by
IAIN D GARDINER, BSc (Hons)
Department of Mechanical and
Industrial Engineering

Thesis submitted to the C.N.A.A. for the Degree of Doctor of Philosophy

March 1987
$0^{0} 4_{2} 2^{4}$

Boundary Layer Wind Tunnel Facility

DECLARATION

Abstract

I hereby declare that the following work has been composed by myself and that this dissertation has not been presented for any previous award of the C.N.A.A. or any other University.

Iain D Gardiner

by
Iain D Gardiner

Abstract

An experimental investigation of transition in boundary layer flows under the influence of various freestream conditions is described.

Velocity profiles are obtained automatically by means of a steppermotor driven traverse mechanism which carries a hot wire probe connected to a constant temperature anemometer and associated instrumentation. This was achieved by use of a data acquisition and control facility centred around a microcomputer with a Eurocard rack mounted extension. The automatic boundary layer traverse is software controlled and the data obtained is stored in a disc file for subsequent analysis and graphical display. As an integral part of this facility a successful method of obtaining reliable intermittency values from a hot wire signal was developed.

The influence of freestream turbulence and pressure gradient upon transition within a boundary layer developing on a flat plate is elucidated by a series of controlled experiments.

From the data accumulated, the concept of statistical similarity in transition regions is extended to include moderate non-zero pressure gradients, with the streamwise mean intermittency distribution described by the normal distribution function.

An original correlation which accounts for the influence of freestream turbulence in zero pressure gradient flows, and the combined influence of freestream turbulence and pressure gradient in adverse pressure gradient flows, on the transition length Reynolds number R_{σ}, is presented. (The limited amount of favourable pressure gradient data precluded the extension of the correlation to include favourable pressure gradient flows).

A further original contribution was the derivation of an intermittency weighted function which describes the development of the boundary layer energy thickness through the transition region.

A general boundary layer integral prediction scheme based on existing established integral techniques for the laminar and turbulent boundary layers with an intermittency modelled transition region, has been developed and applied successfully to a range of test data.

DATE	TITLE \& LOCATION	CONTENT
11-13 April 1984	"Hot Wire Anemometry" Cranfield Institute of Technology	A series of lectures and 'hands on' experiments giving valuable experience on both practical and theoretical aspects of hot wire anemometry techniques.
2-30 May 1984	"New Technology Applications in Manufacturing Industry" Dundee College of Technology	A series of evening lectures and demonstrations relating to principles of digital control.
11-13 Sept 1985	```Conference on "Developments in measurements and instrumentation in Engineering" Hatfield Polytechnic```	The paper "A low cost data acquisition system based on a BBC microcomputer" by Milne, J S, Fraser, C J and Gardiner, I D was presented by J S Milne.
7-10 April 1986	Second International Conference on "Micro-computers in Engineering: Development and Application of Software" University College of Swansea	The paper "Application of a microcomputer for control, data acquisition and modelling in transitional boundary layer studies" by Fraser C J, Milne J S and Gardiner, I D was presented by C J Fraser.

ACKNOWLEDGEMENTS

I wish to thank my supervisors, Mr J S Milne and Dr C J Fraser, who at all times throughout the duration of this project have willingly proferred their advice upon every aspect of the work described herein.

My gratitude extends to the technical and secretarial staff of the Department of Mechanical Engineering for their valuable friendship over the past three years and also to Liz for her efforts in the typing of this thesis.

Finally, the financial support of the Scottish Education Department during the period 1983-86 is acknowledged.

NOMENCLATURE

Symbol	1 Function	Connotation	Units
u^{\prime}, v^{\prime},	, w'	```fluctuating Velocity components in x, y, z directions respectively```	m/s
\bar{x}		location of the 50% intermittency point	mm
x		streamwise co-ordinate	mm
Y		transverse co-ordinate	mm
z		spanwise co-ordinate	mm
y^{+}		dimensionless y co-ordinate	-
γ		local intermittency	-
$\bar{\gamma}$		mean 'near wall' intermittency	-
δ		boundary layer thickness at $\bar{u}=0.995 U_{\infty}$	mm
ס*	$\int_{0}^{\infty}\left(1-\bar{u} / U_{\infty}\right) d y$	displacement thickness	mm
θ	$\int_{0}^{\infty} u /_{U_{\infty}}\left(1-\bar{u} / U_{\infty}\right) d y$	momentum thickness	mm
$\delta * *$	$\int_{0}^{\infty} \bar{u} / U_{\infty}\left\{1-\left(u / U_{\infty}\right)^{2}\right\} d y$	Energy thickness	mm
λ		transition normalising length	
λ_{p}	$\frac{\delta^{2}}{\nu} \quad \frac{d U_{\infty}}{d x}$	Pohlhausen pressure parameter	-
λ_{θ}	$\frac{\theta^{2}}{v} \quad \frac{d U_{\infty}}{d x}$	modified Pohlhausen/Thwaites parameter	-
μ		fluid dynamic viscosity	$\mathrm{kg} / \mathrm{ms}$
v		fluid kinematic viscosity	$\mathrm{m}^{2} / \mathrm{s}$
ρ		air density	$\mathrm{kg} / \mathrm{m}^{3}$
π		Coles "wake" profile parameter	-
σ		Standard deviation of mean intermittency distribution	mm

Symbol	Function	Connotation	Units
T_{0}		Wall shear stress	
ζ	$\frac{x-x_{\mathbf{S}}}{\lambda}$	transition normalising co-ordinate	-
ζ	$\frac{x-\bar{x}}{\sigma}$	transition normalising co-ordinate	-
η	$\frac{x-x_{S}}{x_{e}-x_{s}}$	transition normalising co-ordinate	-
$\ell_{1}(\lambda \theta)$	-	Thwaites relationships between ℓ_{1} and λ_{θ}	

Subscripts

e - related to the end of transition
i - denoting initial conditions
Z - relating to transition length
L - related to the laminar region
o - denoting conditions at the leading edge
s - related to the start of transition
t - related to the transition region
T - related to the turbulent region

Other symbols, not noted here, are defined within the text.

CONTENTS

Page No
Frontispiece i
Declaration ii
Abstract iii
List of Courses and Conferences attended iv
Acknowledgements \dot{v}
Nomenclature vi
Contents ix
Statement of Objectives xiii
Chapter 1 Introduction
1.1 Early experiments 1
1.2 Stability of laminar flow 2
1.3 Transition to turbulence 3
1.4 Practical significance of transition 6
1.5 Prediction of transition onset 7
1.6 Boundary layer development through transition (present investigation) 11
1.7 Microcomputer involvement 15
Chapter 2 Experimental Facilities
2.1 Wind tunnel test facility 16
2.2 The boundary layer plate 10
2.3 Preliminary tests and tunnel modifications 19
2.4 Turbulence generating grids 21
2.5 Freestream pressure gradients 22
2.6 Hot wire instrumentation 23
2.7 Probe linearisation 25
2.8 Intermittency Measurement 25
2.9 Measurement of Cf using a Preston tube 29
Chapter 3 Microcomputer Data Acquisition \& Control
3.1 Introduction 49
3.2 Transmission of data 50
3.3 Data acquisition 51
3.4 Choice of Microcomputer 55
3.5 Accessing signals on the BBC micro 57
3.6 Accessing singal using the Beebex Eurocard Extension 60
3.7 Control of the hot wire probe position 62
3.8 Conditioning of signals to suit the Beebex system 64
3.9 Development of Data Acquisition and Control software 68
Chapter 4 Data Reduction and Theoretical Considerations
4.1 Introduction 81
4.2 Reduction of Laminar Mean velocity profiles 81
4.3 Reduction of Turbulent mean velocity profiles 82
4.4 Estimation of errors in boundary layer integral thicknesses 88
4.5 Approach to equilibrium and low Reynolds number effects 90
4.6 Transitional mean velocity profiles 93
4.7 Determination of start and end of transition 95
4.8 Flow two dimensionality 96
Chapter 5 Development of Data Acquisition, Control and Data Reduction Package
5.1 Introduction 104
5.2 Running the software package 105
5.3 Special features of the package 107
Chapter 6 Details of Experiments and Discussion of Results
6.1 Introduction 111
6.2 Description of experimental flows 111
6.3 Flow measurements 117
6.4 Description of transition process 118
6.5 Start of transition - Correlations 120
6.6 Statistical similarity of transition regions 124
6.7 The effect of freestream turbulence on transition length (zero pressure gradient) 127
6.8 Combined effect of freestream turbulence and adverse pressure gradient on transition length 131
6.9 The effect of favourable pressure gradient on transition length 133
6.10 Correlating the combined influence of freestream turbulence and pressure gradient on transition length 134
Chapter 7 Prediction of the Transition Boundary Layer Development
7.1 Introduction 170
7.2 Transition model 172
7.3 The computational model 175
7.4 Model performance 179
Conclusions 180
Suggestions for future work 184
Bibliography 186

APPENDICES

APPENDIX 1 - Experimental uncertainty in boundary layer integral thicknesses 195
APPENDIX 2 - Microcomputer based system for setting up the DISA 55M25 Lineariser 202
APPENDIX 3 - Derivation of $\delta_{t}^{* *}$ 208
APPENDIX 4 - Integral prediction methods for laminar and turbulent boundary layers 212
APPENDIX 5 - Software listings224

STATEMENT OF OBJECTIVES

1) To review the literature on the current conceptional understanding of the transition process.
2) To improve the flow in the existing boundary layer wind tunnel test facility.
3) To investigate the suitability of a microcomputer based system with analogue-to-digital conversion facilities for the acquisition of data, from a hot wire signal, in laminar, turbulent and transitional boundary layers.
4) To develop suitable microcomputer software for the control of an automatic boundary layer traverse; for the logging of velocity profile data and for the subsequent analysis and reduction.
5) To set up flows with different combinations of pressure gradient and freestream turbulence level and to measure the boundary layer development under the influence of these effects.
6) To obtain transition onset and length data in both zero and non zero pressure gradients at a range of freestream turbulence levels.
7) To investigate the concept of statistical similarity of transition regions in non-zero pressure gradients and to consider methods of representing this similarity, if it exists.
8) To review the current methods of predicting the onset and length of transition.
9) To investigate the effect of freestream turbulence level and freestream pressure distribution on the transition length and to correlate these effects.
10) To develop a general boundary layer integral prediction model, based on an intermittency weighted transition region, for the development of the transitional boundary layer growth and to develop microcomputer codes for this model.

Introduction

1.1 Early experiments

Until Prandtl's epoch making lecture at the beginning of this century the science of fluid dynamics had been developing along two different branches; one being the dynamics of玉rictionless fluids called hydrodynamics, which was regarded as an academic subject incapable of practical application, and the other being the empirical science of hydraulics based on correlations of large amounts of experimental data. This diversificacion arose from the inability of the hydrodynamicists to predict real solutions to practical engineering problems. Prandtl, with his paper on "Fluid Motion with Very Small Friction" read before the Mathematical Congress in Heidelberg in 1904, took the first steps to unifying these two branches by showing that it was possible to analyse viscous flows precisely in cases which had great practical importance. Prandtl described, with the aid of simple experiments, how the flow around a body could be divided into two regions: A thin layer in contact with the surface in which viscous forces were significant and the remaining region outside this layer where viscous forces can be neglected. Although acceptance of Prandtl's paper was initially very slow, it is now considered to mark the birth of modern boundary layer theory.

Even before Prandtl had presented his 1904 paper and established the boundary layer equations, Osborne Reynolds (1883) had applied himself to the problem of transition. Reynolds postulated that the breakdown of a laminar flow to turbulence was
a consequence of instability in the laminar flow. This hypothesis which was further developed by Rayleigh is now known as the Reynolds-Rayleigh hypothesis and to this day is still highly regarded.

In 1914 Prandtl carried out his famous experiments on spheres and observed that the flow in a boundary layer could also be either laminar or turbulent and furthermore, that the position at which transition occurred significantly affected the flow around a body and hence the calculation of the drag on the body.

1.2 Stability of laminar flow

Stability theory for viscous fluid flows was developed independently by both Orr (1907) and Sommerfeld (1909) and resulted in what is now known as the Orr-Sommerfeld equation. This equation was derived from a finite disturbance analysis of the Navier-Stokes and continuity equations and is the starting point for all stability calculations. No practical solution to this equation was obtained until the late 1920's when, not surprisingly, the breakthrough came from one of Prandtl's students, Tollmein (1929) who computed theoretically the critical Reynolds number at which the laminar flow becomes unstable to a travelling wave type of disturbance. Schlichting (1933) later extended Tollmein's calculations to amplified two dimensional disturbances which are now recognised as Tollmein-Schlichting waves.

Despite the notable achievement of both Tollmein and Schlichting their work was disregarded for almost a decade until two of Dryden's co-workers, Schubauer and Skramstad (1943)
conducted experiments on a flat plate in a wind tunnel with very low residual turbulence. In these experiments Schubauer and Skramstad forced the boundary layer to oscillate by vibrating a thin magnetic ribbon immersed in the layer. At certain Reynolds numbers they observed that the oscillations were amplified and that transition to turbulence was preceeded by these amplified oscillations. These experiments were regarded as confirmation of the previously purely theoretical concept of Tollmein-Schlichting waves and critical Reynolds number. The reason these observations had not been made in earlier experiments was considered to be due to the high levels of freestream turbulence,typical of earlier experiments, masking the existence of amplified waves.

1.3 Transition to turbulence

In 1936 Dryden observed that near the beginning of transition turbulent bursts occurred randomly and at infrequent intervals and that further downstream the bursts occurred more frequently and were of longer duration until finally the flow was continuously turbulent. The intermittent appearance of the turbulence in this region was interpreted by Dryden as a wandering irregular line of abrupt transition about a mean position. However, it is now certain that this interpretation was incorrect and that the so-called transition region is composed of Emmons (1951) type turbulent spots which grow in size as they are transported downstream.

Emmons advanced the concept of turbulent spots on the basis of experiments conducted on equipment built to demonstrate a simple water table analogy to supersonic flow. In addition to
the anticipated supersonic phenomenon, Emmons noticed the appearance of strange turbulent bursts and had the foresight to recognise this. as the breakdown of the laminar flow. He observed that the transition region was filled with a random collection of these turbulent bursts or spots which appeared to grow at a constant rate and independently of each other. From these observations Emmons deducedasource density function which described the production of turbulent spots, and showed how this could be related to the probability of the flow being turbulent at a given point, namely, the intermittency factor $\bar{\gamma}$.

Following Emmons paper in 1951, the existence of turbulent spots in a boundary layer was confirmed experimentally by Mitchner (1954) and Schubauer \& Klebanoff (1956). Mitchner's technique of artificially generating turbulent spots by means of an electric spark was used by Schubauer \& Klebanoff to make detailed measurements of the spot growth and geometry. The shape of Schubauer \& Klebanoff's artificially generated turbulent spots is shown in fig. [1.3.1] below.

Fig. 1.3.1

More recently conditional sampling techniques have been used by Wygnanski etal (1976) and Arnal (1977) to measure the mean
velocity profiles in and out of turbulent spots, in a transition region, and have shown that the flow within a turbulent spot is characteristic of a turbulent boundary layer. Gad-el-Hak et al (1981) used a rather novel flow visualisation technique to obtain an excellent series of colour photographs showing the growth of a turbulent spot on a flat plate towed through a tank of water. These photographs show that the characteristic shape of the turbulent spot remains unchanged as the spot grows and is swept downstream with the mean flow.

So far the mechanism of the process leading to turbulent flow has been elucidated on the basis of controlled experiments such as those by Klebanoff, Tidstorm \& Sargent (1962) and although no theory exists for the prediction of transition, the breakdown process is qualitatively well defined.

The breakdown process begins with the amplification of Tollmein-Schlichting waves which become associated at some stage with a concentration of vorticity along discrete lines. These subsequently distort into vortex loops which themselves go through a process of distortion and extension until they finally break into localised bursts of turbulence ie turbulent spots. The turbulent spots then grow, laterally as well as axially, until they eventually coalesce to form a completely turbulent flow field.

This process can be simplified into three stages.
(i) Amplification of small disturbances.
(ii) Generation of localised areas, or spots, of turbulence.
(iii) Growth and spread of turbulent spots.

While theories of the Tollmein-Schlichting type have achieved a fair amount of success in predicting the influence of various effects on the limit of laminar stability (stage (i)) they give no indication of the point at which transition occurs (stage (ii)).

1.4 Practical significance of transition

Transition from laminar to turbulent flow is not only an important problem of fundamental research in fluid mechanics but possesses many important ramifications. For example, the drag of a body placed in a stream as well as the rate at which heat is transferred from a solid wall to a fluid moving past it, depend very strongly on whether the flow in the boundary layer is laminar or turbulent. The occurrence of transition can sometimes be beneficial, for example in delaying separation or in promoting more rapid diffusion of heat and sometimes it can be detrimental in increasing skin friction and promoting undesirable high rates of heat transfer. Whether beneficial or detrimental the accurate prediction of its position on a body is obviously of paramount importance to the computation of the boundary layer development over a body, and hence the calculation of the aerodynamic and thermodynamic performance of the body. One rather crude method of calculating the boundary layer development on a surface is to assume that transition from the laminar to turbulent flow state occurs instantaneously at the transition point, and to overlap the laminar and turbulent boundary layer parameters at this point. This method may be substantiated in some cases when the length over which the
boundary layer degenerates from the laminar to turbulent flow state, ie the transition length, is small in comparison to the length of the body itself. However, in situations where the transition region occupies a significant proportion of the body surface then the length over which the transition metamorphosis takes place will be of great significance to the development of the boundary layer.

One practical example of a situation where the transition region occupies a high proportion of a body surface is a modern gas turbine blade. Turner (1971) observed that the boundary layer over a turbine blade can be transitional for up to 70% of its chord. In such a case the quality of the boundary layer prediction through the transition region can influence the blade aerodynamic efficiency and, through its impact on cooling design, the cycle efficiency and hardware durability of the turbine. Therefore accurate prediction of the boundary layer development through transition which is dependent on accurate prediction of the onset and length of transition, is of prime importance.

1.5 Prediction of transition onset

The transition point, which lies some distance downstream of the point of laminar instability, can be defined as the point at which the mean laminar boundary layer parameters begin to deviate from their typical laminar values and is normally considered to be the point where the laminar flow breaks down to random turbulence, ie the appearance of first turbulent spots. In general transition is known to be influenced by a number of factors such as: surface roughness, freestream turbulence,
pressure gradient, Mach number, surface curvature, Reynolds number etc. Because of the complex manner in which the various factors influence the position of the transition point and the extent of the transition region, theorists have been unable to solve the transition problem analytically. For this reason the design engineer has had to rely on empirical and semi-empirical models, based on experimental data, to obtain solutions to practical engineering problems. Obviously the accuracy of any solution will depend on the quality of the experimental data, the degree of correlation and the number of influencing factors that are accounted for in the model. Two of the most dominant factors which influence transition are the pressure gradient and freestream turbulence intensity, consequently any empirical model should, at least, account for their effects.

Various methods for predicting the position of the transition point are available, all operating on an empirical or semi-empirical basis but with varying transition criteria and basic assumptions. These methods have been reviewed by a number of researchers eg Tani (1969), Hall \& Gibbings (1972), Reshotko (1976) and more recently in an excellently complete review by Arnal (1984). It is not intended therefore, to repeat this work here but merely to briefly describe the empirical and semi-empirical approach to the prediction of transition point.

Semi-empirical approach: This approach includes the "so-called" e^{n} methods formed on the basis of the linear stability theory and correlations from low turbulence wind tunnel experiments. The first of these methods was developed by Smith \& Gamberoni (1956) and independently by Van Ingen (1956). They observed that the maximum amplification ratio of the initial disturbances, as
computed by the stability theory, at the observed position of transition was roughly equal for all cases investigated. According to Smith \& Gamberoni, this critical value of amplification ratio is approximately e^{9}.

Since this method was first introduced various modifications to the original calculation method have been made, for example by Jaffe, Okamura \& Smith (1970) and others. However the method remains essentially as originally developed, the key to success of the method lying in the judicious choice of the exponent factor, ranging anywhere from about 8 to 11.
e^{n} methods are only applicable for flows with low freestream turbulence levels (say <0.2\%). At higher freestream turbulence levels the Tollmein-Schlichting mode to transition is thought to be by-passed, transition then being due to pressure fluctuations in the freestream, Taylor (1936).

Another method which can be classed as having a semi-empirical approach, as it includes some theoretical elements, is that of Van Driest \& Blumer (1963). This was developed on Liepmann's (1936) idea that transition occurred when the ratio of local turbulent to viscous shear stress reached some critical value. By using Taylors' (1936) hypothesis for freestream turbulence effects and the Pohlhausen (1921) forth-degree velocity profile an expression involving two adjustable constants has been derived for transition Reynolds number in terms of pressure gradient parameter, λ_{p}, and freestream turbulence. The constants in this expression being adjusted to fit experimental data.

Wholly empirical approach These methods are based on the assumption that the local transition Reynolds number can be determined, through correlation of controlled experimental results, as a function of the factors which influence transition. Whether the prediction based on local Reynolds number is accurate or not depends on whether all the important parameters are taken into account.

The method of Michel (1951) which comprises only one relationship between the momentum thickness Reynolds number and the axial length Reynolds number at transition, is probably the simplest of those methods. Michel's curve can be fitted by the expression.

$$
\mathrm{R}_{\theta_{S}}=1.535 \mathrm{R}_{\mathrm{x}_{\mathrm{S}}}^{0.44} \quad \ldots \ldots \ldots \ldots \ldots 1.1
$$

When the corresponding flow Reynolds numbers coincide with Michel's curve ie equation 1.1 then transition is "predicted". Other early methods worthy of note are those of Granville (1953) and Crabtree (1957) both using a single curve of $\mathrm{R}_{\theta_{S}}$ against a pressure gradient parameter λ_{θ} as a transition criteria. However, Granville'smethod differs from Crabtree's in that he attempted to make an allowance for the upstream flow history by assuming that only the boundary layer growth after the point of stability was of any consequence. Granville therefore plotted $\left(R_{\theta_{s}}-R_{c r}\right)$, where $R_{\theta_{c r}}$ is the value of R_{θ} at the stability limit, against the mean value of λ_{θ} over the unstable part of the boundary layer. As was the case for the e^{n} methods these early methods are realy only applicable to low freestream turbulence flows.

The more recent methods of Dunham (1972), Seyb (1972) and Abu-Ghannam \& Shaw (1980) directly correlate the momentum thickness Reynolds number at transition against the local pressure gradient parameter $\lambda_{\theta_{S}}$ and the freestream turbulence level. The most recent of these ie Abu-Ghannam and Shaw's is probably the most reliable as it is based on a vast amount of experimental data obtained from a variety of sources.
1.6 Boundary layer development through transitions (present investigations)

Assuming the transition point is known the problem then is to compute the boundary layer development through the transition region itself, the extent of which may be longer than the laminar layer which precedes it. An important parameter characterising the transitional boundary layer is the mean "near wall" intermittency factor $\bar{\gamma}$ which represents the fraction of time that the flow is turbulent. The model presented in this thesis is based on the 'so-called' "intermittency method", in which the laminar and turbulent boundary layer quantities are weighted by $\bar{\gamma}$. Thus the first task is to describe the streamwise evolution of the intermittency factor $\bar{\gamma}$ through the transition region. There are other methods, such as that of McDonald \& Fish (1973) which do not require the knowledge of $\bar{\gamma}$. Such methods involve finite difference solution of the mean flow and some form of eddy viscosity. However these methods require the use of refined finite difference grids with perhaps more than 100 grid points across the boundary layer. This makes such approaches uncomfortably slow in engineering design applications, See Forrest (1977). Such methods have not been considered further in this investigation.

Schubaver \& Klebanoff (1956) measured the streamwise distribution of $\bar{\gamma}$ for a number of zero pressure gradient flows where conditions leading to transition were varied and, although in each case the transition lengths were different, the distribution followed the general shape of the Gaussian integral curve. The standard deviation σ was calculated for each experiment, and all the data collapsed on to a single curve when $\bar{\gamma}$ was plotted as a function of the normal stream co-ordinate $\zeta=x-\bar{x} / \sigma$ where $\bar{x}=x(\gamma=0.5)$. (The value of σ is a measure of the spread of the data about the 50% intermittency point and, if the transition region is defined in the limits $0.01<\gamma<0.99$ then σ can be related directly to the transition length).

Schubauer and Klebanoff, from these observations, postulated that transition regions in all zero pressure gradient flows, long or short, were statistically similar. This concept was corroborated by Dhawan \& Narasimha (1958) although in contrast to Schubauer \& Klebanoff they proposed a different distribution function of intermittency:

$$
\bar{\gamma}=1-\exp ^{-0.412 \xi}
$$

where $\xi=\left(x-x_{s}\right) / \lambda$ is the normalised stream co-ordinate with λ as a measure of the intermittency spread given by

$$
\lambda=(x \text { at } \bar{\gamma}=0.75)-(x \text { at } \bar{\gamma}=0.25)
$$

(By defining the transition region in the same limits as before λ can also be related directly to the transition length). A similar method with yet a different intermittency distribution function has also been proposed by Abu-Ghannam \& Shaw (1980).

All three of the methods for defining the intermittency distribution have been considered in this investigation and the concept of statistical similarity for non-zero pressure gradient cases has been examined.

Unless the length of the transition region (which can be related directly to σ or λ) is known, none of the methods constitute a means of calculating the streamwise intermittency distribution $\bar{\gamma}$. For this reason Dhawan \& Narasimha proposed the existence of a relationship between the transition Reynolds number ($\mathrm{R}_{\mathrm{X}_{\mathrm{S}}}$) and a transition length Reynolds number based on λ ie ($\mathrm{R} \lambda$):

$$
R \lambda=R_{X_{S}} 0.8
$$

This relationship, although known to be in error by more than 100% in some cases and agreed to be very approximate by Dhawan \& Narasimha in their original paper, is used as the basis of many prediction methods which require the transition length to be known eg. Abu-Ghannam \& Shaw (1980), Brown \& Burton (1978), Fraser (1979), Martin et al (1978).

The validity of this relationship is reviewed and a new correlation, based on data gathered during this investigation and on the limited amount of existing data available, is proposed for defining the transition length. The new correlation accounts directly for the effect of freestream turbulence and pressure gradient on the transition length and is in the form:

$$
R_{\sigma}=f\left(T u, \lambda_{\theta}\right)
$$

The development of this relationship is discussed in detail in Chapter 6.

Dhawan \& Narasimha also proposed that the transition region could adequately be described as a region of alternate laminar and turbulent flow. With the intermittency distribution known they assumed that the transitional mean velocity profiles could be expressed as an intermittency weighted average of the laminar and turbulent velocity profiles ie:

$$
\left.\left(u / U_{\infty}\right)_{t}=(1-\gamma)\left(\begin{array}{l}
u / U_{\infty}
\end{array}\right)+\gamma\left(u_{L}\right)_{U_{\infty}}\right)_{T} \ldots \ldots \ldots \ldots 1.5
$$

Qualitative measurements made in the transition region in the present investigation substantiate this model, as do the detailed conditionally sampled measurements of Arnal (1977) and Wygnanski (1976).

These observations of Dhawan \& Narasimha along with the intermittency distribution of Schubauer \& Klebanoff and the present correlation for transition length are formulated into a computational model for predicting the boundary layer development through transition. The laminar and turbulent boundary layer components are obtained from the established integral techniques of Tani (1954) for the laminar boundary layer and Alber (1968) for the turbulent boundary layer.

The development of the model is discussed in detail in Chapter 7 and a comparison of predictions obtained from the model against a sample of past and present data is made.

1.7 Microcomputer involvement

During the last decade the most significant improvements in instrumentation and measurement have been centred on the development of microelectronics, with particular reference to microprocessors which have added a new dimension of intelligence and control in measurement systems. The operational flexibility of the microcomputer allows the same machine a functional role in the data taking process, the analysis and reduction of the primary data and the mathematical modelling of the observed phenomenon.

A large proportion of the present study was devoted to the development and commissioning of a microcomputer data acquisition and control system based on a BBC microcomputer with a Double Disc drive unit for the storage of software and data files. This system contributed significantly to the speed at which reliable accurate data could be obtained and processed. The computational model described in the previous section was also programmed to run on the same $B B C$ micro thus exploiting the full potential of the system.

The development of this system has resulted in the publication of two papers ie Milne, Fraser \& Gardiner (1985) and Fraser, Milne \& Gardiner (1986). A further paper by Fraser, Gardiner \& Milne (1987) is to be presented at the 5th International Conference on "Numerical Methods in Laminar and Turbulent Flow" to be held in Montreal, CANADA in July 6th - July 10th 1987.

CHAPTER TWO

EXPERIMENTAL FACILITIES

2.1 Wind tunnel test facility

Abstract

All experiments during this investigation were conducted in a purpose built, open return, boundary layer wind tunnel. Details of the design of this tunnel are given by Fraser (1979). The tunnel was originally designed for the study of two dimensional, incompressible flat plate boundary layer flow and has an adjustable roof which enables the boundary layer to be subjected to adverse, zero and favourable pressure gradients. Moderately low freestream turbulence levels (around 0.35\%) can be obtained in this facility and it has recently been modified to allow higher turbulence levels to be generated within the test section through the use of various turbulence generating grids. A schematic diagram of the tunnel is shown in fig. 2.1.1.

The tunnel consists of a series of damping screens, an inlet contraction, a rectangular working section, a square to round section diffuser and a variable speed 2 hp D.C. motor which drives a six blade propeller fan.

The damping screens, situated upstream of the inlet contraction, are designed for the double purpose of reducing the spanwise nonuniformity in the flow, as suggested by East (1972), and reducing the freestream turbulence level by removing large scale eddies and inducing lower scale eddies which rapidily decay downstream of the grids, Dryden \& Schubauer (1947). The inlet contraction which is of rectangular section, has an aspect ratio of $2 / 1$ and an area reduction ratio of $9 / 1$. The contraction is designed to further reduce the freestream turbulence and accelerate the flow
into the working section. Downstream of the inlet contraction is the working section. This is of rectangular cross section $227 \mathrm{~mm} \times 450 \mathrm{~mm} \times 2.5 \mathrm{~m}$ with an adjustable height roof to enable variable pressure gradient flows to be set up in the test section. Situated within the tunnel working section is the instrument carriage which was designed to give three-dimensional flexibility for the hot wire sensor positioning. The carriage runs on two horizontal rails fixed to the tunnel side walls, which allows streamwise flexibility in the probe positioning, and a cross slide, to which al'l the necessary measuring equipment and vertical traversing gear can be attached, allows for spanwise positioning. Positioning in the spanwise and streamwise direction is done manually from inside the working section with the vertical traversing being carried out remotely using the DISA Sweep drive unit (type 52B01) in conjunction with a stepper motor (type 52C01) which drives through reduction gearing, a rack and pinnion. The rack being ultimately attached to the probe sensing head. A photograph of the probe traversing mechanism is shown in fig. [2.1.2].

A pitotstatic tube, coupled to an inclined manometer, is in permanent place at the entrance to the working section above the plate leading edge. This enables the reference approach velocity at the leading edge of the plate to be continuously monitored. Access to the working section is via four hinged doors on the front wall.

A flexible coupling joins the exit of the working section to the diffuser. The purpose of this flexible coupling was twofold, firstly, to prevent vibrations from the fan and motor being transmitted to the working section and secondly to provide a pliable seal between the variable height roof and the diffuser.

The diffuser merges from a square to a round section over its 1.5 m length. The section at the upstream end is $450 \mathrm{~mm} \times 450 \mathrm{~mm}$ and the diameter at the downstream end is 800 mm .

The six blade fan propeller is housed in a 700 mm long cylindrical casing and is driven by a 2 hp variable speed motor. The motor has a maximum speed of 1440 rpm giving a maximum reference velocity at the entrance to the working section of nominally $20 \mathrm{~m} / \mathrm{s}$.

2.2 The boundary layer Plate

The boundary layer plate is a 6 mm thick aluminium sheet 2.4 m long and completely spans the working section. The plate is fixed to two rails which are bolted through the tunnel floor onto the main supporting framework. Along the centre line of the plate are a series of pressure tappings set at 50 mm pitch and these tappings are connected to a multitube inclined manometer. Originally the plate was positioned 50 mm above the working section floor at zero incidence to the approach flow and the leading edge was symmetrically sharpened and bent downwards to ensure that the stagnation point would occur on the upper surface of the plate leading edge. Previous results from earlier work, Fraser (1979), showed that natural transition on the plate occurred at values of $R x$ well below those obtained by other researchers such as Van Driest \& Blumer (1963), Hall \& Gibbings (1972) and Abu-Ghannam \& Shaw (1980). This early transition was initially thought to be caused by the leading edge geometry so, the front of the plate was removed and a new straight symmetrically shaped leading edge was machined on the plate and hand worked to merge tangentially to the plate
horizontal surface. To ensure the stagnation point would occur on the top surface of the leading edge the whole plate was then inclined at $-\frac{1}{2}$. to the oncoming flow. Fig. [2.2.1] shows the new leading edge geometry. To obtain this $-\frac{1}{2}{ }^{\circ}$ of incidence the plate leading edge was lowered to 23 mm from the tunnel floor rather than the trailing edge being raised. However, as can be seen from the tunnel approach velocity profiles fig. [2.2.2] the leading edge of the plate is still well clear of the boundary layer developing on the tunnel floor.

2.3 Preliminary Tests \& Tunnel Modifications

An initial study to determine the flow regimes over the modified flat plate, in a zero pressure gradient, was carried out by positioning the probe approximately 1 mm from the plate surface and observing the trace from the constant temperature anemometer (DISA 55M10), on an oscilloscope, at numerous spanwise and streamwise positions. This study gave an indication of the regions of laminar, transitional and turbulent flow over the plate. As can be seen from fig. [2.3.1], there appears to be large disturbances which emanate from the tunnel side walls and grow downstream, progressively encroaching into the flat plate test flow. This phenomenon, although not often reported, is thought to be a common occurrence in boundary layer wind tunnels. It was observed by Coles \& Savas (1979) who stated, "The useful region of the plate smuface was severely limited by transverse contamination from the sidewalls", and more recently by Blair (1982). For this reason all test measurements were restricted to the tunnel centreline.

Even with this restriction imposed, values of Rx_{s} still fell far short of those expected therefore, it was decided to make further improvements to the tunnel to, at least, delay the start of the transition to obtain values of $\mathrm{R}_{X_{S}}$ approaching those of Abu-Ghannam \& Shaw (1980).

Initial improvements were
(i) A suction port was added to the underside of the tunnel 500 mm from the leading edge in an attempt to improve the flow over the leading edge of the plate.

Oil and smoke flow visualisation techniques showed that this suction made no difference to the flow over the leading edge and in fact the flow in this region was fairly good with no signs of separation occurring on the topside near the leading edge.
(ii) The tunnel roof side wall seals were replaced as smoke tests revealed an inflow to the tunnel working section from the atmosphere, through inadequate sealing at the joint between the adjustable roof and the tunnel side walls.
(iii) The seals around the working section access doors were replaced as the original "draftproofing" had perished.

None of these improvements delayed the start of transition on the plate, in fact it was discovered after all these "improvements" had been made that transition was actually occurring earlier than ever on the test surface.

This was very disappointing, but after much deliberation on this problem the reason for the early transition was eventually traced to the fact that the three turbulence damping screens at the intake to the tunnel had been cleaned, removing a fair quantity of dust which had accumulated on them and appeared to be increasing their effectiveness. The addition of two further screens, one of a manmade micromesh fabric (used for wind breaks) was placed at the front of the bank of screens and the other, a 40 mesh stainless-steel wire mesh grid, placed at the rear of the bank of screens. Details of the screens are given in fig. [2.3.2]. The addition of these extra screens did not significantly decrease the level of natural freestream turbulence in the tunnel but did greatly improve the flow over the plate and established values of $R x_{S}$, on the centre line of the plate, of the same order of those obtained by Abu-Ghannam \& Shaw (1980), fig. [2.3.3].

2.4 Turbulence Generating Grids

The various freestream turbulence levels required throughout this investigation were produced by placing turbulence generating grids close to the contraction entrance, about 400 mm downstream of the contraction front edge, see fig. [2.1.1]. This arrangement differs from that used in many of the early investigations of this subject in that the grids are located in the inlet contraction and not downstream of it at the entrance to the test section. The benefits derived from this, as reported by Blair (1983), are that the turbulence generated in the test section is more homogeneous and has a much lower decay rate along the test section. This is illustrated in fig. [2.4.1].
(The advantage of locating the grids in this position require that coarser grids be used to achieve given test section turbulence levels).

The grids designed gave turbulence intensities of approximately $0.45 \%, 0.75 \%$ and 1.45% in the test section of the tunnel. These grids will now be referred to as grid 1, grid 2 and grid 3 respectively.

Grid 1: is a wire grid of mesh size 25 mm and rod diameter 2.5 mm .

Grid 2: is a wooden grid of mesh size 25 mm and rod diameter 5.5 mm .

Grid 3: is a wooden grid of mesh size 38 mm and is made from $6 \times 12 \mathrm{~mm}$ rectangular section strips.

Further details of the grids are given in fig. [2.4.2].

2.5 Freestream Pressure Gradients

The range of pressure gradients required for this investigation were introduced by adjusting the variable height roof to give the required velocity distribution within the test section. This proved to be a difficult and very time consuming task as slight alterations in the roof height could affect the entire velocity distribution over the plate.

The procedure adopted in setting up the pressure distributions was to initially adjust the roof to give, crudely, the required static pressure distribution along the plate, measured from the plate static tappings via a multitube manometer. Fine adjustment of the roof was then implemented by measuring the freestream velocity distribution, with a hot wire, and adjusting the roof accordingly.

Four different roof settings were used to illustrate the effects of favourable, zero and adverse pressure gradients. All
the roof settings gave reasonably linear velocity distributions over the test length of the plate except for the favourable gradient setting which, due to the tunnel geometrical constraints, was non-linear in the region of the leading edge.

The pressure distributions expressed in terms of the pressure coefficient, C_{p}, are shown in fig. [2.5.1] along with the corresponding velocity distributions.

2.6 Hot Wire Instrumentation

DISA hot wire instrumentation was used consistently throughout the duration of this project. Miniature boundary layer probes (55P15) were connected via a probe support (55H21) and a 5 m length of coaxial cable to the (55M01) Main Unit fitted with a (55M10) Bridge operating in the constant temperature mode. A simplified schematic diagram of the constant temperature anemometer is shown in fig. [2.6.1].

In essence, the constant temperature anemometer consists of a Wheatstone bridge, with the probe wire serving as one of the bridge arms, and a servo amplifier. The bridge is in balance if the probe resistance and the adjacent bridge resistance Rv (fig. [2.6.1]) are equal, so a voltage applied to the top of the bridge will produce no out of balance, or error voltage across the bridge. Any flow over the probe will have the effect of cooling the wire, resulting in a small change in probe resistance which in turn produces an error voltage across the bridge. This is amplified in the servo amplifier and fed back to the bridge top, causing the bridge current to increase and the probe temperature to eventually return to its original value. The voltage which is fed to the bridge top to maintain the probe
temperature can be related to the fluid velocity by calibration. The response of the system is optimised by subjecting the probe to a square wave input and adjusting the bridge gain and upper operating cut off frequency. Fine tuning is achieved by adjustment of the Q and L cable compensation potentiometers.

The voltage output from the constant temperature anemometer is non-linearly related to the fluid velocity over the probe. In order to obtain a linear relationship, the signal from anemometer is passed through a 55M25 Lineariser, which is basically an analogue computer that linearises the anemometer signal by means of a transfer function composed of exponential and square root terms. A pictorial representation of the non-linearised and linearised hot wire signal is shown in fig. [2.6.2] and an actual linearised calibration is shown in fig. [2.6.3].

A spectral analysis of the turbulence signal from a typical turbulent boundary layer shows that the turbulent energy is contained below a frequency of approximately 2 kHz , therefore the signal output from the lineariser is passed through the auxiliary unit (55D25) and filtered at a -3 db cut off frequency of 2 kHz .

The signal from the auxiliary unit is then fed to a Digital volt meter (55D30) for measurement of mean velocity and an r.m.s voltmeter (55D35) for measurement of the r.m.s. value of the velocity fluctuation.

The vertical positioning of the probe was carried out remotely using the DISA sweep drive unit (52B01) in conjunction with a stepper motor (52C01) and traverse mechanism (55H01). A photograph of the instrumentation bank is given in fig. [2.6.4] and a schematic layout is shown in fig. [2.6.5].

2.7 Probe Linearisation

As indicated in the previous section, linearisation of the hot wire probe was achieved by means of the DISA (55M25) lineariser. This is a complex piece of apparatus with a fairly comprehensive set-up procedure. In order to simplify this linearisation procedure a computer program, for a BBC microcomputer, was developed that enabled a graphical output of the linearisation to be viewed on a monitor during the set-up procedure. This enabled new probes to be fairly quickly and accurately linearised. Details of this program and the set-up procedure are given in Appendix 2

The probes were linearised such that the hot wire output voltage corresponded to $1 / 10$ th of the fluid velocity. The freestream velocity, measured by the Hot wire, was checked against a pitotstatic reading before and after each traverse and if the hot wire velocity was in error by more than 2% the profile was rejected and the probe was recalibrated. Recalibration of a probe already in use involved measuring a set of velocities in the test range, against a pitotstatic and usually only minor adjustments to the "Gain High" and "Exponent Factor" settings on the lineariser was all that was required. It was found, however, that after a period of time, the stability of the probes deteriorated to a point where they developed such a significant drift in their calibration that they became unusable.

2.8 Intermittency Measurement

From the outset of the project it was obvious that one of the most important parameters to be measured was that of intermittency in the transition region. Intermittency was first
measured by Townsend (1948) who used the term γ as the intermittency factor and defined it as the fraction of time a given signal is turbulent. For $\gamma=0$ the flow is laminar all the time and for $\gamma=1$ the flow is turbulent all the time.

Intermittency is observed in two quite different situations ie, in the breakdown of a laminar shear flow to turbulence, a process which normally occurs over an appreciable streamwise distance, and at the freestream interface of a fully turbulent shear flow where the interface of the turbulence fluctuates with time so that over an appreciable cross-stream distance, the flow alternates between turbulent and substantially irrotational motion. It is the former of these two situations which the present investigation is primarly concerned.
y
There are various methods by which the intermittency factor can be measured. One of the first methods used by Townsend (1948), Klebanoff (1955) and Sandborn (1959) was that of the flatness factor. The flatness for u^{\prime} is given as:

$$
\text { flatness factor }=\overline{\mathrm{u}}^{+} /\left({\left.\overline{u^{\prime 2}}\right)^{2}}\right.
$$

As the probability distribution of the interface between the turbulent and non-turbulent fluid is approximately Gaussian, then near the wall, where the intermittency is unity, the flatness factor corresponds closely to the Gaussian value of 3.0 . By considering the intermittency as an on/off process the value of γ can then be found from

$$
\gamma=3 /\left(\bar{u}^{\prime 4} /\left(\bar{u}^{2}\right)^{2}\right)
$$

Other methods developed along the lines of Corrsin \& Kistler (1954), which are popular with more recent researchers, Sharma, Wells et al (1982), Murlis et al (1982), are usually termed on/off Velocity-intermittency methods. The basis of these methods is to modify the hot wire signal to enable distinct discrimination to be made between laminar and turbulent flow regimes. A schematic diagram of this process is shown in fig. [2.8.1]

Fiedler \& Head (1966) have had some success in measuring the intermittency through a turbulent boundary layer using a photo-cell instead of a hot wire anemometer to obtain the basic signal. Smoke is introduced into the boundary layer and illuminated by a light normal to the surface making a cross-section of the boundary layer visible. The relative illumination of the boundary layer and free-stream are then detected by a photo cell and the output from this photo cell is passed through the same intermittency measuring circuitry as used for the hot wire signal shown in fig.[2.8.1 (b)].

More recently Murlis et al (1982) have developed a temperature-intermittency scheme using a cold-wire and a heated plate. The advantage of this is that the temperature in a heated flow is larger than that in the freestream everywhere within the turbulence, unlike velocity-intermittency schemes where the discriminating fluctuating velocity of the turbulence can be negative as well as positive and even the square of the fluctuating velocity component will have occasional zeros.

The latter two methods mentioned above have been developed for measurement of the intermittency distribution through a turbulent boundary layer and it is doubtful if they would be of
any use when making intermittency measurements in a region of breakdown from laminar to turbulent flow.

For this reason, and the fact that hot wire instrumentation and a DISA APA system were readily available, an on/off velocityintermittency system was developed for the measurement of intermittency for this investigation. A circuit diagram of the hot wire signal modifier is shown in fig. [2.8.1 (a)].

The signal modifier consists of 3 parts:
(i) Removal of the D.C. component of the hot wire signal leaving only the time dependent velocity signal.
(ii) Amplification and full wave rectification of the signal.
(iii) Removal of the zeros and smoothing to give an approximate square wave.

