai2+v4iiai-{ii?(z,o-<?(o,oil}
It is also assumed that q is a Lipschitz vector function® because the states z, £, the state 

mapping f, and the coordinate transformation \j/ are all smooth, /.<?., infinitely 

differentiable. This implies that

i.e.

\\q{z, O~q(0, OH <fH|z||

\ \ q ( z , 0  ~  4 ( 0 , 0 ||d = SUP ■
(z,Qe H Ml ( 7 .6 3 )

where i3- is the Lipschitz constant. So 

V 0 ( O s - v 3 K I P + v 4 K I |- d - | |z | |

® D e fin itio n  (Lipschitz Condition)[4]:
I f  the function f(x,t) is continuous in t, and if  there exists a strictly positive constant L  such that 

llf(x2,t)-f(x1,t)ll<Lllx2-x1ll

for all x2 and x, in a finite neighbourhood o f the origin and all t in the interval [t0,to+T], then f(x,t) is a  Lipschitz 
function. The equation x=f(x,t) has a unique solution x(t) for sufficiently sm all initial states and in a sufficiently 
short time interval.
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In order to distinguish from the vector e= (el5e2, • • ♦ 

e'=z-zd = (e1,e2, ........... ,eJT

where z = e'+zd, ||z|| <||ej|+||zi||, and the following row vectors

a = (V i» -----» ai)’ b=(bv.1, ------ , bj)

where b—a—l (i=l, ♦ ♦ • •, \)-l). We therefore have 

He'll = ||eu+ ae-be|| = ||o-be|| < ||o||+fc||e||

,eu.1)T, define a new vector

(7.64)

u-l
where a=ev+ae=ev+ E akev.k(t), and £=||b||. So we have

k=l

(7.65)

(7.66)l|z|| ^ ||e'|| + ||zd|| < ||a||+ &||e||+ c 

where ||zd||<c is bounded.

Vo(0<-V3llCil2+V4l|Cll l̂|zll<-v3|lCII2+v4||Cll*̂ {l]cTH+̂ |Iell+c}

< - V 3 llCII2 + v 4^ | |C I M |a | |+ v 4^ | |C I M |e | |+ v 4^ ||C I |c  ( 7 .6 7 )

Now we consider a Lyapunov function candidate of the following form

V(t) = V i (t)+ V 2(t)+(aV 0 (t) (7.68)

where \x is a strictly positive constant to be determined. The time derivative of V along the 

trajectories of the system is

V(t) = V 1(t)+V2(t)+|aV0(t)

=V'1(t)-2^M(P)a2 +XM(P)||e||2 +V2 (t)+3XM(P)G2+(iV0 (t)-XM(P)||e||2 -XM(P)a2

=v;(t)+v;(t)+v;(t) ( 7 .6 9 )

where

v|(t) = ■V ,(t)-2V (P)oJ(t) +XM(P)[|e|P (7.70)

V;(t) = V2 (t)+3XM(P)cj2(t) (7.71)

v;(t) = |xV„(t)—XM(P)||e||2 -XM(P)a2 (t) (7.72)

It follows that

V ;(t)<{-nv3 ||CF+nv4||CH-iJ||z||}-XM(P)||e|P-XM(P)a2

^ {-pv3||ai2+ |iv4||a|-tJ[||a||+M|e||+c]}  -XM(P)||e|P-V(P)^2 

= {-v 3p|ICIP+pv40||a|-||a||+|iv4i3||a|-fc||e||+|j.v4i5||a|c}-XM(P)||e|P-A.M(P)a2
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Because

| i v 4 d | | C | | - | | a | | < ^ - ^ - ^ v ^ | | C | P + X M( P ) | | a |P  

jj.v4d*||CI|-||e|| •02*2||CIP+ ^(PJIIelP

t h e n

V 0 ( t )  < -[l{  V3 ~ ^ j p j  ■ | x v ^ ( l + f c 2 )  } | | £ F + H V 4 U | | a | c < 0

t h e r e f o r e

v ^ ^ p ) ^ {1+ bl)> 0

i .e .,

a n d

Let

t h e n

0 < ( i <
4 v ^ m ( P )

v 24®2(l+ b2)

iicii>-
Vq—'= 7 ^ (1+fe2)

■>o

4 « v A < ( P )

^ v j& i l+ b 2)
(0 < a < l)

IICII>
v 4i

( l - a ) v 3
> 0

( 7 . 7 3 )

( 7 . 7 4 )

( 7 . 7 5 )

( 7 . 7 6 )

( 7 . 7 7 )

( 7 . 7 8 )

R e m a r k  7 . 4 :

•  T h e  re su lt o b ta in ed  h e re  im p lie s  th a t th e re  ex is ts  an  o p en  b a ll B k w ith  f in ite  rad iu s

_ _ v £d c _

K _  ( l - a ) v 3

w hich  d epends on  th e  b o u n d s  o f  th e  d es ired  tra jec to ry  z d (||zd||<c), such  th a t the  s ta te  o f  th e  in te rn a l 

dyn am ics w ill a rb itra rily  con v erg e  to w ard s  B K. S o  i t  is  co n c lu d ed  th a t C, is  b o u n d ed  as  lo n g  as  zd is 

bounded .

A fte r co n s id erin g  th e  in te rn a l dynam ics , th e  to ta l L y ap u n o v  fu n c tio n  is  g iv en  b y  (7 .7 0 )~ (7 .7 2 )
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instead of (7.49) and (7.50). Following the same procedure, it is therefore straightforward to extend 

(7.55M7.58) to

U Q ) / ^ ( P ) > 2 +P„+ 2 P 1 + ^ > 0 (7 .79 )

||e||2> --------------------- t 2----------------- ^ - > 0
W / \ , ( P ) - ( 2 +P„+ 2 P ,+ P D

(7 .8 0 )

P i = 3 \ i( P ) > 0 (7 .81 )

1 /  A ,w 2

p2-  2  \  ( l - |3 ) p  +  p  ~ °  (0 <P<1) (7 .8 2 )

7.2.4 Estimate of Uniform Ultimate Boundedness

It is now possible to estimate the boundedness properties of the closed loop system. 

It can be shown that the closed loop system is uniformly ultimately bounded when either 

matched or mismatched uncertainties are present. Theorem 3.11 is required here.

The form of Lyapunov function to be used is

V(t) = V i (t)+ V 2(t) + |iV 0(t) (7.83)

Differentiating V(t) along the system trajectory results in

V ( t )  = V j ( t )  + V 2 ( t ) + | L iV 0 ( t )  =  VJ(t)+ v;(t) +  v ; ( t )  (7.84)

Considering the results (7.77)~(7.82), we have V o ( t ) < 0  and V 2 ( t ) < 0 .  It follows that

V (t) < V|(t)< - | \ m(Q) -Xm(P)(2+P0+2P1+P!)] ||e||2+ XM(P)P„ < 0 (7.85)

For simplicity, denote

*1 = \ » ( Q ) - \ i(P )(2+Po+2Pi+P2)  > 0 (7 .86)

<so=*,M(P)PO>0 (7 .87)

then

V (t)<-*1||e|P+3.0<0 (7.88)
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so there exists a closed ball with radius

k = -£2-+8 (7.90)

where s is an arbitrarily small positive number such that the tracking error ||e| |2 will enter 

the ball and remain in it thereafter. So we say the output of the closed loop system is 

ultimately bounded.

Furthermore, if the error ||e| |2 enters the ball BK in a finite time, it is said that the 

system is uniformly ultimately bounded. Now let us try to find the time period required for 

the tracking errors ||e|| to reach the surface of the ball BK.

V i ( t ) = d [e dT[ e ]  < - K 1 l le |P + J > o < 0

So we have

d||e||2 -fl’Jlelp+fl'd ....... . , ,  „
~ars uo ^ |e"2+*°<0

where

The solution of this differential inequality is

| | e | P < - | 2 . + [ | | e 0 | P - | i ] e - 4' ; (,-,o>
o

(7.91)

(7.92)

(7.93)

(7.94)

(7.95)

A n  e s t i m a t e  o f  t h e  t i m e  r e q u i r e d  f o r  t h e  t r a j e c t o r y  t o  e n t e r  t h e  b a l l  B K  i s  T ( r , K ) ,  w h e r e

T ( r , K )  < - p - L n
O j-K —fI>Q

=  - r r - L n
O ,

1 + -
r-K

(7.96)

and ||e||2<r is the bound of initial values of e(t).

So, it is concluded that, under the feedback control of (7.13), the closed loop output 

response of the nonlinear uncertain system will follow the given ideal trajectories, and the 

tracking errors e(t) are uniformly ultimately bounded, i.e., converge to a ball BK with 

radius of k within a finite period of time T(r,K) where r is the bound of initial states. This 

completes the proof of theorem 7.1.
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7 .3  R obust  Track ing  of MIMO System s

( 7 .9 7 )

We now consider MIMO nonlinear uncertain systems of the form 

x(t) = F(x,y)+G(x,y)u(t) 

y(t)=H(x)

where F(x,y):RnxRY-^Rn, G(x,y):RnxRY->Rnxm, H(x):Rn->Rm, x, y and u are the state, output 

and admissible control, respectively, having appropriate dimensions, all the uncertainties 

represented by the lumped uncertain elements ye RY are assumed to be bounded, and the 

bounds are presumed deterministic and known.

7.3.1 Transformation of MIMO Nonlinear Uncertain Systems

For the MIMO case, we consider the transformation of square systems, i.e., systems 

with the same numbers of inputs and outputs. Applying the results of theorems A. 13 

(relative order) and A. 14 (coordinate transformation) in appendix A to a MIMO nonlinear 

uncertain system, the system equations can be put into a nominal form, with (z, 0  as new 

coordinates. Specifically, the external dynamics of the ith subsystem with relative order 

'i)i(i=l,2 ,-,m) can be expressed as follows 

Z] i(t) = zi 2 (t)

m ^  m
Z i,» (t)  =  a j ( z , 0  +  E b ;  j ( z ,0 - U j ( t )  +  5 ; i ( z , 0 y )  + 1 5 ;  2j ( z ,0 y ) - U :( t )  ( 7 .9 8 )

yi(t) = hi(z) (i=l»—* m) (7.99)

where Sj a and Bj 2 are matched uncertainties, and the internal dynamics are of the form

z(t) = q( z,Q +p( z,Qu(t) (7 . 1 0 0 )

with k=l, • • • •, n-T) and i=l, • • • •, m
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q k (  z ’0  = L p ? k (x ) P k , i ( z ’ 0  = L G£ k ( x )

T h e  f e e d b a c k  c o n t r o l

u(t)=-n '1A +n-1v(t) (7.101)

renders the (n-o) states C unobservable. Here

n =  {L 0 jL'̂ '1Hio¥ -1(z)|fei,...,nl,j=1,...,ra}e R m><m 

We define a m dimensional vector switching function as follows

a(t) = [CTi,CT2,----- ,0 j T

w h e r e

t)r i
G i ( t )  =  e i u ( t )  +  E a i k - e iT ) ..k ( t )  ( i = i , 2 ,  • • • -,m) ( 7 . 1 0 2 )

’ 1 k=l ’ 1

t>;-l V>r l \)j-l
Then ^ u ̂  (t) = ̂  u(t) + £% k-e. u _k(t) -  E % ̂  u _k(t) = -  S  ^ ̂  u ,k(t)+ a^t)

and the time derivative of the switching function (7.102) is given by
t)r i

^ i ( t )  =  e i u ( t )  +  X a i k - e i u .k ( t )
1 k=l 1

m r)r l
= Vj(t)+ 8 j tl(z,C,y) +S5i 2j(z,C,Y)-Vj(t)-zf v.(t) + E % ̂  u .k(t> (7.103)

j= l J 1 k=l 1

w h e r e  S j >1,  8 i>2- a r e  o f  t h e  f o r m  ( 7 . 7 )  a n d  ( 7 . 8 ) .  W e  a d o p t  f e e d b a c k  c o n t r o l  o f  t h e  f o r m

r î"1 iv(t) = { z\ (t) -  E % k-eiu .k+1(t)) -  Pi-CT(t) -  p2-sgn[a(t)]
1 k=l 1

= w(t) -  p j • a(t) -  p2-sgn[a(t)] (7.104)

where w(t) is a m dimensional vector, and p1} p2 are square matrices of the form

o ) •• p £ \

Pl =

k°
. » P2 _ • *

P(m> vpS •• • p® J
and sgn(a) is the sign function of a(t). From (7.103), we therefore have

\)rl m
&i(t) = { zU (t)- X aiy e ifU.k(t)-p(S)oi(t)-Sp^sgn[CT(t)]}

1 k=l 1 j=l
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=  - p (; )c i ( t ) - S p (J - s g n [ a ( t ) ] + 5 i l ( z , C Y )  +  E 5 i 2 j ( z , C , Y ) - v j ( t )

j=i j=i
It is straightforward, following the procedure for the SISO case, to write the 

system, with tracking errors as new states, as follows: 

e],i(t) = ei2(t)

®i,ui-lO') — ®i,u(t)

\)r l
eiu( t ) = - l a ik-eiu(t)+0 (t)

k = i • ’ 1

m m
*i(t) =-pTCTi(t)-S p <y>-sgn[CT(t)] +8; 1(z,C,Y) + 28j 2j(z,C:Y)'vj(t)

j = l  j = l  J

The whole system can be written compactly as 

E(t) = AE(t)+Ba(t)

6 r(t) = -p 1*a(t)-p2*sgn[a(t)] + 8 1(z,C,y)+8 2 (z,C,Y)*v(t)

where

A=diag{Aj 

f

A; =

B=diag{Bj E = [E x , • • • EmV

0 1

0

0

i

A r0A (  ®u ^
Bi = E; = ei,2

J
w Kpi,x>r lJ

(7.105)

(7.106)

(7.107)

(7.108)

The elements of pk and p2 are to be determined later.

When mismatched uncertainties are present, the system becomes

E(t) = AE(t) + Ba(t) + co(z,C,Y»v) (7.109)

a(t) = -pj-a(t)-p 2 -sgn[a(t)]+8 1(z,C,y)+8 2 (z,C,Y)-v(t) (7.110)

where co represents the mismatched uncertainties, whilst b1 and 8 2, the matched 

uncertainties, may be of different forms to those in (7.108). Alternatively, (7.110) may be 

expressed as

a(t)=-p-G(t) + 8 1(z,C,Y) + 8 2(z’C>Y)'[w-p-a(t)] (7.111)

where p = p1+p2-|EI' 1 (7.112)

X=diag[Gi(t)]
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w = [w1, w2, ----- , wm]T
l)r l

W;̂i(t) = Zj ( t ) -1  ai)k-e- k+1(t) (i=l,2, • • • -, m) (7.113)
1 k=l 1

v(t) = w-p-a(t) (7.114)

Therefore

a ( t )  =  [ 8 j  ( z , C , y ) + S 2 ( z , £ , y ) w ]  -  [ I + S 2 ( z , C , y ) ]  - p - a ( t )

= co1(z,C,y)-co2(z,C,y>p-a(t) (7.115)

where co^Sj+S^e Rm, co2=I+8 2e Rmxm. it is required that all uncertainties in the system 

are bounded, i .e .,

A> = { S |8 >'i(z’c’Y)li=‘-2-"m} (7-116)

A24 { I S2iij(z,C,y) | felj2,.„m,j=1,2,.,m} (7.117)

where and A2, which could either be functions of e(t) and t or only constant scalars, are 

positive definite matrices and assumed to be deterministic and known, such that

= [A1-f-A2 *||w||] (7.118)

£i2 = I -A 2 (7.119)

are positive definite. Furthermore, the mismatched uncertainty is also bounded, i .e . ,

co(z,C,y,v)<(30 +pi||e||+P2 ||a|| (7.120)

where p0, p1? p2 are positive constants.

7.3.2 The Case of Both Matched and Mismatched Uncertainties

T H E O R E M  7.2. (Uniform Ultimate Boundedness ofMIMO Nonlinear Uncertain Systems)

For MIMO nonlinear systems in the presence of uncertainties, if the uncertainties 

are bounded, then a variable structure controller can be found such that the output response 

of the closed loop system will track a given desired trajectory, and furthermore the closed 

loop system is uniformly ultimately bounded. Moreover, the tracking errors will CD 

converge to zero in a finite time and remain there when matched uncertainties only are
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present; or d) enter a ball B K with radius k in a finite time T(K,r) and remain there should 

mismatched uncertainties be present, where the radius k depends only on the bound of the 

mismatched uncertainties.

A  Lyapunov function, V(t)=V1(t)+V2(t)=eTPe+YdTo, is considered, and the

derivative of V(t) is given by

V(t) = V x(t)+ V 2(t) = eTPe+eTPe+aTa

= { eTPe+eTPe -  2^M(P) a To  } + { a Ta + 2^M(P) a Tc  }

= v ; ( t ) + v ; ( t )  (7 . 1 2 1 )

where

V 1 (t) = V x (t)—2^M(P)aTa  (7.122)

V;(t) = V 2(t)+ 2^M(P)oTa  (7.123)

The first part can be written

V;(t) = eTPe+eTPe-2XM(P)aTa

= (eTA T+ a TBT+ coT)Pe+ eTP (A e+ B a + co) -  2XM(P)aTa  

= (eTA TP e+eTP A e)+ (aTBTPe+ eTPB a) + (coTP e+ eTPco) -  2^M(P)aTa  

= -eTQ e+ 2eTPB a  + (coTP e+ eTPco) -  2XM(P)aTa  

Note that ||B||=1, so that

2eTPBo < 2XM(P)-l|B||-eTcr< 2\M(P > [yeTe + y a Ta] =^M(P)-[eTe + a Ta l

coTPe+eTPo)=2eTPo)<2A.M(P)-||e||[po+(31||e||+P2||a||] 

where (7.120) has been used, and

2XM(P)||e||P0 < V(P)Polle|P+^M(P)Po 

2?LM(P)p2||e|| ||ct|| < XM(P)P|||e|P+XM(P)||cr|P 

so coTPe+eTPo)< XM(P)-[p0+2P,+p2]eTe+?i.M(P)P0+ \ M(P)-aTa

Then

^;(t)2-Xm(Q)||e||2+XM(P)[l+P0+2pi+p2]||e||2+XM(P)P0+2XM(P)aTo -2 \M(P)oTo

=- IX»(Q) -  V (P )(  I+P„+2 P,+PD] lle|P+XM(P)p0 (7.124)
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In order to proceed, the following notations are defined

E=dxag{cTj}

o  = XxIlllxl (7.125)

ws=diag{a))}

«l= W 6x l n,xl (7.126)

n 5 = diag{nl }

— £^xl lUXl (7.127)

where Imxl = [1 , -----,1]T.

The second part can be dealt with as follows 

V^t) = o T(t)6 (t)+2A,m(P)gtg

= Gt { COi- co2- p • G(t)} + 2Xm(P)gtg

= IlxmS [W8_ft)2‘P*S]Imxl+ ^lxmS ‘^M^^'^mxl (7.128)

the notations (7.125)~(7.127) having been used here. Let

P = P' *[I—A2]T= (7. 129) 

and suppose that it is positive definite, and that, for matrix co2-f22, its symmetrised form is 

also positive definite. Then, for a constant c , satisfying the following condition

the matrix

[ ^ 2* ^ 2]* ^ 2 *0^2

is positive definite. Define (p̂ =?iM(n 2-f22), so that we can substitute (c;-f22-p'-f22)/(p̂  for 

co2-p'*£22 in V 2(t). It therefore follows that

V ; ( t ) ^ I Ixm{ 2TC0s - £ T- ^ L ^ L £ } l m><1+ 2I 1><mET-XM(P )-E -Ir
<Pm

mxl

= 1 ixi„ { xtco8- i:t[ - 2 Xm(P)]z } i
YM

mxl

— ^lxm{ 2<a6 ^ [ (p2 ^ ( P  g

p ' - ^ a ^ x j p ) ^ 7=p"(i2+i)

mxl

Let (7.130)
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i - e . , p ‘= p ' \ M ) + ^ n p \ u ( p ) n }

V^(t) < i lxm { ^ a v s - s ^ Q j  P’'(i2+ i) a 0 z  l u

=  I i xm{ - l 22T̂ ^ P ,,^ + X T0)8- £ T( ^ n 2 P " ^ 2) s } l

^ I i xm{ - t 2^ ^ 2 p " ^ + t o K 4  Q l  ) \ } l

Using the results of theorem 6.2, it is easy to show that the choice of

mxl

mxl

makes the above inequality negative as follows

V,;(U < IIxm { -i2 x^O , p"̂ x+col(4J  (  a 5^2 P ^ 2  Y 1

<Pm
)  “ o l 1mxl

2

=  ̂ lxm { _l2^T(p2̂ 2’2iq "^ 2 } ^mxl

9 m 0-1

+  1Ixm{ o 3Y 4  2 l?  ------------------- )  co6} l „

“  ̂ lxm { |S| + 0, (̂  ̂Qg|X|'1) C05} l

= - ^lxm { 2^8  lXlO - a ) 5 ^ 8 W8 )} lm x l <  0

For the ith entry of the matrix I-CDg£2'gC0g, it is clear that

l-tWgCx/y)^/[HgCx î>0 (i=l,2, , m)

so, the matrix is positive definite. It follows that

V(t) = V ^ t)+ V 2(t) = VJ(t)+ V;(t)<0

and the system is stable. Furthermore, if

Ata(Q)AM(P)> l+ Pb+ 2P1+ K

then

(7.131)

(7.132)

(7.133)

(7.134)

(7.135)

(7.136)

and so

V(t)<V;(t)<-[Xm(Q)-XM(P)(l+Po+2p1+ p2)]||e|F+XM(P)Po<0 (7.137)



C hapter 7 R o b u st b racking  ControC 158

l|e||2>-
Po >0 (7.138)

Xm(Q )/X M( P ) - ( l + P o + 2 p I+ p 2)

The same conclusion as that of the SISO case can now be drawn. The tracking errors will 

converge to an open ball B K with radius

PoK =  ■ (7.139)
Xm(Q)/\M(P)-(l+p0+2P1+p!)

