
The Implementation of Functional Languages 
on an Object-oriented Architecture

Mohammed Yousuf Khan

A Thesis submitted in partial fulfilment of the 
requirements of Dundee Institute of Technology 

for the Degree of Doctor of Philosophy

March 31, 1993

I certify that this thesis is the true and accurate version of the 
thesis approved by the examiners.

Signed: date:
(Director of Studies)



Declaration

I declare that while registered as a candidate for the degree for which this thesis is 
presented, I have not been a candidate for any other award. I further declare that 
except where stated the work contained in this thesis is orignal and was performed 
by the author.

Signed

(M. Y. Khan)



Acknowledgements

The author wishes to thank his supervisors, Dr. W. B. Samson, Mr. A. C. Milne, 
and Mr. L. D. Natanson, for their invaluable support, encouragement and guidance 
given at all times throughout the duration of this project. A special thanks for their 
keen interest in the development of the project, without which this research would 
not be possible.

The author is greatly indebted to his external advisors Mr. G. Michaelson and 
Professor D. M. Harland for their valuable advice received on various aspects of the 
investigation.

The author would also like to thanks the reviewers, who suggested many im
provements to this thesis, including the addition of several interesting experiments, 
with special thanks to P. I. Dugard for her valuable advice on statistical analysis.

Thanks to the technical staff, in particular Mr J. Duncan for his assistance in 
the Laboratory.

m



A bstract

This thesis concerns the investigation of different implementation strategies for 
functional languages on a novel platform, the Rekursiv, th a t provides hardware sup
port for an object-oriented language (Lingo) which was used as the im plem entation 
language for this work.

The objective is to evaluate the performance of two different im plem entation 
techniques - fixed combinators and supercombinators - for functional languages by- 
interpreting the functional program in two object-oriented styles with different rep
resentations for combinators on two different environments:

• A purpose-built object-oriented machine; Harland’s Rekursiv.

• A RISC machine; an IBM RS6000 running a Smalltalk-80 interpreter.

Interpreters are implemented in Smalltalk (for the RS6000) and Lingo (for the 
Rekursiv) for an applicative language Alcal (a A-calculus language). The interpreters 
are then used to generate a combinator graph using the fixed SKI set of combinators 
proposed by Turner, and also Hughes-style program specific supercombinators (A- 
lifting) which are not limited to a fixed set of primitive combinators.

A number of experiments are conducted, based on the implem entation of the 
lazy functional language, Alcal, on the RS6000 in Smalltalk-80 and on the Rekursiv 
architecture in Lingo. Lingo and Smalltalk allow the creation of objects th a t con
tain executable statem ents, so an object-oriented ‘active graph’ im plem entation is 
proposed.

Using these prototypes, the performance of the Rekursiv implementation against 
the RISC implementation has been evaluated. This includes the proportion of time 
spent on overhead activities and a statistical performance analysis of the bench
mark results to analyse some of the claims made by the designer of the Rekursiv 
architecture.

IV



Relative to a baseline benchmark w ritten in C, the implementations on the 
Rekursiv are found to be several times faster than those on the RISC machine. 
An analysis of variance demonstrates a more subtle interplay between benchmark 
programs, implementation techniques, representation of combinators and hardware 
platform.

v



C on ten ts

1 Background 1 - 1

1.1 H is to ry ................................................................................................................. 1 -1

1.2 Functional programming languages................................................................1 -5

1.2.0. 1 M athematical function definitions....................................1 -5

1.2.0. 2 Referential Transparency ............................................... 1 -7

1.2.0. 3 High p r o d u c t iv i ty .............................................................1 -7

1.2.1 A-calculus and functional languages................................................. 1 -7

1.2.2 The von Neumann Bottleneck........................................................... 1 -8

1.2.3 Concurrency .......................................................................................1 -8

1.3 Novel machine s tru c tu re s ................................................................................ 1 -9

1.3.1 Architectural a i m ................................................................................. 1 -9

1.3.1.1 Sound theoretical basis ......................................................1 -9

1.3.1.2 Efficient resource a llo c a tio n ................................................. 1 -10

1.3.1.3 Hardware support for applicative la n g u a g e s ................... 1-11

vi



1.3.1.4 Variable length o b jec ts ............................................................1-11

1.3.1.5 Type c h e c k in g ......................................................................... 1 -12

1.4 The Object-oriented paradigm and machine architecture.......................... 1 -12

1.4.0. 1 Data a b s tra c t io n ......................................................... 1 -13

1.4.0. 2 C om m unications......................................................... 1 -13

1.4.0. 3 Methods .......................................................................1 -14

1.4.0. 4 Encapsulation .............................................................1 -15

1.4.0. 5 Classes and Instances ............................................... 1-15

1.4.0. 6 In h e r i ta n c e ................................................................... 1 -15

1.4.0. 7 P o ly m o rp h ism .............................................................1 -16

1.4.1 The Lingo L a n g u a g e ............................................................................1 -16

1.4.2 The R e k u rs iv .........................................................................................1 -17

1.4.2.1 Memory m a n a g e m e n t............................................................1 -22

1.4.2.2 Objects on the R ek u rs iv .........................................................1 -22

1.4.2.3 The virtual m e m o r y ............................................................... 1 -23

1.5 Some of Harland’s c la im s.................................................................................. 1 -24

1.5.1 Features to be investigated ................................................................... 1 -28

1.6 Aim.......................................................................................................................... 1 -28

1.7 S u m m a r y .............................................................................................................1 -29

vii



2 T he im p lem entation  environm ent 2 - 1

2.1 The A-calculus: Introduction and its syntax ............................................2 -1

2.1.1 The evaluation of A -expressions......................................................2 -3

2.1.1.1 Conversion r u l e s ...................................................................2 -4

2.1.2 Different evaluation p a t h s ................................................................2 -5

2.1.2.1 Lazy evaluation...................................................................... 2 -7

2.2 Implementation techn iques.............................................................................2 -9

2.2.1 Graph reduction ..................................................................................2 -1 0

2.2.1.1 Use of combinators in graph r e d u c t io n .............................2 -1 2

2.2.1.2 Active graph im p lem en ta tio n ..............................................2 -1 3

2.2.2 Other T echniques....................................................................................2 -1 4

2.2.2.1 SECD m ac h in e ........................................................................2 -1 4

2.2.3 Data f l o w ............................................................................................. 2 -1 6

2.3 S u m m a r y .............................................................................................................2 -1 6

3 C om binator R eduction  3 - 1

3.1 Graphical representation of A-expressions.................................................. 3 -1

3.1.1 String reduction .................................................................................... 3 -3

3.1.2 Graph reduction on Rekursiv ...........................................................3 -4

3.2 Combinator reduction s c h e m e ...................................................................... 3 -5

viii



3.3 A-calculus Vs combinator re d u c t io n ............................................................ 3 -5

3.4 Turner’s reduction s c h e m e .............................................................................3 -6

3.4.1 Turner’s op tim ization ......................................................................... 3 -9

3.4.2 Representation of recursion ............................................................ 3-11

3.5 Supercom binators.............................................................................................. 3 -12

3.5.1 Im p lem en ta tio n .................................................................................... 3 -14

3.5.2 Param eter ordering and Redundant p a r a m e te r s ........................ 3 -16

3.5.2.1 Redundant p a r a m e te r ......................................................... 3 -16

3.5.2.2 Parameter o rdering ................................................................ 3 -17

3.5.3 Lifting with recursion ..........................................................................3 -18

3.5.4 Conditional handling and functional a p p lic a tio n ........................3 -19

3.5.5 Identifying lam bda-abstrac tio ns...................................................... 3 -19

3.5.6 Identifying free v a r ia b le s ................................................................... 3 -20

3.5.7 The E va lua to r....................................................................................... 3 -20

3.5.8 Advantages over SK I-com binators...................................................3 -22

4 An Im plem entation  of C om binator R eduction  4 - 1

4.1 The language; syntax and e x a m p le .............................................................. 4 -1

4.1.1 Naming the f u n c t io n ..........................................................................4 -3

4.1.2 Use of b r a c k e ts ....................................................................................4 -4

IX



4.1.3 Microsyntax 4 -4

4.1.4 Distinguishing identifier and v a r ia b le ............................................4 -5

4.1.5 Syntax e r r o r .......................................................................................... 4 -6

4.2 Representation of function defin ition s......................................................... 4 -7

4.2.1 Occurences of formal parameters .................................................. 4 -7

4.2.2 Multi p a ra m e te rs ................................................................................ 4 -7

4.2.3 Higher-order f u n c t io n s ...................................................................... 4 -8

4.2.4 Booleans and the c o n d itio n s ............................................................ 4 -8

4.2.5 List n o ta t io n s .......................................................................................4 -9

4.2.5.1 List ope ra to rs............................................................................4 -10

4.2.5.2 Standard list handling functions .......................................4 -10

4.2.6 Recursion h a n d lin g ...............................................................................4 -11

4.2.7 Intermediate code in prefix fo rm ........................................................4 -12

4.3 Abstract representation......................................................................................4 -13

4.3.1 Code o p t im iz a t io n ..................................................... 4 -17

4.4 An active graph im plem entation .....................................................................4 -20

4.5 Class hierarchy and types of n o d e ..................................................................4 -23

4.6 Evaluation s t ra te g y ............................................................................................ 4 -24

5 Perform ance E valuation 5 - 1

x



5.1 Description of experim en ts ............................................................................. 5 -1

5.1.1 Code genera tion ....................................................................................5 -3

5.1.2 Code evalua tion ....................................................................................5 -4

5.2 O v e rh ead s...........................................................................................................5 -6

5.3 E xperim en ts........................................................................................................5 -8

5.3.1 A-lifting Vs SK I-im plem entation......................................................5 -9

5.3.2 Class representation Vs Instance re p re se n ta tio n ..........................5 -17

5.3.3 How does Rekursiv differ from R IS C ? ..............................................5 -22

5.3.3.1 Improvement with the Rekursiv/RISC architectures
over different im plem entations......................................................... 5 -23

5.3.3.2 Improvement with the Rekursiv/RISC architectures
over different (object-oriented) s t y l e s ............................................5 -24

5.3.3.3 Generating a performance base line for the Rekursiv
and the R I S C .......................................................................................5 -24

5.3.4 Regression a n a ly s is ............................................................................... 5 -26

5.3.5 The effect of garbage c o lle c tio n ........................................................5 -28

5.3.6 Analysis of variance............................................................................... 5 -33

5.3.6.1 Factors in m o d e l .................................................................. 5 -33

6 C onclusions 6 - 1

6.1 Future w o r k .........................................................................................................6 -6

xi



6.2 Contribution of this thesis 6 -7

R eferences

A ppendices

Appendix - A 

Appendix - B 

Appendix - C 

Appendix - D

B ib  - 1

A - 1

BNF syntax for A lca l............................................................ A - l

Lingo code for in te r p r e te r .................................................. B - l

Some representative functions (Benchmarks) C- 1

Experimental results D - 1

Xll



C hapter 1

B ackground

This chapter gives a general overview of functional programming lan
guages; implementation aspects, machine structure, and particularly the 
suitability of the object-oriented paradigm and its associated machine 
structure for the implementation of functional languages. The final part 
of this chapter describes the combination of the object-oriented paradigm 
and functional programming languages and the order in which the work 
is described in the succeeding chapters.

1.1 H istory

Programming languages can broadly be classified into three groups, imperative lan
guages, functional languages and logic programming languages.

Most of the commonly used programming languages like FORTRAN, COBOL, 
BASIC, PASCAL, ALGOL60, SIMULA67 are categorised as imperative languages. 
They are all built upon a similar computational substrate. The fundamental under
lying basis of these imperative languages is on assignment and sequence operations. 
That is, a program is a sequence of commands or instructions which is to be exe

1 - 1



cuted. In this respect they resemble the underlying machine on which they run.

Imperative languages (also called ‘conventional’ programming languages) can be 
implemented efficiently on von Neumann architectures, where a central processor 
operates on values held in storage locations. This means that the aim of an imper
ative program is to effect changes in the store of a computer by suitable sequences 
of assignment statem ents [33].

In the second group, functional languages, the fundamental operation is function 
application. Function application means the application of a function to its argu
ment. For this reason they are also known as applicative languages. Sometimes (in 
the literature) they also called data flow languages or reduction languages.

The third group, logic programming languages, are beyond the scope of this 
thesis.

Functional programs contain no assignable program state; in fact they consist of 
definitions of functions and other objects.

The values of expressions in functional programs are independent of computa
tional history, thereby eliminating a major source of bugs. This referential trans
parency also makes the order of execution irrelevant and makes functional programs 
more tractable mathematically than their imperative counterparts [27]. Consider 
the order of assignments in the following example:

k := 0; f := 1;
while k < n do begin k:= k+1; f:= k*f; end

If one changed the order of the assignments in the while loop, a completely different 
program would emerge [67].

To produce high quality software at reasonable cost, Backus [4] has argued that 
conventional languages are unnecessarily difficult to program in, and that many of

1 - 2



the difficulties stem from the ‘von Neumann’ orientation of the languages concerned
[24].

The development of the first functional language LISP started in the late 1950’s 
by J. McCarthy, which in turn grew out of a theory of functions called the A- 
calcuius, which was also influnced by recursive function theory (developed by Kleene 
in 1936 [79]). It was the logician Alonzo Church during the 1930’s who developed 
A-calculus which had a great influence on functional languages [14]. LISP is not a 
pure functional language, it contains imperative as well as functional elements. At 
present, LISP is mainly used by the artificial intelligence community.

Since then many popular dialects have been developed. For example

• ISWIM: P. Landin, in mid 1960’s, which has been a base for many functional 
languages [80].

• POP-2: (partially functional) Popplestone and Burstall, 1971, as an updated 
LISP, which led to POP 11 and to Prolog (Edinburgh university) [78].

• SASL: Turner, D. A. in 1976 (St. Andrews University) [82].

e ML: Milner (1978), Edinburgh University, ML is now used as a general purpose 
functional language like LISP. It has imperative extensions [81].

• Hope: by Burstall (1980) university of Edinburgh, and was designed to be 
used as the programming language for the ALICE parallel computer [11].

• Miranda: Turner, D. A. in 1985 [66].

• Scheme: developed by Abelson and Sussman, 1986, Scheme still retains some 
notion of assignments [77].

• Haskell: April 1990, Dept, of Computer Science, Glasgow University: Hudak 
P, Wadler P L, Arvind, Boutel B, Fairbairn J, Fasel J, Hammond K, Hughes

1 - 3



J, Johnsson T, Kieburtz R, Nikhil R S, Jones S L P, Reeve M, Wise D and 
Young J [44].

The potential to solve a range of problems is determined by the kind of tools 
available to the programmer. The way that a problem is addressed is governed by 
the expressive power of the programming languages to be used.

Comparing functional languages with conventional languages such as Fortran 
or Pascal or with other “non-conventional” languages such as Smalltalk, most of 
the high productivity attributed to functional programming is not due to referen
tial transparency, but rather to other properties, such as abstraction, extensibility, 
higher order functions and heap-allocated memory. On the other hand the context- 
sensitive aspects of von Neumann languages, particularly assignment statem ents, 
require great care and are a major source of error in the implementation of concur
rent algorithms in a conventional development environment, von Neumann com
puters are limited in achieving very high speed execution rates by their intrinsic 
word-at-a-time processing mechanism.

Most functional languages have their intellectual roots in the A-calculus. So, 
A-calculus is frequently used as an intermediate language in the translation of func
tional programs [67]. The reason for this is to allow easy comparision of function- 
evaluation techniques. It is also sufficiently expressive to allow translation of any 
high-level functional language into it. In principle any function that can be defined 
in a functional language can be implemented in the A-calculus. Since Landin (1966) 
the A-calculus has been employed as a basis for the design and implementation of 
functional languages. Languages like M L, M iranda, H op e and H askell have all 
been inspired by A-calculus [67].

Growing interest in functional languages represents a radical departure from the 
concepts prevalent in conventional imperative languages such as Pascal or Ada. Such 
imperative languages are intimately tied to the Von Neumann model of computation

1 - 4



whereas the origin of functional languages lies in mathematical formalisms developed 
independently of the construction of computing machinery. One consequence of this 
is that run-time efficiency of functional programs is poor, compared with imperative 
programs, where a von Neumann machine is used [15].

It is claimed that by using new types of computers with many processing units, 
functional programs can be executed faster than conventional programs [72]. For 
more information, references [30, 43, 68], particularly [68], provide a detailed survey 
of functional languages and architectures.

1.2 Functional program m ing languages.
Functional programming languages, like Hope, ML and M iranda, offer an alterna
tive to conventional imperative ones [41]. The most commonly cited advantages of 
functional languages are:

• mathematical function definitions

• referential transparency 

© high productivity

These are discussed below:

1.2.0.1 M athem atical function definitions

Functional programs are built from ‘pure’ functions. One of the fundam ental char
acteristics of m athematical functions is tha t the evaluation order of their mapping 
expression is controlled by recursion and conditional expressions, rather than by 
the sequencing and iterative repetition that is common in imperative programming

1 - 5



languages. Their evaluation cannot alter the environment of the computation ie it 
is side-effect free. For example consider the following referentially opaque pascal 
program:

program opaque (input, output);
var flag:boolean;
function f(n:integer) : integer;
begin

if flag then f := n else f := 2*n 
flag := not flag;

en d ;

begin (* main *) 
flag := True; 
writeln ( f(l)+f(2) ); 
writeln ( f(2)+f(l) ); 
end.

ie ( f(l)+f(2) ) <> ( f(2)+f(l) )
1 + 4  <> 2 + 2

The expression value depends on the order of evaluation of the two operands.

Computational history is an im portant aspect of von Neumann languages. As
signment statements, in particular, require great care and are a major source of error 
in the implementation of algorithms in a conventional development environment.

It would not be possible to write such misleading code in a functional language.

1 - 6



1.2 .0 .2  R eferential Transparency

Referential transparency guarantees that the value of an expression remains the same 
wherever it occurs within a fixed context in a program. Evaluation of an expression 
simply changes the form of the expression but never its value. This referential 
transparency also makes the order of execution irrelevant and makes functional 
programs more tractable mathematically than their imperative counterparts [27].

Referential transparency has other implications for functional languages. Since 
the unknown variables in any expressions are simply unevaluated functions calls, 
which become known as the function code is executed, one effect is to blur the dis
tinction between functions(code) and variables (data). Secondly, static data struc
tures like arrays necessarily have computational histories and so must be replaced 
in functional languages by dynamic data structures where memory for an item is 
allocated only when that item comes into existence.

1.2 .0 .3  H igh p rod u ctiv ity

Most of the high productivity attributed to functional programming is not due to 
referential transparency, but rather other properties such as abstraction, extensibil
ity, higher order functions, and heap allocated memory [68]. Jones [46] has found 
that LISP code is, on average, approximately twice as compact as the equivalent C 
code. If productivities in terms of lines of code written per staff day are the same 
for both languages, then LISP should demonstrate about twice the productivity of 
C.

1.2.1 A-calculus and functional languages.

The functional languages grew out of the language LISP which in tu rn  grew out of 
a theory of functions called the A-calculus [33]. Many of the theoretical foundations

1 - 7



of functional languages are based on A-calculus [22].

Functional languages may be viewed as a user interface to the A-calculus. Func
tional programs are built from ‘pure’ functions, ie functions in the m athem atical 
sense, and so the A-notation is particularly suitable for describing function m anipu
lations formally and even as an intermediate code into which a source program may 
be translated [22].

An implementation of the A-calculus must operate on an expression by applying 
reduction rules to it until no more are applicable. The choice of the order in which 
reduction rules are applied is a m atter of implementation strategy [6].

1.2.2 The von Neumann Bottleneck.

Conventional machines founded on von Neumann principles imply strict sequential
ity of operation. A major component of von Neumann computers is a connecting 
‘tube’ that can transm it a single word between the CPU and the store. This is often 
called the von Neumann bottleneck. Programming is thus basically the  scheduling 
through the bottleneck of an enormous traffic of information, much of which is not 
actually significant data, but addresses used to locate data.

1.2.3 Concurrency

Concurrent execution of functional programs can be effected by first translating 
them  into graphs. These graphs can then be executed through a graph reduction 
process, which can be done with a great deal of concurrency that was not explicitly 
specified by the programmer.

In conventional programs it is often not possible to execute a pair of commands in 
either order because of assignments which alter the environment in which commands

1 - 8



are executed. There is, therefore, little concurrency which can be autom atically 
exploited in a sequence of commands.

The heavy reliance of imperative languages on the underlying architecture is an 
unnecessary restriction on the process of software development [33].

1.3 N ovel m achine structures
Quite apart from the issues discussed above, another reason for an interest in func
tional languages is the suitability of novel machine structures for their im plem enta
tion.

The question of exactly what sort of machine should be aimed for, needs careful 
consideration.

One reason for considering new types of architecture is that the run-tim e effi
ciency of functional programs is poor, compared with imperative programs, where 
a von Neumann machine is used.

1.3.1 Architectural aim

An ideal system should have the following basic properties:-

1.3.1.1 Sound theoretical basis

The architecture should be well oriented towards functional languages and further
more have a sound theoretical basis [51]. The language forms the starting point for 
the design of the architecture, rather than hardware considerations which take little 
account of programmability [24].

1 - 9



The declarative languages (A-based languages and logic based languages) have 
been considered suitable for novel architectures. A-based languages do not require 
backtracking facilities, and are therefore easier to support [24].

Programming in a functional language is much closer to writing a set of m athe
matical equations than conventional programming. We should make sure that these 
equations have a workable procedural reading and also have a machine oriented in
terpretation. This makes it possible to write equations involving infinite objects. 
This means that if the equations are right, a wrong answer will never be produced, 
although termination may be affected.

This new approach, however, adds new problems; for example, updating a single 
element of a huge data structure requires in principle a complete copy of the whole 
object, and so an appropriate evaluation technique is needed to deal with this.

1.3 .1 .2  Efficient resource allocation

Functional programming languages offer a high level of abstraction, and place heavy 
demands on the compile time and run-time strategies by which the machine allocates 
its resources.

The ideal machine should provide a good automatic resource-allocation strategy. 
The garbage collection routine is responsible for the re-cycling of memory space 
which contains information no longer needed for computation. This means that it 
should make a minimal demand on processor time and minimal access to the main 
memory. Furthermore the garbage collector should not lock up the processor for 
significant periods of time. For an implementation which uses a contiguous block 
of memory a good remedy is a compacting garbage collector. For instance to acco
modate an object of a given cell size, the memory heap is scanned for the required 
space. If it is unavailable the garbage collector may be activated. This situation can 
be repeated several times during the execution process. W ith a compacting garbage

1 - 10



collector we can keep a pointer to the begining of the free-memory block in the heap. 
If a new cell is needed we can allocate this information in the free-memory block, 
or in the case of insufficient space garbage collect and compact all the information 
into another contigous block of memory [51].

1.3 .1 .3  H ardware support for ap p licative languages

A simple syntax of a functional language can be given as:

E ::= identifier I
lambda identifier . E |
( S E E

which allows us to

• introduce names for objects

• use A-abstraction

• apply one function to another

This means that, the machine should be able to execute a rich variety of application 
programs efficiently [51].

1.3 .1 .4  Variable len gth  objects

The garbage collector must be able to handle variable length objects. If a storage 
manager allocates/reallocates variable sized cells, it is possible that a cell can not 
be allocated because no free block is large enough. This is resolved by compacting 
all the cells, so as to produce a large contiguous free space from which to allocate 
new cells [43].

1 - 11



1.3 .1 .5  T y p e  checking

Type checking in hardware helps to build faster implementations of strongly typed 
programming languages [43].

It has been suggested by Harland [31] that a machine architecture which is 
designed to support o b je c t-o r ie n te d  p ro g ra m m in g  will go a long way towards 
satisfying these requirements.

1.4 T he O bject-oriented  paradigm  and m achine  
architecture.

Object-oriented computing is often referred to as a new programming paradigm. The 
term  ‘paradigm 5 originally meant an illustrative example [9]. Sometimes (within 
computer science) this term  is used as the basis for classifying programming and 
problem-solving methods [70]. O ther programming paradigms may include the 
imperative-programming paradigm (Pascal or C), the logic-programming paradigm 
(Prolog) and the functional-programming paradigm (ML). In this sense object- 
oriented programming is new paradigm [9].

An object-oriented system encourages a view of the world in term s of systems 
of objects. In the object-oriented programming style a system is described as a 
collection of objects. An object is best defined as a collection of private data  and 
public operations, or a package of information and descriptions of its m anipulation. 
The data in an object are stored in variables. Every object has the possibility and 
the responsibility to maintain its own local data in a consistent state [1].

1 - 12



1.4 .0 .1  D ata  abstraction

Generally the definition of an abstraction is defined by Blair, Gallagher, Hutchison 
and Shepherd as: The process of formulating generalised concepts by extracting 
common qualities from specific examples’ [8].

D ata abstraction is generally recognised as a major step towards more structured 
programming. In terms of computing, data abstraction provides the starting point 
of object-oriented computing. The concept of data abstraction is closely related 
with:

• The system should be decomposed into conceptual entities. This means the 
breaking down of complex systems into a number of self-contained entities or 
modules. All information relating to a particular entity in the system is held 
within that module, and that module will contain all the data structures and 
algorithms required to implement that part of the system.

• Internal details should be hidden.

The abstraction provided by this process of modularization and information hiding 
is at the heart of the object-oriented approach [8].

Support of data abstraction is a necessary but not sufficient condition for a 
language to be object-oriented. Object-oriented languages must additionally support 
both the management of collection data  abstraction, and the composition of abstract 
data types through an inheritance mechanism [69].

1.4 .0 .2  C om m unications

In object-oriented system messages are the basic mechanism for communication. 
The computing is performed at the level of passing messages among collections of 
objects.

1 - 13



The only way in which objects can interact is by sending messages to  each other, 
(A message can be viewed as a procedure call or a specification of one of an object’s 
manipulations, the difference being that the change in control flow is under the 
control of the receiving object). A message consists of an operation name and a 
collection of arguments. Sending a message to an object is referred to as performing 
an operation on the object. Such a message is in fact a request from the sender for 
the receiver to execute a procedure.

The syntax for message sending differs from system to system. In general the 
message passing form have the following components:

[ receiver method_request:some_parameters]

The requester object sends a message to the receiver object asking for the specified 
method to be invoked. The requester is not aware whether the object can respond 
to the request or how the request will be carried out. It simply asks the object to 
attem pt to fullfil the request. If the receiving object does not know how to respond 
to the request, it sends a ‘method unknown’ to the requestor (an error).

1.4 .0 .3  M ethods

Procedures such as those mentioned in the previous paragraph, which are executed 
in response to a message, are called methods. The receiver decides whether and when 
it executes such a method. In general, the sender of the message can include some 
parameters to be passed to the method and the method can return a result, which 
is passed back to the sender. In this way objects can cooperate and communicate. 
Interaction between objects can only occur according to this precisely determined 
message interface.

1 - 14



1.4 .0 .4  E ncapsulation

A very im portant principle is that one object’s variables are not directly accessible 
to other objects, they are strictly private. This principle is called encapsulation.

1.4.0.5 C lasses and Instances

Classes are themselves objects in the system, and provides one or more methods 
as an interface. One method which is always provided by a class is the m ethod 
‘new’, which when invoked creates instances of a specific class. Objects created 
from a particular class are referred to as instances of that class, so all instances of a 
particular class, even though they are not identical, exhibit common behaviour [8]. 
All objects of a given class use the same method in response to similar messages.

1.4.0.6 Inheritance

Inheritance is fundamental to the object-oriented Paradigm. The inheritance con
cept is derived from Simula. When a class Y inherits from class X, class Y now 
has, by inheritance, all the features of X. Thus Y is an X. Y can also be more than 
an X, but in addition to whatever else it may be it is also an X. This inheritance 
mechanism constitutes a very successful way of incorporating facilities for code shar
ing. The implementation can profit from code sharing by producing more compact 
code, occupying less computer memory [1]. At each level of inheritance an algorithm 
searches for a message with a specific selector in a class m ethod dictionary. That is, 
the meaning of any specific operator ‘message’ must be efficiently and dynamically 
determinable for any particular type of object, so that search time should effectively 
reduced. In Smalltalk [26], inheritance is primarily a mechanism for building more 
complex objects out of simple ones.