The signal from the signal modifier is then passed to the DISA comparitor (52B10) which is fed with a triggering level. The comparitor produces $5 v$ time dependent pulses corresponding to the approximate square pulses produced by the signal modifier as shown in fig. [2.8.2 (a)]. This signal is then passed to an averaging D.V.M. which gives a reading of $5 v$ for $\gamma=1$ ie all the modified signal is above the triggering level, and a reading of ov for $\gamma=0$, ie all the modified signal is below the triggering level. Values in between $O v$ and $5 v$ correspond to intermittency values between 0 and 1.

In practice the triggering level was set for each flow by visual observation, on a dual beam oscilloscope, of simultaneous traces of the modified hot wire signal and corresponding triggered signal from the DISA comparitor.

Arnal (1984) noticed that in high freestream turbulence and adverse pressure gradient flows the intermittency is less easily
discriminated. This is because of high amplitude, but low frequency disturbances that are present in the laminar portion of the flow making the choice of an appropriate detection signal unclear. This problem was overcome by passing the "raw" hot wire signal through a $50-100 \mathrm{~Hz} \mathrm{HP}$ filter, depending on the flow, before passing it to the signal modifier.

This effectively filters out the low frequency signal leaving prominent turbulent bursts which can easily be discriminated from the surrounding laminar flow as shown in fig. [2.8.2 (b)]. Fig. [2.8.2 (c)] shows a comparison between the filtered hot wire signal and the modified signal and as can be seen from this figure the "approximate" square wave pulses from the signal modifier correspond to the turbulent bursts from the filtered signal.

2.9 Measurements of Cf using a Preston tube

The Preston tube is essentially a circular total head and static tube pair, details of which are given in fig. [2.9.1]. The differential pressure measured between the two tubes can then be converted to a wall shear stress and skin friction coefficient using the calibration of Patel (1965).

$$
\begin{aligned}
& \text { ie } y^{*}=0.8287-0.1381 x^{*}+0.1437 x^{*^{2}}-0.0060 x^{*^{3}} \ldots \ldots .2 .3 \\
& \qquad \text { for } 1.5<y^{*}<3.5 \\
& \text { or } y^{*}=0.5 x^{*}+0.037 \\
& \text { for } y^{*}<1.5 \\
& \text { where } x^{*}=\log _{10} \frac{\Delta P_{p} \cdot d^{2}}{4 p v^{2}} \text { and } y^{*}=\log _{10} \frac{\tau_{0} \cdot d^{2}}{4 p v^{2}} \\
& \Delta P_{p}-\text { Preston tube pressure differential } \\
& d-\text { Preston tube external diameter }
\end{aligned}
$$

The local skin friction coefficient can then be calculated from:
$C f=\frac{2 \tau_{0}}{p U_{\infty}^{2}} \quad \ldots \ldots \ldots \ldots .2 .5$

Details of the Preston tubes used are given by Fraser (1979).
Only a limited number of measurements using the Preston tube were made throughout the duration of the experimental investigation. The values of skin friction coefficient obtained from these measurements were mostly used as an independent check on the values obtained directly from the universal turbulent boundary layer profile and from the correlations of Ludwieg and Tillman (1950) and White (1974). Details of these are given in Chapter 4.

Fig. 2.1.1 Schematic layout of Boundary Layer Wind Tunnel

Fig. 2.1.2 Probe Traversing Mechanism

Fig. 2.2.1 Leading edge geometry

Fig. 2.2.2 Leading Edge Approach Velocity profiles

Plan View of flat plate

Fig. 2.3.1 Tunnel side wall disturbances

Fig. 2.3.2 Turbulence Damping Screen Details

Fig. 2.3.3 Graph of Rx_{S} against Tu\% for Zero Pressure Gradient Flows

Favourable

Fig. 2.4.1 Turbulence distributions along plate

GRIDS $1 \& 2$

GRID 3

GRID No.	b	M	t	M / b	\% Open Area
1	2.5	25	-	10	82
2	5.5	25	-	4.55	63
3	12.5	38	6.25	6.25	47

Fig. 2.4.2 Details of Turbulence Generating Grids

Fig. 2.5.1 - Details of pressure Gradients

Fig. 2.6.1 Schematic diagram of Constant Temperature anemometer

Fig. 2.6.2 Pictorial representation of linearised and non-linearised hot wire probes

Velocity m/s (Pitot Static)

Fig. 2.6.3 Hot Wire Calibration Curve

Fig. 2.6.4. Hot Wire Apparatus

Fig. 2.6.5 Schematic layout of Hot Wire Apparatus

Fig. 2.8.1 (a) Circuit diagram of signal modifier

Fig. 2.8.1 (b) Schematic layout of intermittency meter with typical signal outputs

Fig. 2.82 (a) $\frac{\text { Comparison between modified signal and }}{\text { signal from DISA comparitor }}$

Fig. 2.8 .2 (b) Comparison between filtered and unfiltered Hot wire signals

Fig. 2.8.2 (c) Comparison between signal from the intermittency signal modifier and the filtered Hot wire signal

Fig. 2.9.1 Details of Preston Tube

Microcomputer Data Acquisition and Control

3.1 Introduction

The microcomputer has, over the last decade, become an important element in measurement and control systems although, in the early stages of their development, microcomputers were regarded as nothing more than toys by "mainframe and mini" users. Their recent increase in stature has come as a result of improved speed and memory capability enabling the traditional engineering data logging and processing systems to be replaced by much more versatile microcomputer systems. The prime benefits of microcomputer based systems are that they can perform tests quickly with good repeatability and, as well as collecting data, can process this data with very little delay. The processed results can then be displayed using the inherent powerful graphics usually associated with good microcomputers, and a hard copy of the display can be obtained direct from the printer using a "screen dump" program or from a graph plotter connected to the microcomputer. A further advantage of microcomputer control and data acquisition systems is that alterations can normally be made easily by changing software to modify parameters rather than physically changing hardware.

The design and development of a microcomputer control and data acquisition system for application to experiments on transitional boundary layers, including the signal conditioning instrumentation and the computer hardware and software, is described in the following sections.

3.2 Transmission of Data

One of the first considerations in selecting a microcomputer to be used for a data acquisition system is how the data is to be acquired by the computer. There are various methods of passing information from instruments such as a DVM or signal generator to the microcomputer; one method is via a common digital transmission standard, for example the IEEE-488 bus which was developed to allow standardised interconnection of the increasing number of intelligent instruments used in laboratories. With this transmission standard the microcomputer becomes the controller capable of monitoring devices termed listeners which receive data over the IEEE-488 bus and talkers which transmit data on the bus. Another standard bus is the serial type RS232 which is normally associated with peripheral equipment such as VDUs and printers.

If the instrumentation, or microcomputer, is not equipped with an interface to allow connection to one of these standard bus structures but the instruments have analogue outputs related to the physical quantities being measured, then a cheaper and probably more common method of passing information to the microcomputer is via an analogue-to-digital converter or ADC. This device, as the name suggests, converts an analogue signal to a digital signal that can then be processed by the microcomputer. Many microcomputers now have built in on board ADCs but those that do not, usually have the facility to enable peripheral devices such as ADCs to be added on by direct connection to the machine's bus structure.

The DISA 5600 series hot wire anomometer equipment has an interface to allow digital information to be passed over the IEEE-488 bus but the 55 M series described in Chapter 2 , and used in this investigation has no such facility. It does however output voltages which are representative of the quantities being measured enabling measurements from this equipment to be passed to the computer via an analogue-to-digital converter.

3.3 Data Acquisition

The rate at which data acquisition systems function may range from daily sampling to sampling in short MHz bursts and will depend very much on the signal being analysed, the information required from the signal and the technique used to extract data from the signal. Arnal (1977), Shaw et al (1983) and Castro (1984) used very fast analogue-to-digital conversion techniques to store turbulent and transitional hot wire signals in the form of digital data in the computer memory with subsequent analysis of this data to give values of mean velocity, rms of the fluctuating velocity component and, in the case of transitional flows, intermittency. To ensure that the computer reconstructs the correct waveform from the digital data it is required that the sampling rate is at least twice as fast as the highest frequency component in the signal (Shannon sampling theorem), hence the need for very fast ADC when digitising turbulence signals which may have frequency components as high as 2 kHz . (Jarvis (1985) suggested that for most engineering purposes the sampling rate should be at least 5 times the highest frequency component in the signal).

The advantage of storing a complete digital signal is that, provided the data is stored in a retrievable form, further analysis of the signal can be performed at a later date without having to reconstruct and remeasure the flow.

Apart from the expensive fast ADC required, a disadvantage of this technique, especially when using microcomputers, is the large amount of computer storage required to store a small sample of a digitised turbulence signal. For example; in the experiments carred out by Shaw et al (1983) the signal is being sampled at 20 kHz and since each data point or digital number occupies 2 bytes of computer memory then the 32 k bytes of memory (RAM) available on the BBC microcomputer would be completely allocated after 0.8s. In a transitional flow this would hardly be enough time to obtain a representative sample of the signal for subsequent processing.

Another method of obtaining information such as rms of the fluctuating velocity, intermittency, etc from the hot wire signal, which is more suited to the microcomputer, is to first pass the hot wire signal to analogue type instruments which measure the physical quantities required and output related voltages. The output voltages can then be passed, after conditioning, to the microcomputer via an analogue to digital converter as before. To increase the accuracy of this method a large number of samples from each device can be averaged with only the mean value being stored in the computer memory. The mean value of the fluid velocity can also be obtained by this method directly from the linearised hot wire signal by sampling at frequencies which can be much lower than those suggested by
the Shannon Sampling Theory, Arnal (1977). The reason for this is the quasi-steady nature of the hot wire signal from a transitional or turbulent flow, ie the frequency and amplitude of the signal are non-uniform but the signal does have a time steady average value. Therefore, provided the sample frequency is regular and a reasonable number of values are averaged, an accurate value of mean velocity will be obtained even for low sample rates.

When using a microcomputer this method has the advantage of addressing very little RAM for the storage of data as only mean values are actually committed to memory. The sampling rate does not need to be very fast as the signal is not being digitised, therefore cheaper $A D C s$ can be used and can be accessed in a high level language such as BASIC giving the added advantage of simplifying the software.

Initial tests in a turbulent jet flow using the DISA 55M series equipment and a Cromenco Z - 2 D microcomputer fitted with two different types of analogue-to-digital converters were conducted to confirm that reliable mean values of velocity and rms of the fluctuating velocity could be obtained from the hot wire signal in a highly turbulent flow using fairly slow sample rates.

The two analogue-to-digital converters used were a 12 bit dual slope integrating converter and an 8 bit successive approximation type converter. The 12 bit 3D INLAB R-12ADS dual slope converter is an integrating type and operates by charging a capacitor for a fixed time interval then a clock and binary counter are used to count the time taken for the capacitor to
discharge. The conversion rate of this type of converter is very slow. The converter being used has a conversion rate of only 5 Hz , but an advantage of this method, due to the integrating effect of the converter, is that the influence of high noise levels on a signal are eliminated.

The successive approximation converter operates on an entirely different principle. This is a counter type converter and its main components are a counter, a comparitor and a Digital to Analogue Converter (DAC). When an analogue signal is fed into the converter the counter starts to count and passes a digital value to the DAC, starting with the most significant bit (MSB). The output from the $D A C$, is then compared to the analogue signal being measured and if the signal is greater than the output from the DAC the "1" in the MSB of the counter is retained. If the signal is lower then the "1" in the MSB of the counter is removed. This process is repeated until the DAC output compares with the analogue input signal. This type of converter has a much faster rate of conversion than the integrating type described above, typically 100 ms , but when accessing the ADC in Basic using the CROMEMCO Z - 2D micro, the maximum sample rate is only 30 Hz . The initial investigation using the apparatus shown in fig. [3.3.1] with the 8 bit successive approximation converter demonstrated that the principle of averaging mean values from analogue devices by digitally sampling and averaging their outputs could be used successfully as excellent agreement was achieved between the instrument analogue displayed value and those obtained from the microcomputer, with the $A D C$ system.

Surprisingly when using the 12 bit integrating ADC, the results obtained were poor. The values obtained by digitally sampling and averaging the signal were consistently below those read directly from a voltmeter. It was thought that this lack of agreement was due to the large conversion time required by this converter and it was concluded that this converter would be of little use when measuring rapid fluctuating signals, such as the signal from a hot wire probe in a turbulent flow.

3.4 Choice of microcomputer

As the microcomputer chosen was to be dedicated to this project, the main constraints on the choice were the cost, availability, and the fact that it was to be interfaced to the DISA 55M series hot wire equipment already available within the department. Although the Z - 2 D cromemco microcomputer, used for the initial turbulent jet study described in the previous section, is a very powerful microcomputer which has the facility to be programmed in a number of high level languages such as FORTRAN and ALGOL as well as the usual micro language BASIC, it was not considered suitable for this project mainly because it was extensively used by undergraduates. This made it essentially unavailable, but it was also rejected because of its large physical size, the fact that it was not particularly reliable and had only modest graphics.

A wide range of smaller but more suitable microcomputers, which are relatively inexpensive, are now available on the market; one such computer is the BBC Microcomputer. Because of its growing popularity in educational establishments and the fact that it has an on board 4 channel, 12-bit analogue to digital converter and an easily accessible 8-bit user port to facilitate the control
of peripheral devices, it seemed a natural choice. The BBC microcomputer also has the advantage of an extended high level BASIC with excellent file handling facilities and colour graphics. A further asset of the machine is the ease by which commercially available hardware can be added-on to the computer, as areas of memory called $F R E D$ and $J I M$, addressed within the range $\& F C O O$ to $\& F D F F$ have been specifically reserved for such additions. Communication with these add-ons is via the 1 MHz expansion bus where the term 1 MHz simply refers to the speed at which it operates.

A disadvantage of the BBC microcomputer is the limited amount of RAM. This can be overcome however, by using a
"dump-CHAIN-retrieve" routine. The BBC BASIC CHAIN command enables a program which is stored on disc to be called from a program being run in the computer memory. The procedure would be to dump relevant data from the initial program to disc, then -CHAIN an extension program which is loaded into the machine memory over the original program. This extension program can then retrieve the data and continue with the analysis.

A complete microcomputer system based on the BBC-B microcomputer with a CUMANA $40 / 80$ track switchable double disc drive, an EPSON FX-80 printer and a MICROVITEC colour monitor was purchased at a price of approximately $£ 1100$ (1983 prices) and incorporated into the wind tunnel test facility fig. [3.4.1]

Due to the unsuitability of the BBCs on board ADCs, see section (3.5), it was subsequently found necessary to extend this system by adding the BEEBEX Eurocard mini rack system fitted with the CUBAN-8 DAC card at a further cost of approximately $£ 400$. This system is described in detail in section [3.6].

3.5 Accessing Signals on the BBC micro

After the BBC microcomputer had been purchased it was discovered that the built in four channel analogue to digital converter was an integrating type converter which had been shown previously (see Section 3.3) to be unsuitable for measurements in highly turbulent or rapid fluctuating flows. However the BBC single slope integrating converter, as described by Bannister \& Whitehead (1985), operates at a rate twenty times faster than the (3D INLAB-R12ADS) dual slope integrating converter previously tested. For this reason it was decided to persevere further with the $B B C$ on board converters with the knowledge that if problems were encountered more suitable add on $A D C$ systems are available for use with the BBC microcomputer. The four ADC channels available on the BBC micro are accessed in high level BASIC by the command ADVAL (N) where N is the channel number, 1 to 4 . This returns a 16 bit value with the four least significant bits set to zero and the true 12 bit number associated with the analogue signal can be obtained by ADVAL (N) DIV16. In actual fact, because of the low reference voltage (1.8V) and the high noisie level on the ADC chip, only a 9-bit value can be obtained with any confidence (Beverley 1984). This is not a problem however, as initial tests showed 8-bit resolution to be satisfactory for measurements in turbulent flows although Beverley also showed that greater accuracy could be achieved at the expense of conversion time, if machine code averaging routines are used to reduce the standard deviation of the readings.

The speed at which conversion takes place on a single channel
is 10 ms , although this cannot be realised if more than one channel is being used as conversion has to be complete at every channel before the values of any one channel can be read, effectively giving an overall conversion time of 40 ms if all channels are being used. The reason for this is that when the ADVAL command is made the four channels are scanned in reverse order and the values at each channel are not available until the end of conversion on the last channel has been sensed using ADVAL (0). For example; consider the program below to read in 10 values from each channel.

10 FOR K = 1 TO 10
20 REPEAT UNTIL ADVAL (0) DIV256 = 1
$30 \mathrm{CH} 1 \%(\mathrm{~K})=$ ADVAL (1) DIV16
$40 \mathrm{CH} 2 \%(\mathrm{~K})=$ ADVAL (2) DIV16
$50 \mathrm{CH} 3 \%(\mathrm{~K})=$ ADVAL (3) DIV16
60 CH4\% (K) = ADVAL (4) DIV16
70 NEXT K

The REPEAT UNTIL statement ensures that conversion at channel 1, and hence all other channels since they are being scanned in reverse order, is complete before the values are available for reading. Channels can be switched off using the *FX16 command which will effectively speed up the scan rate and hence the rate at which values are available for reading. *FX16,1 will initialise channel 1 only, hence a sample rate of approximately 100 Hz ie 10 ms conversion can be achieved; *FX16,3 will initialise channel 3 but will also switch on channels 1 and 2 therefore a sample rate of approximately only 30 Hz can be achieved if three channels are being used. When accessing the ADC channels in BASIC therefore, channel 1 is the only channel which can sample at rates
close to the conversion rate of 10 ms . The rate at which additional channels can be sampled will be a 10 ms multiple of the number of channels switched on.

The ADC conversion rate can be increased further by switching the $A D C$ chip from 12 bit mode to 8 bit mode giving a conversion rate of 4 ms per channel but this is very rarely used because the inherent error present in the 12 bit reading which reduces it to having only 9 bit accuracy is equally bad in the 8 bit reading reducing it to 5 or 6 bit accuracy (Beverley 1985). By far the most serious failing of the on board ADC system, and one which is very difficult to overcome, is the fact that the machine reference voltage, specified at 1.8 v , is not constant. When the machine used for this project is powered up, the reference voltage has a value of $1.91 v$ but over a period of about four hours this reduces by about 6% to a value of approximately $1.8 v$ and still does not hold steady at this value but drifts between 1.8 v and 1.83 v . This is obviously not acceptable for precision data acquisition systems, although it can be allowed for in the software by continually feeding in the measured reference voltage. This is somewhat inconvenient and can introduce unnecessary errors.

After all these problems had been identified the author developed a distinct lack of confidence in the on board BBC-ADC system. This was justified when incorporating the on board ADC into the data acquisition system as it was found that a steady mean value of velocity could not be obtained from the hot wire signal of a steady freestream flow even when averaging 1000 values at the maximum sample rate. For this reason, and
the previously mentioned problems associated with the BBC-ADC port, a more effective data acquisition system was obtained employing a separate interface which connects directly into the microcomputer bus structure.

3.6 Accessing Signals using the BEEBEX Eurocard Extension

The interface chosen to enhance the data acquisition system was that termed BEEBEX, supplied by Control Universal of Cambridge, andisageneral purpose Eurocard extension unit for the BBC micro. When incorporated into a mini rack system this becomes an extremely versatile method of expanding the $B B C$ micro as a number of Eurocards which include analogue to digital converters, digital to analogue converters, digital i/o, heavy duty industrial opto-isolated i/o etc, become available as hardware extensions. The BEEBEX Eurocard mini rack is plugged into the 1 MHz expansion bus on the BBC micro and is controlled through a specific byte in memory reserved for the BEEBEX system. This is the last byte in the area of memory called FRED and is addressed at \&FCFF.

As initial tests had shown that 8-bit accuracy was sufficient for the purpose of this investigation, it was decided to use 8-bit resolution analogue-to-digital conversion Eurocard termed CUBAN-8 for the use with the BEEBEX system. This card was developed jointly by Control Universal and Paisley College Microelectronics Educational Development Centre, see Ferguson et al (1981) for details. The CUBAN-8 card has 16 analogue input channels, 1 analogue output channel, 16 digital i/o channels contained in two 8-bit user ports, termed PORT A and PORT B, and four control lines, all available via a 40 way socket on the edge of the card. To simplify connection to these channels an interface was built which transfers the channel from the 40 way edge socket to 4 mm
jack plug sockets. This interface is shown in fig. [3.6.2]. The CUBAN-8 ADC is a successive approximation type, shown previously to be suitable for measurements in a turbulent flow, with an accuracy of $\pm \frac{1}{2}$ bit and, when using BBC BASIC to access the $A D C$, has a sample rate of 500 Hz . (The conversion rate of the $A D C$ is specified as $10,000 \mathrm{~Hz}$ but this cannot be realised when sampling in BASIC. To achieve sample rates close to the specified conversion rate machine code programs would have to be used).

The easiest method of accessing the CUBAN-8 card, with BBC software for reading data from a particular bit on an output port is to utilise a sideways ROM fitted into one of the spare sockets under the Keyboard of the BBC micro. Such a control ROM is supplied by Control Universal and is enabled in the software by the command *IO. When the *IO is initialised, other sideways utility ROMS, if fitted, such as the Disk Operating System are disenabled. Therefore, to use the SAVE, LOAD and CHAIN commands the Disk Operating System must be reinitialised using *DISK. The concept of *IO is that any area of memory outside the BBC micro is treated in the same way as a disc file using OPENUP, PTR\# (position pointer), BGET\# (Get Byte), BPUT\#
(Put Byte). When the PAGE and BLOCK switches (see fig. [3.6.2]
for location of the PAGE \& BLOCK switches on the CUBAN-8 Card)
are set to \emptyset and C then the card is accessed by A\% = OPENUP"CU-DAC8 \&CØØø"
(the of symbol indicates integer values)

Consider the program overleaf to read in 10 values from channel 1, then 10 values from channel 5.

3.7 Control of the hot wire probe position

The hot wire probe is positioned via a traverse mechanism and stepper motor connected to a DISA (52B01) Sweep Drive Unit (SDU) which is capable of being stopped during a sweep by closing an external switch. The CUBAN-8 card is fitted with a 6522 VIA which contains the 16 i/o digital channels in the form of two 8-bit user ports termed PORT A and PORT B and computer control of the SDU is achieved via the LSB of PORT B. When the LSB is set high a reed relay is energised and the switch closes to stop the SDU. The opposite occurs when the LSB is set low. Details of the reed relay interface are given in fig. [3.7.1].

Initially, the direction in which information is to travel over the bi-directional port has to be set up and this is done via the port Data Direction Register (DDR). Setting all the bits of the DDR to 1 (or High) causes all the bits of the user port to behave as outputs, and setting all bits of the DDR to \emptyset (or Low) causes all the bits of the user port to behave as inputs. A combination of inputs and outputs can be obtained by setting the relevant bits of the DDR to either 1 or \emptyset.

For this application the LSB of Port B has to be set to output and this is done by placing a 1 in the LSB of the DDR. In acutal fact all the bits of the user port were set to output by placing a 1 in every bit of the $D D R$, ie passing the value 255 to the DDR, but the status of the higher 7 bits of Port B is irrelevant as they are not used.

As before if the PAGE and BLOCK switches are set to \varnothing and C then PORT B of the CUBAN 8 card is addressed as "BUS \&C000"
and the corresponding DDR is addressed as
"BUS \&COO2"

A program to set all bits of PORT B as output, and output a logic '1' on the LSB is as follows:

1Ø*IO - enable control ROM
2øCLOSE\# \varnothing - precuationary: close all files
$3 \emptyset \mathrm{ddr} \%=O P E N U P=B U S \& C O \emptyset \emptyset 2 "$ - access DDR

4ØBPUT\#ddr\%,225 - set all bits of user port to output
5ØCLOSE\#ddr\% - close DDR
6ØРb\%=OPENUP"BUS\&CØØø" - access port B
7ØBPUT\#Pb\%,1 - output logic 1 or high level on LSB Port B

3.8 Conditioning of signals to suit the BEEBEX system

The fundamental measurements to be made in the present work are those of mean velocity, rms of the fluctuating velocity, intermittency and position normal to the plate surface. These measurements are obtained by sampling the analogue signal outputs from the relevant DISA hot wire instrumentation and passing them to the $B B C$ micro via the CUBAN-8 $A D C$. To ensure the full range of the $A D C$ is used, ie the full 255 bits for a maximum input of 2.5 v , and also that the $A D C$ is not overloaded, the maximum reading expected from each instrument must be conditioned to approximately $2.5 v$. This is done by passing the analogue outputs from the DISA instrumentation to a FYLDE modular instrumentation rack containing Op, Amps having $x 0.1$ and $x 1$ switched gains with a $x 10$ variable control and digital display monitor. mean velocity:- The mean velocity is obtained by sampling and averaging the linearised hot wire signal which has been passed through a 2 kHz L.P. filter to eliminate electrical noise.

It is worth noting at this stage the reason why the hot wire signal is linearised directly using the DISA (55M25) analogue lineariser instead of linearising the probes within the computer software. It is known that the calibration of a hot wire probe adheres to Kings Law, equation 3.1:
$e^{2}=\varrho_{0}+B u^{\frac{1}{2}} \quad 3.1$
where ρ is the voltage from the hot wire anemometer
Qo and B are constants

Therefore, it would have been a fairly simple task to linearise the probes within the software by a least square fit of Kings law to a set of calibration points in order to obtain
the constants ρ_{0} and B. With the constants known this law can then be used to convert averaged values of voltage, obtained directly from sampling the non-linearised hot wire signal, to values of mean velocity.

However, in transitional boundary layer flows this presents problems which arise from the fact that the voltage readings from the hot wire signal are averaged before they are linearised. Dhawan and Narasimha (1957) pointed out that in a transitional flow the mean velocity obtained from averaging instrumentation is not the same as the true mean velocity. This is because the transitional mean velocity is a composite consisting of an intermittency weighted proportion of the laminar and turbulent velocity components, ie

$$
\bar{u}_{t}=(1-\gamma) \bar{u}_{L}+\gamma \bar{u}_{T} \ldots \ldots \ldots \ldots
$$

In the case of a pitot tube, which is an averaging instrument, where the reading is proportional to the pressure, ie u^{2} then

$$
\bar{u}_{p_{t}}=\left\{(1-\gamma) \bar{u}_{L}{ }^{2}+\gamma \bar{u}_{r}{ }^{2}\right\}^{\frac{1}{2}} \ldots \ldots \ldots \ldots 3.3
$$

which is not the same as the true mean velocity given in 3.2 . The same difficulty is extended to measurements using a nonlinearised hot wire probe where the reading from the hot wire anemometer is basically proportional to $u^{1 / 4}$. This difficulty is overcome if the signal from the hot wire is linearised directly by passing it through the DISA 55M25 lineariser thereby obtaining a voltage reading which is directly proportional to the fluid velocity, enabling the signal to be sampled and averaged to give a true mean velocity.

The signal from the hot wire was linearised such that the voltage output from the DISA 55M25 lineariser was equivalent to $1 / 10$ th of the fluid velocity. The maximum velocity expected in
the planned experiments was approximately $20 \mathrm{~m} / \mathrm{s}$ which would correspond to an output of 2 v from the lineariser, therefore to use the full range of the $A D C$ the output from the lineariser was passed through an amplifier, on the FYLDE instrumentation rack, set at a value of $\times 1.25$. A digital value of 255 as read by the computer will now correspond to a fluid velocity of $20 \mathrm{~m} / \mathrm{s}$ and to convert this digital value back to a velocity for use with the computer software for subsequent processing or display a calibration constant is required which is calculated from
 in this case
$\begin{aligned} & \text { calibration } \\ & \text { constant }\end{aligned}=\frac{20}{255}=0.07843^{\circ}(\mathrm{m} / \mathrm{s}) / \mathrm{bit}$ rms of velocity fluctuation - The rms of the velocity fluctuation is obtained by passing the linearised hot wire signal through the DISA 55D35 RMS voltmeter which has a twelve position rotary switch to select a number of measurement ranges varying from \emptyset to 1 mv to \emptyset to 300 v fsd and has an analogue output of 1 v for fsd which is linearly related to these ranges. The analogue output value can increase to a value of 1.2 v if the scale is overloaded, ie the incorrect range is selected, and for this reason the specified output voltage of $1 v$ for fsd is not conditioned to 2.5 v , to utilise the full range of the ADC, but only conditioned to $2 v$ to prevent an overload condition damaging the ADC.

The signal is conditioned, as before, by passing it through an amplifier on the FYLDE instrument rack set to a value of $x 2$ giving a digital value of 204 for fsd of the rms meter. The calibration constant is calculated depending on the range selected.

$$
\underset{\times 10}{\text { rms range }}=\begin{gathered}
\text { calibration } \\
\text { constant }
\end{gathered} \times 204 \ldots \ldots \ldots .3 .5
$$

(the factor of 10 multiple of the rms range is to convert the rms voltage to an rms velocity since the voltage is linearised to correspond to $1 / 10$ th of velocity).

Intermittency - Intermittency was measured using the apparatus shown in fig. [2.8.1] and described in section 2.8. Unfortunately the averaging DVM used for visual display of the intermittency function does not have an analogue output therefore the signal from the DISA 52B10 comparitor, which outputs discrete 5 v square pulses, was passed to a true integrator DISA 52B30 set on a low integration time (0.5s). The signal from the true integrator outputs a maximum value of $5 v$ for $\gamma=1$ therefore the signal from this was conditioned, by passing it through a $x 0.5 \mathrm{v}$ amplifier, to give a maximum output of $2.5 v$ utilising the full range of the ADC and preventing overload. A digital value of 255 as read by the computer will correspond to an intermittency of 100% or $\gamma=1$ and the calibration constant can be calculated as shown previously.

Vertical Positioning of the hot wire probe - The position of the probe above the plate is determined from the output voltage of the DISA 55D35 Sweep Drive Unit which is basically a variable D.C. ramp generator, the output of which is made proportional to the linear displacement of hot wire probe via a stepper motor and traverse mechanism, fig. [2.1.2]. Calibration of the sweep drive unit, fig. [3.8.1] gives a linear relationship between the voltage and the displacement.

$$
y=y_{0}+K\left(v-v_{0}\right) \quad \ldots \ldots . . .
$$

where y is the vertical displacement, in $m m$, corresponding to V,
the displacement voltage and the suffix "o" denotes the datum values. From the calibration on fig. [3.8.1] the value of $K=10.52 \mathrm{~mm} /$ volt and as the maximum traverse of the probe in the wind tunnel working section is limited by geometry to approximately 50 mm , the position signal was passed through a x0.5 amplifier giving a maximum displacement of 52.5 mm corresponding to a digital value of 255 as read by the computer. The calibration constants for reconversion of the digital value to position can be calculated from this as before.

A schematic layout of the complete Data acquisition and control apparatus is shown in fig. [3.8.2].

3.9 Development of Data Acquisition and Control Software

This section details the development of the software for the basic data-acquisition and control system used for the measurement of the mean velocity profiles as well as two data acquisition programs for the measurement of the intermittency and freestream turbulence distributions along the plate. Data acquisition and control code for measurement of mean velocity profiles - The object was, for a particular location on the plate surface and mainstream velocity, to measure the flow variables mean velocity, rms of the fluctuating velocity and intermittency at specified step increments through the boundary layer, measured relative to a datum, until the freestream velocity was reached. The probe datum position was set manually using a scaled block placed behind the probe and viewing the probe and block through a cathetometer from outside the tunnel working section. The software was developed to automatically control the experiment from this datum point until a complete boundary layer traverse
had taken place.
Firstly the output voltage from the DISA Sweep Drive Unit was read, via the $A D C$, to determine the digital value corresponding to the probe datum and all other probe positions were calculated relative to this. A number of readings of mean velocity, rms of velacity fluctuation and intermittency were then accessed by the computer, via the $A D C$, from the relevant instruments before their averages were stored in specified arrays and the probe was moved to the next position. The probe movement was controlled, as described in more detail in section 3.7 , by outputting a control signal via the LSB of user port B on the CUBAN-8 6522 VIA. Setting this bit low switches on the sweep drive unit while setting it high switches off the sweep drive unit. Therefore, once all the values have been stored, the LSB of port B is set low thus moving the probe. While the probe is moving the output voltage from the sweep drive unit is monitored by the microcomputer until the output exceeds the value of the datum plus the specified step increment and at this point the LSB of port B is set high and the probe traverse is stopped. The BASIC code for this is:-

- LSB of Port B Set Low
$2 \emptyset$ REPEAT UNTIL BGET\# $\varnothing>$ (Datum+Step Inc) - read in value from channel \emptyset until > (LIMIT)
$3 \emptyset$ BPUT\#Pb, 1
- LSB of Port B Set High

The actual position in which the probe stopped is then determined by reading in and averaging a number of values of output voltage from the sweep drive unit. The flow variables are then read in again and, once averaged values of each variable have been stored, the probe is moved to the next position. This continues until the freestream velocity is reached, sensed by three consecutive values of mean
velocity being within $\pm 0.5 \%$ of each other, and the probe traverse is stopped. The freestream velocity is then determined by averaging the mean velocities at the last three positions and the boundary layer thickness is estimated, as the y value corresponding to 99.5% of the freestream velocity, by a linear interpolation routine. Data such as ambient pressure and temperature, distance of the probe from the plate leading edge and spanwise probe position are fed in interactively at the start of the program. This data along with values of the freestream velocity, the boundary layer thickness and values of $\mathrm{Y} / \delta,{ }^{\mathrm{u}} / \mathrm{U}_{\infty}, \mathrm{Y}$, and rms velocity obtained for each step increment are printed out and then dumped to a disc file. A typical printout of this data is shown in fig. [3.9.1]. A graphics program is then 'CHAINed' which retrieves the data from the disc file and displays the mean velocity data on axes of ${ }^{\mathrm{y}} / \mathrm{J}_{\delta}$ against ${ }^{\mathrm{u}} / \mathrm{U}_{\infty}$ along with the Blasius and $1 / 7$ th Power Law profiles for comparison purposes, as illustrated in fig. [3.9.2].

Because of the contrasting shape of the velocity profiles in laminar and turbulent boundary layer flows the program provides the facility to choose the step increments for the upper and lower regions of the boundary layer. These step increments are fed in interactively at the start of the program.

To increase the accuracy at the flow variables 100 values of position, 5000 values of mean velocity (corresponding to a 10s sample time), 1000 values of rms velocity and 1000 values of the intermittency factor were averaged before storing the mean values for one particular point. This takes in excess of 15 seconds
and for a typical boundary layer, with say 20 step increments, a complete traverse would take approximately 5 minutes.

A flow diagram of this program is shown in fig.[3.9.3] and a printout is included in Appendix 5 Data acquistion Codes for streamwise freestream turbulence and intermittency distributions - Two data acquisition and operator interactive programs, which do not involve any element of control, were developed to give large sample times for obtaining accurate values of freestream turbulence and intermittency. The intermittency program prompts the operator to position the probe close to the place surface and input the streamwise position of the probe then press RETURN for the values to be read in from the intermittency instrumentation. (10,000 values are read in and averaged giving a mean value of intermittency over a period of approximately 20 seconds). Once the values have been read in and the average value stored in an appropriate array the program prompts the operator to move the probe to the next measurement station and press RETURN again, to read in the values. This continues until the operator is satisfied the run is complete and then presses the 'C' key for this data to be dumped to disc. The data is stored on disc in the form of x and γ values and can be retrieved at any time for subsequent processing.

The freestream turbulence distribution program operates in a similar manner but for this case the probe is placed in the freestream and the rms of the velocity fluctuation and the mean velocity are read in and the freestream turbulence is calculated from
$T_{u}=\frac{\sqrt{\bar{u} \cdot 2}}{U_{\infty}} \times 100$
A printout of both these programs is given in Appendix 5

Fig. 3.3.1 Schematic layout of turbulent jet flow test

Fig. 3.4.1 Photograph of tunnel working section with BBC System below

Fig. 3.6.2 CUBAN-8/4mm socket interface

Fig. 3.6.1 Schematic layout of CUBAN-8 card showing position of PAGE and BLOCK

Fig. 3.7.1 stepper motor on/off interface

Fig. 3.8.1. Calibration of DISA 52B01 sweep Drive Unit

Fig. 3.8.2 Schematic Layout of Data Acquisition and Control System

$\begin{gathered} \text { Velocity } \\ \mathrm{m} / \mathrm{s} \end{gathered}$	$\begin{gathered} \text { Y-Fos. } \\ \mathrm{mm} \end{gathered}$	Intermittency γ	$\begin{gathered} \text { FiMS-Vel. } \\ \mathrm{m} / \mathrm{s} \end{gathered}$
10.588	0.5	0.98	1.4
12.54	1.34	0.93	1.13
15.227	1.89	0.98	1.1
13.923	2.72	0.98	1.07
14.409	3. 36	0.97	1.05
14.81	E.96	0.97	1.01
15.289	4.82	0.97	0.97
15.564	5.32	0.96	0.96
16.075	6.22	0.94	0.91
16.592	6.87	0.92	0.83
16.555	7.51	0.9	0.85
16.897	8.23	0.85	0.81
17.178	8.92	0.76	0.75
17.679	10.4	0.52	0.63
18.142	11.88	0.29	0.54
13.465	13.47	0.1	0.43
18.426	14.95	3E-2	0.29
18.568	16.57	\square	0.26
18.607	18.04	0	0.21
18.601	19.48	0	0.17

n	$y(m m)$	Vel. m/s	u/uinf	y/d	RMS	Gama
1	0.5	10.588	0.569	$3.8 E-2$	1.4	0.98
2	1.34	12.54	0.674	0.102	1.18	0.98
3	1.89	15.227	0.711	0.143	1.1	0.98
4	2.72	15.923	0.749	0.206	1.07	0.98
5	3.36	14.409	0.775	0.255	1.03	0.97
6	3.96	14.81	0.797	0.3	1.01	0.97
7	4.82	15.289	0.822	0.366	0.97	0.97
8	5.32	15.564	0.857	0.404	0.96	0.96
9	6.22	16.075	0.865	0.472	0.91	0.94
10	6.87	16.392	0.882	0.521	0.88	0.92
11	7.51	16.555	0.89	0.57	0.85	0.9
12	8.23	16.897	0.909	0.624	0.81	0.85
15	8.92	17.178	0.924	0.677	0.75	0.76
14	10.4	17.679	0.951	0.789	0.63	0.52
15	11.88	18.142	0.976	0.901	0.54	0.29
16	13.47	18.465	0.993	1.022	0.43	0.1
17	14.95	18.426	0.991	1.134	0.29	$5 E-2$
18	16.57	19.568	0.999	1.257	0.26	0
19	18.04	18.607	1.001	1.369	0.21	0
20	19.48	18.601	1	1.478	0.19	0

EYEFALL AVE OF INTEFMITTENCY GT $y / d=0.2=0$

AVE. OF INTERMITTENCY VALUES EELOW $(y / d=0.2)=0.98$

Fig. 3.9.1 Printout from Data Acquisition \& Control Prog.

Fig. 3.9.2 Dump from Y_{i} бvs $^{u} i_{U_{\infty}}$ graphics program

Fig. 3.9.3 Flow Diagram of Data Acquisition and Control Program

Data Reduction and Theoretical Considerations

4.1 Introduction

In this chapter, the methods used for reducing the mean velocity profile data for the laminar, turbulent and transitional boundary layers are presented along with some estimation of the errors involved. The technique used for determining the start and end of the transition region is discussed and compared to methods used by other researchers. Also, the early development of the turbulent boundary layer, associated with transitional boundary layers, is considered with reference to low Reynolds number effects. Finally, the two dimensionality of the boundary layer flows are examined and the momentum balance technique for testing two dimensionality is described.

4.2 Reduction of Laminar Mean Velocity Profiles

The Pohlhausen (1921) solution for the laminar boundary layer, in arbitrary pressure gradients, is based on the assumption that the laminar boundary layer velocity profile can be represented by a fourth order polynomial of the form.

$$
\bar{u}_{U_{\infty}}=A\left(y_{\delta}\right)+B\left(y /{ }_{\delta}\right)^{2}+C\left(y /{ }_{\delta}\right)^{3}+D\left(y /{ }_{\delta}\right)^{4}
$$

A least Squares technique was used to fit a polynomial through the data points of u / U_{∞} against Y_{δ} and with the constants known the boundary layer integral parameters $\delta *, \theta$ and $\delta * *$ were easily obtained by direct integration of the respective functions. The shape factors H_{12} and H_{32} immediately follow from the integral parameters. (In actual fact it was found that a third order
polynomial was sufficient to fit the data. Therefore, this was used in preference to a fourth order polynomial as it simplified the software). To determine the wall shear stress from the profile data available, use was made of the fact that in the laminar layer the shear stress is directly proportional to the rate of strain.
ie $\quad \tau_{0}=\mu \frac{\partial \bar{u}}{\partial y}$
and in the region $0<\overline{\mathrm{u}} / \mathrm{U}_{\infty} \leqq 0.45$ the slope $\overline{\mathrm{d}} / \mathrm{dy}$ is approximately linear. The shear stresses was determined therefore, by averaging the slope of all the data points in this region. The thickness of the boundary layer was defined as the y value corresponding to $\overline{\mathrm{u}}=0.995 \mathrm{U}_{\infty}$ and was determined via a linear interpolation routine. A typical printout from this analysis is shown in fig. [4.2.1] and a fit of the third order polynomial to a set of data is shown in fig. [4.2.2]. A printout of the program used for this analysis is given in appendix 5.

4.3 Reduction of turbulent mean velocity profiles

The analysis of Coles (1968), as applied to the data presented at the Standford Conference, Coles \& Hirst (1968), was used for the reduction of the turbulent mean velocity profiles measured. A brief description of this analysis is given below. It is generally accepted that the turbulent boundary layer consists of an inner and outer region. In the inner region, which contains but extends far beyond the laminar sublayer, viscous and turbulent stresses are important, while in the outer region the turbulent stresses dominate. A schematic representation of the turbulent boundary layer is shown in fig. [4.3.1].

Fig. 4.3.1 Schematic representation of a turbulent boundary layer

In the viscous sublayer, which accounts for approximately 1\% of the total shear layer thickness, viscous forces dominate and the mean velocity profile can be approximated by:

$$
\overline{\mathrm{u}} /_{u_{\tau}}=\frac{\mathrm{yu} \tau}{v}
$$

or
$\mathrm{u}^{+}=\mathrm{y}^{+}$
Outside this viscous sublayer the analysis of Coles assumes that the turbulent boundary layer can be modelled by two separate wall and wake functions. This is shown schematically below
in fig. [4.3.2].

Fig. 4.3.2 Schematic representation of wall and wake components taken from Coles (1968)

The wall function can be obtained from Prandtl's mixing length concept assuming that the mixing length ℓ is proportional to y close to the wall (ie $\ell=k y$) and that the wall shear stress $\tau_{0}=\rho \ell \cdot\left(\frac{\partial u}{\partial y}\right)^{2}$ remains constant.
-. $\quad \tau_{0}=\rho k^{2} y^{2}\left(\frac{\partial \bar{u}}{\partial y}\right)^{2}$

$$
\frac{\partial \bar{u}}{\partial y}=\frac{u_{\tau}}{k y}
$$

which integrates to give

$$
\overline{\mathrm{u}}=\frac{\mathrm{u}_{\mathrm{t}}}{\mathrm{k}} \ln (\mathrm{y})+\text { constant }
$$

or in non-dimensional form

$$
\frac{\bar{u}}{u_{\tau}}=\frac{1}{k} \ln \frac{y u_{\tau}}{v}+c
$$

Equation 4.5 can also be derived from dimensional analysis arguments. Cebeci \& Bradshaw (1977) \& Bradshaw (1972).

The constants k and C are wholly empirical and their values will be discussed later in section 4.5 .

The wake function was obtained by relating the outer mean velocity profile to the inner profile and defining the function such that it represented the deviation from the law of the wall (ie equation 4.7).