We can further show that the closed loop system is uniformly ultimately bounded, 

with a finite time period

K j

1 _ ( .  r - K ^
=-rr-Ln 1+-

1 (  «>;-r-^o ^
T (r,K )< ;-£7 -L n  1 0

where = o 1/Xta(P)

®0=®<Am(P)

So we have

P = {^-^2 n8|2|-‘!̂ T(i2+l) +-^-Qi12XM(P)£2iT}

<Pm -  ■ r 12+1 £25|s|1+ 2X.m(P)I }
S ‘  " 2 i

v(t) = w (t)-p(x)G
2 2̂  i

= W ( t ) - - ™ - a - 21{ - i ^ n 8|E |- i+ 2XM(P )i}C T  

= w(t) -  p j • c(t) -  p2-sgn[a(t)]

where

p ^ - ^ - a - ^ ^ C P )

P2 =
2l?

2**8

(7.140)

(7.141)

(7.142)

(7.143)

(7.144)

(7.145)

(7.146)

and

|s |-1o =
W .

S’O

r<*i'

v 0 V j ' j \  m j

=sgn[a(t)] □
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7.3.3 Consideration of Internal Dynamics

Unlike the SISO case, the internal dynamics of MIMO systems are usually related 

to the control u(t). Using the nomenclature of appendix A, they are of the form

C(t) = q ( z , Q  +/?(z,Qu(t) (7.147)

where q ( z ,0 e  Rn'u, p {z ,Q g  In order to take the internal dynamics into account, it is

required that the internal dynamics be of the form 

C(t)=<?(z,Q

i . e . ,  /7ki(z,Q = L G.Ck(x)= 0  (l<i<m l<k<n-u) (7.148)

According to the feedback linearisation theory of appendix A, if, for the given system, the 

input mapping

G(x,y) =
^ g ll • • • • g lm A

vSnl Snm J
= f e i . - .  g j

is involutive, then condition (7.148) holds.

In this case, we may take the internal dynamics into account by assuming that the 

system is exponentially minimum-phase, i . e . ,  the zero dynamics of the system is 

exponentially stable, and that conditions (7.60)~(7.62) hold. The same form of the 

Lyapunov function as that for the SISO case of form (7.68) is adopted here. Following the 

same procedure as that of the SISO case, similar results are obtained.

Assume that q { z,Q is a Lipschitz vector function, and the Lipschitz constant is 

defined as follows

„ su p  ll<z(z,Q-g(0 ,C)ll
feO i n  ||z||

Differentiating V 0(0 along C yields

3Vn 3V„ 3 V „ ,
v o ( 0  = ~ j f -«(z.O = - g f  -9 (0 ,0  + ~ g f  { 9 (z ,0 - 9 ( 0 , 0  }

^UCII^+vjgi- { ||g(z, 0 - 9 ( 0 ,  Oil }< -v 3[iai2-t-v4||CII ^l|z||
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Define a new vector e'= z-zd = (e1?e2, ........... ,e J T, so that we have, for ||zd||<c

He'll =  K + a e - b e l  =  ||a-be|| <  ||a||+&||e|| 

l|z|| ^ ||e'|| + ||zd|| < ||g ||+ Z?||e||+ c

V0(0<-V3||ai2+v4||CMz||<-v3||ai2+v4||ai-iJ{||a||+fo||e||+c} 

<-V3 liai2+v4d||C||||a||+v4iJ6KIH|el|+V41JKI|C 

Considering the Lyapunov function (7.68), the time derivative is given by 

V(t) = V ,(t)+ V 2(t)+|iV0(t)

(7.149)

=V j (t) -  2^M(P)a2 +XM(P)||e||2 +V 2(t)+3^M(P)a2 +|aV0(t)-XM(P) ||e||2 -^M(P)a2

= v ;(t)+ v;(t)+ v;(t) (7.150)

where VjCt)= V ^ O ^ C P ^ f t )  +XM(P)||e||2 (7.151)

V ;(t)= V 2(t)+3\M(P)c2(t) (7.152)

V ;(t)= p V 0(t)-XM(P)l|e||2-XM(P)a2(t) (7.153)

Form (7.149) and (7.153), it follows that the same results as those for the SISO case can be 

obtained as follows:

4av,AM(P)
^ = v ^ 3(1i ;  (°< «< d (7.154)

« >7 T ^ - > 0( l- a ) v 3
(7.155)

Again considering (7.151) and (7.152), it is straightforward to extend the results 

without consideration of the internal dynamics obtained previously as follows:

Hell2 > > 0
^m(Q)/XM(P )-(2+p0+2 p,+p2)

where

(7.156)

\ m(Q)/)tM(P) >2+Po+2pj+P|>0 

and

(7.157)

P, = 3 ^ 2) Q 2V P )> 0 (7.158)

(7.159)(7.159)
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7 .4  Results  and  Rem arks

The results developed for the case of mismatched uncertainties are now compared 

with those for the case of only matched uncertainties, and some comments are made.

7.4.1 Main Results for SISO Systems

In the Presence o f  M atched Uncertainties In the Presence o f  M ism atched U ncertainties

On the 

Switching  

Surface 

G (t)=0

\,(Q)>o

l|e||2>0

m̂(Q) Q oo n
Am(P) >Po+2P,>°

l|e|1 2 U Q )A m(PHPo+2P,] >0

O ff the 

Switching  

Surface 

o (t)* 0

K ( Q )
* m(P)

||e|p>0

P, = Xm(P)> 0

1 / A2 A2w2 

P ^ 2 \ ] ( l - W +  p 20

A„(P) 2 l l  Po+2P,+p2>0

||e||2>---------------j 1------------tt-> 0
U Q )A m(P)-(1+Po+2P,+P2)

P, =2Xm(P )> 0

(1-P)P+ P - °  (0<p<1)

O ff the 

Switching 

Surface 

G(t)^0 

with internal 

dynamics

K M  ,
K J P )  >

l|e||2>0

pI=2XM(P)>0

1 / A2 A2w2 
p! - 7 \ /  (i-p)p+ p 20

4ocv3A,M(P)
»*" v & W )  (0<<X<1)

v4-dc
W> (l-a)v3 20

K m  2 2 +P°+2p.+p220

Hell2 >---------------t ------------- 3T- > 0
U Q )A m(P)-(2+Po+2P,+PD

Pj = 3\1(P)>0

1 / A2 A2w2 
p2“  2 (l-p)p + p " °

4ocv3?im(P) _ _  
v4ti2(l+fc2) (0<OC<1)

„ v4flc 
K »2 (l-a)v3 20
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7.4.2 Main Results for MIMO Systems

In the Presence o f  M atched Uncertainties In the Presence o f  M ism atched Uncertainties

On the 

Switching  

Surface 

o (t)= 0

x m(Q )> o

|[e[p>0

^m(Q) q on rv
x M(P) > P»+ 2Pi>0

le | > U Q V X mC P H P ^ P ,]  >0

O ff the 

Switching  

Surface 

G(t)rt)

A JQ )
* m(P)

lle IP >  0

p , -  ^  2, n X ( P ) > o  

P2= (l!+ 15 (£i2) o 2' n 8>_0

>  1+ Po+2Pl+P2> °

Pn
Hell2> -------------------- T2-----------------> 0

x»(Q)Am(P)-(i+P„+2P,+P2)

9 , - 2 ^  2) i 2̂ M(P)>0

(p+i)<pS(n2) „ 
p2-  2iq  a 2a 5 ^ °

O ff the 

Switching  

Surface 

G(t)^0

with internal 

dynamics

U Q )  ,
W R  >

l[e[p >  0

p1- 2 9m(;  2) n ; X ( P » o

V+1)<& (W >  n , n  . n
p2 2iq  n 2n 8 ^ °  

4 a v 3XM(P)

(0<a<1)

„ v4/dc 
« ■ >  ( l - a ) v 3 > °

S  > 2+ Po+2P.+ ^ > °

||e||2 > ---------------------^ -----------------—  >  0
X»(Q)/XM(P )-(2+P „+2p1+p2)

P ,- 3  ^  2) O X ( P ) > 0  

4 a v 3XM(P)
v ^ l + f t 2) (0< a<1)

„ v 4tfc 
W >  ( l - a ) v 3 > °

7.4.3 Remarks

• When mismatched uncertainties are present in the system, the size of tracking errors 

||e|| becomes larger than that when only matched uncertainties are present, and the
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feedback control gain pj is also larger in order to overcome these additional 

uncertainties. The feedback gain of the discontinuous part p2 is expressed in the 

same form, but does not have the same value because the uncertainty bounds are 

different in this case.

The size of the tracking error ||e|| depends on the bounds of the mismatched 

uncertainties, but not on the matched part. It also depends on the ratio of the 

minimum eigenvalue of the matrix Q and the maximum eigenvalue of P, which are 

only related to the control design of the nominal system. They can be regarded, in a 

sense, as a kind of 'stability margin' for the nominal system.

When only matched uncertainties are present, the size of the tracking error ||e|| can 

be made zero, because for any ||e||2>0, V(t)<0, meaning that the chosen Lyapunov 

function guarantees that any non-zero tracking error will converge to zero in finite 

time, i . e . ,  the closed loop system is asymptotically stable. When both matched and 

mismatched uncertainties are present, the tracking errors usually become larger than 

those when only matched uncertainties occur, and cannot be made zero at any time.

However, there exists a closed ball B K with radius 

Po
k = . ----------------------- +e >0 (e>0)

such that whenever ||e||2>K, V(t)<0, implying that the tracking error will converge to 

and enter the ball B K, and remain in it thereafter. Thus the closed loop system is 

uniformly ultimately bounded.

It is assumed that the mismatched uncertainties in the system are bounded, i . e . ,  p0, 

Pi, P2 are finite positive scalars, and that the bound should be sufficiently small 

such that the condition ?im(Q)/^M(P)>l+p0+2p1+p2>0 can be satisfied. This 

condition is a sufficient condition for theorems 7.1 and 7.2, which state that the 

measure of mismatch must be less than the critical mismatch threshold 

X m ( Q ) / X M ( P ) .  (See Leitmann e t  a l ^ )
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7 .5  Illustrative  Exam ple

The same SISO second order linear system as that used in the previous three 

chapters is considered here to illustrate the application of the technique developed in this 

chapter. Similarly, the effects of open loop pole location uncertainty and non-minimum 

phase are considered. The state space model of the system is of the form

X (t):_ |ail ai2V -X> U bi
&21 A  2

X, w  0ail ai2
+

where

2̂1 W w  

y(t)=h(x)=xj 

Aaij = a;j-aij (i,j=l,2)

2̂ =  ̂ 2̂ a i2

U(t)

u (t )+
' A a j j X j + A a ^ ^  ( A b ^

<A a21X i+ A a22x 2J \ A b 2j U ( )

A b ^ k j

A b 2= ( k 2 + a 22k 1) /a 12- k 2/ a 12

The required coordinate transformation may be defined as follows:

Zj = h(x) = x, <=> x i = zi

z2=Lfh(x)=a11x 1+a12x2 x2 = (-a11z1+z2)/a12

Such a transformation enables us to obtain a system with new coordinates as follows 

z1(t) = z2+50(z,y,u)

z2(t) = a(z)+b(z)u(t)+S1(z,y)+S2(z,Y)-u(t) 

where a(z) = (a12a21-a 11a22)z1+(a11+a22)z2 

b(z) = a12b2

80(z,y,u) = (Aa11- 4 u-Aa12)z1+ ^ - Z 2+Ab1u(t) = 5J(z,y)+S^(z,y)u(t)and
42 42

5 i(z ,y )-[an(Aan Aa12)+a12(Aa21 Aa22)]zj+( Aa12+Aa22)z2
42 42 42
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S2(z,y) = a11Ab1+a12Ab2 

Feedback control of the form

lift)  = —y—- {  -c l(z )+ v (t) } 
b (z )

converts the system into the following form 

z 1(t) = z2+80(z,y,v) 

z2(t)= v(t)+8 j(z,y)+S2(z,y)v(t)

where 80(z,y,v) = [8J(z ,y)-S£(z T T  So(z»Y)v(t)
b(z) b(z)

SJ(z ,y) =  ^ ( z / y j - S ^ y ) - - g ^ -  

82(z,y) = 82(z,y)* 1
b (z )

Thus, in general, the uncertainty 80, which does not satisfy the generalised 

matching assumption, is the mismatched part, while the uncertainties 8 j, S2 which satisfy 

the matching conditions, represent the matched part of the uncertainties. The system 

therefore falls into the class of systems with mismatched uncertainties.

L e t  th e  id e a l tr a jec to ry  to  b e  tra ck ed  b e  y d(t)= 7t(t). T h e n  z j ( t ) = y d(t)= rc(t), 

z d( t )= y d(t)=Tc(t), and  th e  tra ck in g  errors b e c o m e  

e j ( t )  =  Z j ( t ) -z f  (t) =  Zj(t)-7u(t) 

e 2(t) =  z 2( t ) - z 2(t) =  z 2(t)—Tc(t)

The system model can be written as 

e1(t)=e2+S0(z,y,v) 

e2(t)= v(t)+8 J (z,y)+82(z,y) ♦ v(t)-z2(t)

Define a switching surface

a(t) = e2(t)+a1-e1(t)=0

so that

v(t) = zJ(t)-a1-e2(t)-p1-a(t)-p2-sgn[CT(t)] 

where a2 will be determined according to the polynomial 

p Q C ) —X,+aj = 0
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which is the characteristic equation of the reduced order closed loop system. We therefore 

have

e ^ t )  = - a 1-e 1+ a ( t ) + S 0(z,Y ,v)

* (t)= -p 1-a(t)-p2-sgn[a(t)]+81(z,Y)+52(z,Y)*v(t)

i . e . ,  A = - slv  Here

81(z,Y) = 8;(z,Y)+a1-8J(z,Y) = [S1(z,Y)+a1*Sj(z,Y)H52(z,Y)+a1-Sg(z,Y)]-̂ -

82( z ,y) =  52(z ,y )+ a r 8g(z,Y) =  — j—  [ 8 2(z ,y )+ a f 55(z,Y )]
b(z)

The solution of the Lyapunov equation A TP+PA=-Q is that P=l/2ax for Q =l, and 

therefore Xmax(P)=l/2a1 and ^min(Q)=l- Now we can choose the feedback gains to be

p1 =2XM(P)=l/a1>0 P i - ' s j A i+^A2w2> 0 (for (3=0.5)

where Aj and A2 are the bounds on the matched uncertainties, presumed deterministic and 

known. The bounds on the mismatched uncertainties, on which the tracking errors depend, 

are given by

where

8 0( z ,y ,v ) =  [ S j ( z ,7 ) - B 02( z , 7 ) - ^ - ] + - ^ - B j ( Z,Y)V(t)  

= [(A a 11- ^ A a 12) z 1+ ^ - z 2- A b 1- ^ 1- ua22)zh1+(^ 11+a22)Z2]
&12^2

=[(Aan- ^ A a 12-Ab1^ -̂ 1- ^ ) z 1+ ( ^ - - A b 1^ f r  ) z j  +1 a l2 1 a l2b 2 1 a l2 1 a l2b2 a l2b 2

—c0+c, l|e|l+c2||vl| 

<P0+p1||e||+P2||cri|

c0=c,||zd||

c ^ m a x
a ii
-  A a12-A b j  
d12

a i2a21~a H a22|
a i2b 2 r

^ k _ Ab
a i2 a i2b 2

C2 ~
A bx

a i2b2
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Po —

Pi = ci+c2II3|| ( a = - a?)

P2 =  C2lP l+ a il

and the bounds of the matched uncertainties, on which the feedback gains are based, are

3- cl cl
5 i ( z ,y )  =  [ a ^ A a ^ —— A a12)+ ^ i2( ^ a2i a Aa22) ] z i"*"(li ^ a i2'*"̂ a22)z2

l12 l12 l12

( a 11A b 1+ a 12Ab2) ( a i2a2l “a i i a22) Zl ‘̂ (a il"^a22)Z2
a i2 2̂

=  [ a , , (A a , 1- | u Aa12) + a 12(Aa21- ^ 1 Aa22) - ( a 1, A b t+ a 12Ab2) a i2 ^ r ? ‘ l&12] ^  
d12 d12 d12U2

+ (— A a12+A a22- ( a 11A b1+ a 12Ab2) ** i f22) z 2— 
d12 d 12U2

Ab
52(z,y ) - ( aiiAbi+ai2Ab2)  ̂ ^A2

d12U2

It is clear that 62(z,y)>0 because an<0, Ab^k^O, Ab2>0, a12>0 and b2>0.

7.5.1 Matched Uncertainties

L e ta n =0; a12=l; then a21=-a, a ^ - p , b^O, b^k^, where a ^ + m ,  p=|x1|x2, and 

-|ij, -|i2 are the assumed locations of the open loop poles. We first consider the case of 

minimum phase, so let k^O. One of the open loop poles however is assumed to be at -m in 

the complex plane but is in fact at -|ij, whilst the parameter kj is also assumed uncertain, 

having an actual value k2. This therefore results in a system with only matched 

uncertainties of the form

x(t) =
(  0 1 Y :  

- a  -p

x ,
+

O^i
u(t) +

l x 27 V V  \A a x j + A p x 2J

0
+

(  0 
vAk2

u(t)

where Aa=(a-a'), Ap=(P—p'), and Ak2=k2-k2, and Aan =Aa12=Abj=0.

Fig. 7.1 displays the simulation results where only matched uncertainties occur. 

The responses of the system are depicted for both stability (regulator) and tracking (servo) 

problems.
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(i)
Regulator Problem: 

yd(t)=0

Uncertain Parameters: 

k2=l;k;=2;

n,=i> n l= -i;

n2=5, jo-2=5; 

aj=1.5;

Kft)
15 

10 

5 

0 

-5 

-10 

-15

u(t)
200

100

0

-100 

-200 

-300
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

time (sec)

Control Signal

System States

(ii)
Tracking Problem: 

yd(t): a step function

System States
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Uncertain Parameters:

k r l; k i= 1 .5 ;

Hi=l,n;=-1;

[i2= 5 , |li;=5; 

a1=1.5;

4.0 5.0 6.0 7.0

time (sec) 

Control Signal

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

time (sec)

System States

Uncertain Parameters: u(t)
1500

1̂ =1; k̂ =1.5;
1000 

500

|Lt2=5, |x;=5;
0

at—3,
-500 

-1000
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

time (sec)

Control Signal
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rft)

(iv)

Tracking Problem: 

yd(t): a ramp function

Uncertain Parameters: 

k2= l;  k2= 2;

[ L=l ,  |xj=-l;

!U=5, H2=5; 

a,=3;

System States

Control Signal
Fig.7.1 Case 1: Simulation results for robust tracking with matched uncertainties

7.5.2 Mismatched Uncertainties

The second case to be considered is non-minimum phase, and also one of the open 

loop poles has location -|d| while it is assumed to be -fXj. The system is

a, 1 a,
U t )  =  \ "  I f

* 2 1 .

x , ) ( 0 )  , x fA a ijX j+ A a ^ x ,^  fA b ,^

x ,  H b J u (t )+ [A a 21x 1+ A a22x J

A  

V/v2 VA b 27
u (t)

Let a12=a21=a^0, oc2>4(p+a2) and k2=l. Then b} = k 2 , b2=(k2+a22k 1)/a12, and 

aj j = [ - ol-'s J  a 2 -4(p+a2)]/2 a ^ = [ ~ a + - \ j  a 2 -4(p+a2)]/2
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(i)

Regulator Problem: 

yd(t)=o

Uncertain Parameters: 

k ,= 0; kj=-0.1;

m-i= i * n != -i;  

|~t2=5, jj-2=5; 

a,=5;

(ii)

Tracking Problem: 

yd(t): a step function

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

time (sec)

System States

u(t)

Control Signal

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

time (sec) 

System States
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Uncertain Parameters: 

k,=0; kJ=-0.25; 

|X=1, (xj=2 ; 

[i2= 5 , h;=4; 

a,=5;

2.0 3.0 4.0 5.0 6.0

time (sec) 

Control Signal

8.0 9.0 10.0

Kit)

(iii)

Tracking Problem: 

yd(t): a square wave

Uncertain Parameters: 

k,=l; k;=-0.0 1;

M-i—1* M"i—”1’

[i2= 5 , (X2=5; 

a,=5;

System States

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

time (sec) 

Control Signal
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0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

time (sec)

System States

Uncertain Parameters: 

k = l ; k | = - 0.01;

M-i 1 > M-i— 1>

IU=5, [i'2=5] 

a,=5;

u(t)

Control Signal

F ig.7.2 Case 2: Simulation results for robust tracking with mism atched uncertainties

Fig.7.2 displays the results of simulation for the system with mismatched 

uncertainties, where both regulator and tracking problems are considered.

Observe that the closed loop system maintains stability in every circumstance, 

regardless of the presence of uncertainties resulting from open loop pole position 

uncertainty and non-minimum phase dynamics. It can be seen that the controllers obtained 

via theorem 7.1 and 7.2 attenuate the effect of the uncertainties effectively, and the 

responses of the closed loop system do follow the given trajectories. Another interesting 

fact is that the tracking errors of the closed loop system converge to zero in the first case,
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where only matched uncertainties occur (Fig.7.1), whilst the tracking errors cannot reach 

zero in the second case, where mismatched uncertainties are present (Fig.7.2).