Objects are grouped into classes, which form blueprints for the creation of new

1 - 15



objects. In the Object-oriented paradigm, class is a property of objects [69]. A class 
provides a set of methods that describe what happens when its instances receive 
messages.

1 .4 .0 .7  P o ly m o rp h ism

Polymorphism is one of the most characteristic features of object-oriented system. 
It is informally defined as there may be a one to many mapping of a m ethod name 
on implementations. For example, a method defined on one particular class is au
tomatically defined on all its sub-classes.

Polymorphism, is a powerful technique with more general application. Mod
ern functional languages such as ML [29], M iranda [66], Haskell [67] incorporate 
polymorphism [8].

Different objected-oriented programming languages use a variety of mechanisms 
to describe object creation.

The most im portant contribution of object-oriented programming in the direc
tion of better software development methods stems from the fact th a t it is a re
finement of programming with abstract data types [58]. It encourages the grouping 
together of all the information pertinent to a certain kind of entity and it enforces 
the encapsulation of this information according to an explicit interface with the 
outside world. The two im portant quantities of the object-oriented paradigm are 
a d a p ta b il i ty  and through its inheritance mechanism re u se a b ility  [1].

1.4.1 The Lingo Language

Lingo [32] is an interactive object-oriented language similar in concept to Smalltalk. 
The R ek u rs iv (s ic ) is a hardware platform designed specifically to support object-

1 - 16



orientation. A Lingo program is an environment composed of objects that interact 
only by sending and receiving messages. The implementation of Lingo on the Rekur- 
siv is efficient; the Rekursiv’s designer Harland [31] has stated that an objective of 
his work was to provide a processor th at would efficiently execute Lingo, and other 
highly expressive languages by reducing the ‘semantic gap5. The programmer im
plements a system by describing messages to be sent and describing what happens 
when messages are received. The fundamental ideas of objects, messages and classes 
came from Simula [7] and the message passing terminology from Smalltalk [26].

1.4.2 The Rekursiv

For a completely integrated objected-oriented storage system abstract operations 
should be single machine instructions, not sequences of low-level opcodes directly 
manipulating the store [31]. In a von Neumann machine, low level opcodes do not 
manipulate abstract objects in the store; the Rekursiv [32], on the other hand, pro
vides higher level opcodes for object manipulation. Furthermore, an ideal machine 
to support functional programming should provide the hardware support for sophis
ticated storage management [31, 68]. Providing an object-based persistent storage 
system (see below), the Rekursiv appears promising in this regard [31].

The particular form of the Rekursiv available for this study is known as Hades 
board. This unfortunately did not have its own disk processor (DP) to enable the 
persistent object store. Instead, software (called KONTROLLER) on the host Sun 
provided the functionality of a disk processor but at a very reduced bandwidth in 
comparision to what would be achieved with a direct connection to the Rekursiv. 
KONTROLLER maintains the persistent store by communicating on the VME bus 
with the Rekursiv and if necessary retrieving object images from disk by using Unix 
file system calls.

The Rekursiv architecture represents objects directly, maps them  into a persis

1 - 17



tent store, automatically swaps them  in and out of memory, and performs range 
checking (see below in ‘Objects on the Rekursiv5). It is a tightly coupled cluster of 
processors (see Figure 1), each processor is optimised for a specific kind of opera
tion (ie one for type checks, one for index checks etc). The internal operations of 
the various processors take place in parallel.

Microcodeability allows high level operations to be presented as single instruc
tions. To be able to provide for a very high level instruction which undertakes mes
saging, direct support must be provided for method lookup. Searching in method 
lookup is complicated by the fact that it is possible to inherit methods from an 
objects’s superclass, and from the superclass of the superclass, and so on upwards 
through an inheritance chain.

1 - 18



The R e k u rs iv  is therefore a microcodeable processor that utilises a persistent 
object memory. Objects in memory are addressed by unique object identifiers and 
not by any absolute or relative physical address. The virtual memory scheme is 
not based on the conventional fixed size partitions of a paged memory. Instead the 
memory manager can employ strategies to ensure that the most commonly accessed 
objects remain resident in main memory.

The Rekursiv differs from other microprogrammable processors in allowing the 
microsequencer access to a stack. This allows high expressivity at the microcode 
level since recursion and procedure calling are possible.

Because everything is an object, an object is identified by its object number. 
The details of object type and size are hidden behind (in Lingo) a small number of 
primitively implemented methods such as O b jec tC la ss  and O b je c tS iz e  on class 
O b jec t.

Rekursiv is a 32-bit machine. It uses a 40-bit wide bus to accomodate the object 
identifiers. Object identifiers are 40-bits wide, and have the top bit (bit-39) set to 
allow easy distinction between object identifiers and other items.

Rekursiv objects are allocated memory contigously [31]. Its CPU has been inte
grated with 16M bytes of main memory(object store). The Object store is in two 
parts: RAM and on Disk [31]. The following figure (F igu re :2 ) illustrates the input 
and output routed through the Sun(host machine) and the communications to the 
Rekursiv and other special function cards.

1 - 19



Bus (VSB) SUN memory Bus
Figure2: R E K U R S t V System

LAN
I/O
LOCAL
I/O
USER/OBJ,
DISK

VME BUS

This means that for the HADES Rekursiv all I/O  is effected by routing request 
via the VME bus to a process running on the Sun which ultimately performs the 
I/O.

The ALU as shown in Figure-3 performs only 32-bit arithm etic and logical 
operations and it can access and drive only the lower 32 bits of the bus. Object 
numbers, which carry information encoded in the topmost 8 bits, can be created 
only by the memory management hardware. (There are tables to hold an object 
size, an object type Sz class, an objects current address in memory, and the first 
word of the object).

1 - 20



In the Rekursiv there is hardware for generating certain condition codes to assist 
with the process of garbage collection [31]. Rekursiv presents an opportunity to 
provide cgarbage collection’ in hardware. It is microcoded as part of the object- 
oriented instruction set. So the basic strategy for finding out which objects may be 
kept or which are no longer required is handled directly by Rekursiv’s hardware.

The object store deals with objects directly. It can delimit objects in memory, 
determine whether they are in-core without causing them  to be brought in and 
determine their relative age and status and do so in a very simple and transparent 
manner (see below in£Objects on the Rekursiv’), to make memory management an 
effective and efficient process [31].

As opposed to a conventional machine, where memory is considered to be a 
linear array of equally sized words each with a unique address, objects in store on 
the Rekursiv can be of any size and are addressed by a unique (hardware assigned) 
object number.

1 - 21



1.4.2.1 M em ory m anagem ent

The main memory addressing system of Rekursiv has two prim ary functions.

• To compute the address of an object body entry and the objects current main 
memory start point.

• To manage the allocation of space in main memory for newly created or 
swapped-in objects.

The programmer requests a particular object by issuing that objects unique 
identifier.

1.4 .2 .2  O bjects on the R ekursiv

Central to the operation of the REKURSIV is its handling of objects. These can 
be up to 224 — 1 words (40 bit) large and are addressed by 40 bit quantities known 
as object identifiers. Object identifiers are (hardware) distinguishable from other 
quantities by a coding in the two highest order bits of a forty bit word.

The object identifier is the only means of accessing an object, and so it can 
be thought of as the address of the object in some large virtual store. The next 
sub-section describes briefly the mapping of object identifiers (viewed as virtual 
addresses) to physical storage addresses.

Objects are stored in memory along with a fixed sized header, each of whose 
component words are deposited in accessible registers whenever the object is ad
dressed. The information in this header includes a forty bit word denoting the type 
of the object. Since this word can itself be an object identifier, object-oriented lan
guage implementation is facilitated by using this word to denote the class of the 
object. Method determination, which in general involves ascending an inheritance

1 - 22



tree can then be microcoded since the ‘type’ information for an object is hardware 
accessible. (Method determination and despatch are im portant features since they 
are the major actions involved in the execution of a pure object-oriented language 
program.)

Lisp machines [71] deal with this problem slightly differently by tagging objects 
with their type. The tags are not, however, accessible simultaneously with the body 
of an object.

The other header information allows the hardware to check that accesses to the 
component words of an object are safe.

1.4.2.3 T he virtual m em ory

Clearly at some point objects must be stored in a real memory constructed from a 
linear array of RAM cells. To effect, in hardware, the translation from an object 
identifier to a location in real memory the REKURSIV makes use of ‘pager tables’. 
These take the place of the page table of a conventional paged virtual memory and 
essentially associate virtual addresses (object identifiers) with object information 
(real address, modification bits and so on).

A difference is that the pager tables are indexed by the lower order sixteen 
bits of an object’s identifier. This restricts the number of ‘active objects’ th a t the 
REKURSIV can maintain to 65536. Any more and it must clear an entry in the 
pager tables. This partially corresponds to the page fault of conventional systems 
but this fault may occur even though there is plenty of space left in physical storage.

On a pager table full fault, the decision as to which entry to replace (to make 
room for the object whose addressing caused the fault) is straightforward and is 
merely determined by the low order sixteen bits of the newly referenced object.

The decision as regards the writing to disk ( ‘squeezing;) of the image of the

1 - 23



displaced object (which is still in RAM, but not recorded in the pager tables) is 
based on data held in an object’s header describing if it has been modified, or if it 
is new.

The strategy embodied in the supplied controlling software for the REKURSIV 
(KONTROLLER) squeezes new objects that are displaced from the pager tables 
(and then triggers a garbage collection of physical memory). This strategy can be 
disconcerting when many new, but small, objects are being produced as squeeze  
faults (and their attendant garbage collections) occur even though physical memory 
is underused.

1.5 Som e o f H arland’s claim s
Harland attem pted to design a more powerful and more secure architecture than 
conventional von Neumann architecture (vNA) machines, which provides a combi
nation of hardware and software which provide:

1. Performance, supporting a large number of abstract data types.

2. Expressibility, to support an arbitrary level of abstraction.

3. Security, to guarantee the semantic integrity of data

Harland attem pted to meet this challenge by defining a computational model that 
is powerful enough to express solutions to a wide range of problems:

1 . design a new language in which every thing is a value, dynamic and arbi
trarily manipulable. In principle all aspects of a system’s working should be 
manipulable via the same computational mechanism.

2 . design a machine structure which

1 - 24



• Efficiently implements dynamically typed languages:
The majority of programming languages employ types merely as a means 
of specifying to their compilers how storage is to be arranged and to 
provide just sufficient information to enable a compiler to carry out rudi
m entary type checking. In these load and go systems type checking is 
a static process and it is all over before program begins its run. Type 
information is not generally preserved for use during execution and types 
themselves are not manipulable objects.
On a conventional vNA machine, dynamic type checking imposes a con
siderable overhead, because the code which performs each check must be 
inserted into the object code, slowing down the program even when there 
are no errors. Although many compilers can insert such checks, they tend 
to do so only as an option, so what we need is high-level machine on which 
such type checks and range checks must be carried out automatically.

• Powerful abstraction mechanism:
If an abstraction mechanism itself is to be dynamically modifiable then 
its primitive operations should also be implemented in a higher order 
manner, so that they can recognise new or changed semantics. T hat is, 
the notion of ‘evaluate5 and ‘application5 should be dynamically driven 
too.

• The elements of a heap traditionally refer to one another in terms of 
addresses and during garbage collection. Most language implementations 
for von Neumann machines incorporate their own individualistic garbage 
collection routines for private heap storage. So they do not provide very 
good support for heap structure simply because they implement too low 
a level of storage abstraction, and this is one reason why it is so difficult 
to integrate languages on such machines.

1 - 25



• Should have one level storage system so th at ‘persistence’ is a natural 
a ttribute of all data.

• Perm it high-level functions to be called as efficiently as low-level jumps.

Machines with low level semantics (RISC) can not m anipulate abstract struc
tures directly and so can not provide ‘secure’ systems in which data  integrity is 
guaranteed. The solution proposed by Harland is to use an object-oriented ma
chine. This machine, called Rekursiv, makes use of VLSI technology in a different 
way to RISC architectures.

Harland argues that to manipulate abstract structures efficiently a high level in
struction set is required which encapsulates the detailed structure of the data within 
an object. To provide a high level instruction set, he proposes a microcodeable ar
chitecture. The microcodeable code itself has a high degree of expressivity available 
through recursion and the use of type checking hardware.

Rekursiv provides an Object-oriented store, full persistence of all types of data, 
and the possibility of microcoding an instruction set which eliminates the semantic 
gap entirely by directly implementing the primitive operations of the object-oriented 
programming system environment.

W ith Object-oriented programming, large systems can be divided naturally into 
coherent modules which can be developed and maintained separately.

Harland makes the following claims for his Rekursiv:

• It is an ideal engine for Knowledge representation and symbolic computation.

• Garbage collection is done in hardware.

• It directly implements the Object-oriented paradigm.

• Objects can be passed from one process to another or from one language to 
another.

1 - 26



• Type checking is performed in hardware.

The Rekursiv processor’s memory is heavily differentiated into many distinct 
banks of memory. There are separate memories for stack, code and data. Each 
memory is directly accessible and manipulable by the associated processing elements, 
independently of the main system bus, which reduces the need for bus traffic. Be
cause it is a tightly coupled cluster of processors, the overhead of the communication 
protocol is overcome by using a single control word to synchronise all the  elements.

In terms of strongly typed languages, Harland’s claims can be shown as:

Language 'level

Strongly typed languages impose security by limiting the range of things that can 
be expressed, but limiting expressivity restricts the range of potential applications. 
LISP for example is expressive and has an enormous potential range of applications, 
but it runs slowly on conventional computers.

The above figure shows that if the performance of the programming language 
CC’ is more or less same on both architectures there will be a considerable gain in

1 - 27



performance when executing Smalltalk type languages on the Rekursiv. This means 
that, if the execution of a £C’ program takes one second on RISC then it may take 
similar (one second) execution time on Rekursiv. But if a Smalltalk program  runs 3 
times per second on RISC then it will run more than 3 times per second on Rekursiv. 
That is, the Rekursiv reduces the performance bandwidth.

1.5.1 Features to be investigated

The following features of the Rekursiv have a bearing on this project:

• Typechecking in hardware

• Persistence

• Garbage collection

1.6 A im .
The aim of the project is to investigate the capabilities of an object-oriented architec
ture in providing a general platform for the implementation of functional languages.

In order to meet this aim, the following objectives have been identified:

1. To generate an implementation of a functional language using the  Lingo lan
guage on the Rekursiv.

2. Performance analysis on various implementation techniques.

3. To identify the major issues to be investigated in terms of general implemen
tation strategies in an object-oriented environment. As a result of this, it will 
be possible to determine those parts of the implementation th a t are critical

1 - 28



for efficiency. It will then be possible to focus attention on those critical areas 
with a view to improving their efficiency.

4. The determination of the contribution to performance resulting from the un
derlying Rekursiv architecture by comparing the Rekursiv implementation 
against implementations using other object-oriented languages on a conven
tional processor.

5. The contribution of the style of object-oriented implementation to perfor
mance.

6 . To determine to what degree built-in features of the implementation language 
(eg garbage collection) can be exploited.

1.7 Sum m ary
In this chapter an informal introduction to functional languages and functional pro
gramming concepts has been presented. The object-oriented paradigm has been 
considered as an alternative implementation approach for functional languages, par
ticularly the Rekursiv [31] processor using the object-oriented language Lingo.

The convergence of ideas in the hardware field and in the software field is of 
growing interest for the implementation of functional programming languages. The 
designer of the Rekursiv, David Harland claims that this offers the potential for 
the efficient evaluation of functional programs on the Rekursiv as a result of the 
reduced performance bandwidth; resulting in a considerable gain in performance 
when executing Smalltalk type languages (for example ‘Lingo’) on the Rekursiv 
rather than on a conventional machine.

The next chapter introduces the A-calculus and its use in functional language 
implementations.

1 - 29



A brief study of the many approaches to functional languages implementation like 
g ra p h  re d u c tio n , e n v iro n m e n t-b a se d  and d a ta  flow techniques is presented, 
and an object-oriented ‘active graph’ implementation is proposed.

1 - 30



C hapter 2

T h e im p lem en ta tio n  en v iron m en t

This chapter is mainly concerned with implementation techniques of 
functional programming languages. Because most purely functional pro
gramming languages are a version of the A-calculus, so their program
ming can be done in a purely descriptive fashion, some ideas of A- 
evaluation, substitution, reduction and conversion are explained briefly 
in the first part. This is followed by a discussion of the mechanism 
of graph reduction which is used for the implementation of functional 
languages. Other implementation techniques are reviewed.

2.1 T he A-calculus: In troduction  and its syn tax
The A-calculus provides a method of representing functions and the conversion rules 
for syntactically transforming them. For example a successor function on integers 
may be expressed as:

Ax. 1 +  x

2 - 1



The A notation as devised by Alonzo Church [14] is read as ‘the function of’ and 
dot (.) as ‘which returns’. The variable ‘x ’ after the ‘A’ is called a bound variable 
(discussed below) and the expression to the right of the dot is called the body of 
the abstraction. The body of the abstraction may be extended to the right and 
may be any valid A-expression. For example, In ‘Aa. Ab. a ’ the body ‘Ab. a ’ is 
a valid A-expression. Extra brackets may be used to clarify it as ‘(Aa. (Ab. a ))’. 
Note that the A-expression of this form can not be recursive as there is no associated 
function name to refer to. We can write equations defining functions in which just 
one identifier appearing on the left hand side of the equation serves the job of naming 
that function, for example

def Succ — A x. 1 +  x

In the case of recursion, the usual ‘loop counting’ is replaced by recursive calls. 
Recursion can be simplified by abstracting at the place where recursion takes place 
in a function and then passing the function to itself [55].

In order to call a function repeatedly, we must name the function by using ‘def’ 
as:

d e f  < nam e  >  =  < expression >

Recursion by passing a function to itself can be given as:

d e f  < name > = . . . . (<  nam e  > ) ....
or d e f f  = .... ( /  / )  ....

The right hand side represents the expression in which the function definition is 
repeated. For example:

d e f fa c t  =  i f  x = 0  then  1 else x * fa c t  {x — 1 )

2 - 2



This indicates that the recursive function ‘fact’ can be substituted at its own 
recursion points. Further details of how to deal with this problem are given in 
Chapter-4.

Apart from the capability to write a ‘program-forming program ’, the most no
table feature of programming in a A-based notation is the absence of the assignment 
statem ent [24].

2.1.1 The evaluation of A-expressions

Before describing the conversion rules of A-calculus, the terms ‘bound’ and ‘free’ 
variable should be identified.

An occurence of a variable is b o u n d  if there is an enclosing A-abstraction which 
binds it, and is free  otherwise. For example

((Ax. z x)(Ay. y x ) ) ----------------------- ( 1 )

Where z and x are different. The first occurence of ‘x ’ is bound, and the second 
occurence of ‘x ’ is free.

A variable may be bound and free in different places in the same expression. For 
example

(Ax. Ay. (x y))

This has bound variable ‘x ’, and the body expression is another function:

*y- (x y)

2 - 3



which has bound variable £y ’ and free variable £x 5. The variable cx ’ is bound within 
the outermost A-abstraction and free within the inner A-abstraction.

Example (1) also illustrates how functions of more than one argument are defined 
in A-calculus. Functional application is represented by juxtaposing one term  with 
another (juxtaposition can be taken as an indication of functional application).

A clause of A-calculus which involves the application of one term  to a another 
is an instance of functional application. Apart from variables and constants in A- 
calculus there are only two ways of forming new terms from the old ones, th a t is, 
definition of a function and its application to an argument.

A computation can be performed on a A-expression by reducing re d e x e s  in it, 
until it is in n o rm al form , (a redex is a reducible functional application expression). 
This can be performed by employing three rules: a-conversion, /3-reduction and 77- 
reduction.

2 .1 .1 .1  C onversion  ru les

These rules that define the ways of interpreting a A-expression.

/-. a —co n ve rs io n  , , r / 1.  (Ax. E) -------- > (A y.[y/x] E)
, .  3 —red u ctio n  r . , _• (Ax. E) v -------- > [v/x] E
, .  _  . n —red u ctio n  „• (Ax. E x )  -------- > E

Where the notation of the type [v/x]X is used to mean £the expression X with 
every unbound occurence of the variable x replaced by the value v \

2 - 4



2.1.2 Different evaluation paths

The evaluation of a A-expression proceeds (primarily) through /3-reduction (that 
is the replacement of a bound variable with an argument in a function body). In 
functional languages, /3-reduction is the closest analog of assignments [74]. There 
are three distinct evaluation mechanisms which define different orders of evalua
tion of sub-expressions (i.e in what order to apply /3-reduction) and hence different 
evaluation paths. These are

• Normal order

• Applicative order

• Lazy evaluation

The Church-Rosser theorem [14] shows th a t every expression has a unique normal 
form. An expression containing no redexes is said to be in normal form.

Since our main aim is to get the normal form from the input expression the 
following points will help to choose an appropriate evaluation mechanism.

• applicative order may not term inate (see example below which covers all the 
following listed points)

• normal order may repetitively evaluate argument expressions, because the left 
most reduction is always done first if there is a choice.

• normal order may not terminate

• there is no way of deciding whether or not the evaluation of an arbitrary 
expression will terminate.

• if a normal form exists then it is unique and it will be reached by normal 
order evaluation (second Church-Rosser theorem). If any evaluation order will 
term inate then normal order evaluation is guaranteed to term inate.

2 - 5



Example :

The following example illustrates normal and applicative order reductions clearly. 
This also shows how an expression terminates using normal order, but will not 
term inate with applicative order.

Consider the following expression:

o rig in a l e x p re s s io n
fu n c t io n  a pp lica tio n  a r g u m e n t e x p re s s io n

(Ax. y ) ((Ax. x x)(Ax. x x))

The first part of the original expression is the functional application and the 
second part is the argument expression.

To evaluate it, using applicative order reduction, the argument expression must 
be simplified first. The argument expression which is to  be evaluated first is:

((Ax. x x)(Ax. x x ))

The evaluation of this expression will not term inate. Since ((Ax.xx)(Ax.xx)) 
reduces to ((Ax.xx)(Ax.xx)) and does not term inate in a normal form, ie

(Ax. x x)(Ax. x x) (Ax. x x)(Ax. x x)

Applicative order thus does not terminate.

W ith normal order reduction the situation is different. In normal order we first 
substitute the bound variable (which is ‘x ’ in this case) in the function with the 
unevaluated argument. That is reducing the application without evaluating the 
argument. Normal order reduction immediately terminates with the normal form

2 - 6



Thus if an expression is reduced using both evaluation orders and both term inate, 
then they produce the same final result, even though normal order may lead to 
multiple evaluation of the argument.

2.1 .2 .1  Lazy evaluation

The most im portant step forward in evaluation strategy is ‘laziness’, first introduced 
by Wadsworth [75]. This achieves normal order evaluation without causing a large 
increase in the amount of work to be done. The extra reductions introduced by 
normal order reduction are really just repeated calculation, requiring any work in 
duplicate text to be performed more than once. This problem can be solved by 
representing the A-expression as a graph which represents the duplicate text by a 
shared subtree. Once the subtree has been reduced, th at reduction will never be 
performed again.

Lazy evaluation evaluates an expression only when its value is needed. For a 
purely functional program, a lazy reducer performs no more (and possible fewer) 
reductions than an applicative order one. Thus an expression is only evaluated 
when it appears in the function position of a functional application. In addition, 
after evaluation all copies of the expression are updated with its new value.

Consider the body of (Ax. * x 3) 5, that is, * 5 3

/  \
0 3

/  \
* 5

2 - 7



We can define Ax. E as a special type of node, a A node, with bound variable 
associated with its left subtree and the body with the right subtree. Here £@ 5 denotes 
the application of left subtree to right subtree. Consider an example of /3-reduction 
on

(Ax. +  x x)(* 2 3) (+  (* 2  3)(* 2  3))
here we evaluate the first (*2 3) 
and, as we shall see, this value replaces both of the 
occurences of the argument expression which gives 

( +  6 6) =  12

This can be represented as.

0 0 0
/  \ /  \ /  \

lam 0 0— 0 0
/  \  /  \ /  /  \ /  \

0 0 3 --------> + 0 3 — > + 6
/ \  / \ /  \

0 x * 2 * 2
/  \

+ x

Where £lam 5 denotes a A-node, and ‘-----5 denotes sharing.

The lazy evaluation combines the best features of normal order (a guaranteed 
normal form if it exists and delayed evaluation of arguments) with those of applica
tive order (efficiency due to only evaluating multiple copies of an argument once).

2 - 8



Functional languages like M L [3] and H o p e  [1 1 ] are strict [43]. A function is 
strict if it is sure to need the value of its argument. In terms of reduction order, 
strict semantics means applicative order reduction, th a t is, reducing the argument 
before reducing the application of the A-expression [43]. On the other hand, SA SL , 
K R C , L M L , M ira n d a , O rw ell, P o n d e r , H askell are all lazy [43, 50].

We may conclude from this discussion that, in order to avoid redundant evalua
tion and to guarantee ‘safe’ term ination properties, all implementations of functional 
languages should be lazy [22]. However, there may be some overheads (for example, 
the exact time at which the arguments will first be needed and hence evaluated) 
associated with the passing of parameters lazily. For this reason, some functional 
languages are defined to have a ‘stricter’ definition of semantics.

Even though languages like M L and H o p e  (as mentioned above) have a stricter 
definition of semantics, they support lazy evaluation where it is explicitly requested 
by the interpreter, particularly in data constructors [43]. For example, in Hope a 
single lazy constructor function ‘Icons’ is used to support lazy evaluation and infinite 
data structure (lists).

2.2 Im plem entation  techniques
The implementation of functional languages is generally described in terms of an 
abstract machine [21, 40] reducing either the source functional program or a compiled 
version of a program. The technique of reducing the source program is based on 
an implementation where an expression is not shared among multiple references, 
so subexpression may be evaluated many times. An example of this technique is 
Backus’s metalanguage FFP, which allows massive parallelism to be exploited [4].

In the technique of reducing the compiled version of the program, a slightly 
more complex representation of an expression is used. In this technique expressions

2 - 9



are represented as graphs, which allows references to a common sub-expression and 
common sub-expressions may be shared. Thus graph reduction is a process in which 
expressions are represented as graphs and graphs may be shared.Sharing is im portant 
to the performance of a sequential evaluator, because it avoids re-evaluation of copies 
of common expression [61].

2.2.1 Graph reduction

Graph reduction gives a ‘good fit’ with lazy evaluation [43].

In imperative languages, the order in which statements are executed usually 
affects the result. In functional languages the choice of order makes no difference to 
the result (provided it terminates).

The computation in graph reduction can be viewed (see below) as a controlled 
deduction rather than a sequence of apparently meaningless state changes [24]. Per
haps this is the most fundamental aspect of novel architecture work.

In graph reduction, the data structure is modified (reduced) until it becomes the 
desired result. That is, for a /3-reduction step, each occurence of a bound variable 
is eliminated by substitution of the corresponding argument expression found in an 
application. The data structure (in the form of a graph) consists of a number of 
nodes, each of which can contain a number of other nodes as well as atomic values 
(or leaves). The evaluation strategy is to look at the leftmost function name in the 
expression: If it is a user defined function then it is replaced by its definition(body) 
and the result will still be an expression, but if it is a primitive function like plus 
or times, then the indicated operation can actually be performed, replacing the 
function application by its result. This reduction process is repeated until there are 
no more redexes, when the expression is in normal form.

For example, ((2*3)+(4*5)) contains two redexes; (2*3) and (4*5). These may

2 - 10



be reduced to 6  and 2 0  respectively, and the original expression reduced to (6 + 2 0 ), 
which is further reduced to the normal form 26. In this way the graph becomes 
reduced until no further reductions can be performed.

Graph reduction is also known as copy -based  implementation; the application 
of a function to an argument causes the graph of the function body to  be copied 
with the appropriate argument substituted [22]. This means that the evaluation of 
an expression is only performed when its value is demanded (lazy evaluation), and 
function application takes place as soon as the argument of that function becomes 
available [2 2 ].

A further advantage of graph reduction is th a t normal order evaluation is easy 
to express and relatively efficient to implement.

Most of the current and proposed functional machines use some form of graph 
or list structure to represent the program. Of these the most notable are the: •

• G-Machine, devised by Thomas Johnsson 1984 & Lennart Augustsson 1984, 
Peyton Jones 1987 has incorporated this idea in a graph reducer th a t uses 
supercombinators (see below) to increase execution speed [61, 43].

• SKI- Reducer, devised by Turner. For combinatory-based implem entations 
(see below) the seminal reference is Turner [65].