The form of the wake function obtained by Coles (1956)
was

$$
W=2 \sin ^{2}(\pi / 2 \cdot Y / \delta)
$$

Therefore the composite turbulent boundary layer outside
 $\bar{u}_{u_{\tau}}=1 / k \quad \ln \left[y \frac{u_{\tau}}{\nu}\right]+c+2 \pi /{ }_{k} \sin ^{2}\left(\pi / 2 \cdot y_{\delta}^{\nu}\right) \quad \ldots . .4 .9$
where $I I$ is a wake parameter related to the strength of the wake function. The strength of the wake function $\Delta \bar{u} / u_{\tau}$ was defined by Coles as the maximum deviation of the velocity profile from that obtained by equation 4.7 at the edge of the boundary layer (ie at $y=\delta$) and can be calculated from: $\Delta\left(\frac{\bar{u}}{\bar{u}_{\tau}}\right)=\left(\frac{\overline{\mathrm{u}}}{\mathrm{u}_{\tau}}\right)-\frac{1}{\mathrm{k}} \ln \left[\mathrm{y}^{+}\right]+\mathrm{C}=\frac{2 \Pi}{\mathrm{k}}$

The analysis of Coles assumes that the law of the wall is universally valid in the region $100 \leqq y+\leqq 300$ irrespective of the freestream turbulence or any external pressure gradient acting on the boundary layer. (In strong adverse pressure gradient ie flows close to separation the law of the wall breaks down and the above will not apply). Therefore, equation 4.7 was iterated to obtain an optimum value of u_{τ} for each data point within the specified region and the averaged value obtained was taken as representative of the particular velocity profile being analysed. The fitting region used by Coles was altered to $y+>30$ and $Y_{\delta}<0.2$, on the suggestion of Murlis et al (1982), to account for the low Reynolds number flows associated with the present work. The boundary layer thickness, δ, was then determined from the data by the linear interpolation routine used previously for the laminar profile analysis. With these two values known, ie u_{τ} and δ the value of Π can be obtained from equation 4.9. Coles used a set of standard integrals for
the integral parameters within the viscous sub-layer ie

```
from y = 0 to y+ = 50. These were
```

$$
\begin{equation*}
\int_{0}^{50}\left[\frac{\bar{u}}{u_{\tau}}\right] d\left[\frac{y u_{\tau}}{v}\right]= \tag{540}
\end{equation*}
$$

$\int_{0}^{50}\left[\frac{\bar{u}}{u_{\tau}}\right]^{2} d\left[\frac{y u_{\tau}}{v}\right]=6546$
$\int_{0}^{50}\left[\frac{\bar{u}}{u_{\tau}}\right] d\left[\frac{y_{\tau}}{v}\right]=82770$

Equation 4.9 is then assumed to continue the integration from $y^{+}=50$ to some point in the log-law region. This point was taken to be the third data point ie $y+(3)$ in the analysis. In some cases the value of $\mathrm{Y}+(3)$ was actually less than 50 and for these cases the first data points are automatically deleted and the data renumbered. Integration from the third data point to the freestream was carried out by a parabolic fitting routine using a modified Simpson's rule. A parabola was fitted through three adjacent points, and the integrals from the first to second and from the second to third points are computed. The central point is then moved one point outward and the process repeated. The two values for each interval are then averaged providing an element of smoothing for the integrals. The integrals of
 in this manner are appropriately combined to obtain the required integral thicknesses.

The wall shear stress, τ_{0} was calculated from the value of u_{τ} obtained from the profile analysis, ie from velocity profile measurements in the logarithmic region.

$$
\tau_{0}=\rho u_{\tau}^{2}
$$

and the skin friction coefficient follows from

$$
C f=\frac{2 \tau_{0}}{P U_{\infty}^{2}}=2\left(\frac{u_{\tau}}{U_{\infty}}\right)^{2}
$$

The justification for using the log-law region for calculation of u_{τ} is that the log-law is extraordinarily insensitive to the variation of freestream turbulence and pressure gradient effects. Evidence for its applicability is provided by the quality of the fit of the present profiles, and of the vast amount of data presented at the standard conference, to the universal logarithmic law.

The value of Cf can also be obtained by substitution of the shape faction, H_{12} and momentum thickness, θ from the profile analysis into any one of a number of correlations of the form

$$
C f=f\left(R_{\theta}, H_{12}\right)
$$

Two such correlations are those of Ludwieg \& Tillman

$$
C f=0.246 \mathrm{R}_{\theta}^{-0.268} \quad \exp \left(-1.561 \mathrm{H}_{12}\right) \quad \ldots . .4 .13
$$

and a curve fit due to White for the skin friction relation derived from the wake integrations of Coles formula - equation 4.9.

$$
C f=\frac{0.3 . \exp \left(-1.33 \mathrm{H}_{12}\right)}{\left(\log _{10} R_{\theta}\right)\left(1.74+0.31 \mathrm{H}_{12}\right)}
$$

Preston tube measurements were also made, for a limited number of profiles, mainly for comparison with the values obtained by the methods mentioned above.

Taking the log-law values obtained from the velocity profiles as a reference, the deviation of the skin friction as measured by the other methods are

	(zero pressure gradient)		(Adv press gradient)
	$\mathrm{Tu}=0.5 \%$	$T u=1.5 \%$	Tu=1.5\%
Ludwieg/Tillman	-2.2\%	-0.6\%	+1.0\%
White-Coles	-5.8\%	-4.0\%	-3.25\%
Preston tubes	-3.4\%	-1.15\%	-5.24\%

A computer printout from the velocity profile analysis is given in fig. [4.3.3] and the universal turbulent boundary layer velocity profile is shown for a typical set of data along with the composite profile, defined by equation 4.9, in fig. [4.3.4]. A printout of the program used for the analysis is included in appendix 5

4.4 Estimation of errors in boundary layer integral thicknesses

When linearising the signal from a hotwire probe using the DISA 55M25 lineariser there is an inherent parabolic error, usually with a maximum close to the centre of the linearised region and tailing off to zero at the maximum and minimum velocities, as shown in fig. [4.4.1].

Fig. 4.4.1 Lineariser error

This is only a very small error, usually of the order $+1 \%$, and as can be seen from an actual probe calibration, fig. [2.6.3], it is barely detectable. However, the error analysis in Appendix 1 shows that for a maximum error, em, of $+1 \%$ the corresponding error in displacement and momentum thickness are -2.52% and -2.24% respectively for a $1 / 7$ th power law turbulent velocity profile and -0.93% and -0.78% respectively for a parabolic laminar type velocity profile. Possible error introduced into the boundary layer thicknesses which can be associated with the curve fitting and integration techniques, described in the previous two sections, are very difficult to define. For the laminar analysis, since the polynomial is integrated directly, all the likely error can be attributed to the fit of the polynomial to the data. As in most cases the polynomial fits the data very well, the errors are assumed to be minimal. For the turbulent boundary layer the analysis is the same as that used at the Stanford Conference. This is a well tested method and is considered to be as good, if
not better than any other methods available. Fraser (1979)
compared integral thicknesses obtained by the Stanford Conference method with those obtained by planimeter measurements and found agreement to be within 0.7%.

4.5 Approach to equilibrium and low Reynolds number effects

The present investigation, although mainly concerned with the development of the transitional boundary layer, is also related to the early development of the turbulent boundary layer and the low Reynolds number effects associated with this early development. In order to explain the low Reynolds number effect, reference is made to the approach of a constant pressure turbulent boundary layer towards equilibrium conditions. Initially though, it is necessary to define an equilibrium turbulent boundary layer.

Bradshaw (1972) described a turbulent boundary layer as being in equilibrium if the generation of Reynolds stresses by interaction with the mean flow and existing Reynolds stresses is equal to the destruction of the Reynolds stresses by viscous forces. In contrast, self preserving boundary layers (often misleadingly called equilibrium layers) are defined by Townsend (1965) as those in which distributions of the flow quantities, ie Reynolds stresses, mean velocity etc have the same form at all distances from the flow origin differing only in common scales of velocity and length. The importance of self preserving flows is that rates of change of velocity and length scales can be predicted with no more specific assumption about the nature of turbulent motion than that the large scale motion is independent of fluid viscosity.

Clauser (1954) found that constant pressure turbulent

 boundary layers possessed a set of similar profiles when expressed in terms of the velocity defect. ie$$
\frac{\mathrm{U}_{\infty}-\mathrm{u}}{\dot{u}_{\tau}}=\mathrm{f}\left(\mathrm{Y} /{ }_{\delta}, \Pi\right)
$$

(This can be obtained from equation 4.9 by setting $\bar{u}=U_{\infty}$ at $y=\delta$ and subtracting the resultant equation from 4.9). He also reasoned that since such a set of profiles existed then the turbulent boundary layer in a constant pressure flow was indeed in equilibrium, (equilbrium layers in the Clauser sense are actually self preserving layers). Clauser went on to show, with some considerable experimental effort, that a turbulent boundary layer with variable pressure gradient but constant history, expressed in terms of the pressure gradient parameter, $\beta=\frac{\delta^{\star}}{\tau_{0}} \cdot \frac{d u}{d x}$, also possessed such a set of similarity profiles. From this he concluded that such layers were also in turbulent equilibrium since the gross properties of the boundary layer could be expressed in terms of a single parameter: eg

$$
\frac{\mathrm{U}_{\infty}-\overline{\mathrm{u}}}{\mathrm{u}_{\tau}} \equiv \mathrm{f}\left(\mathrm{y}_{\delta}, \beta\right)
$$

From equations 4.15 and 4.16 it can be seen that Π and B must be related and that Π and β must be constant in an equilibrium boundary layer. Coles (1962) found $\Pi \cong 0.55$ for a constant pressure boundary layer at Reynolds numbers, based on the momentum thickness, above 5000, but at Reynolds numbers below this the velocity defect factor $\Delta{ }^{\bar{u}} /_{u_{\tau}}=2 /{ }_{k} \Pi$ was Reynolds number dependent.

Coles expressed this dependency through the wake function Π which has been conveniently curve fitted by Cebeci \& Smith (1974) as:-

$$
\begin{aligned}
& \Pi=0.55\left[1-\exp \left(-0.243 z^{0.5}-0.298 z\right)\right] \quad \ldots .44 .17 \\
& \text { where } z=\left({ }^{R} \theta / 425-1\right)
\end{aligned}
$$

Simpson (1970) on the other hand correlated the velocity data in the outer similarity law by varying the Von Karman constant, k, and the additive constant in the law of the wall. From this he suggested that the Von Karman constant was Reynolds number dependant and should be replaced by the term Ω

$$
\Omega=0.4\left(\mathrm{R}_{\theta / 6000}\right)^{-1 / 8}
$$

for $R_{\theta}<6000$.
In order to settle the controversy, Huffman and Bradshaw (1972) after critically reviewing the available literature and examining the low Reynolds number effect, reached the conclusion that k was in fact constant, (equal to 0.41) and that the additive constant could be considered mildly Reynolds No. dependant. The Reynolds number effect was attributed to the affect of the turbulentirrotational interface on the outer law of the wall and was substantiated by the fact that no such effects were present in duct flows which do not have such an interface. This in effect vindicates the observations of Coles (1962).

Since Huffman \& Bradshaw concede that the additive constant, C, can vary and does in fact increase for R_{θ} values below approximately 1000 , the value of 5.2 , as suggested by Murlis (1975) and used by other researchers since then eg Castro (1984),

Fraser (1980), was adopted for C. This value was used in preference to the usual value of 5.0 , as the present investigation is associated with the early development of the turbulent boundary layer and consequently R_{θ} values less than 1000 are fully expected.

Although the above low Reynolds number effect has been described for the special case of a constant pressure turbulent boundary layer, which is approaching equilibrium, all turbulent boundary layer flows with R_{θ} values less than approximately 5000 will be subject to this effect.

4.6 Transitional mean velocity profiles

The transitional boundary layer is characterised by regions of laminar and turbulent flow with the mean velocity at any height in the boundary layer defined by a near wall intermittency weighted average of the laminar and turbulent velocity contributions ie

$$
\bar{u}_{t}=(1-\bar{\gamma}) \bar{u}_{L}+\bar{\gamma} \bar{u}_{T}
$$

Dhawan \& Narasimha (1957) noted that although γ varies across the boundary layer, for the purposes of the profile calculation, the value of γ measured close to the wall, $Y / \delta<0.2$, gives sufficiently accurate results for the whole profile. The intermittency distribution through the boundary layer, characterised by the variation $\gamma(y)$, has only a secondary influence on the transition flow, $\vec{\gamma}(x)$ being the significant property. Since the transitional boundary layer is a composite consisting of laminar and turbulent velocity components, neither of the two analyses described in sections 4.2 and 4.3 are strictly applicable. However, since they are both purely numerical techniques, with a polynomial being fitted to the data in the
laminar analysis and a curve fitting and integration technique used for the bulk of the data in the turbulent analysis, true transition integral thicknesses can be representatively obtained. To enable the decision as to which analysis should be used a computer program was developed to display the measured data graphically, in ordinates Y / δ vs \bar{u} / U_{∞}, along with the third order polynomial fit to the data, on the R.G.B. monitor. If the polynomial was a good fit to the data, usually the case for values of $\bar{\gamma}<0.5$ where the boundary layer is dominantly laminar, the laminar analysis is used, otherwise the turbulent analysis is selected.

The skin friction coefficients calculated from these analyses, in the transitional boundary layer, will not give representative transitional values. The laminar analysis assumes equation 4.2 to be valid and does not account for the substantially larger contribution from the turbulent regime to the overall skin friction in the transitional boundary layer, hence the skin friction will be underestimated. Similarly in the turbulent boundary layer the skin friction coefficient will be overestimated.

In attempt to give a better account of the transitional local skin friction coefficients Fraser (1980) developed an empirical relation in the form
$C f_{t}=f\left(R_{\theta}, H_{12}, \bar{\gamma}\right)$

This relationship was devised from the observations of Emmons (1951) that the skin friction coefficient could be represented by

$$
C f_{t}=(1-\bar{\gamma}) C f_{L}+\bar{\gamma} C f_{T} \quad \ldots \ldots 4.20
$$

The laminar skin friction component was obtained from the Thwaites (1949) solution and the turbulent component was derived by equating the turbulent velocity profile described by a power law, with the exponent n free, to the log-law relation given by 4.7 which was assumed to be universally valid at $\mathrm{y}^{+}=100$.

This gives after some algebraic manipulation:

$$
\left.C f_{t}=\frac{2 \ell_{1}\left(\lambda_{\theta}\right)}{R_{\theta L}}(\bar{\gamma}-1)+2 \bar{\gamma}\left[\frac{R_{\theta T} K^{\frac{2}{\left(\mathrm{H}_{\mathrm{T}}-1\right)}}}{100} \times \frac{\mathrm{H}_{\mathrm{T}}\left(\mathrm{H}_{\mathrm{T}}+1\right)}{\left(\mathrm{H}_{\mathrm{T}}-1\right)}\right]^{\frac{-2\left(\mathrm{H}_{\mathrm{T}}-1\right)}{\left(\mathrm{H}_{\mathrm{T}}+1\right)}}\right]^{2} . .21
$$

The laminar and turbulent component values cannot obviously be determined from experimental measurements in the transitional boundary layer. Therefore the values of $R_{\theta t}$ and H_{t} are used in the formula and were found to give reasonable results. (See Fraser (1979) for a complete derivation of 4.21).

4.7 Determination of start and end of transition

For the purpose of the present study a reliable method of determining the position of the start and end of transition is of paramount importance. The method adopted was to place the hot wire probe close to the plate surface and pass the signal from the hot wire anemometer to the intermittency measurement apparatus. The start of transition was defined as the x position corresponding to a reading of $\gamma=0.01$ and the end of transition as the x position corresponding to a reading of $\gamma=0.99$. The signal from the hot wire anemometer was also passed to an oscilloscope and a loud speaker to provide audible and visual detection of the appearance of turbulent bursts or spots.

The method of detection of transition is very important as different techniques can give widely varying results for the position of start and end of transition. Hall \& Gibbings (1972) noted that it would not be unreasonable to expect scatter of $\pm 5 \%$ in the value of $\mathrm{R}_{\theta_{S}}$ due to the different detection methods. The present method is likely to give $R_{\theta_{S}}$ values lower than those obtained by the common surface pitot method used by Hall \& Gibbings and many others. However, the author suggests that the present method is more reliable and repeatable as it measures the intermittency function directly and does not lend itself to the degree of estimation required by other techniques. Sharma et al (1982) used a similar technique of measuring the intermittency function directly using flush mounted hot film probes, but they defined the start of transition at $\gamma=0.1$ which would give values of $R_{\theta_{s}}$ higher than those presented here. Provided the method used by other researchers is noted, then a comparison of results can be made by estimating the affect that the detection method has on determining the transition position.

4.8 Flow two dimensionality

Most of the boundary layer prediction methods assume that the flow is two dimensional in order to simplify the fundamental Navier-Stokes equations governing fluid motion, and enable a solution to be achieved. However, many of the early researchers, when obtaining data to validate such prediction methods, paid very little attention to the two-dimensionality of the flow and merely assumed this to be the case. In practice however, it is very difficult to obtain two dimensionality especially
in adverse pressure gradients. In 1954 Clauser reported, after much experimental effort in obtaining a two dimensional boundary flow in an adverse pressure gradient, quote "we came to have great respect for the ease with which air can move laterally in boundary layers subject to adverse pressure gradients". Since the 1968 Standford Conference the importance of obtaining good quality two dimensional test flows has been realised and various methods have been developed to assess the quality of the flow with regard to two dimensionality, Fraser (1986). One such method, which has been used in the present work, is the momentum balance principle. This method was used to assess the two dimensionality of the flows at the Standford Conference and consists basically of integrating with respect to x, the von Karman momentum equation in the form given below

$$
\frac{d\left(U_{\infty}^{2} \theta\right)}{d x}+\frac{\delta^{*}}{2} \frac{d\left(U_{\infty}^{2}\right)}{d x}=\tau_{0} / \rho
$$

normalising and integrating from $x=x_{i}$ to $x=x$, where subscript i denotes initial value, results in

$$
\frac{U_{\infty}{ }^{2} \theta}{\left(U_{\infty}{ }^{2} \theta\right)_{i}}-1+\frac{1}{2} \int_{x_{i}}^{x_{i}} \frac{\delta^{*}}{\theta_{i}} \mathrm{~d}\left[\frac{U_{\infty}}{U_{\infty_{i}}}\right]^{2}=\int_{x_{i}}^{x^{x}}\left[\frac{U_{\tau}}{U_{\infty_{i}}}\right]^{2} \mathrm{~d}\left[\frac{x}{\theta_{i}}\right] \ldots 4.25
$$

A computer program was used to determine the values of the left and right hand side of equation 4.25 using input data of x, θ, $\mathrm{u}_{\tau}, \mathrm{U}_{\infty}$ and $C f$ at various spanwise positions along the plate centre-line. The modified Simpsons rule described in section 4.3 was used to evaluate the integral terms and give a degree of smoothing to the data. Any lack of agreement between left and right hand sides of equation 4.25 , termed $P L$ \& PR respectively,
indicating a lack of two dimensionality of the flow, assuming the input values of $\theta, C f, u_{\tau}$ and U_{∞} are confidently known. Flow divergence is represented by PR being greater than PL and flow convergence is represented by PL being greater than PR. The momentum balances of three test flows in favourable, zero and adverse pressure gradients are shown in fig. [4.8.1]. Excellent agreement indicative of good two dimensionality is obtained in the zero and favourable pressure gradient cases with only a very slight convergence detectable. The adverse pressure gradient, as expected, is not as good as the other two cases but is still better than normally accepted two dimensional flows such as Weighardt's flat plate flow, presented at the Standford Conference as one of the better two dimensional flows.

The slight convergence of the flows is thought to be caused by the side wall contamination as described in section 2.3 .

```
    Fx<E = = 人 = = < < 
```



```
DISTANCE FROM LEADING EDGE = 120日 m
SPANHISE LOCATION***
FREE STREAM VELOCITY % 10.51.1%
AIR TEMPERATURE =20 DEQ.C ATMOSPHERIC PRESSURE-7GS MMHG
```

$y=0$	U－1s	ソ／d	いノくint	RMS	t
0.5	1．85	0.103	0.177	0.1	0.383
0.87	3.37	0.173	0.321	0.17	0.665
1.64	4.93	0.214	0.303	0.15	0.795
1.24	4.8	0.256	0.457	0.19	0.951
1.47	5.51	－．303	0． 524	0.2	1.126
1.86	6.68	0．384	0.636	6． 24	1.427
2.09	7.22	0.431	0.687	－． 24	1.602
2.32	7.75	0．478	0.737	0．24	1.776
2.45	8.06	0.505	0.767	0． 28	1.875
3．14	9.2	0.647	0.875	－． 22	2.404
3.57	9.68	0.736	0.921	0.18	2.735
3.96	10.01	0.816	0.952	0.16	3.032
4.58	10.35	0.944	0.985	0.11	3.508
5.01	10.44	1.033	0.993	7E－2	3.839
5.62	10.49	1.159	0.998	5E－2	＋．307
6.05	10.51	1.247	1	5E－2	4.634
6.63	10．53	1.377	1．002	5E－2	5.117

LAMINAR BOUNDARY LAYER INTEGRAL PARAHETERS

Fig．4．2．1 Printout from laminar analysis program

Fig. 4.2.2 Polynomial fit to data


```
OISTANCE FROM L.E. N IOOMMm
EPANNTSE LOCATYON % mom
FREESTREAM VELOCITY = 15.9m/s
AIR TEMPERATURE = ZI DIG.C ATMOSPHERIGPRESSURE = 753 MHO
```

$r-m$	r / d	UノUメの1	RHS
－． 505	1．9E－2	0． 454	1．41
1.00	4．1E－2	1．54E	1．24
1．968	7．4E－2	0.609	$1 \cdot 12$
2． 672	0．10日	0.641	1.12
3.669	0.138	0．669	1.09
4.467	0.168	0.688	1．09
5.318	0． 2	0.714	1．05
6．222	0.234	0．728	1．07
6.993	0． 263	0.744	1.96
8．615	0.324	0.776	1.6
10.503	0.395	0.80 d	1.3
12.364	1．465	0．841	＊．96
13.92	9．525	0.866	4.94
$15.8+8$	0.596	0．889	0.9
17．789	－．dc9	0.916	0.84
19．623	6．738	6． 938	0.75
21.272	0.8	0.953	＊．e8
23.187	0．869	－． 068	0．σ
24.968	$0.9 .3 \%$	6．901	0.53
26.882	1.012	0.992	0.46
28．531	1.073	0.997	0．4
30．36\％	1.142	1.001	0.32
32．411	1．205	1－02	0．28
Yotus	U024s	Resid．	Udet．
20.21	11.838	－0．694	14.237
43.61	14.289	－\％117	12.788
78.711	15.879	3．1E－2	10.195
114.376	16.714	－5．7E－2	9．361
146.786	17．444	7．EE－2	6．631
178.096	17.939	9．1E－2	3．135
212．734	18.617	0．344	7．457
248.398	18.982	0.326	7.092
279.745	19－399	0.458	6.675
344.628	20.234	0．734	5.841
420.149	21．016	1.083	5．058
494.606	21.920	1.597	4.146
558.726	22．58	1.953	3.494
633.946	23.18	2.244	2.894
711.594	23.864	$2.6 \Delta 8$	2.19
784.987	24.458	3	1．617
850.335	24.849	3．194	1－225
924.328	25.24	3.334	0．334
998．784	25.579	3．534	0.495
1月75．363	25.806	3．64	0.209
1141.316	25.936	3．626	7． $8 E-2$
1214.709	26．1	3.578	$-2 \cdot 6 E-2$
1381．72	26.126	3.473	$-5.2 E-2$

Fig．4．3．3 Printout from turbulent analysis program

Fig. 4.3.4 Universal and Coles Composite turbulent boundary layer Velocity profiles

Fig. 4.8.1 Flow Two Dimensionality by the Momentum Balance Principle

CHAPTER 5

Development of Data Acquisition, Control and
Data Reduction Software Package

5.1 Introduction

This chapter describes the development of a complete software package, related to the measurement and processing of boundary layer velocity profile data, for use with the BBC microcomputer. The function of the package is twofold; firstly to gather data from the experiments and dump this data to a disc file for permanent storage and secondly, to retrieve data from the disc files for subsequent analysis and display. The programs described in the previous two chapters for the data collection (Chapter 3) and data reduction (Chapter 4) from the basis of the package.

The package was developed specifically for use with a CUMANA double disc drive unit. Each drive of this unit has a double head enabling both sides of a disc to be used and, as each side of a disc has a storage capacity of approximately 200 k bytes, the facility makes available 800 k bytes of storage space. The top and underside of the lower disc and top and underside of the upper disc are numbered 0, 2, 1 and 3 respectively. The disc filing system (DFS) refers to the disc sides as drives ie drives 1 and 3 are sides 1 and 3 of the upper disc and drives 0 and 2 are sides 0 and 2 of the lower disc. Drive \emptyset is called the BOOT drive as the BBC has an auto BOOT facility which allows a short introductory program, stored in the BOOT file, to be automatically loaded into the machine from drive \emptyset, and run by simultaneously depressing the SHIFT and BREAK keys.

Because of the limited amount of RAM available on the BBC micro the software package takes the form of a number of programs each dedicated to a specific task. The programs are interlinked using the BBC CHAIN command which enables one program to automatically load and run another program. The complete software package is stored on a master disc which is inserted into the lower drive of the disc drive unit leaving the upper drive, ie drives 1 and 3, free for the storage of raw data.

5.2 Running the Software Package

To augment the following description of the software package reference should be made to the flow diagram fig. [5.2.1]

The package is initiated by the auto boot facility (ie depressing the SHIFT \& BREAK keys simultaneously) which immediately runs a BOOT program to CHAIN the program called PROGSEL. This program is used for the initial selection of whether:

1. an existing file is to be read; or
2. a new file is to be created.

Option 1 If an existing file is to be read the name of the file and the drive number that the file is stored on are required and are fed in interactively from the keyboard. The name of the data file being read is then stored on disc, in a file called DATA. The name of the file can then be passed between programs by reading the file DATA at the beginning of each program. This streamlines the package as it eliminates the need for the file name to be typed in when a continuation program is CHAINed.

Option 2 If a new file is to be created the data acquisition and control program described in Section 3.9 is called and a boundary layer traverse is initiated. On completion of the
traverse the raw data is dumped to a designated disc and the specified file name is stored in the file DATA as before.

A graphics program is then called which displays either the newly acquired data, or the data from a specified existing file, on axes of $\mathrm{Y} /{ }_{\delta}$ and $\mathrm{u} / \mathrm{U}_{\infty}$ along with the laminar Pohlhausen and turbulent $1 / 7$ power law velocity profiles for comparison. A hard copy of this display can be obtained by calling a screen dump program which causes the EPSON FX-80 printer to copy the graphics displayed on the RGB Monitor. (fig. [3.9.2] shows a screen dump printout of a graphical display.)

Once the data has been displayed a decision on which analysis is to be used for the reduction of the raw velocity profile data is required. There are three options available:-

Option 1 - Zaminar analysis If this option is chosen the laminar analysis program described in section 4.2 is called and the reduced data is printed out on the RGB monitor. A hard copy can be obtained from the EPSOM printer, see fig. [4.2.1] No further analyses or displays are available from this stage.

Option 2-turbulent analysis If this option is chosen the turbulent analysis program, described in section 4.3 , is called and the reduced data is available as before (a printout of this reduced data is shown on fig. [4.3.2]). From this stage a plot of the data on the turbulent universal velocity profile can be obtained by dumping the Calculated $u+, y^{+}$data to a disc file, then calling the appropriate graphics program and retrieving the data from the file. A hard copy of this plot can be acquired by calling the screen dump program as described previously. No further analysis or displays are available from this stage.

Option 3-transitional analysis If this option is chosen a further decision on whether to use the laminar type analysis $\gamma \leqq 0.5$ or the turbulent type analysis $\gamma \geqq 0.5$ is required. The difference between the actual laminar and turbulent analysis described in sections 4.2 and 4.3 and the transitional versions of these programs is that the heading titles have been altered and the transitional skin friction value obtained from equation 4.21 is included in the analysis. The $\gamma(y)$ distribution is also printed out and the near wall intermittency value is calculated by averaging the $\gamma(y)$ values at all positions below $Y / \delta=0.2$, and is used for the solution of equation 4.21 .

No further options are available and the program ends.

5.3 Special features of the package

After conducting an experiment, the data collected by the data acquisition and control program is dumped to a specified disc and the file is given a name. The data would normally be dumped to the upper disc, ie drive 1 or drive 3 . If the specified drive is either full of data or the drive catalogue is full (the drive catalogue is capable of holding information on only 32 files) then the computer will sense an error code and terminate the program, thereby losing the collected data before it has been dumped to disc for permanent storage. To prevent this, the error code is intercepted within the software and the message, "Disk full-select another drive" is printed to screen. The data is then held in the computer memory until another drive has been specified or a new disc has been inserted into the drive unit. The program then down loads the data onto the new disc or alternative drive.

As all the package programs are stored on a Master disc, inserted into the lower drive, and the raw data files are stored on discs which are inserted into the upper drive, then switching between drives automatically within the software is necessary for smooth operation of the package. The drives can be selected within the software by the command *DR. X, but the X has to be an integer between 0 and 3 (eg *DR.1) and cannot be left as a free variable. For example the computer ' will not understand the following.

```
    \(1 \emptyset x=3\)
    20 *DR.X
```

To overcome this a small procedure was developed to enable a
variable, say D, for example, to select a specified drive:-
10 DEFPROC Drive (D) - define procedure
20 IF D $=\emptyset$ THEN *DR. \emptyset
30 IF D = 1 THEN *DR. 1 select drive using
value of variable D
40 IF D $=2$ THEN *DR. 2
50 IF D $=3$ THEN *DR. 3
60 ENDPROC - end procedure

Everytime a drive is to be selected by a variable the above procedure is simply called.

The drive number, on which the raw data file is stored, is passed between programs using one of the special variables A\% to $\mathrm{Z} \mathrm{\%}$ on the BBC micro. These variables once specified are retained in the computer memory until they are overwritten or the computer is switched off. The BREAK or even CTRL/BREAK fuctions do not affect these variables.

To illustrate how data file names and drive numbers are passed between programs the following example, which can be considered as the end on one program and the start of a continuation program, is described.

Assume that the data file is stored on drive 3 and that the value $D \%$, used to pass the drive number between programs, has been set to 3 at an earlier stage.
$1 \emptyset \emptyset \emptyset$ PROCDrive (D\%) - select drive 3
$1 \emptyset 1 \emptyset$ Ch\%=OPENOUT'DATA' - open file DATA for output to disc
$1 \emptyset 2 \emptyset$ PRINT\#Ch\%,NAME $\$$ - put character string in NAME $\$$
to file 'DATA'
$1 \not 030$ CLOSE\#Ch\%
$1 \varnothing 4 \emptyset$ *DR. \varnothing - select drive \emptyset
$1 \varnothing 5 \emptyset$ CHAIN "Next prog" - load next program from drive \emptyset
and RUN
$1 \emptyset$ REM next program
$2 \emptyset$ PROCDrive (D\%)
$3 \emptyset \mathrm{Ch} \%=O P E N I N$ 'DATA'
$4 \varnothing$ INPUT\#Ch\%,NAME\$
$5 \emptyset$ Close\#Ch\%
- select drive 3
- open file for input to computer
from file
- read character string in
NAMES from file DATA
- close file

Fig. 5.2.1 Flow Diagram of Software Package

6.1 Introduction

With regard to the stated objectives a series of experimental flows were set up to investigate the influence of freestream turbulence and pressure gradient on the position and extent of the transition region in a boundary layer developing from the leading edge of a smooth flat plate. These flows are described in detail in this chapter and the results extracted from each flow are discussed and compared with alternative source data. The present method of defining the streamwise intermittency distribution through a transition region is compared to those of Abu-Ghannam \& Shaw (1980) and Dhawan \& Narasimha (1957) and statistical similarity of transition regions in zero and non-zero pressure gradients is observed. The transition length data acquired from the experiments is ultimately used to obtain a correlation which can be used to predict the combined effect of freestream turbulence and pressure gradient on the extent of the transition region.

6.2 Description of experimental flows

For each of the experimental flows the boundary layers were allowed to develop naturally from the leading edge of a smooth flat plate without the influence of external tripping devices such as vibrating ribbons, trip wires, surface roughness etc, to promote transition. The only factors considered to influence transition being the freestream turbulence level and the streamwise pressure distribution within the tunnel working section.

The natural test section turbulence level was approximately 0.35\%. Three higher turbulence levels were generated by the insertion of various turbulence generating grids at a distance upstream from the leading edge, giving in all four test section freestream turbulence distributions. Details of these grids are given in section 2.4. For each grid the freestream turbulence distributions along the plate are remarkably constant as can be seen from fig. [2.4.1]. This is due to the positioning of the grids at a distance far upstream from the leading edge of the plate within the tunnel contraction, see fig. [2.1.1], allowing the grid generated turbulence to decay to an almost constant value before the flow reaches the plate leading edge.

Only the longitudinal component of the velocity fluctuation ie u^{\prime} has been considered when calculating the freestream turbulence intensity. However, due to the constancy of the freestream turbulence distributions along the plate it is assumed that the turbulence is isotropic ie:-

$$
\mathrm{Tu}=\frac{1 / 3 \sqrt{\mathrm{u}^{\prime 2}+\mathrm{v}^{2}+\mathrm{w}^{2}}}{\mathrm{U}_{\infty}}=\frac{\sqrt{\mathrm{u}^{\prime 2}}}{\mathrm{U}_{\infty}} \times 100 \quad \ldots \ldots \ldots 66.1
$$

No measurements of the v^{\prime} and w^{\prime} Velocity components were made to justify this but Blair (1980) showed that by the time grid generated turbulence had decayed to an almost constant value the three constituent fluctuating velocity components u^{\prime}, v^{\prime} and w^{\prime} were approximately equal. Fig. [6.2.1] which is a reproduction of fig. (31) from Blair (1980) supports this premise.

Blair also observed, in accordance with Baines and Peterson (1951), that the turbulence levels generated for each grid
configuration were constant at a specific streamwise location, regardless of the freestream velocity. This agrees well with the freestream turbulence generated from the three grids used in this investigation as is shown in fig. [6.2.2]. A spectral analysis of the freestream turbulence levels generated by the various grids used for this investigation showed that in each case the bulk of the turbulence energy was contained at frequencies below 2 kHz . This is normal for grid generated turbulence, Meier \& Kreplin (1980). The length scales of the freestream turbulence levels were also measured using a DISA-APA system and a similar set up to that used by Meier \& Kreplin, to obtain auto-correlations for the turbulence generated by each grid. This showed that the streamwise length scales varied from 4 mm for grid 1 to 12 mm for grid 3. These values are similar to those obtained by Abu-Ghannam \& Shaw (1980) who concluded that such a range of length scales would have a negligible effect on the position of the transition region. The conclusion from these measurements was that the various test section freestream turbulence levels generated for this investigation were concurrent with standard classical grid generated turbulence.

The pressure gradients were introduced by adjusting the variable height roof, as described in section 2.5 , and are shown expressed in terms of pressure coefficient Cp in fig. [2.5.1]. The tunnel working section geometries were set up to give linear velocity distributions ie constant velocity gradients. Four roof settings were arranged to give, when expressed non-dimensionally, four velocity gradients ie a zero gradient $\frac{d\left(U / U_{0}\right)}{d(x / L)}=0$, two
adverse gradients $\frac{d\left(U / U_{d}\right)}{d(x / L)}=-0.23 \& \frac{d\left(U / U_{0}\right)}{d(x / L)}=-0.15$ and a favourable gradient $\frac{d\left({ }^{U} / U_{0}\right)}{d(x / L)}=0.094$. When expressed nondimensionally in terms of $\frac{d\left(U / U_{0}\right)}{d(x / L)}$ the velocity gradients are independent of the tunnel reference velocity and are approximately constant for each roof setting. (Slight variations in the velocity distributions can be detected when the flow reference velocity and freestream turbulence are altered. This is due to the varying rates of growth of the tunnel boundary layers but amount to a variation of less then 3% from the mean in the worst case.) The mean velocity distributions for each roof setting are plotted in terms of $\left(U_{\infty} / U_{0}\right)$ and (x / L) in fig. [6.2.3].

In all, twenty three flows were investigated each having a different combination of freestream turbulence and pressure gradient. Details of each of these flows are given in table 6.1 and are described briefly below.

Flows $1 \rightarrow 4$ are zero pressure gradient flows with freestream turbulence levels ranging from 0.35% to 1.40%. In order to position the transition region within the working area of the plate these flows had to be tested at the maximum tunnel reference velocity of, nominally, $18 \mathrm{~m} / \mathrm{s}$. Even at this maximum tunnel reference velocity the measured end of transition for the two lower freestream turbulence flows, ie flows 1 and 2, occurs just beyond the safe working area of the plate and in consequence are thought to occur prematurely in both cases.

Flows $5 \rightarrow 12$ are adverse pressure gradient flows. The working section geometry for these flows were set for the first non-dimensional adverse velocity gradient. Flows 5 to 8 are tested at the maximum tunnel reference velocity of $18 \mathrm{~m} / \mathrm{s}$ while flows 9 to 12 are tested at a reduced reference velocity of nominally $10 \mathrm{~m} / \mathrm{s}$, giving two velocity gradients ie $\mathrm{dU} / \mathrm{dx}=-2.2 \mathrm{~s}^{-1}$ and $d U / d x=-1.2 s^{-1}$. Each flow was a different combination of velocity gradient and freestream turbulence. The relevant areas of interest for each of these flows occurs well within the safe working area of the plate.

Flows $13 \rightarrow 20$ are also adverse pressure gradient flows but with the working section geometry altered to give the second non-dimensional adverse pressure gradient. These flows were tested, as before, at tunnel reference velocities of nominally $18 \mathrm{~m} / \mathrm{s}$ and $10 \mathrm{~m} / \mathrm{s}$ giving two further velocity gradients $d U / d x=-1.4 s^{-1}$ and $d U / \partial x=-0.75 s^{-1}$.

Flows $21 \rightarrow 23$ are favourable pressure gradient flows. Unfortunately because of the tunnel geometrical constraints the adjustable roof had to be lifted above the level of the contraction outlet, in the region of the plate leading edge, to obtain a favourable pressure gradient within the tunnel working section, see fig. [6.2.4] below.

Fig. 6.2.4 Cross-section through tunnel
$\frac{\text { Showing roof setting for favourable }}{\text { pressure gradients }}$

Consequently as the flow enters the working section it is subjected to a fairly strong adverse pressure gradient, before it impinges on the plate leading edge and over the initial 150 mm of the plate surface. Due to the effect of this initial adverse pressure gradient the high freestream turbulence level flow (ie the flow with Grid 3 in position - Tu 1.4\%), becomes transitional within the first 100 mm of the plate surface. This is far earlier than would have been expected had it been possible to set up a favourable pressure gradient over the entire length of the plate. For this reason no measurements are presented for grid 3 flows for the favourable pressure gradient case. Transition for flows 21, 22 and 23 begins well downstream of the initial adverse pressure gradient and disturbances within the boundary layer amplified by the initial adverse pressure gradient (though not enough to promote transition) are likely to have been damped out by the calming influence of the favourable pressure gradient, Schubauer \& Skramstad (1948). However it would be reasonable to expect the initial adverse pressure gradient to have some detrimental effect on the boundary layer which is likely to promote early transition. The favourable pressure gradient flows described above were tested at the tunnel maximum reference velocity of $18 \mathrm{~m} / \mathrm{s}$ to ensure that, at least the start of transition would be positioned within the plate safe working area. Disappointingly only in flow 21 (Tu 0.8\%) did the end of transition occur within this region. The end of transition for flows 22 and 23 occurs well outwith the safe working area and as a consequence it is likely that the length of the transition region is shorter than would normally be expected.

Bearing in mind the observations overleaf the data available from the favourable pressure gradient flows, with the present experimental facility, is very limited.

6.3 Flow Measurements

For each of the twenty three flows described a series of measurements were made; these were:-
(i) Hot wire boundary layer traverses at regular streamwise intervals, along the centre line of the plate, measuring the mean velocity, rms velocity, and intermittency distribution through the boundary layer perpendicular to the plate.
(ii) The streamwise intermittency distribution along the plate centreline.
(iii) The streamwise freestream turbulence distribution.
(iv) The streamwise freestream velocity distribution.

The position of the start and end of transition were also noted and the velocity profiles at or very close to these positions were measured for each flow. This enabled measured values of integral thicknesses to be obtained at the start and end of transition.

A summary of the relevant data extracted from each flow is given in table 6.2. The freestream turbulence levels given in this table are the values at the position of start of transition ie

$$
\mathrm{T}_{\mathrm{u}_{\mathrm{S}}}=\frac{\sqrt{\mathrm{u}_{\mathrm{S}}^{\prime}{ }^{2}}}{U_{\infty S}} \times 100
$$

6.2
although they vary very little, if at all, from the nominal values given in table 6.1 measured at the position of the plate leading edge.

A limited number of measurements from various other flows supplementary to the twenty three flows described in section 6.2 were made. These flows were tested at low tunnel reference velocities $\left(U_{O}=5 \mathrm{~m} / \mathrm{s}\right.$ for the adverse gradients and $U_{0}=10 \mathrm{~m} / \mathrm{s}$ for the favourable gradient) and the only data extracted from them was the position of the start of transition. For this reason these flows were not numbered but when data from such a supplementary flow is presented on a diagram the relevant parameters are given alongside the plotted point.

6.4 Description of the transition process

Since the experiments of Schubauer \& Skramstad (1948) it has generally been accepted that the breakdown process from laminar to turbulent motion, within a boundary layer, involves the amplification of small two dimensional disturbances superimposed on the laminar flow (ie Tollmein-Schlichting waves). At some critical Reynolds number the Tollmein Schlichting waves become unstable and grow as they move downstream eventually breaking down into bursts of random fluctuation characteristic of turbulent flow. Thesebursts occur in small localised regions in the form of turbulent spots, first observed by Emmons (1950), and grow in size as they travel downstream until they coalesce into a fully developed turbulent boundary layer. The region between the first occurrence of these turbulent spots and the position at which they merge to form a fully turbulent boundary layer is termed
the transition region. Arnal et al (1977), Schubauer \& Klebanoff (1956), Emmons (1950) and many others since have observed that the flow within a transition region alternates between the laminar and turbulent flow states. Although separate laminar and turbulent velocity components were not measured in this investigation, evidence to support this can be gleaned from measurements of the instantaneous velocity within a transitional boundary layer. Fig. [6.4.1] shows oscilloscope traces of the instantaneous velocities measured by a hot wire probe placed both near to the wall, and in the outer region of a transitional boundary layer. With the probe placed close to the wall (Trace (a)) the signal shows an increase in mean level as a turbulent region is encountered, and with the probe placed in the outer region of the boundary layer (Trace (b)) the signal shows a decrease in mean level as a turbulent region is encountered.

These observations are consistent with the sketch of the mean laminar and turbulent velocity profiles shown in this figure. At $y<y_{C}$ the turbulent component of mean velocity is greater than the laminar component and at $y>Y_{C}$ the laminar component of the mean velocity is greater than the turbulent component. The implication here is that the transitional boundary layer consists of laminar and turbulent mean velocity components qualitatively similar to those shown in fig. [6.4.1]. Confirmation of this physical model is given by both Wygnanski et al (1976) and Arnal et al (1977). These researchers used conditional sampling techniques to measure the constituent profiles in and out of turbulent spots and verified that the component profiles within a transition region were characteristic of mean laminar and mean turbulent velocity profiles.

This model of the transition region can be used to describe the continuous growth of the mean boundary layer properties, through transition, from typical laminar to typical turbulent values: The process of transition involves an increase in momentum, displacement and energy thicknesses; a decrease in the displacement thickness shape factor H_{12} and a slight, but significant, increase in energy thickness shape factor, H_{32}. The skin friction coefficient also increases from a laminar to a turbulent value over the length of the transition region.

Typical distributions of the boundary layer parameters through a transition region are shown in fig. [6.4.2]. The points plotted on this figure are experimental points and the lines are mean lines drawn through the experimental data.

6.5 Start of transition - Correlations

The point at which a laminar boundary layer first becomes unstable (point of instability) is normally expected to lie upstream of the experimentally observed point of transition (ie the point at which turbulent bursts first appear) and the distance between these two points is dependent on the degree of amplification of disturbances within the boundary layer and the type of disturbance present in the freestream. Although a fair amount of success has been adhered in predicting the influence of various effects on the limit of stability, Schlichting (1979); to date no rational explanation from first principles is available for predicting the onset of turbulence, ie the transition point.

In order to obtain a practical solution to the prediction of the transition point, researchers have been striving to
obtain realistic correlations which are applicable to as wide a range of practical situations as possible. To achieve this the factors which influence the position of transition must be identified and the major effects incorporated into the correlation. Two such effects which have been correlated with some success are the influence of freestream turbulence and pressure gradient on the transition point. In the absence of a pressure gradient it is known that increasing the freestream turbulence level will advance the onset of transition. This effect has been fairly well correlated by a number of researchers; two such correlations due to Van Driest and Blumer (1963) and Hall and Gibbings (1972) for zero pressure gradient flows are shown in fig. [6.5.1]. Plotted on this figure is the present data from the zero pressure gradient flows (FLOWS $1 \rightarrow 4$) which compare favourably with the correlations. Both correlations are similar and show that the effect of freestream turbulence on the position of transition (defined in terms of $\mathrm{R}_{\theta_{s}}$ in fig. [6.5.1]) asymptotes to an almost constant value as $T u$ increases, the bulk of the effect being contained within the region $0 \leqq T u>2 \%$. A more recent correlation by Abu-Ghannam and Shaw (1980) is also shown on fig. [6.5.1] represented by a chain dotted line. This correlation is almost identical to that of Hall and Gibbings except that it has been modified to asymptote to the Tollmein-Schlichting stability limit $\mathrm{R}_{\dot{\theta}}=163$, rather than the value of $\mathrm{R}_{\dot{\theta}}=190$ used by Hall and Gibbings, to fit the wider range of data supplied by Brown and Burton (1978) and Martin et al (1978) for freestream turbulence levels up to 9.2\%.