7 .6  S um m ary

In this chapter, the robust tracking problem for a class of SISO and MIMO 

nonlinear systems in the presence of matched and mismatched uncertainties has been 

addressed, and robust tracking techniques have been developed.

The algorithm for the SISO case can be summarised as follows, and the similar 

algorithm for the MIMO case can be obtained according to the discussion of section 7.3.

A l g o r i t h m  f o r  S I S O  S y s t e m s :

® T ra n sfo rm  t h e  o r i g i n a l  n o n l in e a r  u n c e r t a in  s y s te m  i n t o  t h e  form  

o f  ( 7 . 4 ) ;

(?) D e s ig n  a s w i t c h in g  f u n c t i o n  a ( x )  su c h  t h a t  t h e  r e g u la r  form  

( 7 . 1 6 )  and ( 7 . 1 7 )  c a n  b e  o b t a in e d ;

(?) C o n s tr u c t  b ou n d s f o r  t h e  m a tch ed  u n c e r t a i n t i e s  o f  t h e  form  

( 7 . 1 8 )  and ( 7 . 1 9 ) ;

© C a lc u la t e  t h e  i d e a l  t r a j e c t o r y  y d( t )  t o  b e  t r a c k e d ;

© O b ta in  a f e e d b a c k  c o n t r o l  o f  t h e  form  ( 7 . 5 )  w h ere  v ( t )  i s  g iv e n  

by ( 7 . 1 3 )  w i t h  fe e d b a c k  g a in s  o f  t h e  form  ( 7 . 3 0 )  and ( 7 . 3 1 ) ;

© Check t h e  p e r fo r m a n c e  o f  t h e  c l o s e d  lo o p  s y s te m  b y c o n s i d e r i n g  

t h e  op en  b a l l  w ith  r a d iu s  ( 7 . 9 0 )  and t h e  t im e  t o  r e a c h  t h e  b a l l  

( 7 . 9 6 ) ;

It is concluded that the tracking errors will converge to zero in the matched 

uncertainty case, whilst the errors cannot reach zero in the mismatched uncertainty case. 

However, the techniques proposed guarantee that the responses of the closed loop system 

follow the prescribed trajectory, and the tracking errors are uniformly ultimately bounded 

whenever matched or mismatched uncertainties are present.
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8 .1  Introduction

I N this chapter it is shown how, on the basis of the concepts introduced and developed 

in the previous four chapters, a number of relevant synthesis problems, such as 

practical stabilisation and robust trajectory tracking, can be solved for some real systems in 

the presence of uncertainties and disturbances under the mild assumptions that have been 

made in the previous chapters. Four application examples, which are either linear or 

nonlinear and are highly affected by either matched or mismatched uncertainties, are given 

here: a simple one link robot arm containing uncertain parameters and unknown 

disturbances; a crane system lifting an unknown load; a six-plate gas-absorber system with 

mismatched uncertain parameters; and a two-link robot manipulator subject to uncertain 

load mass. Both practical stabilisation and robust trajectory tracking problems are 

considered.

The behaviour of the systems is investigated by simulation and shown to be of the 

desired form.

8 .2  Sim ulations

8.2.1 A Simple Robot Arm

The first example to be considered is that of a simple robot arm which is assumed 

to be one link. This is a commonly chosen example and our method may then be compared 

with other techniques. The system is shown in Fig. 8.1.

Assume that m and / represent the mass and, respectively, the length of the mass 

centre of the link subjected to a control moment delivered by a DC motor, where the DC
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motor is armature controlled, and the motor inertia is negligible compared with the link 

inertia. The DC motor may be modelled as follows. The torques delivered by the motor 

and applied to the robot arm are
II £ H-l (8.1)

Tp=N-Tm=N-Km-I (8.2)
respectively, and the dynamical equation for the motor is

V =L-I+R-I + Km*N*e (8.3)

where I is the armature current, N is the gear ratio, 0 is the angular position of the link, and 

is the motor constant.

The dynamics of the robot arm can be described by the equation

Tp=-/ 2-m-0 + /-mg-sin(0) (8.4)

Now, the following state variables are introduced: x x=0 the angular position, x2=0 

the angular velocity, x3=I the armature current, and so the following equations describe the 

system

^  x 2 >

x(t) = K1sin(x1)+K2x3 + 0

^  K 3X2 + K 4X3 J U sV

u(t) (8.5)

y(t) = h (x )= X j  

The parameters of the 

nominal system are 

given by

k2=
10Km
P m

Mass: m

10Km
Control Voltage

+
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§1. Param eter Uncertainties

It is assumed that the robot arm is modelled with only one link, but in fact it has 

two degrees of freedom, i . e . ,  it can be rotated and it can also be extended or retracted. Such 

a problem is dealt with here by applying feedback control only to rotation and considering 

translation as a perturbation. The mass will vary, depending on the load carried, and the 

position of the centre of mass will change if the link is extended or retracted. The design 

must of course accommodate these uncertainties. The parameters Kj and K2, which depend 

on the mass m and the length /, are then uncertain, and are denoted as K^KJ+Ak! and K2= 

K^+Akj. The system model is first transformed into new coordinates z by a coordinate 

transformation of the form

zk = Yk(x) = L f‘ lh(x) (k= 1,2,3) 

and a new state space model is obtained as follows

 ̂ Z2 >
(  0

z3
+ 0 u(t)+ (Akj — K£Ak^sin^i) + ^  z3

[K?COS(z,)+K^]z?
U zK sJv  +K4[z3-KJsin(z1)]y l  0 )

y(t) = zx (8.6 )

The system model is of the regular form. It is obvious that a nonlinear system with 

mismatched uncertainties results, and therefore the technique described in theorem 4.4 is 

applicable here.

The following values were chosen for simulation purposes: /=l~1.2m, m= 1~1.8kg, 

which are uncertain but bounded, and

g=9.8m/s2, K^O.lNm /A^.lVs/rad, R=ln, L=5mH 

The nominal values of the parameters are then

iq=8.909, iq=0.590, k3=-20 0 , k4=-200 , k5=200 

The uncertain parameters are K^KJ+AkjG [8.167, 9.8] and K2=K2+Ak1G [0.386, 1].

The closed loop poles of the system are chosen as: Xj=-0.8+j2, X2=-0 .8-j2 and
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?i3=-8 , resulting in the following controller parameters: a 0=37.12, 0^=17.44, a 2=9.6, a 3=l. 

By solving Lyapunov equation A TP+PA=-Q, a Lyapunov function may be obtained

f 5.1575 3.3060 0.0050 A / z A

Y(z) = zTPz = [z1? z2, z3] 3.3060 3.3806 0.0476

V0.0050 0.0476 0.0322A z3/

(8.7)

The simulation results are shown in Fig. 8.2 and 8.3. Comparisons of the technique 

via theorem 4.4 with the feedback linearisation technique alone are given. The control 

based on theorem 4.4 clearly results in better performance than that resulting from the 

application of feedback linearisation alone.

Simulation Parameters: 

Nominal Values: 

/n= l.lm ;  

m 0= 1.4kg;

Real Values:

t=0sec, /= 1.2m; 
m= 1 .8kg

t=3sec, /= l.lm ;  
m= 1.4kg

t>6sec, /= lm ; 
m = lk g

y(t)

(a)

The technique o f  

theorem 4.4;

(b)

The feedback 

linearisation technique 

alone

u(t)

System Outputs

Control Signals

Fig. 8.2 R esu lt 1: C om parison o f  the present technique w ith  the feedback linearisation  techn ique alone
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y(t)
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System  controlled by 

the technique of 

theorem 4.4 subject to 

various uncertain 

parameters
System Outputs xx

y(t)

Control Signals

Fig. 8.3 Result 2: Control of the one link robot arm subject to different uncertainties

From Fig.8.3, it can be seen that, although the system is subject to significant 

uncertainty, the system outputs are stable and good performance is indicated. The design is 

therefore robust in the sense implied here.

§2. Uncertain Disturbances

We consider the same system model subject to an uncertain disturbance as follows

r  x 2 >
(  0 ^ roAi f o  \

x(t) = K1sin(x1)+K2x 3 + 0 u(t) + K6cos(5t)cos(x1) + 0 u(t) + m

V K3x2 +K4x 3 ) vK5y V K7X2 + K8x 3 J U  )
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where the uncertain parameters are assumed to be of the form

K 6 = - f  K7 = -10K9Km K8 = -K9R K9 = -A(jb

Here a is a constant equal to the amplitude of the uncertainty, A (l/L )  indicates the 

variations of L; (̂t) is band limited white noise.

The variable structure controller of theorem 5.4, with variable feedback gain, is 

employed here. Suppose it is required that the closed loop system behave as a linear 

(reduced order) system. If the switching function is chosen to be 

g (x ) =  Gj (X j, x 2) -  x 3 =  0

the reduced order dynamics are 

\ / x0Xi

X2 j iq s in C x ^ + K ^ C x p X ^

Xn

v- a 1x1- a 2x2y

Thus

a./ N K, . . w<2
a i (x ) -  - KTsin (x i) - k T *x 1~k T *x 2

v ( x ) = -^-sin(x1) . x 2 _ x 3  = -^-sin(X[) -  S-x=0
a a Ki

where

oq
v i q

a 2
-1

and therefore

a x - ^ o s w  k 2 > k 2 -1

The uncertainty bounds can be determined as follows

^ A f _
«2
K- !K6l+|Li f lAg = |K9| Q .,=

a 2
K,

where p>max|K7x2+K8x3|, e>max|^(t)|. The controller gain is then given by

P(x,t,a) = '\J((fj|-lK 6l+H+|^|-e)2+ Y |K 9HLga |(A ^ - ) 2 >0

( 8 .8)

(8.9)

The following values were chosen for simulation purposes: /=lm, m=lkg,

g=9.8m/s2, J=lNms2/rad, K^=0.lNm/A=0.1Vs/rad, R=l£2, L=5mH.
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(i)

g (x)= -K 1 sin(x1)—S x=0  

S=[ 2, 3, 1] 

Uncertain Parameters:

^Af= ^0’

a * * - ’

0.^=6;

Constant Gain: 

K=10

(a)
Variable structure 

control with 

feedback gain 

of theorem 5.4;

(b)

Variable structure 

control with 

feedback gain o f  

theorem 5.3

Kit)

System states controlled by variable gain VSC

Kit)

System states controlled by constant gain VSC

u(t)

(a) (b)

.....\........j........|........1

0 1.6 3.2 4.8 6.4 8.0 9.6 11.2 12.8 14.4 16.0

time (sec)

Control Signals
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(ii)

a(x)=-K j sinCXj )-S x = 0  

S=[ 2, 3, 1] 

Uncertain Parameters: 

a Af=130;

^ a = 10;

0^=15;

Constant Gain: 

K=20

(a)
Variable structure 

control with 

feedback gain 

o f theorem 5.4;

(b)

Variable structure 

control with 

feedback gain o f  

theorem 5.3

Kit)

System states controlled by variable gain VSC

0 1.6 3.2 4.8 6.4 8.0 9.6 11.2 12.8 14.4 16.0

time (see)

System states controlled by constant gain VSC

0 1.6 3.2 4.8 6.4 8.0 9.6 11.2 12.8 14.4 16.0

time (sec)

Control Signals

Fig. 8.4 R esult 3: C om parison o f  variable structure controllers o f constan t gain w ith that o f variable gain
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Fig. 8.4 displays the results of simulation for the system. From the results, the 

responses of the system with feedback of both variable gain and constant gain are depicted 

for different parameter bounds. It can be seen that the controller obtained from theorem 5.4 

works well, in contrast to the constant gain controller of theorem 5.3, which leads to large 

tolerances in the first case (i), and even an unstable response in the second case (ii).

8.2.2 A Crane System

The second example to be considered is concerned with the application of the 

technique of theorem 4.6 to a crane system.

It is likely that the 

mass to be lifted by a crane 

will vary greatly from time 

to time and may not be 

precisely known, and this 

uncertainty must be

accommodated by the

design. Furthermore the 

effective shaft stiffness 

will vary during operation 

because when large loads 

are encountered the whole mounting tends to flex. Attempts to measure shaft stiffness are 

affected by the state of the system and typically quite significant differences in the 

measured value results. Also the motor constant depends upon the relationship between 

field strength and motor current and this varies considerably between low and high 

currents because of magnetic saturation. It should be noted that cranes employ series- 

wound DC motors so the field and armature current is the same. Finally armature

Fig. 8.5 A  crane system to lift an unknown load 

controlled by a series-wound DC motor
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resistance is far from constant, not only because of heating effects, but also because it 

represents both eddy current and hysteresis losses in addition to the ohmic resistance. This 

variation is predictable to some degree where motors operate at constant speed, but in 

servo applications this is not the case. Here we only assume that the load to be lifted is 

unknown, ignoring other uncertainties. The system, subject to unknown load mass, may be 

described as follows

Ct Q
II .H CL (8.10)

T, =ks(com/N-o>,) (8.11)

dcOm T j

Jm dt “  m ocN (8.12)

Tm = kmI (8.13)

L ~ + R -I+ k mcom= V (8.14)

where Jz, Jm and co,, com are the moments of inertia and the angular velocities of the load 

rotating mechanism and the motor rotor respectively; ks is the shaft stiffness; N and a  are

constants denoting the gear ratio and gearbox efficiency per unit respectively; L  and R 

represent the combined field and leakage inductance and the resistance of the motor

armature respectively, and

k m = M

where k  represents the motor constant, so that

T m = k mI = W 2

The model may be rewritten as

/  X2 \

a1x 1+a2x3 0 ^2

x4 + 0 u(t)+ 0

ajXj+a^j+ajxJ 0 0

V  a6x5+a7x4x5 ) s ) v o y

(8.15)

(8.16)

(8.17)

y(t)= x1
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by choosing the states (x1? x3)=(0/, em) and (x2, x4)=(0z, 0m) the angular positions and 

angular velocities, and x5=I the armature current. The system parameters are given by

ks ks ks ks
j « ^ - J f N a3 ”  Jr aN a4_ JmaN2

k R k u 1
Jm a6 = - - a7 = ““L b5 = T

The system model is first transformed to new coordinates according to the 

coordinate transformation defined in chapter 4, and a new state space model is obtained as 

follows

f

z(t) =

Z2

Z3
Z 4

Z5

OClZl+OC2Z3+a3Z5+a4ZiZ2+a5Z2Z3

A

V

0 d2

+ 0 u(t) + 0

0 d4

M V

y(t) = z1 (8.18)

which is of linearisable form with new state z(t) and input v(t), where (i=l,..... ,9) and (3

are transformed coefficients depending on the coefficients ai (i=l,.....,7) and b5 of the

original system, d ^ a ^  d4=af, and v(t) is the new input.

It is obvious that the uncertainty, £=M*g*r, does not satisfy the matching conditions 

of definition 2.4 or 2.5. In order to apply the results of theorem 4.7 to this problem, the 

transformation of the form

"56.250 0 0 0 0 '
56.250 70.313 0 0 0
56.250 70.313 36.500 0 0
56.250 70.313 36.500 9.156 0
56.250 70.313 36.500 9.156

oopt—H

" 0.018 0 0 0 o"
-0.014 0.014 0 0 0

= 0 -0.027 0.027 0 0
0 0 -0.109 0.109 0

l  0 0 0 -1
V
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is introduced, so a diagonal matrix P is obtained according to theorem 3.9 as follows

1.875 0 0 0 0
0 1.875 0 0 0
0 0 3.267 0 0
0 0 0 6.205 0
0 0 0 0 10.990

A Lyapunov function is then defined, and therefore the technique described in theorem 4.7 

is applicable.

The following values were chosen for simulation purposes:

J/= 1000kg m2, Jm=0.2 kg m2, ks=0.6xl08Nm/rad, £=0.25

N =500, a = 0 .8 , R= 1012, L = 20mH, g = 9.81m/s2, r= 0 .25  m

and the load mass to be lifted is 

M =0~2500 kg

Simulation results are given in the following figure.

y(t)

Uncertain Parameters:

(a)
M=Mmax=2500kg

(b)

M=M =(M +M . )/2o v max min7'

(c)
M=M . =0kg

System Outputs

Fig.8.6 Result 4: Control of the crane system subject to various loads

From the results, although there are some static errors for the system output which 

depend on the amplitudes of disturbances, here the unknown load, satisfactory 

performance is achieved when the system is subjected to large variations of the load mass, 

here from 0 kg to 2500 kg.
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8.2.3 Six-Plate Gas-absorber System

A gas absorber tower is an important element in several chemical processes. A 

typical gas absorber system consists of a number of vertically arranged plates enclosed 

within a chemical tower, as shown diagrammatically in Fig.8.7.

The chemical reactions which 

take place in the tower are affected by 

the inlet feed compositions 

corresponding to a downward liquid 

stream and an upward vapour stream.

These reactions may give rise to 

instability if the inlet feed compositions 

are not properly chosen, and therefore 

stabilisation and control of such reactions 

is an important problem.

A six-plate gas-absorber system 

is considered. A detailed description of such 

The system is modelled by 

x = F(x,y)+G(x,y)u(t)

where

F(x,y) = Ax

/-d2(l+di) d2 o

did2 -d2(l+d2) d;

0 did2 -d2(l+di)

0 0 did2

0 0 0

V o  o 0

Fig. 8.7 Gas absorber Tower

system may be found in Darwish et aP^.

(B.19)

0 0
0 ^

0 0 0

d2 0 0

d2(l+di) d2 0

did2 -d2(l+di) d2

0 did2 -d2( i+ d ,) y
(8.20)
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G(x,y) = B =

/d id 2  0  \  

0 0 

0 0  

0 0 

0 0

V o d 2 /a /

(8.21)

where and d2  depend on the inlet vapour and liquid hold up on each plate (hr,he), the 

flow rates of inlet liquid absorbent and inlet gas stream(Lf,Lg), and also the ratio of 

liquid/vapour compositions a[2f  These parameters cannot be calculated with sufficient 

accuracy to be used in online controllers. Consequently, we consider that the parameters dj 

and d2  undergo 25% variation about their nominal values^ which are chosen to be

dj=0.849 d2=0.634

with a=0.72. Then

A(y) =

B(y) =

/-1.17+Yi 0.63+72 0 0 0 0

0.54+73 -1.17+7! 0.63+72 0 0 0

0 0.54+73 -1.17+7! 0.63+72 0 0

0 0 0.54+73 -1.17+71 0.63+72 0

0 0 0 0.54+73 -1.17+yi 0.63+72

V o 0 0 0 0.54+73 -1.17+yi

/0.54+Y4
0 ^

0 0

0 0

0 0

0 0

V o O.8 8 +7 5 )

y

where the uncertain parameters are given by 

-0.46 <Yi< 0.39 

-0.158 <y2< 0.158 

-0.235 <y3< 0.303

-0.235 <y4< 0.303 

-0.219 <y5< 0.221

(8.22)

(8.23)

(8.24)

A transformation of the form
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( °
i 0 0 0 n

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 0

VP 0 0 0 0 J

is defined, such that the regular form of the system may be written as 

x 1(t)= F 1(x1,x 2,y)

x2(t) = F2(x1, x2,y) + G2(x1, x2,y)-u(t) 

where the new states each represents a set of states x J=(x2, x3, x4, x5)T, x  

state and input mapping are

F1(x,y)=A11x 1+A12x 2

F2(x,y)=A21x 1+A22x 2

where

/■-1.17+Yi 0.63+y2 0 0 A
0.54+y3 -1.17+Yi 0 .6 3 +Y2 0

0 0.54+y3 -1.17+y, 0.63+Y2

V o 0 0.54+Y3 -1.17+Yi J

/0.54+y3
° ^

0 0

0 0

V 0 0.63+y2 J

0 0 0 ^

K 0 0 0 0.54+y3y

-̂1.17+Yi 0 \

 ̂ 0 -1.17+y^

and

^0.54+74 0 N

v 0 0.88+Y5 j

(8.25)

(8.26)

■■(xv  x 6) t , and the
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respectively. This is a linear system with uncertain parameters which do not satisfy 

matching conditions. A switching function is designed as 

a (x )= a 1(x1) - x 2=0

where

f * i \
a 1(x1) = S-x1 =

*11 1̂2 si, *14
(8.27)

vx5y
V'S2I s22 s23 s24/

The reduced order closed loop system resulting from the above switching function is 

x 1 = A t ̂ t+ A ^ x 2= [A u ,A 12]
vSxiy

= A0x>

Let S =
( -2.495 -0.849 -0.789 0 ^

0 -0.929 -1.178 -0.547,

resulting in a closed loop system with poles ^=-2.6958, X^=-1.7271, ?i3  4=-0.979±j0.292.

The partial derivative of the switching function is given by

(-2.495 -0.849 -0.789 0 • -1 0^

0 -0.930 -1.178 -0.547 • 0 -1

^0.54+min(y4) 0 >

0 0.88+min(y5),

= W V o - M J .V t f '}  =0.4369

We check that

Vg=
J

Wg' ^ o =
^0.54+y4 0 yo.54+m in(y4) 0

v 0 0.88+YsJ^

(0.538+Y4)(0-303)

A

0 0.88+min(y5),

0 ^

0 (0.88+y5)(0.661) j

is positive definite, so condition (6.17) is satisfied, and choose 

q=0.09<Xtain{coG-QJ} =0.0918

The simulation results are as follows. Good closed loop system performance is 

clearly indicated.
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ul(t)
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Control Signals U j(t)

Control Signals u2(t)

Fig. 8.8 Result 5: Control of the six-plate gas-absorber system

8.2.4 Two-Degree-of-Freedom Manipulator

Robot manipulators are familiar examples of trajectory-controllable mechanical 

systems. However, their nonlinear dynamics present a challenging control problem, and it 

is even harder when significant uncertainty is present.