• TIGRE: Threaded Interpretive Graph Reduction Engine, devised by Koopman 
1989, for executing combinators (see below) in a pure graph reduction style 
[49].

• TIM: The three instruction machine devised by Wray and Fairbairn 1988. 
The TIM is remarkable as it achieves respectable efficiency without the many 
optimizations required by the G-machine [2 ].

• G-TIM: Improving the TIM, devised by Guy Argo 1989, An improved TIM

2 - 11



which is more amenable to optimization based on sophisticated compile time 
analysis [2 ].

All of the above mentioned implementations are based on graph reduction using 
standard or supercombinators (see below) and can be viewed as interpretive, because 
the reduction and transformation of their graphs can be seen as interpretation of 
the graph. For example in the G-machine [40] graphs are transformed into abstract 
machine instructions, which can be rendered into machine code. Current implemen
tation methods used in practice for functional languages usually correspond more 
or less closely to graph reduction.

Graph reduction is a particulary natural vehicle for supporting lazy evaluation 
in functional languages [2 2 ].

2.2 .1 .1  U se of C om binators in graph reduction

Most recent graph reduction implementations are based upon:

• Standard combinators [13, 65],

• Supercombinators [37], or

• Categorical combinators [51].

All these approaches have the same common property ie the selection of the 
next reduction step which is dynamically derived from the current expression form 
at each stage in a reduction sequence.

Standard and supercombinator implementations are based on the fact th a t all of 
the variables in a A-expression can be abstracted by transforming it into a sequence of 
combinators (ie constants or expressions containing no variables at all). By removing

2 - 12



all bound variables the resulting expression can be represented as a graph, and so 
evaluating the expression becomes a process of g ra p h -re d u c tio n .

Standard and supercombinator approaches adopt a two-dimensional graphical 
representation of expressions. Their implementations are described in chapter-3. 
Categorical combinator reduction is based on a sound m athem atical foundation, 
which facilitates a good degree of optimization. Its operational semantics are very 
much like that of the SECD (environment based) machine [2 2 ]. Unlike standard 
and supercombinators categorical combinators are not fully lazy. The categorical 
combinator approach is related to an environment based implementation (see below), 
and so is not readly comparable with the other combinators. In addition, they have 
not m atured into a m ainstream  implementation method, and so are not considered 
further.

In most graph reductions the traversing of the graph’s left spine (stack unwind
ing) and the case analysis of nodes are costly in terms of performance. If the costs 
are reduced, significant speedups may be possible [49].

2 .2 .1.2 A c tiv e  g ra p h  im p le m e n ta tio n

In this thesis the idea of a combinator graph data structure is extended to th at of an 
ac tiv e  g rap h ; ie each combinator is represented by an object in the object-oriented 
paradigm and contains the code for its own reduction. The active graph combines 
the data structure and the algorithm required to reduce it.

Combinator graphs or the A-lifting technique introduced by [43, 40] are particu
larly attractive for such an object-oriented implementation (see chapter-4).

2 - 13



2.2.2 Other Techniques

We have discussed one way to deal with the bound variable problem. That is the 
way of performing /3-reduction, which performs the substitution which replaces the 
param eter reference by its argument (i.e. copy-based). In other approaches the 
most notable is the environment-based one. In this approach, we leave the formal 
param eter reference (formal parameter denotes the variable just after the A-notation) 
as it is but make a record of what value it denotes in a separate data structure [2 2 ].

One of the motivating factors in these approaches is the ‘problem of bound 
variables’ ie identifying the existence of bound variables in the function bodies which 
leads to the appropriate technique. For example, consider the following A-expression

(Ax. (Ay. +  x y) 1) 2 (Ay. +  2 y) 1

the body (Ay. +  x y) is different for different bindings of x. Since the variable £x ’ 
occurs free in (Ay. +  x y), so it is /3-substituted with the outer most argument £2 ’.

In environment-based schemes, an environment is an association or binding of 
variables with values to be substituted for them  in the evaluation of a expression. It 
is a technique which provides for sharing and delaying of the substitution of values 
for variables [60]. An environment based scheme is a variation of sequential code 
in which a graph structure is used to represent the program. In graph structured 
machine code the environment is kept in a separate structure such as a display or 
association list.

2.2 .2 .1  SECD m achine

The first environment-based implementation used the SECD machine. It was in tro
duced by Landin in 1964. It is based on an abstract architecture for the applicative

2 - 14



evaluation of A-expressions [33].

The SECD machine is a stack-based implementation and uses four ‘stacks’, la
belled S, E, C and D for the evaluation of A-expressions.

This machine can be viewed as £a generalisation of the abstract machine under
lying implementations of imperative programming languages like Pascal’ [63].The 
eager and lazy version of the SECD machine are often termed d a ta -d r iv e n  and 
d e m a n d -d riv e n  respectively.

In the SECD approach the code sequence for a A-abstraction has access to an 
environment which contains values for each of the free variables, thus allowing a 
single code sequence for each A-abstraction [43].

The combinator approach, on the other hand, supports sharing and copying. 
This means that, in contrast to the SECD machine, the A-abstractions can be com
piled out and a simpler machine (graph reducer) may be used to evaluate the resul
tan t combinator code.

It was mentioned earlier that the SECD machine uses an applicative order eval
uation route and so is incapable of handling infinite data structures. The SECD 
machine needs modification so that it evaluates in (graphical) normal order.

One basic drawback of the environment-based scheme is th at in order to under
stand an expression fully the environment in which it was created must be consulted 
[24]. In an implementation which supports functions which can accept and return 
functions, this means that each expression must contain at least a reference to the 
environment in which it was created. That is, every /3-substitution is to be remem
bered. Kennaway [24] describes this remembering process as a considerable amount 
of excess baggage which may be accumulated in the form of environmental entries 
which will never be consulted. The schemes which minimise this excess baggage 
tend to destroy the basic point of the environmental approach by complicating the

2 - 15



remembering process.

The other drawback which relates with this excess baggage problem is that it 
needs an efficient look-up mechanism. The larger the environment, the higher the 
cost of entry and look-up.

Combinator code in general is about twice as compact as SECD code. This leads 
to an extra storage requirement [65]. Turner [65] shows an comparision on relative 
performance of SECD and combinatory code reduction for a factorial function. The 
combinatory code occupies 13 cells while SECD code needs 24 cells.

Because of these drawbacks the SECD approach will not be considered further.

2.2.3 Data flow

D ata flow is an approach to parallel processing. The fundamental principle of data 
flow operation [17, 64], is that an instruction is ready for execution when all its 
operands are available. A disadvantage of the approach is that instructions may 
waste time waiting on the evaluation of unneeded arguments. For example, an 
operator such as if-then-else, which will use only two of its three arguments, will 
always be forced to wait for all three to be evaluated. The data flow approach is 
best suited to machines which support parallel execution and thus is not of direct 
relevance to this project.

2.3 Sum m ary
We have discussed the two extremes in functional language implementation, the 
SECD machine and graph reduction. The m ajor difference between the two lies 
in the nature of their abstract machine and in the function calling semantics they 
support.

2 - 16



Field [22] has shown that there should be a close correspondance between the 
abstract and concrete machine architecture, so translating expressions into code 
which is directly executable (active graph) should result in very efficient code.

Optimized combinators like Bprime, Cprime etc (see next chapter) can be built 
into the code generator to improve the quality of the resulting code. Typically this 
is concerned with the compiled code, so th at the combinators are compiled directly 
into executable code (active graph, see chapter-3) rather than  the use of stack pushes 
[22]-

Graph reduction was selected as an appropriate vehicle for this project. The 
reasons for this are outlined below:

Graph reduction has emerged as a powerful implementation model for lazy func
tional languages. Combinators and full laziness are two of the key techniques avail
able for the efficient implementation of graph reduction [42]. Graph reduction is a 
pratical implementation technique for functional programming languages, with the 
im portant advantage of full laziness [37]. It also supports sharing in a natural way.

As we shall see (in chapters 3 & 4) our ‘Alcal’ implementation maps remarkably 
easily and efficiently onto an Object-oriented architecture, in the form of an exe
cutable graph. Furthermore in the Rekursiv the garbage collection is performed by 
the underlying hardware during execution. Automatic garbage collection relieves 
the compiler writer of the need to keep track of references within the program and 
to release the storage space explicitly.

The next chapter describes combinatory logic which includes combinators and 
supercombinators, as well as their reduction rules, identification of bound or free 
variables in an expression, and the technique of transforming a A-expression into 
combinatory form.

2 - 17



C hapter 3

C om binator R ed u ctio n

This chapter’s main issue is techniques for transformational algorithms. 
Taking in view the differences of A-calculus and combinator calculus, 
the problem deals with the translation of A-calculus expressions into 
combinatory form, firstly by using the fixed combinators proposed by 
Turner and secondly using the ‘customized’ Hughes-style supercombi- 
nators. The method of supercombinator abstraction is derived from 
Hughes’ original algorithm. Finally the advantages of this new improved 
supercombinator abstraction are discussed.

3.1 G raphical representation  o f A-expressions
It was stated in the previous chapter that, to reduce the input expression (A- 
expression) to a normal form, the substitution of a bound variable with an argument 
is achieved by replacing the variable reference by a pointer to the argument graph. 
This means that in the event that the function body contains references to the 
bound variable, multiple pointers to a single shared copy of the argument graph will 
be established. Consequently that the same copy of a sub-program can be shared

3 - 1



among several parts of a larger expression. For example consider a A-expression:

(Ax. x y x x)((Az. z) w) (((((Az. z) w) y) ((Az. z) w)) ((Az. z) w))

Its construction is given on figure 3.1, the lower part of fig 3.1 represents the 
graph representation.

There are other systems as well. The alternative, of copying the argument wher
ever it is used, is called string reduction or tree reduction.

3 - 2



3.1.1 String reduction

String reduction is like a graph reduction except the value of an expression is not 
shared among multiple references. In graph reduction the two occurences of the same 
identifier refer to the same expression rather than by copying that expression out 
twice as in string reduction. Figure 3.1 (upper part) makes this clear. The expression 
contains three occurences of the identifier cx ’, so three copies of the identifier £x ’ will 
be made in string reduction.

A simple example can be given to explain the above larger A-expression :

* x x where x is (+  4 5)
* 9 x where x is 9
* 9 9
81

* x x where x is (-f- 4 5)
* (+  4 5) x where x is (+  4 5)
* 9 (+  4 5)
* 9 9 
81

This means after evaluating the first x, the next time x is required the reduced 
form of x (previous x) will be delivered immediately, and so in graph reduction the 
argument (+  4 5) is been evaluated only once.

String reduction has another disadvantage for conditional expressions such as:

graph reduction:

(Ax. * * x x)(T  4 5)

string reduction:

(Ax. * x x)(T  4 5)

3 - 3



if w =  1 then g(w) else h(w)

where three copies of w are made even though the argument w will be used by 
only one function, so one copy of w will be thrown away.

The string reduction some times leads to unnecessary copying of the arguments, 
and it is normally considered prohibitively expensive [43]. However it has been used 
(in Mago’s parallel reduction machine) as the basis for an architecture allowing 
massive parallelism [61]).

Replacing one graph by another with the same value, means it is no longer 
required in the evaluation, and so the space occupied can be reclaimed.

As a result, logically adjacent parts of an expression will not necessarily occupy 
adjacent storage locations. The segments of storage used and then released dynami
cally during the reduction process may become widely scattered all over the storage 
space.

As execution proceeds more and more space will be allocated in the memory. 
This allocation will finally fill up the memory space, so we need to perform garbage 
collection to free up some spaces.

3.1.2 Graph reduction on Rekursiv

The Rekursiv’s storage management system has features which may well support 
graph reduction.

The garbage collection technique of the Rekursiv provides

• garbage collection in hardware, that is, there is hardware for generating certain 
condition codes to assist the process of garbage collection.

• memory management based on arbitrary-sized objects

3 - 4



• performing all necessary checking in parallel with other processing to m anip
ulate objects in a secure persistent environment. The Rekursiv has a number 
of registers dedicated to specific functions.

So by giving the responsibility of recycling of an unused piece of fragmented store 
to the hardware, the Rekursiv is ideal for graph reduction.

3.2 C om binator reduction  schem e
The early implementations of functional languages either reduced A-expressions di
rectly, or translated them  into a program for an SECD machine. Both of these 
approaches were rather slow as implementations of normal order reduction because 
they had to do a lot of copying.

Turner produced an implementation that was superior to these reducers by trans
lating A-expressions into expressions containing only combinators. The idea is based 
on the well-known fact th a t all of the variables in a A-expression can be transformed 
into an equivalent form that does not include any A.

3.3 A-calculus V s com binator reduction
A combinator is rather like a A-abstraction but provides three advantages over A- 
abstraction.

• all the arguments to a combinator are dealt with at once (discussed below)

• there are no free variables in the combinator’s defining body

• a combinator body is an application

3 - 5



These differences indicate that combinator reduction may be performed faster than 
the reduction of arbitrary A-expression. As their bodies are constant forms, combi- 
nators can be compiled into an intermediate code suitable for speeding the reduction 
process. In fact only two combinators S and K (see below) are needed to translate 
a A-expression to an applicative expression. For example

Ax. Ay. a x (b y) =  S(S (K S)(S (K K) a)) (K b)

The im portant property is that any A-expression —and hence functional program- 
can be transformed into an expression consisting solely of applications of these com
binators. These combinators (S K) are devised to prevent unnecessary copying of 
arguments.

3.4 Turner’s reduction  schem e

The idea of implementing a functional language by translating expressions into com
binatory form and performing reduction on the result is due to Turner [65].

Turner’s combinatory scheme uses the following operators (combinators):-

S f g x = fx (gx)
K x y = x
I x = x

where SKI can be written in terms of A-calculus as

S =  Af. Ag. Ax. fx (gx)
K =  Ax. Ay. x
I =  Ax. x Only S and K are necessary, as I =  SKK.

3 - 6



As an expression undergoes reduction, the interm ediate expression generated 
tends not to display the combinatorial growth in size th a t is typical when using only 
the SK and I combinators. This has been referred to as a ‘self-optimizing’ property of 
combinator reduction, and seems to occur as the set of judiciously chosen dependent 
combinators reaches a critical size [61].

The abstraction operations are

[x] (El E2) => S ([x] El) ([x] E2)
[x] x => I
[x] y => K y

where: y is a constant or a variable other than x; E l & E2 are expressions;
S K & I are three combinators each having a strictly limited power of 
beta conversion.

Consider an example of the factorial function.

fact =  Ax. if x =  0 then 1 else x * fact (x - 1)
cond (=  x 0) 1 (times x (fact (- x 1)))

abstracting [x] by representing as:

[x](cond (= x 0) 1 (times x (fact(- x 1))))

results in the following SKI expression:

S (S ( S (K Cond) (S (S (K = ) I) (K 0))) (K 1)) (S (S (K Times) I) (S 
(K fact) (S (S (K -) I) (K 1))))

The tree representation is:-

3 - 7



/  \
@ @

/ \ / \

0 1 <9 0
/ \  / \  / \

Cond 0 Times x fact @
/ \  / \

@ 0  0 1
/ \  / \

= x x
fig 3.2

(cond (= x 0)1) (times x (fact(- x 1)))

The appropriate combinator representation of the above is given in fig 3.3

3 - 8



It is remarkable that the SKI calculus is computationally complete, th a t is these 
three simple symbol-manipulation operations are sufficient to implement any opera
tion by translating lambda calculus formulae into formulae in the SKI calculus. Since 
functional languages can be compiled into lamb da-calculus and lamb da-calculus can 
be compiled into SKI, It follows that any functional language can be implemented 
on a computer providing just the SKI operations. However as Turner points out, 
an implementation relying solely on S, K and I is hopelessy inefficient. Because a 
formula of the SKI contains no bound identifier, its reduction can be implemented 
as simple data structure manipulations. Further the reduction can be applied in any 
order [52].

3.4.1 Turner’s optim ization

Fixing the set of combinators in advance allows the design of specific hardware for 
combinator evaluation [60].

Using SKI the translation produces expression which are larger than the original 
by more than the square of the number of terms. W ith the few more combinators and 
reduction rules the resulting expression are more compact. Additional combinators 
representing primitive operations, such as arithmetic operators may be used for 
efficient execution. Other nonprimitive combinators like B and C can also be added, 
so as to reduce the size of the resultant combinator expression.

The combinators B and C can be defined by :-

B f g x  = f ( g x )
C f g x = f x g

S (K El) (K E2) => K (El E2)
S (K El) I => El

3 - 9



S (K El) E2 => B El E2
(if no earlier rule applies)

S El (K E2) => C El E2
(if no earlier rule applies)

B & C optimize the combinator code of ‘fact’ to :

S(C(B cond(C = 0))1)(S times(B fact (C - 1)))

W ith these optimisations graph reduction becomes a practical implem entation 
technique, with the im portant advantage of full laziness [37].

Graphical representation of these combinators are given in fig 3.4

3 - 10



G raph transformation rules for__S  K l  B  C  com binators

Similarly the reduction rules for prime combinators like S7, B7 and C7 can also 
be defined (see chapter-4.3.1).

3.4.2 Representation of recursion

In m athematical functions there is no concept of control flow since functions are 
defined declaratively. Instead recursion and conditional expressions are used.

A good example is the factorial function which involves both conditional expres
sions and recursion (Wilson, pp.l50,[73]). It is written in Pascal. The same program 
may be represented in mathematical function as:

def fact =  lam x. if x — 0 then 1 else x*fact(x-l)

The application of function ‘fact’ to an argument ‘4’, will compile to a tree whose 
left subtree is the structure of the ‘fact’ and whose right subtree is the argument 4.

The definition of fact can be used until an internal reference to fact occurs again. 
The function name ‘fact’ is included in the symbol table. W hen function name fact 
reappears in the expression, a definition of fact with internal references to fact is

3 - 11



replaced, tha t is, wherever the function definition fact is found in the expression, 
the reduction process will retrieve the tree associated with the name in the symbol 
table and incorporate it. This process goes on until the argument supplied to fact 
becomes zero and the recursion stops.

The lazy approach is ideal for recursive function evaluation [74].

A complete example of a recursive function is detailed in chapter-4.3.1. In this 
example the recursion representation involves SKI and optimized combinators B, C, 
S7, B', and C7.

3.5 Supercom binators
It was mentioned earlier in the SK combinator section (section 3.4.1) th a t by adding 
more combinator efficiency is improved, which results in a reduction of the size of 
the graphs and in the number of reductions needed for program execution.

This SK combinator-based compilation strategy provides a fixed set of combina
tors into which programs are translated. The evaluator is also designed to reduce 
a graph of combinators from this fixed set. S K combinators are sufficient for rep
resenting arbritrary functions [30]. Theoretically any computable function can be 
expressed as an S K combinatory expression [33]. Using a small set of combinators 
as in Turner’s system means that a program will be executed in very small steps. 
This representation, however, is rather lengthy and hence inefficient.

The supercombinator (A-lifting) approach has the advantage over the fixed com
binator approach in that each supercombinator produced is almost certain to be 
larger than the fixed combinators, so that fewer applications are required to do the 
same amount of work, ie the grain size of each combinator is increased.

Hughes’s supercombinator approach [37] generates efficient representation using

3 - 12



program specific combinators. They are generated directly from the A-abstractions 
involved. This technique treats all free variables as arguments to additional A- 
abstractions. Constructing an instance of a A-body while substituting for the formal 
param eter (ie the variable bound by the A) is the fundamental operation of this type 
of implementation.

Applying a lambda-abstraction to an argument involves constructing an instance 
of its body, and substituting the argument for occurences of the formal param eter. 
For example:

(lam x. x  +  1) 3 ==> + 3 1  = >  4

The above expression may be represented by one supercombinator. The reduc
tion efforts may be broken down into two steps:

• substitute the argument (in this case c3’) for occurences of the formal param 
eter (x in this case)

• perform addition

In the case of nested A-abstraction the effect of this is to generate a different set 
of supercombinators from each A-abstraction.

Consider the lambda-abstraction

lam x. lam y. x +  y

x occurs free in the body of lam y abstraction ( y being the bound variable). 
By providing two arguments (one for x and one for y) this above expression may be 
reduced to two supercombinators.

This technique generates ‘tailor m ade’ combinators from a program to be the 
best for th at particular program. Hughe’s tailor-made combinators can be made as 
large as possible.

3 - 13



As we mentioned before, combinatory logic can be used to remove all the bound 
variables from a functional program, producing a constant application form (CAF), 
in which there are no variables. The same idea applies here, we transform  the 
program by translating each lambda-abstraction into CAF using supercombinators.

Each supercombinator is a pure function and so can be viewed as a constant 
until all expressions are in CAF.

3.5.1 Im plem entation

In order to transform an arbitrary lam bda-term  into supercombinators, it is neces
sary to review the concept of free variable/expression (see chapter 2). For example

Ay. y is a supercombinator(S.C.) (no free variable)

Aas. as -f 1 is a S.C. (no free variable)

Xx. x (Ay. (y * y )) is a S.C. (no free variable)

Aas. (x +  y) is not S.C. because y occurs free.

Xx. x (Ay. x * x)  is not a S.C. in inner Ay abstraction x occurs free.

To illustrate this mechanism consider the following function:-

d e f  a =  lam x. (lam y. (as -f- ( lam x. (as — 3)) y))  5 -------------------(1)

The expression may have many A abstractions which are not supercombinators, 
(’def5 in the above expression, is an additional facility for naming expressions as in 
Alcal).

In the above example select a A-abstraction which has no inner A-abstraction in 
its body, which is lam as. as — 3 ; This is a supercombinator, since no variable occurs 
free in its body.

3 - 14



Give that supercombinator an arbitrary name say Nl.  The definition of N l  is 
given as

N l  :=  x — 3 => — x 3;

The reduction of supercombintor N l  can be defined as: ‘substitute the argument 
for x and then substract 3 from it.

The original expression (1) has now been transformed into

lam x. (lam y. (x -f N l  y )) 5

The inner lam term  is now lam y. (x -f N l  y). Note th a t x occurs free. This can 
be rewritten as:

( lam x. lam y. {x -j- N l  y)) x

lam x. x  being an identity function which removes the free variable from the 
above expression. The inner bracketed term  is a supercombinator, which we call N2.

N 2  := x +  N l  y = >  +  % N l  y

The original expression (1) has been further reduced to:

lam x. N 2 x  5

The reduced form is itself a supercombinator which is the Identity combinator, 
so our final term  is a CAF ie N2 applied to 5:

N 2  5

This example shows that the original expression (1) generates only two super- 
combinators, namely N l  and N2. The definition of N2  indicates th a t it takes two 
arguments, and applying (N2 5) to 6 will achieve the result.

The grain size of the supercombinators N l  and N2  is larger than  th at of SK

3 - 15



The grain size of the supercombinators N1 and N2  is larger than th at of SK 
combinators. The resulting code produced by Alcal (for the above example) is:

(((C (((O' B) + ) (( C - )  3))) 5)) 6

Alcal has to carry out 9 reductions to evaluate the expression, while the algorithm 
of lambda-lifting requires only two.

3.5.2 Parameter ordering and Redundant parameters

In the case where several free variables are to be taken out from a lam bda-abstraction 
as extra parameters, the free variables should be ordered with those bound at inner 
levels coming last in the parameter list of the supercombinator. For example in our 
original example

lam x. ( lam y. (x+(lam x. (x-3))y ))5
I<-level-l— > |

I <--------level-2----------->|
| <------------level-3--------------- > |

Param eter ordering helps in connection with efficiency. Making a param eter re
dundant causes a supercombinator to be redundant. Eliminating the redundant 
parameters is a simple optimization of lambda-lifting.

An example is given to explain redundant parameters and param eter ordering.

3.5 .2 .1  R edundant param eter

Consider an example which involves two variables: 

lam x. lam y. x -f- (y * y ) ----------------------------- (2)

3 - 16



Performing lambda-lifting, the inner lam bda-abstraction is lam y. x- \ -(y*y)  and 
x is free.

The first supercombinator is generated as:c lam x. {lam y. x -\- {y * y)) x ’ with 
the name N1 and param eter list x y as {N1 x y) where the definition of N1 is

N 1 := {x-\-(y *y)).

Substituting back N1 into the top example (2) gives 

lam x. N 1 x

Here we have only a lambda-x abstraction and no free variables so it is a super
combinator. This may be coded as N2 with param eter x and its definition is:

N2  := N1 x.

Now the two supercombinators with their parameters are 

N1 x y =  N2 x

Here (N2 x) is redundant. The supercombinator (N2 x) may be replace by (N1 
x) wherever (N2 x) occurs. It is clear that we require only one supercombinator (N1 
x y) with the definition of N l  := x -f- {y * y ).

3.5 .2 .2  Param eter ordering

The same above example may be extended (adding one more variable) for an expla
nation of parameter ordering.

lam x. lam z. y {x * z ) ---------------------------- (3)

The inner lambda term  is lam z. y -f {x * z), where x and y are both free, and the 
order in which we take them out makes a difference to the resulting combinators.

3 - 17



more free the variable, ie x is more free than y and y is more free than Simply it 
may be defined to be the order of the free variables with those bound at inner levels 
coming last in the param eter list of th at supercombinator: (2) with V  gives -

lam z. lam x. {lam y. x  -f {y * z)) z x {N1 z x ) z  x

The first combinator is (iVl z x)  with definition N 1 :=  {x-\-{y*z)). Substituting 
back to (2) with V  yields

lam x. { N 1 z x) z x

Note:‘(JVT z x) z  x 1 is a supercombinator with param eter list z  x and th a t super
combinator is applied first to an argument z  and then to an argument x. It is clear 
th at in the above expression z  is free.

The next supercombinator may be generated as

{lam z. lam x. {N1 z x) z  x) z ( N 2 z) z

Two supercombinators with their parameters are

N1 z x — N2 z

N2 z becomes redundant leaving only one supercombinator to  evaluate. A dif
ferent ordering of parameters would result in both supercombinators having to be 
evaluated. This is a small optimization and this redundancy makes the evaluation 
lazier.

3.5.3 Lifting w ith recursion

No special note need be taken of recursion, it can be dealt with in much the same 
way as in SKI-implementation. In the presence of a supercombinator, the recursive 
call to the supercombinator is made directly to that supercombinator. It is easier

3 - 18



to illustrate this with an example of the factorial function.

Assuming ’N l’ is the supercombinator of the factorial function with the definition 
of:

(Cond = x 0) 1 (* x (fact (- x 1)).

Its implementation is similar to SKI-implementation except that the recursive call 
to fact can directly be replaced by the supercombinator N l. This algorithm for 
recursion is fully lazy.

3.5.4 Conditional handling and functional application

The conditional handling and functional application are similar to SKI-implementation.

3.5.5 Identifying lambda-abstractions

Lambda-abstractions of the form of Ax. E are represented by a special type of node, 
called the lambda-node (see below), with the bound variable associated with the 
left branch and the right sub tree representing the expression body.

lam
/  \

/  \
char node

The body of the expression may include the occurences of bound variables of other 
lambda-abstractions as free variables, (in our original example (1) see the generation 
of supercombinator N2, where x is free in that body expression but it is bound to

3 - 19



the outer lam bda-abstraction(lam bda x)). Presently the code is being generated 
directly from the source program.

3.5.6 Identifying free variables

The operator for finding free variables may be given as (Hope):-

data node = apply (node X node) ++ 
lambda (char X node) ++
numb (num)
var (char)
op (char)

dec ff * * list
-- ff (x,apply (nl,n2)) -- >
—  ff (x,lambda (v,n)) -- >

—  ff (x,numb (n)) -- >
—  ff (x,var (v)) -- >

++
++

char X node -- > list char;
ff (x,nl) <> ff (x,n2)
ff (v :: x,n)
nil
if member (v,x) 
then nil 
else {[v]}

Hope syntax is used here because the use of data type ‘node’ clarifies the function 
definition.

3.5.7 The Evaluator

With the original example (1) described in the implementation section: 

def a = lam x. (lam y. (x + (lam x. (x-3)) y)) 5

3 - 20



It generates two supercombinators, N1 and N2. For evaluating N2 at argument say 
6, the evaluation proceeds as:

(N2 5) 6 => (((+ x) Nl) 5) 6
=> (((+ x) (((- x) 3) y)) 5) 6 
=> (((+ x) (((- x) 3) 5)) 6 
=> ((+ x) ((- 5) 3)) 6
=> ((+ x) 2) 6
=> ((+  6) 2)
=> 8

Initially =>

© © ©
/ \ / \ / \

© 6 where N2 => © © Nl => © 3
/  \  /  \  /  \  /  \

N2 5 + x Nl y x

Finally =>

©
/ \

© 6
/ \

© 5
/ \

© ©
/ \  / \

+ x © y
/  \

© 3
/  \

x

As we have seen above the parameter ordering yields an efficient result, but in the 
case of CAFs no benefit is obtained.