The correlations of Abu-Ghannam \& Shaw, Van Driest \& Blumer and others such as those due to Dunham (1972) and Seyb (1972) were developed further to take into account the combined effect of freestream turbulence and pressure gradient on the location of the transition point. It seems generally agreed that the effect of pressure graident can be best correlated against $R_{\dot{\theta}_{s}}$ and Tu , when expressed in terms of a non-dimensional pressure gradient parameter, the most common being the Thwaites (1949), or modified pohlhiausen parameter $\lambda_{\theta}=\frac{\theta^{2}}{\nu} \frac{\mathrm{dU}}{\mathrm{dx}}$; although recently the acceleration parameter $K=\frac{\nu}{U_{\infty}{ }^{2}} \frac{d U_{\infty}}{d X}$ has become popular for quantifying the strength of favourable pressure gradients. See Brown \& Martin (1976) and Blair (1982). The merits of these two parameters will be discussed in a later section.

Data from the present study is shown plotted against the most recent of these correlations, ie that of Abu-Ghannam and Shaw, on fig. [6.5.2]. For adverse pressure gradients, ie $\lambda_{\theta} \leqslant 0$ all the correlations mentioned previously shown the same general trend but for favourable pressure gradient $\lambda_{\theta}>0$ the correlations of Dunham (shown as a chain dotted line in fig. [6.5.2]) and Seyb are in marked disagreement with the Abu-Ghannam \& Shaw correlation, both showing a rapid increase in $\mathrm{R}_{\theta_{S}}$ with increasing λ_{θ}.

The limited amount of favourable pressure gradient data from the present study and that of Blair (1982) would appear to substantiate the correlation of Abu-Ghannam \& Shaw.

The value of $\mathrm{R}_{\theta_{s}}$ gathered from the adverse pressure gradient flows in the present investigation generally lie below those forecast by Abu-Ghannam \& Shaw's correlation. Two reasons for this are:-
(i) The method of detecting transition in the present work locates the start of transition very close to the appearance of the first turbulent bursts which is likely to be upstream of pointed located by Abu-Ghannam \& Shaw because of the different detection techniques used (see section 4.7 for more detail). For this reason values of $\mathrm{R}_{\theta_{S}}$ obtained by Abu-Ghannam \& Shaw are likely to be higher than those obtained here for similar flow conditions.
(ii) The adverse pressure gradients were arranged to be effective directly from the plate leading edge, therefore, any leading edge disturbances would be amplified by the amplifying effect of the adverse pressure gradient and may lead to a breakdown of the laminar boundary layer at values of $\mathrm{R}_{\mathrm{X}_{\mathrm{s}}}$ less than would normally be expected. In retrospect it may have been advantageous to arrange a fairly strong favourable pressure gradient in the vicinity of the plate leading edge (say over the first 50 mm , or so, of the plate surface). This would have had the beneficial effect of damping any leading edge disturbances.

The correlation proposed by Abu-Ghannam \& Shaw is based on a wide range of experimental data so there would be no justification to tune the correlation to give a better fit to the present data. However, having identified the above effects the present data is fairly reasonable and when compared to the actual data of Abu-Ghannam \& Shaw it is within acceptable experimental scatter.

6.6 Statistical similarity of transition regions

As previously described in section 6.4 the transition region is composed of intermittent regions of laminar and turbulent flow. The turbulence originating in the form of small spots which grow downstream and eventually coalesce to form a completely turbulent flow regime.

Emmons (1951), who pioneered the concept of turbulent spots, introduced a spot source density function to describe the production of these spots and related this to the probability of the flow being turbulent at any time, ie the intermittency function γ. Dhawan \& Narasimha (1957) argued that the spot source density function should have a maximum value at some point, which can be considered as the experimentally measured point of transition, and that downstream of this point the turbulence probability could be defined by the unique relation

$$
\gamma=1-e^{A \xi^{2}}
$$

where $\xi=\left(x-x_{S}\right) / \lambda$ is a normalised streamwise co-ordinate in the transition region and λ is a measure of the extent of the transition region.

Dhawan \& Narasimha showed that the distribution of intermittency was universal on the $\bar{\gamma}(\xi)$ plot irrespective of the physical length of the transition region. This was supported by the earlier work of Schubauer \& Kelbanoff (1956) who gave rise to the concept of the statistical similarity of transition regions. In contrast . to Dhawan \& Narasimha, Schubauer \& Klebanoff normalised the streamwise intermittency distribution $(\bar{\gamma})$ to the normal distribution function, matching the curve at $\bar{\gamma}=0.5$ using the normalised streamwise co-ordinate $\zeta=(x-\bar{x}) / \sigma$. Where σ, the standard devitation, is a measure of the extent of the transition region and \bar{x} is the distance from the leading edge to the point where $\bar{\gamma}=0.5$.

In both papers mentioned overleaf, the intermittency distributions were measured only in zero pressure gradients and both make the observation that it does not necessarily follow that transition regions will exhibit the same distribution of $\bar{\gamma}$ in the presence of a pressure gradient. The present investigation makes use of the work by Schubauer \& Klebanoff, in assuming the value σ to be representative of the transition length. A computer program was written to calculate the mean value of σ from the experimentally measured $\bar{\gamma}(x)$ distribution stored in a disc file. For computational convenience the normal distribution or Gaussian integral curve was represented by a polynomial approximation to the curve, ie equation 6.4. $\bar{\gamma}=\frac{1}{2}\left[1+\frac{\zeta}{|\zeta|}\left(0.8273|\zeta|-0.096|\zeta|^{2}-0.073|\zeta|^{3}+0.0165|\zeta|^{4}\right)\right]$ 6.4
where $\quad \zeta=\frac{x-\bar{x}}{\sigma}$ 6.5
(Care has to be taken of the singularity point at $\zeta=0$) The polynomial approximation to the normal distribution is shown on fig. [6.6.1]. To the scale of this diagram no difference between the two is detectable.

The procedure for determing the standard deviation of the intermittency distribution was to firstly obtain the value of \bar{x}, the location of the $\bar{\gamma}=0.5$ point. This was done by fitting a least squares straight line to all the experimentally measured points in the region $0.75<\bar{\gamma}>0.25$, as the distribution is approximately linear in this region, and determining \bar{x} from the resulting straight line equation. Using the experimentally obtained values of $\bar{\gamma}$ for each point the value of ζ is determined
by iteration of equation 6.4 and substitution of this value into equation 6.5 gives the value of σ for each point. The average value of σ is then taken to be representative of the complete distribution. The experimental $\bar{\gamma}(x)$ data is then converted to $\bar{\gamma}(\zeta)$ data using the calculated values of $\overline{\mathrm{x}}$ and average σ value. These experimental points are then plotted graphically on the display monitor and compared to the normal distribution represented by equation 6.4 .

Assuming x_{s} is measured at $\gamma=0.01$ and x_{e} is measured at $\gamma=0.99$ then the corresponding normalised co-ordinate (ζ) for the start and end of transition will be -2.30 and +2.30 respectively. The length of the transition region can therefore be related to the standard deviation σ by the relation

$$
x_{\imath}=4.60
$$

or non-dimensionally
$\mathrm{R}_{\mathrm{X}_{Z}}=4.6 \mathrm{R}_{\sigma} \quad \ldots6 .6$

The experimentally measured value of $x_{Z}=\left(x_{s}-x_{e}\right)$ is plotted against the value of x_{\imath} calculated from equation 6.6 in fig. [6.6.2]. Excellent agreement between the measured value of x_{2} and that obtained from equation 6.6 can be seen from this figure.

Fig. [6.6.3 (a)] shows the intermittency data from the present experimental flows plotted separately for the adverse, zero and favourable pressure gradient cases, against the $\gamma(\zeta)$ distribution. Figs. [6.6.3 (b)] and [6.6.3 (c)] shown the same data plotted in the $\gamma(\xi)$ distribution of Dhawan \& Narasimha and the γ (n) distribution of Abu-Ghannam \& Shaw. It can be
seen from these figures that the present method of defining the intermittency distribution is superior to the other two methods mentioned overleaf. The reason for this lack of agreement between the present distribution, $\gamma(\zeta)$ and the $\gamma(\xi)$ and γ (n) distributions of Dhawan \& Narasimha and Abu-Ghannam \& Shaw respectively, is that the latter two distributions use x_{S} as the datum length, whereas \bar{x}, used in the present method is more readily defined. Also the parameters used for normalising the transition co-ordinates ξ and η, by Dhawan \& Narasimha and Abu-Ghannam \& Shaw are defined by only two points in the transition region. The normalising parameter, σ, used in the present method is calculated for each data point and an average value is used to define the distribution.

From fig. [6.6.3 (a)] and fig. [6.6.2], it can be seen that neither the pressure gradient nor the freestream turbulence has any influence in the intermittency distribution when expressed in terms of γ and ζ. This is consistent with the observations of Abu-Ghannam \& Shaw. However, it is likely that if the pressure gradient was to alter drastically within the transition region (eg if it were to change sign) then the intermittency distribution expressed in terms of $\gamma(\zeta)$ might not follow the normal distribution curve shown in fig. [6.6.1].

6.7 The effect of freestream turbulence on transition length (zero pressure gradient)

As described in the previous sections the degeneration of the flow from the laminar to the turbulent state is not instantaneous but occurs over a finite length. Although a number of researchers have conducted experiments to determine the influence of various
effects on the point at which this degeneration begins, see section 6.5, very little information is available on the influence of the various parameters on the extent of the transition region.

A popular method of obtaining the transition length is to use the very approximate relationship of Dhawan \& Narasimha who defined the Reynolds number, based on the transition length parameter λ, as a function of the length Reynolds number at the start of transition, equation 6.7.

$$
\mathrm{R}_{\lambda}=5 \mathrm{R}_{\mathrm{X}_{\mathrm{S}}}{ }^{0.8}
$$

From the data presented by Dhawan \& Narasimha, Dunham (1972) observed that the total transition length, $x \neq$, could be related to the length parameter λ by the relationship

$$
x_{Z}=3.36 \lambda \quad \ldots \ldots . .6 .8
$$

Therefore, modifying Dhawan \& Narasimha's original relationship to give the transition length, results in:-

$$
\mathrm{R}_{\mathrm{x}_{\mathrm{Z}}}=16.8 \mathrm{R}_{\mathrm{x}_{\mathrm{S}}}^{0.8} \quad \ldots \ldots . .
$$

Dunham further modified this using the Blasius relation $R_{\dot{\theta}}=0.664 \sqrt{R_{\mathbf{X}}}$, to

$$
\mathrm{R}_{\mathrm{X}_{2}}=31.8 \mathrm{R}_{\theta_{\mathrm{S}}}^{1 .}
$$

for zero pressure gradient flows. Debruge (1970) proposed a similar correlation to that of Dhawan \& Narasimha, merely adjusting the constant and power terms to fit his particular range of data.

$$
\mathrm{R}_{\underset{\lambda}{ }}=0.005 \mathrm{R}_{\mathrm{X}_{\mathrm{S}}}{ }^{1.28}
$$

Even as recently as 1980 , Abu-Ghannam \& Shaw used an unmodified version of Dhawan \& Narasimha's original correlation to determine the extent of the transition region and used this as the basis for calculating the boundary layer development through the transition region.

However, Dhawan \& Narasimha stated orginally that their proposed correlation was no more than speculative due to the considerable degree of scatter of the experimental data (disguised by a log-log plot, in Fig. 5 of Dhawan \& Narasimha's original paper). They also suggested that a family of $R_{\lambda} v^{\prime} s R_{X_{S}}$ curves, each depending on the specific agency causing transition, would be more realistic.

The present approach to defining the transition length is somewhat different to the Dhawan \& Narasimha approach in that the effects influencing the transition length are directly correlated to a transition length Reynolds number based on the length parameter 0, ie

$$
R_{\sigma}=\frac{U_{\infty} S}{\nu}
$$

(The length parameter λ can be related to σ by the relationship $\lambda=1.37 \sigma)$. This new approach is however, consistent with the implications of Dhawan \& Narasimha's relationship ie equation 6.7.

The present correlation for the effect of freestream turbulence on the transition length in zero pressure gradient flow is shown on fig. [6.7.1]. (R_{σ} is correlated to the local value of freestream turbulence at the transition point although as described earlier the freestream turbulence level is almost constant over the entire length of the plate). Also plotted
on this figure is the present data and that of previous workers. Unfortunately transition length/freestream turbulence level data is very scarce for zero pressure gradient flows and is almost non-existent for non-zero pressure gradient flows, in the presently available literature.

$$
\begin{aligned}
& \text { The available data is best correlated by:- } \\
& \mathrm{R}_{\dot{\sigma}}=\left[270-\frac{250 \mathrm{~T}_{\mathrm{u}}{ }^{3.5}}{\left(1+\mathrm{T}_{\mathrm{u}}{ }^{3 \cdot 5)}\right.}\right] \times 10^{3} \quad \ldots \ldots . .6 .12
\end{aligned}
$$

The upper limit for R_{σ} was obtained from Schubauer \& Skramstad (1947). Schubauer \& Skramstad showed that $\mathrm{R}_{\mathrm{X}_{S}}$ reached an upper limit at a freestream turbulence level of about 0.1% and decreasing the freestream turbulence below this value had no further effect on $\mathrm{R}_{\mathrm{X}_{S}}$. The value of $\mathrm{R} \ddot{X}_{i}$ was also constant in this range but did increase from $0.1<T u>0.25$. However, flows with freestream turbulence levels of less than 0.25% are probably of limited practical significance, excepting the case of free flight, so the value of $R_{\sigma}=270 \times 10^{3}$ obtained from Schubauer \& Skramstad, for flows with Tu < 0.1, was taken to be the upper limit and is held constant at this value until $T u=0.25$ is exceeded. At this point there is a rapid decrease in R_{σ} with increasing freestream turbulence, eventually asymptoting to a lower limiting value, as implied by Abu-Ghannam \& Shaw and Hall \& Gibbings, of $\mathrm{R}_{\sigma}=20 \times 10^{3}$. This concept of a lower limit is thought to be reasonable as transition is always expected to occur over some finite length.

6.8 Combined effect of freestream turbulence and adverse pressure gradient on transition length

Whereas it is possible to eliminate the effect of freestream pressure distribution enabling the independent effect of freestream turbulence to be examined, it is not possible, due to the natural level of freestream turbulence present in all wind tunnels, to separate the effect of freestream turbulence from pressure distribution in non-zero pressure gradient flows. In consequence only the combined influence of the two effects on the transition length can really be examined. However, for the present investigation the pressure gradients were all arranged to give constant velocity gradients and the freestream turbulence levels attributed to each flow were nominally constant over the plate working length. Each flow could therefore be specified by a single value of velocity gradient, $\mathrm{dU}_{\infty} / \mathrm{dx}$, and freestream turbulence level, Tu. It was thus possible to compare the effect of varying $d U_{\infty} / d x$ on the transition length and location for a range of constant freestream turbulence flows and also to compare the effect of varying $T u$ on the transition length and location for a range of constant velocity gradient flows. Figs. [6.8.1], [6.8.2] and [6.8.3] were constructed, therefore to give an indication of the separate effects. (The dotted lines drawn through the data on these figures serve to highlight the effects and are not meant to imply any specific relationship).

From fig. [6.8.1] it can be seen that the effect of increasing the velocity gradient at a constant value of freestream turbulence has the effect of advancing the onset of transition and, to a greater extent, advancing the position at which transition ends, ie the position where the flow becomes fully
turbulent. Hence increasing $\frac{d U_{\infty}}{d x}$ has the effect of decreasing the transition length. This substantiates the observations of Schubauer \& Klebanoff (1956) and Tani (1969). From this figure it can also be seen that the influence of increasing the velocity gradient (ie the adverse gradient becoming more negative) on the position of the start of transition is less significant as the freestream turbulence level is increased. Fig. [6.8.2] shows the effect of increasing freestream turbulence level in a constant velocity gradient flow. As can be seen from this figure the effect of increasing freestream turbulence appears to increase the transition length. This effect is most significant for low freestream turbulence levels, below 1\%, and tends to fade for higher turbulence levels and may in fact reverse to give a decrease in transition length with further increase in freestream turbulence level.

This can be explained by examination of fig. [6.8.3] as follows: At low freestream turbulence levels approximately below 1\% slight increases in the value of freestream turbulence have a marked effect in advancing the onset of transition but appear to have less of an effect on the end of transition. This is due to the fact that the end of transition has already been advanced to, perhaps, a more stable position by the effect of the adverse velocity gradient and is not likely to be advanced further by low freestream turbulence levels or small changes in freestream turbulence. However at higher freestream turbulence levels ($T u \geqq 1.0$) the effect on the advancement of the transition point by increasing the freestream turbulence level becomes less significant until, as in the case of zero pressure
gradient flows, further increase in Tu causes no further advancement of the start of transition. As this asymptotic position is approached the lengthening effect of increasing $T u$ will decrease and may in fact reverse if the rate at which the end of transition is advancing due to increasing Tu is greater than that of the start of transition. At some point both the position of the start and end of transition will reach their respective minimum limiting values where further increase in $T u$ will result in no further effect on transition length.
6.9 The effect of favourable pressure gradient on transition length

Although a considerable amount of experimental effort was expended in setting up and making measurements in favourable pressure gradient flows, the effect of the velocity gradient on transition length can only be examined for one single flow (ie Flow 21). The other favourable velocity gradient flows (Flows 22 \& 23 and various other supplementary flows) are either severely affected by the adverse pressure gradient in the region of the plate leading edge, see section 6.2 , or the end of transition occurs beyond the safe working region of the plate. However from flow 21 and the zero pressure gradient counterpart, flow 3, (both with a freestream turbulence level of 0.8%), it can be seen that the effect of introducing a favourable velocity gradient is to delay the start of transition and to a greater extent delay the end of transition, hence increasing the transition length. This effect is shown in Fig. [6.9.1] and as would be expected is opposite to the effect observed in adverse velocity gradient flows. Unfortunately no
comments can be made as to the effect of freestream turbulence on the transition length in favourable velocity gradient flows as there is insufficient data.
6.10 Correlating the combined influence of freestream turbulence and pressure gradient on transition length

As described in the previous section there is only one favourable pressure gradient flow (Flow 21) for which transition length data can be confidently extracted. For this reason the correlation presented here is limited to zero and adverse gradient cases but could possibly be modified to account for favourable gradients if reliable data becomes available.

The major obstacle in correlating experimental data is in defining adequate non-dimensional parameters which are sufficient in independent variables to describe the problem. The present transition length data and that of previous researchers appears to correlate fairly well in terms of the transition length Reynolds Number R_{σ}, and the local value of freestream turbulence at the start of transition $T_{u_{S}}$, as shown in fig. [6.7.1]. To correlate the transition length data in adverse pressure gradients the present approach was to modify this correlation using some parameter, involving the velocity gradient, which would describe the effects outlined in section 6.8. This approach has been used in the past by other researchers to correlate the position of the onset of transition in non-zero pressure gradient flows. The most popular parameter to account for pressure gradient effects being the modified Pohlhausen/Thwaites parameter, $\lambda_{\theta}=\frac{\theta^{2}}{v} \frac{d U_{\infty}}{d x}$,
although other parameters such as the acceleration parameter $K=\frac{\nu}{U_{\infty}} \frac{d U_{\infty}}{d X}$ and a non-dimensional velocity gradient parameter $\frac{d{ }_{d}^{U_{\infty} / U_{0}}}{d^{x}}$, have been used by other researchers such as Brown \& Burton (1978) and Blair (1982).

A fairly recent paper by Brown \& Burton (1976) and discussion by Gibbings and Slanciauskas \& Pedisius, reviews the merits of the modified Pohlhausen/Thwaites parameter, λ_{θ} and the acceleration parameter, K. Brown \& Burton suggest that K is a more suitable parameter than λ_{θ} for correlating pressure gradient effects mainly because it is composed of independent variables which are directly measurable and therefore more readily useable by the design engineer. This is obviously an advantage, but a distinct disadvantage of this parameter is that it does not, through any of its component variables, account for the history of the flow. The present author suggests that λ_{θ} is a more suitable parameter for correlating the effects of freestream turbulence and pressure gradient on the position and extent of transition for the following reasons:
(a) to some degree the history of the flow is taken into account through the inclusion of the boundary layer momentum thickness as a variable;
(b) when using a local value of λ_{θ} at the start of transition or perhaps an averaged value of λ_{θ} as suggested by Granville (1953) and Abu-Ghannam \& Shaw (1980), the parameter is influenced by both the freestream turbulence and velocity gradient;
(c) more important is the fact that the present transition
length data appears to correlate well in terms of
$R_{\sigma}, T u$ and λ_{θ}.
The correlation presented on fig. [6.10.1] uses the local value $\lambda_{\theta_{S}}$ although an averaged value of λ_{θ} from the origin of the boundary layer to the point of transtion would account further for previous flow history. However with the linear velocity gradients used in this investigation the λ_{θ} distribution is almost linear, therefore such an average would merely result in halving the local values at the start of transition. Abu-Ghannam \& Shaw actually found no improvement in their correlation by using a mean value of λ_{θ} defined by

$$
\lambda_{\theta}=\frac{1}{x_{S}-x_{0}} \int_{x_{0}}^{x_{S}} \lambda_{\theta} d x
$$

but did in fact find an improvement in correlation when using the extreme value of λ_{θ} ie the local maximum value of λ_{θ}. For the present experimental flows λ_{θ} (extreme) will always occur at the start of transition ie $\lambda_{\theta \text { (extreme) }}=\lambda_{\theta_{S}}$.

It may seem rather speculative to relate the transition length to local values at the start of transition but the degree of correlation would appear to justify this speculation. The final correlation shown in fig. [6.10.1] is represented by $\mathrm{R}_{G}=\left[270-\frac{250 \mathrm{Tu}^{3} \cdot 5}{1+\mathrm{Tu}^{3} \cdot 5}\right]\left[\frac{1}{1+1710\left(-\lambda_{\theta}\right)^{1.4} \exp -\sqrt{1+\mathrm{Tu}^{3} \cdot 5}}\right] \times 10^{3} 0<\lambda_{\theta}>-0.04$ 6.14
$R_{\sigma}=20 \times 10^{3} \quad \lambda_{\theta}<-0.04$

It may appear that this correlation does not illustrate the effect described in section 6.8, that at low freestream turbulence levels increasing Tu increases the transition length. However as suggested previously in this section the parameter λ_{θ} accounts for the combined freestream turbulence and pressure gradient effect. Increasing freestream turbulence advances the onset of transition and hence reduces $\lambda_{\theta_{S}}$, which is indicated in the correlation by an increase in R_{σ} at low values of $T u$. At higher freestream turbulence levels (say above 1\%) the effect of increasing freestream turbulence on θ_{s} is small, however λ_{θ} will still reduce but not to the extent that R_{σ} increases, as at the higher levels of freestream turbulence the direct effect of $T u$ is having a dominant effect in reducing R_{σ}.

The limit of $R_{\sigma}=20 \times 10^{3}$ at $\lambda_{\theta}<-0.04$ was specified to fit the present adverse pressure gradient data and to correspond to the limit in the zero pressure gradient correlation of R_{σ}. and Tu.

The experimentally measured values of R_{σ} are plotted against those obtained from equation 6.14 on Fig. [6.10.2]. Fig. [6.10.3] shows the experimentally measured values of R_{λ} plotted against those obtained from the Dhawan \& Narasimha correlation (equation 6.7). Comparison of these two figures shows the marked improvement of the present correlation over that of Dhawan \& Narasimha for the present data. Unfortunately, very little alternative source data is available in the present literature which can be plotted on this correlation. It is hoped, however, that this work will show other researchers that it is possible to correlate the transition length, expressed

```
non-dimensionally as a transition length Reynolds number,
directly in terms of external influences such as freestream
turbulence and pressure gradient. Also it is hoped that this
will stimulate other researchers to producing a wider range
of suitable data and that the correlation can then be tuned or
modified to suit a wider range of practical situations.
```

$\begin{aligned} & \text { FLOW } \\ & \text { NO } \end{aligned}$		$\begin{aligned} & \mathrm{U}_{\mathrm{O}} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$	$\frac{d^{U_{\infty} / U_{0}}}{d^{x / L}}$	$\begin{aligned} & \frac{d u}{d x} \\ & L=2000 \mathrm{~mm} \end{aligned}$	Tu\％ （Nominal）
1	$\begin{aligned} & 0 \\ & \text { O } \\ & \text { M } \end{aligned}$	18.2	\emptyset	\emptyset	0.35
2		18.25	\emptyset	\emptyset	0.45
3		18.0	\emptyset	\emptyset	0.75
4		18.6	\emptyset	\emptyset	1.40
5		18.4	－0．235	－2．15	1.40
6		18.5	－0．240	－2． 20	0.80
7		18.3	－0．240	－2． 20	0.40
8		18.4	－0．240	－2． 20	0.30
9		10.7	－0．225	－1．20	1.40
10		10.4	－0．225	－1．20	0.80
11		10.0	－0．225	－1．15	0.40
12		10.1	－0．230	－1．20	0.30
13	$\begin{aligned} & \text { y } \\ & \text { 品 } \\ & \text { 1 } \\ & \text { 采 } \\ & \text { 只 } \end{aligned}$	18.5	－0．150	－1．40	1.35
14		18.3	－0．150	－1．40	0.75
15		18.0	－0．150	－1．35	0.40
16		18.0	－0．150	－1．35	0.30
17		10.3	－0．145	－0．75	1.35
18		10.3	－0．150	－0．80	0.80
19		10.1	－0．150	－0．75	0.40
20		10.1	－0．150	－0．75	0.30
21	$\underset{\substack{\text { 品 }}}{\substack{2 \\ \hline}}$	18.4	0.095	0.90	0.80
22		18.0	0.095	0.85	0.50
23		17.9	0.10	0.90	0.40

Table 6．1 Test Flow details

Table 6.2 Results Summary
*(a) Calculated from measured velocity profile
(b) predicted by Tani's (1954) method

Fig. 6.2.1 Streamwise distribution of freestream turbulence components (reproduction from Blair (1980))

Fig. 6.2.2. Turbulence intensity as a function of velocity

Fig. 6.2.3. Mean freestream velocity distributions for the four working section geometries tested
trace (a)

trace (b)

*The above traces were traced from photographs of a storage oscilloscope screen.

Fig. 6.4.1 Instantaneous velocity within a transitional boundary layer ($\gamma \cong 0.1$)

Fig. 6.4.2 Development of boundary layer through transition

Fig. 6.5.1 Start of transition correlations (zero pressure gradient)

Nominal Turbulence Intensities

Fig. 6.5.2. Abu-Ghannam \& Shaw correlation for $\mathrm{R}_{\theta_{S}}$ in non-zero pressure gradient flows

Fig. 6.6.1. Polynomial approximation to normal distribution

Fig. 6.6.2. Plot of X_{1} against σ
$\sigma(\mathrm{mm})$

Fig. 6.6.3. (a) present γ vs ζ Intermittency distribution

Fig. 6.6.3. (b) Dhawan \& Narasimha Intermittency Distribution

Fig. 6.6.3. (c) Abu-Ghannam \& Shaw Intermittency Distribution

Fig. 6.7.1. Present zero pressure gradient correlation

Fig. 6.8.1. Velocity gradient effect on transition length ($U_{0} \cong 18 \mathrm{~m} / \mathrm{s}$ for all cases)
(Nominal)
$\frac{d U}{d x}=-0.70$

$$
\frac{d U}{d x}=-1.20
$$

(- transition length (mm)

Fig. 6.8.2. Effect of freestream turbulence on transition length for constant vecloity gradients

$$
\frac{d U}{d x}=-1.20 \quad\left(U_{O} \cong 10 \mathrm{~m} / \mathrm{s}\right)
$$

Tu

Fig. 6.8.3. Effect of freestream turbulence on start and end of transition for constant velocity gradient

- - start of transition
- - end of transition

Fig. 6.9.1. Effect of fav velocity gradient on transition length

Fig. 6.10.1. Present correlation - combined effect of freestream turbulence and pressure gradient on transition length

Fig. 6.10.2 $\quad R_{\sigma}$ (equation 6.14) against R_{σ} (measured)

Fig. 6.10.3 Present Data Compared with Dhawan \& Narasimhas' Production
layer development

7.1 Introduction

Early methods for predicting the development of a boundary layer over a surface frequently ignored the transition region by assuming transition to occur abruptly at a specific point, normally chosen close to the centre of the transition region (see Rotta 1962). However, if the transition region occupies a high percentage of the surface, as in the case of flow over a turbine blade, the gradual change of the mean flow properties from the laminar to turbulent values is obviously of great importance for a reliable assessment of the boundary layer development to be made.

This is realised in the more recent prediction methods of McDonald \& Fish (1973), Forrest (1977) and Abu-Ghannam \& Shaw (1980). The former two methods are differential methods which solve the basic partial differential equations and ultimately results in predicted mean velocity profiles. These are then integrated numerically to give the boundary layer parameters. The method of Abu-Ghannam \& Shaw is wholly emp \ddagger rical and is dependent on correlations of the mean flow parameters through transition.

The present method is different from the above techniques in that established integral methods for the laminar and turbulent boundary layers are used in conjunction with an intermittency modelled transition region. The advantage of this technique lies in the computational simplicity of integral prediction techniques and in the fact that the number of empirical correlations have been reduced to a minimum.

The two integral methods selected were those of Tani (1954), for the laminar boundary layer and Alber (1968), for the turbulent boundary layer. Alber's method was selected as it was reported to be one of the best methods presented at the Stanford Conference, Kline et al (1968) and Tani's method was selected as it was compatible with Alber's method, both being dissipation integral techniques. Both these methods are described in detail in Appendix 4.

In actual fact the transition model presented in this chapter is not dependent on the methods used for predicting the laminar and turbulent boundary layer components, provided that the methods predict the relevant flow parameters adequately. A comparison of the transition model using the methods of Thwaites (1949), for predicting the laminar boundary layer and Green et al (1977), for the turbulent boundary layer, is made between that of the Tani/Alber combination and is shown in fig. [7.4.8].

A complete boundary layer prediction scheme along with a fairly extensive graphics package was programmed to run on the same BBC micro-computer that was used for the data acquisition and control. The prediction scheme computes the development of the boundary layer from the leading edge of a plate through transition to the turbulent state. The input data was kept to a minimum and for arbitrary calculations the correlations of Abu-Ghannam \& Shaw and that of the present author, equation 6.14 were used to define the onset of transition and the extent of the transition region respectively.

The transition model described below was then used to predict the development of the flow parameters through transition. A comparison of this model with a selection of the present data and that of Schubauer \& Klebanoff (1956), Dhawan \& Narasimha (1957) and Abu-Ghannam \& Shaw is shown in figs. [7.4.1 \rightarrow 7.4.8]

7.2 Transition model

As described in the previous chapter the flow within a transition region alternates between the laminar and turbulent flow states; the fraction of time spent in turbulent motion being governed by the intermittency function. The present intermittency function, which has been shown to be applicable in both zero and moderate non-zero pressure gradients, is defined by equation 6.4 in terms of the co-ordinates
γ versus ζ

Using this function the transition region is defined within the range $-2.3<\zeta<2.3$ corresponding to $0.01<\bar{\gamma}<0.99$. Therefore, provided the start and length of the transition region are defined, equations $6.4,6.5$ and 6.6 can be used to compute $\bar{\gamma}$ at any arbitrary position within the transition region.

Following Dhawan \& Narasimha (1957) the mean transitional velocity profiles are represented by an intermittency weighted average of the separate laminar and turbulent components:

$$
\left(u / U_{\infty}\right)_{t}=(1-\bar{\gamma})\left(u / U_{\infty}\right)_{I}+\bar{\gamma}\left(u / U_{\infty}\right)_{T}
$$

The boundary layer parameters through transition are defined as

$$
\delta_{t}=\int_{0}^{\delta_{t}}\left\{1-\left(\frac{u}{U_{0}}\right)_{t}\right\} d y \quad \ldots \ldots \ldots .
$$

$$
\begin{align*}
& \theta_{t}=\int_{0}^{\delta t}\left\{\left(u / u_{\infty}\right)_{t}\left[1-\left(u / U_{\infty}\right)\right)_{t}\right\} d y \\
& \text { and } H_{t}=\delta^{*} / \theta_{t}
\end{align*}
$$

where δ_{t} is the transitional boundary layer thickness and is taken as δ_{L} or δ_{T} whichever is the greatest.

Evaluation of these integrals using equation 7.1 results in

$$
\delta_{t}=(1-\bar{\gamma}) \delta_{L}^{*}+\bar{\gamma}\left(\delta^{*} T\right) \quad \ldots \ldots \ldots .
$$

$\theta_{t}=(1-\bar{\gamma})\left\{(1-\bar{\gamma}) \theta_{L}-\bar{\gamma} \delta_{L}^{*}\right\}+\bar{\gamma}\left\{\bar{\gamma} \theta_{T}-(1-\bar{\gamma}) \delta_{T}{ }_{T}\right\}+2 \bar{\gamma}(1-\bar{\gamma}) F\left(\delta_{t}\right)$
where $F\left(\delta_{t}\right)=\int_{0}^{\delta_{t}}\left\{1-\left(\frac{u}{U_{\infty}}\right)_{L}\left(\frac{u}{U_{\infty}}\right)_{T}\right\} d y$
Further, the skin friction coefficient through transition can be represented by:

$$
C f_{t}=(1-\bar{\gamma}) C f_{L}+\gamma C f_{T}
$$

An additional boundary layer parameter predicted by this model is the energy thickness $\delta^{* *}$, which is defined as

$$
\delta_{t}^{* *}=\int_{0}^{\delta_{t}}\left\{\left(u / U_{\infty}\right)_{t}\left[1-\left(u / U_{\infty}\right)_{t}\right]\right\} d y
$$

$$
\mathrm{o}_{\mathrm{t}} \text {, , , }
$$

evaluation of this integral results in

$$
\delta_{t}^{* *}=(1-\bar{\gamma})\left\{(1-\bar{\gamma})^{2} \delta_{\dot{L}}^{* *}+\bar{\gamma}(\bar{\gamma}-2) \delta_{L}^{*}\right\}+\bar{\gamma}\left\{\bar{\gamma}^{2} \delta_{\bar{T}}^{* *}+\left(\bar{\gamma}^{2}-1\right) \delta_{T}^{*} 3 \bar{\gamma}(1-\bar{\gamma}) Q\left(\delta_{t}\right)\right.
$$

where $Q\left(\delta_{t}\right)=\int_{0}^{\delta}\left\{1-\left(\frac{u}{U_{\infty}}\right)_{t}\left(\frac{u}{U_{\infty}}\right)_{I}\left(\frac{u}{U_{\infty}}\right)_{T}\right\} d y$
The derivation of this equation is given briefly in Appendix 3.
The energy thickness shape factor is then given by

$$
H_{32} t=\frac{\delta_{t}^{* *}}{\theta_{t}}
$$

Evaluation of the mixed integral terms $F\left(\delta_{t}\right)$ and $Q\left(\delta_{t}\right)$ in equations 7.6 and 7.9 requires the laminar and turbulent mean velocity profiles to be fully specified.
mean Zaminar velocity profile
The Pohlhausen fourth-order polynomial velocity profile is assumed for the laminar mean velocity profile.

$$
\begin{align*}
& \left(\frac{\mathrm{u}}{U_{\infty}}\right)_{\mathrm{L}}=2\left\{\left(\mathrm{y}_{\mathrm{L}} \delta_{\mathrm{L}}\right)-2\left(\mathrm{y} / \delta_{\mathrm{L}}\right)^{3}+\left(\mathrm{y} / \delta_{\mathrm{L}}\right)\right\}^{4}+\frac{\lambda_{\mathrm{P}}}{6}\left\{\left(\mathrm{y} / \delta_{\mathrm{L}}\right)-3\left(\mathrm{y} / \delta_{\mathrm{L}}\right)^{2}+3\left(\mathrm{y} / \delta_{\mathrm{L}}\right)^{3}-\left(\mathrm{y} / \delta_{\mathrm{L}}\right)^{4}\right\} \\
& \text { where } \lambda_{p}=\frac{\delta_{L}{ }^{2}}{v} \frac{d U_{\infty}}{d X} \\
& 7.11
\end{align*}
$$

Tani's method for predicting the laminar boundary layer does not output the boundary layer thickness δ. However the term λ_{θ} ie

$$
\lambda_{\theta}=\frac{\theta_{L}}{v} \frac{d U_{\infty}}{d X}
$$

is available and is related to λ_{p} through the Pohlhausen relationship.

$$
\lambda_{\theta}=\lambda_{p}\left\{\frac{37}{315}-\frac{\lambda_{p}}{945}-\frac{\lambda_{p^{2}}}{9072}\right\}
$$

The curve fits of Fraser (1979) are used to recast the subject of the above equation ie

$$
\begin{gathered}
\lambda_{\mathrm{p}}=10 \lambda_{\theta}\left\{\lambda_{\theta^{2}}\left(6600 \lambda_{\theta}-543\right)+\left(7+31 \lambda_{\theta}\right)\right\} \ldots \ldots \cdot 7.15 \\
\text { For } \lambda_{\theta}>0 \\
\lambda_{\mathrm{p}}=\lambda_{\theta}\left\{73+109 \lambda_{\theta}+790 \lambda_{\theta^{2}}\right\} \\
\text { For } \lambda_{\theta}<0
\end{gathered}
$$

The boundary layer thickness δ_{L} can then be obtained from equation 7.14.
mean turbulent velocity profile
The turbulent mean velocity profile is represented as a power law:

$$
\left(\frac{u}{v_{\infty}}\right)_{T}=\left(\frac{y}{} / \delta_{T}\right)^{1 / n}
$$

The exponent n being related to the turbulent velocity profile shape factor by

$$
\mathrm{n}=\frac{2}{\mathrm{H}_{T}-1}
$$

and the thickness δ_{T} represented by

$$
\delta_{T}=\frac{\theta_{T} H_{T}\left(\mathrm{H}_{\mathrm{T}}+1\right)}{\mathrm{H}_{\mathrm{T}}-1}
$$

7.3 The computational model

The computational model was written in BBC BASIC and requires a minimum of input data to predict the development of a boundary layer from the leading edge of a body. The following input data is required:
(a) The freestream velocity distribution;
(b) The freestream turbulence level, Tu;
(c) The plate length, L ;
(d) The reference velocity, U_{0};
(e) The ambient pressure and temperature.

For computational convenience the freestream velocity
distribution is input in the form
$\frac{U_{\infty}}{U_{0}}=E(x / L)^{P}+A+B(x / L)+C(x / L)^{2}+D(x / L)^{3} \ldots$
which covers a convenient range of test flow conditions.

The method of Tani (1954) is then used to calculate the laminar boundary layer parameters from the leading edge through to the end of the transition region. Hence the values of $\mathrm{Cf}_{\mathrm{L}}, \delta_{\mathrm{L}} \mathrm{L}, \theta_{\mathrm{L}}$ and $\delta^{* *} \mathrm{~L}$ are available throughout the transition region. The turbulent boundary layer calculation commences from the point at which transition starts through to the end of the plate. Therefore, the turbulent boundary layer parameters $\mathrm{Cf}_{\mathrm{T}}, \delta{ }_{\mathrm{T}}, \theta_{\mathrm{T}}$ and $\delta{ }_{\mathrm{T}}$ are also available throughout the transition region. These values along with the numerical integration of the terms $F\left(\delta_{t}\right)$ and $Q\left(\delta_{t}\right)$ are then used to obtain the transition boundary layer parameters $C f_{t}, \delta * t, \theta_{t}$ and $\delta{ }^{* *}$ from equations $7.7,7.5,7.6$ and 7.9 respectively. To start the turbulent calculation initial values of $\delta \star_{T}, \Pi$ and Cf_{T} are required. Whites skin friction correlation (equation 4.14), which requires the input of R_{θ} and H_{T}, is used to estimate the initial skin friction coefficient. Due to numerical difficulties the calculation could not be started at the flow origin ie $\theta_{\mathrm{T}}=0$ therefore, the assumption that $\theta_{T}=\theta_{L S} / 3$ is made for the starting value of θ_{T} at the point of transition. (Surprisingly the calculation procedure is relatively insensitive to the starting value of θ_{T}). Following the work of Wygnanski et al (1976), who measured velocity profiles within turbulent spots, the initial shape factor is set to $H=1.5$. With initial values of $\mathrm{Cf}_{\mathrm{T}}, \theta_{\mathrm{T}}$ and H_{T} defined, $\delta *_{T}$ and $I I$ are calculated from

$\delta *_{\mathrm{T}}=\theta_{\mathrm{T}} \mathrm{H}_{\mathrm{T}}$	$\ldots \ldots \ldots$	7.21
$\Pi=0.8\left(\beta_{\mathrm{T}}+0.5\right)^{0.75}$	$\ldots \ldots \ldots$	7.22

where $\beta_{T}=\frac{2 \delta_{T} *}{C f_{T} U_{\infty}} \frac{d U_{\infty}}{d x}$
Unlike the laminar boundary layer the turbulent boundary layer mean flow parameters are effected by the magnitude of the turbulence level in the freestream. The empirical correlations of Bradshaw (1974) are incorporated into the turbulent calculation procedure to account for this effect ie:

$$
\begin{aligned}
& \theta_{\mathrm{Tu}}=\frac{\theta}{1+0.05 \mathrm{Tu}} \\
& \mathrm{H}_{\mathrm{Tu}}=\mathrm{H}[1-0.01 \mathrm{Tu}] \\
& \mathrm{Cf}_{\mathrm{Tu}}=\mathrm{Cf}[1+0.032 \mathrm{Tu}]
\end{aligned}
$$

where subscript Tu denotes the freestream turbulence corrected value.

No empirical relationship exists for the effect of freestream turbulence on the energy thickness. This should be realised when comparing the predicted values of $\delta^{* *}$ with the experimental data. However, for the range of freestream turbulence levels investigated the effect of the freestream turbulence is likely to be small as can be seen from the above equations.

The empirical correlation of Abu-Ghannam \& Shaw (1980)
which gives the momentum thickness Reynolds number at the start of transition as a function of the local pressure gradient parameter, λ_{θ}, and the freestream turbulence level, Tu , is included in the computational model to define the position at which transition commences. This correlation is given as:
$R_{\theta_{S}}=163+\exp \left\{f\left(\lambda_{\theta}\right)-f\left(\lambda_{\theta}\right) \frac{T u}{6.91}\right\}$
where

$$
\begin{aligned}
& f\left(\lambda_{\theta}\right)=6.91+12.75 \lambda_{\theta}+63.64\left(\lambda_{\theta}\right)^{2} \text { for } \lambda_{\theta}<0 \\
& \text { and } \\
& f\left(\lambda_{\theta}\right)=6.91+2.48 \lambda_{\theta}-12.27\left(\lambda_{\theta}\right)^{2} \text { for } \lambda_{\theta}>0
\end{aligned}
$$

The correlation due to the present author, equation 6.14 is then used to define the transition length. This equation is repeated below for completeness of this section.
$R_{\theta}=\left[270-\frac{250 \mathrm{Tu}^{3 \cdot 5}}{1+\mathrm{Tu}^{3 \cdot 5}}\right]\left[\frac{1}{1+1710\left(-\lambda_{\theta}\right)^{1 \cdot 4} \exp \sqrt{1+\mathrm{Tu}^{3 \cdot 5}}}\right] \times 10^{3}$

At present the model is restricted to zero and adverse pressure gradient flows as the transition length correlation is only applicable to such flows.

The computation model also incorporates a fairly extensive graphics package which can be used to compare the quality of the prediction to experimental data or merely to observe the prediction of the boundary layer parameters in the case of an arbitrary calculation.

The graphics software was written to enable a hard copy of the screen graphics to be obtained from a graph plotter which is controlled through the BBC microcomputer user port. Such printouts are shown in figures 7.4.1 \rightarrow 7.4.8.

The validity of the model presented in this chapter was tested against a sample of the present data and the data of Dhawan \& Narasimha (1957), Schubauer and Klebanoff (1956) and Abu-Ghannam \& Shaw (1980). To make a fair assessment of the transition length correlation (equation 6.14), the experimentally measured position of the transition onset was read in as part of the input data.