Consider, for instance, a planar, two-link articulated manipulator, whose position 

can be described by a 2-vector of the polar coordinates, and whose actuator inputs consist 

of a 2-vector of torques applied at the manipulator joints. The dynamics of this simple
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manipulator are strongly nonlinear, 

and include uncertainties caused by 

the load mass to be carried, which is 

not accurately known.

The control objective is to 

force the load with uncertain mass, 

whose trajectory is indicated by polar 

coordinates, to follow a prescribed 

trajectory in the Cartesian (yi,y2 )- 

plane. The planar tracking problem 

of a two-degrees-of-freedom 

manipulator^ can be modelled by

f
A \ pxj+M ^+ajx^

*2 |I+M

*3 x4

V * J -2[qx 1+M(x1+a)x2x4]
y  J 1+J2+p,Xj+M(x1+a) 2

Load Mass: M «

Fig. 8.9 Manipulator with two degrees of freedom

A
r  °

i

+

J

|I+M

0

V  o

0

0

0

1

A

Vua7

J i+J2+p,x j+M(x i+a) 2 y

(8.28)

where (x1,x3)=(r,0) are the polar coordinates of the mass centre of the arm, and 

(x2,x4)=(r,0); \x is the mass of the arm; M is the mass of the load; a is the distance from arm 

mass centre to the load; Jx the moment of inertia of the rotation mechanism about the 

vertical axis through 0; J2 the moment of inertia of the arm about the vertical axis through 

the arm mass centre.

For the purposes of illustration, it is presumed that all parameters in the model are 

precisely known with the exception of the constant load mass M which is subject to 

bounds: 0< Mmin<M<Mmax, where Mmin and Mmax are known constants.

We therefore have a nonlinear uncertain system, and the technique developed for 

MIMO systems in chapter 7 may be applied to the synthesis of this robust tracking problem.
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The system is already in the regular form, so it can be expressed, with z as new 

coordinate, as follows

Z i , i ( t )  = zi)2(t)

Zj)2(0 = aj(z)+bi(z)-ui(t) + 5j j(z,y) + 6i2(z,7 )^ (0  (i=l,2) (8.29)

yi(t) = zu (t)

where the new states are z l l=xl, z12=x2, z21=x3 z22=x4, the outputs y^X j, y2=x3, the 

uncertainties caused by unknown load mass j(z,y), 2(z,y), and

ai(z) = 

bi(z) = 

a2(z) =

|ix1+M0(x1+a)x^
|a+M0

1
|i+M0

-2[p,x1+M0(x1+a)x2x4] 
J i +J2+pXj+M0(x1+a)2

1

(8.30)

(8.31)

(8.32)

(8.33)k2̂  J1+J2+px2+M0(x1+a)2 

where the nominal value of unknown mass is M0=(Mmax+Mmin)/2. The feedback 

linearisation is therefore of the form

u(t) = -U-lA + n M t)  =
^>i(z) 0 \Y -a 1(z)+v1>

lv-a2(z)+v2J
(8.34)

v 0 b2(z)y

The ideal trajectories denoted by yf c(t) and y2-c(t) are defined as a straight line path 

AB in the Cartesian (yi,y2)-plane, from the initial rest position A, with coordinate 

(yi a , y2 a), to prescribed final rest position B, with coordinates (y1>B, y2>B), in a prescribed 

time T. A pair of Cartesian coordinate functions which characterises a straight line path 

from point A to point B is given by

Yi,A K t0

yi.A+kitt-to)3 to<t<to+T/4

yi>A+ki[(t-t0)3-2(t-t0-T/4)3] to+wa-cto+STAt (8.35)

y^ + k jta -gs-ld -to -W ja+ lC t-to -S W )3] to+3T/4<t<to+T

yj.B

d —<yficCO

t>t0+T
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for i= l,2 , where ^ = 1 6 ^ 3 - ^ A]/(3T3).

Coordinate y (m)

Coordinate y (m)

Fig. 8.10 Ideal trajectories to be tracked by the two joint manipulator 

The corresponding polar coordinate form is then given by

(8.36)Y i(t)= zj,iW (ytc)2 +(ylc ) 2

y2(t) = z2.i=tan' I(y2.c/yi.c) (8.37)
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and the tracking errors are defined as

eij(t)=Z ij-z?J (iJ=U)

The variable structure controller is therefore of the form

v(t) =

f

<v2y V

% ( lK yeijfX)) fp(? 0 Y * i)  fp® P S A

^ 2 (1) a21-e2>2(t)j 0 pCD . rs- 
2  A ° 2J n(2) n(2) V.r 2,1 r 2,2 /

sgn
V°27

We define a vector of switching functions as follows

(r, \
G(t) =

\°2J

eu (t)+au eu (t)'
=0

Ve2,2^)+a2,1 e2,1 (l) j 

resulting in a closed loop system of the form 

E(t) = AE(t) + Bc(t)

G(t) = -p  j-CT(t) -  p2-sgn[c(t)]+ 8i(z,C,y) + 82(z,C,y)-v(t)

(8.38)

(8.39)

(8.40)

where

A =
-a 1,1 0

0 *2,1
B=

1 0 |̂ 
0 1 E(t) =_l el,l

"2,1

The feedback gains pj, p2 can be obtained according to theorem 7.2 as follows

Pi=2- n ; V P ) > 0

P r .a 2ln s>o

(8.41)

(8.42)

where and £l2 matrices depending on the uncertainty bounds A1? A2 and also ||w||, 

< P ^ 2) =Xm(Q%) the spectral norm of £22, and XM(P) is given by max{ l/2 a1 j, l/2a21}.

The following numerical values are taken throughout the simulation: p=100 kg,

Ji=J2=100 kg m2, a=l m.

The tracking errors are measured by the norm

l|e(t)|| = V  [yijC- ( z 1>1+a)cos(z2)1)]2+[y^c- ( z 1)1+a)sin(z21)]2 (8.43)

The results are shown in Fig. 8.11 and Fig. 8.12, where in case 1, the straight line 

path of Fig.8.10(i) is tracked with the mass 0kg<M<100kg; and in case 2, the combined 

straight lines path of Fig.8.10(ii) is tracked with the mass 0kg<M<200kg.
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Fig. 8.11 Result 6: Robust tracking of straight line trajectory
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Fig. 8.12 R esult 7: R obust tracking o f  the com bined straigh t line trajectory
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8.3  Sum m ary

In this chapter, the robust control techniques developed in previous chapters have 

been applied to the control of four different systems, where both stability and tracking 

problems are considered. The first two examples are SISO nonlinear systems in the 

presence of uncertainties which do not satisfy matching conditions. The third example is a 

chemical process which is MIMO, assumed linear, but highly uncertain and mismatched, 

and also open loop unstable. The last example is concerned with robust tracking of a two- 

degree of freedom manipulator with some uncertainties caused by unknown load mass. 

The simulation results show the great robustness of the techniques to the various 

uncertainties in the systems. The control techniques guarantee the stability of the closed 

loop systems and also achieve good performance both in regulation, for instance, examples 

1, 2 and 3, and in tracking, for instance, example 4. In contrast to previous work on the 

problem, the main emphasis here is that, firstly, there is no requirement for the nominal 

dynamics to be either stable or in some way precompensated, and secondly, neither is it 

required that matching assumptions be met. The simulation results show that the controller 

attenuates the effects of the uncertainties and the stability of the closed loop system is 

guaranteed.
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9 . 1  Conclusions

I N pure model-based control, the control law is based on a nominal model of the 

physical system, i.e., the model used is assumed precisely known. How the control 

system will actually behave in the presence of parametric uncertainties and unmodelled 

dynamics is not clear at the design stage, and the stability of the closed loop system cannot 

be guaranteed. Robust control requires that the controller is based on consideration of both 

the nominal model and some characterisation of the uncertainties in the system. Despite the 

presence of such uncertainties, the system should still be stable and achieve some 

prescribed performance. By robust control, we usually mean two different but related 

aspects; stability robustness and performance robustness. A critical property of a feedback 

system is its robustness, particularly with respect to stability; i.e., its ability to reduce the 

sensitivity of the system to any mismatch between the plant model and the real plant. But 

stability alone is insufficient and some performance criteria must be met. Therefore, the 

robust control of nonlinear systems in the presence of uncertainties is of great significance 

in practice.

Motivated by this crucial requirement, a rather general class of nonlinear uncertain 

systems has been investigated, where the systems are described by differential equations 

which contain parameters whose values are not precisely known. Robust feedback control 

laws have been derived whose structures depend on the known bounds of the uncertainties, 

where the control laws are based on Lyapunov stability theory. The objective of the design 

is, firstly, to guarantee the stability of the closed loop system, i.e., stability robustness, and 

secondly to achieve some desired performance, i.e., performance robustness.

All the techniques described in this thesis are based on Lyapunov stability theory, 

so that stability is the central result even where large uncertainty tolerance is required. On
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the other hand, performance robustness is also achieved by the design. More specifically, 

when designing a control law, a nominal control is obtained first, which guarantees the 

closed loop behaviour of the nominal system, and then an extra control effort is introduced 

to counter the effect of uncertainties. In this case, two situations may occur: the first is that 

the control may fully compensate the uncertainty such that the output of the closed loop 

system finally achieves the desired performance prescribed for the nominal control, whilst 

the second is that the output of the closed loop system may not finally reach the ideal 

performance prescribed for the nominal control, but settle down in the vicinity of it. This is 

called boundedness. In this work, it has been shown that all techniques can achieve a 

system with uniformly ultimately bounded behaviour. Boundedness is also a kind of 

performance robustness in the sense that if, for a particular control problem, the bound is 

sufficiently small throughout the control process so that it is acceptable, it can also be 

concluded that performance robustness can be guaranteed. For instance, in using the 

variable structure control of chapter 5, the crucial problem is to ensure the stability of the 

states to the chosen switching surface. Once the states reach the surface, the motions to the 

equilibrium point can be guaranteed by the switching surface in the sense of the sliding 

mode. It is clear that stability robustness is guaranteed by the motion of the first part, from 

anywhere off the switching surface to the switching surface, whilst performance robustness 

is guaranteed by the motion of the second part, from anywhere on the switching surface to 

the equilibrium point.

Several new concepts are developed here. These are additive compensation and 

multiplicative compensation, indicating two different types of controller. By additive 

compensation it is meant that based on a nominal control, an extra control term is added in 

order to compensate uncertainties, for instance, the methods of chapter 4, whilst by 

multiplicative compensation it is meant that an extra feedback control gain is used to 

replace one in the nominal control, for instance, the methods of chapter 5. These two 

different concepts lead to different control strategies.
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Further important concepts are one phase and two phase design. The results 

presented in this thesis are concerned with both methodologies, so that the regulation 

problem and the servo problem are solved, where the former is based on one phase design, 

and the latter on two phase design. It should be noted that the robust tracking algorithms 

have been successfully used for regulation problems.

The following concluding remarks can therefore be made. Firstly, it should be 

emphasised here that there is no requirement for the nominal dynamics to be either stable 

or in some way pre-stabilised. The synthesis can be applied directly to the original system 

no matter whether the open loop system is stable or not. Secondly, there is no requirement 

for the uncertainties to satisfy the matching conditions. These conditions have been relaxed 

so that the condition lq(x,y,t)kl is replaced by q(x,7,t)>0. This difference results in a new 

control law which depends both on the bounds of the uncertainties in the system and on the 

nominal control component. Such a relaxed condition enables the technique to be extended 

to the following more general cases: (D where the uncertainties satisfy the matching 

conditions, but q(x,y)>0; ©where only one of the uncertainties Af(x,y) and Ag(x,y) satisfies 

matching conditions; © where the uncertainties lie in the span of the input mapping 

(matching assumption), but there are no continuous functions p(x,7 ) and q(x,7 ), such that 

the uncertainties are of the form Af(x,y)=g(x)-p(x,y), Ag(x,y)=g(x)-q(x,y); (D where no 

matching conditions are satisfied.

Two typical forms of controller are discussed in chapters 4 and 5, in which one 

uses the idea of an additive control component to compensate the effect of Af(x,y) and of 

the nominal control Ui(t) through Ag(x,y), called here additive compensation, while the 

other adopts concepts from adaptive control where feedback gain is variable instead of 

constant, called here multiplicative compensation. Both methods can be understood as 

employing extra control effort to compensate for the effect of uncertainties.

One of the most important results in this thesis is the technique applied to multi

input systems. The technique developed for the single-input case has been extended to the
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multi-input case without further restriction on the nature of the system or the uncertainties. 

To be precise, there is no requirement for decoupling the nonlinear uncertain system or 

decentralising the whole system into several subsystems, and no requirement for 

decomposing the system model into a nominal part and an uncertain part. The control law 

is similar to that for single-input systems, and the principle is exactly the same though 

more mathematical concepts are used.

The robust tracking problem is also discussed in detail for both single-input and 

multi-input systems, and significant developments are made. The proposed control 

guarantees the uniform ultimate boundedness of the closed loop system. When only 

matched uncertainties are present, the tracking errors can be rendered zero within a finite 

time, whilst when both matched and mismatched uncertainties are present, the tracking 

errors cannot be made zero, but converge to an open ball BK, and remain there.

The robustness of the proposed methods has been shown by simulation using a 

simple second order linear system, in which uncertainty in open loop pole location can be 

effectively treated even for the case where the open loop poles are assumed negative but 

are in fact positive, and more interestingly, the well-known non-minimum phase problem 

has been considered as a special kind of uncertainty and effectively controlled by the 

proposed techniques, particularly the techniques of chapters 5 and 7.

9 .2  Suggestions fo r  Further  W ork

In the last two decades, many researchers and designers, from such broad areas as 

aircraft and spacecraft control, process control, robotics, and biomedical engineering, have 

been concerned with the development and applications of robust control methodologies, 

and robustness measure bounds and synthesis techniques have been developed in the time 

domain as well as in the frequency domain.
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The techniques described are based on the fundamental assumption that the bounds 

of the uncertainties are precisely known. This is not always the case. There may be some 

physical systems which contain uncertainties with unknown bounds or the bounds may 

vary from time to time depending on the working environment. In the first case, the 

methods cannot be used, whilst in the second case, although the largest possible bounds 

can be used to develop the controller, too conservative control may result. In these 

circumstances, an adaptive mechanism is advisable, using measured states or output values 

of the system, to identify the bounds of the uncertainties, and hence to determine the 

control feedback gains according to the methods developed here. This idea is not new, but 

here we only estimate the bounds of the uncertainties not the parameters of the system, 

resulting in easier implementation.

Another possible area of investigation is the use of output feedback alone. In many 

cases, although the states of systems are physically meaningful, they aren't measurable. It 

is therefore possible to use the following two techniques: one is the state observer, in 

which estimates of the system states can be obtained from measured output values by using 

an online state estimator, and the other is output feedback control which could be done 

following a similar procedure to that of state feedback control but with a proper description 

of the relationship between the output and the input of the system.

Finally, it may also be interesting to refine the robust tracking control strategies, 

which only include information about the bounds of the matched uncertainties in the 

control, but not that of the bounds of the mismatched part, so that the closed loop response 

cannot reach zero when mismatched uncertainties are present. It is possible to do this by 

considering the mismatched uncertainties when constructing the control, so that the effect 

of mismatched uncertainties on the response of the closed loop system may be reduced, 

and hence the open ball, to which the output will be restricted, is reduced in size.
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Overview
In these appendices, some preliminary results, which have been used in the 
thesis, are provided. For simplicity, most results are mentioned in the form of 
theorems without proof, and some commonly used references are listed. A 

software package, which has been developed for simulation purposes during 
research, is also introduced here.
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A F e e d b a c k  L in e a r i s a t io n

Feedback linearisation is an approach to nonlinear control design which has attracted a great deal 
of research interest in recent years. The central idea of the approach is to algebraically transform 
nonlinear system dynamics into a (full or partial) linear equivalent of a simple form, so that well- 
known and powerful linear control techniques can be applied to complete the control design. More 
precisely, the nonlinearities in a system can be cancelled by properly chosen nonlinear feedback so 
that the closed loop dynamics are of linear normal form. Within this framework, the technique 
includes two major parts: input-state and input-output linearisation.

The feedback linearisation approach, based on differential geometric theory, is one of the most 
systematically developed areas in nonlinear control theory. The primary idea can be found in 
Porter111, Tokumaru et all2], Krener[3], Brockett[4], and significant contributions to this area were 
made by Su[5], Hunt et a/[6], Isidorim, and Vidyasagar[8]. The distinctive feature of the method is 

that it allows one to develop nonlinear versions of several well-known results for linear systems, 
such as controllability, observability etc. The basic tools of the method are vector fields and their 

derivatives.

Feedback linearisation has been successfully applied to important classes of nonlinear systems (so- 

called input-state linearisable minimum phase systems). There are, however, a number of 
shortcomings and limitations associated with the feedback linearisation approach; for instance, it 

does not guarantee robustness in the presence of parameter uncertainty or disturbance.

A .l Intuitive Concepts and M athem atical Tools

Some mathematical tools from differential geometry are now introduced. To limit the conceptual 
and notational complexity, we discuss these concepts directly in the context of nonlinear dynamic 

systems (instead of general topological spaces).

A. 1.1 Some Definitions of Lie Algebra
In describing the mathematical tools, we shall call a vector function f: Rn—>Rn a vector field, which 

is a column vector on Rn, i.e.,

f(x) =
(f fxvx2,-xn)\

eRn
Vn(x,»X2> ‘ ‘ ‘ Xn) y

Similarly, a one form (|)(x) on Rn is defined as <j>: Rn—>Rn, which is a row vector, i.e., 

(J)(x) = [(])1(x1,x2,-x n),(l)2(x1,x2,-x n) , .........., (|)n(Xj,x2,”'Xn)] £ Rn
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We shall only be interested in smooth vector fields (or one forms), by which we mean that each 
component of the function f (or <j)) has continuous partial derivatives of any required order or is 

infinitely differentiable, denoted C”. Evidently, the product of a one form and a vector field 

<c|), f>= Xic>k(x)*fk(x) (A.l)

is a scalar field of the arguments x=(xj,x2,—xn), called the inner product.
Given a smooth scalar field h(x) of the state, the gradient of h is represented by a row vector (one 
form) and denoted by Vh

dh ,
V h = * r = ' -

dh
dx1

a h ,
3 T leR" (A.2)

Similarly, given a vector field f(x) on Rm, the Jacobian of f is represented by a mxn matrix and 
denoted by Vf

(dh 3 fi\
9f 3xn

dx ~ dfl 3fm
V3xi dxnJ

(A.3)

DEFINITION A.l: (Lie Derivative o f a Scalar Field)

Given f, a C” vector field on Rn, and h, a C” scalar field on R, the Lie derivative of h with respect 

to f is defined as
Ljh(x) = <Vh(x), f(x)> (A.4)

where <•,•> denotes the inner product, i.e.,

<Vh(x),f(x)>=|î - - f l(x)

The Lie derivative is also a CT scalar field on R. Thus, one can inductively define higher order Lie 

derivatives as follows:
Ljh(x) = Lf[L̂ ’1h(x)] = <VLf‘1h(x), f(x)> (k=l,2, • • • ) (A.5)

Writing L°h(x) = h(x), then 
L*h(x)=Ljh(x)

: (A.6)
L^h(x)=LfL̂ ’1h(x)

Similarly, if g is another vector field, then we may define another Lie derivative as
LgLfh(x)=<V(Ljh), g> (A.7)

DEFINITION A.2: (Lie Derivative o f a Vector Field)

Given f, g C“ vector fields on Rn, the Lie bracket is defined as
[f, g] = adf(g) = Vg f -  Vf-g (A.8)

This is also called the Lie bracket and is also a CT vector field on Rn. Successive Lie brackets can 

be defined as follows:
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[f,[f,[f,---- , [f,g]]=adf(g) (k=l,2, • • •) (A.9)

Therefore, writing ad°(g)=g, we have 

ad‘(g)=[f,g]
: (A. 10)

adj(g) = [f,ad^(g)]

A. 1.2 Diffeomorphisms and State Transformations
The concept of diffeomorphism in differential geometry can be viewed as a generalisation of the 

familiar concept of coordinate transformation.

DEFINITION A.3: (Differentiable Map with Differentiable Inverse)
A function \|/(x): Rn—>RD, defined in a region Q on Rn, is called a diffeomorphism if it is smooth, 
and if its inverse xj/-1 exists and is smooth. Furthermore, if the Jacobian matrix of V\j/ is non
singular at every point x in 12, then \j/(x) defines a local diffeomorphism in 12. If the region 12 is the 
whole space Rn, then \j/(x) is a global diffeomorphism.

A global diffeomorphism is rare, and therefore one often looks for a local diffeomorphism. A 
diffeomorphism can be used to transform a nonlinear system into another system, which may be 

nonlinear or linear, in terms of a new set of states.

DEFINITION A.4: (Relative Order)

(A. 11)

Consider a SISO nonlinear system described by a set of differential equations of the form 

x(t)=F(x)+G(x)u(t) 
y(t) = H(x)

where xe Rn, ue R, ye R are state, control and output of the system respectively, with F(x) and G(x) 

being smooth vector fields, H(x) a smooth scalar field, and F(0)=0. If there exists a positive integer 
\)<n such that

LgLpH(x) = 0 (k=0,l,...,\>-2) (A. 12)

LcLp 1H(x)^0 (A. 13)
then it is said that the system has relative order (or relative degree) t>.