In the case of lam x .x -fl the term  (+  1) is a CAF with primitive combinator Plus. 
(4- 1) being shared for each application of lamb da-abstraction. In cases where the

3 - 21



CAF are redexs like (l+ (2 -f3)) this will save the repeated evaluation of ( l+ (2 + 3 )) 
because it is a supercombinator.

3.5.8 Advantages over SKI-combinators
• The program dependent supercombinators generated are larger than  the fixed 

combinators, require fewer application to do the same amount of work, ie the 
grain size (execution steps) of each supercombinator is increased. Even though 
lamb da-lifting is quite elegant (more efficient than SKI), because of its larger 
grain size, it is not fully lazy and so not optimal. Optimization may be carried 
out by adopting the concept of a maximal free expression (m.f.e). In lam bda
lifting, we abstract out the free variables as extra parameters while in m.f.e 
the entire free sub-expression is abstracted out as an extra param eter.
One more possible way to achieve the optimization is to define each supercom
binator as a local variable until the final supercombinator is generated and then 
perform the evaluation. In this way there will be one only supercombinator 
for a program and it will be fully lazy.

• Supercombinators produces less resulting code than SK combinator reduction, 
so it is generally faster than SK combinator implementation.

• supercombinators place less load on memory management (garbage collection).

• Generating supercombinators is more complex than SK combinators. In the 
supercombinator technique we add extra formal parameters in response to free 
variables appearing in the expression by reapeatedly replacing the innermost 
A-abstraction using a suitable abstraction algorithm.

Supercombinators have formed the basis for high performance implementations 
of functional langauges.

3 - 22



The A-lifting technique appears currently to be the preferred approach to the
efficient implementation of functional languages [38, 43].

3 23



C h ap ter 4

A n  Im p lem en ta tio n  o f  
C om binator R ed u ctio n

This chapter describes the implementation scheme of the combinatory 
logic functions as the machine code that a purely applicative language 
(Alcal) is translated into. Functional programs are translated into ‘ac
tive’ graphs. The execution of these active graphs is described. The 
chapter begins by giving a description of the language, its handling of 
various features like recursion, higher order functions etc. Then the ab
straction algorithm with various optimizations (reducing code size) is 
described and finally the evaluation strategy of Alcal is handled.

4.1 T he language; syn tax  and exam ple
Alcal (A A-calculus language) is an applicative language. It is a direct extension of 
the A-notation. Its syntax is set out in Appendix-A. An interpreter for Alcal was 
developed using the recursive descent method [16] to arrive at an im plem entation 
almost directly from the extended BNF specification [56].

4 - 1



Alcal is designed to provide facilities for functional programming. The program
mer need not be concerned with variables. Program execution proceeds by function 
application.

For example, a function definition may be written as:

def f = lam x. 1 + x;

This defines a function / .  The lam ( A ) notation on the right hand side of the 
definition declares that f  takes an argument.

This is similar to the Pascal function:

function f(x:integer):integer; 
begin

f := 1+x; 
end;

The variable x (ie the variable bound by the A) is called the formal param eter, 

lam x . 1 + x
I I I
I I I

fn. of x which adds 1 to x
formal parameter (body)

A A-abstraction always consists of these four parts, that is, the keyword lam, the 
formal parameter (x in this case), the V and the body (1+x in this case). Thus 
to get the result of applying the A-abstraction (lam x. 1-f-x) to the argument 5 is

4 - 2



represented as ‘f 5’ (which means f applied to an argument 5). The mechanics of 
the above application is same for all function evaluation in Alcal.

4.1.1 Naming the function

As shown in the above example the general definitions appear on the left hand side 
of the expression. For example:

def add = lam x.lam y. x+y; 
add 2 3  -> 5

def twice = lam x. 2*x; 
twice 4 -> 8

def length = lam x. if x = nil then 0 else l+length(tl x); 
length [1,2,3] -> 3

def map = lam f.lam 1. if 1 = nil then nil else f(hd 1):: map f(tl 1) ; 
map twice [1,2,3] -> [2,4,6]

In this way the definition £def’ allows us to make a simple check on recursion as 
well. A symbol table is used to associate named functions with their corresponding 
graphs, if the same name reappears on the right hand side, that is in the body (see 
the function definitions ‘length’ and ‘m ap’ in the above given example), we retrieve 
the graph associated with that name in the symbol table and incorporate it.

4 - 3



4.1.2 Use of brackets

Alcal supports the omission of redundant brackets to avoid cluttering up the expres
sion. According to the conventions that function application associates to the left, 
we can write a complex example as: (factorial function)

def fact = lam x. if x = 0 then 1 else (x * (fact (x - 1)))

the expression is fully bracketed and unambigious (specially the last part of the 
expression). We may omit redundant brackets to make the expression easier to read 
as:

def fact = lam x. if x = 0 the 1 else x * fact(x-l)

Now suppose that we required to evaluate this expression then the function fact 
applied to 4 may be represented as:‘fact 4’. Extra brackets may, of course be inserted 
freely without changing the meaning of the expression. For example (fact 4) is same 
as ‘fact 45.

4.1.3 M icrosyntax

The micro syntax of Alcal reduces to just a few terminal classes, which describes 
the syntax of integers or any upper or lower case alphabetic character (identifier).

A class, Scanner was implemented in Lingo to scan the input source stream. It 
includes a class method for instantiation which takes as param eter collections of 
keywords for example:

‘def*, ‘if*, ‘then*, ‘else*, 'lam', ‘div*, ‘and*, forJ,
‘not*, 'exit', ‘hd*, ‘tl*, ‘true’, ‘false* , ‘nil* ‘mod*

4 - 4



cryptic character like:

= < > * :

and also a file descriptor for the source text. By reading the source program one 
character at a time, the source program is carved into a sequence of atomic units 
called tokens. Each token represents a sequence of characters that can be treated 
as a single entity or identifiers or keywords etc.

Keywords like £def, if, then’ etc could be considered to be identifiers, punctuation 
characters are those characters that can not prefix other characters, for example e,5, 
V, £)’ etc. Characters like £< ’ or l= may have prefix characters like £! = ’ or £< =  ’ 
so they are grouped as cryptic characters.

The instance methods of class Scanner include £getToken’ which returns the cur
rent token and advances through the source stream. There are also methods ‘theln- 
teger’ and £theldentifier’ which return the actual values found in the source stream 
for ‘Integer’ and ‘Identifier’ respectively. The next paragraph describes recognizing 
variables and identifiers.

4.1.4 Distinguishing identifier and variable

To distinguish between an identifier and a variable in the input stream, identifiers 
are entered into a symbol table and then it is possible to determine whether they 
are indeed variables or not.

To do this, a class, MCnew is defined as a specialisation of Scanner. It has an 
additional instance variable, ‘symbolTable’ to hold the variable and access methods

punctuation characters for example:

4 - 5



to place and look up variables in this table. The inherited get Token m ethod calls the 
supercalss get Token and then inspects the returned token. If it is an identifier then 
the symbolTable is searched (it is performed by method ‘self item 5 of class MCnew). 
If symbolTable includes the identifier then ‘Variable5 is returned else Identifier is 
returned.

In addition there is a method ‘m ustBe:5 which is also included in class MCnew, 
which checks that the token it is passed is the same as that which is required, then 
get next token otherwise report the syntax error.

4.1.5 Syntax error

The cause of error should give the user clear information, for correcting the errors. 
For example consider the following error

if then y else z

Alcal gives an error asdfound then when expecting Identifier5. For this reason an 
instance variable ‘recovering5 is also introduced in the class MCnew.

It is not possible to recover by merely scanning till a statem ent term inator is 
found, since at the time of the error, the thread of execution will in general be 
at some deeply nested point due to the dependence on recursion. Alcal handles 
this by using Davie’s [16] elegent algorithm for error recovery in such a situation, 
which merely adds a few lines to the mustBe: method. The Lingo [31] provides an 
exception facility. Initially ‘recovering5 is set to boolean false, and is set true when 
an error has been detected. When an error is detected ‘recovering5 turns true and 
then the rest of the input is skipped until the term inator symbol (;) is found and 
then a syntax error is reported. This mechanism can be used to allow return to the 
top level of syntax analysis on encountering the first syntax error.

4 - 6



4.2 R ep resen tation  o f function  defin itions
Some features of Alcal that the implementation must support may be summarised 
as follows:

4.2.1 Occurences of formal parameters

The formal param eter may occur several times in the body. e.g.

def f = lam x. 1+x+x
f 5 = 1+5+5

=  11

There may be no occurences of the formal parameter at all in the body. e.g.

def f = lam x. 1 
f 5 = 1

here in this case the argument is discarded unused.

4.2.2 M ulti parameters

A-expressions, like other function definitions, may be applied to an appropriate 
number of arguments (one at a time). There may be more A-abstractions in the 
body. e.g.

def f = lam x. (lam y. x+y)
f 5 6 = (lam y. 5+y) 6

= 5+6
= 11

4 - 7



here the Ax abstraction returned a function (the Ay- abstraction) as its result, which 
when applied to 6 gives the final result. We start by substituting 5 for x through 
the body to end up with the application of another abstraction to an argument 
expression, this time substituting 6 for y.

4.2.3 Higher-order functions

Functions may be used as arguments. Complex functions may be defined in terms 
of other functions, e.g.

def f  = lam x . 1+x; 
def g = lam x . x - 1 ; 
th e  fu n c tio n  h may be d e fin e d  as 
def h = lam x . f ( g ( x ) )

h 5 = f ( g  5 );
= f ( 4 ) ;
= 5;

4.2.4 Booleans and the conditions

On encountering conditional operators, the condition should be evaluated to deter
mine which subtree to preserve (It is already mentioned in chapter-3 th at a functional 
program is represented as a tree or more generally as a graph).

i f  b = 0 th en  p e ls e  q ---- > (((C ond ((=  b) 0 )) p) q)

It is simply, if b is zero then the result of the whole term

( ( (  Cond ( (=b) 0 )) p) q)

4 - 8



will be p otherwise q.

The examples of other tru th  functions like Not, And, Or are similar. The tru th  
functions Cond, And are designed to be lazily evaluated in the Rekursiv. That is, 
they will evaluate their second operand only if the first operand does not decide the 
issue.

4.2.5 List notations

In Alcal a list can be on nil-form ie ([ ]) or cons-form ie (::). The operator which 
is called cons creates a new list from an element and a list. For example

(1 ::(2 ::(3 :: nil)))

represents a list of integers with three elements. It was mentioned earlier that 
in Alcal we may omit redundant parentheses for clarity. The above list can be 
represented as:

(1::2::3::nil)

The same above list can also be represented as:

[1,2,3]

and the both forms may be combined as:

5 :: [3,6,9] — > [ 5 ,3,6,9]
[4] :: [5] :: n i l -- > [[4], [5]]
[[4], [5]] ---- > [[4], [5]]
[1,2]::[3]::nil — > [[1,2],[3]]
[[1] : : [2] : mil] : : [[3] : : [4] : mil] : m i l -- > [[[[1] , [2]]] , [[[3] , [4]]]]
[true,false,true] -- > [Boolean true,Boolean false,Boolean true]

4 - 9



4.2 .5 .1  List operators

In Alcal the fundamental list operators Head, Tail and Cons are represented as: hd, 
tl and The first element of a list is selected with hd and the rest of the elements 
are selected by tl. The operator :: is already described in a previous section.

hd [1,2,3] -- > 1
hd(l::2::3::nil) — > 1
hd[[5,12],[10,15],[15,23]] — > [5,12]
(ie head of list of lists)

tl [1,2,3] — > [2,3]
tl(1::2::3::nil) — > [2,3]
tl [ [5 ,1 2 ] ,[ 1 0 ,1 5 ] ,[1 5 ,2 3 ] ]  — > [ [1 0 ,1 5 ] ,[1 5 ,2 3 ] ]

(ie tail of list of lists)

‘nil’ may also be defined as:

def isnil = lam x. if x = nil then 0 else 1;
isnil nil -> 0
isnil 0  > 1
isnil 1  > 1

Similarly ‘and’, ‘or’ and ‘n o t’ can also be defined.

4.2 .5 .2  Standard list handling functions

After defining the Cons operator in Alcal, the implementation of most standard 
functions (including recursive ones) may easily be hand coded (see Appendix-C). 
For example:

4 - 10



def append = lam a.lam x.if x = nil then a: mil else hd x::append a(tl x) ; 
def concat = lam x. lam y. if x = nil then y else hd x :: concat(tl x)y; 
def twice = lam x. 2*x;
def map = lam f.lam l.if 1 = nil then nil else f (hd 1):: map f(tl 1); 
def maptw = map twice;
def fold = lam f. lam i.lam l.if 1 = nil then i 

else f (hd 1) (fold f i (tl 1));
def snmlist = lam x.if x = nil then 0 else hd x + sumlist (tl x) ;

append 1 [2,3,4] 
concat [1,2,3][4,5] 
map twice [1,2,3] 
maptw [1,2,3] 
fold append [1][2,3]

-> [2,3,4,1]
-> [1,2 ,3 ,4 ,5] 
-> [2,4,6]
-> [2,4,6]
-> [1 ,1 ,1 ]

fold append [][1,2,3] -> nil
sumlist[1,3,8] -> 12

4.2.6 Recursion handling

Alcal also handle the recursive functions as described earlier in this section, e.g.

d e f  f a c t  =  l a m  x .  i f  x  =  0 t h e n  1 e l s e  x * f a c t ( x  — 1);

Wherever the definition ‘fact’ reappears in the expression, an internal reference 
to fact (a tree in the symbol table associated with this dummy name) is replaced, 
until the condition is satisfied and recursion stops.

4 - 11



4.2.7 Interm ediate code in prefix form
Before describing the Abstraction representation some examples may be given in 
their respective prefix curried forms generated by Alcal: (see Appendix-C as well)

def fact = lam x.if x = 0 then 1 else x*fact(x-l);
Alcal ----- > (((cond ((= x) 0)) 1) ((* x) (fact ((- x) 1))))

def fib = lam n.if n < 2 then 1 else fib(n-l)+fib(n-2);
Alcal ----- > (((cond ((< n) 2)) 1) ((+ (fib ((- n) 1)))

(fib ((- n) 2))))

def concat = lam x. lam y.if x=nil then y else hd x :: concat(tl x)y;
Alcal ----- > (((cond ((= x) nil)) y) ((:: (hd x))

((concat (tl x)) y)))

def ack = lam x. lam n.
if x = 0 
then n+1 
else if n = 0

then ack(x-l) 1
else ack(x-l)(ack x(n-l));

Alcal --> (((cond ((= x) 0)) ((+ n) 1)) (((cond ((= n) 0))
((ack ((- x) 1)) 1))((ack ((- x) l))((ack x) ((- n) 1)))))

Alcal provides an auxiliary function called lo ad  < string  > as well. e.g.

load "benchall" ;

The function load scans all the function definitions in the file ‘benchall’ into the 
executable code with their respective prefix form until an ‘ex it’ is encountered,

4 -  12



which terminates it. This facility enables us to load the Alcal with more functions 
in one go.

4.3 A bstract representation
Turner [65] outlines a method of translating functional expressions into expressions 
involving the combinators S, K, I. The method is known as bracket abstraction and 
is usually described by the following rules: (see also chapter:3.4)

[x] x = I ...(1)
[x] y = K y, if y O x  . . . (2)
[x] M N = S ( [x] M) ( [x] N] ) ...(3)

Here x and y are variables and M,N are arbitrary terms which may or may not 
contain x. The notation £[x]M’ denotes the result of abstracting the variable £x ’ 
from the function M. An example should make this clear, consider the Alcal function 
definition:

def f = lam x. 1+x

Turner shows how to translate such an expression (in curried form) into a combinator 
form (in which there are no bound variables) using the above three bound variable 
abstraction rules. In the following, abstracting £x 5 from the expression £+  1 x ’ is 
denoted as £[x] ((-f 1) x ) \

[x] ((+ 1) x) -- > S([x](+ l))([x]x) by using (3)
---> S (S ( [x] +) ( [x] 1) ) ) I by (3) and (1)
— > S(S((K +) (K 1))) I by (1) and (2)

4 - 13



If the body of the expression is an application then apply the S-transformation rule 
(3), otherwise the body must be a variable or a constant, so apply rule (2) or (1) 
for K or I transformation as appropriate.

We transform the expression into an expression involving only S, K, I and con
stant. By transforming the lambda-abstraction we ensure that the body of that 
lambda-abstraction contains no lambdas. The resulting SKI expression can then be 
‘executed’. The definition of each of these combinators and their graphical represen
tation as per their reduction rules has been given in previous chapter. To summarize 
the transformation rules and the reduction rules for the combinators S, K and I are 
given as follows:

S-transformation: Ax. M N  = S(Ax. M)(Ax. N)
K-transformation: Ax. y =  K y ; (x and y are different)
I-transformation: Ax. x =  I 
M and N represents two different expressions.

We can use these reduction rules as an ex am p le  to evaluate the above trans
formed expression by applying it to an argument say 4.

f 4 = S(S((K +) (K 1))) I 4
= S (K +) (K 1) 4 (I 4)
= K + 4 (K 1 4) (I 4)
= + 1 (I 4)
= + 1 4
= 5

The benchmark examples outlined earlier can be handled in a similar way, but lead 
to very large combinator expressions. The relationship between combinator code 
size and the complexity of an expression can be viewed in terms of Antoni’s [18] 
observations.

by S-transformation rule 
by S-transformation rule 
by K-transformation rule 
by I-transformation rule

4 - 14



Antoni [18] has found that the resulting code size in terms of number of combi- 
nators can be modelled by the following formula.

code size =  3m (n-1) +  1 if variables occur in term

=  ((2n-l) 3m + l) /2  if variables do not occur in term

where n is the length of terms ie number of symbols on the right hand side of the 
source expression and m  is the total number of variables. For example the expression

def f = lam x.lam y.lam z. x+y+z

have a length n = 5 (ie x+y+z) and the variable count m  = 3 (ie x, y, z). 

Observations on Alcal code are presented in the following table.

Expression n m C ode size
Ax. x 1 1 1
Axy. x + y 3 2 19
Axyz. x + y + z 5 3 109
Axyzu. x + y + z + u 7 4 477
Axyzuv. x + y + z + u + v 9 5 1928

Table : 4.1 Variable count w ith  code size.

Table 4.1 shows the code produced by Alcal using various examples, a relationship 
between the variable count and the code size from the graphs given below may be 
given as

code — (variable count)4'64

The resulting code of Alcal and Antoni’s [18] observation are given below: (Alcal’s 
observation is around 2% better then Antoni’s resulting code)

4 - 15



R
es

u
lt

in
g

 c
o

d
e

Resulting code

2000
1800
1600
1400
1200
1000
800
600
400
200

0 .  I

2 3 4
Variable count

Atcal ■ A n to n i

4 - 16



2000
1800
1600
1400
1200O)Jj 1000

i  800

q>

cc 600
400
200

0

Resulting code
Alcaf/Antonfs observations

Alcal Antoni

The above table shows that the abstraction process produces long strings of 
combinators. Even very simple A-expressions have long combinator expressions. It 
is possible to optimize this code on the grounds of efficiency.

4.3.1 Code optimization

It will be very much more efficient if the optimizations are performed during the 
translation process. To perform these optimizations, we have to introduce some 
extra combinators like B and C as described in chapter-3. The most im portant of 
these optimizations are motivated by Turner [65]. For example consider the following 
rule

S(K El)(K E2) = K(E1 E2)

4 -  17



The left hand side of the above equation converts under /3-reduction to the right 
hand side when the appropriate A-expression is substituted for the combinator.

These optimization rules may be built in to the abstract function [22] as:

[x]x = I

[x]y = K y ;if y is constant or variable not equal to x.

[x] El E2 = if [x]El = K M
then if [x]E2 = I 

then M
else if [x]E2 = K N 

then K (M N) 
else B M [x]E2 

else if [x]E2 = K N 
then C [x]El N 
else S [x] El [x]E2

[x] (E) = ( [x] E)

In order to make the abstraction algorithm more efficient Turner introduced a 
number of further optimizations. These make use of extra combinators B;, C; and 
S'. These prime combinators have the following reduction properties:

B ' f  g x y  = f  g (x y)
C' f  g x y  = f  [ g y ) x
S' f  g x y  = f  (g y )  (x y)

4 - 18



Turner describes these prime combinators in terms of combining the B-combinator 
with the following optimization rules:

S (B  x y) z  =  S' x y z 
B{x y) z = B ' x y z 

C (B  x y) z = C' x y z

The motivation for introducing prime combinators significantly reduces the length 
of the resulting combinator code. This becomes clear on applying this algorithm  to 
our benchmarks (described earlier).

The code produced for the benchmark function say Fibonacci function (fib) by 
introducing these optimizations in SKI and S', B', C' is:

d e f f ib  = X n. i f  n  < 2 then  1 else fib (n  — 1) +  fib (n  — 2)
=* ((S((5((5(lf C ond))((S ((S (K  < )) I )) (K  2))))(* 1))) 

((S ((S (K  + ))((S (K  f ib ))( (S ((S (K  1)))))
( (S (K  fib ))( (S ((S (K  - ) ) I ) ) ( K  2)))))

=* Cond)((C  < )2))1))(((S ' + )
((B  fib )((C  —)1)))((B  fib )((C  —)2))))

code reduced fr o m  38 to 19.

Notice that this optimization saves execution time, because it requires fewer reduc
tions to be done.

4 -  19



4.4 A n active graph im plem entation
All combinator-based implementations, whether they use fixed combinators [65] or 
supercombinators [37, 41] can be characterised as interpretive, because the reduction 
and transformation of the combinator graph can be seen as an interpretation of the 
graph.

The ‘active graph’ implementation strategy in this thesis goes a long way towards 
answering Thompson’s [63] query-

‘W hether a true compiler for lazy functional programs can be 
produced ? ’

In Lingo, even the code sequences within a method are represented as objects. A 
language feature that allows the programmer to create code type objects, ‘module’, 
operates as follows:

We may write as:

y := module x [ ] - [ ~ x  + l}

This specifies that variable y will be bound to a module containing the code 

~ x + 1

The module expects to be supplied with a single argument (represented by functional 
param eter x) when its code sequence is executed.

Module objects respond to the message ‘perform W ith :’. This causes execution 
of the modules code sequence after substituting the message’s argument for the 
formal parameter. That is,

4 - 20



y performWith: 2

would give the result 3.

As can be seen, the module facility corresponds to a lambda-abstraction. For 
example

module x [] x + 1} 

corresponds to

lam x. x + 1

The performW ith: message has as its counterpart in the lamb da-calculus function 
application. For example

lam x. x + 1 5

can be represented in Lingo as:

(module x [ ] x+1}) performWith: 5

which is similar to the Smalltalk’s block context as:

[ :x | ''(x+1) ] value: 5

The primitive ‘performW ith:’ is used for modules which return a specific result, it 
invokes its module with the argument (5 in this case) as its receiver. The result is 
the result of the module.

In Alcal the code for each combinator is available as part of the module rep
resenting it, each module provides an executable graph. Consider an example of 
combinator ‘S’. The reduction rule of S is given as

4 - 21



s  f  g  X  =  f x  (g x ) ;

which is represented in Lingo as:

{ " module f []
{ " module g of f []

{ ~ module x of g f []
{ "(apply the S-reduction rule)}}}}

This means that the S combinator’s module’s code sequence is directly available to 
the processor. The modularity of these directly executable combinators offers an 
attem pt to take advantage of the Rekursiv’s hardware for m ethod dispatching.

The use of such a mechanism ensures that

• Once a combinator has been specified at one level, its implementation at tha t 
design level and at lower levels can proceed independently, changes can be 
made at any time, so long it meets its specification.

• To add more combinators means simply to add few more objects at th a t level.

Because the module’s code sequence in the Rekursiv is directly available to the 
processor, without resort to the object store, so caching the modules in this way 
may provide a considerable benefit in terms of performance.

This is the practical benefit of a good encapsulation mechanism, th at certain 
changes can be made in the knowledge that the existing program will not break.

4 - 22



4.5 Class hierarchy and typ es o f node
Alcal is a collection of several classes (nodes) as shown in class hierarchy figure 4.2. 
The combinators are stored as binary trees, with the nodes representing functional 
application, while the leaves of the tree are constants or S, K, I combinators or 
built-in operators like plus, minus etc.

This figure makes it clear that each combinator module has its own instance 
method called ‘evaluate’ while they all inherit the instance method ‘abstract’ from 
the module ‘Operator’.

4 - 23



Each node of Alcal has its own class, and various type of node and leaves are 
defined as:

Application, Lambda, Variable, Constant, Operator

built in functions like Plus, Minus, Divide, Times, Lessthan, Equal, Cond, S, K, I  
are all defined as subclasses of Operator with superclass Node. The class hierarchy 
of Plus is:

P lus  C Operator C Node C Object

For example, the expression Ax. (1+x) is a combinator of four type of nodes 
ie Operator, Variable, Constant and Application. The expression ((+  1) x) can be 
represented as

Application of:(Application of:Plus new to:
(Variable named:fx 3)) to:(Constant value:1)

When we want a Plus we need only send the message cPlus new’, here ‘new1 is defined 
as a class of Plus which creates a new Plus for an interactive session.

To implement Lists, a few more nodes like Cons, Hd, Tl, Nil, And, Or, Not have 
to be defined. The code of these combinators is given in Apppendix-B.

4.6 E valuation strategy
Consider an example of combinator c +  ’, the combinator £-f ’ is represented by a class 
Plus with methods:

4 - 24



class method new
instance method abstract 

evaluate 
printedOn.

We are concern here with the method ‘evaluate’ only. In this method, the prim 
itive ‘performW ith:’ is used in a way to adopt the lazy evaluation.

(le f t  evaluate) p e r fo rm W ith  : r ig h t;

The performW ith primitive has the effect of an unary message sending operation. 
It was mentioned earlier in this chapter that, the primitive ‘perform W ith:’ is used 
for modules which return specific results, it invokes its module with the argument 
as its receiver. Considering the method ‘evaluate’ in its simpler form:

{ ~ module x [] 
{ ~(x + 1)}}

The result is the result of the module. The argument (there must be at least 
one argument, for example a ‘-f’ needs to be applied to two numbers before it is 
reducible) is then examined to determine its class and the method dictionaries of 
this and the classes in its inheritance chain are searched to identify the meaning of 
the message selector. Once the required method has been found, it is examined to 
determine whether it corresponds to a primitive or a method. In case of primitive the 
appropriate microcode is executed otherwise the m ethod’s module code is executed. 
Similarly in S combinator reduction having the reduction rule as:

S f  g x =  f x  (g x ) ;

the primitive ‘performW ith:’ will only be invoked when all the arguments or receiver 
to S are there ie f  g x . Otherwise it can not be invoked by sending it any other 
message because it has no receiver.

4 - 25



C hapter 5

P erform ance E valu ation

This chapter is concerned with

• the measurement and comparison of the performance of various 
implementation strategies (SK combinators and A-lifting) by timing 
the execution of individual combinators/supercombinators and the 
execution of some benchmark functions.

• the determination of the contribution to performance resulting from 
the underlying Rekursiv architecture by comparing the Rekursiv 
implementations against implementations using Smalltalk-80 on a 
(conventional) RISC processor (the IBM RS6000)

• the determination of the contribution to performance made by using 
classes to represent objects as opposed to instances of classes.

5.1 D escrip tion  of experim en ts

To describe the performance evaluation experiments, the execution of the bench
mark function ExO is taken as an example running on Rekursiv. Details of other

5 - 1



benchmarks are listed in Appendix-C.

ExO is a simple function with one argument (successor function):

lam x. x + 1;

ExO was executed repeatedly for a period of 100 seconds. The amount of time spent 
on executing ExO includes:

• Code generation

• code evaluation

• Overheads

which are discussed below.