Figures 7.4.1 (a) and 7.4.5 (b) show the predicted and measured boundary layer integral parameters and the mean velocity profiles for a representative sample of the present flows and also for the zero pressure gradient flow of Schubauer and Klebanoff. As can be observed from these figures the computational model predicts the boundary layer integral parameters and the velocity profiles very well for both the zero and adverse pressure gradient cases presented in the figures. Although the boundary layer velocity profiles and integral parameters have been predicted exceptionally well for the flow of Schubauer and Klebanoff the skin friction coefficient prediction is slightly lower than the experimentally measured values. However, due to difficulty in measuring the skin friction in a transitional flow, not too much emphasis should be placed on this observation.

Figures 7.4 .6 and 7.4 .7 show the present prediction against the experimentally measured data of Abu-Ghannam \& Shaw for both a zero and an adverse pressure gradient flow. The zero pressure gradient flow is well predicted by the model, with the exception of the skin friction coefficient which again is slightly low, although not markedly so. The distribution of the skin friction
through the transition region for the adverse pressure gradient flow of the Abu-Ghannam \& Shaw has been poorly represented by the model.

The reason for this lies, not in the transition model itself, but in the fact that the transition length has been predicted approximately 30% less than the experimentally measured value.

As mentioned in section 7.1 the integral methods used to compute the component laminar and turbulent parameters for the transition model are not important provided they are reliable and well established methods. Fig. [7.4.8] shows the transition model described in section 7.2 , against the data of Dhawan \& Narasimha, using two different combinations of integral methods for the computation of the component laminar and turbulent boundary layer parameters. The two combinations are
(i) Tani/Alber used for the previous predictions.
(ii) Thwaites/Green et al - Thwaites (1949) method being used for the laminar boundary layer computation and Green et al (1977) lag entrainment method being used for the turbulent boundary layer computation.

As can be seen from this figure the transition model performs equally well irrespective of the combination chosen.

In general the transition model predict the flows very well but the method is crucially dependent on the accurate prediction of the onset and extent of the transition region. This is not peculiar to this particular method but would be as important for any method which uses transition onset and length correlations as a basis.

Fig. 7.4.1 (a) Boundary layer prediction of present Flow 3

Fig. 7.4.1 (b) Predicted mean velocity profiles through transition

Fig. 7.4.2 (a) Boundary layer prediction of present Flow 4

Fig. 7.4.2 (b) Predicted mean velocity profiles through transition

Fig. 7.4.3 (a) Boundary layer prediction of present Flow 6

Fig. 7.4.3 (b) Predicted mean velocity profiles through transition

Fig. 7.4.4 (a) Boundary layer prediction of present Flow 14

Fig. 7.4.4 (b) Predicted mean velocity profiles through transition

Fig. 7.4.5 (a) Boundary layer prediction of Schubauer \& Klebanoff (1956 zero pressure gradient flow

Fig. 7.4.5 (b) Predicted mean velocity profiles through transition

Fig. 7.4.6 Boundary layer prediction of Abu-Ghannam \& Shaw (1980) zero pressure gradient flow

Fig. 7.4.7 Boundary layer prediction of Abu-Ghannam \& Shaw (1980) Adverse pressure gradient flow

—_ Tani/Alber

- Thwaites/Green
Fig. 7.4.8 Boundary layer prediction of Dhawan \& Narasimha (1958) zero pressure gradient flow

CONCLUSIONS

1. The data acquisition and control system, based on the BBC microcomputer with BEEBEX Eurocard extension, was found to be completely satisfactory for the measurement of the mean flow variables in the laminar, turbulent and transitional boundary layers. The addition of this system, with analogue input and control, greatly enhanced the rate at which reliable data could be gathered and analysed. A further benefit lies in the ability to store the prime data in an organised manner for subsequent manipulation and graphical display. The data acquisition, control and data reduction software package developed, being interactively instructive, is extremely simple to use.
2. The flow over the test plate in the boundary layer wind tunnel facility has been improved to enable "free transition" values of $\mathrm{R}_{\mathrm{X}_{\mathrm{S}}}$ which concur with those of previous researchers.
3. A series of flows with different combinations of pressure gradient and freestream turbulence level were successfully set up and the boundary layer development for each case was recorded. Measurements were restricted to the plate centre line to remove the possibility of tunnel side wall effects influencing the results.
4. The system developed for measuring the intermittency function γ was very successful in giving reliable and repeatable measurements of the intermittency distribution $\bar{\gamma}(x)$ through the transition region.
5. The general boundary layer is well qualified by the near wall intermittency value. At intermittencies below $\bar{\gamma}=0.01$ the mean flow is characteristically laminar and at intermittencies above $\bar{\gamma}=0.99$ the mean flow is characteristically turbulent. At $\bar{\gamma}$ values between 0.01 and 0.99 the boundary layer is transitional and can be represented by an intermittency weighted function of the laminar and turbulent velocity components ie equation 7.1. The alternate switching process between the laminar and turbulent flow states within a transition region has been corroborated in a qualitative manner by observations of the instantaneous velocity signal within a transitional boundary layer, see fig. [6.4.1].
6. On the strength of the present data, the concept of statistical similarity of transition regions is shown to remain intact for moderate non-zero pressure gradients.
7. The mean intermittency distribution through a transition region is well represented by the normal distribution function and the statistical similarity is best illustrated when the intermittency $\bar{\gamma}$ is plotted against the normalised streamwise co-ordinate ζ.
8. With the transition region defined within the limits $0.01<\bar{\gamma}<0.99$ then the standard derivation σ of the intermittency data on the $\gamma(\zeta)$ distribution can be related directly to the transition length by equation 6.6 (see also fig. [6.6.2]).
9. The present results have shown that an adverse pressure gradient will promote early transition whilst a favourable pressure gradient will delay transition. This concurs with results from stability theory, Schlichting (1979), which indicate that adverse pressure gradients have a destabilising effect on the flow and that favourable pressure gradients have a stabilising effect.
10. For the present range of freestream turbulence levels tested, increasing the freestream turbulence has the effect of advancing the onset of transition. However, this effect becomes less significant with increasing adverse pressure gradient.
11. The length over which the breakdown process from laminar to turbulent flow occurs, ie the transition length, is greatly affected by both the freestream pressure distribution and the freestream turbulence level. In all cases the transition region is shortened by the influence of an adverse pressure gradient. From the present favourable pressure gradient/ transition length data available, it would appear that the transition length is increased by the influence of a favourable pressure gradient, however this observation is speculative as it is based on only one flow condition. In adverse pressure gradients, it has been shown that increasing the freestream turbulence, up to $T u \cong 1 \%$, has the effect of increasing the transition length. In this range, ie $0<T u<1$, the freestream turbulence level has a greater effect in advancing the start of transition than the end of transition hence the overall transition length is increased. Increasing Tu above 1\% reverses this trend, in consequence of the start of transition
approaching its asymptotic minimum position while the end of transition is still being significantly advanced.
12. A correlation which accounts for the combined effect of freestream turbulence and adverse pressure gradient on the transition length Reynolds number R_{σ} is presented. (Equation 6.14)
13. A general boundary layer integral prediction scheme for two-dimensional incompressible flows, which incorporates the new transition length correlation, has been developed. This prediction scheme uses existing integral techniques for the laminar and turbulent boundary layers in conjunction with an intermittency modelled transition region. The computational model was programmed to run on a BBC microcomputer and was tested against a representative sample of the present data and a number of flat plate test cases and is shown to model the development of the transitional boundary layer exceptionally well.

A limitation of the present boundary layer prediction model is its inability to compute the development of a transitional boundary layer in a case where laminar separation is predicted within the transition region. This stems from the fact that accurate values of the laminar boundary layer parameters are required, in the computation procedure, through to the end of transition.

It has recently been brought to the author's attention that this limitation may present a problem when applying the present model to a flow with a velocity distribution typical of that which exists on the suction surface of a gas turbine blade. An interesting development of the present work would therefore be to set up conditions to simulate the flow over a turbine blade and to make detailed measurements of the boundary layer development on the test surface. [The present boundary layer wind tunnel, with perhaps a few minor modifications, would be capable of reproducing the type of velocity distribution required to simulate such a flow].

Two questions which immediately spring to mind, which may be elucidated by such an investigation:
(i) Does this predicted laminar separation actually occur within the transition region?
(ii) If it does occur, how can the effect be modelled and accounted for in a computational procedure?

To answer these questions, condition sampling techniques would have to be employed to measure the seperate laminar and turbulent velocity profiles in and out of turbulent patches within the transition region. This would necessitate the use of a fast data acquisition system capable of storing large amounts of data. Although the sample rate of the current $B B C$ micro based system could be improved through the use of machine code routines, the limited amount of memory available would strictly limit its usefulness for such an investigation and therefore the present instrumentation would have to be enhanced by the addition of a more powerful microcomputer, possibly for example, the IBM PC with 512 K of available RAM.

Such an experimental program could also be extended to provide further data on the effect of local parameters on the location and extent of the transition region.

BIBLIOGRAPHY

Abu-Ghannam, B J \& Shaw, R (1980)	-. "Natural Transition of Boundary Layers - The Effects of Turbulence, Pressure Gradient and Flow History". Jour Mech Eng Sci Vol 22, No 5 (1980)
Alber (1968)	- "Application of an exact expression for the equilibrium dissipation integral to the calculation of turbulent nonequilibrium flows". Proc Computation of turbulent boundary layers, AFOSR-IFP, Stanford Conf (1968) Vol I pp 126-135
Arnal, D, Juillen, J C and Michel, R (1977)	- "Analyse Experimentale et calcul de l'apparition et du developpement de la transition de la couche limite". AGARD conf Proc No 224, Laminar-Turbulent Transition, paper no 13, 1977. English Translation:NASA TM 75325
Arnal, D (1984)	- "Description and prediction of transition in two-dimensional incompressible flow". Parts I and II AGARD Report No 709 (1984)
Baines, W D \& Peterson, E G (1951)	- "An investigation of flow through screens". Trans. ASME, Vol 73, (1951)
Bannister, B R \& Whitehead, M (1985)	- "Interfacing the BBC microcomputer". Macmillan (1985) ISBN 0333371577
Beverly, P (1984)	- "How to get full 12-Bit value from your ADC". ACORN USER March (1984)
Beverly, P (1985)	- "Analogue Port Application" ACORN USER February (1985)
Blair, M F \& Werle, M J (1980)	- "The influence of freestream turbulence on the zero pressure gradient fully turbulent boundary layer". UTRC Report R80-914388-12 Sept (1980)
Blair, M F (1982)	- "Influence of freestream turbulence on boundary layer transition in favourable pressure gradients". ASME Jour Eng Power Vol 104 (1982)

Blair, M F (1983)	- "Influence of freestream turbulence on turbulent boundary layer heat transfer and mean profile development Parts I \& II" ASME Jour Heat Tran Vol 105 (1983)
Bradshaw, P (1972)	- "The understanding and prediction of turbulent flow". Aero Jour, July 1972
Bradshaw, P (1974)	- "Effect of freestream turbulence on turbulent shear layers". Imp Coll Aero Rep 74 - 10 Oct (1974)
Brown, A \& Burton R L (1978)	- "The effects of freestream turbulence intensity and velocity distribution on heat transfer to curved surfaces". ASME Jour Eng Power Vol 100, (1978)
Brown, A \& Martin, B W (1976)	- "The use of velocity gradient factor as a pressure gradient parameter". Proc Instn Mech Engrs. Vol 190 (1976)
Castro, I P (1984)	- "Effects of freestream turbulence on Low Reynolds number boundary layers". Tran ASME Vol 106 (1984)
Cebeci, T \& Bradshaw, P (1977)	- "Momentum transfer in boundary layers". McGraw-Hill (1977)
Cebeci, T \& Smith, A M O (1974)	- "Analysis of turbulent boundary layers". Academic Press (1974)
Clauser, F H (1954)	- "Turbulent boundary layers in adverse pressure gradients". Jour Aero Sc 21, (1954)
Clauser, F H (1956)	- "The turbulent boundary layer". Advances in App Mechs, vol 4 (1956)
Coles, D E (1956)	- "The law of the wake in the turbulent boundary layer". Jour Fluid Mech, vol 1 (1956)
Coles, D E (1962)	- "The turbulent boundary layer in a compressible fluid". Rand Rept, R-403-PR, Appendix A "A manual of experimental bounday layer practice for low speed flow". (1962)

Coles, D E (1968)

Coles, D E \& Hirst, E A (1968)

Coles, D E \& Savas, O (1979)

Corrsin, S and Kistler, A (1954)

Crabtree, L F (1957)

Debruge L (1970)

Dhawan, S \& Narasimha, R (1957)

Dryden, H L (1936)

Dryden, H L (1956)

Dryden, H L \& Schubauer, G B (1947)

Dunham, J (1972)

East, L F (1972)

- "The young persons guide to the data" Proc Computation of turbulent boundary layers, AFOSR-IFP, Stanford Conf (1968) Vol II pp 1 - 53
- "Computation of turbulent boundary layers". AFOSR-IFP, Stanford Conf (1968)
- "Interaction for regular patterns of turbulent spots in a laminar boundary layer". Proc IUTAM Symposium on Laminar-Turbulent transition, (1979) pp 277 - 287 Eds Eppler \& Fasel
- "The freestream boundaries of turbulent flows". N A C A Rep No 1244, (1954)
- "Prediction of transition in the boundary layer of an aerofoil". R A E, T N AERO 2491 (1957)
- "A theoretical determination of convection heat-transfer coefficients during transition on the suction side of turbine aerofoils" AFAPL. TR-69-95, (1970)
- "Some properties of boundary layer flow during the transition from laminar to turbulent motion". Jour Fluid Mech, Vol 3 (1958)
- "Air flow in the boundary layer near a plate". NACA Report No 562
- "Recent investigations of the problem of transition". Zeitschrift fur Flugwissenschaften Vol 4 (1956)
- The use of damping screens for the reduction of wind tunnel turbulence". Jour Aero Sci April (1947)
- "Prediction of boundary layer transition on turbomachinery blades". AGARD AG164, No 3 (1972)
- "Spatial variations of the boundary layer of a large low speed wind tunnel". Aero Jour 76, 1972

Emmons, H W (1951)	- "The laminar turbulent transition in a boundary layer" Part 1 Jour Aero Sci Vol 18 (1951)
Fage, A \& Preston, J H (1941)	- "On transition from laminar to turbulent flow in the boundary layer" Proc Roy Soc Vol 144 No 2 (1941)
Ferguson, J D, Stewart J \& Williams, P (1981)	- "Interfacing microprocessors; Design, operation and application of a universal interface board". Wireless World Oct (1981) pp 34 - 39, November (1981) pp 59-62, December (1981) pp 71-75
Fiedler, H \& Head, M R (1966)	- "Intermittency measurements in the turbulent boundary layer". Jour Fluid Mech vol 25, part 4, (1959)
Forest, A W (1977)	- "Engineering predictions of transitional boundary layers". AGARD conf Proc no 224, Laminarturbulent transition, paper no 24 (1977)
Fraser, C J (1979)	- "Boundary layer development from transition provoking devices" PhD thesis Dundee College of Technology (1979)
Fraser, C J \& Milne, J S (1980)	- "Boundary layer development from transition provoking devices". Int J Heat \& Fluid Flow Vol 2 No 4 (1980)
Fraser, C J (1986)	- "The assessment of boundary layer two dimensionality" Aero Jour (1986)
Fraser, C J, Milne J S \& Gardiner, I D (1987)	- "Application of a microcomputer for control, data acquisition and modelling in transitional boundary layer Studies". Proc 2nd Int Conf 'Microcomputers in Engineering' Swansea 7th - 10th April (1986) Eds Schrefler B A \& Lewis R W
Fraser, C J, Gardiner, I D \& Milne, J S (1987)	- "A comparison of two integral techniques for the prediction of transitional boundary layer flow" Conference on numerical methods in laminar and turbulent flow July 6th - 10th, MONTREAL 1987

Gad-el-Hak, M, Blackwelder, R F \& Riley, J J (1981)

Gazley, C (1953)

Granville, P S (1953)

Green, J E, Weeks, D J \& Brooman, B G (1977)

Hall, D J \& Gibbings, J C (1972)

Hancock, P E \& Bradshaw, P (1983)

Huffman, G D \& Bradshaw, P

Jaffe, N A, Okamura, T T \& Smith, A M O (1970)

Jarvis, J M (1985)

Klebanoff, P S (1955)

Klebanoff, P S, Tidstrom, K D
\& Sargent, L M (1962)

- "On the growth of turbulent regions in laminar boundary layers". Jour Fluid Mech, Vol 110 (1981)
- "Boundary layer stability and transition in subsonic and supersonic flow". Jour Aero Sci January (1953)
- "The caclulations of viscous drag on bodies of revolution". Navy Dept. The David Taylor model Basin Report 849, (1953)
- "Prediction of turbulent boundary layers and Wakes in compressible flow by a lag entrainment method". Aero Res Coun, R \& M No 3791, (1971)
- "Influence of Stream turbulence and pressure gradient upon boundary layer transition". Jour Mech Eng Sci, Vol 14, No 2 (1972)
- "The effect of freestream turbulence on turbulent boundary layers" Tran ASME Vol 105 (1983)
- A note on Von Karman's constant in low Reynolds number turbulent flows. Jour Fluid Mech, Vol 53, part 1, (1972)
- "Determination of spatial amplification factors and their application to predicting transition". A I A A, vol 1 (1963)
- "Fast data acquistion and the Apple II and Sage microcomputers" Proc "Developments in measurements and instrumentation in Engineering" Hatfield, 11-13 September, 1985, pub. Mech Eng Pub Ltd, for I Mech E
- "Characteristics of turbulence in a boundary layer with zero pressure gradient". N A C A, Tech note 3178, (1955)
- "The three-dimensional nature of boundary layer instability" Jour Fluid Mech, vol 12, part 1 (1962)

Liepmann, H W (1943)

Ludwieg, H and Tillmann, W (1950)

Martin, B W, Brown, A
\& Garret, S E (1978)

McDonald, H \& Fish, R W (1973)

Meier, H V \& Kreplin, H P (1980)

Michel, R (1951)

Milne, J S, Fraser C J
\& Gardiner, I D (1985)

Mitchner, M (1954)

Murlis, J, Tsai, H M
\& Bradshaw, P (1982)

- "Some remarks on turbulent shear flows" Proc Instn Mech Engrs Vol 180 pt 3 (1966)
- "Investigations of laminar boundary layer stability and transition on curved boundaries" NACA AC Rept No 3H3O (1943)
- "Investigation of the wall shearing stress in turbulent boundary layers" N A C A, Tech memo 1285 (1950)
- "Heat transfer to a PVD rotor blade at high subsonic passage throat Mach numbers" Proc Inst Mech Engrs Vol 192 (1978)
- "Practical calculations of transitional boundary layers", Int Jour Heat \& Mass Transfer vol 16, No 9, (1973)
- "Influence of freestream turbulence on boundary layer development" A I A A Jour Vol 18, No 1, (1980)
- "Etude de la transition sur le profiles d'aile; establissement d'un critere de determination du point de transition et calcul de la trainee de propil en incompressible', ONERA rapport 1/1578A, 1951
- "A low-cost data acquisition and control system based on a BBC microcomputer", Proc: "Developments in measurements and instrumentation in Engineering" Hatfield 11 - 13 September 1985. Published by M E P for I Mech E
- "Propagation of turbulence from an instantaneous point disturbance". Readers Forum, Jour Aero Sc, vol 21, No 5, 1954
- "The structure of turbulent boundary layers at low Reynolds numbers" Jour, Fluid Mech Vol 122 (1982)

Orr, W M F (1907)	- "The stability or instability of the steady motions of a perfect fluid and of a viscous liquid". Part 1: A perfect fluid; Part 2: A viscous liquid. Proc Roy Irish Acad 27, (1907)
Patel, V C (1965)	- "Calibration of the Preston tube and limitations on its use in pressure gradients". Jour Fluid Mech, vol 23, part 1, 1965
Pohlhausen, K (1921)	- "Zur naherungsweisen integration der differentialgleichung der laminaren reibungsschicht". Zeit fur ang. Math \& Mech 1 (1921)
Prandtl, L (1904)	- "On fluid motion at very small viscosity". Proc 3rd Int Math Cong. (Heidelberg)
Prandt1, L (1914)	- "Der luftwiderstand von kugeln" Ges Wiss Gottingen, Math Phy Klasse (1914)
Preston, J H (1958)	- "The minimum Reynolds number for a turbulent boundary layer and the selection of a transition device". Jour Fluid Mech, Vol 3, part 4, (1958)
Rayleigh, (Lord) (1880)	- Sci Papers 1, 474, 1180; 3, 17, 1887; 4,197, 1913. see also: "On the stability of certain fluid motions". Proc London Math Soc 2, 57, 1880 and 19, 67, 1887, Sci Papers 1, 474 and 3,17 . see also: Sci Papers 4, 203, 1895 and 6. 197 (1913)
Reshotko, E (1976)	- "Boundary layer stability and transition" Ann Rev Fluid Mech Vol 8, (1976)
Reynolds, 0 (1883)	- Phil Trans Roy soc 1883, or Collected Papers 2, 51, see also Sci Papers 2, 1883, see also "On the dynamic theory of incompressible viscous fluids and the determination of the criterion. Phil Trans Roy Soc (1895)

Rotta, J C (1962)

Sandborn, V A (1959)

Schlichting, H (1979)

Schubauer, G B \& Klebanoff, P S (1956)

Schubauer, G B \& Skramstad, H K (1942)

Seyb, N J (1972)

Sharma, 0 P, Wells, R A, Schlinker, R H and Bailey, D A (1982)

Shaw R, Hardcastle, J A
Riley, S \& Roberts, C C (1983)

Simpson, R L (1970)

Smith, A M O \& Gamberoni, N (1956) - "Transition, pressure gradient and stability theory", Proc 9th Int cong App Mech, 1956

Sommerfeld, A (1908)

- "Turbulent boundary layers in incompressible flow": Progress in Aero Sc vol 2, editors:Ferri, A, Kuchemann, D and Sterne, L H G Pergamon Press (1962)
- "Measurements of intermittency of turbulent motion in a boundary layer", Jour Fluid Mech vol 6 (1959)
- "Bondary layer theory" seventh edition. McGraw-Hill Book Company (1979)
- "Contributions on the mechanics of boundary layer transition", NACA Rep No 1289 and NACA TN 3489 (1956)
- "Laminar boundary layer oscillations and stability of laminar flow", Nat Bur St, Res Rept 1772, 1943; see also NACA Rept 909, (1948)
- "The role of boundary layers in axial flow turbomachines and the prediction of their effects" Proc AGARD Conf 164 (1972)
- "Boundary layer development on turbuie airfoil suction surfaces" Trans ASME Vol 104 (1982)
- "Recording and analysis of fluctuating signals using a microcomputer" Int Conf on "The use of Micros in fluid engineering" BHRA June 7-8 (1983)
- "Characteristics of the turbulent boundary layer", Jour Fluid Mech, vol 42, 1970
- "Ein beitrag zur hydrodynamischen erklarung der turbulenten flussig-keitsbeivegungen" Atti del 4, Cong Int dei Mat, vol 3, 1908

Tani, I (1954)	- "On the approximate solution of the laminar boundary layer Equations" Jour Aero Sci Vol 21 (1954)
Tani, I (1969)	- "Boundary layer transition" Ann Rev Fluid Mech Vol 1 (1969)
Taylor, G I	- "Statistical theory of turbulence, 5. Effect of turbulence on boundary layer". Proc Roy Soc, London A 156, 1936; see also: "Some recent developments on the study of turbulence". Proc 5th Int cong App Mech, New York, 1938
Thwaites, B (1949)	- "Approximate calculation of the laminar boundary layer", Aero Quarterly Jour vol 1, 1949
Tollmien, W (1929)	- "Ueber die entstehung der turbulenz. 1. Mitteilung" Nachr Ger Wiss Gottingen, Math Phy Klasse, see also N A C A T M 1265, 1950
Townsend, A A (1948)	- "Local isotrpy in the turbulent wake of a cylinder" Austr Jour Sci Res Vol 1 (1948)
Townsend, A A (1965)	- "Self preserving flow inside a turbulent boundary layer" Jour Fluid Mech Vol 22, Pt 4 (1965)
Turner, A B (1971)	- "Local heat transfer measurements on a gas turbine blade" Jour Mech Eng Sci Vol 13 No 1 (1971)
$\begin{aligned} & \text { Van Driest, E R \& Blumer, C B } \\ & \text { (1963) } \end{aligned}$	- "Boundary layer transition: free stream turbulence and pressure gradient effects" A I A A vol 1 (1963)
Van Ingen, J L (1956)	- "A suggested semi-empirical method for the calculation of the boundary layer transition region" Rept V T H 74, Dept Aero \& Eng, Inst of Tech, Delft, Holland (1956)
White, F M (1974)	- "Viscous fluid flow", McGraw-Hill (1974)
Wygnanski, I, Sokolov M \& Friedman, D (1976)	- "On a turbulent spot in a laminar boundary layer", Jour Fluid Mech Vol 78, pt 4, (1976)

APPENDIX 1

Estimation of the experimental uncertainty
in the measured boundary layer integral
thicknesses

A1.1 Error due to uncertainty in velocity measurement

As described in section 4.4, when linearising the signal from a hot wire probe using the DISA 55425 lineariser there is an inherent parabolic error, usually with the maximum close to the centre of the linearised region and tailing off to zero at the maximum and minimum velocities, as shown in figure 4.4.1. The analysis which follows describes the effect such an error woald induce on the boundary layer integral parameters in both a laminar (parabolic type velocity profile) and a turbulent $(1 / 7$ th. power type velocity profile) boundary layer

The error is assumed to be zero at both $\left(\bar{u} / U_{\infty}\right)=0$ and $\left.\left(\overline{\breve{y}} / U_{\infty}\right)^{\prime}\right) 1$ with a maximum at $\left(\bar{u} / U_{\infty}\right)=0.5$ as shown below :-

The error is represented by the parabola :-

$$
\Sigma=A+B\left(\bar{u} / u_{\infty}\right)+C\left(\bar{u} / u_{\infty}\right)^{2}
$$

Writing $U=\left(U^{\prime} / U_{\infty}\right)$ and applying the boundary conditions

$$
\begin{aligned}
& \text { (i) } U=0, \Sigma=0 \\
& \text { (ii) } U=1, \Sigma=0 \\
& \text { (iii) } U=0.5, d \Sigma / d u=0, \Sigma=\Sigma m
\end{aligned}
$$

results in the local error being represented by :-

$$
\Sigma=4 \Sigma_{m}\left(u-u^{2}\right)
$$

If this error is now introduced into the local
velocity measurements ie.

$$
U^{\prime}=U+\Sigma U
$$

then the error introduced into the displacement, momentum and energy thicknesses are respectively

$$
S^{*}=\int_{0}^{1}\left(1-u^{\prime}\right) d \eta ; \quad \theta^{\prime}=\int_{0}^{1} u^{\prime}\left(1-u^{\prime}\right) d \eta
$$

and

$$
\delta^{* *}=\int_{0}^{1} U^{\prime}\left(1-U^{\prime 2}\right) d y
$$

Considering first the displacement thickness, S^{*}

$$
\begin{aligned}
\delta^{* \prime} & =\int_{0}^{1}(1-u-\Sigma u) d \eta \\
& =\int_{0}^{1}\left[1-u-4 \Sigma_{m}\left(u-u^{2}\right) u\right] d \eta \\
& =\int_{0}^{1}(1-u) d \eta-4 \Sigma_{m} \int_{0}^{1}\left(u^{2}-u^{3}\right) d \eta \\
\therefore \Delta \delta^{*} & =\delta^{* \prime}-\delta^{*}=-4 \Sigma_{m} \int_{0}^{1} u^{2}-u^{3} d \eta
\end{aligned}
$$

Hence:-

$$
\frac{\Delta \delta^{*}}{s}=\frac{-\Delta \sum_{m} \int_{0}^{2}\left(u^{2}-u^{3}\right) d p}{\int_{0}^{2}(1-u) d \eta}
$$

AI. 1

Considering now the momentum thickness, θ

$$
\begin{aligned}
\Theta^{\prime} & =\int_{0}^{1}\{(U+\Sigma U)[1-(U+\Sigma U)]\} d \eta \\
& =\int_{0}^{1}\left\{\left[U+4 \Sigma_{m}\left(U-U^{2}\right) U\right]\left[1-\left(U+4 \Sigma_{m}\left(U-U^{2}\right) U\right)\right]\right\} d \eta \\
& =\int_{0}^{1}\left\{\left[U+4 \Sigma_{m} U^{2}-4 \Sigma_{m} U^{3}\right]\left[1-U-4 \Sigma_{m} U^{2}+4 \Sigma_{m} U^{3}\right]\right\} d \eta
\end{aligned}
$$

Neglecting power terms in \sum_{m} results in :-

$$
\begin{aligned}
& \theta^{\prime}= \\
& \Rightarrow \int_{0}^{1}\left\{\left(U-U^{2}\right)+4 \sum_{m} U^{2}-12 \sum_{m} U^{3}+8 \Sigma_{m} U^{4}\right\} d \eta \\
& \Rightarrow \theta^{\prime}=\theta+4 \sum_{m} \int_{0}^{1} U^{2}\left(1-3 U+2 U^{2}\right) d y \\
& \therefore \Delta \theta=\theta^{\prime}-\theta=4 \sum_{m} \int_{0}^{1} U^{2}\left(1-3 U+2 U^{2}\right) d \eta
\end{aligned}
$$

Hence :-

$$
\frac{\Delta \theta}{\theta}=\frac{4 \Sigma_{m} \int_{0}^{1} U^{2}\left(1-3 U+2 U^{2}\right) d \eta}{\int_{0}^{1} U(1-U) d \eta}-\Lambda 1.2
$$

Similarly if power terms in \sum_{m} are neglected then :-

$$
\frac{\Delta \delta^{* *}}{\delta^{* *}}=\frac{4 \sum_{m} \int_{0}^{1} U^{2}\left(1-U+3 U^{2}-3 U^{3}\right) d \eta}{\int_{0}^{1} U\left(1-U^{2}\right) d \eta}-A 1.3
$$

Assuming a parabolic "laminar" velocity profile ie.

$$
U=2 \eta-\eta^{2}
$$

Substituting this into equations Al.1,A1.2, and AlP and evaluating, results in :-

$$
\frac{\Delta \delta^{*}}{\delta}=-0.92 \Sigma m
$$

$$
\frac{\Delta \theta}{\theta}=-0.78 \Sigma_{m}
$$

$$
\frac{\Delta \delta^{* *}}{\delta^{* \hbar}}=-0.70 \Sigma_{m}
$$

Substituting a $1 / 7$ th. power "turbulent" velocity profile into equations Al.1,Al. 2 and Al. 3 and evaluating, results in :-

$$
\begin{aligned}
& \frac{\Delta \delta^{*}}{\delta}=-2.5 \mathrm{\Sigma m}_{\mathrm{m}} \\
& \frac{\Delta \theta}{\theta}=-2.2 \mathrm{\Sigma m} \\
& \frac{\Delta \delta^{*}}{\delta}=-1.9 \mathrm{\Sigma m}
\end{aligned}
$$

Therefore if the maximum error ie. \sum_{m} in the velocity measurements is 1% then the corresponding errors in $\zeta^{*}, \theta, \& \delta^{* *}$ for a parabolic velocity profile would be $-0.92 \% ; 0.78 \%$ and -0.70% respectively and $-2.5 \%,-2.2 \%$ and -1.9% respectively for a $1 / 7$ th. power velocity profile. The negative sign shows that if the error $\sum m$ is positive then the integral thicknesses are underestimated. Figure Al.l.l shows a parabolic profile with and without a 5% maximum error included (ie. $\sum_{m}=0.05$)and figure Al.l.2 shows the corresponding profiles of $(I-U)$, $U(1-U)$ and $U\left(1-U^{2}\right)$

Al. 2 Error due to uncertainty in y datum

A numerical error analysis assuming $\frac{4}{6}$ was underestimated by 1% showed that the corresponding error in all the boundary layer integral thicknesses was approximately -1%. The y datum can be set,at the very worst, to an accuracy of $\pm 0.1 \mathrm{~mm}$ therefore, if the boundary layer thickness is small this may constitute a non-negligible error in the integral parameters (in a lomm thick boundary layer the error in the integral thicknesses would, at worst, be 1% due to the uncertainty in setting the y datum). This error obviously diminishes as the boundary layer thickens

Figure Al. 1.1 Velocity profile

Figure Al. 1.2

APPENDIX 2

Description of a microcomputer based system for setting up the DISA 55M25 lineariser

APPENDIX 2 Microcomputer based system for setting up the DISA 55M25 Lineariser

The procedure for linearising the signal from a hot wire probe using the DISA 55M25 lineariser is fairly complex and usually very time consuming. After the basic functions have been set, as described in the user manual, the signal from the probe is linearised via the 55425 by a trial and error iterative process. The probe is first exposed to a known velocity at the high end of the calibration range and then the 'Gain High' control on the 55M25 is adjusted to give the required output on a digital voltmeter, DVM, (usually the voltage output from the lineariser is made to correspond to a convenient fraction of the flow velocity, in this case $1 / 10$ th.). The probe is then exposed to a known velocity at the low end of the calibration range and if the reading on the DVM does not correspond to the relevant velocity the 'Exponent Factor' control, on the 55M25, is adjusted. The probe is then again exposed to the high velocity and the DVM reading is checked. This process continues until a satisfactory linearisation is achieved.

The problem with this procedure is that, although adjustment of the various controls on the 55 M 25 have varying degrees of influence on different regions within the calibration range, eg. the Gain Eigh control affects the high velocity end of the range most significantly, each adjustment does in fact have some influence over the entire linearisation range. However the effect of such adjustments can only be assessed at one point at any one time. Therefore, for example when examining a reading on the DVM at the high end of the calibration range and making an adjustment to the Gain High control, there is no indication given of the effect this adjustment has on points at other positions within the linearisation
region.

To overcome this problem and to speed up the linearisation process a microcomputer based system was developed which.enabled a range of calibration points to be continuously fed into the lineariser input. The corresponding values output from the lineariser are then displayed on a monitor along with a line which corresponds to the 'ideal' linearised signal. The set up for this system is shown in figure A2.1 and a print out of the software required to run the system along with a flow diagram is given in figures A2.2 \& A2.3. (The BUFFER between the DAC and the Signal Conditioner,shown in figure A2.1, was required to overcome impedance matching problems encountered).

Briefly, a set of calibration points are obtained from a single run of the tunnel, in the relevant velocity range (ie. raw hot wire voltages and corresponding pitotstatic readings). These values are then manually fed into the BBC microcomputer.After the points have been suitably conditioned, within the software, they are output to the lineariser via a Digital-to-Analogue Converter, DAC, and then retrieved from the lineariser via an Analogue-to-Digital Converter, $A D C, i n$ a closed loop. These points are continuously displayed on a graph of V_{in} (voltage into lineariser) against Vout (voltage out of lineariser), along with a line which corresponds to the 'ideal' linearised signal. The effect on each point of a single adjustment to the lineariser controls can then be viewed, almost immediately, and an optimum setting can fairly easily be obtained.

Fig. A.2.1 Schematic diagram of apparatus used for setting up the DISA 55M25 lineariser

```
18 CLISE#D
28 mODE?
30 CLS
4e DIM F(11),Vbr(11),Vdac(11),Vade(11)
50 DIM Voutpl(11),Vimpl(1)
68 REM PRIE LIN.PFOE
70 PRINTTAB(4,8)CHR$132'INPUT AIR TEMF IN DeqC"
80 INFUTTAB (32,8) t
98 PRINTTAB(4,12)CHR$132"INFUT ATMOS. PRESS IN a⿴Hg"
108 INPUTTAB(32,12) !
118 Rho=0.465.j5*i/(t+273)
128 CLS
13e FRINTTABLC,2)CHR$133'INPUT CORRESPONDING H.H. VOLTAGES"
140 PRINTTAB(O,4)CHR$133"OPPOSITE THE DYNAMIC PRESSURES GIVEN"
150 PRINT:PRINT:
160 PRINTCHE$134" Dynamic pres5. H. H. Bridge"
170 PRINTCHR$134" maHg
180 X=0
198 FOR 1 = 1 TO LO
200 READ P(I)
210 FRINTTAR(8,10+2), F(D)
2E INFLTIAE!24,1B+K: Vbr(I)
\ y = + +
22 REXT
25R MODEL
260 40L 19,3,3,0,0,8
270 \DU 19,2,4,8,0,8
200 MOVE125,Q25:DRAH:25,125:ORAH1225,125
298 vTuS
30E MOVE50,750:PFINT"U"
S18 MOVE59,760:PRINT"i"
320 MOVE50,675:PFINT"n"
332 MOVE7DD,58:PFINT"y out"
340 HOVE50,85R:PFINT55*"
S5 HOVE5R,150:PRINT'2v*
360 MONE125, 90:FRINT"8v"
370 FOVE1215,9R;PRINT "2v"
380 vDu4
390 Ydatum1 = ((V)r (2) -2) 2 233.34)+125
400 Ydatum2=(!Vbr (10)-2)*233.34)+125
410 ydatu01={(50R (2+9.81+F (2)/Rho)/10) +550)+125
420 \datum2=((SOR(2*9.81*P(10)/Fho)/10)*550)+125
4 3 0 ~ M O V E X d a t u r i , ~ Y d a t u m 1 ~
440 DRAH'\datua2,Ydatum2
458 +10
46B A%=DPENUF "CU-DACE &COCE"
470 FOR I= 1 T0 10
480 Vdac(I)=Vbr (I) +50.5
498 BPUT#A%, Y机(I)
580 V5um%=0
51B FTR#A%=8
520 FOR K = 1 T0 10
500 V%=BGET#A%
540 V5U4%=V54%%+V%
550 HEXT
560 Vadc (I)= (V5um%/10) +2/255
570 Vimpl{I)=((Vbr{I)-2)*233.34)+125
580 6COL 0,1
593 Voutpl(I)=(Vadc(1)*550)+125
608 FLDT 69,Voutpl(I),Vinpl(I)
618 NEXT
62B TIME=G: FEPEAT UNTIL TIME=50
630 FOR I=1 TO 18
640 PLOT 71,Voutpl(I),Vinpl(I)
650 NEXT
660 60T0470
670 DATA 0, 0,5,1.6,2.25,4,0,6.25,9.8
G8B DATA 12.25,16.8,20.25
```


APPENDIX 3
Derivation of equation 7.9 for the energy
thickness in a transitional boundary layer

APPENDIX 3 Derivation of $\delta_{ \pm}^{* *}$
As described by Dhawan \& Narasimha(1958) the transitional boundary layer mean velocity profile can be defined as :-

$$
\left(\bar{u} / u_{\infty}\right)_{t}=(1-\bar{\gamma})\left(\bar{u} / u_{\infty}\right)_{L}+\bar{\gamma}\left(u / u_{\infty}\right)_{T}
$$

Writing ;

$$
U=\left(\bar{u} / U_{\infty}\right)
$$

and defining;

$$
\delta^{x *}=\int_{0}^{\delta} U\left[1-(U)^{2}\right] d y
$$

then;

$$
S_{t}^{* *}=\int_{0}^{\delta_{t}}\left[(1-\bar{\gamma}) u_{L}+\bar{\gamma} u_{T}\right]\left[1-\left\{(1-\bar{\gamma}) u_{L}+\bar{\gamma} u_{T}\right\}^{2}\right] d y-A 3.1
$$

Considering terms in U_{L} only

$$
\begin{aligned}
& \int_{0}^{\delta t}\left(U_{L}-U_{L}^{3}+3 \bar{\gamma} U_{L}^{3}-3 \bar{\gamma}^{2} U_{L}^{3}-\bar{\gamma} U_{L}+\bar{\gamma}^{3} U_{L}^{3}\right) d y \\
= & \int_{0}^{\delta_{t}}\left[(1-\bar{\gamma}) U_{L}-(1-\bar{\gamma})^{3} U_{L}^{3}\right] d y
\end{aligned}
$$

adding and subtracting $(1-\bar{\gamma})^{2} U_{L}$ gives:-

$$
\begin{aligned}
& (1-\bar{\gamma}) \int_{0}^{\delta_{t}}\left[(1-\bar{\gamma})^{2} U_{L}-(1-\bar{\gamma})^{2} U_{L}^{3}+U_{L}-(1-\bar{\gamma})^{2} U_{L}\right] d y \\
= & (1-\bar{\gamma})\left\{(1-\bar{\gamma})^{2} \delta_{L}^{*}+\int_{0}\left[U_{L}-(1-\bar{\gamma})^{2} U_{L}\right] d y\right\}
\end{aligned}
$$

after some algebra;

$$
\begin{align*}
& =(1-\bar{\gamma})\left\{(1-\bar{\gamma})^{2} \delta_{L}^{* *}+(1-\bar{\gamma})^{2} \delta_{L}^{*}-\delta_{L}^{*}+\int_{0}^{\delta_{t}}\left[2 \bar{\gamma}-\bar{\gamma}^{2}\right] d y\right\} \\
& =(1-\bar{\gamma})\left\{(1-\bar{\gamma})^{2} \delta_{L}^{* *}+(1-\bar{\gamma})^{2} S_{L}^{*}-\delta_{L}^{*}+\bar{\gamma}(2-\bar{\gamma}) \delta_{t}\right\}
\end{align*}
$$

From A3.l considering terms in U_{T} only, ie.

$$
\begin{align*}
& \int_{0}^{\delta_{t}}\left(\gamma U_{T}-\gamma^{3} U_{T}\right) d y \\
= & \bar{\gamma} \cdot \int_{0}^{\delta_{t}}\left[\bar{\gamma}^{2}\left(U_{T}-U_{T}^{3}\right)+U_{T}-\bar{\gamma}^{2} U_{T}\right] d y \\
= & \bar{\gamma}\left\{\bar{\gamma}^{2} \delta_{T}^{* *}+\int_{0}^{\delta_{t}}\left(U_{T}-\bar{\gamma}^{2} U_{T}\right) d y\right\} \\
= & \bar{\gamma}\left\{\bar{\gamma}^{2} \delta_{T}^{* *}+\int_{0}^{\delta_{t}}\left[\bar{\gamma}^{2}\left(1-U_{T}\right)+U_{T}-\bar{\gamma}\right] d y\right\} \\
= & \bar{\gamma}\left\{\bar{\gamma}^{2} \delta_{T}^{* *}+\bar{\gamma}^{2} \delta_{T}^{*}+\int_{0}^{\delta_{t}}\left[U_{T}-\bar{\gamma}^{2}\right] d y\right\} \\
= & \bar{\gamma}\left\{\bar{\gamma}^{2} \delta_{T}^{* *}+\bar{\gamma}^{2} \delta_{T}^{*}+\int_{0}^{\delta_{t}}\left[-\left(1-U_{T}\right)+1-\bar{\gamma}^{2}\right] d y\right\} \\
= & \bar{\gamma}\left\{\bar{\gamma}^{2} \delta_{T}^{* *}+\bar{\gamma}^{2} \delta_{T}^{*}-\delta_{T}^{*}+\left(1-\bar{\gamma}^{2}\right) \delta_{t}\right\} \tag{AS. 3}
\end{align*}
$$

From A3.1 considering terms in $U_{L} U_{T}$ only, ie.

$$
\begin{aligned}
& \int_{0}^{\delta_{t}}\left[-3 \bar{\gamma} U_{L}^{2} U_{T}+6 \bar{\gamma}^{2} U_{L}^{2} U_{T}-3 \bar{\gamma}^{2} U_{L} U_{T}^{2}-3 \bar{\gamma}^{3} U_{L}^{2} U_{T}+3 \bar{\gamma}^{3} U_{L} U_{T}^{2}\right] d y \\
= & -3 \bar{\gamma}(1-\gamma) \int_{0}^{\delta_{t}}\left[(1-\bar{\gamma}) u_{L}^{2} U_{T}+\gamma U_{L} U_{T}^{2}\right] d y \\
= & -3 \bar{\gamma}(1-\bar{\gamma}) \int_{0}^{\delta_{t}}\left[\left((1-\bar{\gamma}) u_{L}+\bar{\gamma} u_{T}\right) u_{L} U_{T}\right] d y \\
= & -3 \bar{\gamma}(1-\bar{\gamma}) \int_{0}^{\delta_{t}}\left[U_{t} U_{L} U_{T}\right] d y \quad \text { where } U_{t}=(1-\bar{\gamma}) U_{L}+\gamma U_{T} \\
= & -3 \bar{\gamma}(1-\gamma) \int_{0}^{\delta_{t}}\left[1-1+U_{t} U_{L} U_{T}\right] d y \\
= & \left.-3 \bar{\gamma}(1-\bar{\gamma}) \delta_{t}+3 \gamma(1-\gamma) \int_{0}^{\delta_{t}}\left[1-U_{t} U_{L} U_{T}\right] d y\right]
\end{aligned}
$$

Grouping A3.2,A3.3,A3.4 gives:-

$$
\begin{array}{r}
\delta_{t}^{* *}=(1-\bar{\gamma})\left[(1-\bar{\gamma})^{2} \delta_{L}^{* *}+(1-\gamma)^{2} \delta^{*}-\delta^{*}+\bar{\gamma}(2-\bar{\gamma}) \delta_{t}\right]+ \\
\bar{\gamma}\left[\bar{\gamma}^{2} \delta_{T}^{* *}+\bar{\gamma}^{2} \delta_{T}^{*}-\delta_{T}^{*}+\left(1-\bar{\gamma}^{2}\right) \delta_{t}\right]- \\
\\
3 \bar{\gamma}(1-\bar{\gamma}) \delta_{t}+3 \bar{\gamma}(1-\bar{\gamma}) \int_{0}^{\delta_{t}}\left[1-u_{t} U_{L} U_{T}\right] d y
\end{array}
$$

Considering all terms in δ_{t} ie.

$$
\begin{aligned}
& (1-\bar{\gamma}) \bar{\gamma}(2-\bar{\gamma}) \delta_{t}+\bar{\gamma}\left(1-\bar{\gamma}^{2}\right) \delta_{t}-3 \bar{\gamma}(1-\bar{\gamma}) \delta_{t} \\
= & \left(3 \bar{\gamma}-3 \bar{\gamma}^{2}-\bar{\gamma}^{3}+\bar{\gamma}^{3}-3 \bar{\gamma}+3 \bar{\gamma}^{2}\right) \delta_{t} \\
= & 0
\end{aligned}
$$

Giving finally :-

$$
\begin{aligned}
\delta_{t}^{* *}=(1-\bar{\gamma}) & {\left[(1-\bar{\gamma})^{2} \delta_{L}^{* *}+\bar{\gamma}(\bar{\gamma}-2) \delta_{L}^{*}\right]+} \\
& \bar{\gamma}\left[\bar{\gamma}^{2} \delta_{T}^{* *}+\left(\bar{\gamma}^{2}-1\right) \delta_{T}^{*}\right]+3 \bar{\gamma}(1-\bar{\gamma}) \int_{0}^{\delta t}\left(1-U_{t} U_{L} U_{T}\right) d y
\end{aligned}
$$

APPENDIX 4
 Integral prediotion methods for laminar and turbulent boundary layers.