The relative degree u of a linear system can be interpreted as the excess of poles over finite zeros 
in the transfer function. In particular, any linear system in which t> is strictly less than n has finite 
zeros in its transfer function. If however u=n, the transfer function has no finite zeros. For 

nonlinear systems, the relative order simply means the number of differentiation of output y(t) 

required for the input u(t) to appear.

THEOREM A.5: (Full State Transformation)
An n^-order nonlinear system of form (A. 11) with relative order v=n, can be transformed into 

input-state linearisable form by a diffeomorphism defined by
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zk =  \]/k(x) <=> x = ^ ( z )  (k = l,2 , ----- , n) (A . 14)

w ith  th e  ch o ice  o f

\]/k(x) =  Lp !H (x) (A . 15)

A  n ew  sy s tem  o f  the  fo llo w in g  n o rm al fo rm  

Zj(t)=z2(t)

zn_i(t) =  z n(t)

Zn(t) = a(z )+ b (z )u (t)  (A . 16)

y(t) =  h (z)

resu lts , w h ere  z is  th e  n e w  s ta te  rep resen ta tio n  o f  th e  sy stem , an d

a (z )= L p H o \jr 1(z) (A .17 )

b ( z ) = L GL np 1H o \|r 1(z) (A . 18)

P ro o f :  A  se t o f  d iffeo m o rp h ism s o f  th e  fo rm  (A . 15), zk=\j/k(x )= L p 1H (x) (k = l,2 , --,n), ex is ts  fo r 

sy stem s w ith  re la tiv e  o rd e r  t>=n, su ch  th a t th e  g rad ie n t o f  \j/ is  g iv en  b y  

d v ^ V L ^ 'H f x )

thus

i *=j l ‘^ ' [Fi(x)+Gi(x)u] <k=1-2-'' • •.") (A-19>

S in ce  \|/(x) is  in d e p en d e n t o f  u a n d  th e  sy s tem  h as  re la tiv e  o rd e r  u = n , u sing  n o ta tio n  <•,•>, i t  is 

co n c lu d ed  th a t < d \|/k, G > = 0 . T h e re fo re

zk= <d\j/k, F > = L^Ho\jr»(z) = \|rM  (k=  1 ,2 , -------- n - 1) (A .20)

and

zn= < d \ |/n, F + G u > = < d \|/n, F >  +  <d\(/n, G > u

=  L npH(x) +  L GL nF,H (x)-u(t)

=  ^pHoxjrVz) +  L GL p 1H o\|r '(z)-u(t)

= a(z) + b(z)u(t) (A. 21)
T hus, i f  \j/ j is  k n o w n , then  \\r2, an d  \|/n can  b e  fo u n d  by  L ie  d if fe ren tia tio n , a n d  th e  sy stem  can  

be tran sfo rm ed  to  th e  lin earisab le  n o m in a l fo rm  (A . 16). □

THEOREM  A .6 : (P a r t ia l  S ta te  T r a n s fo r m a t io n )

F o r an  n ^ -o rd e r  n o n lin e a r  sy stem  o f  fo rm  (A . 11) w ith  re la tiv e  o rd e r  t)<n, d e f in e  a  c o o rd in a te  

tran sfo rm ation

( z ,0  =  Y (x) <=> x = \ j r l( z , 0  (A .22)

w h ich  resu lts  in  a  n ew  sy stem  o f th e  fo llo w in g  n o rm al form : 

z ,( t)  =  z 2(t)

z«.i(t) =  z„(t)
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zv(t) =  b (z ,Q + a (z ,Q u ( t)  

t ( t )  =  tf(z ,Q  

y(t) =  h (z )

(A .23 )

w ith  th e  ch o ice  o f  th e  tran sfo rm atio n  \|/ a s  fo llow s 

zk=  \j/k(x) =  L p 'H (x )  ( k = l , 2 , ------ , v ) (A .24 )

w h ere  z  an d  C, a re  th e  n ew  s ta te  rep rese n ta tio n s  o f  th e  system , q  in d ica te s  th e  in te rn a l dy n am ics , 

and

N o te  tha t, in  th e  tran sfo rm ed  sy stem  w ith  (z ,£ ) a s  n ew  s ta te  co o rd in a tes , th e  f irs t t) e q u a tio n s  a re  in 

co m p an io n  fo rm , w h ile  th e  la s t n -n  eq u a tio n s  a re  n o t re la te d  to  th e  sy s tem  in p u t u. T o  show  th a t 

th e  n o n lin e a r  sy s tem  can  indeed  b e  tran sfo rm ed  in to  th is  n o rm a l fo rm  u su a lly  in v o lv e s  show ing  

th a t the  co m p o n en ts  zk ( k = l ,—,n) a re  in d e p en d e n t (an d  thus a re  e lig ib le  to  se rv e  a s  a  su b se t o f  th e  

s ta te  vec to r), an d  th a t n -n  o th e r v a riab les  zk ( k = n + l ,- —,n ) c an  b e  fo u n d  to  c o m p le te  th e  s ta te  

vec to r. T h e  fo rm a l p ro o f  can  b e  fo u n d  in  m a n y  re fe ren ces , fo r  in s tan c e  Is id o r i[7].

A.2 Linearisation of SISO Nonlinear Systems
T h e  lin earisa tio n  p ro b lem  fo r s in g le -in p u t s in g le -o u tp u t n o n lin e a r  sy stem s is n o w  co n s id e red . B y  

lin earisa tio n  w e  m ean  th a t a  linear d iffe ren tia l re la tio n  b e tw e en  th e  s ta te s  o r  o u tp u t a n d  a  new  

in p u t v can b e  g en e ra te d  b y  p ro p er des ig n  o f  th e  co n tro l law . N o te  th a t th e  in p u t-s ta te  lin e a risa tio n  

p ro b lem  is u su a lly  co n c e rn ed  w ith  h o w  to  d e fin e  a  fu n c tio n  r |(x )  such  th a t a l l  th e  s ta te s  o f  th e  

g iven  n o n lin e a r  sy stem  can  b e  co m p le te ly  lin e a rise d  w ith  t |( x )  a s  th e  o u tp u t o f  th e  sy stem . H ere  

w e w ill n o t d iscuss th is  g en e ra l p ro b lem , b u t o n ly  d iscuss th e  m e th o d  b y  w h ich  a  g iv e n  n o n lin e a r  

sy stem  w ith  a  p re sp e c if ie d  ou tp u t fu n c tio n  H (x ) is  lin earised .

A.2.1 Input-State Linearisation

In o rd er to  p ro ce ed  w ith  a  d e ta iled  stu d y  o f  in p u t-s ta te  lin ea risa tio n , a  fo rm a l d e fin itio n  o f  th is  

co n cep t is n ecessary :

DEFINITION A .7 : ( In p u t- S ta te  L in e a r i s a t io n )

A s in g le -in p u t s in g le -o u tp u t n o n lin e a r  sy stem  o f  fo rm  (A . 11) w ith  F (x ) an d  G (x) sm o o th  v e c to r  

fie lds, is sa id  to  b e  inp u t-s ta te  lin e a risa b le  i f  th e re  ex is t a  reg io n  Q. in  Rn, a  d iffe o m o rp h ism  

\[/: £2—>Rn, an d  a  n o n lin e a r  feed b ack  co n tro l law

such th a t th e  n ew  s ta te  variab les  z=\]/(x) an d  th e  n ew  in p u t v  sa tis fy  a  lin e a r  tim e - in v a r ia n t re la tio n  

o f  the fo rm

a(z , Q  =  L ” Ho\}r1 (z, Q  

b (z ,Q  =  L GLp‘IH o\jr1(z ,Q

(A .25 )

(A .26 )

u =  a (x )+ P (x )v (A .27 )

z = Az+bv (A.28)
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w h ere

r  0 i .
0 1 f 0 ' ]0A = 0 • 1 b =

^-a0 - a x . . • • -0Cn.l ) U o j
z an d  v a re  ca lle d  th e  lin earis in g  s ta te  an d  co n tro l re sp e c tiv e ly , an d  (k= 0 , l , —, n )  a re  co n s tan ts

to  b e  ch o sen  such  th a t A  is  H urw itz .

T h e  o b je c tiv e  n o w  is to  find  a  se t o f  d iffeo m o rp h ism s zk=\j/k(x) ( k = l ,2 ,— ,n) fo r  th e  n o n lin e a r  

sy stem  (A . 11) such  th a t th e  system  can  b e  tran sfo rm ed  to  b e  o f  th e  lin e a risa b le  fo rm , an d  

fu rth e rm o re  to  f in d  a  fee d b ack  co n tro l su ch  th a t th e  sy s tem  is  lin ea rised . T w o  q u es tio n s  a r ise  w hen  

such  tran sfo rm atio n s  a re  considered ; w h a t c lasses  o f  n o n lin e a r  sy s tem s ca n  b e  in p u t-s ta te  

lin earised , an d  h o w  can  a  tran sfo rm atio n  b e  fo und?

THEOREM A. 8; (Sufficient and Necessary Condition for Input-State Linearisation)
A n i f ’-o rd e r n o n lin e a r  sy stem  o f  fo rm  (A . 11) is  in p u t-s ta te  lin e a risa b le  if, an d  o n ly  if, th e  sy s tem  

h as  re la tiv e  o rd e r  \>=n w ith  H (x) as  th e  o u tp u t o f  th e  sy stem .

Theorem A.9: (Input-State Linearisation)
T h e  n o n lin e a r  sy stem  in  th e  fo rm  (A . 11), w ith  re la tiv e  o rd e r  n = n , can  b e  tra n s fo rm e d  in to  a  

lin e a risa b le  n o m in a l fo rm  (A . 16), an d  fu rth e rm o re  th e  sy stem  can  b e  ex ac tly  lin e a r ise d  b y  s ta te  

fe e d b ack  o f  th e  fo rm

- J i  (V L ^ H o x jrh z )  +  ocnv ( t )
u ( t )  =

o c ^ L ^ H o X jrV z ) (A .29 )

w h ere  (k= 0 , l , —,n) a re  co n s tan ts  w ith  a n= l ,  such  th a t th e  sy s tem  w ill b e  c o n v e r te d  to  a  lin e a r  

o n e  w ith  ch a rac te r is tic  equa tion

Scx.-Xk =  0  (A .30 )
k=0 K

w h ere  Alc(k = l ,. . ,n )  a re  th e  e ig en v a lu es  o f  th e  lin e a rise d  system .

P ro o f :  N o te  h e re  th a t acco rd in g  to  th e  d e fin itio n  o f  th e  d iffe o m o rp h ism  (A . 15)

L kF1H o\jr1(z) =  zk (k = l,2 , • • •, n) (A .31 )

th e  sy stem  is tran sfo rm ed  to  new  co o rd in a tes  z. I t  is o b v io u s  th a t th e  co n tro l (A .29 ) is  o f  th e  fo rm

u(t) =  a  -b (z ){  +  a n-[-a (z )+ v (t)]} (A .32 )

such  th a t th e  resu ltin g  c lo sed  loop  sy stem  is  g o v ern e d  b y  th e  eq u a tio n s  

z ,( t)  =  z 2(t)

zn..(t) =  zn(t)

zn(t) = - a o Z ,- a ,z 2 ............a n lzn + v (t)

y ( t )= h(z)

(A.33)
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i.e ., is  lin e a r  an d  co n tro llab le . T hus i t  is  co n c lu d e d  th a t any  n o n lin e a r  system  w ith  re la tiv e  o rd e r  

\)=n  in  Q  can  b e  tran sfo rm ed  in to  a  sy s tem  w h ich , in  th e  reg io n  Q , can  b e  e x a c tly  lin e a r ise d  b y  th e  

s ta te  fee d b ack  (A .29). □

I f  w e  ch o o se  0 ^ = 0  ( k = 0 ,- ,n - l )  in (A .2 9 ), th e  fe e d b a c k  c o n tro l is  th e n  o f  th e  fo rm

, . _  -L gH oy^z) +  v(t) _  -a (z )+ v (t)
U ( t ) "  L ^ - ’hoxjtKz) “  b (z)

an d  th e re fo re  an  n ^ -o rd e r  in teg ra to r re su lts  (F ig . A .l ) .

REM A RK  A . 1: v(t)

•  T h e  in p u t-s ta te  lin ea risa tio n  is  a c h ie v e d

by  a  co m b in a tio n  o f  a  s ta te  tran sfo rm atio n  R g  A  l  Exactly linearised system

an d  an in p u t tran sfo rm atio n , w ith  s ta te

fee d b ack  u sed  fo r bo th . T h u s it is  a  lin e a risa tio n  b y  feed b ack , o r  feed b ack  lin e a risa tio n , an d  is 

e x a c t lin ea risa tio n . T h is  is  fu n d am en ta lly  d iffe ren t f ro m  a  Ja co b ia n  lin e a risa tio n  fo r  sm a ll ran g e  

o p era tio n  on w h ich  lin ea r con tro l is  b ased , w h ere  a  cu rv e  is  re p la c e d  a r tif ic ia lly  by  a  s tra ig h t lin e  

u n d e r  so m e  p re su m e d  cond itions. S uch  an  ap p ro x im atio n  is  o n ly  u se fu l in  a  sm a ll n e ig h b o u rh o o d  

a ro u n d  th e  o p e ra tin g  po in t.

•  In  o rd e r  to  im p lem e n t th e  con tro l law , th e  n ew  s ta te  co m p o n en ts  zk m u s t b e  av a ila b le . I f  th e y  

a re  n o t p h y s ic a lly  m e an in g fu l or c a n n o t b e  m e asu red  d irec tly , th e  o r ig in a l s ta te  m u s t b e  m e a su re d  

an d  u sed  to  co m p u te  them  fro m  (A . 14).

A.2.2 Input-Output Linearisation

T h e  p ro b lem  o f  in p u t-o u tp u t lin ea risa tio n  d iffe rs  fro m  th a t o f  in p u t-s ta te  lin e a risa tio n  in  th a t i t  is 

n o t n ec e ssa ry  to  d e fin e  a  se t o f  d iffeo m o rp h ism s to  tran sfo rm  th e  o rig in a l n o n lin e a r  sy s tem  in to  a  

n ew  one. T h e  lin earis in g  o pera tion  is  c a rrie d  o u t d irec tly  w ith  th e  o rig in a l n o n lin e a r  sy s tem , a n d  a  

lin e a r  d iffe ren tia l re la tio n  is  c rea ted  o n ly  b e tw een  th e  o u tp u t y  a n d  th e  n ew  in p u t v , reg a rd le ss  o f  

th e  n o n lin e a r  re la tio n sh ip  b e tw een  s ta te s  an d  th e  in p u t o f  th e  sy stem .

THEOREM  A . 10 : ( I n p u t - O u tp u t  L in e a r i s a t io n 19101)

T h e  n o n lin e a r  sy stem  o f  th e  fo rm  (A .23) can  b e  in p u t-o u tp u t lin e a rise d  b y  s ta te  fe e d b a c k

u ,(t)
- j j ,  <VL fe (x )  + a„ v (t)

a ^ L ^ H t x )
(A .34 )

i f  an d  o n ly  i f  th e  n o n lin e a r  system  h a s  re la tiv e  o rd e r  l< v < n . T h e  c lo sed  lo o p  sy s tem  w ill b e  a  

lin e a r  d iffe ren tia l re la tio n  b etw een  th e  o u tp u t y (t) an d  th e  n ew  in p u t v (t). T h e  lin e a r ise d  sy s tem  h a s  

t> e ig en v a lu e s  Xli(k = l ,2 , . . . ,n )  sa tisfy ing  th e  fo llo w in g  ch a rac te r is tic  eq u a tio n

£ock-X* = 0
k=0

w h ere  a u= l ,  to g e th e r w ith  n-\> u n o b se rv ab le  e ig en v a lu e s  (k=o+ l,...,n ).

(A.35)
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P ro o f :  T h e  b as ic  ap p ro ach  is sim p ly  to  v(t) 

rep e a te d ly  d iffe ren tia te  th e  o u tp u t 

fu n c tio n  y (t) u n til it  is ex p lic itly  re la ted  

to  th e  in p u t u (t). S u p p o se  th e  re la tiv e  

o rd e r  o f  th e  sy stem  is  l<D<n, th en  

den o tin g Fig. A.2 Input-Output linearised system
y(t) =  H(x)=L°H(x) (A .36)

w e d iffe ren tia te  th e  o u tp u t function  v> tim es

y ( t)= |^  (F+Gu)=LFH(x)+LGH(x)u(t) = L^h(x) (A. 37)

where Lgh(x)=0, and

y ( t ) = ^  • LpH(x) • (F + G u) =  L2FH(x)+LGLFH(x)-u(t) =  L2fh(x) (A .3 8 )

where LgLfh(x)=0, un til

y(-)(t)= ^  • L ^ h(x) • (F + G u) =  L pH (x)+L GL F 1H (x)-u(t) (A .3 9 )

w h e re  L cL p  1H(x)?=0. T h en  th e  co n tro l law  o f  th e  fo rm

U(t) =  L gL ^ h (x) [-L fh (x) - X a k-LFH (x )+ v (t)] (A .4 0 )

y ie ld s th e  lin e a r  d iffe ren tia l equa tion

y(u)(t)+E^o^-y^Ct) =  v (t) (A .41 )

T h e  ch a rac te r is tic  eq u a tio n  is th e re fo re  g iv e n  b y

A.3 Zero Dynamics and Minimum Phase of Nonlinear Systems
W e n o w  in tro d u c e  an d  d iscu ss  an im p o rta n t con cep t, ze ro  dy n am ics , th a t in  m a n y  c irc u m sta n ce s  

p lay s  a  ro le  ex ac tly  s im ila r  to th a t o f  th e  'ze ro s ' o f  th e  tran sfe r  fu n c tio n  in  a  lin e a r  sy s tem .

W e  h av e  a lread y  seen  from  th eo rem  A .9  th a t, i f  th e  re la tiv e  o rd e r  u = n , a  n o n lin e a r  sy s tem  is 

co m p le te ly  in p u t-s ta te  lin earisab le . T h is  is  n o t o f ten  the c a se  in  p rac tice , p a r t ic u la r ly  fo r  th e  

sy stem  w ith  a  p resp ec if ied  ou tp u t fu n c tio n  H (x ). I f  th e  re la tiv e  o rd e r  t><n, th is  lin e a r isa tio n  can  

o n ly  b e  ac h ie v ed  p a rtia lly , i.e ., o n ly  so m e  o f  th e  s ta te s  a re  lin e a rly  re la te d  to  th e  in p u t a f te r  

co o rd in a te  tran sfo rm atio n .

T h e  s ta te s  o f  th e  o rig in a l system  a re  d eco m p o se d  in to  tw o parts , z  an d  £, b y  th e  tran sfo rm a tio n  

(A .22), in  w h ich  z rep resen ts  th e  s ta te s  th a t a re  to  be  co n tro lled  to  a c h ie v e  d e s ire d  o u tp u t 

p e rfo rm an ce , an d  C, rep rese n ts  the s ta te s  th a t c a n n o t b e  d irec tly  co n tro lled  by  fe e d b a c k . T h ey  a re  

o ften  re fe rre d  to  as  ex te rn a l and  in te rn a l d y n am ics  re sp ec tiv e ly . C lea rly , th e  s ta b ili ty  p ro p e rtie s  o f  

th e  in te rn a l d y n am ics a re  cruc ia l b ec au se  a  c lo sed  lo o p  sy stem  w h ich  ap p ea rs  s ta b le  m a y  in c lu d e
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u n stab le  in te rn a l dynam ics . S in ce  fo r lin e a r  sy s tem s th e  s tab ility  o f  th e  in te rn a l d y n a m ic s  is  s im p ly  

d e te rm in e d  by  the lo ca tio n s  o f  th e  zero s, i t  is  in te res tin g  to  see  w h e th e r  th is  re la tio n  can  b e  

ex ten d e d  to  n o n lin e a r  sy stem s. T o  do  th is  i t  is  n ecessa ry  firs t to  ex ten d  th e  c o n c e p t o f  ze ro  to  

n o n lin e a r  sy stem s, an d  th en  to  d e te rm in e  th e  re la tio n  o f  th e  in te rn a l d y n am ics  to  th is  ex ten d e d  

co n c ep t o f  ze ro . A  w ay  to  ap p ro ach  th is  is  to  d e f in e  so -ca lled  ze ro -d y n a m ic s  fo r  a  n o n lin e a r  

sy stem .

D EFIN ITION  A . 11: (Z e r o  D y n a m ic s )

T h e  ze ro  d y n am ics  o f  the  n o n lin e a r  sy s tem  (A . 11) a re  the  d y n am ics  o f  th e  sy s tem  su b je c t to  th e  

c o n s tra in t th a t th e  ex te rn a l d y n am ics  z  b e  id e n tic a lly  ze ro , i.e .,

C(t) = 3 ( 0 , 0  ( A . 4 2 )

R EM A R K  A .2 :

•  T h e  ze ro  d y n am ics a re  an  in trin s ic  fe a tu re  o f  a  n o n lin e a r  system , w h ich  d o  n o t  d e p e n d  on  th e  

ch o ice  o f  co n tro l law  o r  th e  des ired  tra jec to rie s .

•  E x am in in g  th e  s tab ility  o f  th e  ze ro  d y n am ics  is  m u c h  e a s ie r  than  ex a m in in g  th a t  o f  th e  in te rn a l 

dy n am ics , b ecau se  th e  ze ro  d y n am ics o n ly  in v o lv e  th e  in te rn a l s ta te s  (w h ils t th e  in te rn a l d y n am ics  

a re  co u p led  to  th e  ex te rn a l d ynam ics).