The test program for timing the execution of the benchmark function ExO for a 
period of 100 seconds is given as:

TexO is Object
{
□
run := 0;
Time setTimeOfDay:0; /* initialise time counter to 0 */ 
while (Time getTimeOfDay < 100) 

do {
(ExO test:4);

/* ExO is a subclass of Operator. */

run := run + 1;
>.

}

5 - 2



5.1.1 Code generation

The interpretation of ExO results in the following combinator code:

(((C  P lus) 1) 4)
Which is represented in Lingo as:

ExO is Operator
{
[]
test:x []
{
"((Application of:(Application of:(Application of:
(C new) to:(Plus new)) to:(Constant value:1)) to:
(Constant value: x)) evaluate);

}.
>

Instances of combinator objects C, Plus, Constant (two in this case), Application 
(3 in this case) are created. That is, seven objects are generated. The reduction 
rule for combinator 1C  is:

C is Operator
{
[]
evaluate []
{" module f []

{" (module g of f []
{" (module x of g f []

{"(Application of:(Application of:f to:x) to:g) 
evaluate;)})})}}.

5 - 3



This generates two more instances of Applications, which takes the to tal number 
of objects created per run up to 9. That is, five Application objects, two Constant 
objects, one C object and one Plus object. This means th a t time spent on executing 
ExO includes nine object creation times.

Object creation time can be easily determined (see below Table:1.2).

5.1.2 Code evaluation

Time spent on the process of combinator code evaluation includes:

1. time spent on executing Lingo code which includes:
Application objects (5 times)
Constant objects (2 times)
C object 
Plus object.

2. tim e spent on executing the Lingo code which includes the executions of the 
primitive arithmetic operator ‘ +  \

Time spent on executing the Lingo code for evaluating a combinator object (say 
CC’) can be determined from the number of evaluations which take place during a 
100 second run, as shown in the following Table: 1.1;

Code time per run
C evaluate 13.8 //-sec

Table 1.1: Evaluation time fo r various combinator objects like S, B, C, 
Sprime etc on the Rekursiv architecture.

5 - 4



Similarly the object creation time can also be determined as (Table:1.2);

Code time per object creation
C new 31.53 /x-sec

Table 1.2: Object creation time fo r various combinator objects like S, B,
C, Sprime etc on the Rekursiv architecture.

The creation of other combinator objects can be determined in a similar way. 
Object creation time (except for the Application object) is similar for all of them. 
The object creation time for an Application object, (for example ‘Application of:l 
to:2J) is measured as 38.6 /x-sec.

The evaluation of an Application object uses the Lingo primitive ‘perform W ith’.

{~ ((left evaluate) performWith: (right));}

Here the operation ‘left evaluate5 will always returns a combinator object, so the 
evaluation time of an Application object’s ‘left evaluate5 remains more or less con
stant (13.8 /x-sec). Timing an Application object can be performed as:

({(module x [] {~x}) performWith: 2)

which altogether takes 17.91 /x-seconds, out of which the left part ie

{(module x [] {~ x})}

takes 0.71 /x-seconds, which gives the time spent on the primitive ‘perform W ith5 as 
17.2/x-sec.

5 - 5



13.8 +  17.2 =  31 p sec

Object creation time and object reduction (evaluation) time for all the combinator 
objects are listed in Appendix-D1.2.

So, the evaluation time for an A p p l i c a t io n  object may be given as:

5.2 O verheads
Overheads on the Rekursiv arise primarily from two sources:

1. garbage collection

2. Object Squeeze (for detail see chapter:l ‘Objects on the Rekursiv’).

• Garbage collection

Time spent on garbage collecting on the Rekursiv can be determined by invoking 
the Lingo instruction ‘Object gc’. Data on running the Test program (see above) 
for a period of 2 seconds with and without invoking ‘gc’ is given below in Table: 1.3;

No. of runs per 2 sec 
with one gc

No. of runs per 2 sec 
with no gc

time spent on
gc

1533 2327 684 milli-sec

Table 1.3: Garbage collection (gc) time on the Rekursiv architecture.

This means that Rekursiv takes an extra 684 milliseconds per gc during the 
benchmark executions. Other experiments confirms this value.

5 - 6



• Object squeeze

The squeeze time varies with implementations and with the representation of 
combinator objects as Class representation or Instance representations of the specific 
combinator object.

Since squeeze time is related with the object creation time, the tim e spent per 
squeeze for each benchmark with different implementation techniques will be differ
ent, it may be determined as:

Time spent/(gc + squeeze) = (measured time per run
- calculated time per run)
/ Total Number of (gc+squeeze)

The total number of (gc +  squeeze) can either be observed or calculated.

We shall see that the measured and calculated times for runs without £gc -f 
squeeze’ are identical (to within ±2% ). This provides a justification for assuming 
that the discrepancy between measured and calculated runs with £gc +  squeeze’ is 
caused solely by the overheads involved in squeeze and gc.

In table D1.2 (Appendix-D), a complete list of various combinator objects tim 
ing are given. It includes object creation/reduction timings of combinator objects, 
the execution time of the primitive arithm etic operators like + , - and the garbage 
collection time on the Rekursiv and RISC architectures.

5 - 7



5.3 E xperim ents
We have to take account of 3 different parameters, resulting in 8 (23) different 
experiments for each of four benchmarks.

1. Implementation technique:

• SKI combinators (‘standard’ combinators)
• A-lifting (ie supercombinators)

2. Architectures:

• Rekursiv (using Lingo)
• RISC (using Smalltalk-80)

3. Object-oriented style:

• Combinator objects represented as classes
• Combinator objects represented as instances of classes

The following questions are addressed:

1. Is A-lifting better than SKI-combinator implementation, if the answer is yes 
then by how much?

2. Is Class representation of combinator objects better than Instance representa
tion, if yes then by how much?

3. How does the Rekursiv differ from a RISC machine?

The results which will be used to address the above questions are given below. This 
table of results gives the execution performance of some benchmark functions on 
RISC and Rekursiv architectures. The number of executions for a time period of 100

5 - 8



seconds have been recorded for Lambda-lifting and SKI-combinator implementations 
using Class and instance representations:

A bbreviations used are:
ExO, E x l ,  F act, A c k  : B e n c h m a rk s  (fo r  d e ta i ls  see  A p p e n d ix -C  1 .1 )  
R E , R I : d e n o te s  R e k u rs iv  a n d  R I S C  a rc h ite c tu re s  
L I : im p le m e n ta t io n  o f  L a m b d a -lif tin g  w ith  In s ta n c e  r e p r e s e n ta tio n  
L C  : im p le m e n ta t io n  o f  L a m b d a -liftin g  w ith  C la ss  r e p r e s e n ta tio n  
S I : im p le m e n ta tio n  o f  S K I -c o m b in a to r s  w ith  I n s ta n c e  r e p r e s e n ta tio n  
S C  : im p le m e n ta tio n  o f  S K I -c o m b in a to r s  w ith  C la ss  r e p r e s e n ta tio n

E xec./100 sec ExO E xl Fact 3 Ack 1 1
Architecture R E R I R E R I R E R I R E R I

L I 203371 31640 70128 10594 9876 1755 5999 962
LC 220659 35154 84827 12213 13294 2013 7821 1144
SI 107560 16059 32900 5214 5232 940 2776 611
SC 124040 17747 39949 5761 6239 983 3349 649

Table:l.f Number o f executions of some benchmarks functions per 100 
seconds, for X-lifting and SKI-combinator implementations using Class 
representation and Instance representation of combinator objects on the 
Rekursiv and R ISC  architectures.

5.3.1 A-lifting Vs SKI-implement at ion

The improvement of A-lifting against SKI-implementation on the RISC and the 
Rekursiv architecture is given below in a table and as a bar-graph.

5 - 9



Benchmark functions ExO Exl Fact 3 Ack 1 1
Improvement factor of X-lifting over
SKI-combinators, (Average over both benchmarks,
both Class/Instance representations) .

1.91 2.10 1.98 1.96

Table: 1.5 Improvement factor of A-lifting over SKI in terms of number 
of executions per 100 sec

Improvement factor of Lambda-tifting over SKMmplementation in terms of 
number of executions per 100 sec

2.20
2.00
1.80

E2 mo%
% 1.40

| 1.20wSmm&m
| 1.00

’I  0.80
wkmmm 

> 0.60 
<

0.40 

0.20 

0.00 
Figure: 5,1

ExO

£10

Exl Fact3
Benchmark functions

1.96

Ackt 1

The above histogram represents the improvement of A-lifting against SKI-combinator 
implementations averaged over RISC and Rekursiv architectures representing the 
combinator objects as Class and Instance representations.

Is Lambda-lifting is better then SKI-implementation ?

We observed:

5 - 10



mean improvement range
of lambda over SK I

(over all benchmarks/architectures (ie least to most improvement)
/ Class representations)

1.99 1.91 to 2.10

This can be explained as follows:

We have already seen that, in the process of A-lifting, any function can be trans
lated into supercombinator form by adding extra formal parameters corresponding 
to the free variables appearing in the function body. Briefly the performance ad
vantage of supercombinators over SKI-combinators is largely due to the differences 
in ‘grain sizes’ of the execution steps.

In fact a single supercombinator performs the work of several SKI-like combina- 
tors. Consider the example for benchmark function cExO’. It is simply a successor 
function:

(A x. x -f 1) 4

Comparing the number of nodes (which means number of reductions) produced 
for ExO, (ignoring the argument £4’) gives:

Code with
standard combinators

Code with 
supercombinators

((C + ) i) ( + 1)

5 - 11



The A-lifting process generates only one supercombinator which is made up of 
two combinators (‘Plus’ and a ‘Constant’ combinator), while the SKI-combinator 
process has to perform three combinator reductions (‘C’, ‘P lus’ and the ‘C onstant’ 
combinator).

The total number of reductions on each benchmark for both implementations 
can be given as:

Benchmark
function

SKI-combinator 
Total No. of 

No. of application 
reductions reductions

Lambda-lifting 
Total No. o f 

No. o f application 
reductions reductions

ExO 9 5 5 2
Exl 26 17 14 7
Fact 3 212 137 93 48
Ack 1 1 257 178 89 49

Table:1.6 No. of Application node reductions per benchmark evaluation.

This means that in some cases one supercombinator may perform the work of 
several standard combinators. The cause of this reduction may be explained by con
sidering the number of reductions performed during the execution of each benchmark 
function: ExO, E xl, Fact 3, Ack 1 1. The breakdown of reductions for benchmark 
Exl is detailed in Table: 1.7. Tables of rest of the benchmarks are given in Appendix- 
D1.3.

5 - 12



combinator SKI- combinator Lambda-lifting
objects implementation implementation

Plus 1 1
Minus 1 1
Constant 3 3
B 1 0
C 2 0
Cprime 1 0
Application 17 7
E xlsc l 0 1
Exlsc2 0 1
total reductions 26 14

Table: 1.7 Number of combinator reductions for Exl. E x lsc l  & Exlsc2  
denotes supercombinators. S, B, C, Sprime, Cprime denotes standard 
combinators.

For the improvement of A-lifting over SKI-implementation, a regression analysis 
of the results of A-lifting on SKI-implementation is given below. Since the compu
tations involved in regression analysis are quite extensive, we have used MINITAB
[57].

Here we are monitoring the contribution to performance resulting from the A- 
lifting implementation against SKI-combinator implementation, while other param 
eters like the selection of object-oriented styles or the selection of the architectures 
may vary.

Regression analysis is helpful in determining the relationship between variables. 
Given the amount of time required for one variable (SKI-value), we can use the 
regression equation (see below) to predict the amount of time required for other

5 - 13



variables (A-value) from a linear function of the SKI-value. That is, regression 
analysis find values of bO (y-intercept) and b l (slope) in the straight line equation

predicted value o f  A tim e  = 60 +  61 * ( S K I  tim e)

The SKI-times are shown on the x-axis and A-times on the y-axis. The table of 
16 pairs of observations is given below (see also appendix D1.7 where the details 
of each these observations are given with their interactions in a larger table of 48 
observations).

Techniques
SKI 17
A 19

Observation numbers (details are listed on appendixD1.7)
18 33 34 21 22 37 38 25 26 41 42 29 30 45
20 35 36 23 24 39 40 27 28 43 44 31 32 47

46
48

The data are graphed in Figure: 5.2.

Wi
Contribution to performance resulting from the Lambda-lifting Implementation 

against SKI-combmator implementation

so so 100 m  
Time per run with SKMmpL (rmlli*sec)

140 160 160

Figure: 52

5 - 14



The fitted regression line using the method of least squares is given by: 

predicted value o f  A tim e  = —1771 -f 0.587 * (S K I  tim e ) fisec

This regression method accounts for 98.73% of the variance (R2=0.9873). Where 
£R ’ is the correlation between A-time (observed) and A-time predicted and R2 is the 
percent variance explained by the regression. R2 is a statistic that measures the 
validity of the model, it ranges up to 1, with 1 being optimal. Such a large value of 
R2 suggests that there is a close relationship which is approximately linear between 
SKI and A. For each unit increase in SKI, there is an average increase in A of 0.587, 
that is the slope of line is 0.587

However there is some suggestion of a systematic departure from linearity: the 
points with largest values of SKI and A lie above the fitted line. It appears th a t 
A-time increases with SKI-time a little faster than linearly, and this effect can be 
seen at the high end of the range of values in this data set. It may be concluded 
that the improvement of A-lifting is decreasing as we go along to more complex 
computations.

Clearly the relationship expressed by the regression line can not be assumed 
to extend beyond the range of observed values; at the high end non-linearity may 
become im portant and at the low end we see that the regression line would predict 
a negative value of A when SKI is zero.

This shows that the implementation using A-lifting is faster than SKI-combinator 
implementation. The major reasons for the improvement contributed by A-lifting is 
are:

• smaller number of reductions

• fewer application nodes

• less intermediate code generated

5 - 15



A-lifting requires 12 fewer reductions than standard combinators for E x l , includ
ing 10 Application node reductions; which in tu rn  reduces the amount of garbage 
collection. The evaluation of one Application node reduction on the Rekursiv takes 
around 31 /^-seconds (for timing measurements see section 5.1.1). The ten addi
tional applications required by the SKI-implementation contribute 310 p-sec to its 
execution time.

The execution of a benchmark may be broken down as follows:

Execution = Combinator reductions 
+ Object creations 
+ Overheads

The proportion of time spent on overhead activities has been calculated (see 
timings in section 5.2). This is least for ExO, SKI-implementation (40%) and greatest 
for Ack with A-lifting (61%). These overheads apply further suppression to the 
differences between the two implementations.

As well as reductions, object creation plays a m ajor part in the performance 
of each benchmark. Object creation time is of the same order of magnitude as 
reduction time (for timings see section below). The number of objects created for 
the SKI-implementation of Ack 11  is 187 and for the A-lifting implementation is 165. 
The improvement of A-lifting over SKI for Ack 11  is therefore suppressed relative to 
that of E xl where the number of objects (26 and 14) are identical with the numbers 
of reductions in both cases. This can be seen in the figure:5.2, where the Ack 1 1 
points (45 and 46) are relatively higher than a straight line fitted through the other 
points.

The above figures for object creations apply to instance representations. The 
effect is similar for class representations (see following section), although the number 
of objects created are somewhat less.

5 - 16



The A-lifting implementation produces less interm ediate code than the SKI- 
combinator implementation so it uses less transient storage and this is another 
advantage of supercombinator reduction. More interm ediate code means more al
location of cells in the memory. This increases the load on the number of storage 
accesses required contributing to the observation that SKI-implementation is gen
erally slower than lambda-lifting implementation.

In summary, the improvements of A-lifting over SKI-combinator performance are 
due primarily to a smaller number of combinator reductions and less interm ediate 
code being produced. The contribution of object creation is less clear cut, as is th a t 
of overheads, which are of the same order of magnitude in both cases.

5.3.2 Class representation Vs Instance representation

In the process of evaluation, the creation of an object is performed by calling on a 
class to create a new object. For example, ‘S new’. This creates an instance of S.

In the case of combinator objects like S, K , I, Plus etc, the instances of S, K, I  
and Plus are created during the translation process. Since there is no private data 
associated with these objects, it is possible to use classes to represent them. For 
example we can simply use lS  ’ rather than (S  new’. This avoids storing multiple 
instances of the same class (thus saving a number of object creations).

The evaluation of a Constant object, on the other hand returns the value with 
which it is associated. Application objects are also associated with data, so it is not 
possible for Application objects and Constant objects to be represented as classes.

The evaluation of Application/  Constant objects creates a similar number of ob
jects (one in this case) on both implementations (standard and supercombinators). 
The benefit of saving a number of object creations is to be found during the evalu
ation of both standard and supercombinator implementations.

5 - 17



The improvement of class representation against instance representation of com- 
binators is given below in a table and as a bar-graph for each of the benchmarks.

Benchmark functions ExO E xl Fact 3 Ack 1 1
Improvement factor o f Class representation 
over Instance representation,
(Average over both benchmarks, 
and on both implementations).

1.11 1.17 1.18 1.19

Table: 1.8 Improvement factor of Class and Instance representation of 
objects averaged over R ISC  and Rekursiv architecture with X-lifting and 
SKI-combinator implementations in terms of number o f executions per 
100 sec.

Improvement of class representation against instance representation for all 
benchmarks, architectures and implementations

The above bar-graph represents the improvement of Class representation against 
Instance representation of combinator objects averaged over RISC and Rekursiv

5 - 18



architecture with A-lifting and SKI-combinator implementations.

From the table above we observe:

overall improvement factor of 
Class over Instance representation

range over benchmarks 
(ie least to most improvement)

1.16 1.11 to 1.19

Using classes to represent combinators, rather than instances of classes, gives a 
small but significant improvement in number of executions per 100 seconds. The 
number of reductions involved in evaluating a function is the same for both instance 
and class representation but the number of objects created varies. The following ta 
ble gives the saving of the number of objects created by selecting class representation 
of combinator objects for all the benchmark functions.

N o . o f  o b jec ts  c rea ted S K I - im p le m e n ta tio n L a m b d a -lif tin g
B e n c h m a rk in s ta n c e c la ss in s ta n c e c la ss

fu n c t io n r e p re se n ta tio n re p re se n ta tio n r e p r e s e n ta tio n r e p r e s e n ta tio n
ExO 9 7 5 4
E x l 26 20 14 10

F a c t 3 100 89 80 54
A c k  1 1 187 159 165 130

Table : 1.9 The number o f  objects created.

The cause of this improvement can be explained in terms of the number of 
reductions and number of objects created for 100 second execution of a benchmark

5 - 19



function (say E x l ) using both representations (Class/Instance) with SKI-combinator
implementation on the Rekursiv.

combinator
objects

Instance representation 
reductions objects created

Class representation 
reductions objects created

Plus 32900 32900 39949 0
Minus 32900 32900 39949 0
Constant 98700 98700 119847 119847
B 32900 32900 39949 0
C 65800 65800 79898 0
Cprime 32900 32900 39949 0
Application 559300 559300 679133 679133
total 855400 855400 1038674 798980

Table: 1.10 No. of objects created and No. of reductions for E xl (100 sec 
run) with SKI-implementation on the Rekursiv. Note that the number o f 
reductions per 100 sec run is improved since less time is wasted on the 
creation of unnecessary objects.

Tables for other benchmarks involving number of object creations with corre
sponding number of reductions are given in Appendix-D1.4.

This saving of object creation causes both the RISC and Rekursiv architectures 
to spend less time in allocating cells in memory and so gives an overall improvement 
factor of 1.16 for a 100 second run.

To represent the improvement of Class representation over Instance representa
tion, a regression analysis of the results of class representation on instance repre
sentation is given below. The table of observations (16 set of observations) is listed 
below. The details of each observation with their interactions are given in detail (48 
observations) in appendix D1.7.

5 - 20



Here we are monitoring the contribution to performance resulting from Class 
representation against Instance representation of combinator objects. The other 
factors like implementation techniques or architectures may vary.

Styles Observation numbers (details are listed on appendixD1.7)
Class

Instance
18
17

34
33

20
19

36
35

22
21

38
37

24
23

40
39

26
25

42
41

28
27

44
43

30
29

46
45

32
31

48
47

It was mentioned earlier that by regression analysis the relationship between the 
variables (Instance and Class) can be established. We can use regression equation 
to predict the value of Class representation from a linear function of the Instance 
value. The data are graphed in figure:5.4.

m
Contribution to performance resulting from the Class representation against 

the Instance representation of combinator objects
45

140

O tso

8WJ0  £
1c£i-£

mm

w
w

M
4?

&
mm

AO 60 £0 100 120
Time per run With Instance (rhitli*£ec)

mm 160 180

Figure 5:4

The fitted regression line using the method of least squares is given by: 

predicted value o f  C lass rep. tim e  = —1127+0.9269 * (In s ta n cerep . t im e ) psec

5 - 21



The regression model in this case accounts for 99.64% the variance (R2 =  0.9964). 
This large value of R2 again suggests that there is a close relationship which is 
approximately linear between Class and Instance representation and th a t Instance- 
values is a good linear predictor of the Class-value. For each unit increase in Instance 
value, there is an average increase in Class value of 0.9269 (slope).

It is clear from figure:5.4 that most data points lie close to the regression line. 
The high end and low end both show linearity so this relationship expressed by the 
regression line may be extended beyond the range of observed values and we may 
predict a Class value from a linear function of the Instance value with some degree 
of confidence.

Using classes to represent combinator objects as opposed to instances is a step 
forward in reducing the overall overhead on both architectures (RISC and Rekursiv).

5.3.3 How does Rekursiv differ from RISC?

The performances of different implementations like lambda lifting and SKI-combinator 
with various object-oriented styles (Class and Instance representations) have been 
discussed in the above two sections. This section is involved with the architectural 
issue by comparing the relative performance of the Rekursiv and RISC architectures 
in terms of the implementation of functional languages. This includes some statis
tics on the benchmark results to analyse some of the claims made by the designer 
of the Rekursiv architecture.

The following issues are addressed:

• The contribution (improvement) of various implementation techniques (A- 
lifting and SKI-combinator) on the Rekursiv and on the RISC architectures.

• The contribution of various object-oriented styles (Class and Instance represen-

5 - 22



• Comparison the performance of functional language implementations on the 
Rekursiv and on the RISC processors is difficult because of differences between 
execution platforms and operating system environments. However we may 
generate a performance base line by executing a sample program which gives 
similar results on both processors.

• Some statistics on the results of benchmark functions which also reveal to what 
degree built-in features of the implementation language (for example garbage 
collection) can be exploited.

5.3 .3 .1  Im provem ent w ith  th e R ek u rsiv /R IS C  arch itectures over differ
ent im plem entations

The overall improvement of A-lifting and SKI-implementation on the Rekursiv and 
the RISC architectures are given below.

tation of combinator objects) on the Rekursiv and on the RISC architectures.

Architectures Overall improvement factor of Maximum improvement
X-lifting and SKI-implementation over of X-lifting and

all benchmarks/object-oriented style SKI-implementation

Rekursiv 2.05 2.34
R ISC 1.92 2.16

Table 1.11: Improvement factor of X-lifting and SKI-combinator im- 
plemetation using the Rekursiv and R ISC  architectures in terms o f num 
ber of executions per 100 sec over all benchmarks function and different 
object-oriented styles.

5 - 23



5.3 .3 .2  Im provem ent w ith  the R ek u rsiv /R IS C  architectures over differ
ent (object-oriented) sty les

The improvements of class representation against instance representation of combi- 
nator objects over the Rekursiv and RISC architectures are given as:

Architectures Overall improvement of Class Maximum improvement of Class
and Instance representation and Instance representation

over all benchmarks/techniques

Rekursiv 1.214 1.35
R ISC 1.115 1.21

Table 1.12: Improvement factor of Class representation and Instance 
representation of combinator objects over all benchmarks function using 
\-lifting and SKI-combinator implementation on the Rekursiv and R ISC  
architectures.

5.3 .3 .3  G enerating a perform ance base line for th e  R ekursiv  and th e  
RISC

A benchmark program has been coded in Smalltalk/Lingo and C and executed on 
the Rekursiv and the RISC.

This benchmark evaluates an arithm etic expression

(11 + (10 + (9 +  (8 +  (7 +  (6 +  (5 +  (4 +  (3 +  (2 +  1))))))))))

5 - 24



which can be represented as a tree (using instances of classes to represent nodes 
in the Smalltalk/Lingo code, and using union structs (variant records) in the C code.

The timings are in milliseconds for a single evaluation of the benchmark.

Architectures Smalltalk/Lingo 
milli-sec

C
milli-sec

RISC 1.7 0.034
Rekursiv 0.3 0.044

Table 1.13: Performance of Smalltalk/Lingo and C on the RS6000 and 
the Rekursiv

This shows that the timings of the C program on the Rekursiv and the RISC 
are of the same order of magnitude. By taking the performance of C as a baseline, 
the relative performance with Lingo on the Rekursiv is faster (more then 7 times) 
than Smalltalk on the RISC. That is, the performance behaviour of C is similar on 
both architectures and there is an improvement when executing a Smalltalk type 
language on the Rekursiv. This confirms th at the Rekursiv does, indeed, reduce the 
performance bandwidth (see section 1.6)

5 - 25



For the performance behaviour of executing functional languages on the RISC 
and on the Rekursiv architectures, we have performed two analyses:

• regression analysis

• analysis of variance

Time taken per benchmark execution on the RISC and on the Rekursiv are 
recorded in fi-sec.

5.3.4 Regression analysis

The regression analysis is performed to determine the contribution of functional lan
guage implementations to performance on the Rekursiv and the RISC architectures.

Four benchmarks with two implementation techniques on two object-oriented 
styles gives 16 observations on each architecture. Corresponding pairs of observa
tions are listed below, the details of each observation with their interactions are 
given in appendix D1.7.

We are monitoring the contribution to performance resulting from the Rekur
siv architecture against RISC architecture, while the other factors like the style of 
implementation or technique of implementation may vary.

Rekursiv Observations 17 to 32 
RISC  Observations 33 to 48

The regression analysis is used here to predict the Rekursiv-value from a linear 
function of the RISC-value.

Unusual observations:

5 - 26



Observation
numbers

45 46 48

The observations (above three) give some indication of not fitting very well on
the line.

Contribution to performance resulting from trie Rekursiy implementation 
against the RISC implementation (100 sec run}

■m.

40 60 80 WO 120
Time per run on RISC (milli*sec)

m  160 WQ

Figure; 5.6

The fitted regression line is given as:

predicted value fo r  the R ekursiv = —1002 -f 0.1953 * (R IS C  va lue ) psec

This regression model accounts for 96.91% the variance (R2 =  0.9691). This 
large value of R2 similar to previous two regression analysis suggests th a t there is 
a close relationship which is approximately linear between the Rekursiv and RISC, 
and that RISC values is a good linear predictor of the Rekursiv value. For each unit

5 - 27



increase in RISC, there is an average increase in Rekursiv value of 0.1953 (the slope 
of the line =  0.1953).

The figure:5.6 shows that most data points (except a few high values) are scat
tered about the straight line. The points with largest value of RISC and Rekursiv lie 
above the fitted line, so at high values, the unusual observations 45, 46, 48 suggest 
a departure from linearity. The Rekursiv increases with RISC a little faster than 
linearly, this effect can be seen at the high end of the range of values in this data 
set. At the low end the regression line would predict a negative value of Rekursiv 
when RISC value is zero, clearly this relationship between Rekursiv and RISC can 
not be assumed to extend beyond the range of observed values.

This means that on the Rekursiv the plot is falling a little faster than linearly 
which degrades the performance of Rekursiv on high values (caused by the Rekur- 
siv’s {gc+squeeze’ involvement, see below). This means that the advantage of the 
Rekursiv is decreasing as we go to more complex computations. The Rekursiv over
all reduces the performance bandwidth, resulting in a considerable (subject to a 
limited amount of computations, see below) contribution to performance resulting 
from the underlying Rekursiv architecture.

These performance experiments have been carried out for a 100 sec run, by 
executing a benchmark function for a large number of times. The very large number 
of executions means a large number of object creations, and hence an increased load 
on garbage collection.

5.3.5 The effect of garbage collection

On the RISC there is a constant garbage collection overhead irrespective of the 
benchmarks execution (see appendix-D1.5). This overhead is always there whether 
we execute these benchmarks for a small or for a large amount of time.