APPENDIX 4 Integral prediction methods for laminar and turbulent boundary layers

A4.1 Tani's(1954) method for laminar boundary layers

Toni's method makes use of both the momentum integral and energy integral equations in an approximate solution for the laminar boundary layer. Mani assumes that the velocity profiles belong to a one parameter family of curves but adopts a new profile parameter in favour of the usual Pohlhausen/Thwaites parameter, λ_{θ}. The relationship between the new profile parameter and λ_{θ} is derived from the momentum integral and energy integral equations and used in the solution.

The basic equations :-
The basic equations for a steady two dimensional, incompressible laminar boundary layer are :-

$$
\begin{aligned}
& \partial u / \partial x+\partial v / \partial y=0 \\
& u \partial u / \partial x+v \partial u / \partial y=u_{\infty} d u_{\infty} / d x+v \partial^{2} u / \partial y^{2} 1
\end{aligned}
$$

A4.1 and A4.2 are the continuity and momentum equations respectively

The momentum integral equation is obtained by integrating A4.2 from $y=0$ to $y=\delta$ and results in :-

$$
\frac{u_{0}}{\sim} \frac{d \theta^{2}}{d x}+2 \frac{\theta^{2}}{\nu} \frac{d u_{0}}{d x}\left(2+\delta^{*} / \theta\right)=2 \theta / u_{\infty}(\partial y / \partial y)_{y=0}-14.3
$$

and the energy integral equation is obtained by multiplying A4.2 through by U_{∞} and integrating w.r.t.y from $y=0$ to $y=\delta$ resulting in :-

$$
\frac{U_{\infty}}{\nu} \frac{d \delta^{* *^{2}}}{d x}+6 \frac{\delta^{* *^{2}}}{N} \frac{d U_{\infty}}{d x}=\frac{4 \delta^{* *}}{U_{\infty}^{2}} \int_{0}^{\delta}\left(\frac{\partial u}{\partial y}\right)^{2} d y-14.4
$$

Following Pohlhausen, Rani assumed a laminar velocity profile in the form :-

$$
\frac{u}{U_{\infty}}=a_{0}+a \frac{y}{\delta}+b\left(\frac{y}{\delta}\right)^{2}+c\left(\frac{y}{\delta}\right)^{3}+d(y / 8)^{4}-14.5
$$

However in contrast to Pohlhausen the usual condition ;

$$
y=0: \frac{\partial^{2} u}{\partial y^{2}}=-\frac{U_{\infty}}{\nu} \frac{d u_{\infty}}{d x}
$$

which states that equation $\mathbf{4} 4.2$ is satisfied at the wall, is dropped so that the coefficient, a, remains undetermined. This coefficient is now adopted as the profile parameter and the velocity profiles are then represented by :-

$$
\left(\frac{u}{u_{\infty}}\right)=\left(\frac{y}{\delta}\right)^{2}\left(6-8(y / 8)+3(y / \delta)^{2}\right)+a(y / 8)(1-y / 8)^{3}-14.6
$$

Tank then introduced the non dimensional quantities

$$
\begin{gathered}
\frac{\delta^{*}}{\delta}=D ; \frac{\theta}{\delta}=E ; \quad \delta^{* *}=F \\
H_{12}=\frac{\delta^{*}}{\theta} ; \quad H_{32}=\frac{\delta^{* *}}{\theta} 14.7 \\
\frac{2 \theta}{U_{\infty}}\left(\frac{\partial u}{\partial y}\right)_{y=0}=P ; \frac{4 \delta^{* *}}{U_{\infty}^{2}} \int_{0}^{1}\left(\frac{\partial u}{\partial y}\right) d y=Q .8
\end{gathered}
$$

Using $14.7,14.8$ and 14.9 , equations 14.3 and 14.4 can be rewritten in the form :-

$$
\begin{align*}
& \frac{U_{\infty}}{\nu} \frac{d \theta^{2}}{d x}+2\left(2+H_{12}\right) \frac{\theta^{2}}{\nu} \frac{d U_{\infty}}{d x}=P \\
& \frac{U_{\infty}}{\nu} \frac{d H_{32}^{2} \theta^{2}}{d x}+G \frac{H_{32}^{2} \theta^{2}}{\nu} \frac{d u_{\infty}}{d x}=Q
\end{align*}
$$

where

$$
\begin{align*}
& D=\frac{2}{5}-\frac{a}{20} \\
& E=\frac{4}{35}+\frac{a}{105}-\frac{a^{2}}{252} \\
& F=\frac{876}{5005}+\frac{73}{5005} a-\frac{23}{5460} a^{2}-\frac{a^{3}}{2860}
\end{align*}
$$

$$
\begin{aligned}
& P=2 a E \\
& Q=\left\{\left(\frac{4}{35}\right) F\right\}\left(48-4 a+3 a^{2}\right)
\end{aligned}
$$

Tani also makes use of the approximation

$$
\frac{\theta^{2}}{\nu}=\frac{0.44}{U_{\infty}^{6}} \int_{0}^{x} U_{\infty}^{5} d x
$$

which is almost identical to Thwaites(1949) quadrature. However, Tani derived this form directly from the energy integral equation on the assumption that the variations in H_{32} and Q are sufficiently small for these parameters to be treated as constant.
$\theta^{2} / 2$ is determined explicitly from equation $A 4.17$ hence $\lambda \theta$ can then be abtained. But, since it is a and not λ_{θ} that is used as the parameter for the velocity profile, it is necessary to relate a to λ_{θ}

This is done by eliminating, $\frac{d \theta^{2}}{d x}$ from equations A4:10 and 14.11 and results in

$$
\lambda_{\theta}\left(H_{12}-1\right)=\frac{1}{2}\left(P-\frac{Q}{H_{32}^{2}}\right)+\lambda_{\theta} \frac{U}{H_{32}} \frac{d H_{32}}{d U_{\infty}}-A 4.18
$$

Method of solution:-
As it stands equation 44.18 is not in a form suitable for solution. Therefore, using equations 14.13 and 14.14 , equation 14.18 is rearranged to :-

$$
a=\left\{\lambda_{\theta}\left(H_{12}-1\right)+\frac{Q}{2 H_{32}^{2}}-\frac{a^{2}}{105}+\frac{a^{3}}{252}-\lambda_{\theta} \frac{U}{H_{32}} \frac{d H_{32}}{d U}\right\}\left[\frac{35}{4}\right]
$$

- A4. 19

Also $H_{12}=D / E ; H_{32}=F / E$ and Q are functions of the profile parameter, a, and substitution of these functions, given by equations $14.12,14.13,14.14$ and 14.16 , into eguation A4.19 establishes the relationship between a and λ_{θ}

The value of θ^{2} / ω and hence $\lambda_{\theta}=\theta^{2} / \omega \frac{d \omega_{0}}{d x}$ is evaluated from step-by-step integration of the quadrature given by equation A4.17. Then, for a first approximation to the solution of equation 14.19 the term $\lambda_{\theta} \frac{U_{80}}{H_{32}} \frac{d H_{32}}{d U}$ is neglected and, at each integration step, the value of the profile parameter, a, is determined by iteration of the resulting equation. Using the values of a determined from the first approximation to the solution of A4.19, a curve fitting routine is employed to estimate the neglected term. This term is then included in the second approximation to the solution of equation 14.19 and so on.

With the profile parameter, a, evaluated at each step, the profile shape factors, $H_{12} \& H_{32}$ are calculated from :-

$$
H_{12}=D / E ; \quad H_{32}=F / E
$$

The values of D, E and F being obtained from equations A4.12, A4. 13 and 14.14 respectively. The values of momentum thickness, θ, obtained from the numerical integration of equation 14.17 are used to calculate the remaining boundary layer integral thicknesses $S^{*} \& \delta^{* *}$ from equations 14.8

The skin friction coefficient, $C f$, is obtained from equation A4.9 knowing :-

$$
\tau_{0}=\mu\left(\frac{d u}{d y}\right)_{y=0}
$$

and

$$
c_{f}=\frac{2 T_{0}}{p U_{\infty}^{2}}
$$

then

$$
c \mathcal{F}=\frac{P_{2}}{\theta u_{\infty}}
$$

For a zero pressure gradient flow ie. $\lambda_{\theta}=0$ equation 14.18 reduces to :-

$$
P=Q / H_{32}^{2}
$$

the solution of which is trivial and results in :-

$$
a=1.857
$$

Other specific values of a which correspond to definite conditions are :-
(i) at a separation point ; $a=0$
(ii) at a stagnation point $; a=4.00$

In general the boundary layer velocity profile employed in a turbulent boundary layer integral method is represented by a two parameter family of the form :-

$$
u / U_{\infty}=f\left(\pi, c_{f}, y / s\right)
$$

For the basic boundary layer problem there are then three unknowns δ, π and $C f$ and therefore three equations are required to solve for these unknowns. The three equations usually employed are :-

1. The momentum integral equation 44.3
2. Some local friction law
3. An auxiliary equation

The method of Alber uses the two parameter formulation of Coles(1956) for the local skin friction law ie.

$$
\frac{u}{u_{\tau}}=\frac{1}{k} \ln \frac{y u_{T}}{N}+c+\frac{\pi}{k} \sin ^{2}\left(\frac{\pi}{2} \cdot 4 / 5\right) \quad \therefore 14.20
$$

and the energy integral equation, 14.4 as the auxiliary equation. By setting $u=U_{\infty}$ at $y=\delta$ and using the wake integration result

$$
\frac{\delta^{*}}{\delta}=\frac{1+\pi}{\lambda k}=\frac{f(1+\pi)}{k} \text { where } \lambda=1 / f=\sqrt{2 / c f}
$$

in A4. 20 the following expression which relates $C f$ to δ^{*} and π is obtained :-

$$
\begin{align*}
& \frac{U_{\infty}}{u_{\tau}}=1 / f=\frac{1}{k} \ln \left\{\frac{k R \delta^{*}}{1+\pi}\right\}+\frac{2 \pi}{k} \\
& \text { Defining the shape factors :- } \\
& \mathcal{H}=\theta / \delta^{*}-\mathrm{A} .22 \quad \mathrm{~J}=\delta^{* *} / \delta^{*}
\end{align*}
$$

the momentum integral and energy integral equations are then written in the form :-
momentum

$$
\frac{C_{f}}{2}=f^{2}=\frac{d\left[\mathcal{H} \delta^{*}\right]}{d x}+\left(\frac{1}{H}+2\right) \frac{x \delta^{*}}{u_{0}} \frac{d u_{0}}{d x}
$$

energy

$$
\frac{d}{d x}\left[U_{\infty}^{3} J \delta^{*}\right]=2 D / \rho
$$

where

$$
D=\int_{0}^{\infty} \tau\left(\frac{\partial u}{\partial y}\right) d y
$$

Equations $\mathbf{A 4 . 2 4}$ and $\mathbf{~} 4.25$ along with a differential form of the local friction law, A4.21, are then used to obtain the three differential equations needed to describe the development of \mathcal{S}^{*}, f and π

Expanding and rearranging 44.24

$$
\begin{gathered}
\mu \frac{d \delta^{*}}{d x}+\delta^{*}\left[\frac{d x}{d x}\right]=f^{2}-(2 x+1) \frac{\delta^{*}}{u_{\infty}} \frac{d u_{\infty}}{d x} \\
\text { now } \quad-g(\pi, f) \quad \therefore \frac{d x}{d x}=\frac{\partial x}{\partial \pi} \frac{d \pi}{d x}+\frac{\partial x}{\partial f} \frac{d f}{d x}
\end{gathered}
$$

The momentum equation can then be written in the form :-

$$
\left.\mathcal{H} \frac{d \delta^{*}}{d x}+\delta^{*}\left[\frac{\partial x}{\partial \pi}\right] \frac{d \pi}{d x}+\delta^{*}\left[\frac{\partial x}{\partial f}\right] \frac{d f}{d x}=f^{2}-(2) x+1\right) \frac{\delta^{*}}{v_{\infty}} \frac{d u_{\infty}}{d x}
$$

Expanding and rearranging 44.25

$$
J \frac{d \delta^{*}}{d x}+\delta^{*}\left[\frac{d J}{d x}\right]=C_{D}-3 J \frac{\delta^{*}}{U_{\infty}} \frac{d U_{\infty}}{d x}
$$

where $C_{D}=2 D / U_{\infty}^{3}$ and is called the"Dissipation integral"
again $J=h(\pi, f) \quad \therefore \frac{d J}{d x}=\frac{\partial J}{\partial \pi} \frac{d \pi}{d x}+\frac{\partial J}{\partial f} \frac{d \pi}{d x}$
and therefore the energy equation can be written in the form :-

$$
\begin{equation*}
J \frac{d \delta^{*}}{d x}+\delta^{*}\left[\frac{\partial J}{\partial \pi}\right] \frac{d \pi}{d x}+\delta^{*}\left[\frac{\partial J}{\partial f}\right] \frac{d f}{d x}=C_{D}-3 J \frac{\delta^{*}}{u_{\infty}} \frac{d u_{0}}{d x} \tag{At. 27}
\end{equation*}
$$

The final differential equation is obtained by differentiating the local friction law ie. equation A4.2l, and results in :-

$$
\begin{equation*}
\frac{d \delta^{*}}{d x}+\delta^{*}(1+2 \pi) \frac{d \pi}{1+\pi}+\frac{k \delta^{*}}{f^{2}} \frac{d f}{d x}=-\frac{\delta^{*}}{U_{\infty}} \frac{d U_{\infty}}{d x} \tag{At. 28}
\end{equation*}
$$

The only unknown in equations A4.26,A4.27 and 14.28 is now the dissipation integral, C_{D}.

For the case of turbulent equilibrium flows, ie. for the condition $T=$ constant and $\beta_{T}=$ constant, Alder derives an exact expression for C_{D} from equations A4.26-A4.28 resulting in:-

$$
C_{D_{\text {Equ. }}}=\frac{\left[1+\beta_{T}(x+1)\right]\left[\frac{k J}{f^{2}}-\frac{\partial J}{\partial f}\right] f^{2}}{\left[\frac{k x}{f^{2}}-\frac{\partial x}{\partial f}\right]}-2 J \beta_{T} f^{2}
$$

$$
\text { ___ At. } 29
$$

where $\quad \beta_{T}=\frac{\delta^{*} \frac{d p}{d x}}{T_{0}}$ or $\quad \beta_{T}=\frac{-\delta^{*}}{f^{2} U_{\infty}} \frac{d u_{\infty}}{d x}$

The dissipation integral is then'unhooked' from the pressure gradient parameter β_{T} by assuming that $\uparrow T$ is uniquely related to β_{T} for nonequilibrium flows. A convenient curve fit given by White (1974) ie:-

$$
\beta_{T}=(1.25 \pi)^{4 / 3}-0.5
$$

is used in this case.
Using equation A4. 30 in A4.29 allows equations A4.26-A4.28 to be solved for the development of a general non-equilibrium turbulent boundary layer for a given set of initial conditions :$C f_{0}, \delta_{0}^{*}, \pi_{0}$

Solution procedure :-

To recap, the equations to be solved are :-
momentum

$$
\mathcal{H} \frac{d \delta^{*}}{d x}+\delta^{*} P \frac{d \pi}{d x}+\delta^{*} Q \frac{d f}{d x}=f^{2}-(2 x+1) \frac{\delta^{*}}{u_{0}} \frac{d u_{0}}{d x}-14.31
$$

energy

$$
J \frac{d \delta^{*}}{d x}+\delta^{*} R \frac{d \pi}{d x}+\delta^{*} S \frac{d f}{d x}=C_{D}-3 J \frac{\delta^{*}}{U_{\infty}} \frac{d U_{\infty}}{d x}
$$

friction law

$$
\frac{d \delta^{*}}{d x}+\delta^{*} T \frac{d \tilde{\pi}}{d x}+\frac{k \delta^{*}}{\delta^{2}} \frac{d f}{d x}=-\frac{\delta^{*}}{u_{\infty}} \frac{d u_{0}}{d x}
$$

dissipation integral

$$
C_{D}=\frac{[1+\beta(x+1)]\left[\frac{k J}{s^{2}}-S\right] f^{2}}{\left[\frac{k x}{f^{2}}-Q\right]}-2 J \beta f^{2}
$$

with $\quad \beta=(1.25 \pi)^{4 / 3}-0.5$
and

$$
\begin{aligned}
P=\frac{\partial X}{\partial \pi} ; Q & =\frac{\partial X}{\partial S} ; R=\frac{\partial J}{\partial \pi} ; S=\frac{\partial J}{\partial f} \\
T & =\frac{(1+2 \pi)}{(1+\pi)}
\end{aligned}
$$

The partial derivatives P, Q, R. and S which appear in the above equations are replaced by algebraic functions of π and f derived from the wake integrations of 14.20 ie.

$$
\begin{aligned}
& \frac{\delta^{*}}{\delta}=\frac{1+\pi}{k \lambda} \\
& \frac{\theta}{\delta}=\frac{1+\pi}{k \lambda}-\frac{\left(2+3.18 \pi+1.5 \pi^{2}\right)}{k^{2} \lambda^{2}} 14.35 \\
& \frac{\delta^{3}}{\delta}=\frac{3 \theta}{\delta}-\frac{\delta^{*}}{\delta}+\frac{\left(6+11.14 \pi+8.5 \pi^{2}+2.56 \pi^{3}\right)}{k^{3} \lambda^{3}}-14.37
\end{aligned}
$$

and result in :-

$$
\begin{aligned}
& \frac{\partial x}{\partial \pi}=P=\frac{1}{(1+\pi)}\left[f \frac{3.18+3 \pi}{k}+(x-1)\right]-A 4.38 \\
& \frac{\partial x}{\partial f}=Q=-\frac{2+3.18 \pi+1.5 \pi^{2}}{k(1+\pi)}=\frac{(x-1)}{f}-14.39 \\
& \frac{\partial J}{\partial \pi}=R=\frac{2-J}{(1+\pi)}-\frac{f}{(1+\pi) k}\left[3(3.18+3 \pi)+\frac{f}{k}\left(11.14+17 \pi+7.68 \pi^{2}\right)\right] \\
& \frac{\partial J}{\partial f}=S=\left[\frac{J-2}{f}\right]+\frac{f}{k^{2}} \frac{\left(6+11.14 \pi+8.5 \pi^{2}+2.56 \pi^{3}\right)}{(1+\pi)}-14.40
\end{aligned}
$$

where

$$
H=\frac{\theta}{\delta^{*}}=1-\frac{f\left(2+3 \cdot 18 \pi+1 \cdot 5 \pi^{2}\right)}{k(1+\pi)}
$$

and

$$
J=\frac{\delta^{* *}}{\delta}=2-\frac{3 f\left(2+3.18 \pi+1.5 \pi^{2}\right)}{k(1+\pi)}+\frac{f^{2}}{k^{2}} \frac{\left(6+11.14 \pi+8.5 \pi^{2}+2.56 \pi^{3}\right)}{(1+\pi)}
$$

Solving equations 14.31 - 14.33 for $\frac{d \pi}{d x}, \frac{d f}{d x}$ and $\frac{d \delta^{*}}{d x}$ results in, after some manipulation :-

$$
\begin{align*}
& \frac{d \pi}{d x}=\frac{\left\{f^{2}-\frac{C_{D}\left(Q-\frac{k) t}{f^{2}}\right)}{\left(S-\frac{k J}{f^{2}}\right)}-\left[(1+X)-\frac{2 J\left(Q \frac{k x}{f^{2}}\right)}{\left(S-\frac{k J}{f^{2}}\right)}\right] \frac{S^{*}}{u_{\infty}} \frac{d u_{\infty}}{d x}\right\}}{\delta^{*}\left[(P-\mathcal{L} T)-\frac{\left.(R-J T)\left(Q-\frac{k x}{f^{2}}\right)\right]}{\left(S-\frac{k J}{f^{2}}\right)}\right]} \text { A4.42 } \\
& \frac{d f}{d x}=\frac{\left\{f^{2}-\frac{C_{D}(P-x(T)}{(R-J T)}-\left[(1+\lambda)-\frac{2 J(P-\lambda(T)}{(R-J T)}\right] \frac{S^{*}}{u_{\infty}} \frac{d u_{\infty}}{d x}\right\}}{S^{*}\left[\left(Q-\frac{k x}{f^{2}}\right)-\frac{\left(S-k J / S^{2}\right)(P-)(T)}{(R-J T)}\right]} \\
& \frac{d \delta^{*}}{d x}=-\left\{\frac{\delta^{*}}{u_{0}} \frac{d v_{\infty}}{d x}+\frac{k \delta^{*}}{f^{2}} \frac{d f}{d x}+\delta^{*} T \frac{d \pi}{d x}\right\}
\end{align*}
$$

Using the wake integration results for P, Q, R and S ie. equations 14.38 - 14.41 and equations $A 4.30$ and 14.34 then equations 14.42 - 14.44 can be solved for $\pi, C f$ and δ^{*} using a Runge - Kutta technique.

APPENDIX 5
Software Listings

Appendix 5 contains programme listings for both the Data Acquisition, Control and Data Reduction Package and the computational Boundary Layer Prediction Package. It also contains listings of the following programmes :-

1) TURBLEV -Page 250 - Described in section 3.9
2) IMPROF2 -Page 252 - Described in section 3.9
3) SIGCALC -Page 254 - Used for the calculation of σ from an experimental data file containing $\bar{\gamma}, x$ data

On the following page a copy of the flow chart for the Data Acquisition, Control and Data Reduction Package, described in Chapter 5, is included. Next to the points where each new programme is 'called' or 'cHAINed' is the relevant page number on which the programme listing can be found within this Appendix.

The programme listings for the computational model
(Tani/Alber), described in chapter 7, along with the listings
for the graphics package start at page 258 and include

1) IGBLPRI -Page 258 - Introductory programme to computational package
2) IGBLPR5 -Page 263 - Main programme
3) GRAFPC3-Page 269.-Graphics programme used to display predictions

Programme

PROGSEL
This programme is the introductory programme to the Data Acquisition, Control and Data Reduction Package

```
    10 CLOSE#B
    28 REM PROGSEL
    30 MDDE7
    4B PRINTTAB(0,5);CHRS132"DD YOU HANT TO:"
    50 PRINTTAB (5,18);CHR$133"1. READ AN EXISTING FILE"
    60 PRINTTAB(5,15);CHR$I30"2. CREATE A NEH FILE"
    70 UDU 31 8,24
    80 sel%=GET
    90 IF sel% = 49 60T0 120
188 IF 5el% = 50 CHAIN'5.4"
118 IF sel%<>49 OR sel%<>50 60T0 40
120 CLS
138 PRINTTAB(0,10);CHR$132"DD YOU HANT TO SEE DISK CATALOG*
14060T0 }16
150 PRINTTAB(0,10);CHR$132"DO YOU HANT TO SEE AHOTHER CATALOG"
160 IF GET $=*N\ 60t0 250
170 PRINTIAB(O,15);CHR$131:"HHICH DRIVE"
188 D%=6ET
190 PROCdriverd(D%)
200 PRINTCHR $133;"PRESS SPACE TO CONTINUE"
218 space%=6ET
220 If 5pace%<>3260T0200
230 CLS
24060T0150
258 CLS
260 PRINTTAB(5,12);CHR$134;"HHICH DRIVE IS FILE ON"
278 D% = GET
288 PRDCdrive(D%)
290 CLS
300 PRINTTAB(5,12);CHR$134"INPUT NAME OF FILE TO BE REAI"
318 INPUT TAB(16,14):E%
328 file%=DPENOUT("DATA")
33b PRINT#file%,EF
346 CLOSE# file%
350 4DR.&
368 CHAIN"6.3"
370 END
380 DEFPROCdriverd(D%)
398 IF D%=48THEHF.8
408 IF D%=49THEHF.1
410 IF D%=50THEN+. 2
4 2 0 ~ I F ~ D \% = 5 1 T H E N \& . 3 ~ \$
438 ENDPROC
435 DEFPROCdrive(D%)
448 IF D%=48THEN&DR.0
450 IF D%=49THEN&DR.1
468 IF D%=50THEN&DR.2
478 IF D%=51THEN*DR.3
480 ENDPROC
```


Programme

5.4

Programme 5.4 is the main Data Acquisition and Control programme
described in some detail in section 3.9

```
18 REM PROG 5.4 DATA ACQUSITION & CONTROL PROG
mODES
VDU23,240,195,36,24,24,36,36,36,24
48 $10
58 CLOSE# }
6! ddr }2=0\mathrm{ OENUP"BUS &COB2"
BFUT&ddr%,&FF
8B CLOSE# ddr%
98 Db%=0PENUF"BUS &CBBQ"
188 BPUT$p%%,
118 A%=DPENUP"CU-DACB &CDBD"
128 PRINTTAB(20,12) "SMITCH ON STEPPER MOTOR & H.W ANEMOMETER*
138 H=INKEY (480)
148 CLS
150 PRINT
168 PRINT
178 DIM Y3(40),B(40),uI (40),Y1(40),u(40),Y(40),RM3(40),IM3(40)
188 PROCcalcon
198 CLS
290 PRINTTAB(15,12)"INPUT TEMPERATURE IN Deg C"
218 INPUTIAB (40,14) t
220 PRINTTAB(15)"INPUT PRESSURE IN & Hg"
238 INPUTTAB(40) 2
248 CLS
25e PRINT
268 PRINT
278 PRINTTAB(15,6)"INPUT UPFER STEP INCREMENT"
288 INPUTTAB (40,8) STII
298 PRINT
388 PRINTTAB(15)"INPUT LOHER STEP INCREMENT"
31B INPUTTAB(48) STI2
328 PRINT
338 PRINTIAB(15)"INPUT No DF Pt5 AT LOHER STEP INCREMENT"
348 INPUTTAB(40) P1%
358 PRINT
368 PRINTTAB(15)"INPUT Y DATUM IN Em"
7( INPUTTAB(48) Ydat
388 CLS
398 PRINT
400 PRINTTAB(15,12)"INPUT DIST. FROM L.E. IN m*"
41B INPUTTAB(48) XI
438 PRINTTAB(15)"INPUT SPANHISE LOCATION IN am"
48 INPUTTAB (48) 2
4 5 0 ~ C L S ~ S
4 6 8 \text { PFINTTAB(15,12)"NAME OF DATA FILE"}
478 INPUTTAB(48) E%
4 8 8 ~ C L S ~ S
498 K1 = STII/YC2
508 K2 = ST12/YC2
518 PTR\AK=8
528 FOR [ }=17018
538 YD%=BGET# A%
548 YDI%=YD1%+YD%
55% NEXT
56B YD2%=YD1%/18B
578 YDU2
588 VDU 1,27,1,69
598 PRINT,
618 UDU 1,27,1,78
628 PRINT
638 FOR Q=17048
648 Y27=0
65B FOR 1%=1T0188
668 Y1%=BGETHA%
678 Y2%=Y2%+Y1%
68 NEXT
698 [27=0
78B PTR:A%=2
718 FOR I%=1T05800
728 C1%=BGET#A%
738 C2%=C2%+C1%
78 NEXT
758 C3%=C2%/580B
768 IM1泣
778 PTR#A%=4
788 FOR I% =1TO1880
798 IMK=B6ETA%
808 IM1%=IM1%+IM%
810 NEXT
```



```
8.30
    PTR1AK=6
    840 FOR I% =1T01888
    850 RH%=B6ET:A%
86B RM1%=RM1%+RM%
8 7 8 \text { NEXT}
880 RM2%=RM1%/1888
898 [M2%=IM1%/1808
900 RM3(Q)=RM2%&RMC
918 IM3 (0) = (IM2%-1) IMC
928 u1(Q) = (C2%/5000) +CC
930 Y3(Q)=Y2%/180
948 y1(E)=Ydat+(YZ(1)-YJ(Q))#10.52*YC
958 n%=n%+1
968 0%=n%-P1%
978 u1(Q)=[NT/u1(Q)+1888+0.5)/1888
988 y1 (Q)=INT (Y) (Q) +188+8.5)/188
990 IMS(Q) =INT (IMS (Q) +100+0.5)/18B
1088 RM3(0)=INT(RM3(0)*108+8.5)/100
1010 SOUND 1,-15,145,3
1828 PRINT TAB(15);ul(8);TAB(29);y1(0);TAB(45);IM3(0);TAB(59);RM3(0)
```



```
1040 IFuI (D) )=0.995*u1 (Q-2) AND UI (Q)<=1.085%U1(Q-2) 60TD 1180
1050 IFY3(Q)<10 60T01970
1068 PTREA%=0
107\ell IF n%>P1% 60T0 1130
18BE BFUT*Pb%,D
1098 REPEAT UNTIL BGETSA%{(YD2%-n%*K2)
11BE BPUT*Ob%,1
1110 x = n%4k2
1120 G0T0 1170
1130 BPUT部%%,0
114R REPEAT UNTIL BGET#A%{(YO2%-(X+0%*K1))
1158 BPUT贯功,1
1168 BFUT#pb%,1
1178 NEXT ?
118B uinf = (u) (Q)+u1(Q-1)+u1(Q-2))/3
1198 BPUT#pth,1
```



```
1218 FOR i=170n%
1220 u(i)=ul(i)/uinf
1230 NEXT
1248 FOR j=1TOn%
1250 IF u(j) < 0.99 60T0 1280
1268 d = y1(i)-((y)(i)-y1(i-1)) +(u(i)-8.99)/(u(i)-u(i-1)))
1278 60T0 1298
128B NEXT
1290 PRINT
1380 FRINT
1318 PRINT
1320 PRINT
1330 PRINT
1340 PRINT"DIST.FROM L.E.=";X1;"囲","SPANHISE LOCATION =";Z;"田"
1358 PRINT
1360 d= INT(d#100+0.5)/100
137B PRINT"APPROX. EDGE DF BOUNDARY LAYER = ";d;"_口"
1388 PRINT
l398 uinf=INT (uinf }2180+0.5)/18
1408 PRINT"FREE STREAM VELOCITY
1418 PRINT
428 PRINT
1430 PRINT
```



```
1468 VDU 1,27,1,78
1478 PRINT
1488 FOR i=1TOn%
1498 y(i)=y( (i)/d
1508 u(i)=3NT(u(i)*1880+0.5)/1808
1518 y(i)=INT(y(i)*1800+0.5)/188B
152B IF y(i)>0.2 60TO 1550
1530 AVIM2 = AVIM2+IM3 (i)
1540 Ct%=Ct%+1
1550 PRINTTAB(6);i;TAB(13);y1(i);TAB(22);u1(i);TAB(34);u(i);TAB(43);y(i);TAB(51);RMJ(i);TAB(6B);IMS(i)
156E NEXT
570 VDU3 : CLS
158B PRINTTAB(15,12)"DO YOU WANT TD INPUT EYEBALL VALUE DF"
1598 PRINTTAB(15)"INTERMITTENCY AT y/d=0.2 ?'
1688 IF GET$ = "N" THEN GOTO 1690
1610 ?&FE60=0
1628 PKINT
1638 PRINT
1648 PRINT
1658 PRINTTAB(15)"INPUT EYEBALL VOLTAGE FRDM INTERM. VOLTMETER"
```

```
1658 INPUTTAB(40);EIML
1678 EIM=EIM1/5
1688 60T01788
1698 EIM=0
1788 IFy(1)>0.260101750
1718 AVIM3 = AVIM2/Ct%
1720 AVIM = INT(AVIMS+1800+0.5)/1080
1730 VDU 2
1748 60T01760
175B AVIM=0
176R PRINT
170 PRINT
1788 PRINT
1798 PRINT"EYEBALL AVE OF INTERMITTENCY AT y/d=8.2 = ";EIM
IBRE PRINT
18ID PRINT
182E PRINT"AVE. DF INTERMITTENCY VALUES BELOH (y/d=0.2)= ";AUIM
1838 VDU 3
848 +DISK
1858 PRINT
1868 PRINT"ON MHICH DRIVE IS DATA TO BE STORED*
1878 60T01918
1B8B ON ERROR OFF
8OQ CLOSE# B
19B8 PRINT"DISK FULL SELECT DRIVE OTHER THAN DRIVE ':D%-4B
1912 D%=6ET
1928 PROCdrive(D%)
19je PROCfile(u,y,n%,uinf, X1, z,d,Et,t,z,RH3,IM3,AVIM,EIM)
1948 CLS
1958 IDR.0
1968 CHAIN"6.3'
1978 PFINT"PROBE TRAVERSE DUT OF RANGE"
1988 END
1998 DEFPROCcalcon
2888 CC=7.920E-2
2P18 YC=1.961E-2
2E28 YC2=10.52*YC
2838 IMC=4.850E-3
2848 RMC=1.471E-2
225B ENDPROC
2862 DEFPROCfile(u,y,n%,uinf,X1,z,d,E5,t,z,RMJ,IMJ,AVIM,EIM)
2878 ON ERROR GOTO 1880
288B X2%=DPENOUT("DATA")
2078 PRINTHX2%,E%
21BE CLOSE X2%
2118 HK=DPENOUT (E$)
2128 PRINT#W%,n%,uinf,KI,Z,d,t,z,AVIH,EIM
2138 FOR I=1TOn%
2148 PRINTHM%,u(I),y(I)
2158 NEXT
2168 FOR I=1TOn%
2178 PRINTHK,RH3(I),IMS(I)
2180 NEXT
2198 CLOSE# H%
228B ENDPROC
2218 DEFPROCdrive(D%)
222B IFD%=4BTHEH IDR.O
2230 IFD%=49THEN&DR.1
2248 IFD%=58THENFDR.2
225e IFDK=51THEN&DR.3
2268 ENDPROC
```


Programme

6.3

Programme 6.3 is a graphics programme
used to display experimental data,from adata file, on axes of Y / δ 's U / U_{∞}

```
10 CLOSEAO
20 REM PROG 6.3 LAMINAR/TURBULENT GRAPHICS PROGRAM
38 MODE 1
48 CLS
58 PROCdrive (D\%)
68 DIM P1 (102), Q1(102)
78 DIM U(40) y Y(40), RM3(40), IM3(40)
88 UDU \(19,3,3,0,0,0\)
98 VIU \(19,2,2,8,8,0\)
180 ROVE 125,825
118 DRAK 125,125
128 DRAM 1225.125
138 PRINTIAB (1,10);"Y"
148 PRINTTAB (1,11):""
158 PRINTTAB \((1,12)\); \({ }^{\prime} d^{*}\)
168 PRINTTAB \((25,30)\);"u/Uinf"
178 MOYE 1225, 125
188 DRAH 1225,180
198 MOYE 675, 125
208 DRAH 675,100
218 ROVE 125,825
228 DRAM 188,825
238 MOVE 125,475
48 DRAH 100,475
250 MOVE 125,125
268 PRINTTAB(0,6):"1.0
278 PRINTAB 10,17 );"0.5"
288 FRINTTAB 19,\(29 ;\) " \(0.5 *\)
298 PRINTTAB (37,29);"1.0*
\(36 E\) PRINTTAB \((4,4) ; " L A M I N A R \& T U R B U L E N T\) B.L. PROFILES"
318 PROCRFile
\(328+D R .8\)
338 YDU28,6,14,21,6,
340 COLOUR 130:COLOUR1
358 CLS
368 PRINT
```



```
\(3 B 8\) PRINT
398 PRINT" \(x=" ; \times 1 ; "\) (10**
408 PRINT
418 PRINT" Uinf= ";uinf;" \(\quad\) /5"
428 PRINT
430 FRINT" \(d=": d ; "\) min
448 䁖 \(=(1.725+0.084375 * t) / 18 \wedge 5\)
\(450 \mathrm{rho}=\left(0.46535{ }^{2}\right) /(\mathrm{t}+273)\)
468 nu= wu/rho
478 dud \(x=-8.25\)
488 LAM \(=\left(d^{\wedge} 2 /(\right.\) nu +1888080\(\left.)\right)\) *dudy
498 FOR Yphol= 0 TO \(\downarrow\) STEP 0.85
\(508 \mathrm{Y}=\mathrm{Y}\) phol/d
\(518 X=\left(2 \pm Y-2 * Y^{\wedge} 3+Y^{\wedge} 4\right)+(L A M / 6) *\left(Y-3 * Y^{\wedge} 2+3 * Y^{\wedge} 3-Y^{\wedge} 4\right)\)
\(528 \mathrm{~F}=\mathrm{X} \times 1108+125\)
\(538 \mathrm{Q}=\mathrm{Y} \pm 788+125\)
548 DRAH P, \(Q\)
558 NEXT
568 DATA \(8,8,837,066, .874,133,111, .199\)
578 DATA \(185, .336, .259, .456, .333, .575\)
588 DATA \(.487, .681, .481, .772, .555, .846\)
598 DATA \(.630, .982, .703, .941, .740, .955\)
688 DATA \(.77 B, .967, .815, .976, .852, .983\)
618 DATA . 889,.988,.926,.991,.963,. 994
628 DATA 1.0,. 997
638 HOVE 125,125
\(6481=0\)
658 FOR \(K=1\) TO 41
\(668 \times 1=1\)
678 Y1 \(=x 1^{\wedge} 7\)
\(6881=1+8.025\)
\(698 \mathrm{P} 1(\mathrm{~K})=\mathrm{X} 1+1108+125\)
788 O1 ( \(K\) ) \(=Y 1+788+125\)
710 DRAM PI (K), \(01(K)\)
72 HEXT K
738 6CDL 0,1
740 FOR I \(=1\) TO п
758 A \(=u(1) * 1188+125\)
\(768 \mathrm{~B}=\mathrm{y}(\mathrm{I}) \pm 780+125\)
778 MOVE A, B
788 PLOT 69, A,B
798 PLOT 69, \(A-B, B-8\)
888 PLOT \(85, A+8, B-8\)
818 HEXT I
828 vDU26:VDU31 8,31
```

830 COLOUR 128
B4EPRINT"IS A PRINT OF GRAPH REQ'D"
858 IF GETS="N"60T0 870
860 CHAIN" $7.4^{\prime \prime}$
878 PRINT"DO YOU WANT PRDFILE ANALYSED"
888 IF GET $\$={ }^{\prime} \mathrm{N}^{\prime} 60 \mathrm{O} 1020$
898 PRINT "IS PROFILE LAMINAR(L), TURBULENT(T) OR TRANSITIONAL(t)"
908 AS $=6 E T \$$
918 IF AS = "L"60T0 958
928 IF AS $={ }^{-1}{ }^{\circ} 60010960$
938 IF AS = "t"60T0 978
9486070898
958 CHAIN "8.3"
968 CHAIN " 9.3 "
970 PRINT" IS VALUE OF INTERMItTENCY e $y / d=0.2$ GREATER THAN(G) OR LESS THAN(L) 0.5"
$988 \mathrm{AS}=6 \mathrm{ET} 5$
998 IF As = "L" THEN CHAJN" 11.3 BL "
1088 IF AS = " 6 " THEN CHAIN" 11.3 "
$181060 T 0970$
1028 END
1838 DEFPROCRfile
$1040 \times 2=0$ PENIN ("DATA")
1850 IRPUTIX2, ES
1860 CLOSE $\times 2$
1078 OOFENIN (ES)
1888 INPUTHM, n, uinf, $x 1,7, d, t, 2$, AVIM, EIM
1898 FOR I $=1$ T0 π
1180 INPUT*H,u(I),y(I)
1118 NEXT I
1128 FOR I $=1$ TO n
1130 INPUTHW, RM3(I), IMJ (I)
1148 NEXT I
1158 CLOSE\# :
1168 ENDPROC
1178 DEFPROCdrive (D\%)
1180 IFDK=48THENADR. 0
1198 IFD $\%=49 T H E N \pm D R .1$
1208 IFDH $=5$ PTHEN*DR. 2
1218 IFDK=51THENADR. 3
1228 ENDPROC

Programme

10.3

Programme 10.3 is a screen dump programme which enables a hard copy of a graphics display, on the computer monitor, to be obtained from the Epson line printer

```
10 REM Hybrid prooran to dump all graphics MODEs
28 REM on the EPSON FT printer
38 DIM 5\% \&FF
48 pass nuaber \(=5 \%\)
58 pattērn \(8=5 \%+1\)
68 !.patter \(n 8=60300\)
78 pattern4=54+3
88 !pattern4=43F88
98 pattern \(1=5 \%+5\)
188 !patterni=\&3F268400
118 pattern \(2=5 \%+9\)
128 !pattern2= 249844188
138 ! (pattern \(2+4)=4 F F 6 F B 966\)
140 5\% \(=5 \%+17\)
158 FROClinits
168 IF NDT graphics THEN PRINT"Not a graphics RODE. Can't dump. ": UDU7:END
178 PROCassemble
189 REM Enable printer, and set linefeed (send ESC A B)
198 VDUS \(, 1,27,1,65,1,8\)
208 REM clear paper
218 vDU1,18,1,18,1,18
22 FOR Y \(\mathrm{Y}=1823\) to 0 STEP-16
238 REM Send bit code (ESC L 1923 - 968 dots per line or 640 dots for MODED)
248 YDU1, 27, 1,76, 1, ח1, 1, ח2
258 FOR \(X=\) ( to 1279 STEF step_size
\(268!\times 10=x \%+Y 2+2188 B 8\)
278 ? \({ }^{2}\) a5s \(=1\)
288 CALL pixe!
298 NEXT
380 VDUL, 18
310 NEXT
328 REM reset linefeed and disable printer
338 VDU1, \(27,1,65,1,12,1,12,3\)
340 PRINT"DO YOU HANT TO ANALYSE PROFILE"
358 IF GETF = "N' 6070510
368 FRINT"IS PROFILE LAMINAR(L), TURBULENT(T)"
378 FRINT"OR TRANSITIONAL( t )"
\(388 \mathrm{AF}=6 \mathrm{ETS}\)
392 IF A\$ = "L" 6070420
488 IF AS \(=\) " 1 " 6010430
418 IF AS = "t" 6070440
428 CHAIN " 8.3 "
43 CHAIN \(^{-9.3}{ }^{\prime}\)
448 PRINT" 15 VALUE OF INTERMITTENCY E \(y / d=0.2\) GREATER THAN(G) OR LESS THAN(L) \(0.5^{\circ}\)
\(458 \mathrm{AF}=6 E T \$\)
468 IF \(A \$=1\) " 6010498
478 IF A \(={ }^{6} 6\) " 6070580
48860 TO 448
498 CHAIN"11.3L"
588 CHAIN" \(11.3 \mathrm{~T}^{*}\)
518 END
528 DEFPROCliaits
538 DIM user 3
548 A\% \(=487\)
558 !user=USR (LFFF4)
568 modeuser? 2
578 IF aode>5 OR mode=3 THEN graphics=FALSE ELSE graphics=TRUE
580 IF adde \(=\) GTHEN \(n 1=128: n 2=2\) ELSE \(n 1=192: n 2=3\)
```



```
628 IF node=2 THEN step_size=8:?pa55_nubber=6:?\&80=pattern2 MOD 256:?881=pattern2 DIV 256
63 ENDPROC
648 DEFPROCas5e酤le
650 osword= \&FFF1
```



```
678 \(110=5 \%\)
\(680 \times h i=5 \%+1\)
698 Y10 \(=5 \%+2\)
\(78 \mathrm{Yhi}=5 \%+3\)
718 value \(=5 \%+4\)
72 b byte \(=5 \%+5\)
738 pas5=5\%+6
748 count \(4=5 \%+7\)
758 5\% \(=54 \% 8\)
768 FOR opt \(=1\) TO 2 STEP 2
\(778 \mathrm{Ph}=5 \%\)
782 [OPT opt
798 ISUBROUTINES
8e8 Ito calculate POIMT(X,Y)
818 . point Idx EXIOMOD 256
828 Idy \(\$\) Xlo DIV 256
```