D EFIN ITION  A . 12: (M in im u m  P h a s e )

A  n o n lin e a r  sy stem  is  sa id  to  b e  (a sy m p to tic a lly ) m in im u m  p h a se  i f  its  z e ro  d y n am ics  a re  

(a sy m p to tic a lly ) stab le .

REM A R K  A . 3 :

•  I f  th e  re la tiv e  d eg ree  t> asso c ia ted  w ith  in p u t-o u tp u t lin ea risa tio n  is  th e  sa m e  a s  th e  o rd e r  o f  th e  

sy stem , th e  n o n lin ea r sy stem  is  fu lly  lin e a rise d  an d  th is  p ro ce d u re  le ad s  to  a  sa tis fac to ry  c o n tro lle r  

(assum ing  th a t the m o d e l is  accu ra te ). I f  th e  re la tiv e  d eg ree  is  sm a lle r  than  th e  sy s tem  o rd er, then  

th e  n o n lin e a r  sy s tem  is o n ly  p a rtia lly  lin earised , an d  w h e th e r  th e  c o n tro lle r  can  b e  ap p lie d  d epends 

on  th e  s tab ility  o f  th e  in te rn a l dynam ics .

•  T h e  stu d y  o f  th e  s tab ility  o f  th e  in te rn a l d y n am ics  can  b e  s im p lif ied  lo ca lly  b y  s tu d y  o f  th e  ze ro  

d y n am ics  in stead . I f  th e  zero  d y n am ics  a re  u nstab le , d iffe ren t co n tro l s tra teg ie s  sh o u ld  b e  sough t, 

o n ly  s im p lified  by  th e  fac t th a t the tran sfo rm ed  d y n am ics  is  p a rtly  linear.

•  T o  sum m arise , co n tro l design  b a sed  on  in p u t-o u tp u t lin ea risa tio n  ca n  b e  d o n e  in  th re e  steps: (D 

d iffe ren tia te  the  o u tp u t y (t) un til th e  in p u t u (t) ap p ea rs ; ®  ch o o se  u(t) to c a n ce l th e  n o n lin e a ritie s  

an d  g u aran tee  th e  s tab ility  o f  th e  sy stem ; ®  s tu d y  th e  s tab ility  o f  th e  in te rn a l d y n am ics .

A.4 Linearisation of MIMO Nonlinear Systems
T h e  co n cep ts  d iscussed  p rev io u sly  fo r S IS O  sy stem s, such  as  in p u t-s ta te  lin e a risa tio n , inpu t- 

o u tp u t lin earisa tio n , n o rm a l form , an d  ze ro  d y n am ics , can  b e  ex ten d ed  to  M IM O  sy stem s. F o r  th e
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M IM O case , w e  co n s id e r th e  tran sfo rm atio n  o f  sq u a re  sy stem s, i.e ., sy s tem s  w ith  th e  sam e 

n u m b e rs  o f  in pu ts  an d  o u tpu ts . Such a  tran sfo rm atio n  is  now  b r ie f ly  d iscu ssed .

DEFINITION A . 13: (R e la t iv e  O r d e r  o f  M IM O  S y s te m s )

F o r th e  m u ltiv a ria b le  n o n lin e a r  sy s tem  o f  fo rm

x ( t) = F (x )+ G (x )u (t)  (A .43 )

y 1(t) =  H ,(x )

ym(0 = H m(x)

w h ere  x e  Rn, u s  Rm. T h e  sy s tem  is sa id  to  h a v e  re la tiv e  o rd e r  ( u 1, \)2, ............ ,u m) i f

L GLpH ;(x) =  0  ( k = 0 , l , ------ , u  -2 l< i< m , l< j< m )  (A .44 )

an d  th e  fo llo w in g  m a trix

(L g L ^ V x) ....La L^'h^x) A
n= : :

vL g L f ’ h J x ) ...... L GmL F J H m( x ) ;

is  n o n -s in g u la r. T h e  to ta l re la tiv e  o rd e r  o f  th e  sy stem  is  d e fin ed  b y
m

o  =  X"v\ <  n  (A .45 )
k=l

H ow  a  n o rm al fo rm  can  b e  o b ta in ed  fo r th e  sy stem  in  a  m a n n e r  s im ila r  to  th e  S IS O  case , is now  

show n.

TH EO REM  A . 14: ( C o o r d in a te  T r a n s fo r m a t io n 15 81)

F o r  th e  m u ltiv a riab le  n o n lin e a r  sy stem  o f  fo rm  (A .43 ), i f  th e  sy s tem  h as  re la tiv e  o rd e r  t> w here  

l< o < n , then  th e re  ex is ts  a  co o rd in a te  tran sfo rm atio n  

z = \ |/ (x )  <=> x  = \jr 1(z)

S uch  a  tran sfo rm atio n  le ad s  to  a  n ew  sy s tem  rep resen ta tio n  w ith  co o rd in a tes  ( z ,Q , w here , re la ted  

to  m  in p u ts , z can  b e  d eco m p o sed  in to  m  se ts  z i? an d  each  o f  th e m  co n s is ts  o f  X), s ta te s  o f  fo rm

ziik(t) =  YijcOO =  L p :‘H oX jr^z) (k=l,2 , • • • •, -O;, i=l,2 , • • • •, m) (A .46 )

S p ec ifica lly

z „ = H ,( x )  .............. z , „ = L ”/ 1H 1(x)

^ , = H »  ..............

T h ese  are  s im p ly  the o u tp u ts  y; an d  th e ir  d e riv a tiv e s  up to  D; ( i = l ,—-,m ). S u ch  a  ch o ice  o f  new  

s ta te  v ec to rs  en ab les  u s  to  w rite  th e  ex te rn a l d y n am ics  o f  th e  sy s tem  as  fo llo w s: 

i i.i(t) =  zi 2(t)

A v (0 = z .v(t)
m

zitV(t) =  a i( z ,Q + X b ij(z ,Q -u j(t) (A .47)
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yi( t ) = h i(z) (A .48 )

w h ere

ai( z ,Q = L J H io¥ -i(z)
( i= l,2 , • • • •, m)

b i/ z , 0  = L 0 L».'1 H ioY ''(z)

T h e  in te rn a l d y n am ics  a re  o f  th e  fo rm

z ( t)  = q (z ,Q + p (z ,Q u (t)  (A .49 )

w ith  k = l ,  • • • •, n-t> a n d  i = l ,  • • • •, m  

^ k( z , 0 = L FCk(x)

/?ki( z , 0 = L GCk(x)

D EFINITION A . 15 : (T h e  I n v o lu t iv e  P r o p e r ty )

T h e  se t o f  m  lin early  in d e p en d e n t v e c to r  f ie ld s  g (x ) is  sa id  to  b e  a  m -d im e n s io n a l d is trib u tio n , an d  

i f  i t  is p o ss ib le  to w rite
m

[gi»gj](x) =  kX y ijJc(x)-gk(x) (l< i,j,k<m ) (A .50)

then  th e  m -d im en sio n a l d is trib u tio n  is  sa id  to  b e  in v o lu tiv e .

T h e  c o n c ep t o f  in v o lu tio n  im p lie s  th e  so lv ab ility  o f  a  se t o f  p a rtia l d if fe re n tia l eq u a tio n s .

T h e o r e m  A . 16: ( C o n d it io n  o n  I n te r n a l  D y n a m ic s 17’111)

T h e  in te rn a l d y n am ics o f  m u ltiv a ria b le  n o n lin e a r  sy stem s a re  u su a lly  o f  th e  fo rm

z(t) =  0 (z ,Q + p (z ,Q u (t)  (A .51 )

I f  th e  v ec to r fie ld s  g , ,—, g m a re  in v o lu tiv e , then

p k ;( z ,0  =  L G.Ck0 0  =  0  ( l< i< m  I<k<n--U)

ho ld . I t  fo llo w s th a t th e  in te rn a l d y n am ics  a re  o f  th e  fo rm

t,(t) = q ( z ,Q
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B V a r ia b l e  S t r u c t u r e  C o n t r o l

T h e  v a ria b le  s tru c tu re  co n tro l ap p ro ach  w as firs t in tro d u ced  in  th e  1950 's b y  th e  R u ss ian  sc ien tis t, 

U tk in , an d  su rv ey ed  in  U tk in [1>2], an d  h a s  b een  w e ll d ev e lo p e d  d u rin g  th e  la s t th re e  d ec ad e s  b y  

m an y  con trib u to rs , see  Z a k [3>4-5]. T h e  fu n d am en ta l fe a tu re  o f  th is  m e th o d o lo g y  is  b a sed  o n  th e  fa c t 

th a t o n ce  th e  sy s tem  tra jec to ry  reach es  a  p resp e c if ie d  su rface , a ( x ) e  Rm in  th e  s ta te  sp ace , th e  

sy stem  w ill m o v e  o r  s lid e  to w ard s th e  eq u ilib r iu m  p o in t a long  th is  su rface . H e re  th e  te rm  'su rface ' 

rep resen ts  a  m a n ifo ld  in  s ta te  sp ace  o f  lo w er d im e n s io n a lity  th a n  th e  s ta te  sp a ce  itse lf . T h e  

p e rfo rm an ce  o f  th e  sy s tem  th e re fo re  d ep en d s  o n ly  on  th e  s tru c tu re  o f  th e  su rface , a n d  rem a in s  

in sen sitiv e  to  p a ra m e te r  v aria tio n s an d  d is tu rb an ces  o f f  th e  su rface . A ll th a t is  n e e d e d  d u rin g  th e  

des ign  is  to  ch o o se  a  d es ired  sw itch ing  su rface  an d  to  g u a ra n tee  th a t th e  sy s tem  o u tp u t co n v e rg es  

to  th is  su rface  fro m  an y w h e re  in  th e  ad m iss ib le  reg io n  Q  o f  s ta te  space , an d  to  g u a ra n te e  th a t th e  

d es ired  s lid ing  m o tio n  ex ists , u nder th e  p ro p o sed  con tro l.

T w o  c ru c ia l p ro b lem s a rise : (D how  to  co n s tru c t a  co n tin u o u s  fu n c tio n , w h ich  is  a c ce ss ib le , w ith  

un iq u e  d es ired  eq u ilib riu m  po in t, such  th a t the  sy s tem  b e h a v es  ac co rd in g  to  so m e  p ro p ertie s  

p resc rib ed  by  th e  fun c tio n ; ©  h ow  to  d es ig n  a  co n tro lle r  w ith  sw itc h ed  fe e d b ack  g a in , su ch  th a t th e  

s ta te  can  b e  d riv en  to w ard s th e  chosen  su rface  fro m  an y w h e re  in  th e  ad m iss ib le  re g io n  £2 o f  s ta te  

space; i. e. , th e  s tab ility  o f  th e  sta te  tra jec to ry  to  th e  sw itch in g  fu n c tio n  is  req u ired .

W e w ill co n s id e r n o n lin e a r  sy stem s o f  th e  fo rm

x(t) =  f(x )+ g (x )u (t)  ( B . l )

w h ere  x e  Rn, u e  Rm a re  th e  s ta te  and  co n tro l o f  th e  sy s tem  resp ec tiv e ly .

B.l Sliding Mode
A n im p o rta n t fea tu re  o f  v ariab le  s tru c tu re  sy stem s is  th e  slid in g  m o d e , b y  w h ich  w e  m e a n  th a t, 

u n d er so m e c ircu m stan ces, th e  s ta te  tra jec to ry  o f  th e  sy s tem  s lid es  o v e r  a  d em an d e d  su rfa ce  

d esp ite  d is tu rb an ces  ac tin g  on  th e  sy stem .

B.1.1 Switching Surface
A  sw itch ing  fu n c tio n  a (x )= 0  is th e re fo re  requ ired .

D e f i n i t i o n  B . l :  (S w i tc h in g  S u r fa c e )

F o r th e  sy stem  o f  ( B .l) ,  i f  th e re  ex is ts  a  su rface  

( G \{xh x 2, . . . x A \
c(x) =

• • -*ti) j
gR"
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in d e p en d e n t o f  an y  u n ce rta in  e lem en ts  in  th e  sy stem , such  th a t i t  is  a c ce ss ib le  b y  th e  s ta te s  o f  th e  

sy stem  fro m  e ith e r  s id e  o f  i t  under th e  p ro p o sed  co n tro l, th en  it  is  c a lle d  a  sw itch in g  fu n c tio n  o r  a  

sw itch in g  su rface .

B y  p ro p erly  ch o o s in g  a  sw itch ing  su rface , w h ich  m a y  

b e  e ith e r  lin e a r  o r n o n lin ea r, d es ired  b eh a v io u r  o f  th e  

c lo sed  loop  sy stem  co n s is tin g  o f  a  se t o f  s ta tes

x  =  {x |g (x7,x2,...x„)=0} (B .2)

resu lts . H ere  x  is  u sed  to  in d ica te  a  se t o f  s ta te s  w h ich  

a re  on  th e  sw itch ing  su rfa ce  o (x )= 0 , in  o rd e r  to 

d is tin g u ish  th em  fro m  an o th e r  set X , co n s is tin g  o f  a ll 

s ta te s  o f f  th e  sw itch in g  su rface , i.e ., o(x)=£0 .

B.1.2 Sliding Mode F ig .B .l m ustation  of the intersection
of two switching surfaces

A fter sw itch in g  su rface  design , th e  n e x t im p o rta n t

a sp ec t o f  v a ria b le  s tru c tu re  con tro l is  g u a ra n tee in g  th e  e x is te n ce  o f  a  s lid ing  m o d e . U n d e r v a ria b le  

s tru c tu re  con tro l, th e  rea l tra jec to ry  o f  the  c lo sed  lo o p  sy s tem  is  o b ta in ed  b y  co m p o s in g  a  d e s ire d  

tra jec to ry  from  th e  p a rts  o f  tra jec to ries  o f  d iffe ren t s tru c tu re s  co rresp o n d in g  to  d if fe re n t co n tro l 

ac tio n s . S uch  a  m o tio n  a lo n g  o (x )= 0 , w h ich  is n o t a  tra jec to ry  o f  an y  o f  th e  s tru c tu re s , is  c a lle d  th e  

s lid ing  m o d e . A  s lid in g  m o d e  ex ists , if , in  th e  v ic in ity  o f  the  sw itch in g  su rface , o (x )= 0 , th e  ta n g e n t 

o r  v e lo c ity  v ec to rs  o f  th e  s ta te  tra jec to ry  a lw a y s  p o in t to w ard  th e  sw itch in g  su rface . T h en  i f  th e  

s ta te  tra jec to ry  in te rsec ts  th e  sw itch ing  su rface , i t  rem a in s  w ith in  a  n e ig h b o u rh o o d  o f  th e  reg io n  

{x |o (x )= 0 }.

DEFINITION B .2 :  ( S l id in g  M o d e  D o m a in )

A  d o m a in  Q, in  o (x )= 0  is  a  slid ing  m o d e  d o m a in  i f  fo r  each  e> 0 , a  8> 0  ex is ts  su ch  th a t  an y  m o tio n  

s ta rting  w ith in  an  n -d im en sio n a l 8 -v ic in ity  o f  Q  m a y  le av e  th e  n -d im e n s io n a l e -v ic in ity  o f  Q, 

o n ly  th ro u g h  th e  b o u n d ary  o f  the n -d im e n s io n a l e -v ic in ity  in te rsec ted  w ith  Q .

E x is te n ce  o f  a  s lid ing  m o d e  requ ires  s tab ility  o f  th e  s ta te  tra je c to ry  to  th e  s lid in g  su rfa ce  c (x )= 0  a t  

le as t in  a  n e ig h b o u rh o o d  o f  {x |o (x)= 0 }, i.e ., th e  rep re se n ta tiv e  p o in t m u s t ap p ro a ch  th e  su rfa c e  a t  

le as t a sy m p to tica lly . T h e  la rg est such  n e ig h b o u rh o o d  is  c a lle d  th e  d o m a in  o f  a ttra c tio n . 

C on seq u en tly , w h en ev er  th e  sta te  tra je c to ry  in te rsec ts  th e  sw itch in g  su rface , i f  th e  v a lu e  o f  th e  

s ta te  tra jec to ry  rem a in s  w ith in  an e  n e ig h b o u rh o o d  o f  x = { x |a (x )= 0 } , then  a  s lid in g  m o d e  o ccu rs . I f  

a  s lid ing  m o d e  ex is ts  on  o (x )= 0 , th en  i t  is te rm e d  a  s lid ing  su rface .

B.1.3 Reachability Condition

T h e ex is te n ce  p ro b lem  o f  slid ing m o d e  re sem b le s  a  g e n e ra lised  s tab ility  p ro b lem , h e n c e  th e  

L y ap u n o v  d irec t m e th o d  p rov ides a  n a tu ra l se ttin g  fo r an a ly s is . S p ec ifica lly , s ta b ility  to  th e
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sw itch in g  su rface  req u ires  se lec ting  a  g e n e ra lised  L y ap u n o v  fu n c tio n  V (t)  w h ich  is  p o s itiv e  

d e fin ite  a n d  h a s  a  n eg a tiv e  tim e  d e riv a tiv e  in  th e  reg io n  o f  a ttrac tio n .

DEFINITION B .3 :  (Generalised Lyapunov Function)
A  co n tin u o u s  fu n c tio n  V (t), w h ich  d ep en d s  on  th e  ch o sen  sw itch in g  fu n c tio n  o (x ) , can  b e  d efin e d  

as  a  g en e ra lis e d  can d id a te  L y ap u n o v  fu n c tio n , i f

V (t)  4  j  -o t(x)-g (x)> 0 V (x ,t) b o (x )* 0  an d  V |aW = 0  =  0  (B .3 )

w ith  co n tin u o u s  d eriv a tiv e , su ch  that, fo r x = { x ( t)e  Rn I a(x)?M3 , x ( t0)= x 0}

V (t) =  ^ • ■ ^ a T(x )-a (x ) =  a T(x )-a (x ) <  0  (B .4 )

ho ld s.

DEFINITION B .4 :  (Reachability Condition)
F o r any accessible continuous function a(x)=0, a  sliding mode exists if, and only if, for 

X={x(t)E Rn I o(x)?K), x(t0)=x0}

oT(x)-6(x) < 0

o r

[ a i(x ) < 0  

,G;(x) >  0

ho ld s, w h ere

a j(x ) > 0

a;(x)<0
( i= l ,  • • •, m )

(B .5 )

(B .6 )

a=0

d a ( x )  „
a (x )  4 d t  =  V a(x )-x (t)

T h is  is c a lle d  th e  reach ab ility  cond itio n .

G rap h ica lly , o f f  th e  sw itch ing  su rface , i f  V (t)> 0  an d  

V (t)= a -6 < 0 , th e  re a ch ab ility  co n d itio n  ho ld s. T h e  

tra jec to ry  can  th e re fo re  m o v e  w h ile  s till p o in tin g  tow ards 

th e  su rface  u n til reach in g  it. T h is g u a ra n tee s  th a t th e  

sy stem  s ta te  tra jec to ry  w ill app ro ach  th e  sw itch ing  

su rface  an d  ten d  to  rem ain  there . F ro m  th e  ab o v e  

d iscu ss io n , i t  b eco m es c lea r th a t v a riab le  s tru c tu re  co n tro l

des ig n  can  b e  d iv id ed  in to  tw o  phases. In  p h a se  one , th e  sw itch in g  su rfa ce  is  c o n s tru c te d  so  th a t 

th e  sy s tem  res tr ic ted  to  th e  sw itch ing  su rfa ce  p ro d u ce s  th e  d e s ire d  b eh av io u r. P h ase  tw o  en ta ils  

co n s tru c tin g  sw itch ed  feed b ack  g a in s  w h ich  d riv e  th e  sy stem  s ta te  tra je c to ry  to  th e  sw itch in g  

su rfa ce  an d  m a in ta in  i t  there .

Fig. B.2 Illustration of sliding conditions

B.2 Design of the Switching Surface
W e now  co n s id e r  th e  p ro b lem  o f sw itch in g  su rfa ce  co n s tru c tio n  fo r  n o n lin e a r  sy s tem s o f  th e  fo rm  

(B .l) .
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B.2.1 Equivalent Control
T h e  m e th o d  o f  eq u iv a le n t con tro l is a  m e a n s  fo r  d e te rm in in g  th e  sy s tem  m o tio n  re s tr ic te d  to  th e  

sw itch in g  su rface  a (x )= 0 .

DEFINITION B .5 :  ( E q u iv a le n t  C o n tr o l)

F o r  a  ch o sen  sw itch ing  su rface  o (x )= 0 , a  fe e d b a c k  co n tro l o f  th e  fo rm

ueq(t) =  - [V a ^ .g C x ) ]-1* V o(x)-f(x) (B .7 )

is  sa id  to  b e  th e  eq u iv a le n t con tro l to  th e  sy s tem  ( B . l )  in  slid ing  m ode , i f  V o -g  is  n o n -s in g u la r. 

H ere  V c  is  th e  Jaco b ian  o f  a .