5 - 28



Architectures mean overhead factor over 
all benchmarks/implementation 
techniques/object-oriented styles

range over benchmarks 
(ie least to most 
overhead factor)

R ISC 0.08 (8 %) 0.075 to 0.085

Rekursiv when no 
garbage collection 

is required

0.45 (45%) 0.39 to 0.62

Rekursiv prior to 
first garbage 

collection

0.0127 (1.2%) 0.00 to 0.02

Table l . l f i '  The garbage collection overhead factor of the R ISC  and the 
Rekursiv architectures averaged over all benchmarks with X-lifting and 
SKI-implementation in terms of with/without requiring garbage collec
tion.

The resource allocation strategy of Rekursiv is discussed in chapter-1. In the 
case of the Rekursiv experiments show that before garbage collection is required, 
the overhead remains minimal, (the overhead factor of executing various benchmarks 
on the Rekursiv in detail (see appendix-D1.6)). These observations were made prior 
to the first garbage collection. If we compare the results for the Rekursiv when no 
garbage collection is required, with the result for the RISC, we observe that there is 
a linear relationship. W ith no garbage collection on the Rekursiv, figure:5.7 shows 
that there is an even greater linear performance improvement. For details of each 
observation shown in figure:5.7 see appendixD1.7.

5 - 29



o £0 40 $Q 60 too 1£0 14$ too 180
Time per run on fllSC{millt-seo)

On the Rekursiv a large number of objects may be created (subject to a maxi
mum limit), most of them  once created are retained in the persistent object store. 
The number of objects potentially accessible may thus be very large. Relatively 
few objects will be required at any one time, and these may be heavily used. Ob
servation shows that the most complex benchmark we have used (Ack 1 1) creates 
only 187 objects per run, and these objects are used heavily during the execution. 
Since the paging system of the Rekursiv can hold upto 65535 objects at any one 
time the overall design of Rekursiv assumes relatively low paging rates. Only very 
large programs are likely to involve garbage collection and squeezing during their 
execution.

The following figure:5.8 represents the relative performance of Rekursiv on RISC 
with/w ithout garbage collection on the Rekursiv.

5 - 30



o 20 4$ m oo m m w m m
Time per run on RISC (milli-sec)

Rekursiv with gc *  Rekursiv no gc
Figure :5.8

The fitted regression line equations of w ith/w ithout garbage collection is given 
as: (Note: on the graph ‘gc’ indicates garbage collection)

predicted Rekursiv value with gc = —1002 + 0.1953 * (R IS C  value)iisec[5.1)
predicted Rekursiv value prior to gc = 49.81 + 0.0837 * (R ISC  value)psec (5.2)

The regression model (5.1) accounts for 96.91% the variance (R2 =  0.9691).
The regression model (5.2) account for 99.74% the variance (R2 =  0.9974).

5 - 31



The large value of R 2 in both cases suggests that there is a close relationship 
which is approximately linear between RISC and the Rekursiv. This is especially 
true for the model 5.2 where R2 is close to the optimum value of 1. This confirms 
that model 5.2 is more linear (even on higher values) than the first model (5.1).

The relationship expressed by model 5.2 indicates that this regression line can 
be assumed to extend beyond the range of observed values with some degree of 
confidence: the high end and the low end are both linear and so its regression 
equation can be used to predict the amount of time required for Rekursiv-value 
from a linear function of the RISC-value.

The figure:5.8 shows that the performance improvement on the Rekursiv is con
siderable when no garbage collection is required but the improvement degrades some
what with excessive garbage collection. In fact this garbage collection is performed 
with the squeeze fault and time of squeeze varies with the executions of different 
benchmarks (see chapter-1 and the first section of this chapter).

5 32



5.3.6 Analysis of variance

This section is concerned with the analysis of variance for multi-way (architectures, 
techniques, styles, benchmarks) balanced designs. The model (anova) deals with 
three order interactions. It calculates all expected means, estimates variance com
ponents and plots the residual and fitted values for both main effects and their 
interactions.

5.3.6.1 Factors in m odel

Our model is designed with four factors.

1. Four benchmark functions

• 1 =  ExO
• 2 =  Exl
• 3 =  Fact 3
• 4 =  Ack 1 1

2. Three machines

• 1 =  Rekursiv disregarding garbage collection and object squeeze
• 2 =  Rekursiv with garbage collection and object squeeze
• 3 =  RISC

3. Two implementation techniques

• 1 =  SKI-combinator
• 2 =  A-lifting

4. Two object-oriented styles

5 - 33



• 1 =  Instance representation
• 2 =  Class representation

A total of 48 observations (2*2*3*4=48) has been recorded for this model. All 
timing measurements are in fi-sec. The table of 48 observations with their interaction 
factors (see above) and a complete history of various analysis paths are given in 
appendix.D l.8.

All the interactions are indicated with asterisks(*). For example, Cinstclas*skilam’ 
is the interaction between factors instclas and skilam. It is mentioned earlier that 
this model deals with third order interactions so for main effects, 2-factor interac
tions and 3-factor interactions see appendixD1.8.

Finally after removing the third order insignificant effect the analysis of variance 
for log time is given in the Anova table: 1.15.

The terms used for columns in anova table:1.15 are described as:
Source : description of interactions of various factors
D F : degrees of freedom, it is one less than the number of effects e.g. there are 4 benchmark 
effects so DF is 3.

Total SS  = sum o f (observation — mean o f all observations) 2

e.g. Total SS = (First obs. - mean of 48 obs.)2 -f (second obs 
SS : sum of squares is partioned by the analysis of variance. 
MS : mean square (SS / DF)
F : Fisher’s F statistic,

Fisher's F  fo r an e ffec t the M S fo r the e ffe c t
the M S fo r error

Error : error is the estimate of variance not explained by any of the effects in the table. 
P : probability that F would be as large as this if the effect were zero. If P < 0.05 then 
we say the effect is significant at 5%.

5 - 34



Anova Table: 1.15
Analysis of variance for time (3rd order insignificant effects removed) 

(see appendix-D1.8 for details of the analysis)

Source DF SS MS F P
instclas 1 0.2353 0.2353 1421.85 0.000
skilam 1 5.2917 5.2917 3.2E+04 0.000
benchmk 3 89.7335 29.9112 1.8E+05 0.000
machine 2 51.7687 25.8843 1.6E+05 0.000
instclas * skilam 1 0.0089 0.0089 53.47 0.000
instclas *benchmk 3 0.0036 0.0012 7.15 0.012
instclas *machine 2 0.0165 0.0083 49.88 0.000
skilam *benchmk 3 0.0168 0.0056 33.87 0.000
skilam *machine 2 0.0174 0.0087 52.59 0.000
benchmk *machine 6 0.0917 0.0153 92.34 0.000
instclas *skilam *benchmk 3 0.0090 0.0030 18.19 0.001
instclas *benchmk *machine 6 0.0072 0.0012 7.27 0.007
skilam *benchmk *machine 6 0.0404 0.0067 40.68 0.000

Error 8 0.0013 0.0002
Total 47 147.2421

5 - 35



The residual plot for the table: 1.15 is also given: (for rest of tables and residual 
plots see appendixD1.8).

resid
* *

0.0070+ 2 *

* 2 * *
* *

* * *
* * * *

0.0000+

* * * *

* * * *

2 * *

* * * * * * * * 
* *

-0.0070+ * ** *

* *

— +- - - - - +- - - - - +- - - - - +- - - - - +- - - - - +f itted
6.0 7.2 8.4 9.6 10.8 12.0

Residual Plot (Fig: 5.9)

The residual plot (figure: 5.9) shows a tendency for variance to decrease from 
left to right. The four biggest residuals belong to the observations at benchmark 1 
on machine 2. These four observations are not very well explained by the model.

We removed the instclass*machine*skilam interaction because it was insignifi
cant. However, it seems possible that even though this interaction is not significant 
there is some complex relationship between these factors which our new model fails

5 - 36



to deal with.

The column £P ’ on the above final table indicates a probability. It is mentioned 
earlier in table: 1.15 that if P  < 0.05 then we say the effect is significant at the 
5% level. As can be seen, all main effects are significant: so observed differences 
among means for the three machines, for example, are unlikely to be due to random 
variation. The same applies to differences among means observed for the levels of 
the other factors. All but one of the 2-factor interactions are also significant: so for 
instance the difference between machines 1 & 2 (or any other pair) is not the same 
at all benchmarks.

Two of the 3-factor interactions are also significant. These results together sug
gest that the differences among the factor levels are im portant for all factors and 
also that the relationships among the factors are quite complex.

5 37



C hapter 6

C onclusions

The aim of this thesis was to investigate the ability of an object-oriented architec
ture to provide a general platform for the implementation of functional languages. 
This thesis has presented a number of new results in the field of functional program
ming, including the relative performance of two different implementation techniques 
for functional languages implemented in a variety of object-oriented styles on two 
different hardware environments.

The following objectives have been met (see section 1.6):

1. Im plem entation  of functional languages using Lingo on th e  R ekursiv .
The entire implementation is straightforward and clear. We have not dealt 
with environments and closures etc, because we strictly follow the normal 
order in a lazy manner.
The ease with which functional programs are developed in an object-oriented 
paradigm via Alcal was due to the expressivity of the object-oriented language 
used (Lingo), and its polymorphism.
One of the striking features of the Rekursiv architecture is its internal parallel 
executions of various processors, many processors are built with a common

6 - 1



memory bus, each having a different task to perform in parallel.
The dominant factor limiting the performance of any system (architecture) is 
the overhead of moving data. It is possible to map any abstract evaluation 
model onto a conventional computing system by programming. New architec
tures especially the object-oriented architecture (Rekursiv) can be justified if 
they result in improved performance. In addition, the Rekursiv significantly 
simplifies programming, gives good run time diagnostics, error messages and a 
user controlable garbage collection routine. Implementing Alcal on the Rekur
siv allows the derivation of efficient code because various optimization tech
niques can be applied in a systematic way at each level of transformation.
The primary motivation for using Rekursiv architecture is that we believed it 
can significantly improve performance in evaluating functional languages and 
second motivation is the ease of programming and code generation.

2. Perform ance analysis on A-lifting and SK I-com binator im p lem en ta
tion .
The practical functional programming system such as that using an ‘active 
graph’ can be improved by basing it on supercombinator implementation 
rather than SK-set of combinators. Supercombinators result in a much larger 
grain size for reduction-steps and, compared to SKI-combinator implemen
tation, requires fewer reductions for evaluations, therefore supercombinators 
reduce the number of nodes and the number of combinators executed and so 
speed up the system.
One factor which contributes to the improvement of A-lifting implementation 
over SKI-combinator implementation is the resource allocation of the Rekursiv. 
More object creations (more SK-like combinators means more objects) puts 
more demand on resource allocation and this degrades the overall performance.

6 - 2



3. Identification  of m ajor issues in term s of general im p lem en tation  
strategies.
The earliest implementation of Alcal (AlcalO, say) used string matching to 
differentiate between node types. There was a single class Node, to represent 
all the elements in a graph. On instantiation, an instance variable was loaded 
with a string denoting its nature (S, K, Application, Plus,...etc). The evalua
tion of a graph required the inspection of this instance variable to determine 
the appropriate reduction action. This is analogous to using a variant record 
type in a conventional language.
Later implementations used the class system to perform this differentiation 
implicitly. In the case of Lingo this allowed the hardware type checking to 
come into play. This resulted in a major (~10 fold) performance improvement.

4. C om parision of th e R ekursiv im p lem entation  against R ISC  im p le
m entation .
We have simulated the performance sensitivity with respect to variation of 
individual parameters for several benchmarks. As a check on the accuracy 
of our simulation, we compare the results with measured performance on the 
Rekursiv and RISC architectures.
Comparing two environments for reducing similar kinds of combinator object 
is difficult because of different execution platforms and operating system en
vironments. We found it difficult to predict the speed of graph reduction on 
RISC as compare to the Rekursiv. We compare these machines with respect to 
conventional C program. We found th at the variation in performance on both 
machines with conventional C program is similar. But there are unexpected 
variations in performance when functional programs have been implemented 
on these architectures; specifically with regard to the memory management. 
Nonetheless, we were able to determine the relative performance of RISC and 
the Rekursiv. Based on these comparisions, Rekursiv appears to be a faster

6 - 3



combinator graph reducer (a factor of more than 7 times faster).
Our selection of benchmarks is rather limited, due to the unavailability of 
a standard benchmark suite. However, whatever the size of the benchmark 
(small or large), they generally consume only a small amount of memory space 
for object creation, and once an object is created, it is heavily used.
From the results of this study we can conclude th at combinator-graph reduc
tion using Lingo on the Rekursiv gives reasonable performance improvement 
(about 7 times) compared with Smalltalk on the RISC.

5. C ontribution  of th e  sty le o f ob ject-orien ted  im p lem en tation  to  per
form ance.
The average improvement factor of class represention against instance rep
resentation of combinator objects is about 1.16. It is small but significant 
improvement in number of executions per 100 sec. It reduces the number of 
objects creations per run.
It can be concluded that using classes to represent combinator objects may 
reduce the overall overhead on both architectures and hence gives better per
formance in terms of execution time.

6. Effect of garbage collection .
The experiments performed with 100 sec runs shows some unexpected param e
ter interaction in the performance (eg see the upper values in figure: 5.8). We 
therefore explore variations which avoid excessive consumption of computa
tional resources. We use the same benchmarks, but with a somewhat smaller 
number of runs so as to keep the memory traces down to a manageable size 
(the executions are performed for less than  three seconds). In this way a com
plete program execution is performed in all cases on both architectures, and 
garbage collection is not invoked at all for any of these runs on the Rekursiv 
even with Ack 1 1.

6 - 4



The results from these experiments confirm that, in the case of the Rekursiv 
the unexpected parameter interaction is due to the requirement of garbage 
collection performed by the system. W ithout garbage collection on the Rekur
siv these interactions are reduced to an average of about 1%. In the case of 
RISC there was no change in the unexpected param eter interactions, it re
mains constant (around 8% of the computation time) throughout the entire 
computation.
The above simulation results are an im portant architecture design tool. How
ever, in order to establish some confidence in the simulation results, analysis 
of variance was made between the results of executions on the RISC and the 
Rekursiv architectures.
An analysis of variance leads to the conclusion that Rekursiv reduces the 
performance bandwidth and hence gives a considerable improvement for the 
implementation of function languages over other architectures.

The users and developers of reducers for standard or supercombinator graph 
reduction (with full optimizations) can use the results of our experimentation to aid 
in selecting a hardware platform that will perform well. Furthermore the approach 
used is reasonably fast and simple to implement on other object-oriented languages 
(eg Smalltalk) and so provides a relatively easy way to obtain an implem entation of 
a lazy functional language.

O ther strategies

The G-machine provides a good basis for a realistic implementation of a func
tional language. Combinators can be compiled directly into executable code to 
give a better performance. In the G-machine and T-machines, garbage collection 
is required during executions. Furthermore, the G-machine, requires yet another 
function ‘doAdmin’ which checks the memory size after each step. In contrast the 
garbage collection is performed by the underlying hardware on the Rekursiv. This

6 - 5



autom atic garbage collecting facility relieves the programmer of the responsibility 
of keeping track of the above mentioned references. There are no results available 
from the above machines to compare with; in fact it is not yet a completely ma
ture practical approach, but is the subject of a lot of research and may well have a 
promising future.

6.1 Future work
A great deal of further research is required to develop a full understanding of the 
Rekursiv architectural issue in terms of microcoding in practical functional program
ming.

In particular, the bulk of overheads involved in resource allocation of cells in the 
Rekursiv can be eliminated by employing the use of compact objects. Since compact 
objects do not occupy pager table slots or memory locations, Harland has claimed 
that performance can be dramatically improved if compact objects are used. It 
remains to be seen whether combinator objects are accessable to this transformation. 
The manipulation of compact objects involves the use of the Rekursiv at a deeper 
level than Lingo affords, and is beyond the scope of this thesis.

Our benchmark programs are fairly standard with respect to the literature in 
functional programming language implementation, but it must be realized th a t it 
is an extremely limited set. Even though all our benchmark programs allocate a 
small amount of memory, we have seen some different behaviour. To see some clear 
relative behaviour we need many more experiments. A widely acceptable suite of 
standard benchmarks is needed.

In our discussion we have avoided many complex issues like polymorphism and 
pattern matching because this thesis was intended as a vehicle for relative perfor
mance of functional languages on various architectures. However for more complex

6 - 6



functional languages these may allow some elegant solutions. These issues can be 
investigated in future research.

6.2 C ontribution  o f th is th esis
The main results presented in this thesis are:

• Performance evaluation of A-lifting Vs SKI-combinator implementation.

• Performance evaluation of different object-oriented styles.

• Performance evaluation of novel hardware (Rekursiv) compared with trad i
tional (Rise).

• An active graph model for the reduction of A-expressions.

6 - 7



B ib liograp h y

[1] America, Pierre (1989). Issues in the Design o f a parallel 0 . 0 . Language, 
Formal Aspects of Computing (1989) 1: 366-411, 1989

[2] Argo, Guy (1989). Improving the three instruction machine, Computing Sc. 
Department, The University, Glasgow.

[3] Augustsson, L. (1984). bf A compiler for lazy ML, Proceedings of the 1984 
ACM symposium on Lisp and Functional programming, Austin, Texas, August 
1984, pp.218-227.

[4] Backus, John (1978). Can Programming be liberated from  the von Neumann 
Style?
A Functional Style and its algebra o f Programs , Communication of ACM, V-21, 
No. 8, August 1978.

[5] Belof, B., McIntyre, Duncan and Drummond, Brian (1988). O B JE K T  data 
book, Document Number LSD0036, Linn Smart Computing Limited, Glasgow, 
1988.

[6] Bird, R. S. (1987). A formal development of an efficient supercombinator com
piler, Science Computer Program (Netherlands), Vol 8(2), 1987, pp 113-137.

[7] Birtwistle, G. M., Dahl, 0 . and Nygaard, K. (1979). S im u la  B E G IN , 
Chartwellbratt.

Bib - 1



[8] Blair, G., Gallagher John, Hutchison David and Shepherd D (1991). O b je c t-  
o r ie n te d  lan g u ag es , sy stem s a n d  ap p lica tio n s , P itm an Publishing (1991).

[9] Budd, Timothy (1991). O b je c t-o r ie n te d  p ro g ra m m in g , Addison-Wesley, 
1991.

[10] Burge, W. H. (1975). R ecu rs iv e  P ro g ra m m in g  T echn iqu es, Addison- 
Wesley, 1975.

[11] Burstall, R. M., MacQueen, D. B. and Sanella, D. T. (1980). Hope: an exper
imental applicative language, CSR-62-80, May 1980, Department of Computer 
Science, University of Edinburgh.

[12] Cheese, Andy (1987). Combinatory code and a packet based computational 
model, SIGPLAN Notices, Vol 22, No 4, 1987, pp 49-58.

[13] Curry, H. B. and Feys, R. (1958). C o m b in a to ry  Logic, Vol 1, North Holland 
Publishing Company, Amsterdam, 1958.

[14] Church, A. (1941). The Calculi o f Lambda Conversion, Ann. of M ath. Studies, 
Vol 6, 1941.

[15] Darlington, J., Field, A. J. and Pull, H. (1985). The unification o f Functional 
and Logic Languages, Report NB 35-0012, Department of Computing, Imperial 
College of Science and Technology, London SW7 2BZ, February 1985.

[16] Davie, A. J. T. and Morrison, R. (1981). R ecu rs iv e  D escen t C o m p ilin g ,
Ellis Horwood, 1981.

[17] Dennis, J. B. (1979). The varieties of data flow computers, Proc. 1st Int. Conf. 
Distributed Computing system, France, Oct 79, pp430-439.

[18] Antoni, Diller (1988). C om p iling  fu n c tio n a l lan g u ag es, 1988.

[19] Drummond, Brian (1988). Hades data book, Document Number LSD0039, Linn 
Smart Computing Limited, Glasgow, 1988.

Bib - 2



[20] Elsley, Ian (1989). Kontroller user Manual (Rekursiv), Document NO. LSD0054-, 
Linn Smart Computing Limited, Glasgow, 1989.

[21] Fairbairn, Jon (1985). Design and Implementation of a Simple Typed Language 
Based on The Lambda Calculus, Technical Report No. 75, May 1985, University 
of Cambridge, Computer Laboratory.

[22] Field, Anthony J. and Harrison, Peter G. (1988). Functional P rogram m ing, 
Addison-Wesley, 1988.

[23] Finn, Simon (1987). Hoisting: Lazy Evaluation in a cold climate, LNCS NO. 
250, TAPSOFT ‘87.

[24] Kennaway, J. R. and Sleep, M. R. (1983). Novel architectures fo r  declarative 
languages, Software and Microsystems, Vol. 2, No. 3, June 1983.

[25] Frederick, S. (1990). 0. 0. Programming Applied to Protype Workstation, 
Software-Practice and Experience, V-20(9), pp 887-898, Sept 1990.

[26] Goldberg, A. (1983). Sm alltalk80: th e  language and its  im p lem en tation ,
Addison-Wesley 1983.

[27] Glaser Hugh, Hankin Chris and Till David (1984). P rincip les o f Functional 
Program m ing, Prentice/Hall International, 1984.

[28] Glaser, H. and Hayes, S. (1986). Another implementation technique fo r applica
tive languages, ESOP 86: European Symposium on Programming proceedings, 
pp 70-81, Springer-Verlag, 1986.

[29] Gordon, M. J. and Milner, A. J. and Wadsworth, C. P. (1979). Edinburgh LCF.

[30] Hailpern, Brent (1989). Comparing two functional programming system s, IEEE 
Trans on Software Engineering vol-15, No. 5, May 1989.

[31] Harland D. M. (1988). R ekursiv ob ject-orien ted  com puter arch itectu re,
Ellis Harwood Limited, 1988.

Bib - 3



[32] Harland, D. M. (1989). A guide to Lingo Linn Smart Computing Limited, Doc
ument No. LSD0057, Edition-2, August 89.

[33] Henson, M artin C. (1987). E le m en ts  of F u n c tio n a l L anguages, Blackwell 
Scientific Publications, London, 1987.

[34] Hindley, J. Roger (1985). Combinators & Lambda calculus: A short outline, 
Lecture notes in Computer Science, No: 242, Combinators and Functional Pro
gramming Language, pp 105-122, May 1985.

[35] Hudak (1984). A Combinator Based Compiler for Functional Language, Proc 
11th ACM symposium on Principles of Programming Languages, pp 121-132, 
1984.

[36] Hughes, John (1982). Graph Reduction with Super combinators, Technical Mono
graph PRG-28, June 1982, Oxford University Computing Laboratory Program 
ming Research Group.

[37] Hughes, R. J. M. (1982). Super combinators: a new implementation method for 
applicative languages, Proc ACM, Symposium on LISP & functional program
ming, pp 1-10, 1982.

[38] Hughes, R. J. M. (1985). Lazy memo function , Proc Conference on Functional 
Programming Languages and Computer Architecture, LNCS, Vol 201, pp 129- 
146, 1985.

[39] Johnsson, Thomas (1984). Lambda Efficient compilation o f lazy evaluation, Pro
ceedings of the SIGPLAN’84 symposium on compiler construction, Montreal, 
Canada, June 1984, pp. 58-69.

[40] Johnsson, Thomas (1985). Lambda Lifting: Transforming Programs to Recur
sive Equations, LNCS, Conference on Functional Programming Language and 
Computer Architecture, Vol 201, pp 198-203, 1985.

Bib - 4



[41] Johnsson, Thomas (1987). Compiling Lazy Functional Languages, A Disserta
tion for the Ph. D. in Computer Sciencs at Chalmers University of Technology, 
1987.

[42] Jones, Simon L. Peyton (1985). An introduction to fully lazy supercombinator, 
Lecture notes in Computer Science, No:242, Combinators & functional pro
gramming language, pp 176-208, May 1985.

[43] Jones, S. L. Peyton (1987). T h e  Im p le m e n ta tio n  o f F u n c tio n a l P ro g ra m 
m in g  L anguages, Prentice/Hall, 1987.

[44] Jones, Simon L Peyton and Lester, David (1990). A modular fully lazy lambda 
lifter in Haskell, CS Report series CSC-90/R17, CSC June 1990, Department 
of Computer Science, University of Glasgow, Glasgow G12 8QQ.

[45] Jones, S. L. Peyton and Lester, David (1992). Im p le m e n tin g  F u n c tio n a l 
L anguages, Prentice/Hall, 1992.

[46] Jones, T. C. (1991) A p p lied  so ftw are  m e a su re m e n t, McGraw Hill, 1991.

[47] Kaehler, Ted and Patterson, Dave (1986). A T aste  of S m a llta lk , First Edi
tion, W W Norton & Company, 1986.

[48] Kelly, Paul (1989). F u n c tio n a l P ro g ra m m in g  fo r L o o se ly -co u p led  M u l
tip ro ce sso rs , Pitm an, 1989.

[49] Koopman, Philip J., Jr (1989). A fresh look at combinator graph reduction, 1989 
ACM 0-89791-306-X/89/0006/0110.

[50] Koopman Phillip, J., Lee Peter, Siewiorek Daniel P. (1992). Cache Behaviour of 
Combinator Graph Reduction, ACM Trancactions on programming languages 
and system
Vol. 14, No.2, April 92, pp265-297.

Bib - 5



[51] Lins, Rafael D. (1987). Categorical Multi-Combinators, LNCS No.274, Func
tional programming languages and computer architecture, 1987.

[52] MacLennan, Bruce J. (1990). Functional Program m ing, P ractice  and  
T heory, page 444, Addison-Wesley 1990.

[53] Mannino, Michael V. (1990). Object-Oriented paradigm, IEEE Transcation on 
software engineering V-16, No.11, pp 1247, Nov 90.

[54] McGregor, John D. and Korson, Tim (1990). Object-oriented design, Commu
nication of ACM, V-33, No-9, pp 43, Sept 90.

[55] Michaelson, Greg (1989) An in trod uction  to  Functional program m ing  
through Lam bda Calculus Addison-Wesley, 1989.

[56] Milne, Allan C. (1987). Analysis and Manipulation o f BNF definition, EUUG 
Autumn Conference Proceedings, pp 105-122, EUUG, 1987.

[57] Minitab D ata Analysis Software (1988). Minitab reference manual, Release 6.1 
January 1988. M initab, Inc. 3081 Enterprise drive, State college, PA 16801, U. 
S. A.

[58] Natanson L D, Samson W B and Wakelin A W (1990) Objected-oriented im 
plementations from  a functional specification, 1990, Dept, of M athem atical and 
Computer Sciences, Dundee Institu te of Technology, Bell Street, Dundee DD1 
1HG.

[59] Neil, Graham (1983). Introduction  to  P ascal,Second Edition, 1983.

[60] Reade, Chris (1989) E lem ents of Functional Program m ing, page 443, 
Addison-Wesley ,1989.

[61] Richard B. Kieburtz (1985). The G-machine: A fast, graph-reduction evaluator, 
LNCS No. 201, Functional programming and computer architecture Nancy, 
France, Sept-1985.

Bib - 6



[62] Sebesta, Robert W. (1989). C oncepts of Program m ing Languages, The
Benjamin/Cumming Series in Computer Science, First Edition, 1989.

[63] Thompson, S. and Lins, R. (1992). The categorical multi-combinator machine: 
CMCM, The Computer Journal Vol. 35, No.2, 1992.

[64] Treleaven, P. C., Brownbridge, D. R. and Hopkins, R. P. (1982). Data Driven 
and Demand driven Computer Architecture, computing surveys, vol-14, No. 1, 
March 82, pp 93-143.

[65] Turner, D. A. (1979). A New Implementation Technique fo r applicative Lan
guages, Software Practice and Experience, Vol 9, pp 31-49, 1979.

[66] Turner, D. A. (1985). Miranda: A non strict functional language with poly
morphic types, Proceedings of the IFIP international conference on functional 
programming languages and computer architecture, 1985.

[67] Turner, Raymond (1991) C onstructive foundations for function al lan
guages, McGraw-Hill 1991.

[68] Vegdahl, Steven R. (1984). A survey of Proposed Architecture fo r the Execution 
of Languages, IEEE, Transactions on Computers, Dec-84, Vol C-33, No. 12, 
1984.

[69] Wegner, Peter (1986). AC M  SIG PLAN  Notices, Vol. 21, No. 10, 1986.

[70] Wegner, P (1986) Language paradigm fo r programming in the Large, Annual 
lecture course 1985/86, (CS/86/3), University of St. Andrews, Departm ent of 
Computational Science, 1986.