Programme

8.3

Programme 8.3 is used for the reduction of the mean laminar velocity profiles and is described in detail in section 4.2

```
18 MODE3
28 REH PROE 8.3 LAMINAR BOUNDARY LAYER ANALYSIS PROG
30 DIM ul ( 50 ), u ( 58 ) y \(1(50\) ), up ( 58 ), eta ( 50 ), y ( 50 ), e \((50)\)
40 DIM RM3 (50), IM3 (50), uplus (50), yplus (50)
50 PROCdrive ( \(D \%\) )
60 PROCRfile
70 IDR. 8
88 FOR \(i=1 T 0 n\)
98 ul(i)=u(i)*uinf
108 y \(1(i)=y(i)+d\)
110 NEXT i
\(120 \mathrm{nu}=(1.725+0.884375+\mathrm{t}) / 18^{\wedge} 5\)
130 rho \(=(0.46535 * 2) /(t+273)\)
\(148 \mathrm{nu}=\mathrm{mu} / \mathrm{rho}\)
158 REM CALCULATE SHEAR STRESS AND FRICTION COEFF.
160 FOR \(k=1 T 0\) n
178 IF u(1) \() 0.45\) THEN 258
180 IF \(u(k)\rangle=0.45\) THEN 218
198 5ums = 5ums \(+u 1(k) / y 1(k)\)
\(208 L=L+1\)
218 NEXT K
220 to = au*5us /L*1000
230 cf \(=2 \pm\) t \(8 /\left(\right.\) rhofuinf \(\left.{ }^{\wedge} 2\right)\)
248 GOTO 268
258 PRINT \({ }^{T}\) FIRST U/Uinf POINT > B. 45 NO to VALUE CAN BE CALCULATED"
260 FRDCplyint ( \(u, y, n\) )
\(278 \mathrm{del} \mathrm{l}=\mathrm{d} \pm \mathrm{int} 2\)
288 theta \(=d *(\) int \(1-\) int 3\()\)
298 del2 \(=\mathrm{d} \ddagger\) (int1 - int4)
388 h12 \(=\) dell/theta
318 n32 \(=\) del2/theta
328 Rdis = uinf*dell/(nu干1000)
330 Rion \(=u\) infatheta \(/(n u * 1800)\)
340 REM CALCULATE ERROR AND RMS ERROR OF FIT
350 FDR \(i=1\) TO \(n\)
360 up \((i)=a \neq y(i)+b * y(i) \wedge 2+c \neq y(i) \wedge 3\)
\(378 \mathrm{e}(\mathrm{i})=u p(\mathrm{i})-\mathrm{u}(\mathrm{i})\)
380 acce \(=\) acce \(+\mathrm{e}(\mathrm{i})^{\wedge} 2\)
398 HEXT i
```



```
418 UDU \(1,27,1,14:\) PRINTTAB(12) "FILE", E
420 PRINT
438 VDU 1,27,1,14:PRINT" DATA FOR LAMINAR B.L. VELOCITY PROFILE"
448 PRINT
458 PRINT
468 PRINT
470 PRINT"DISTANCE FROM LEADING EDGE = "; x " " \(\mathrm{ma}^{2}\)
488 PRINT
```



```
508 PRINT
518 PRINT"AIR TEMPERATURE =";t;"Deg.C";" ATMOSPHERIC PRESSURE \(=\) "; \(2 ;\) " mitg"
520 PRINT
530 PRINT
548 PRINT
558 PRINT
568 VDU \(1,27,1,69\) Y-MM U-M/S Y/D U/UINF ETA ERROR"
578 PRINT"
588 PRINT
598 VDU 1,27,1,78
688 FOR \(i=1\) TO \(n\)
618 eta \((i)=(y)(i) / 1008) \times \operatorname{SQR}(u \inf \ddagger 1000 /(n u \neq x))\)
\(628 y(i)=y 1(i) / d\)
638 y \(1(\mathrm{i})=\operatorname{INT}(\mathrm{y} 1(\mathrm{i}) \pm 108+0.5) / 180\)
\(648 \mathrm{u}(\mathrm{i})=\operatorname{INT}(\mathrm{ul}(\mathrm{i}) * 188+8.5) / 188\)
658 y \((\mathrm{i})=\operatorname{INT}(y(\mathrm{i}) * 1888+0.5) / 1800\)
\(668 \mathrm{u}(\mathrm{i})=\operatorname{INT}(\mathrm{u}(\mathrm{i})+1088+8.5) / 1880\)
678 eta(i) \(=\operatorname{INT}(\) eta \((\mathrm{i}) \times 1080+8.5) / 1000\)
\(680 \mathrm{e}(\mathrm{i})=\operatorname{INT}(\mathrm{e}(\mathrm{i})+1000+8.5) / 1000\)
698 PRINT TAB \((10) ; y 1(i) ; T A B(20) ; u 1(i) ; T A B(30) ; Y(i) ; T A B(39) ; u(i) ; T A B(51) ;\) eta(i);TAB(61);e(i)
708 NEXT
718 dell \(=\) INT (del \(1 * 108+8.5\) )/108
728 theta \(=\) INT (theta \(a+108+8.5\) )/100
738 del \(2=\) INT (del \(2 * 100+8.5\) ) / 100
\(748 \mathrm{~h} 12=\mathrm{INT}(\mathrm{h} 12+188+0.5) / 188\)
758 h \(32=1 N T(h 32 * 108+8.5) / 100\)
768 Rnon=INT (Raon)
778 Rdis=INT(Rdis)
788 PRINT
```



```
808 FRINT
818 PRINT
828 PRINT
```


1670 FOR $i=1$ T0 n

1698 NEXT :
1788 FOR $i=1$ TO n
1710 INPUTHH, RM3(i), IM3(i)
1728 NEXT i
1730 CLDSE H
1748 ENDFROC
1750 DEFPROCdrive (X\%)
1768 IFDK $=48$ THENEDR. 8
1778 IFD $\%=49$ THENFDR. 1
1788 IFD $\%=50$ THEN \pm DR. 2
1790 IFD $=51$ THENIDR. 3
1800 ENDPROC
1810 DEFPROCPfile(u),yl,tB,nu,n,E\$)
1828 utau $=$ SQR (t $8 /$ /ho
1830 FOR $1=1$ TO n
1848 uplus(I)=u1(I)/utau
1858 yglus(1) $=u t a u \neq y 1(1) /(n u+1800)$
1860 NEXT
$1878 \times 3=$ DPENDUT ${ }^{* D A T A I " ~}$
1880 PRINTHXJ, $n, E \$$
1898 FORI $=1$ TOn
1980 FRINT\#XJ, uplus(I),yplus(1)
1910 NEXT
1920 CLDSE ${ }^{3} \times 3$
1930 ENDPROC

Programme

2.3

Programme 9.3 is used for the reduction of the mean turbulent velocity profiles and is described in detail in section 4.3

```
10 REM PROG 9.3 TURBULENT BOUNDARY LAYER ANALYSIS PROG
20 rem this prog hill autamatically delete the point nearest the
30 REM HALL IF ytI < 50
48 MODE 7
50 DIM y (40), ul (40), u(40),y1 (40)
60 DIM utau(40), itut (48), e(40), yplus (48), uplus (40)
70 DIM resid (40), udef(40), RM3140), IM3148
88 PROCdrive(DK)
90 PROCRfile
188 TDR. 8
110 FOR i \(=1\) TO n
128 yl \((\mathrm{i})=y(\mathrm{i}) \neq \mathrm{d}\)
130 ul \((\mathrm{i})=u(\mathrm{i}) \neq u \mathrm{inf}\)
148 NEXT i
150 rho \(=(0.46535+2) /(t+273)\)
\(168 \mathrm{mu}=(1.725+8.884375+\mathrm{t}) / 18^{\wedge} 5\)
170 nu \(=\pi u / r h o\)
\(180 \mathrm{Rx}=\) INT( \((\) uinf \(* x /(n u * 1000) / / 1800): 1880\)
1906010360
200 FOR \(k=2 T 0 n\)
210 y1 \((k-1)=y 1(k)\)
\(228 u 1(k-1)=u 1(k)\)
\(238 u(k-1)=u(k)\)
\(240 y(k-1)=y(k)\)
\(250 \operatorname{RM} 3(k-1)=R M 3(k)\)
\(268 \operatorname{IM} 3(k-1)=I M 3(k)\)
279 NEXT k
\(289 \mathrm{y}(\mathrm{n})=0\)
\(290 \mathrm{ul}(\mathrm{n})=8\)
\(390 u(n)=0\)
\(310 y(n)=0\)
\(320 \mathrm{Am3}(\mathrm{n})=0\)
\(330 \operatorname{In} 3(n)=0\)
\(340 n=n-1\)
350 PRINT" Point Nearest Hall Has Been Deleted As yt1< \(50^{\circ}\)
360 PROCloglan(ul, yl, y, n, nu,uinf)
370 IF ytl < 506070200
380 PROCwalint(yt1, nu, utaul, uinf)
390 PROCparint ( \(u, y, n, d)\)
400 5uml \(=5 u 1_{1}+51\)
```



```
420 5um \(=5 \operatorname{sum}^{3}+53\)
430 5u亩 \(4=5 \mathrm{Ln} 4+54\)
448 dell \(=\) sum 2
450 theta \(=541-5 u{ }^{2} 3\)
```



```
\(470 \mathrm{~h}_{12}=\) del1/theta
480 h32 \(=\) del2/theta
498 Rtheta \(=(\) uinfftheta \() /(\) nu* 1000\()\)
580 Rdell \(=(\) uinftdell)/(nu*1080)
```



```
528 cf ) \(=0.246 /\left(\right.\) EXP \((1.561 * h 12) \div\) Rtheta^ \(\left.{ }^{\wedge} .268\right)\)
530 [ \(\left\{2=2.8 x\left(\right.\right.\) utau1/uinf) \({ }^{\wedge} 2\)
\(\left.548 \mathrm{cf3}=0.3 /(\operatorname{EXP}(1.33+h 12) *(\text { LO6(Rtheta }))^{\wedge}(1.74+8.31 * h 12)\right)\)
550 t \(\theta=((c f 1+[f 2+c f 3) / 3) \pm r h o ¥ u i n f \wedge 2 / 2.8\)
568 UDU 2
570 VDU \(1,27,1,14:\) PRINTTAB(12) \({ }^{\text {FFILE }}\), ES
580 PRINT
598 UDU 1,27,1,14:PRINT'DATA FOR TURBULENT B.L.VELOCITY PROFILE*
608 PRINT
610 PRINT
620 PRINT
630 FRINT
648 PRINT"AIR TEMPERATURE = ";t;" Deg.C";" ATMDSPHERIC PRESSURE = "; \(;\) " "ang"
650 PRINT
```



```
670 PRINT
6 6B PRINT"FREESTREAM VELOCITY = ";uinf" \(/ 5^{\text {" }}\)
698 PRINT
790 PRINT"PLATE REYNOLDS NUMBER
710 PRINT
728 PRINT"APPROX. EDGE OF B.L. \(=" ; \mathrm{d}^{4}\) \#"
730 PRINT
740 PRINT
758 PRINT
768 FRINT
770 PRINT
780 VDU \(1,27,1,69\)
790 PRINT \({ }^{27,1,69}\)
808 PRINT
yplus Uplus Resid. Udef."
B10 UDU 1,27,1,78
820 FOR \(i=1\) to \(n\)
```



```
1668 1 = 1 + 1
1670 5um = 5um + utau(k)
1688 NEXT k
1690 utaul = sum/1
1788 FOR i = 1 T0 n
1718 uplus(i) = ul(i)/utaul
1720 udef(i) =(uinf/utaul)-uplus(i)
1738 yplus(i) = utaul$y(i)/(nu$1008)
1748 resid(i) = uplus(i) - (2.439xLN(yplus(i))+5.2)
1750 NEXT i
1 7 6 8 \text { yt1 = yplus(3)}
177B ENDPROC
1788 DEFPROCHalint (ypl,nu,utaul,uinf)
1790 cl = 540.6
1808 c2 = 6546.8
1818 c3 = 82770.8
182B a = 2.439
1838 b = 5.2
1840 pil1 = ax(ypl&(LN(ypl)-1)-50*(LN(50)-1))
1858 pi12 = b*(ypl-58)
1868 intin = pil1 + pil2
1870 pi21= ypl*(LN(ypl))^2-50%(LN(50))^2
1880 pi22 = -2x(yp)+(LN(yp1)-1)-50x(LN(50)-1))
1890 pi23 = 2xbzał(ypl#([N(ypl)-1)-50%(LN(50)-1))
1988 pi24 = b^24(ypl-50)
1918 int2w = a^2t(pi21 + pi22) + pi23 + pi24
1928 pi31 = ypl*(LN(ypl))^3-3*ypl*(LN(ypl))^2+6*ypl*(LN(ypl)-1)
1932 pi32= - 50¥(LN(58))^3+3¥507(LN(50))^2-6*50\pm(LN(58)-1)
1940 pi33 = ypl¥(LN(ypl))^2-50x(LN(50))^2
1950 pi34=-2*(yply(LN(ypl)-1)-50*(LN(50)-1))
1960 pi35= 3*axt^2#(yplf(LN(ypl)-1)-50*(LN(50)-1))
1978 pi36 = b^3*(ypl-58)
1980 int3w = a^3&(pi31 + pi32) + 3xbła^2x(pi33 + pi34) + pi35 + pi36
1990 sl= (cl + int1w)+(nu/uinf) }100
2008 52 = (ypl*(nu/utau1)*1000) - 51
2B18 53 = (c2 + int2w) m(nu/uinf) #(utaul/uinf) }100
2820 s4 = (c3 + int3w)*(nu/uinf)*(utau1/uinf)^2*1800
283E ENDPROC
2848 DEFPROCparint (u,y,n,d)
2850 DIM a (30),b(30), [(30),det (30)
2058 DIM int1(30), int2(30), int3(30), int4(30)
2078 DIM int5(30),int6(30),int7(30), int8(30)
2880 n2 = n-2
209a FOR k=3 T0 n2
21日e det1 = 1*(y(k+1)*y(k+2)^2-y(k+2)*y(k+1)^2)
2110 det2 = y(k) # (y(k+2)^2-y(k+1)^2)
2120 det3 = y(k)^24(y(k+2)-y(k+1))
213@ det (k)=\operatorname{det}1-\operatorname{det}2+\operatorname{det}3
2140 al =u(k)f(y(k+1)xy(k+2)^2-y(k+2) my(k+1)^2)
2158 a2 = y (k) *(u(k+1)*y(k+2)^2-u(k+2)*y(k+1)^2)
216B aj = y(k)^2& (u(k+1) ¥y(k+2)-u(k+2) £y(k+1))
2178 a(k)=(al - a2 + a3)/det(k)
2180 b1 = 1*(u(k+1)*y(k+2)^2-u(k+2)*y(k+1)^2)
2198b2 =u(k)*(y(k+2)^2-y(k+1)^2)
22g8 b3 = y (k)^2 (u) (k+2)-u(k+1))
221eb(k)=(b)-b2+b3)/det(k)
2220 cl = 14(y(k+1) wu(k+2)-y(k+2) #u(k+1))
2230 c2 = y (k) # (u(k+2)-u(k+1))
2240 [J = u(k) }\ddagger(y(k+2)-y(k+1)
225ec(k)=(c1-c2+[3)/det (k)
2260 pi11 = a(k) & (y(k+1)-y(k))+b(k) # (y(k+1)^2-y(k)^2)/2
2278 pi12=c(k)*(y(k+1)^j-y(k)^j)/3
2288 int1(k)=pill + pil2
2290 pi21=a(k) t (y(k+2)-y(k+1))+b(k)*(y(k+2)^2-y(k+1)^2)/2
2308 pi22 = [(k) + (y(k+2)^3-y(k+1)^3)/3
2318 int2(k) = pi21 + pi22
2328 pi31 = (1.b-a(k))*(y(k+1)-y(k))-b(k) # (y(k+1)^2-y(k)^2)/2
233] pi32 =-[(k)&(y(k+1)^3-y(k)^J)/3
2340 int3(k) = pi3! + pi32
235E pi41= (1.b-a(k))*(y(k+2)-y(k+1))-b(k)*(y(k+2\mp@subsup{)}{}{\wedge}2-y(k+1)^2)/2
236e pi42 = -[(k)+(y(k+2)^J-y (k+1)^3)/3
2378 int4(k)=pi41 + pi42
2388 pi51 = a(k)*a(k)*(y(k+1)-y(k))
2398 pi52 = a(k) +b (k) f(y(k+1)^2-y(k\mp@subsup{)}{}{\wedge}2)
24et pi5J= (2&a(k)*c(k)+b(k)*b(k))*(y(k+1)^3-y(k)^3)/3
2410 pi54=b(k)¥c(k)&(y(k+1)^4-y(k)^4)/2
2420 pi55 = c(k)&c(k) # (y(k+1)^5-y(k)^5)/5
243B int5(k)=pi51+pi52+pi53+pi54+pi55
2448 pi61 = a(k) ¥a(k) ¥(y(k+2)-y(k+1))
2450 pi62 = a(k)&b (k)&(y(k+2)^2-y(k+1)^2)
```



```
2470 pi64 = b (k) &c (k) f (y (k+2)^4-y (k+1)^4)/2
2488 pi65 = c(k) +c (k) # (y (k+2)^5-y(k+1)^5)/5
```

```
2498 intb(k) = pi61+pi62+pibj+pi64+pib5
2580 pi71 = a(k) #a (k) ma (k) # (y(k+1)-y(k))
2510 pi72 = 3*a(k)*a(k)&b(k)*(y(k+1)^2-y(k)^2)/2
2528 pi73 =a(k) & (a (k) &c (k)+b(k) &b(k)) & (y(k+1)^3-y(k)^3)
2530 pi74 = b (k) f(6+a(k) fc(k)+b(k) mb (k)) f(y(k+1)^4-y(k)^4)/4
2548 pi75 = 8.6*c(k) (a(k) tc (k) +b(k) tb (k))#(y(k+1)^5-y(k)^5)
2550 pi 76 = b (k) &c (k) tc (k) + (y (k+1)^6-y (k)^6)/2
2568 pi77 = c(k)*c(k) & c(k)*(y(k+1)^7-y(k)^7)/7
2578 int 7 (k) = pi 71+pi 72+pi 73 +pi74+pi }75+pi76+pi7
2580 pi81 = a(k) ¥a(k) ¥a(k) #(y(k+2)-y(k+1))
2590 pi82 = 3#a(k)*a(k)*b(k)*(y(k+2)^2-y(k+1)^2)/2
2688 pi8J=a(k)*(a(k)+c(k)+b(k)*b(k))*(y(k+2)^3-y(k+1)^3)
2610 pi84 = b (k) ( (6*a(k) mc (k)+b(k) fb (k)) ¥ (y (k+2)^4-y(k+1)^4)/4
2628 pi85 = 0.6*c(k)*(a (k)*c(k)+b(k)*b(k))*(y(k+2)^5-y(k+1)^5)
2638 pi86 = b (k)*c(k) tc (k) f (y (k+2)^6-y(k+1)^6)/2
2648 pi87=c(k)*c(k)\pmc(k)*(y(k+2)^7-y(k+1)^7)/7
2650 int8(k)=pi81+pi82+pi83+pi84+pi85+pi86+pi87
2660 IF k = 3 60T0 2680
2678 60T0 2728
2688 5ul = 5unl + intl(k)
2698 sum2 = sun2 +int3(k)
2788 5um3 = 5um3 +int5(k)
2718 5un4 = 5u,4 + int7(k)
2728 IF k < n2 AND k > 3 GOTO 2748
273860T0 2780
2740 5unl = 5um1 + 0.5#(int1(k) + int2(k-1))
2750 sue2 = sum2 + 0.5#(int 3(k) +int4(k-1))
2758 5umj = 5ul3 + 0.5*(int5(k) + intb(k-1))
2778 5u44 = 5um4 + 8.5#(int7(k)+intg(k-1))
2780 IF k = n2 60T0 2800
279860T0 2848
2800 5uml = 5util + 0.5t(int1(k)+int2(k-1))+int2(k)
2810 5um2 = sum2 + 0.5#(int3(k)+int4(k-1))+int4(k)
2828 5umj = 5um3 + 0.54(int5(k)+int6(k-1))+int6(k)
2830 sum4 = sum4 + 8.5*(int7(k)+int8(k-1))+int8(k)
2848 NEXT k
2850 5un1 = d{5umb
2868 5u*2 = d*54*2
2870 5UE\ = d 5ufj
2888 5um4 = d*5U每4
2897 ENDPFOC
2908 DEFPROCRfile
2910 X2=0PENIN"DATA*
2928 INPUT#XZ E$
2930 K = DPENIN E$
2948 INPUT*H,n,uinf,x,Z,d,t,z,AVIM,EIM
2950 FOR i = 1 T0 n
2968 INPUT#H,u(i),y(i)
2978 NEXT i
2980 FOR i =1 T0 n
2998 INPUT#H,RM3(i),IM3(i)
3008 NEXT i
3010 CLOSE# H
3028 ENDPROC
3030 DEFPROCPfile(uplu5,yplus,n,E$)
3048 X3=0PENOUT"DATA1"
```



```
3868 FOR I=1 to n
3070 PRINT#X3,uplus(I),yplus(I)
3988 NEXT I
3898 CLOSE# X3
3188 ENDPROC
3118 DEFPROCdrive(X%)
3128 IFD%=4BTHEH{DR.0
3130 IFD%=49THEN&DR.1
3148 IFD%=5gTHEN{DR.2
315B IFD%=51THEN*DR. }
3168 ENDPROC
```


Programme

TUGRAF2
Programme TUGRAF2 is a graphics programme used for displaying experimental data on the Universal turbulent boundary layer velocity profile. ie on axes of $u+v_{s}^{\prime} y+$

```
10 REM GRAPHICS PROG. "TUGRAF2" UNIVERSAL TURBULENT VELOCITY PROFILE PLOT"
28 DIM uplus(40),Lyplus(40)
30 DIM yplus(40)
4 0 ~ M O D E !
50 PROCRfile
60 VDU 19,3,3,8,8,8
70 VDU 19,2,4,0,0,0
80 MOVE 125,825
98 DRAH 125,125
188 DRAH 1225,125
118 PRINTTAB(B,2)"TURBULENT BOUNDARY LAYER"
128 PRINTTAB (7,4)"UNIVERSAL VELOCITY PROFILE"
138 PRINTTAB (15,7);"FILE ";E$
140 PRINTTAB(1, 14) "U+"
158 FRINTTAE (29,30)"Ln Y+"
168 PRINT TAB(0,18)"20"
178 FRINTTAB(0, 19)"18"
180 FRINTTAB(35;29)"6"
190 PFINTTAB (25;29)'4*
208 PRINTIAB (14,29)"2"
210 PRINTTAB (2,28)"8"
228 MOVE 125,125
230 FOR Uplus = 1 TO 12.5 STEP 0.5
248 LYplus=LN(Uplus)
258 U1 = Uplu5*28+125
268 Y1 = LYplu5+169+125
270 DRAW Y1,UI
280 NEXT
298 MOVE 471,405
308 FOR UPlu5 = 10 TO 600 STEP 50
318 LYplus = (Uplus-5.8)/2.44
328 U1 = Uplus 2 28+125
338 YI = LYplus*169+125
348 DRAK Y1,U1
350 NEXT
360 MOVE1139,125:DFAH1139,100
378 MOVE801,125: DRAM801,108
388 MDVE463,125: DRAM463,108
398 MOVE125,685: DRAM188,685
488 MOVE125;405: DRAH100;485
410 6COL O,1
42B FOR I = 1 TO n
438 Lyplus(I)=LN(yplus(I))
448 B=uplu5 (I) }228+12
450 A=Lyplus(I) +169+125
468 MOVE A,B
4 7 8 \text { PLDT 69,A,B}
4 8 8 \text { FLDT 69,A-8,B-8}
4 9 8 \text { PLOT 85,A+B,B-B}
5B8 NEXT I
510 Print=INKEY(1580)
528 IF Print=32 60T0530 ELSE 540
538 &RUN"MCEDUMP"
54B END
558 DEFPROCRfile
568 X =OPEMIN"DATA!"
576 INPUT\XJ,n,E$
5B0 FDF I = 1 to n
598 InPUT\X3,uplus(I),yplus(I)
6 8 8 ~ N E X T ~
618 CLDSE# X3
6 2 8 \text { ENDPROC}
```


Programme

TURBLEV

Programme TURBLEV is a data acquisition programme used to obtain the streamwise freestream turbulence distribution

```
18 MODE7
28 REM PROGRAM 'TURBLEV' USED TD FIND FREESTREAM
38 REM TURBULENCE LEVEL
48+10
5& CLOSE:A
68 A%=OPENUP"CU-DACB &CBOB"
72 CLS
8日 PRINTTAB(1,12)CHR$131"INFUT DIST. FROF L.E. IN 細"
98 INPUTTAB (32,12) X
108 CLS
118 ProCcalcon
120 CLS
138 FRINTTAB(1,10)CHR$134"PLEASE HAIT VALUES ARE BEING"
148 FRINTTAB(1,12)CHR$134" CALCULATED"
15% RMSS%=0
168 FTR:A%=6
178 FOR I=1T010000
1ga RMS%=RGET#A%
192 FMS5%=RMS5%+RMS%
20 HEXT
210 UELS%=0
22 FTR#A%=2
238 FOR I=1T01808
24 YEL%=BEETAO%
253 VELS%=VELS%+VEL%
268 HEXT
27B FVEL=VELS%*VC/18B8
28E RMSVEL=RMSS%*RMC/10000
298 FT=RMSVEL*108/FVEL
308 CLS
318 yDU2
320 PRINTTAB (1,6)CHR$129"DISTANCE FROM L.E. = "; X" ma "
332 PRINTTAB(1,8)CHR$129"FREESTREAMVELOCITY = "INT(FUEL*100+0.5)/100:"m/5"
348 PRINTTAB(1,10)CHR$129"RMS VELOCITY = ";INT(RMSVEL +10000+8.5)/18000;" "/5"
35R PRINTTAB(1,12)CHR$129"FREESTREAM TURBULENCE LEVEL = "; INT(FT 100+0.5)/180"4"
36 YDUS
372 END
388 DEFPROCcalcon
398 PRINTTAB(0,6)CHR$132"MHICH RANGE IS RMS METER SET TO :-"
402 PRINT:PRINT:PRINT:PRINT
410 FRINTTAB(18)CHR $131"1, 0.01"
42P FRINT
430 FRINTTAB(10)CHR $131'2, 0.03'
4 4 2 ~ P R I N T
458 FRINTTAB(10)CHR$131"3. 0.1"
46B PRINT
47E FRINTTAB(10)CHR$131'4. D.3"
480 B%=6ET
498 req%=8%-48
50% ONreq%60T0 518,530,550,570
51B RMC=4.982E-4
528 60T0 580
53B RMC=1.471E-3
548 60T0 580
55B RMC=4.902E-3
56% 60T0 580
57B RHC=1.471E-2
58% VC=7.95E-2
5 9 8 \text { ENDPROC}
```


Programme

IMPROF2
Programme IMPROF2 is a data acquisition Programme used to obtain the streamwise 'Near Wall' intermittency distribution. This data is stored in a data file in the form $\bar{\gamma}, x$

```
18 REM PROG "IMPROF2" FOR READING IN
20 REM INTERMITTENCY LEVELS
30 DIM EIM(70),AVIM(70),X(70),2(70)
48 MODET
50410
60 CLOSE#O
78 AK=DPENUP"CU-DACB &CBOQ"
80 I=1
9860T0 120
180 CLS:SUM%=8
118 I=1+1
128 FRINTTAB(1,18)CHR$138"INPUT DIST FROM L.E. IN a*"
130 INPUTTAB(30,10) X(I)
148 PRINTTAB (1,14)CHR$138'INPUT SPANHISE POS. IN m:"
158 INPUTTAB (30,14) Z(I)
16B CLS
17e PRINTTAB(1,10)CHR$129"WAIT HHILE INTERMITTENCY values"
188 PRINT
198 FRINTTAB (8,12)CHR $129*ARE BEING READ IN*
280 FTR#%%=4
218 FOK K%=1 TO 10008
22B IM%=B6ET:A%%
23B SUM%=SUM%+IM%
248 NEXT K%
256 AVIM(I)=((SUM%/10880)-1)*3.984E-3
260 CLS
278 PRINTTAB (1,18)CHR$133"INFUT EYEBALL VALUE"
288 FRINTTAB(0,11)CHR$133
298 FRINTTAB (1,12)CHR $133"OF INTERMITTENCY Volts"
308 INPUTTAB(28,11) EVIM
318 EIM(I)=EVIM+2/10
328 CLS
33E PRINTTAB(O,10)CHR $129"MOUE PROEE TO NEXT POINT THEN"
348 PRINTTAB(0,12)CHF$129"PRESS RETURN"
350 FRINTTAB(0,14)CHR$130"IF RUN IS COMPLETE PRESS (C)"
360 E=6ET
378 IF B<>67 60TO 388 ELSE 390
380 IF B=13 60T0 100 ELSE 330
398 CLS
40日 VDU2
418 PRINTCHR$138" X GAMA GAMA I"
428 PRINTCHR $130' Ea ADC Val. EYEBALL'
4 3 8 \text { PRINT}
440 FOR Q = 1 TO I
450 PRINTTAB(5); % (0);TAB(15); INT(AVIM(Q)*100+0.5)/100;TAB(28)EIM(B);TAB(34);Z(I)
4 6 8 \text { NEXT}
4 7 8 \text { VDU3}
488 ¥DR.0
4 9 8 \text { END}
```


Programme

SIGCALC
Programme SIGCALC is used to calculate the value of σ from experimental γ, x data obtained using programme IMPROF2

10 REM PROG SIGCALC
$20 \operatorname{DIM} \times(30), \operatorname{AVIM}(38), \operatorname{EIM}(30), X 1(38)$
30 DIM 6(38),etal (68)
48 MODET
50 CLS
60 IF $H 2=860 T 0128$
78 PRINTTAB (1,8)CHR $\$ 134$ "INPUT NAME DF FILE TO BE READ"
88 PRINTTAB (0,12) CHR $\$ 134$
90 INPUTTAB(II 12) NAME\$
188 PRINTIAB (4, 16)CHR $\$ 134^{* H H I C H}$ DRIVE IS FILE ON*
$110 \mathrm{DK}=6 \mathrm{ET}$
120 PRDCdrive (D\%)
130 PROCfilread (NAMES)
148 CLS
150 PRINTTAB (O, B) CHR $\$ 130$ "DO YOU HANT TO USE :-
168 PRINTTAB $(5,11)$ CHR $\$ 130^{\circ} A$. EYEBALL VALUES"
178 PRINTTAB (5, 14) CHR $\$ 130^{*} B$. ADC VALUES
188 PRINTTAB(5,17)CHR\$138"C. BOTH EYE \& ADC VALUES"
198 QuK=6ET
208 IF $\mathrm{Qu}_{\mathrm{L}}^{2}=6560 \mathrm{TO238}$
218 IF Qu\% $=66$ 60T025B
228 IF $04 \%=676070278$
238 PROCeyeball
2486070288
25 P PROCadr
2686070280
2 e PROCboth
288 PROCLeastsq (K)
298 MDDE
30e PROCplotGyX(Ru\%)
318 VDU5
320 MOVE200,50: PRINT"PRESS SPACE TO CONTINUE"
338 W=6ET
348 MODE 7
356 PRINTTAB $(5,10)$ CHR $\$ 132$ "HAIT HHILE SIGMA (mean)"
368 PRINTTAB(6,13)CHR $\$ 132^{\prime \prime}$ IS BEING CALCULATED*
378 PROCsigma ($\mathrm{Cu} \%$)
388 CLS
398 PRINTTAB (4,10)CHR $\$ 131$ MEAN VALUE OF SIGMA $=$ 'INT(AveSig)
400 PRINTTAB (6,14) CHR $\$ 132^{*}$ PRESS SPACE TO CONTINUE
$410 \mathrm{~B}=\mathrm{EET}$
42 P PROCfileput
$438 \pm$ DR. 0
448 CHAIN"Plot $6 \mathrm{VE} \mathrm{E}^{*}$
450 DEFPROCdrive (D\%)
468 1D.
478 IFD $\%=4$ BTHEN $4 D R$. 8
488 IFD\% $=49$ THEN 4 DR. 1
498 IFD\% $=50$ THEN $*$ DR. 2
580 IFD\% $=51$ THEN 4 DR. 3
518 ENDPROC
528 DEFPROCfilread (NAME
538 1FHK〈〉860T0578
548 file $\%=$ DPENIN"FLNAME"
558 INPUT:Ifile\%, NAME
568 CLDSE file\%
578 ExpD\%=DPENIN(NAMES)
588 INPUTEEXDZ,N,TU,UQ
598 FOR $I=1$ TO N
68B INPUT:ExDDK,X(I), EIM(I),AVIM(I)
618 NEXT
628 CLOSE\# ExpD\%
$638 H 2=\emptyset$
648 ENDPROC
658 DEFPROCeyeball
$668 \mathrm{~K}=8$
678 FOR $I=1 T 0 N$
$688 \mathrm{IF} \operatorname{EIM}(\mathrm{I})\langle=0.25$ OR EIM (I) $)=8.7560 T 0728$
$698 k=k+1$
$788 \mathrm{G}(\mathrm{K})=\mathrm{EIM}(\mathrm{I})$
$718 \times 1(\mathrm{~K})=\mathrm{X}(\mathrm{I})$
728 NEXT
738 ENDFROC
748 DEFPROCadr
$758 K=8$
768 FOR $1=1 T O N$
778 IF AVIM(J)<=0.25 OR AVIM(I) $>=0.756070 B 10$
$788 k=K+1$
$798 \mathrm{G}(\mathrm{K})=\mathrm{AVIM}(\mathrm{I})$
$888 \times 1(K)=x(1)$
810 NEXT
B28 ENDPROC

838 DEFPROCboth
$848 \mathrm{~K}=8$
858 FOR $I=1$ TON
868 IF $\operatorname{EIM}(\mathrm{I})\langle=8.25$ DR EIM(I) $\rangle=8.756070980$
$878 k=k+1$
$8886(K)=E I M(I)$
$898 \times 1(K)=X(I)$
988 IF AVIM(I) $\langle=0.25$ OR AVIM(I) $)=0.7560$ T0940
$918 k=k+1$
$920 \mathrm{G}(\mathrm{K})=\operatorname{AVIM}(1)$
$938 \times 1(K)=X(1)$
948 NEXT
958 ENDPROC
968 DEFPROCLeastsq(k)
978 FORJ $=1$ TOK
$98056=56+6(\mathrm{~J})$
998 5X=5X+X1(J)
188e $5 \times 2=5 \times 2+\times 1(\mathrm{~J})^{2} 2$
$101856 \mathrm{X}=56 \mathrm{X}+6(\mathrm{~J}) \times \mathrm{XI}(\mathrm{J})$
1828 HEXT
1038 DEL $=K \pm 5 \times 2-5 \times \pm 5 X$
$1848 \mathrm{H}=(\mathrm{K} \pm 56 \mathrm{X}-56 \times 5 \mathrm{~S}) / \mathrm{DEL}$
1850 Const $=(S \times 2 \times 56-5 x+56 x) / \mathrm{DEL}$
1868 ENDPRDC
1078 DEFPROCplot6vx (Qu\%)
$1068 \mathrm{Ct}=\mathrm{B}$
1090 VDU19, $3,3,0,0,8$
1100 VDU19, $2,2,8,0,8$
1118 MDVE208, 980: DRAH208,208: DRAH1200,200
$1128 \mathrm{IFRu} h=6560101200$
1138 FORI $=1$ TON
1148 AVIMF $=A V I M(1) \div 708+208$
$1158 \times P=(X(1)-X(1)) / 1.5+280$
1168 6COLD 2
1178 FLDT69, XF, AVIMP
1188 NEXT
1198 IF民ut $=6760701200$ ELSE 1268
1288 FORI $=1$ TON
1218 EIMP $=E 1 M(1) \pm 708+208$
$1220 \times P=(X(1)-X(1)) / 1.5+200$
1230 6COLB, 1
1248 PLOT69, XP, EIMP
1258 NEXT
1268 6COL 1,3
1270 FOR $6=8.25$ TO 0.75 STEPQ. 81
1288 XLS $=(6-$ Const $) / M$
$12986 \mathrm{P}=6 \pm 780+208$
$1300 \times L S P=(X L S-X(1)) / 1.5+200$
1318 IFCt $\rangle=160 T 01350$
132 MOVE XLSP, GP
$1330 \mathrm{Ct}=1$
1340 NEXT
1359 DRAM XLSF,GP
1368 NEXT
$1378 \times$ BAR $=(0.5-$ Const $) / M$
$1380 \times$ BARP $=(X B A R-X(1)) / 1.5+200$
1396 ECOLO,
1400 MOVE XBARP, 150: DRAM XBARP 980
1418 MOVE 150,550: DRAH 1200,550
1428 VDU5
1430 MOYEXBARP-130,108:PRINT"XBAR="; INT (XBAR)
1448 MOVESO 560 :PRINT'0.5"
1458 GCOLD 3
1468 MOVE150,988:PRINT"G":MOVE150,860:PRINT"A"

1498 VDU4
1588 ENDPROC
1518 DEFPROCsigaa (Qu\%)
$152 \mathrm{~K}=\mathrm{B}$
1538 IFGu\% $=6560101670$
1548 FOR I=1TON
1558 Inc=1: etax $=-2.5$: etax $2=2.5$
156860701590
1578 etax $1=($ eta-Inc) : eta2 $x=$ eta: Inc=Inc/10
1588 IF ABS (6 (al-AVIM(I)) $<=0.0160701630$
1598 FOR eta=etax 1 TO etax2 STEP Inc
1608 PROCpolyeta(eta)
1618 If 6cal SAVIM(I)60T01570
1628 NEXT eta
1638 etal (1) =eta
1648 NEXTI
1650 IFRU $\%=6760$ T01668ELSE1798

```
1668 K=N
1670 FOR I=1TON
1688 K=K+1
1698 Inc=1: etax 1=-2.5: etax 2=2.5
1708 60T01738
1710 etax = (eta-Inc):eta2x=eta:Inc=Inc/10
1728 IF ABS(6cal-EIM(I)}<=0.01 60T0177
1736 FOR eta=etax1 TO etax2 STEP Inc
1748 PROCpolyeta(eta)
1750 IF Gcal>EIM(I)60T01710
1768 NEXT eta
1770 etal(X)=eta
1788 NEXTl
1790 IFQuL=67THEN L=2*N ELSE L=N
1868 SumSig=8:Ct 2%=0
1810 FOR I = 1 TO L
1828 IF I\N THEN K=I-N ELSE K=I
1838 IFetal(I)>-2.25 AND etal(I)<-8.2560T01858ELSE1840
1840 IFetal(I)})0.25 AND etal(I)<2.2560T01858ELSE1888
1858 Sigma=(X (K)-XBAR)/rtal(I)
1868 SuaSig=Sigma+SuaSig
1878 Ct2%=Ct2%+1
1888 NEXT
1898 AveSig=Su-Sig/Ct2%
1980 ENDPROC
191B DEFPROCpolyeta(eta)
1928 Meta=S0h(eta^2)
1936 IF Eta=b 60T02008
1948 C1=0.8273*Meta
1958 c2=0.094*Meta^2
1960 [J=0.073*Meta^J
1970 C4=0.0165*Meta^4
1988 6cal=0.5#(1+(eta/(Meta))*(C1-C2-C3+C4))
1998 60T02018
2000 6cal=0.5
2016 ENDPROC
2028 DEFPROCfileput
283B file%=OPENDIT"GvEData"
2040 PRINTAFile%,N,XBAR,AveSiq,Qu%
2058 FORI=1TON
2060 FRINT#file%,X(I),AVIM(I),EIM(I)
2076 NEXT
2086 CLOSE# file%
2090 ENDFROC
```