T h e  ex is te n c e  o f  th e  slid in g  m o d e  im p lie s  b o th  c (x )= 0  an d  6 (x )= 0  Vt>to. T h e re fo re  

c = V a ( x ) - x  =  V o(x)-[f(x)+ g(x)-u(t)] =  0

C lea rly  (B .7 ) so lv es th is  equa tion , a n d  i t  is  th is  w h ich  g iv es i t  th e  n a m e  e q u iv a le n t co n tro l. I t can  

a lso  b e  ex p re ssed  in te rm s o f  th e  L ie  d e r iv a tiv e  a s  fo llow s:

ucq(0  =  -(L go ) -1 -Lfo

B.2.2 Reduction of Order

A lth o u g h  g en e ra l n o n lin e a r  sw itch ing  su rface s  a re  possib le , i t  m a y  b e  a p p ro p r ia te  to  se ek  lin ea r 

o n es  in  des ign . M oreover, fo r a  la rg e  c la ss  o f  sy stem s, des ign  o f  lin e a r  sw itch in g  su rface s  p roves 

a m en a b le  to  c lass ica l lin e a r  con tro l te ch n iq u es . T h u s  fo r  c larity , co n v en ien ce , an d  s im p lic ity , w e 

m ay  co n s id e r  sw itch in g  su rfaces o f  th e  fo rm

o (x ) =  S-x(t) =  0  (B .8 )

w h e re  S is  a  m x n  m atrix .

In  s lid in g  m ode , th e  eq u iv a len t sy s tem  m u s t sa tis fy  n o t o n ly  th e  n -d im e n s io n a l s ta te  d y n am ics 

(B .l) ,  b u t a lso  th e  m  a lg eb ra ic  eq u a tio n s o (x )= 0 . T h e  u se  o f  b o th  co n s tra in ts  red u c es  th e  sy stem  

d y n am ics  fro m  an  n*  o rd e r  m o d e l to  an  (n -m )*  o rd e r  one. S p ec ifica lly , su p p o se  th e  n o n lin e a r  

sy s tem  is o f  th e  fo rm  (B . l )  sub jec ted  to  o (x )= 0 , th en , f ro m  a (x )= S -x (t)= 0 , i t  is p o ss ib le  to  so lv e  fo r 

m  o f  th e  s ta te  v ariab les  in  te rm s o f  th e  rem a in in g  n -m , i f  ran k [S ]= m . T o  o b ta in  th e  so lu tion , 

su b stitu te  th e se  re la tio n s  in to  the  rem a in in g  n -m  eq u a tio n s  a n d  th e  eq u a tio n s  c o rre sp o n d in g  to  th e  

m  s ta te  variab les . T h e  re su ltan t (n -m ) 111 o rd e r  sy s tem  fu lly  d esc rib es  th e  e q u iv a le n t sy s tem  su b jec t 

to  th e  re s tr ic tio n  o f  o (x )= 0 .

B.2.3 Regular Form and Reduced Order Dynamics

T h e  r e g u l a r  f o r m  o f  t h e  n o n l i n e a r  s y s t e m  (B . 1) i s  d e f in e d  b y [3>5] 

x 1(t) = f 1(x1, X2)

x 2(t) =  f 2(x*, x 2) +  g 2( x ‘, x 2)*u(t) (B .9 )

w h ere  x 1̂  Rn m an d  x 2e  Rm a re  subse ts o f  th e  sy s tem  sta te s  x , f  *, f 2 a re  n -m  an d  m  sm o o th  v ec to rs
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re sp ec tiv e ly , an d  g 2 is  a  m x m  n o n -s in g u la r  sm o o th  m a trix . T h is  re g u la r  fo rm  ca n  n o rm a lly  b e  

o b ta in ed  b y  using  a  p ro p erly  chosen  tran sfo rm a tio n  to  re a rran g e  th e  o rd e r  o f  th e  o r ig in a l s ta te s  an d  

h e n c e  th e  s ta te  an d  in p u t m ap p in g s o f  th e  o r ig in a l sy stem .

TH EO REM  B . 6 : (S w itc h in g  S u r fa c e )

F o r  th e  n o n lin e a r  sy s tem  o f  reg u la r fo rm  (B .9 ), th e  sw itch in g  su rfa ce  can  b e  g e n e ra lly  d e f in e d  as 

oix1, x2) = g 1(x 1) - S 2-x2 = 0 (B .10 )

so  th a t an (n -m )*  (red u ced ) o rd e r c lo sed  loop  sy s tem  resu lts  u n d e r  th e  e q u iv a le n t co n tro l

ueq=  [S2- g ‘K x*)F  • [ V a ^ O  J W - S 2- / 2(x*)] ( B . l l )

H ere  S2 is an  m x m  n o n -s in g u la r m a tr ix , an d  O j(x 9  is  a  sm o o th  fu n c tio n  to  b e  ch o sen  b y  th e  

d e s ig n e r  such  th a t th e  (n -m )*  red u c ed  o rd e r  sy s tem  h as  d es ired  dy n am ics .

P ro o f :  F o r  th e  sy s tem  o f  (B .9) on th e  sw itc h in g  su rface , w e h a v e  

G ix1, X2) = Cj (Xs)  - S 2 -JC2= 0 

x2= S-j-ofx*)

T h e re fo re  on  th e  sw itch in g  su rface , i.e ., o ( x 1/ x 2)=0, th e  sy stem  can  b e  w ritte n  a s  

x I(t) =  f 1(x I, S-j-OjCe1)) = f f x 2)

xz(t) = f2[x1, S - i - o ^  +  g 2^ 1, f W + p ix ^ u it )

an d  ag a in  w e  h av e

a i x ^ x 2) =  V o ,(x r) ^ - S 2 -a:2=  V o 1(x 1) - / 1( ^ i) - S 2-[ / 2( ^ I) + g 2( ^ i) -u ( t) ]= 0  

So th e  eq u iv a le n t co n tro l is

ueq=  [S2- P ( x * ) r  • [ V c f x ^ f V x * ) - S2- / V ) ]

T h is  re su lts  in  a  c lo sed  loop  sy stem  o f  th e  fo rm

i : i(t) =  f 1[ ^ ,  S - ' - c , ^ ) ]  ± f l(x<) (B .12 )

W e  can  sp ec ify  th e  p e rfo rm an ce  o f  th is  c lo sed  loop  sy stem  b y  p ro p erly  ch o o s in g  th e  m a tr ix  S 2. 

S u p p o se  n o w  th a t w e  w an t th e  system , w h en  re s tr ic ted  to  th e  sw itch in g  su rfa ce  o (x )= 0 , to  b eh a v e  

in  a  lin e a r  (red u ced  order) fash ion . T h e  re d u c e d  o rd e r  d y n am ics  a re

x1(t)= fl(xr) = A nm-xJ (B .13 )

w h ere

f

A  =n-m

0 1 o
A

0  • i

v.-“ i - « 2 ....................

T h en  o , ( x 9  can b e  so lved  acco rd ing  to  th e  eq u a tio n  ab o v e  such  th a t th e  d e s ire d  sy s tem  d y n am ics 

a re  ach iev ed , an d  th e  sw itch ing  su rface  is  th e re fo re  

g (x \  x2) =  afx*) -  S2-xz = 0 (B.14) □
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B.3 Synthesis of Controller with Switched Feedback Gain
T h e  o b jec tiv e  o f  th e  co n tro l is  to  m a k e  th e  s ta te  tra jec to ry  o f  th e  sy stem  co n v e rg e  to  a  ch o sen  

sw itch in g  su rface  an d  rem a in  th e re  so  th a t a  slid ing  m o d e  occu rs . T h e  s ta te  tra je c to ry  o f  a  v a ria b le  

s tru c tu re  sy stem  w ill, in  gen e ra l, co n s is ts  o f  tw o  parts : a  tra je c to ry  w h ich  is  o f f  th e  sw itch in g  

su rfa c e  b u t ap p ro ach es  it, an d  o n e  o n  it. T h e  d es ig n ed  con tro l m u s t g u a ra n tee  th a t b o th  p a r ts  o f  th e  

tra je c to rie s  show  sa tisfac to ry  p e rfo rm an ce . M o re  sp ec ifica lly , th e  co n tro l m u s t f irs t fo rc e  th e  

tra jec to ry , in  a  d es ired  m an n er, to  ap p ro a ch  th e  sw itch ing  su rfa ce  w h en e v e r  th e  s ta te s  a re  o f f  th e  

sw itch in g  su rface ; on  th e  o th e r  h and , i t  sh o u ld  a lso  g u a ra n tee  th a t th e  tra je c to ry  's lid e s  a lo n g ' th is  

su rfa ce  to  th e  eq u ilib r iu m  p o in t o n ce  th e  tra jec to ry  reach es  th e  su rface . T h e  f ir s t  ta sk  can  b e  

a c h ie v ed  b y  app ly in g  a  p ro p erly  d es ig n ed  co n tro l to  th e  sy stem  su ch  th a t s ta b ility  to  th e  sw itch in g  

su rfa ce  ex ists , w h ile  th e  seco n d  ta sk  can  b e  ac h iev ed  by  defin in g  a  d e s ire d  sw itc h in g  su rfa ce  such  

th a t th e  tra jec to ry  w ill ap p ro ach  th e  u n iq u e  eq u ilib r iu m  p o in t w h ils t rem a in in g  on  th e  sw itch in g  

su rface .

A n id ea l s lid ing  m o d e  ex ists  on ly  w h en  th e  s ta te  tra jec to ry  o f  th e  c o n tro lled  sy s tem  sa tis fie s  

o (jc)=0 Vt>to. T h is  req u ires  in f in ite ly  fa s t sw itch in g  in  o rd e r  to  a c c o u n t fo r  th e  p re se n ce  o f  

u n ce rta in ties . T h is , o f  course , is n o t p o ss ib le  b ec au se  o f  such  th in g s  a s  d e lay , h y s te re s is , e t c ,  

w h ich  cau se  sw itch ing  to  o cc u r  a t  a  f in ite  ra te . T h e  tra jec to ry  m a y  th e n  n o t ex a c tly  re s t on  th e  

sw itch in g  su rface , b u t sw ings ac ro ss  i t  w ith in  a  sm a ll reg io n . T h is  o sc illa tio n  is  c a lle d  ch a tte rin g . 

C h a tte rin g  is, in  g enera l, h ig h ly  u n d es irab le . T h is  situ a tio n  can  b e  re m e d ie d  b y  sm o o th in g  o u t th e  

co n tro l d isco n tin u itie s  in a  b o u n d ary  la y e r  n e ig h b o u rin g  the sw itch in g  su rface . O n  th e  o th e r  h an d , 

an y  d is tu rb a n ce  ac ting  on  th e  sy s tem  o r  p a ra m e te r  u n ce rta in ty  m a y  a lso  m a k e  th e  s ta te s  n o t e x a c tly  

re s t on  th e  sw itch ing  su rface , such  th a t th e  ac tu a l tra jec to ry  d o es  n o t m o v e  a lo n g  th e  sw itch in g  

su rfa ce  p e rfec tly  b u t m o v es  ac ro ss  i t  w ith in  a  v ic in ity  o f  it. T h ere fo re , in  a c tu a l v a r ia b le  s tru c tu re  

co n tro l, th e  s lid ing  m o d e  rep rese n ts  an  id ea lisa tio n .
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C M a t r i x  T h e o r y

W e  n o w  p re se n t so m e d e fin itio n s  an d  p re lim in a ry  m a th em a tic s  w h ich  a re  u sed  in  c h a p te rs  6  an d  7 

to  dev e lo p  th e  m a in  re su lts . F o r  s im p lic ity , w e  o n ly  m en tio n  th e  re su lts  a n d  av o id  th e  p ro o fs  w h ich  

can  b e  found  in  th e  re fe ren c es 11 >2-3].

DEFIN ITION  C . l :  (D e f in i te n e s s  o f  M a tr ic e s 121)

L e t <•»•> b e  an  in n e r  p ro d u c t. T h en  m a tr ix  A e  Rnxn is

(D p o s itiv e  d e fin ite (p .d .)  o r  n eg a tiv e  d e fin ite  (n .d .) w ith  re sp e c t to  < •,•>  i f

R e< z , A z » 0  o r < 0  Vz?K) ( C . l )

(D p o s itiv e  se m id e fin ite  o r n eg a tiv e  sem id e fin ite  w ith  re sp e c t to  <•,•>  i f

R e< z, A z> > 0  o r < 0  V ztK) (C .2 )

N o te  th a t th is  d efin ition , d iffe ring  fro m  th e  u su a l fo rm  fo r  d e f in iten e ss  o f  m a tr ic e s  in  m o s t 

re fe ren ces , ap p lies  to  g en e ra l m a tr ice s  th a t a re  n o t n ec essa rily  H e rm itian . P a rtic u la r ly  to  m a trice s  

th a t a re  re a l b u t n o t sy m m etric , w e h a v e  th e  fo llo w in g  theo rem :

TH EO REM  C .2 : (D e f in i te n e s s  o f  S q u a r e  M a tr ic e s 131)

A ny  rea l squa re  n x n  m a tr ix  A  can b e  ex p re ssed  as  th e  sum  o f  a  sy m m etric  m a tr ix  an d  a  skew - 

sy m m etric  m atrix

A  =  (A .+ P J)l2 + (k -P J)l2  (C .3 )

(i) T h e  q u ad ra tic  fo rm  asso c ia ted  w ith  a  sk ew -sy m m etric  m a trix  is  a lw a y s  zero ;

(?) T h e  q u ad ra tic  fo rm  o f  an y  sq u a re  m a trix  A  can  b e  rep re se n ted  b y  th a t o f  a  sy m m e tr ic  m a trix .

In  w h a t fo llow s, by  say ing  th a t a  sq u a re  m a tr ix  is  p o s itiv e  d e fin ite , w e  a lw a y s  m e a n  th a t the  

q u ad ra tic  fo rm  o f  its  sy m m etrised  fo rm  is  p o s it iv e  d efin ite .

DEFIN ITION  C .3 : ( S p e c tr a l  N o r m  o f  M a tr ic e s 141)

F o r any  m a trix  A, th e  sp ec tra l n o rm  (g re a te s t s in g u la r  va lue) is  d e f in e d  by

<Pm ( A )  =  II All, =  tX _ (A A T )]^  (C .4 )

w h ere  A,(A) in d ica tes  th e  e ig en v a lu es  o f  A . W h e n  A  is  a  sy m m etric  m a tr ix , a ll th e  e ig en v a lu e s  o f  A  

a re  rea l and

<P„(A) = ||A||, = [\ J A A ’)]«= ̂ ( A )  (C.5)

W h en  A is  a  sy m m etric  p o s itiv e  d e fin ite  m a trix , then  a ll the e ig en v a lu e s  o f  A  a re  p o s it iv e  an d  rea l, 

thus

<PM(A) = l|A||,= [Xta„(AA’) ] » = \nl(A) 

<P„(A) = l|A->||,= 1/XoiD(A)

(C.6)

( C .7 )
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T h e  s in g u la r  v a lu es  o f  a  m a tr ix  h av e  m an y  an a lo g ie s  w ith  th e  e ig e n v a lu e s  o f  a  H erm itian  m a trix . 

T h e  sq u are  o f  th e  s in g u la r v a lu e  o f  A  is  th e  m a x im u m  e ig en v a lu e  o f  A TA . U n lik e  e ig en v a lu es , 

s in g u la r  v a lu es can  b e  u sed  to  study  rec tan g u la r  m a trice s ; th ey  a re  a lso  a lw a y s  rea l, an d  less 

se n s itiv e  to  p a ra m e te r  v a ria tio n  than  a re  e ig en v a lu es.

LEM M A  C .4 :

F o r m a tr ic e s  A , B e  Rnxn

CD i f  A  is p o s it iv e  d e fin ite , then  tr(A ), d e t(A ), X (A ) , an d  a ll p r in c ip a l m in o rs  a re  p o s itiv e ;

(2) i f  A  is p o s it iv e  d e fin ite , th en  A 1 ex is ts  an d  is  a lso  p o s itiv e  d e fin ite ;

(?) i f  A , B an d  A -B  a re  p o s it iv e  defin ite , th en  B - '-A 1 ex is ts  an d  is  a lso  p o s it iv e  d e fin ite ;

(D i f  B is p o s itiv e  d e fin ite  an d  A is  any  n o n -s in g u la r  m a trix , th en  (A TB A ) _1 e x is ts  a n d  is p o s itiv e  

defin ite ;

(5) i f  B is sym m etric , th en  (A TB A ) 1 is a lso  sy m m etric .

LEM M A  C .5 :

F o r  a  p o s itiv e  d e fin ite  m a tr ix  A e  Rnxn an d  a  H e rm itian  m a tr ix  B e  Rnxn,

(D th e  p ro d u c t A-B is  a  d ia g o n a lizab le  m a trix , a l l  o f  w h o se  e ig e n v a lu e s  a re  rea l;

(D th e  m a trix  A-B h as  th e  sam e  n u m b e r o f  p o s itiv e , n eg a tiv e  an d  z e ro  e ig e n v a lu e s  a s  B , i.e ., A-B 

h as  th e  sam e in e rtia  as B

7n(AB)={ i+(B ) ,i(B ) ,t0(B)} (C .8 )

LEMMA C . 6 ;

F o r m a trice s  A e  R™" an d  B e  Rnxm w ith  m < n , B A e  Rnxn h a s  th e  sa m e  e ig en v a lu e s  a s  A B e  R1™"1, 

co u n tin g  m u ltip lic ity , to g e th e r  w ith  ad d itio n a l n -m  e ig en v a lu es  e q u a l to  ze ro ; th a t is,

P BA( k ) = \™  -PAB( k )  (C .9 )

w h ere  /;(•) is th e  ch a rac te r is tic  p o ly n o m ia l o f  th e  m a trix .
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D A S im u l a t io n  S o ftw a r e  P a c k a g e

A  b r ie f  in tro d u c tio n  to  s im u la tion  so ftw are , w h ich  w as w ritten  fo r  th e  p u rp o se s  o f  s im u la tio n  o f  

s in g le -in p u t s in g le -o u tp u t system s, is g iv en  here .

D .l Introduction

S im u la tio n  too ls  a re  th e  m o s t w idely  d ev e lo p e d  a n d  a v a ila b le  a id s  fo r C A D  in  co n tro l sy stem s. 

A lthough  th e re  a re  sev e ra l so ftw are  p ack ag e s  av a ila b le  fo r  s im u la tio n  p u rp o ses , fo r  in s tan c e  

M A T L A B , th ey  a re  n o t a lw a y s  app ro p ria te . T h is  p a c k ag e  is  d e v e lo p e d  fo r  s im u la tio n  p u rp o se s . I t 

is  w ritten  on  an  IB M  PC  in  th e  C lan g u ag e . I t  can  b e  u sed  to  s im u la te  s in g le - in p u t s in g le -o u tp u t 

n o n lin e a r  u n ce rta in  sy s tem s w ith  g en e ra l an a ly tic  m a th e m a tic a l m o d e ls . S ev era l co n tro l s tra teg ie s  

h av e  b een  in c lu d ed  in  th e  p ack ag e , an d  n ew  tech n iq u e s  can  a lso  b e  in c lu d ed  in  th e  p a c k ag e  b y  

slig h tly  chan g in g  th e  p ro g ram . I t  is  co n v e n ie n t to  em p lo y  i t  a s  a  to o l w h en  d e te rm in in g  th e  

p aram ete rs  o f  co n tro lle rs  an d  co m p arin g  th e  p e rfo rm an ce s  o f  d if fe re n t co n tro l te ch n iq u es .

T h e  fea tu re s  can  b e  su m m arise d  as  fo llow s:

(D M u lti-m en u s a re  ad o p ted  to  se t-up  a ll s im u la tio n  p a ram ete rs , an d  to  v iew  th e  s tru c tu re  an d  

p a ram ete rs  o f  th e  m o d e l;

(?) A  spec ia l type  file  is  u sed  to  d escrib e  th e  sy stem  m o d e ls . T h e  p a c k a g e  can  p a rse  th e  m o d e l f ile  

an d  tran s la te  i t  in to  p ro g ra m  code w h ich  can  b e  u n d e rs to o d  an d  ex e cu ted  by  th e  p ack ag e ;

(3) A  sm all ed ito r  is in c lu d ed  in  th e  p ac k ag e  so  th a t th e  m o d e l f ile  can  b e  rev ise d  o n -lin e  an d  th e  

m o d e l p a ram ete rs  can  b e  chan g ed  d u rin g  s im u la tion ;

©  S evera l co n tro l s tra teg ie s  h av e  b ee n  in c lu d ed  in  th e  p a c k ag e  so  th a t  co m p a riso n s  m a y  b e  m a d e ;

CD U n ce rta in ty  b o u n d s can  b e  set to  an y  v a lu es  b e fo re  s ta rtin g  s im u la tio n , an d  can  b e  re se t  a t  an y  

tim e, in o rd e r  to  v iew  th e  ro b u stn ess  o f  th e  se lec ted  co n tro lle rs ;

(D G rap h ics  can  b e  show n sim u ltan eo u sly  w hen  th e  s im u la tio n  is  ru n n in g  so  th a t th e  tran s ien t 

p ro ce ss  o f  the s im u la ted  system  can  b e  v ie w e d  a t  an y  tim e;

®  A  d a ta  f ile  w ill b e  c re a te d  on d isk  o n ce  th e  s im u la tio n  is  fin ished . I t  ca n  b e  u sed  fo r  o th e r  

pu rp o ses, fo r in stan ce , d raw ing  a  g rap h  e ith e r  u sing  o th e r  g rap h ic s  so ftw are  p ac k ag e s  o r th is  

p ackage .