[71] Weinreb D. and Moon D. (1981) LISP machine manual, Symbolics, 1981.

[72] Wikstrom, Ake (1987) Functional program m ing using standard ML, 
Prentice Hall International (UK), 1987.

Bib - 7



[73] Wilson, L. B. and Clark, R. G. (1988). C o m p a ra tiv e  p ro g ra m m in g  la n 
guages, Addison-Wesley, 1988.

[74] W inter, S. C., Gupta, J. P. and Wilson, D. R. (1984). Data and Demand driven 
computer architecture, Advances in Microprocessing and Microprogramming, 
EUROMICRO, pp 287-296, 1984.

[75] Wadsworth, C. P. (1971). Semantics and pragmatics of the Lambda calculus, D. 
Phil. Thesis, University of Oxford, 1971.

[76] Wray, S. C. and Fairbairn, J. (1989). Non-strict Languages Programming and 
Implementation, The Computer Journal, pp 142-152, V-32, No. 2, 1989.

[77] Abelson, H. and Sussman, G. J. (1986). T h e  s t ru c tu re  a n d  in te rp r e ta t io n  
of c o m p u te r  p ro g ram s, MIT, Press, Cambridge, Mass.

[78] Burst all, R. M., Collins, J. S. and Poppleston, R. J. (1971). P O P -2 , Edinburgh 
University Press (1971).

[79] Kleene, S. C. (1936). A-definability and recursiveness, Duke Math. J., pp 340- 
353, 1936.

[80] Landin, P. (1965). A correspondance between AlgoWO and Church’s lambda no
tation, CACM, Vol. 8, pp 89-101, 1965.

[81] Milner, R. (1978). A theory o f polymorphism in programming, (gives details of 
language ML’s polymorphism), CSR-9-77, Edinburgh University (1978). Also 
in J. Comp. Sys. Sciences, Vol. 17, pp 348-375 (1978).

[82] Turner, D. A. (1976). T he SA SL lan g u ag e  m an u al, University of St An
drews, 1976.

Bib - 8



Appendices 
APPENDIX - A

A A-calculus Language Syntax (ALCAL) expressed in an 
extended BNF notation [56].

< dialogue >
<  instruction  >

<  expression >
< fu n c tio n  >

< i f >

< lis t—expr >
<  boolean—expr >
< boolean—term  >
< rela tion—expr >

<  arith —expr >
<  arith —term  >

< factor > 
< item  >

< constant >

< list >
< boolean >
< n il—list > 

< fu n c tio n —const >
< re l—op >

::= [ < instruction  > | < expression  > ]* ;
def < nam e  >  =  < expression > \ 
exit. | load < string  > .
< fu n c tio n  > \ < i f  > \ < lis t—expr > .
lam < nam e  > < expression > .
if <  expression > th en  < expression  > 
else < expression  >  .

::= < boolean—expr >  { :: <  boolean—expr > }* .
< boolean—term  > {[and | or] < boolean—term  >}*. 
{not} < rela tion—expr > .
< a r ith —expr > {< re l—op > < a r ith —expr >}.

::= < a r ith —term  > {[ -f | — ] < arith —term  >  } *.
< f a c t o r  >  { [“ * ” | d iv  | mod] < f a c t o r  >}*.
< item  > { “ ” <  item  > }*.

::= < nam e > \ < constant >  | (<  expression  > ) |
< lis t > .
< in teger >  | < boolean > \ <  n i l—list >  |
< fu n c tio n —const > .
«[” {< expression  > { , < expression  >}* } “]” . 
true | false.

::= nil.
::= hd | tl.
. . _ _  I C C ^ - __ 33 I ( ( ^ 3 3  I C C ^ _ _ _ 33 I « _ _ _ 33 I CC_ _ _ J 33

< nam e  >

m icrosyntax  

[< letter  >]*.

A - 1



< integer > 
< letter > 
< digit >

{ -  } [< digit >]*.
uany upper or lower case alphabetic character
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 .

A - 2



A P P E N D IX  - B

B l . l :  Lingo code for in terpreter (A lcal)

/* Alcal interpreter : myk Sat Sep 28 10:07:07 BST 1991 */

Alcal is Object
[scanner recovering symbolTable parse code count ]
{
new []
{"(((super new) scanner:( Scanner 
keywords:(Vector [ "def" "show" "if" "then" " 
"load" "div" "and" "or" "not" "exit" "hd" "tl 
punctuationCharacters:( Vector [ (,, 1 . ’ e 
crypticCharacters:(Vector [* = * ‘ < } ( > } 1 :
source:(FileDescriptor input))) start);}.}

else" "mod" "lam 
" "true" "false" 
')> * [ ’ {1>
> ] )

"nil" 
' + > <-

] )
‘/>V

close []
{/* to close resulting code, count file */ 
code close; count close;}.

self mustBe: aToken []
{ /* this method is used when there is no option in the choice

of production */ 
if recovering
then {while (aToken != (scanner token)) and (scanner token != ";") 

do {scanner getToken;} 
recovering := Boolean false;} 

else {if aToken = (scanner token) 
then {scanner getToken;}
else {"syntax error \n" printedOn: FileDescriptor output; 

self error:aToken};}}.

self have: aToken []
{ /* this method gives a choice between productions */ 
if aToken = (scanner token) 
then {scanner getToken;

"Boolean true;} 
else {"Boolean false;}}.

B - 1



self error:aToken [ expected ]
{/* for an error (unexpected symbol in the input stream), a syntax 

error is reported to display a specific message */ 
if (Vector [ "false" ] includes: aToken ) 
then expected := "expression" 
else expected := aToken;

"\nexpected " printedOn: FileDescriptor output; 
expected printedOn: FileDescriptor output with:" found f"; 
(scanner token) printedOn: FileDescriptor output with: A n";
"\n expected " printedOn:parse; 
recovering := Boolean true;}.

self start []
{ /* Main iterpretation method */

symbolTable := Dictionary [] ; 
recovering := Boolean false;
"\nFL> " printedOn: FileDescriptor output; 
scanner getToken;
while (scanner token) != "exit" do 
{while (scanner token) != ";" do {self dialogue; } 
{"\nFL> " printedOn: FileDescriptor output; 
recovering := Boolean false; scanner getToken;}} 
"\nexiting FL\n " printedOn: FileDescriptor output; 
self close;}.

self dialogue [startTime finishTime elapsedTime ocStart ocFinish result 
noofobjectso noofobjectsn]
{ /* Main dialogue, for detail of rules see appendix - A, each 

of these rule contains alternatives, and each alternative 
is inspected to determine which alternate rule should be 
followed. */

if (scanner token) = "load"
then {self load;}
else
if (scanner token ) = "def"
then {self instruction; } 
else {

result := self expression ;
Object gc;
"\n<gc activated>\n" printedOn:FileDescriptor output; 
ocStart := Object objectsInCore;

B - 2



noofobj ectso 
Time now; 
result 
startTime 
Time now; 
finishTime 
ocFinish 
noofobjectsn 
elapsedTime

:= Object objectCount;

:= result evaluate;
:= Time time;

Time time;
Object objectsInCore;
Object objectCount; 
finishTime - startTime; 

result printedOn: FileDescriptor output;
" calcualted in " printedOn: FileDescriptor output; 
elapsedTime printedOn: FileDescriptor output with:" secs\n"; 
"number of objects = " printedOn: FileDescriptor output;
(noofobjectsn - noofobjectso) printedOn: FileDescriptor output 
with: "\n";».

self load [nextToken theOldFile filename fileDescriptor ]
{ /* an auxiliary function to scan all the function definitions in 

a file */
self mustBe:"load";
self mustBe:"String";
filename := scanner theLastString;
nextToken := scanner token;
theOldFile := scanner source;
"\n> " printedOn:FileDescriptor output with:filename;
"<\n" printedOn:FileDescriptor output;
fileDescriptor := FileDescriptor openForReading:((MetaClass

archiveDirectory)+filename); 
scanner source: fileDescriptor; 
self startl;
scanner source: theOldFile; 
scanner token:nextToken; 
fileDescriptor close; }.

self startl []
{ /* this method detects the end-of-file of the input file opend 

by the previous method (load). */
scanner getToken;
while ((scanner token) != "exit") do

{while (scanner token ) != ";" do {self dialogue;} 
{recovering := Boolean false;scanner getToken;}}}.

self instruction [ theName theTree dmy ]
{self mustBe:"def" ;

B - 3



theName := self name; 
dmy := Dummy new; 
dmy theName:(theName) ;
symbolTable at:(theName symbol) put:dmy; 
self mustBe:"="; 
theTree := self expression; 
dmy theTree:theTree

self expression [ch result]
{if (scanner token) = "lam" 
then {result := self function; "result;} 
else {if (scanner token) = "if"

then {result := self iff; "result;}
else {result := self list_expr;"result;}}}.

self name [result]
{self mustBe:"Identifier";
result := Variable named:(scanner theLastldentifier); "result;}.

self function [ var result expl]
{self mustBe:"lam"; 
var := (self name) symbol; 
self mustBe:"."; 
expl := self expression ; 
result := expl abstract:var; 

result;}.

self iff [result]
{

{self mustBe:"if";
result := Application of:Cond new to:(self expression); 
self mustBe:"then";
result := Application of:result to:(self expression); 
self mustBe:"else";
result := Application of:result to:(self expression);}

"result;}.

self list_expr [result a b]
{if (self have:"nil")
then {result := (Constant value:(List new));"result;} 
else {a := self boolean_expr; 

if (self have:"::") 
then {b := self list_expr;

result := Application of:(Application of:(Cons new)

B - 4



to:a) to:b;} 
else {result := a;}
"result;}}.

self boolean_expr [result]
{result := self boolean_term;
while (scanner token) = "and" or (scanner token) = "or" do 
{if self have:"and"
then {result := Application of:(Application of:And new to: 

result) to:(self boolean_term);} 
else {self mustBe:"or";

result := Application of:(Application of:Or new to: 
result) to:(self boolean_term);}}

"result;}.

self boolean_term [result]
{if (scanner token) = "not" 
then {self mustBe:"not";

result := Application of:Not new to:(self relation_expr);} 
else {result := self relation_expr; } 

result;}.

self relation_expr [result]
{result := self arith_expr;

(Vector ["<" "<=" ">" ">=" "=" "~="] includes:(scanner token)) do 
self have:"<"
{result := Application of:(Application of:Lessthen new to: 

result) to:(self arith_expr);} 
if self have:"<="
then {result := Application of:(Application of: Lessthenequal new 

to:result) to:(self arith_expr);} 
else if self have:">"

then {result := Application of:(Application of: Greaterthen 
new to:result) to:(self arith_expr);} 

else if self have:">="
then {result := Application of:(Application of:

Greaterthenequal new to:result) to:
(self arith_expr);} 

else if self have:"="
then {result :=Application of:(Application of:Equal

new to:result) to:(self arith_expr);} 
else if self have:"~=" do

{result := Application of:(Application of: 
Notequal new to:result) to:

while
{if
then

else

B - 5



(self arith_expr);}} 
"result;}.

self arith_expr [result]
{result := self arith_term;
while (scanner token) = "+" or (scanner token) = do 
{if self have:"+"
then {result := Application of:(Application of:Plus new to:result) 

to:(self arith_term);} 
else {self mustBe: ;

result := Application of:(Application of:Minus new to:result) 
to:(self arith_term);}}

"result;}.

self arith_term [result]
{result := self factor;
while (Vector ["*" "div" "mod"] includes:(scanner token)) do 
{if self have:"*"
then {result := Application of:(Application of:Times new 

to:result) to:(self factor);} 
else if self have:"div"

then {result := Application of:(Application of:Divide new 
to:result) to:(self factor);} 

else if self have:"mod" do
{result := Application of:(Application of:(Mod new) to: 

result) to:(self factor); }}
"result;}.

self factor [result]
{result := self item;
while (Vector ["Identifier" "Integer" "true" "false" "nil" "hd"
"■tX" " [" "(" ] includes: (scanner token)) do 
{result := Application of:result to:(self item);}
"result;}.

self item [result]
{if (Vector ["Identifier" "("] includes:(scanner token)) 
then {if self have:"Identifier"

then {if symbolTable includes:(scanner theLastldentifier)
then {result := (symbolTable at:(scanner theLastldentifier)) 

"result;}
else {result := Variable named:(scanner theLastldentifier); 

"result;}}
else if self have:"(" do

B - 6



{result := self expression; self mustBe:")";}
"result;}

else {if self have:11 ["
then {result := self list;} 
else {result := self constant;}
"result;}}.

self list [a b result]
{if ((scanner token) = "]") not 
then {a := self expression; 

if self have:"," 
then {b:= self list;

result := Application of:(Application of:(Cons new) 
to:a) to:b;} 

else {self mustBe:"]";
result := Application of:(Application of:(Cons new) 

to:a) to:(Constant value:(List new));}}
else {self mustBe:"]";

result := Constant value:(List new);}
"result;}.

self constant [result]
{if self have:"Integer"
then {result := Constant value:(scanner theLastlnteger);"result;} 
else if self have:"nil"

then {result := Constant value:(List new);"result;} 
else if self have:nhd"

then {result := Application of:(Hd new) to:(self item); 
"result;}

else if self have:"tl"
then {result := Application of:(Tl new) to:(self item); 

"result;}
else if self have-."true"

then {"Constant value:(Boolean true);} 
else {self mustBe:"false";

"Constant value:(Boolean false);}}, 
scanner: a [] { scanner := a }.

B - 7



B1.2: Lingo code for various com binators

Each combinator module have their own instance method called ‘evaluate5 while 
they all inherits the instance method ‘abstract5 from the module ‘ Operator5.

The module hierarchy representing various combinator objects, various type of 
node and leaves are defined as:

P lus  C Operator C Node C Object

Node is Object 
[symbol]
{}
symbol:aString []
{symbol := aString;}. 

symbol [] { symbol; }. 
printedOnrf []
{symbol printedOn:f.

Operator is Node
□
{ >
self abstract:aString [result]
{result := Application of:(K new) to:self;" r e s u l t .

Variable is Node
[]
{named:aString [] {"((super new) symbol:aString);}.} 
self abstract:aString []
{if (self symbol) = aString 
then "(I new)
else "(Application of:(K new) to:self);}.

Constant is Node
[]
{value: aValue [] {" ((super new) symbol: aValue);}.} 
self abstract:aString []

{"Application of:(K new) to:self;}, 
self evaluate [ ] { " (self symbol); }.

Lambda is Node 
[bv exp]
{new:avar in:ex [ temp ]

B - 8



{temp := super new; 
temp symbol:("lam " + avar + ");
temp bv:avar; 
temp exp:ex;
"temp}.

}
self abstract:aString [temp result]
{temp := exp abstract:bv; "temp;}, 
self printedOn:f []
{(self symbol) printedOn:f; exp printedOn:f;}. 

bv:b []{bv:=b;}. 
exp:c []{exp:=c;}.

Application is Node 
[left right]
{of: alpha to:beta []
{"((super new) left:alpha right:beta);}.

}
self abstract:aString [a b resulta result]
{a := left abstract:aString;
b := right abstract:aString;
resulta := Application of:(S new) to:a; 
result := Application of:resulta to:b;
"result};}.

evaluate [] { " (( left evaluate ) performWith:(right )); }. 
printedOn:f []
{"(" printedOn:f; left printedOn:f; " " printedOn:f; 
right printedOn:f; ")" printedOn:f; }. 

left:a right:b []
{left := a; right := b;}. 

left [] {"left}, 
right [] {"right}.

S is Operator
[]
{new [] { "((super new) symbol:"S");}.} 
self evaluate []
{"module f []

{"(module g of f []
{"(module x of g f []

{"(Application of:(Application of:f to:x) 
to:(Application of:g to:x)) evaluate;})})}}.

B - 9



{new [] {"((super new) symbol:" K " ) } 
self evaluate []
{"module x[]

{"(module y of x []
{"(x evaluate);})}}.

I is Operator
[]
{new [] {"((super new) symbol:"I");}. } 
self evaluate []
{"module x []

{"(x evaluate);}}.

B is Operator
□
{new [] { "((super new) symbol:"B");}.} 
self evaluate []
{"module f []

{"(module g of f []
{"(module x of g f []
{"(Application of:f to:(Application of:g to:x))evaluate;})})}}.

C is Operator
□
{new [] { "((super new) symbol:"C");}.} 
self evaluate []
{"module f []

{"(module g of f []
{"(module x of g f []

{"(Application of:(Application of:f to:x) to:g)evaluate;})})}}.

Sprime is Operator
□
{new [] { "((super new) symbol:"S,");}.} 
self evaluate []
{"module k []

{"(module f of k []
{"(module g of f k []

{"(module x of g f k []
{"(Application of:(Application of:k to:(Application of:f 
to: x)) to:(Application of:g to:x)) evaluate;})})})}}.

K is Operator
□

B - 10



Cprime is Operator
[]
{new [] { "'((super new) symbol: "C* ");}•} 
self evaluate []
{"module k []

{"(module f of k []
{"(module g of f k []

{"(module x of g f k []
{"(Application of:(Application of:k to:(Application 

of:f to:x)) to:g) evaluate;})})})}}.

Bprime is Operator
[]
{new [] { "((super new) symbol:"B1");}.} 
self evaluate []
{"module k []

{"(module f of k []
{"(module g of f k []

{"(module x of g f k []
{"(Application of:(Application of:(k to:f) to: 

Application of:g to:x)) evaluate;})})})}}.

Bstar is Operator
□
{new [] { "((super new) symbol:"B*") ; }.} 
self evaluate []
{"module k []

{"(module f of k []
{"(module g of f k []

{"(module x of g f k []
{"(Application of:k to:(Application of:f to:( 

Application of:g to:x))) evaluate;})})})}}.

Cond is Operator
□
{new [] { "((super new) symbol:"cond");}.} 
self evaluate []
{"module x[]

{"(module y of x []
{"(module z of y x []

{if (x evaluate) 
then {"(y evaluate);} 
else {"(z evaluate);};})})}}.

B - 11



{new [] {"((super new) symbol:"mod");}.} 
self abstract:aString []
{"Application of:(K new) to: self;}, 
self evaluate []
{"module x [] {"(module y of x [] {"((x evaluate) ’/, (y evaluate))})}}.

Mod is Operator
□

Few more objects for Lists (for example Cons, Hd, Tl, Nil, And, Or, Not) and 
for primitive arithm etic operators like Plus, Minus etc are defined as:

Cons is Operator
□
{new [] { "((super new) symbol:"::");}.} 
self abstract:aString []
{"Application of:(K new) to:self; }. 
self evaluate []
{"module y [ ] {"(module x of y [xList a ]
{a := List new; 
a append:(y evaluate); 
xList := x evaluate; 
until xList isEmpty do
{a append:(xList first); xList := xList next;} 
~a;})}}.

Hd is Operator
□
{new [] { "((super new) symbol:"hd");}.} 
self abstract:aString []
{"Application of:(K new) to:self;}, 
self evaluate []
{"module x [] {"((x evaluate) first)}}.

Tl is Operator
[]
{new [] { "((super new) symbol:"tl");}.} 
self abstract:aString []
{"Application of:(K new) to:self;}, 
self evaluate []
{"module x [] {"((x evaluate) next)} }.

B - 12



{new [] { ''((super new) symbol: "not") } 
self abstract:aString []
{"Application of:(K new) to:self;}, 

self evaluate []
{"module x [] {"((x evaluate) not);}}.

Plus is Operator
□
{new [] { "((super new) symbol:"+");}.} 
self abstract:aString []
{"Application of:(K new) to:self;}, 
self evaluate []
{"module x [] {"(module y of x [] {"((x evaluate)+(y evaluate));})}}.

Not is Operator
□

N ote:
Objects like Minus, Divide, Times, Lessthen, Equal, NotEqual Not, And, Or are 

similar to Plus.

Dummy is Object 
[theTree theName ]
{ }
theTree: aTree [] {theTree := aTree }. 
theName: aName [] {theName := aName }. 
kind [] { "Dummy" }. 
theTree [] {"theTree}.
self abstract:aString [] {"Application of:K to:self;}.
self evaluate [] {"(theTree evaluate);}.
theName [] {"theName}.
printedOn:f [] {theName printedOn: f;}.

B - 13



B1.3: Sm alltalk-80 code for various com binators in F a c t 3.

Smalltalk at:#z put: 0 !
Smalltalk at:#al put: 0 !
Smalltalk at:#a2 put: 0 !
Smalltalk at:#dmy put: 0 !

Object subclass: #Node
instanceVariableNames: 'symbol' 
classVariableNames: '' 
poolDictionaries: '' 
category: nil !

INode methodsFor: 'testing'! 
symbol: aString 
symbol := aString.
;
symbol

symbol
j
print
symbol print.
j

printNl
symbol printNl.
; ;

Node subclass: #0perator
instanceVariableNames: '' 
classVariableNames: '' 
poolDictionaries: '' 
category: nil !

Node subclass: #Application
instanceVariableNames: 'left right' 
classVariableNames: '' 
poolDictionaries: '' 
category: nil !

!Application class methodsFor: 'instance creation'! 
of: alpha to: beta

"((super new) left: alpha right: beta)
; ;
!Application methodsFor: 'testing'! 
left: a

left := a.

B - 14



I

right: b
right := b .

j

left: a right: b
self left: a. 
self right: b .

j

evaluate
~ (( left evaluate) value: (right))
i

print 
$( print, 
left print.
$ print. 
right print.
$) print.
j
printNl 
$( print, 
left print.
$ print. 
right print.
$) printNl.
i ;

Operator subclass: #Minus
instanceVariableNames: ’’ 
classVariableNaines: ’ ’ 
poolDictionaries: ’’ 
category: nil !

IMinus class methodsFor: ’instance creation’! 
new

((super new) symbol: $-)
i

evaluate
~[ :x | [ :y I ((x evaluate) - (y evaluate)) ] ]

; ;

Operator subclass: #Times
instanceVariableNames: ’ ’ 
classVariableNames: ’ ’ 
poolDictionaries: ’’ 
category: nil !

B - 15



!Times class methodsFor: 'instance creation'!
new

"((super new) symbol: $*)
!
evaluate

[ :x | C :y I ((x evaluate) * (y evaluate)) ]]
; ;

Operator subclass: #Equal
instanceVariableNames: '' 
classVariableNames: '' 
poolDictionaries: '' 
category: nil !

!Equal class methodsFor: 'instance creation'!
new

((super new) symbol: $=)
I
evaluate

"[ :x | [ :y I ((x evaluate) = (y evaluate)) ] ]
; ;

Node subclass: #Constant
instanceVariableNames: '' 
classVariableNames: '' 
poolDictionaries: '' 
category: nil !

!Constant class methodsFor: 'instance creation'!
value: aValue

((super new) symbol: aValue)
; ;
iConstant methodsFor: 'testing'!
evaluate

(self symbol)
; ;

Operator subclass: #Cond
instanceVariableNames: '' 
classVariableNames: '' 
poolDictionaries: '' 
category: nil !

!Cond class methodsFor: 'instance creation'!
new

"((super new) symbol: 'Cond' )
i

B - 16



evaluate
~ [ :x | [ :y | [ :z | (x evaluate)

ifTrue: [ ( y evaluate)]
ifFalse: [ ( z evaluate)] ]]]

; ;

Object subclass: #Dummy
instanceVariableNames: ’theTree theName’ 
classVariableNames: ’’ 
poolDictionaries: ’’ 
category: nil !

!Dummy methodsFor: ’testing*! 
theTree: aTree

theTree := aTree.
I
theName: aName

theName := aName.
I
kind

’Dummy*.
!
theTree

(theTree)
j

theName
(theName)

j
evaluate

(theTree evaluate)
j

printOn: aFile
theName printOn: aFile.

Operator subclass: #Factscl
instanceVariableNames: ’’ 
classVariableNames: *dmy* 
poolDictionaries: ’’ 
category: nil !

IFactscl class methodsFor: ’instance creation’! 
new

((super new) symbol: ’Factscl’)

B - 17



evaluate
( dmy )

j
initialise I al I 

dmy := Dummy new. 
dmy theName: (*fact;). 
al : =
C :x |

((Application of: (Application of: (Application of:
Cond to: (Application of: (Application of: Equal to: x) 
to: (Constant value: 0))) to: (Constant value: 1)) 
to: ( Application of: (Application of: Times to: x) 

to: ( Application of: (Factscl initialise) to: (
Application of: (Application of: Minus to: x) 

to: (Constant value: 1)) )))evaluate )]. 
dmy := al

j

dmy
~( dmy )

; ;

Operator subclass: #Fact
instanceVariableNames: * * 
classVariableNames: 1 } 
poolDictionaries: 11 
category: nil !

!Fact class methodsFor: instance creation*! 
test: x

"((Application of: (Factscl initialise) to:
(Constant value: x)) evaluate)

B 18



A P P E N D IX  - C

C l . l :  Som e representative functions (Bench-m arks)

In order to measure the performance of the various implementations of a func
tional language a number of benchmark programs have been proposed. These are 
designed to measure and/or count such features as:

• execution time

• number of objects created

• activations of garbage collection.

Suitable benchmarks include

• functions with one argument

• functions with more than one argument

• simple recursive function

• functions involving nested recursion

A selection of benchmarks must attem pt to cover the range from the simplest func
tions to the most complex ones.

The benchmarks used used for the purpose of this study are:

• ExO — a simple function with one argument

• Exl — a simple function with several arguments

• Fact — a (factorial) tail-recursive function

• Ack — a (ackermann) function involving nested double recusion.

C - 1



These are defined below in the Alcal syntax:

1. ExO It is a simple succ function with one variable. It is represented in Alcal 
as:

def f = lam x. x + 1; 

for example 

f 4 = 5

2. E xl It is a function of nested A-terms, it includes multivariable (bound and 
free) .

def g = (lam x.( lam y.(x + (lam x.(x - 3)) y)) 5) 6;

for example

g 2 = 8

3. Fact The function factorial(n) is classical bench mark.

def fact = lam x. if x = 0 then 1 else x * fact(x - 1); 

for example

fact 5 = 120

C - 2



4. Ack The ackermann function grows exceedingly quickly. The function uses 
double recursion with one recursive application nested within the other. In 
Alcal it may be defined as:

def ack = lam x. lam n. 
if x = 0 
then n + 1 
else if n = 0

then ack(x-l) 1
else ack(x-l)(ack x (n-1));

for example

ack 3 6 =  509

C - 3



C l .2: Benchm ark perform ance

The four benchmark programs defined above were run many times over within 
a test harness program and the following data was collected during these runs.

• number of times benchmark program was executed

• total elapsed time

• number of objects created

• number of times garbage collection was activated

• number of times benchmark program executed before the garbage collection 
was first activated.

• time taken for test harness program without benchmark (empty loop)

C - 4



C l .3: In term ediate code for A-lifting and S K I-im p lem en tation

1. ExO (succ)

Alcal’s representation : 
def a = lam x. x + 1;

Intermediate form for A-lifting:
((+ X) 1)

Intermediate form for SKI-combinator:
( ( c  +) i )

eg. a 4 5

2. Exl

Alcal’s representation :
def a = lam x. (lam y. (x+(lam x. (x-3)) y)) 5 ;

Intermediate form for A-lifting:
((+ x) (((- x) 3) y))

Intermediate form for SKI-combinator: 
((C  (((C ’ B) +) ((C  -) 3))) 5)

eg. a 6 = >  8

C - 5



3. Fact

Alcal’s representation :
def fact = lam x. i f  x = 0 then 1 else x * fact(x-l);

Intermediate form for A-lifting:
(((cond ((= x) 0)) 1) ((* x) (fact ((- x) 1))))

Intermediate form for SKI-combinator:
((S (((C ’ cond) ((C  =) 0)) 1)) ((S *) ((B fact) ((C  -) 1))))

eg. fact 3 => 6

4. Ack

Alcal’s representation :
def ack = lam x. lam n. i f  x = 0 then n+1 else i f  n = 0 
then ack(x-l) 1 else ack(x-l) (ack x(n-l));

Intermediate form for A-lifting:
(((cond ((= x) 0)) ((+  71)  1)) (((cond ((= n) 0)) ((ack ((- x) 1)) 
1)) ((ack ((- x) 1)) ((ack x) ((- n) 1)))))

Intermediate form for SKI-combinator:
((S  (((C ’ S ’)  ((B cond) ((O  =) 0))) ((C  +) 1))) ( ( (S ’ S) ((B  ((C ’ 
cond) ( (C = ) 0))) (((C ’ ack) ( ( C -) 1)) 1))) ( ( (S ’ B) ((B  ack) ((C  
-) 1))) (((C ’ B) ack) ((G  -) 1))))) 
eg. ack 1 1 = >  3

C - 6



Som e other functions
Intermediate forms for some other functions are also given which includes list 
constructor £::’, nil, hd(represents head of a list), tl(tail of a list) boolean 
function true and false.