Programme

IGBLPRI
Programme IGBLPRI is the introductory programme for the Tani/Alber computational model described in Chapter7. This programme is used to read in the initial input data and to estimate the $\left(\frac{U_{0}}{H_{32}} \frac{d H_{32}}{d U_{00}}\right)$ term required for the laminar boundary layer
calculation by Tani's method

```
L.
    10 REM PROG IGBLPRI USED TD ESTIMATE DGDU TERM FOR TANI'S METHOD
    28 MODE7
    30 CLS
    48 FRINT:PRINT;PRINT:PRINT
    58 PRINTCHR$130'ATMOSPHERIC PRESSURE mAHg"
    60 FRINT
    78 INPUT TAE(15) 2
    80 PRINTCHRSIJa"AIR TEMPERATURE Deg C'
    9 8 \text { PRINT}
    1B8 INPUT TAB(15) t
    118 FRINTCHR$138'FREESTREAM VELOCITY //5"
    120 PRINT
    138 INPUT TAB(15) UO
    148 PRINTCHR$130"LENGTH OF PLATE am"
    158 PRINT
    168 INPUT TAB(15) XHAX
    170 PRINTCHR$138"FREESTREAM TURBULENCE"
    188 INPUT TAB(15) Tu
    198 PRINT
    288 PRINTCHR$I3O"DO YOU HANT TO USE ABU-GHANNAH&SHAHS"
    218 PRINTCHR$130'CORRELATION FOR THE ONSET OF TRANSITION*
    228 INPUT TAB(15) 日$
    230 IF OS= 'Y" 60T0298
    248 PRINT
    258 PRINTCHR$130"IMPUT TRANSITION ONSET IN 畮"
    268 INPUT TAB(15) Xst
    270 PFINT
    28060T0300
    298 X5t=8
    300 PRINTCHR$130"DD YOU HANT A PRINTOUT OF"
    310 PRINTCHR&130'TRANSITION VELOCITY PROFILES*
    32% INFUT TAB(15) PROS
    330 CLS
    340 PRINT
    35g PRINT
    369 FRINTCHR$131"THE FREESTREAM VELOCITY DISTRIBUTION IS"
    378 PRINTCHK$131'DEFINED IN THE FORM :-"
    380 PFINT
    398 PRINTCHR$130;CHR$141;"U/UD = "CHR$141;"EX'CHR$140;'P';CHR$141;'+A + BX + CX";CHR$148;'2";CHR$141;'+ DX'
CHR$140:"3"
    480 PRINTCHR$130;CHR$141;"U/UD = ";CHR$141;"EX"CHR$140;" ";CHR$141;"+A + BX + CX";CHR$140;" ";CHR$141;'+ DX
"CHR$148:"
4 1 8 ~ P R I N T ~
4 2 8 ~ F R I N T ~ T
430 PFINTTAB(4)CHR$134"P = '
448 INPUTTAB(10,18); P
4 5 8 \text { PRINT}
46B PRINTTAB(4)CHR$134"E = =
470 INPUTTAB(10,12); E
4 8 6 ~ P F I N T ~
490 PRINTTAB(4)CHR$134*A = *
508 INPUTTAB(10,14); A
510 PRINT
528 PRINTTAB (4)CHR$134*B = "
538 INPUTTAB(10,16); B
548 PRINT
558 PRINTTAB (4)CHR$134"C = "
56B INPUTTAB(10,18); C
578 PRINT
588 PRINTTAB(4)CHR$134"D = "
590 INPUTTAB (10,20); D
6 8 8 \text { PRINT}
618 © % =420389
628 MODE4
630 DGDU=0:A2DSTR2=8
640 DIM THETA(18B),DSTR1(180), X(180),CfL(180),H(188),G(180),DSTR2(180)
658 DIM Z(12),UN5(12),U(100), a(100)
66BDIM A(10,20),AINV{10,10),C(10),B(10)
670 rho=(0.46535*2/(t+273))
688u=(1.725+8.884375*t)/18^5
698 nu=mu/rho
708 THETA( })=0:D=DTR1(0)=0:U(0)=UD:X(0)=
710 C+L(0)=8:H(0)=b:G(0)=8:DSTR2(0)=0:a(0)=0
720 DX=18:SUM=0
738 I=1
740 DX=DX =18
75060T0780
768 IFX(I)\XHAX 60TO 850
778 1= [+1
788 x (1)=x(1-1)+DX
798 PROCRuadrature
808 IF LAK=0 60T0 1828
```

```
810 IFLAM- 0.0960T0820 ELSE 830
820 I= 1-1:60T0850
BJD PROCTani
848 60T0760
858 A1DSTR2=S1DSTR2/I
868 SIDSTR2=0
B78 IF ABS(A1DSTR2-A2DSTR2) < 0.800160T0990
880 A2DSTR2=A1DSTR2
898 PROCcurvefit
988 1=1:60T0940
910 I= I+1
920 IF I<=N 60TD 948 ELSE 930
938 I=I-1:60T0858
948 DGDU=C(2)+2*C(3)*U(I) +3*C(4)*U(1)^2
```



```
960 LAM=DUDX*THETA(I)^2/(nu*1008880)
978 FROCTani
980 60T0910
998 PROCPIOtGvU
1088 IF LAK=0 60T01020
1018 IF GET=32 60T01020 ELSE 1010
1828 PROCfput
1038 CHAIN"IGBLPR5"
1048 END
1050 DEFPFOCQuadrature
186B LOCAL N,N1,N2
1070 @=X(1)/KMAX
1888 UN=E*&^P+A+B+Q+C+Q^2+D*&^3
1098 DUDX=(P*E*P^(P-1)+B+2+C+E+3*D*Q^2)*(UO+188B/XMAX)
108 N=11
1118 ST=DX/10
1128 XST=X(1)-(DX+ST)
1130 FOR K=1TON
1148 XST=XST+ST
1158 Z(K)=XST/XMAX
116B UN5(K)=(E+Z(K)^P+A+B*I(K)+C*I(K)^2+D*I(K)^3)^5
1178 NEXT
1188 SUM=SUM+UN5(1)+UN5(11)
1 1 9 0 ~ N I = N - 1
1208 FOR K=2 TD N1 STEP2
1218 SUM=SUM+4*UN5(K)
122B NEXT
1238 N2=N-2
1240 FOK K=3 TO N2 STEP2
250 SUK=SUM+2*UN5 (K)
1268 NEXT
1270 INUN5=ST&SUM/(3+1000)
1288 U(I)=UNN\UO
1298 THETA(I)=SRRI(8.45*חU*U0^5/U(I)^G) &INUN5) & 1608
1308 LAM=DUDX*THETA(I)^2/(nu*1008800)
318 IF LAM<-0.0960T01320 ELSE 1330
1320 I=I-1:60T0850
1338 ENDPRDC
340 DEFPROCTani
1358 a=0
1368 TD=0.4-a/20
1370 TE=(4/35)+(a/185)-(a^2/252)
1380 TF={876/5085)+(73/5885)*a-(23/5468)*a^2-(1/2860)*a^}
1398 TP=2#a&TE
1488 TQ =(4/35)*TF)*(48-4*a+3*a^2)
1410 H=TD/TE
1428 6=TF/TE
143B ita=(LAM*(H-1)-LAM&U(I) +D6DU/6+TQ/(246^2)-(a^2/105)+(a^3/252))*(35/4)
1448 IF ABS(ita-a)<0.008160T01470
1458 a=ita
1468 60T01360
47% a(1)=ita
1480 TD=0.4-a(I)/20
1498 TE=(4/35)+(a(I)/105)-(a(I)^2/252)
1588 TF=(876/5085)+(73/5005)&a(I)-(23/5468)&a(I)^2-(1/2860)*a(I)^3
518 H(I)=TD/TE
1528 6(I)=TF/TE
1538 DSTR1(I)=THETA(I)*H(1)
1548 DSTR2(I)=THETA(I)*6(I)
1550 CfL(I)=TP*nu*1080/(THETA(I)*U(I))
1568 S1DSTR2=SIDSTR2+DSTR2(I)
578 ENDPFOC
1588 DEFPROCcurvefit
598 N=I
1688 LOCALI
1610 M=2
1628 MAX=2枟
1638
```

1648
1650
1668 FOR I=1 TO M
1678 FOR J=1 TO MAX
1680 A(I,J)=0
1698 NEXY
1708 HEXT
1718 A(1,1)=N
1728 FOR l=2 TO M
1 7 3 8 FOR K=1 TO N
1748 A(I, 1)=A(I,I)+U(K)^(I-1)
1758 NEXT
1768 NEXT
1778 FOR J=2 TO H
178B FOR K=1 TO N
1798 A(M,J)=A(M,J)+U(K)^(M+J-2)
1808 NEXT
181B NEXT
182B FOR J=2 TO M
183E FOR I=1 TO (M-1)
1848 A(I, J)=A((I+1),(J-1))
185B NEXY
1868 NEXT
1870 FOR I=1 TO M
1888 A(I, (M+1))=1
1898 B(I)=0
1982 C(I)=0
1910 NEXT
192B FOR I=1 TO M
1938 FOR K=1 TO N
1948 B (I) = B(I)+6(K) \&U(K)^(I-1)
1958 NEXT
1969
1978
1988
1998
208e L=1
2818 FOR J=1 TO (m-1)
2e2B L=L+1
203E FOR I=L TD M
2848 CONST=-(A II,J)/A(J,J))
285E FOR K=J TO MAX
2B6B A(I,K)=A(I,K)+CONST+A(J,K)
2078 NEXY
2880 NEXT
2898 NEXT
2!8B

```

```

2118 L=0
212B FOR J=M TO 2 STEP -1
2138 L=L+1
2148 FOR I=(M-L) TO 1 STEP -1
2158 COMST=-(A(I,J)/A(J,J))
2168 FOR K=MAX TO 2 STEP -1
2178 A(I,K)=A(I,K) +CONST*A(J,K)
2188 NEXT
2198 NEXT
22PE NEXT
2218
2228 FOR I=1 TO M
2238 ANOR=A(I,I)
224B FOR J=1 tD MAX
2258 A(I,J)=A(I,J)/ANOR
226日 NEXT
2278 NEXT
2288
2298 K=0
2398 FOR J=(H+1) TO MAX
2318 K=K+1
232B FOR I=1 TO K
2338 AINY(I,K)=A(I,J)
2348 NEXT
2358 NEXT
2368
2378 REM MATRIX INVERSION COMPLETE
2388
2398 FOR I=1 TO M
2480 FOR J=1 TO M
2418 C(I)=C(I)+AINV(I,J)*B(J)
242B NEXT
243. NEXT
2448 ENDPROC
2458 DEFPROCPIot6vU
2468 PROCcurvefit

```
\(2478 \mathrm{Ct}=8\)
2488 VDU19,3,3,0,8,0
2498 MOVE 200,980: DRA 280,208 :DRAH1280,280
2508 VDU5
2518 MOVE 180,808:PRINT" G" \(^{\prime \prime}\)
2520 MOVE 1060, 148:PRINT"U"
2538 VDU4
2548 Uscale=1880/ABS(U(1)-U(N))
2558 6scale \(=708 / 0.1\)
2560 Ctl \(=0\)
2570 FOR \(K=1\) TO N
2580 IFU(N) \(\langle U(1) 60 T 02610\)
2598 Uplot \(=(U(K)-U(1))+U s c a l e+288\)
26806502620
2618 Uplot \(=(U(K)-U(N))+U s c a l e+208\)
2620 Gplot \(=(6(K)-1.5)+65 c a l \mathrm{e}+288\)
2638 PLOT69,Uplot, 6plot
2640 NEXT
2650 FOR \(K=1\) TON
\(26606=C(1)+C(2) \pm U(K)+C(3) * U(K)^{\wedge} 2+C(4) * U(K)^{\wedge} 3+C(5) * U(K)^{\wedge} 4+C(6) * U(K)^{\wedge} 5+C(7) \pm U(K)^{\wedge} 6\)
\(2678 \mathrm{IFU}(\mathrm{N})<U(1) 60102780\)
2688 uplot \(=(U(K)-U(1)) \pm U 5 c a l e+280\)
269860102718
2708 Uplot \(=(U(K)-U(N)) * U s t a l e+200\)
2710 Gplot \(=(6-1.5) *\) Gscale +200
2720 IFCt>0.560T02778
\(2730 \mathrm{C} t=1\)
2740 MIVE Uplot, 6plot
2758 FLOT69, Uplot, \(6 p 10 t\)
276860702780
2778 DRAKULI lot, Gplot
2780 NEXT
2790 ENDPROC
2808 DEFPRDCfput
2810 CHK=OPENOUT"TANDGDU"
\(2 B 28\) PRINT\#CHK, \(C(1), C(2), C(3), C(4), 2, t, X M A X, T u, U C, P, E, A, B, C, D, X 5 t, P R O S, Q \$\)
2838 CLOSE\#CHY
2840 ENDPROC

\section*{Programme}

IGBLPR5
Programme IGBLPR5 is the main boundary layer prediction computational programme.
```

 18 MODE7
 20 vDUI5
 38 暗=220369
 48 DIM THETA(350), DSTR1(350), X(350),Cf(350),H(350),G(350), QSTR2(350),U(350)
 50 DIM [(12), UN5(12)
 60 DIM C(4),unL (21),unT(21),unt (21)
 78 DIM IN1(21),1N2(21),YD(21)
 88 PROCfread
 98 rho=(0.46535*z/(t+273))
 180 (u=(1.725+日.804375+t)/10^5
110 nu=eu/rho
120 THETA (})=0:\mathrm{ DSTRI (0)=0:U(0)=U0: X(0)=0

```

```

150 PRINT
168 I=8
170 PROCPrint
18B DX=25:SUM=8
198 IF X(I))XMAX OR I\34960TO 678
280 I=1+1
210 X(I)=X(I-1)+DX
228 FROCTani
238 PROCTrstart
248U(I)=UL
250 DSTR1(1)=DSTRIL
260 THETA(I)=THETAL
278 DSTR2(I)=DSTR2L
288 H(1)=HL
298 E(1)=6L
3B8 Cf(1)=CfL
310 PROCPrint
326 IFE \$= 'Y" 60T0 358
330 IFX(I)}=\times\mathrm{ xt 60T0370
340 60T0360
358 IF RTH > RTHS GOTO370
368 60T0198
378 PROCInitcon
380 1=1+1
398 X(I)=X(I-1)+DX
400 IFX(1)\XHAX OR I\349 60T0 670
4 1 0 ~ V D U 2 ~
4 2 8 ~ P R O C T I N i ~
4 3 0 PROCAlber
4 4 0 ~ P R O C T r a n ~
450 U(I)=Ut
4 6 8 DSTR1(1)=DSTR1t
478 THETA(I)=THETAT
480 DSTR2(I)=DSTR2t
490 H(I)=Ht:G(I)=6t
588 Cf(1)=Cft
510 LAMt=THETAt^2*dUdX/(nu*1809080)
520 PROCPrint
530 IF eta`2.25 60T0 550
548 60T0388
558 I=1+1
560 x(I)=x(I-1)+DX
578 IFX(I))XMAX OR 1>34960TO 670
580 PROCAIber
598 U(I)=UT
68 DSTR1 (I)=DSTR1T
6 1 0 THETA(I)=THETAT
62日 DSTR2(I)=DSTR2T
630 H(I)=HT:G(1)=6T
648 Cf(1)=CfT
65 PROCFrint
6 6 8 6 0 T 0 ~ 5 5 0 ~
678 [LS:PRINT:PRINT:PRINT
688 PRINTCHR$134"DO YOU WANT TO PUT THIS DATA ON FILE"
 6 9 8 \text { PRINT:PRINT}
 708 E5=6ET$
718 IFB5="N"60T0 738
720 PROCFput
7 3 8 END
748 DEFPROCPrint
758 XPR=(X(I)-X(D))/50
768 IF XPR<>IMT(XPR)60T0810
778 IF I>8 60T08B8
7B0 PRINTTAB(7);X(0);TAB(15);U(0);TAB(25);DSTR1(0);TAB(35);THETA(8);TAB(45);DSTR2(B);TAB(54);H(0);TAB(62);G(
8) [TAB(71);"inf"
79860T0 818
808 PRINTTAB(7); X(1);TAB(15);U(I);TAB(25);DSTR1(1);TAB(35);THETA(I);TAB(45);DSTR2(I);TAB(54);H(I);TAB(62);G1
1);TAE(70);Cf(I)+1880

```
```

 818 ENDPROC
 820 DEFPKOCQuadrature
 838 LOCAL N,N1,N2
 848 g=X(1)/XMAK
 8 5 8 U N L = E * g ^ { \wedge } P + A + B \& q + C * q \wedge 2 + D \& q ` 3 ~
 868 dUdX=(P*E*q^.(P-1)+B+2*C*q+3*D*q^2)*(UO*1808/XHAX)
 870 N=11
 88C ST=DX/10
 898 XST=X(I)-(DX+ST)
 900 FOR K=1TON
 910 <ST=XST+5T
 928 Z(K)=KST/XMAX
 930 UN5(K)=(E+2(K)^P+A+B&I(K)+C&l(K)^2+D+7(K)^3)^5
 948 NEXT
 958 SUM=SUM+UN5(1)+UN5(11)
 968 NL=N-1
 970 FOR K=2 TO N1 STEP2
 980 SUM=SUM+4*UN5(K)
    ```

```

1080 N2=N-2
1018 FDR K=3 TO N2 STEP2
1828 SUM=SUM+2+UNS(K)
183B NEXT
1848 INUN5=ST+SUM/(3*1000)
1058 UL=UNL +UO
1058 THETAL=SQR((0.45*пu+U0^5/UL^6)+1NUN5)*100B
870 LAM=dUdX \THETAL^2/(nu*1000000)
1038 ENDPRDC
1098 DEFPROCTani
1188 PROCQuadrature
1118 IF LAM=0 60T0 1260
112BDGDU=C(2)+2*C(3)*UL +3*C(4) +UL^2
1138 a=0
114B TD=0.4-a/20
1150 TE=(4/35)+(a/105)-(a^2/252)
1168 TF=(876/5005)+(73/5085)*a-(23/5460) \#a^2-(1/2868)*a^3
1178 TP=2\&amTE
1188 TQ=(14/35)+TF)*(48-4*a+3*a^2)
1198 H=TD/TE
1288 6=TF/TE
1218 ita={LAM*(H-1)-LAM+U(I) +DGDU/6+TQ/(2+6^2)-(a^2/105)+(a^3/252))+(35/4)
1228 IF ABS(ita-a)<0.000160T01270
1230 a=ita
1248 80T01140
125860T0 1278
1268 a=1.857
1278 TD=8.4-a/20
1288 TE=(4/35)+(a/185)-(a^2/252)
1298 TF =(876/5805)+(73/5885)*a-(23/5460)*a^2-(1/2860)*a^3
1306 TP=2\#ałTE
1316 HL=TD/TE
132B GL=TF/TE
13J8 DSTRIL=THETAL解
1348 DSTR2L=THETAL*GL
1356 CfL=TP*nu*1000/(THETAL*UL)
1368 ENDPROC
1370 DEFPROCfread
1388 CH%=OPENIN"TANDGDU"
1398 INPUTECH%,C(1),C(2),C(3),C(4),z,t,XMAX,Tu,UD,P,E,A,B,C,D,Y5t,PROF,QS
1488 CLDSEFCHZ
1410 ENDPRDC
1428 DEFPROCTrstart
1436 IF Q\$="N"60TO 1538
1448 IF LAM>8 60T0 }147
1458 FLAM=6.91+12.75*LAM+63.64 mAM^2
1468 60T01488
1470 FLAM=6.91+2.4B*LAM-12.27*LAM^2
1488 RTHS=163+EXP (FLAM-(FLAM\&TU/6.91))
149860T0 1510
1509 RTHS=(UL + X5t)/(nu*1808)
1518 RTH=THETAL *UL/(nuF1880)
1528 IFRTH:RTHS 60TO1700 ELSE }157
1538 IFX(I)<X5t 60T01780
1548 q=X St/XMAX

```

```

1568 KTHS=THETAL*Ust/(nu*1000)
1578 US=UL:LAMS=LAM: XS=X (I):THETAS=THETAL
1580 PRINT
1590 PRINTTAB(30)"START OF TRANSITION"
1608 PRINTTAB (31)"RTHETAS = ";RTHS
1618 IF LAM=8 60T0 1660
1628 RS1=0.27-(0.25*Tu^3.5/{1+Tu^3.5))
1630 RS2=1/(1+1718\pm(-LAM^1.4) EEXP(-SQR(1+Tu^3.5))

```
```

1648 RSig=RS 1*RS2*1888080
1658 60T01670
1660 RSig={0.27-10.25*T^^3.5/(1+Tu^3.5)) %1008086
1672 Sigma=RSig*nu*1008/US
16BE XBAR =2.25*Sigma+XS
1698 eta=-2.25
1788 ENDPROC
1710 DEFPROCTran
1726 LOCAL n
1738 BSUM=0:CSUM=0
174B }\sigma=X(I)/XMAX
1758 UNt =E\&q^ ^ +A+B*q+C*q^2+D*q^3
1768 Ut=UNT*UO
1770 IF LAM< =060T01800
1780 PLAM =70xLAM +318*LAM^2-5438*LAM^3+66800*LAM^4
179860701818
1802 PLAM=73*LAM+109*LAM^2+709*LAM^3
1818 eta=(XII)-XBAR)/Sigma
1820 Meta=SRR(eta^2)
1838 IF eta=8 60T0 1880
1840 C1=0.8273FMeta:C2=0.094×Meta^2
1858 CJ=0.0737Meta^3:C4=0.0165*Meta^4
186e Gam=0.54(1+(eta/Meta)\&(C)-C2-C3+C4))
187% 60T01890
1888 Gam=0.5
1E50 DL=63*THETAL/(7.4-(PLAM/15)-(PLAM^2/144))
19PE DT=DSTR1T*Ka/(11+Pi)*f)
1918 n=2/(HT-1)
1928 IF DL>DT GOTO 1950
19.38 DEL=DT
194860T01968
195B DEL=DL
1960 Utau=f*UT
1970 N=21
1988 DY=DEL/20
1998 Y=0
2888 FOR K=2TON
2018 Y=Y+DY
2022 IFY>=DL G0T02070
2038 Lpri=(2\pmY/DL-2*(Y/DL)^3+(Y/DL)^4)
2042 Lpr2=PLAM*(Y/DL-3*(Y/DL)^2+3*(Y/DL)^3-(Y/DL)^4)/6
2058 unL(K)=Lpr1+Lpr2
2868 60T02080
2078 unL (K)=1.0
2888 IFY>=DT 60T02118
2078 unT (K)=(Y/DT)^(1/n)
218E 60T02120
2118 unT (K) =1.0
2128 unt (K)=(1-6am)*unL(K)+Ga|funT(K)
2138 INI (K)=1-unL (K)*unT(K)
2148 IN2(K)=1-unL (K)*unT(K)*unt (K)
2158 YD(K)=Y/DEL
2168 NEXT
2176 BSUM=1.8+4IIN1(21)
2188 CSUM=1.8+4xIN2(21)
2198 N1=N-1
2288 FOR K=2 TO N1 STEP2
2216 BSUM=BSUM+4\&INI (K)
222I CSUH=CSUK+4*IN2(K)
2238 NEXT
2248 : }2=\textrm{N}=
2258 FOR K=3 TO N2 STEP2
2268 ESUM=BSUM+2\#IN1(K)
2270 CSUM=CSUH+2土IN2(K)
2280 HEXT
2290 Qt 1=DY*BSUM/3
23ge \&t2=DY*CSUM/3
2318 DSTR1t=DSTRIL*(1-Ga@)+DSTR1T*6a@
2328 THt1=(1-Gan)*(|-Gan)*THETAL-GaatTHETAL*HL)

```

```

2340 THt 3=2*6am*(1-6a@):Qt1
2358 THETAL=THE 1+THt2+THt3
236B DS2t1=(1-Gam)*((1-Gan)^2*DSTR2L+Gan*(Gam-2)*DSTRIL)
2370 DS2t2=6a思(Gam^2*DSTR2T+(Gam^2-1)*DSTR1T)
2388 DS2t3=3+6amf(1-6am)*0t2
2398 DSTF2t=DS2t 1+DS2t2+DS2t3
248B Ht=DSTRIt/THETAL
2418 6t=DSTF2t/THETAT
2428 [ft=(1-Gan) ※CfL+GanacfT
243B IF PRO }==\mp@subsup{Y}{}{*}60T02440ELSE253B
2440 XPR=(X(I)-X(0))/50
2458 IF XPR<)INT(XPR) GOTO 2530
2468 PRINT"DELTA = "DEL;" 盾';" Gamaa = ";Gam:PRINT:PRINT

```

2488 FRINT:PRINT
2498 PRINT" Y/DELTA U/Uinf"
2588 FOR K \(=1\) TO N
2518 PRINTTAB(10);YD(K); TAB120); unt(K)
2520 NEXT
2530 ENDPROC
2540 DEFPROCAIber
\(2550 x=x(1)-D x\)
2568 FROCRunge
2570 DS \(=\mathrm{f} \ddagger(1+\mathrm{Pi}) / \mathrm{Ka}\)
2580 TS \(=D S-f^{\wedge} 2 *\left(2+3.179 * \mathrm{Pi}+1.5 * \mathrm{Pi}^{\wedge} 2\right) /\left(\mathrm{Ka}^{\wedge} 2\right)\)
2598 ST=3*TS-DS \(\mathrm{f}^{\wedge} 3 *\left(6+11.14 * \mathrm{Fi}+8.5 * \mathrm{Pi}^{\wedge} 2+2.56 \pm \mathrm{Pi}^{\wedge} 3\right) /\left(\mathrm{Ka}{ }^{\wedge} 3\right)\)
\(2608 \mathrm{CfT}=\left\{2 \pm f^{\wedge} 2\right) \div(1+8.835 \pm T u)\)
\(2618 \mathrm{HT} 1=\mathrm{DS} / \mathrm{TS}: \mathrm{GT}=\mathrm{ST} / \mathrm{TS}\)
2628 HT \(=\mathrm{HT} 1 \pm(1-0.02 \pm \mathrm{Tu})\)
2636 DSTR1T1 \(=D_{5}\) tr
2648 THETAT1=DSTR1T1/HT1
2658 THETAT \(=\) THETATI \(/(1+8.85 * T u)\)
2660 DSTR1T \(=\) HT 4 THETAT
2678 DSTR2T \(=\) THETAT \(* 6 T\)
\(2680 \mathrm{~g}=\mathrm{X}(1) / \mathrm{X}\) HAX
\(2690 \mathrm{dUdX}=(U D * 1080 / X M A X) *\left(\left(P \pm E * q^{\wedge}(P-1)\right)+B+2 * C * q+3 * D+q^{\wedge} 2\right)\)
2780 LAMT \(=\) THETAT^2 \(2 \mathrm{dUd} \mathrm{K} /(\) nu 1800000\()\)
2710 ENDPROC
2720 DEFPROCRunge
2738 DSUM \(=\) Q: PiR \(=\) Fi: FR=f:DstrR=Dstr
\(2742 \mathrm{~g}=\mathrm{X} / \mathrm{XMAX}\)
2758 UNT \(=\left(E \pm \mathrm{q}^{\wedge} \mathrm{P}\right)+A+\mathrm{B} \pm \mathrm{q}+\left[ \pm \mathrm{q}^{\wedge} 2+\mathrm{D} \pm \mathrm{q}^{\wedge} 3\right.\)
\(2768 \mathrm{UT}=\mathrm{UNT} * U \mathrm{D}\)

2780 DSUM \(=\) DSUM +1
\(2798 \mathrm{DI}=\mathrm{FR} \pm(1+\mathrm{PiR}) / \mathrm{Ka}\)
2800 D2 \(=\mathrm{D} 1-\mathrm{FR} \wedge 2 *\left(2+3.179 \pm \mathrm{PiR}+1.5 * \mathrm{PiR}^{\wedge} 2\right) /\left(\mathrm{Ka}{ }^{\wedge} 2\right)\)

\(282 \mathrm{~J}=\mathrm{D} 3 / \mathrm{D} 1: 6 \mathrm{H}=\mathrm{D} 2 / \mathrm{D1}\)
\(2830 A P=-(F R *(3.179+3 * P i R) / K a+(6 H-1)) /(1+P i R)\)
2840 AE \(=(6 \mathrm{H}-1) / \mathrm{FR}\)
\(2850 \mathrm{RI}=\mathrm{FR} \pm\left(11.14+17 \pm \mathrm{Fi} \mathrm{R}+7.68 \pm \mathrm{Pi}^{\wedge} 2\right) / \mathrm{Ka}+(9.537+9 \pm \mathrm{PiR})\)
2868 AR \(=(2-J) /(1+\mathrm{Pi})-F R \pm R 1 /(11+\mathrm{Pi})+K a)\)

\(2888 \mathrm{~S}=51+(\mathrm{J}-2) / \mathrm{FR}\)
2898 Beta=(1.25*PiR) ^(4/3)-8.5

\(2910 \mathrm{~T}=(1+2 * \mathrm{Pi} \mathrm{R}) /(1+\mathrm{Pi} \mathrm{R})\)
\(2920 \mathrm{Fl}=\mathrm{D} 5 \mathrm{trRFdUdX} /\) (UTA1000)
2938 F2 \(=F 1 *\left(1+6 H-2 * J *(A Q-K a * G H /(F R \wedge 2)) /\left(S-\mathrm{K}_{\mathrm{a}}+\mathrm{J} /\left(F R^{\wedge} 2\right)\right)\right)\)

2950 F \(33=(A R-J * T) \pm\left(A Q-K a * G H /\left(F R^{\wedge} 2\right)\right) /\left(S-K a \pm J /\left(F R^{\wedge} 2\right)\right)\)

2978 F5 \(=(11+6 \mathrm{H})-(2 \mathrm{tJ} \pm(A \mathrm{P}-\mathrm{GH} \pm \mathrm{T}) /(A R-J+T))\) ) FI
\(2986 \mathrm{~F} G=\mathrm{FR}^{\wedge} 2-\mathrm{CD} \pm(\mathrm{AP}-\mathrm{GH} \ddagger \mathrm{T}) /(\mathrm{AR}-\mathrm{J} \pm \mathrm{T})-\mathrm{FS}\)



3828 IF DSUM=160T03060
3038 IF DSUM \(=260 T 03098\)
3840 IF DSUK=360T03110
3850 IF DSUM=460T03130
\(3850 K 1=D X \pm F 4 / 1088: L 1=D X F F 8 / 1800: M 1=D X \pm F 9\)
\(3078 x=x+D x / 2\)

\(3898 \mathrm{K2}=\mathrm{DX} \times \mathrm{F} 4 / 1008: \mathrm{L2}=\mathrm{DX} 7 \mathrm{FB} / 1 \mathrm{BDO}: \mathrm{M} 2=\mathrm{DX}+\mathrm{F9}\)
\(31 \mathrm{BE} \mathrm{FiR}=\mathrm{Pi}+\mathrm{K} 2 / 2 ; \mathrm{FR}=\mathrm{f}+\mathrm{L} 2 / 2: \mathrm{Dstr}=\mathrm{D} 5 \mathrm{tr}+\mathrm{K} 2 / 2: 60 \mathrm{TO2748}\)

\(3128 \mathrm{PiF}=\mathrm{Pi}+\mathrm{K} 3: \mathrm{FR}=f+\mathrm{L} 3: \mathrm{D} 5 \operatorname{tr} \mathrm{R}=\mathrm{D} \operatorname{str}+\mathrm{H} 3: 60 \mathrm{~T} 02748\)

\(3140 \mathrm{fi}=\mathrm{Pi}+(\mathrm{K} 1+2 \pm(\mathrm{K} 2+\mathrm{K} 3)+\mathrm{K} 4) / 6\)
\(3150 f=f+(L 1+2 *(L 2+L 3)+L 4) / 6\)
\(3168 \mathrm{D}_{5} \mathrm{tr}=\mathrm{D}_{5} \mathrm{tr}+\left(\mathrm{M} 1+2 \pm\left(\mathrm{m}_{2}+\mathrm{M}_{3}\right)+\mathrm{M}_{4}\right) / 6\)
3178 ENDPROC
3180 DEFPROCInition
\(3198 \mathrm{~g}=\mathrm{X}(\mathrm{I}) / \mathrm{XMAX}\)


3228 If dUdX=8 60TO 3250
\(3238 \mathrm{H}=1.5\)
3240 60T03260
\(3258 \quad H=1.55\)
3268 CONST \(=3.0\)
3270 THETAT \(=\) THETA (I)/CONST
\(328 \mathrm{CRHETA}=\) THETAT \(4(\mathrm{U}\) )/ (nuf1800)
3298 Dstr=THETATYH
\(33 B 8\) CFT \(=0.3 /\) (EXP \(\left.(1.33 * H) *(0.434294 * L N(\text { RTHETA }))^{\wedge}(1.74+8.31 \div H)\right)\)
\(3310 f=50 R(C f T / 2)\)
3328 BETAT \(=-D 5 t r * d U d X /\left(f^{\wedge} 2 * U(1)+1088\right)\)
\(3338 \mathrm{Pi}=8.8 \pm(8.5+\) BETAT) \(\wedge .75\)
3348 ENDPROC
3358 DEFPROCFput
\(3368 \mathrm{~N}=1-1\)
3378 PRINTTAB(7,12)CHR\$134"INPUT NAME DF FILE"
3388 INPUT TAB(15) PRED \(\$\)
3398 PRINT:PRINT:
3480 PRINTTAB(1)CHR\$134"ON HHICH DRIVE IS FILE TO BE STORED*
\(3418 \mathrm{~B} \%=6 \mathrm{ET}\)
3428 PROCDr ive (B\%)
3430 CHK=OPENOUT(PRED\$)
3440 PRINTICH\% N, XMAX
3458 FOR \(I=1\) TO' N
3458 PRINT\#CH\%, DSTR1(I),THETA(I),DSTR2(I),CF(I), X(I),U(I)
3478 NEXI
348 CLOSE CH\%
3498 ENDPROC
3588 DEFPROCDrive (B\%)
3518 IF \(B \%=48\) THEN \(\pm\) DR. \(B\)
352 IF B\% \(=49\) THEN 4 DR .1
3538 IF BY=59 THEN \(\operatorname{tDR} .2\)
3548 IF B\% \(=51\) THEN \(\pm\) DR. 3
355 E ENDPROC

\begin{abstract}
Programme
GRAFPC3
Programme GRAFPC3 is a graphics programme which can be used display the predicted development of the boundary layer parameters and to compare the predictions with experimental data held on a data file.
\end{abstract}
```

 f REK BOUNDARY LAYER PREDICTION GRAPHICS PACKAGE
 28 Ct=8:02s="N"
 38 DIM DSTR1(301),DSTR2(301),THETA(301)
 48 DIM Cf(301), X(301),U(381)
 50 DIM EDSTR1 (30) ETHETA(30) EDSTR2(30)
 68 DIM ECf(30), EH12(30), EH32(30), EX(30)
 78 MODE7
 88 PROCIntro
 OB MODE4
 188 PROCAxe5
118 IF Q35="N" 60T0 130
128 PRDCFPread
136 IF QS="N" 60T0160
148 FROCFEread
158 IF Q3\&=N\mp@subsup{N}{}{*}}60T017
168 PROCDSTR1
178 IFES="N"60T0198
188 FROCEXDSTR1
198 IFQ2$="Y"60T0310
288 IF Ct=1 60T0 288
218 VDU4:PRINTTAB(9,1)"PRESS SPACE TO CONTINUE"
22% PRINTTAB(10,3)"NEXT GRAPH THETA vs X"
238 E=GET
248 CLS
258 IF B<\32 6010 210
268 ct=1
278 6COL 0,0: 60T0150
288 ct=0
298 6COLO,1
3e2 IF Q3F="N" 60T0 320
316 PROCTHETA
32B IFQ}='N"G0T0 340
338 PROCEXTHETA
348 IFG2F="Y"60T045b
358 IF Ct=1 60T0 430
368 YDU4:PRINTTAB(9,1)"PRESS SPACE TO CONTINUE"
37e PRINTTAB(10,3)"NEXT GRAPH DSTR2 v5 X"
38e B=6ET
308 CLS
48E IF B<>32 60T0 360
4 1 8 ~ C t = 1
42B 6COLO, 8:GOTO300
430 Ct=0:6COLO.1
448 IF Q35="N"'60T0 468
45. PROCDSTR2
468 IFQ5="N"60T0 480
478 PROCEXDSTR2
488 IFQ2%="Y"60T0590
498 IF Ct=1 60T0 578
5eB YDU4:PRINTTAB(9,1)"PRESS SPACE TD CONTINUE*
5 1 8 ~ P R I N T T A B (1 0 , 3) " N E X T ~ G R A P H ~ C f ~ y 5 ~ X " '
52B B=6ET
538 CLS
548 IF B<>32 60T0 508
558 Ct=1
568 6COL0,8:60T0440
578 ct=8:6c0L0,1
588 IF Q3%='N'60T0 600
598 PROCCf
68e IFQ$='N"60T0 620
61P PROCEXCf
628 IFQ2%="Y"60T0730
638 IF Ct=160T0 710
648 VDU4:PRINTTAB(9,1)"PRESS SPACE TO CONTINUE"
658 PRINTTAB(18,3) "NEXT GRAPH H12 v5 K"
668 B=GET
67 CLS
688 IF B<>3260T0 640
6 9 8 ~ C t = 1
78B 6COLD,0:60T0588
718 ct=0:GCOL8,1
728 IF Q3%="N"'6050 740
738 PROCH12
740 IFQ}="N"60T0 768
7 5 0 ~ P R O C E X H 1 2 ~
768 IFQ2%="Y"60T0870
778 IF Ct=1 6070 850
788 VDU4:PRINTTAB19,1)"PRESS SPACE TO CONTINUE"
790 PRINTTAB(10,3)"NEXT GRAPH H32 v5 X"
88B B=6EI
818 CLS
828 IF B<>3260T0 788

```
```

838 Ct=1
848 6COL8,0:60T0728
858 Ct=8:6COL\&,1
860 IF Q35='N" 60T0 880
878 PROCH32
888 IFQ\$=*N"60T0 988
898 PROCEXH32
900 IFE25= ' Y'6050 978
910 CLS
928 IF Q3s="N" 60T0 988
938 PRINTTAB (18,1)"DD YOU HANT PRINTOUT "
94B PRINTTAB (6,3)"OF ALL GRAPHS COMBINED Y/N"
95B INPUT TAE (20) Q25
968]FQ25="Y"60T0160
978 VDU26
988 END
9 9 8 ~ D E F P R O C A x e 5 ~
1888 VDU2B,8,5,39,0
1010 VDU19,3,3,8,0,0
1828 HOVE 225,758:DRAH 225,150
1838 DRAM 1125,150
1848 MOVE 1150,158:DRAN 1150,750
1858 YDU5
1068 MDVE280, 250: DRAN225,250
1078 MOVE170,260:PRINT"1*
1888 HOVE20日,350:DRAH225,350
1090 MONE170,368:PRINT"2
118E MOVE200,458:DRAH225,450
1110 MOVE178,460:PRINT:3
1128 MOVE289,558: DRA月225,550
1138 MOVE178,560: PRINT }\mp@subsup{4}{4}{4
1148 MOVE280,658: DRAH225;650
1158 MOVE170,668:PRINT"5"
1168 HDVE280,758:DRAH225,75B
1178 MOVE178,760:PRINT"6
1180 MOVEQ, 700: FRINT'DSTRI"
1198 HOVEQ,625: PRINT'THETA"
1200 HOVEQ,558: PRINT "DSTR2*
1218 HOVEQ,475:PRINT" Cf"
1228 MOVE1175,358:DRAW150,350
1230 MOVE1175,360:PRINT"1"
1246 ROVE1175,550:DRAN1150,550
1250 MOVE1175,560:PRINT"2*
1268 HDVE1175,750: DRAW1150,750
1278 MOVE1175,760:PRINT"3"
1288 MOVE1198,675:PRINT"H12"
1298 MOYE1190,608: PRINT"H32*
1308 ENDPRDC
13I8 DEFPROCIntro
1320 PRINTTAB (6,4)CHR\$134"DO YOU HAVE A PREDICTED"
1338 PRINTTAB(12)CHR $134"DATA FILE Y/N"
1348 INPUT TAB(20) Q3$
1358 PRINT:PRINT:PRINT
1368 IF Q3\$='N"60T01390
1378 PRINTTAB(2)CHR \$134"INPUT NAME OF PREDICTED DATA FILE*
1380 INPUT TAB(16) PREDS
1398 PRINT:PRINT:FRINT:
1480 PRINTTAB(6)CHR\$134"DO YOU HAVE AN EXPERIMENTAL"
1418 PRINTTAB(12)CHR\$134"DATA FILE Y/N"
142B INPUT TAB (28) 勆
1438 IF QS="N" 60T0 1470
1440 PRINT
1458 FRINTTAB(4)CHR$134"NAME OF EXPERIMENTAL DATA FILE"
1468 INPUT TAB(16) EXDAT$
1470 PRINT
1488 IF Q35 ="Y" 60T0 1520
1498 PRINTTAB(16)CHR\$134'INPUT XHAX*
1588 INPUT TAB(20) XHAX
1518 PRINT
1528 PRINTTAB(7)CHR\$134"WHICH DRIVE ARE FILES ON"
1530 B%=6ET
1548 PROCDrive(B%)
1550 ENDPROC
1568 DEFPROCFPread
1570 CH%=OPENIN(PRED 5)
1588 INPUTICH%, H, XMAX
1598 FOR I=1TON
16R8 INPUT\#CH%,DSTR1(I),THETA(I),DSTR2(1),Cf(I),X(I),U(I)
1618 NEXT
1628 CLOSE\#CH%
1630 ENDPROC
1648 DEFPROCDSTR!
1658 IFE2%='Y'60T01678

```

1668 VDU5: MOUE 408,888:PRINT"DSTRI vs X/XMAX":UDU4
1678 DSIP=DSTR1(1)*188+158
\(1688 \times P=(X(1) / X H A X)+980+225\)
1698 ROVE XP, DSIP
1788 FOR I \(=1\) TO N
1718 DS \(1 P=\) DSTR1 \((1)+108+158\)
\(1728 \mathrm{XP}=(\mathrm{X}(1) / \mathrm{XMAX})+988+225\)
1730 DRAK XP,DSIP
1748 NEXT
1758 ENDPROC
1768 DEFPROCTHETA
1778 JFQ2 \(=\) "Y" \(60 T 01790\)
178B VDU5:MOVE 40B, B88:PRINT"THETA vs X/XMAX":VDU4
1798 THP \(=\) THETA \((1) * 188+158\)
\(1888 \mathrm{XP}=(X(1) / \mathrm{XHAX})+980+225\)
1 BIB MOVE XP, THP
\(182 \mathrm{FORI}=1\) TO N
1830 THP \(=\) THETA 1 ) \(1180+158\)
\(1848 \mathrm{XP}=(X(\mathrm{I}) / \mathrm{XMAX}) \div 988+225\)
1850 DRAK XF, THF
1868 NEXT
1870 ENDPROC
1888 DEFPRDCDSTR2
1898 IF \(225={ }^{\text {² }}\) " \(60 T 01918\)
1908 VDU5:MOVE 400,B0D:PRINT"DSTR2 v5 \(\mathrm{X} / \mathrm{XHAXX}\) ":VDU4
1918 DS2P \(=\) DSTR2(1) \(100+158\)
\(1928 \mathrm{XP}=(\mathrm{X}(1) / \mathrm{XHAX}) \times 908+225\)
1930 MOUE XP, DS2P
1946 FOR I \(=1\) TO N
1958 DS2P=DSTR2(I) \(+100+150\)
\(1968 \times P=(X(1) / X M A X) \times 900+225\)
1978 DRAM XP, DS2P
1988 NEXT
1998 ENDPROC
2080 DEFPROCC \(f\)
2018 IF \(22 \mathrm{~F}=\) " \(\mathrm{Y}^{2}\) G0T02830
2828 VDU5: MDVE 450,80D:PRINT'Cf Ys X/XMAX":VDU4
2838 CfP=Cf(2) \(18081080+150\)
\(2048 \mathrm{XP}=(\mathrm{X}(2) / \mathrm{XMAX}) \times 900+225\)
2858 MOUE XP, CfP
2068 FOK \(\mathrm{I}=2 \mathrm{TON}\)
2070 CfP=Cf(I) \(18821000+150\)
2888 XP \(=\) ( \(X(\mathrm{I}) / \mathrm{XHAX}) 4980+225\)
2090 DRAH XP, Cff
2188 NEXT
2118 ENDPROC
2128 DEFPROCH 12
2138 IFR2 \(\$=*\) " 60702158
2148 VDU5: MOUE 450, BDO:PRINT"H12 vs X/XMAX":VDU4
\(2158 \mathrm{HP}=\mathrm{DSTR1}(1) /\) THETA ( 1 ) \(2208+158\)
\(2160 \times \mathrm{P}=(\mathrm{X}(1) / \mathrm{X}\) НАХ \()+900+225\)
2178 MOVE XF,HP
2188 FOR I=1'TO N
2198 HP \(=D S T R 1(1) / T H E T A(I) * 288+158\)
\(2280 \mathrm{XP}=(X(\mathrm{I}) / \mathrm{XHAX}) \div 900+225\)
2210 DRAH XP, HP
2220 NEXT
2238 ENDPROC
2240 DEFPROCH32
22501FQ2歀Y"60T0227日
2260 VDU5:MOVE 458,800:PRINT"H32 v5 X/XHAX':VDU4
\(22786 \mathrm{~F}=\mathrm{DSTR} 2(1) /\) THETA \((1)+280+158\)
2288 XP=(X) (1)/XMAX) \(4900+225\)
2298 MOVE XP, \(6 P\)
2388 FOR \(\mathrm{I}=1 \mathrm{TO} \mathrm{N}\)
\(23106 \mathrm{CP}=\mathrm{DSTR} 2(\mathrm{I}) /\) THETA (I) \(\ddagger 208+150\)
\(2328 \mathrm{XP}=(X(1) / X H A X)+980+225\)
2338 DRAK XP,GP
2340 NEXT
2358 ENDPROC
2368 DEFPROCEXDSTR1
2370 FOR I= 1 TO NI
2388 DS1P \(=\) EDSTR1 1 I) \(1808+158\)
\(2398 \mathrm{XP}=\mathrm{EX}(\mathrm{I}) / \mathrm{XHAX} \div 900+225\)
2488 PLDT69, XP, DSIP
2418 NEXT
2428 ENDPROC
2438 DEFPROCEXTHETA
2448 FOF \(1=1\) TO NI
2458 THP \(=\) ETHETA ( 1 ) \(4188+158\)
\(246 \mathrm{BX}=\mathrm{EX}(\mathrm{I}) / \mathrm{XMAX} \mp 980+225\)
2478 PLOT69,XP, THP
2488 REXT
```

2498 ENDPROC
25@2 DEFPROCEXDSTR2
2512 FOR I= 1 TO NI
2528 DS2P=EDSTR2(1) +108+158
253^ XP=EX(1)/XHAX\&980+225
254P PLOT69, XP, DS2P
2558 HEXT
2558 ENDPROC
2578 DEFPROCEXCF
2588 FOR I= I TO N1
2598 [fP=ECf(I)*108+158
2688 XP=EX(1)/XHAX F980+225
2618 PLOT69,XP,CfP
2628 NEXT
2638 ENDPROC
2648 DEFPROCEXH12
265! FOR I= 1 TO NI
266B HP=EDSTR1(I)/ETHETA(I)*208+158
2678 XP=EX(I)/XHAX\&900+225
2688 PLOT69, XP,HP
2698 NEXT
2788 ENDPRDC
2718 DEFPROCEXH32
272e FOR I= 1 T0 NI
2730 GF=EDSTR2(I)/ETHETA(I)*280+150
2742 XP=EX(1)/XMAX +900+225
2758 PLOT67,XP,GP
2768 NEXT
277e ENDPROC
2788 DEFPROCFETead
279e ch%=OPENIN(EXDATS)
28Ge INPUT:Ch%,N1,Tu,UO
281R FORI=[TON\
2828 INPUT\#ch%,EX(I),EDSTR1(I),ETHETAII),EDSTR2(I),ECf(I)
283E HEXT
284B CLOSE\#Ch%
2858 ENDPROC
2868 DEFPROCDrive(B%)
2878 IF B%=48 THEN *DR.B
2B8E IF B%=49 THEN \&DR.1
2898 IF B% =50 THEN 3DR. }
298e IF B%=51 THEN 4DR.3
291E ENDPROC

```
```