D.2 The Structure of the Package
T h e  p ac k ag e  co n sis ts  o f  fo u r p arts  w h ich  w ill b e  in tro d u ced  as  fo llow s:

1. m enu  system ; 2. m o d e l ed ito r  a n d  p a rse r;

3. g ra p h ic s  sub ro u tin e; 4. c lo sed  loop  sy s tem  com pu ta tion .
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Submenu 1:
Enter Simulation Parameters: 1

Submenu 2:
Build System Model

1. Model file name
2. Data file name
3. Time period T
4. Sample clocks t
5. Data number n

1. Retrieve model
2. Edit model
3. Parse model
4. Save model

Submenu 3:
Setup Uncertainty Bounds

M.imnnani Submenu 4:
Choose Control Strategies:

1. Differential geometric control
2. Variable structure control
3. Lyapunov stability control
4. Diffrential geometric & Lyapunov stability 1
5. Diffrential geometric & Lyapunov stability 2
6. Variable structure & Lyapunov stability
7. Variable structure with variable gain
8. Generalised variable structure control

Submenu 5: | , 1. View model structure 1
View Model and Parameters H  1 2. View model parameters 1

3. View uncertainty bounds 1
4. View control strategies 1

Submenu 6: 1  ..... „ 1. Draw current graphics 1
Draw New Graphics H 2. Draw new graphics 1

Submenu 7: 1
Start Simulation 1

Fig. D.l The menu system structure of the package

T h e  p ac k ag e  h a s  b een  te sted  using sev e ra l illu s tra tiv e  ex am p les. A lth o u g h  th e re  is  so m e tim es  a  

m em o ry  p ro b lem  w h ich  rem ain s to  b e  so lved , it  d o es  w o rk  co rrec tly , an d  it  h a s  b een  fo u n d  to  b e  

usefu l.

F ig . D .l ,  D .2  an d  D .3  show  th e  s tru c tu re  o f  th e  

m en u  sy s tem  o f  th is  p ackage .

D.2.1 Menu Structure

T h e m en u  sy s tem  consists  o f tw o  lev e ls  o f  

m enus: m a in m en u  an d  subm enus, w h ich  a re  

a lw ays show n  on  sc reen  and  p ro v id e  a  

co n v en ien t m ean s  to  es tab lish  th e  s im u la tio n  

en v iro n m en t a t  th e  start. T here  a re  7 se ts o f  

com m ands, w h ich  a re  o rgan ised  as  subm enus.

Mainfrtenu:
■: 1; E nter SimolaUonParameters 

: 2; Build System Model
::::: :3. :Setup:UQceitaiiity Bounds: : : :

: 4; Choose Control Strategies ::•: 
Model and Parameters:

: 6; Draw Graphics:on Screen: :
7. Start Simulation

Pleasechoo.se a m im b e r( l»71

A

Fig. D.2 M ain m enu
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T h e  u sage  an d  fea tu re s  o f  these  m en u s  a re  

now  in tro d u ced .

Submenu  1: Enter simulation parameters

F irs t o f  a ll, a  m o d e l f ile  m u s t be in d ic a ted  so 

th a t th e  p ac k ag e  can  lo a d  it  from  d isk . T h e  

m o d e l file s  u su a lly  h av e  an  ex ten sio n  o f  .mod.
A  d a ta  f ile  n am e  sh o u ld  a lso  b e  g iven  so  th a t a  

d a ta  f ile  w ill b e  c rea ted  a f te r  s im u la tio n  is 

f in ish ed . F o r  d e fau lt, th e  d a ta  f ile  h a s  th e  sam e 

n am e  as th e  m o d e l f ile  w ith  an  ex tension  o f  . d a t .  B esides, b e fo re  sta rtin g  s im u la tio n , w e  sho u ld  

g iv e  th e  fo llo w in g  p a ram ete rs : h o w  long  th e  s im u la tio n  w ill la s t ( tim e  p e rio d  T ), h o w  b ig  th e  

co m p u tin g  tim e  in te rv a l w ill b e  (sam p le  c lo c k  8 t), a n d  h ow  m a n y  d a ta  p o in ts  w ill  b e  p ic k e d  up  to 

b e  reco rd ed  in th e  d a ta  file .

Subm enu2: Build system model

L o ad  a  sy stem  m o d e l from  the m o d e l f ile  

w h ich  m a y  b e  ed ited  b y  using  an y  w ord  

p ro ce sso r  such  as  P C W R IT E , T urbo  C  ed ito r, 

etc., an d  show  th e  m o d e l s truc tu re  a f te r  

load ing  su cce ssfu lly . T h e  m o d e l s tru c tu re  an d  

p a ram ete rs  can  a lso  b e  ch an g ed  using  a  sm a ll 

bu ilt-in  ed ito r  i f  n ecessa ry . T h e  c o rrec t m o d e l 

can  b e  sav ed  on  d isk  to  update  th e  o rig in a l 

one. O n ce  th e  m o d e l h a s  b een  b u ilt up  co rrec tly , i t  sh o u ld  b e  p a rse d  in to  ex e c u ta b le  co d es . A  sm all 

p a rs in g  p ro g ra m  is  a lready  in c lu d ed  in th e  p a c k a g e  to  tran s la te  th e  m o d e l f ile  in to  a  sp e c ia l k in d  o f  

p ro g ram  w h ich  is  ex ecu tab le  during  s im u la tio n . A ny  p a rs in g  in fo rm atio n  w ill b e  sh o w n  on  sc reen .

f t Mainmenii:
1. Enter Simulation Parameters 

> 2 . Build System M o d a l:
: 3.: Setup 
4.: Chops 2. Build System Model:
5. View
6. Draw 
7 S tart!

Retrieve m odel from  a file 
Edit the existed m odel 
Parse source model to code 
Save system  to file

ESC to M ainm enu SPACE reset d a ta

^ ll» lI I'lfelp 1 .i-lxmc t tvoMem'iy 455'v'  - ♦

Fig. D.3 (ii). Build system model

Mainmenu:
•»lar:Edtef* Simulation P aram eters : :

Z.  Build 
3, Setup 1. E nter Simulation Param eters

Retrieve model from: m odel 1.m od
W rite results to: m odell.da t
Sim ulation time period T = 10 sec

: 7 V Start f Sam ple clock in second h=0.01sec
R ecorded data num ber n=200

: : Please cho<«
ESC to M ainm enu SPACE reset d a ta

VI
FI-Help E5C-Qwt Tl'-Cwsot ^Done- Free Memory Hy tes

Fig. D.3 (i). Enter simulation parameters

Subm enu3: Set up uncertainty bounds

T h e  u n ce rta in ty  b o u n d s can  b e  se t up  b e fo re  

sta rting  s im u la tio n  u n d er th is  m en u , w h ich  

in c lu d es th e  b o u n d s  o f  u n ce rta in tie s  b o th  in  

th e  s ta te  m ap p in g  an d  th e  in p u t m ap p in g , as 

w ell as th e  bo u n d  on ex te rn a l d is tu rb an ces, 

w h ich  a re  o f  the fo rm  

coA=maxlAf(x,Y,t)l

toAg=m axlA g(x,y,t)l

co.=m axl^(t)l

fx Mainmenu:
: ::: : l r Enter Simulation Parameters 

2 B uild System M odel 
3. Setup Uncertainty Bounds ::::::::
4 Choos
5 View 3. Setup Uncertainty Bounds:
6  Draw maxISfl maxISgl m ax iy

: : : 7. Start ! 1. 0 0 0
2. 50.0 0 10.0

. : ; F1ease «hoa< 3. 100.0 20.0 0

ESC to M ainm enu SPACE reset d a ta

U 'H d p  -(Jw t -Cur, r tv ipc  fw t-M cH tury4S s> ',/iJv tc4 ,- *

Fig. D.3 (iii). Setup uncertainty bounds
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Subm enu4: Choose control strategies

T h e re  a re  cu rren tly  8  co n tro l s tra teg ie s  a v a ila b le  

in  th e  p ack ag e . A ll o f  th em  are  d e s ig n ed  fo r 

s im u la tio n  o f  s in g le -in p u t s in g le -o u tp u t sy stem s.

F o u r o f  th em  a re  re la ted  to  d iffe ren tia l g eo m e tr ic  

co n tro l th eo ry  an d  th e  im p ro v ed  versio n s , an d  

th e  o th e rs  to  v ariab le  s tru c tu re  co n tro l theo ry .

A ny  o n e  o f  th em  can  b e  se lec ted  to  ca rry  o u t th e  

s im u la tio n , an d  can  b e  co m p ared  w ith  o th e rs . In  

p rin c ip le , an y  o th e r  co n tro l te ch n iq u es  in  th e  tim e  do m ain  can  a lso  b e  in c lu d e d  b y  s lig h tly  

ch an g in g  th e  p rog ram .

Subm enu5: View model and parameters

A fte r  se ttin g  up a ll p a ra m ete rs , w e h a v e  a  ch an ce  

to  v iew  th e  m o d e l w h ich  h a s  b een  es tab lish ed  

p rev io u s ly  b e fo re  sta rtin g  sim u la tio n . M o d e l 

stru c tu re , m o d e l p a ram ete rs , u n ce rta in ty  b ounds, 

an d  co n tro l s tra teg ie s  can  b e  checked , in  o rd e r  to 

m a k e  su re  th a t a ll p a ram ete rs  a re  co rrec tly  

g iven .

S u b m e n u 6 : Draw graphics on screen

T h is  su b m en u  p ro v id es us w ith  a  to o l in  g rap h ic s  

m o d e  e ith e r  to  rev iew  th e  resu lts  re c o rd e d  on  th e  

d a ta  f ile  e a r lie r  o r th e  s im u la tio n  resu lts  

cu rren tly  ob ta ined . I f  th e re  a re  m o re  th a n  o n e  

se rie s  o f  da ta , w e can  choose  an y  n u m b e r  o f  

cu rv e s  an d  p o in ts  fo r each  cu rve  to  red raw  

g rap h ic s  on  screen .

SUBMENU7: Start simulation

A fte r  se tting  up  th e  sy stem  m o d e l an d  a ll 

p a ra m ete rs  requ ired , s im u la tion  is  s ta rted  fro m  h e re . T h e  p a c k a g e  w ill c a r ry  o u t s im u la tio n  

acco rd in g  to  th e  m o d e l, th e  p a ram ete rs  o f  th e  m o d e l, an d  th e  co n tro l s tra teg ie s  w h ich  h a v e  b een  

chosen .

D.2.2 Model Editor and Parser

M o d e l ed itin g  an d  p a rs in g  a re  tw o o f  th e  m o s t im p o rta n t fea tu re s  o f  th e  p ack ag e .

Mainmenu:
x L Enter Simulation Parameters x 

2 Build System Model 
: 3.:Setup Uncertainty Bounds x x x x 
: 4. Choose Contfol StJUtOgiea 
* 5, View Model and Param eters
6 urav

5. View M odel and Parameters:
1. View system model
2. View model parameters
3. View uncertainty bounds
4. View control strategies

ESC to M ainm enu SPACE reset data

P i-H elp iiB litJinf 'f.l-CitKor ^ -C hdo J5foe.Memorjf_'l$5(®-'hylo3: —

Fig. D.3 (v). View model and parameters

Mainmenu;
: : x 1; Enter Simulation Parameters x x 

2 Build System Model 
x x SxSetup UocertamtyBounds x x x x  

x 4, Choose Control Strategies x x x x 
x-x-xv^/ViewiModetantf Parameters x

vx*$,"Draw G raphics on Screen
7 Start 

x Please :ch<

6. D raw  G raphics on Screen:
1. Draw current graphics
2. Draw new graphics

Please choose one num ber (1,2)

>____________________________________________ y
Fig. D.3 (vi). Draw graphics on screen

Mainmenu:
•x -xl. Enter Simulatioft Parameters ::: x 
xxxix2^Build:System:M^elx:::x 
x x x 3:: Setup Uncertainty Bounds x 
x x :* 4; Choose Control Sfrateeies
BBlSSiVfc 4. Choose Control Strategies:

« D n 1. Differntial geometric control (DG)
:-x:x:x:7k;Sta 2. Variable structure control (VS)

3. Lyapunov stability controller (BCL)
x-:P)*asex<1 4. DG & LSC for matched uncertainty

5. DG & LSC for mismatched uncertainty
6. VS & LSC for mismatched uncertainty
7. Variable structure with adaptive gain
8. Generalized variable structure 

ESC to M ainm enu SPACE reset data

VI
FJ-ffelp CSC-QttU ft«  S&wjo'HSJQ'? Bytes

Fig. D.3 (iv). Choose control strategies
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W ith  th e  h e lp  o f  th is , th e  p ack ag e  can  b e  u sed  fo r 

th e  s im u la tio n  o f  an y  k in d  o f  n o n lin e a r  u n ce rta in  

sy stem  m o d e l an d  an y  o rd er sy s tem  m o d e l, 

a ssu m in g  th e re  a re  n o  m e m o ry  lim ita tio n s.

T h e  m o d e l f ile  can  b e  w ritten  in  th e  fo rm  show n  in 

T ab le  D . l ,  using  any  w o rd  p ro ce sso r  w h ich  can  

p ro d u ce  tex t files, fo r in s tan ce , P C W R IT E , T u rb o  

E d ito r. A fte r load ing  th e  g iv e n  m o d e l f ile , w e  can  

ed it i t  u sing  a  sm a ll b u ilt- in  ed ito r  in  o rd e r  to  

ch an g e  th e  m o d e l s tru c tu re  o r m o d e l p a ra m e te r  

va lues. T h e  u n ce rta in ty  b o u n d s  can a lso  b e  ch an g ed  

a t  th is  stage. I t is  e sp ec ia lly  co n v e n ie n t i f  w e  w an t 

to  ca rry  o u t sim u la tio n  fo r a  n ew ly  d ev e lo p ed  

co n tro lle r , b ecau se  i t  is  easy  to  ch an g e  th e  

p a ra m ete rs  an d  co m p are  th e  b eh a v io u r  o f  th e  

c o n tro lle r  fo r  d iffe ren t param ete rs .

T h e  m o d e l f ile  p a rse r  is an o th e r  im p o rta n t fea tu re  

o f  th is  p ack ag e . I t w ill tran s la te  th e  m o d e l file , 

w h ich  consis ts  g en e ra lly  o f  m a n y  constan ts , 

variab les , fun c tio n s an d  exp ressio n s, in to  ex e cu tiv e  

code , a  sp ec ia l ty p e  o f  ch a rac te r  s tring , w h ich  can  

o n ly  b e  reco g n ised  b y  th e  co m p u ta tio n  sub ro u tin e  

a fte rw ards.

T h e  tran sla tio n  p ro ce ss  a c tu a lly  d eco m p o ses  th e  

n o rm al exp ressions in to  m any  sm a ll e lem en ts  

w h ich  in d ica te  one  o f  th e  fo llo w in g  sim p le  

o p e ra tio n s  be tw een  tw o  operands, add ition , 

sub trac tio n , m u ltip lic a tio n , d iv is ion , ex p o n en tia tio n  

an d  a ss ig n m en t o f  va lues. T h e  ex e cu tab le  co d es  a re  

show n in T ab le  D .2 .

W hen  parsing  th e  m o d e l, the m e m o ry  can  b e  

a llo ca te d  d y n am ica lly  acco rd in g  to  th e  s ize  and  

co m p lex ity  o f  the sy stem  m o d e l lo ad ed  in to  

m em o ry .

Table D .l

1.Model_dimension:

2.Initial_values: 
x0= {5,0}
3 . Uncertainty_bounds: 
dfmax={0,20.0} 
dgmax={0.0,2}
Dmax={0,4}
4. Lyapunov_matrix: 
lyap={15.0,3,3,3} 
phai={2,3,1}
5. Model_parameters: 
k_l=2

6.System_model_matrix: 
f ( l ) = x 2

7.Switching_Function: 

8.Control_action:

Table D.2

&2>#0;&1Q$14>#17;  

- # 2 0 * # 1 7 > # 1 ; 0 > # 2 ; 

&21>#3;&22*&3 0 > # 4 ; 

5 . 0*Sc0>#18;  

#18@$6>#19;

&1 @$ 6 > # 2  0 ; 

& 23* #1 9*# 20 >#5 ;

Sc 2 4 > # 6 ;&2 5 > # 7 ;

Sc2 6 *Sc3 0>#8 ;

Sc2 7 *Sc3 0>#9 ; 

-&28*Scl>#21;  

Sc29*Sc2>#22 ; 

#21-#22>#10; 
-&28>#11;  
-Sc29>#12;Scl>#13;  

Sc2>#14;&1@$14>#23;  

-Sc20*#23>#15;

Sc 21 > # 16 ; !
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D.2.3 Graphics Subroutine
T h e  p ac k ag e  p ro v id es  a  fu n c tio n  to  show  g rap h ic s  w h en  s im u la tio n  is  in  p ro g re ss . T h is  m ak es  it 

e a s ie r  to  u n derstand  w h a t is  h ap p en in g . T h e  s lig h tly  d ifficu lt ta sk  in  th is  s ta g e  is  to  f in d  a  co rrec t 

g rap h ic s  ra tio  du ring  s im u la tio n  b ec au se  w e  h a v e  n o  p r io r  k n o w led g e  o f  th e  v a lu e  ran g e  o f  the  

sy s tem  ou tp u t. T h is  su b ro u tin e  p o sse sse s  th e  ca p ac ity  to  f in d  a  su itab le  ra tio  fo r  th e  f ix ed  g raph ics  

box  a t  an y  s im u la tio n  tim e  to  g u a ra n tee  th a t g rap h ic s  can  a lw a y s  b e  d raw n  p ro p erly .

D.2.4 Closed Loop System Computation
T h is  is  u sed  to  do  s im u la tio n  ac co rd in g  to  th e  p a ra m ete rs  se t up . I f  w e  th in k  o f  th e  ex e c u tiv e  codes 

a s  a  sp ec ia l k in d  o f  p ro g ram , then  th is  p a r t  can  b e  reg a rd e d  as  a  sm a ll in te rp re te r , w h ich  te lls  th e  

co m p u te r  w h at to  do  and  w h ere  to  p u t th e  resu lts . A fte r  s im u la tio n  is  f in ish ed , i t  sav es th e  resu lts  

in  a  p resp ec ified  d a ta  f ile  w h ich  can  b e  u sed  e ith e r  b y  the  p a c k a g e  o r  by  o th e r  g rap h ic s  p ack ag es, 

fo r  ex am p le , H G , FL ., to d raw  g rap h ics  a n d  so on.

D.3 The Block Diagram of the Package
T h e  b lo c k  d iag ram  o f  th is  s im u la tio n  

p ack ag e  is  sh o w n  in F ig . D .4 .

D.4 Example
A  3 rd -o rd e r n o n lin e a r  u n ce rta in  sy s tem  is 

co n s id ered  h e re  fo r  illu s tra tiv e  p u rposes.

D.4.1 System Model
f x2 A

x ( t )  = K j S i n C x ^ + K ^ + 0

l  K 3X2+ K 4X 3 J
(  o ) ( 0 ^ ( 0 \

+ K 6C 0 S (5 t)C 0 S (X j) + 0 u(t) + e(t)

V ^ 7 X2 + K 8X3 > U )

In itia l va lues: x 0= { 7r,0 ,0 }

U ncerta in ty  bounds: 

m axlA f(y)l= [0 ,50,100]T 

m axlA g(y)l=[0 ,0 ,20]T 

m ax l^(t)l= [0 , 1 0 ,0 ]T

S w itch ing  function :

o (x )= -K , s in x , -a, x j - a ^ - a ^ ^ O  

(a ,= 2 , a 2=3, a 3= l ) Fig. D.4. The block diagram o f the package
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Lyapunov function:

V (x) =  xTPx =  [x, , x 2 , x 3 ]
6 .3835 3 .1 3 8 4  0 .0 0 3 6 V x ^  
3 .1384  4 .1 0 6 6  0 .0 2 0 4  x 2 

V0.0036 0 .0 2 0 4  0 .0 1 0 0

D.4.2 Model File

1. Model_dimension: 
m=3

2. Initial_values: 
x0={-3.1415926,0,0}

3 . Uncertainty_bounds: 
dfmax={0,50.0,100.0} 
dgmax={0,0,20.0}
Dmax={0,10.0,0}

4. Lyapunov_matrix: 
lyap={6.384,3.139,0.004,

0.139,4.107,0.020, 
0.004,0.020,0.010} 

phai={276.89,202.7689,
102 . 0 , 1}

C={0.1,100}
5. Model_parameters: 

k_l=9.8
k_2=10
k_3 = -10
k_4=-10
k_5=10
k_6=50
k_7=20
k_8=20
k_9=20
k_a=0
k_b=10
k_c=0
alphal=2
alpha2=5

alpha3=l 
r(t)=0.0

6. System_model_matrix: 
f(1)=x2
f(2)=k_l*sin(xl)+k_2*x3 
f (3)=k_3 *x2 +k_4 *x3 
g (1)=0 
g (2)=0 
g (3)=k_5 
df (1)=0
df(2)=k_6*cos(5*time)*cos (xl) 
df(3)=-k_7*x2-k_8*x3 
dg(1)=0 
dg (2)=0 
dg(3)=k_9 
D (1)=k_a*r(t)
D (2)=k_b*r(t)
D (3)=k_c*r(t)

7. Switching_function: 
Sigma=-k_l*sin(xl)-alphal*xl 
-alpha2 *x2-alpha3 *x3
dsigma(1)=-k_l*cos(xl)-alphal 
ds igma(2)=-alpha2 
dsigma(3)=-alpha3

8. Control_action: 
h (x) =xl
Lh (x) =x2
LLh(x)=k_l*sin(xl)+k_2*x3 
LLLh(x)=k_l*x2*cos(xl)
+k_2 *k_3 *x2 +k_2 *k_4 *x3 
LgLLh(x) =k_2*k_5

R e f e r e n c e s

[1] Turbo C User's Guide, Borland, version 2.0, 1988

[2] H. Schildt, Advanced Turbo C, Second Edition, 1989
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