5. fib

Alcal’s representation :
def fib = lam n. i f  n < 2 then 1 else fib(n-l)+fib(n-2);

Intermediate form for A-lifting:
(((cond ((< n) 2)) 1) ((+ (fib ((- n) 1))) (fib ((- n) 2)))) 

Intermediate form for SKI-combinator:
((S (((C ’ cond) ( ( 0 < )  2)) 1)) ( ((S ’ +) ((B fib) ( ( C -) 1))) ((B  fib)
((o -) m
eg. fib 12 = >  233

6. length

Alcal’s representation :
def length = lam x. i f  x = nil then 0 else l+ length(tl x);

Intermediate form for A-lifting:
(((cond ((= x) nil)) 0) ((+ 1) (length (tl x))))

Intermediate form for SKI-combinator:
((S (((C ’ cond) ((C  =) nil)) 0)) ( (B (+ 1)) ( (B length) tl))) 
eg. length [1,9,10,11,13,5] = >  6

C - 7



7. append

Alcal’s representation :
def append = lam a. lam x . i f  x = nil then a :: nil 
else hd x:‘.append a(tl x);

Intermediate form for A-lifting:
(((cond ((= x) nil)) ((:: a) nil)) ((:: (hd x)) ((append a) (tl x)))) 

Intermediate form for SKI-combinator:
( ((S ’ S) ((B  ((C ’ cond) ((C = ) nil))) ( ( C ::) nil))) ((B  ( (S ’ ::) hd)) 
(((C ’ B) append) tl)))

eg. append 1 [2,3,4] =$> [2,3,4,1]

8. concat

Alcal’s representation :
def concat = lam x. lam y. i f  x = nil then y else hd x :: concat(tl x)y; 

Intermediate form for A-lifting:
(((cond ((= x) nil)) y) ((:: (hd x)) ((concat (tl x)) y))) 

Intermediate form for SKI-combinator:
( ((S ’ S) ((B cond) ((C  =) nil))) ( ( (S ’ B) ((B ::) hd)) ((B  concat)
a m
eg. concat [1,2,3][4,5] [1,2,3,4,5]
eg. concat [[1,2] :: [3] :: nil\ [7] = >  [[[1,2], [3]], 7]

C - 8



9. map

Alcal’s representation :
def map = lam f. lam l. i f  l = nil then nil else f  (hd l):: map f( tl l); 
Intermediate form for A-lifting:
(((cond ((= l) nil)) nil) ((:: ( f  (hd l))) ((map f )  ( til)) ))  

Intermediate form for SKI-combinator:
((B (S (((C ’ cond) ((C  =) nil)) nil))) ( ((S ’ (S ’ ::)) ((C  B) hd)) 
(((C ’ B) map) tl)))

Similarly ‘twice’ and ‘m aptw’ can be defined as: 
def twice = lam x. 2*x; 
def maptw — map twice;

eg. map twice [1,2,3] = >  [2,4,6]
eg. maptw [1,2,3] =>  [2,4,6]

10. fold

Alcal’s representation :
def fold = lam f. lam i. lam l. i f  l = nil then i 
else f  (hd l) (fold f  i (tl l));

Intermediate form for A-lifting:
(((cond ((= l) nil)) i) ((f (hd l)) (((fold f )  i) (tl l))))
Intermediate form for SKI-combinator:
((B ((S ’ S) ((C* cond) ((C  =) nil)))) ( ((S ’ B) ((C  S ’) hd)) (((C ’ 
(C ’ B)) fold) tl)))
Similarly ‘add’ can be defined as: 
def add =  lam x. lam y. x + y;
eg. fold add 0 [3, 7,2] => 12
eg. fold add 5 [3, 7,2] => 17
eg. fold append [1] [2, 3] ==» [M>1]eg. fold append [ ] [1,2,3] = >  nil

C - 9



11. sumlist

Alcal’s representation :
def sumlist = lam x. i f  x = nil then 0 else hd x + sumlist (tl x); 

Intermediate form for A-lifting:
(((cond ((= x) nil)) 0) ((+ (hd x)) (sumlist (tl x)))) 

Intermediate form for SKI-combinator:
((S (((C ’ cond) ((C  =) nil)) 0)) ( ( (S ’ +) hd) ( (B sumlist) tl))) 
eg. sumlist [1,2,3,4] =>- 10

12. member

Alcal’s representation :
def member = lam 1. lam i. i f  l = nil then false 

else i f  (hd l) = i then true else member (tl l) i;

Intermediate form for A-lifting:
(((cond ((= l) nil)) aBoolean = false) (((cond ((= (hd l)) i)) aBoolean 
— true) ((member (tl l)) i)))

Intermediate form for SKI-combinator:
( ((S ’ B) (((C ’ cond) ((C  =) nil)) aBoolean = false)) ( ( (S ’ S) ( ((C ’ 
(C ’ cond)) ( (B =) hd)) aBoolean = true)) ( (B member) tl))) 
eg. member [1,2,3] 3 = >  Boolean true
eg. member [1,2,3] 4 ==>■  Boolean false

C - 10



A P P E N D IX  - D
D l . l :  N o. o f reductions and N o. of objects created  per run.

Comb. ExO Exl Fact 3 Ack 1 1
Object Ins els Ins els Ins els Ins els

S A S A S A S A S A S A S A S A
Plus 1 1 1 1 1 1 1 1 0 0 0 0 2 2 2 2
Minus 0 0 0 0 1 1 1 1 9 9 9 9 3 3 3 3
Times 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0
Equal 0 0 0 0 0 0 0 0 4 4 4 4 6 6 6 6
Cond 0 0 0 0 0 0 0 0 4 4 4 4 6 6 6 6
S 0 0 0 0 0 0 0 0 7 0 7 0 6 0 6 0
B 0 0 0 0 1 0 1 0 7 0 7 0 9 0 9 0
C 1 0 1 0 2 0 2 0 17 0 17 0 11 0 11 0
Sprime 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0
Cprime 0 0 0 0 1 0 1 0 0 0 0 0 8 0 8 0
Dummy 0 0 0 0 0 0 0 0 3 0 3 0 3 0 3 0
Exlscl 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
Exlsc2 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
Factscl 0 0 0 0 0 0 0 0 0 4 0 4 0 0 0 0
Ackscl 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4
Acksc2 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4
Constant 2 2 2 2 3 3 3 3 21 21 21 21 18 18 18 18
Application 5 2 5 2 17 7 17 7 137 48 137 48 178 49 178 49
Total reduc 9 5 9 5 26 14 26 14 212 93 212 93 257 89 257 89
App O.creat 5 2 5 2 17 7 17 7 84 41 84 41 149 97 149 97
other O.cre 4 3 2 2 9 7 3 3 16 39 5 13 38 68 10 28
Total O.cre 9 5 7 4 26 14 20 10 100 80 89 54 187 165 159 125

D - 1



D 1.2: Tables of tim in gs on th e R ekursiv  and RISC arch itectures

Combinator objects Rekursiv R ISC
reduction time (p-sec) (p-sec)

S, B, C, Cond, Sprime, 13.8 192.6
Cprime, E xlsc l, Exlsc2,
Factscl, Ackscl, Acksc2,
Plus, Minus, Times, Equal
Constant 25.7 129.6
Application 31.0 245.2

Reductions time fo r various combinator objects on the Rekursiv and 
R ISC  architectures.

Combinator objects 
object creation time

Rekursiv
(p-sec)

R ISC
(p-sec)

S, B, C, Cond, Sprime, 
Cprime, E xlsc l, Exlsc2, 
Factscl, Ackscl, Acksc2, 
Plus, Minus, Times, Equal, 
Constant

31.46 280.0

Application 31.0 548.6

Objects creation time fo r various combinator objects on the Rekursiv and 
R ISC  architectures.

D - 2



primitive arithm atic operator 
executions time

Rekursiv 
(p-sec)

R ISC
(p-sec)

+> ~  > — 2.11 15.2
* 7.85 15.2

Executions time of primitive arithmatic operators on the Rekursiv archi
tecture (using Lingo language) and R ISC  architecture (using Smalltalk- 
80) .

resource allocation 
time

Rekursiv
(milli-sec)

R ISC
(milli-sec)

garbage collection (gc) 655 29

Time spent on garbage collecting on the Rekursiv and R ISC  architecture.

D - 3



D 1.3: Tables for com binator reductions for benchm arks.

combinator SKI-combinator Lambda-lifting
objects implementation implementation

Plus 1 1
Constant 2 2
C 1 0
Application 5 2
total reductions 9 5

Number of combinator reductions fo r ExO.

combinator SKI-combinator Lambda-lifting
objects implementation implementation

Plus 1 1
Minus 1 1
Constant 3 3
B 1 0
C 2 0
Cprime 1 0
Application 17 7
E xlsc l 0 1
Exlsc2 0 1
total reductions 26 14

Number of combinator reductions fo r E xl. E x lsc l & Exlsc2 denotes su- 
percombinators. S, B, C, Sprime, Cprime denotes standard combinators.

D - 4



combinator SKI-combinator Lambda-lifting
objects implementation implementation

Times 3 3
Minus 9 9
Cond 4 4
Equal 4 4
Constant 21 21
S 7 0
B 7 0
C 17 0
Application 137 48
Dummy 3 0
Factscl 0 4
total reductions 212 93

Number of combinator reductions fo r Fact 3. Factscl is the only super- 
combinator.

D 5



combinator SKI-combinator Lambda-lifting
objects implementation implementation

Plus 2 2
Minus 3 3
Cond 6 6
equal 6 6
Constant 18 18
S 6 0
B 9 0
C 11 0
Sprime 7 0
Cprime 8 0
Application 178 49
Dummy 3 0
Ackscl 0 4
Acksc2 0 1
total reductions 257 89

Number of combinator reductions fo r Ack 1 1. Ackscl & Acksc2 denotes 
supercombinators.

D - 6



D1.4: Class representation  over Instance rep resentation  o f com binator ob jects

The result of benchmarks on Rekursiv and RISC are presented. From these 
tables we may note that, the number of reductions per 100 sec run with Class 
representation of combinator objects is improved since less time is wasted on the 
creation of unnecessary objects.

Rekursiv
ExO

Instance representation 
runs reductions 0 .created

Class representation 
runs reductions 0 .created

SK I 107560 968040 968040 124040 1116360 868280
(9 ) (9 ) (9 ) (7 )

X-lift 203371 1016855 1016855 220659 1103295 882636
(5 ) (5 ) (5 ) (4 )

No. of objects created and No. o f reductions per 100 sec run fo r ExO on 
the Rekursiv. c() ’ denotes No. of reduction or No. of objects creation 
per run.

R ISC
ExO

Instance representation 
runs reductions 0 .created

Class representation 
runs reductions 0 .created

SK I 16059 144531 144531 17747 159723 124249
(9) (9) (9 ) (7)

X-lift 31640 158200 158200 35154 175770 140616
(5) (5) (5 ) (4 )

No. of objects created and No. o f reductions per 100 sec run fo r ExO on 
the RISC. c( ) ’ denotes No. o f objects creation/reductions per run.

D - 7



Rekursiv
Exl

Instance representation 
runs reductions 0 .created

Class representation 
runs reductions 0 .created

SK I 32900 855400 855400 39949 1038674 798980
(26) (26) (26) (20)

X-lift 70128 981792 981792 84827 1187578 848270
(14) (14) (14) (10)

No. of objects created and No. of reductions per lOOsec run for E xl on 
the Rekursiv. c( ) ’ denotes No. of reduction or No. o f objects creation 
per run.

R ISC
E xl

Instance representation 
runs reductions 0 .created

Class representation 
runs reductions 0 .created

SK I 5214 135564 135564 5761 149786 115220
(26) (26) (26) (20)

X-lift 10594 148316 148316 12213 170982 122130
(14) (14) (14) (10)

N o . o f  o b je c ts  c r e a te d  a n d  N o . o f  r e d u c t io n s  p e r  lO O sec  r u n  f o r  E x l  o n
th e  R I S C . ‘O ’ d e n o te s  N o . o f  r e d u c t io n  o r  N o . o f  o b je c ts  c r e a t io n  p e r
ru n .

D - 8



Rekursiv 
Fact 3

Instance representation 
runs reductions 0 .created

Class representation 
runs reductions 0 .created

SK I 5232 1109184
(212)

523200
(100)

6239 1322668
(21.2)

555271
(89)

X-lift 9876 918468
(93)

7980080
(80)

13294 1236342
(93)

717876
(54)

No. of objects created and No. of reductions per lOOsec run fo r  Fact 3 
on the Rekursiv. c( ) ’ denotes No. of reduction or No. of objects creation 
per run.

R ISC  
Fact 3

Instance representation 
runs reductions 0 .created

Class representation 
runs reductions 0 .created

SK I 940 199280 94000 983 208396 87487
(212) (100) (212) (89)

X-lift 1755 163215 140400 2013 187209 108702
(93) (80) (93) (54)

N o . o f  o b je c ts  c r e a te d  a n d  N o . o f  r e d u c t io n s  p e r  lO O sec  r u n  f o r  F a c t  3
o n  th e  R I S C . e( ) ’ d e n o te s  N o . o f  r e d u c t io n  o r  N o . o f  o b je c ts  c r e a t io n
p e r  ru n .

D - 9



Rekursiv 
Ack 1 1

Instance representation 
runs reductions 0 .created

Class representation 
runs reductions 0 .created

SK I 2776 713432
(257)

519112
(187)

3349 860693
(257)

532491
(159)

X-lift 5999 533911
(89)

989835
(165)

7821 696069
(89)

977625
(125)

No. of objects created and No. of reductions per lOOsec run fo r Ack 1 1 
on the Rekursiv. e( ) ’ denotes No. o f reduction or No. o f objects creation 
per run.

R ISC  
Ack 1 1

Instance representation 
runs reductions 0 .created

Class representation 
runs reductions 0 .created

SK I 611 157027
(257)

114257
(i87)

649 166793
(257)

103191
(159)

X-lift 962 85618
(89)

158730
(165)

1144 101816
(89)

143000
(125)

N o . o f  o b je c ts  c r e a te d  a n d  N o . o f  r e d u c t io n s  p e r  lO O sec  r u n  f o r  A c k  1
1 o n  th e  R I S C . ‘( ) 1 d e n o te s  N o . o f  r e d u c t io n  o r  N o . o f  o b je c ts  c r e a t io n
p e r  ru n .

D - 10



D l.5 :  T he garbage collection  overhead on th e  R ISC .

Observation
Number

(see appendixD1.7)

Executions
per

100 sec

Execution time 
per run (p-sec) 

measured

Execution time 
per run (p-sec) 

calculated

Overhead
factor

33 16059 6227 5749 0.08
34 17747 5636 5189 0.08
35 31640 3161 2895 0.08
36 35154 2845 2615 0.08
37 5214 19179 17589 0.08
38 5761 17358 15909 0.08
39 10594 9439 8706 0.08
40 12213 8188 7586 0.07
41 940 106400 97520 0.08
42 983 101735 94440 0.07
43 1755 56975 52769 0.07
44 2013 49683 45489 0.08
45 611 163660 150276 0.08
46 649 154023 142436 0.08
47 962 103900 91584 0.12
48 1144 87447 80384 0.08

D - 11



D 1.6: T he overhead on R ekursiv w hen no garbage co llection  is required.

Observation 
Number (see 

appendixD1.7)

Number
of

executions

Time
sec

Execution time 
per run (fi-sec) 

measured

Execution time 
per run (p-sec) 

calculated

Overhead
factor

1 3414 1.912 560 555 0.01
2 3819 1.901 498 492 0.01
3 6112 1.842 301 300 0.00
4 6570 1.830 278 270 0.02
5 1782 2.954 1658 1630 0.01
6 1335 1.965 1472 1442 0.02
7 2296 1.940 845 844 0.00
8 2680 1.931 720 718 0.00
9 421 3.989 9475 9328 0.01
10 218 1.994 9148 8982 0.01
11 377 1.990 5279 5219 0.01
12 449 1.988 4428 4401 0.01
13 212 2.995 14125 13791 0.02
14 151 1.996 13219 12910 0.02
15 241 1.994 8273 8232 0.01
16 285 1.993 6992 6974 0.00

D - 12



D 1.7: A tab le  o f 48 observations for th e analysis of variance for 
m ulti-w ay (architectures, im p lem entation  techn iques, ob ject- 
oriented  sty les, benchm arks) w ith  th eir  in teraction  factors

Obser-
vations
(Row)

Time
per
run

(i-sec

Style
l=Instance 
2=Class

Technique 
1=SKI 
2= A

Benchmark 
l=ExO 
2=Exl 
3=Fact 3 
4=Ack 1 1

Machines 
l=Rek no gc 
2=Rek with gc 
3=RISC

1 553 1 1 1 1
2 490 2 1 1 1
3 299 1 2 1 1
4 267 2 2 1 1
5 1626 1 1 2 1
6 1437 2 1 2 1
7 840 1 2 2 1
8 714 2 2 2 1
9 9277 1 1 3 1
10 8931 2 1 3 1
11 5168 1 2 3 1
12 4350 2 2 3 1
13 13768 1 1 4 1
14 12887 2 1 4 1
15 8209 1 2 4 1
16 6951 2 2 4 1
17 930 1 1 1 2
18 806 2 1 1 2
19 492 1 2 1 2
20 453 2 2 1 2
21 3039 1 1 2 2
22 2503 2 1 2 2

D - 13



Obser-
vations
(Row)

Time
per
run

p-sec

Style
1 =Instance 
2=Class

Technique 
1=SKI 
2= A

Benchmark 
l=ExO 
2=Exl 
3=Fact 3 
4=Ack 1 1

Machines 
l=Rek no gc 
2=Rek with gc 
3=RISC

23 1426 1 2 2 2
24 1179 2 2 2 2
25 19113 1 1 3 2
26 16028 2 1 3 2
27 10125 1 2 3 2
28 7522 2 2 3 2
29 36023 1 1 4 2
30 29861 2 1 4 2
31 16669 1 2 4 2
32 12786 2 2 4 2
33 6227 1 1 1 3
34 5635 2 1 1 3
35 3161 1 2 1 3
36 2845 2 2 1 3
37 19179 1 1 2 3
38 17358 2 1 2 3
39 9439 1 2 2 3
40 8188 2 2 2 3
41 106400 1 1 3 3
42 101735 2 1 3 3
43 56975 1 2 3 3
44 49683 2 2 3 3
45 163660 1 1 4 3
46 154023 2 1 4 3
47 103900 1 2 4 3
48 87447 2 2 4 3

D - 14



D1.8: A nalysis of Variance

The model (anova) deals with three order interactions because it involves with 
four main effects for example: architectures, techniques, styles and benchmarks. 
The expected means, estimated variance components, plots and the residual, fitted 
values for both main effects and their interactions are listed below in a sequential 
order.

Factors in m odel

Our model is designed with four factors.

1. Four benchmark functions

• 1 =  ExO
• 2 = E xl
• 3 =  Fact 3
• 4 =  Ack 1 1

2. Three machines

• 1 =  Rekursiv disregarding garbage collection and object squeeze
• 2 =  Rekursiv with garbage collection and object squeeze
• 3 =  RISC

3. Two implementation techniques

• 1 =  SKI-combinator
• 2 =  A-lifting

4. Two object-oriented styles

• 1 =  Instance representation
• 2 == Class representation

D - 15



A total of 48 observations (2 * 2 * 3 * 4  =  48) has been recorded for this model. 
All timing measurements are in fi-sec. The table of 48 observations results are given 
on appendixD1.6 and their interaction factors are already given on previous pages.

All the interactions are indicated with asterisks (*) in the following anova tables. 
For example, 1 instclas *skilam‘ is the interaction between factors instclas and skilam.

Anova Table: 1
Analysis of Variance for time (Main Anova Table)

Source DF SS MS F P
a. instclas 1 81169408 81169408 62.59 0.000
b. skilam 1 2301883904 2301883904 1774.98 0.000
c. benchmk 3 2.1603E+10 7201128448 5552.77 0.000
d. machine 2 2.5468E+10 1.2734E+10 9819.34 0.000
e. instclas*skilam 1 805231 805231 0.62 0.461n.s
f. instclas *benchmk 3 71949424 23983142 18.49 0.002
g. instclas*machine 2 47470852 23735426 18.30 0.003
h. skilam*benchmk 3 1636460544 545486848 420.62 0.000
i. skilam*machine 2 1923825024 961912512 741.73 0.000
j. benchmk*machine 6 2.0286E+10 3381064448 2607.13 0.000
k. instclas * skilam *benchmk 3 1861422 620474 0.48 0.709n.s
1. instclas * skilam *machine 2 4463935 2231968 1.72 0.257n.s
m. instclas*benchmk*machine 6 42873588 7145598 5.51 0.028
n. skilam*benchmk*machine 6 1263522304 210587056 162.38 0.000

Error 6 7781116 1296853
Total 47 7.4742E+10

D - 16



The terms used on above columns are described as:
Source : description of interactions of various factors
DF  : degrees of freedom, it is one less than the number of effects e.g. there are 4 
benchmark effects so DF is 3.

T  otal S S  = sum  o f  (observation — m ean o f  all observations)'

e.g. Total SS =  (First obs. - mean of 48 obs.)2 -{-(second obs 
SS  : sum of squares is partioned by the analysis of variance. 
M S  : mean square (S S /D F )
F  : Fisher’s F statistic,

F isher's F  fo r  an e f fe c t  — the M S  fo r  the e f fe c t
the M S  fo r  error

Error : error is the estimate of variance not explained by any of the effects in the 
table.
P  : probability that F  would be as large as this if the effect were zero. If P  < 0.05 
then we say the effect is significant at 5%. 
n.s : indicates non significant effect

The main anova table: 1 shows

• four main effects a, b, c, d

• six 2-factor interactions e, f, g, h, i, j

• four 3-factor interactions k, 1, m, n

As can be seen,

• all main effects are significant.

• All but one of the 2-factor interactions are also significant.

• Two of the 3-factor interactions are also significant.

D - 17



We can use a table of means to get an estimate of what the time should be for 
any combination of factor levels according to the model which allows for interactions 
upto third order (eg machine 1, technique SKI, style Instance, benchmark 1). We 
also know what the time was that was observed.

Residual (resid ) =  Observed — the one estim ated by model (f i t t e d )

Ideally the plot of resid Vs fitted looks like a shapeless cloud since if the model 
is a good fit remaining variation is random. The following residual plot, ‘Residual 
Plot: 1’ is expanding as we go along for higher fitted values.

resid -
* *

600+ *  *
_  W  V  w

- 3*
* *

- 4
0+ **4 ** * * K*
- 3*
-  * *

-  22
__ w  v

- 600+ *  *

* *

+- - - - - +- - - - - +- - - - - +- - - - - +- - - - - +- - - fitted
0 30000 60000 90000 IZOOOO 150000

Residual plot: 1

D - 18



We should try removing the insignificant effects from our anova model (Anova 
table: 1). Removing the insignificant effects f, 1, m from our main anova table: 1 
results the following anova table:2 and the Residual Plot:2.

Anova Table: 2
Analysis of variance for time (insignificant effects removed)

Source DF SS MS F P
instclas 1 81169408 81169408 65.32 0.000
skilam 1 2301883904 2301883904 1852.41 0.000
benchmk 3 2.1603E+10 7201128448 5795.01 0.000
machine 2 2.5468E+10 1.2734E+10 1.0E+04 0.000
instclas *benchmk 3 71949424 23983142 19.30 0.000
instclas *machine 2 47470852 23735426 19.10 0.000
skilam *benchmk 3 1636460544 545486848 438.97 0.000
skilam *machine 2 1923825024 961912512 774.09 0.000
benchmk *machine 6 2.0286E+10 3381064448 2720.87 0.000
instclas *benchmk *machine 6 42873588 7145598 5.75 0.005
skilam *benchmk *machine 6 1263522304 210587056 169.47 0.000

Error 12 14911704 1242642
Total 47 7.4742E+10

D - 19



res id
* *

-  * *
-  * *  2 

0+ +643**
2 **

* *
-  * *

- 1200+

* *

+- - - - - +- - - - - +- - - - - +- - - - - +- - - - - +- - - fitted
0 30000 60000 50000 120000 150000

1200+
* *

Residual Plot: Z

The ‘Residual Plot: 2’ now clearly shows that variance increases from left to 
right. This kind of problem can sometimes be solved by using logs especially if the 
observations cover several orders of magnitude as these do.

D - 20



Anova Table: 3
Analysis of variance for logtime

Source DF SS MS F P
instclas 1 0.2353 0.2353 2094.27 0.000
skilam 1 5.2917 5.2917 4.7E+04 0.000
benchmk 3 89.7335 29.9112 2.7E+05 0.000
machine 2 51.7687 25.8843 2.3E+05 0.000
instclas *skilam 1 0.0089 0.0089 78.76 0.000
instclas *benchmk 3 0.0036 0.0012 10.53 0.008
instclas *machine 2 0.0165 0.0083 73.47 0.000
skilam *benchmk 3 0.0168 0.0056 49.89 0.000
skilam *machine 2 0.0174 0.0087 77.47 0.000
benchmk *machine 6 0.0917 0.0153 136.00 0.000
instclas * skilam *benchmk 3 0.0090 0.0030 26.79 0.001
instclas *skilam *machine 2 0.0006 0.0003 2.89 0.132 n.s.
instclas *benchmk *machine 6 0.0072 0.0012 10.71 0.005
skilam *benchmk *machine 6 0.0404 0.0067 59.91 0.000

Error 6 0.0007 0.0001
Total 47 147.2421

D - 21



res id
*  *

0.0060+
* * * *

* *

* * * * * *
* *

0 . 0000+ * * * * * * * *  *  *  * *
*  *

* * 2 * *

*  *

*  *

-0.0060+
*  *

— +- - - - - +- - - - - +- - - - - +- - - - - +- - - - - +f itted
6.0 7.2 8.4 9.6 10.8 12.0

Residual Plot: 3

In this case all second order and all but one of the third order interactions are 
significant. The ‘Residual Plot: 3’ looks better than the previous one though not 
completely satisfactory.

Try removing the insignificant effect from anova table:3. The th ird  order in
significant effect which is removed is (instclas*skilam*machine).

D - 22



Anova Table: 4
Analysis of variance for time (3rd order insignificant effects removed)

Source DF SS MS F P
instclas 1 0.2353 0.2353 1421.85 0.000
skilam 1 5.2917 5.2917 3.2E+04 0.000
benchmk 3 89.7335 29.9112 1.8E+05 0.000
machine 2 51.7687 25.8843 1.6E+05 0.000
instclas * skilam 1 0.0089 0.0089 53.47 0.000
instclas *benchmk 3 0.0036 0.0012 7.15 0.012
instclas *machine 2 0.0165 0.0083 49.88 0.000
skilam *benchmk 3 0.0168 0.0056 33.87 0.000
skilam *machine 2 0.0174 0.0087 52.59 0.000
benchmk *machine 6 0.0917 0.0153 92.34 0.000
instclas *skilam *benchmk 3 0.0090 0.0030 18.19 0.001
instclas *benchmk *machine 6 0.0072 0.0012 7.27 0.007
skilam *benchmk *machine 6 0.0404 0.0067 40.68 0.000

Error 8 0.0013 0.0002
Total 47 147.2421

D - 23



res id
* *

0.0070+

0 .0000+

*

* Z *

* * *
* z * *

*
* * *

*

* * * *

z * *
* * * *

* * * * * *  * *
*  *

-0.00/0+ ** *

*  *

— +- - - - - +- - - - - +- - - - - +- - - - - +- - - - - +f itted
6.0 7.Z 8.4 9.6 10.8 12.0

Residual Plot: 4

The Residual Plot: 4 shows a tendency for variance to decrease from left to right. 
The four biggest residuals belong to the observations at benchmark 1 on machine 2. 
These four observations are not very well explained by the model.

We removed out the instclass*machine*skilam  interaction because it was insignif
icant. However, it seems possible th a t even though this interaction is not significant 
these is some complex relationship between these factors which our new model fails 
to deal with.

D - 24




