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Abstract

The advent of an object—oriented processor, the REKURSIV, allowed the
possibility of investigating the application of object—oriented techniques to
all the levels of a software system’s architecture. This work is concerned with
the implementation of a database system on the REKURSIV. A database
system was implemented with an architecture structured as

o An external level provided by DEAL, a database query language with
functions.

e A conceptual level consisting of an implementation of the relational
algebra.

e an internal level provided by the REKURSIV system.

The mapping of the external to the conceptual levels is achieved through
a recursive descent interpreter which was machine generated from a syntax
specification. ‘

The software providing the conceptual level was systematically derived
from a formal algebraic specification of the relational algebra.

The internal level was experimentally investigated to quantify the na-
ture of the contribution made to computational power by the REKURSIV’s
architectural innovations.

The contributions made by this work are:

o the methodology exposed for program derivation (in class based lan-
guages) from algebraic specifications;

o the treatment of the notion of domain within formal specification;
e the development of a top-down parser generator;

o the establishment of a quantitative perfomance profile for the REKUR-
SIV.
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Chapter 1

Introduction

1.1 Background

In November 1988, Dundee Institute of Technology won a grant under the
Department of Trade and Industry’s Awareness Initiative in Object-oriented
programming. The grant included the award of a REKURSIV processor [52]
board (manufactured by Linn Smart Computing, Glasgow) to be hosted on
a Sun workstation. The aim of the initiative was to develop applications
software to run on REKURSIV systems.

Workers at the Institute had for several years been actively cooperating

with workers at other institutions in the development of a relational lan-

guage DEAL (DEductive ALgebra) [26]. This work had included both query
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language implementation and application : HQL ( an Historical Query Lan-
guage) [90] and Graphical Databases [112]. Given this experience the natural
goal of the group was to work on DEAL in the context of the REKURSIV.

The language DEAL makes use of an extended relational algebra. The
extensions aim to provide facilities useful to knowledge processing - user
defined functions, recursion and to some extent deductions.

Turning to the target machine, the REKURSIV is a microcodeable pro-
cessor that utilises a persistent object store. The processor is object-oriented

in these ways

Objects in memory are addressed by unique object identifiers.

e Object images on disk are in direct correspondence with their main

memory image.

e Objects’ types (classes) and sizes are stored in parallel with their con-
tents allowing hardware type checking or hardware assisted dynamic

binding and method lookup.

e The virtual memory manager deals with (arbitrarily sized) objects
rather than fixed size pages and so strategies to keep the most use-
ful objects in primary storage can be employed (rather than strategies

that keep an area or page of memory that contains a useful object as
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well as parts of other objects)

In addition, the REKURSIV’s microcode level has stacks available to it which
facilitate recursive processing.

The Smalltalk-like language Lingo ([53]) provides a convenient program-
mer interface to the underlying REKURSIV hardware, obviating the need
to microcode. Harland, the REKURSIV’s designer, has claimed (informally
within conversations during the progress of the initiative) that the purpose of
the REKURSIV is to execute Lingo programs and so it can be assumed that
the microcode support for Lingo is near optimal in its use of the hardware

capability.

1.2 Scope of the study

This study concerns the implementation of a complete database system based
on DEAL on the REKURSIV. The general aim is to attempt to quantify the
advantages that the REKURSIV architecture and environment (or aspects
of it) offer for a particular approach to query language development.

The approach is based on a formal attitude towards the relational algebra.
The relational algebra, rather than an object-oriented model, is chosen since

it is a well studied and mathematically stable model. Chapter 6 discusses
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the algebraic specification of the relational algebra and the derivation of
programs from such a specification. A side benefit of such a specification is
that database terms such as domain and attribute, which are used differently
by different authors, can be given precise and unambiguous meanings.

The concern of the study is limited to memory-resident data sets. This

decision is based on these observations :

o A key feature of the REKURSIV is its object-oriented store. The issue
of its performance is more clearly aired in the absence of unassociated
disk operations which, anyway, are largely beyond an implementor’s
control. Disk operations cannot be completely avoided in a system
that has a virtual memory. An intention behind the restriction to
data sets that could reside in physically existing memory is to avoid
the contamination of performance results by factors attributable to the
system that hosts the REKURSIV, that is a SUN workstation and its

operating system.

Moreover, much database machine work [4] [6] [15] [59] [28] has centred
on increasing bandwidth of data flow from the data store (disk) to the
processing elements by using parallel processors and placing processors
as close to the disk surface as possible. Such a fundamental level of

hardware configuration was not available for this study and so the work
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reported here does not attempt to contribute to the database machine

domain.

e The computational effort that we are primarily interested in observing
emanates from the deductive nature of the queries. Such queries typ-
ically involve recursion and the building of closures rather than scans

through large relations.

The choice of a relational algebra based query language rather than a logic

programming (Prolog) approach is made given the following considerations :

e The security of the system is easier to control, and its integrity and
consistency rules are more succinctly expressed, within a framework of

types, schemas and keys, all of which are absent from Prolog.

e The resolution proof procedure of Prolog is not transparent to the pro-
grammer: some queries are only successfully expressed by judicious use
of the cut whose correct positioning is determined by considering the
route taken through rules by the Prolog proof mechanism. In addition,
there can be no consolidation of proof computation (in the form of lem-
mas or the storage of a derived clause) without recourse to metalevel
predicates assert() and retract (pages 94 to 96 of [42]). Prolog con-

cerns itself with the process of the proof, giving the deduction itself as
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a side effect.

1.3 Objectives

The objectives of the work carried out in this study are to
e Implement a database system on the REKURSIV processor.

o Use the implementation to investigate the performance of the REKUR-

SIV.

o Evaluate the results of performance experiments in terms of positive
contributions to computation made by different aspects of the REKUR-

SIV architecture.

1.4 Summary

This chapter has introduced the main ingredients of the work — object—
orientation, the REKURSIV, formal specification, deductive query languages
and the relational algebra. This disparate collection of domains is brought
to bear on the central task being undertaken (the development of a database
system) so as to exercise an object—oriented processor and evaluate its impact

on performance and the software engineering life cycle.
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To clarify the interrelation of these domains to the work, consider the
architectural diagram which is based on Date’s ([24]) generalisation of the

ANSI/SPARC Study Group on Database Management Systems architecture

((107])

External level (individual user views)

Conceptual level

(Community user )
view)
\ J
Internal level [ )
(Storage view)
. J

The three levels of the architecture as described by C.J. Date.

e The ezternal level concerns itself with the way data is viewed by users.
This is provided through the language DEAL for which an interpreter
(written in the language Lingo) was constructed. There is also an “em-

bedded” DEAL in the sense that the interpreter object can be interro-
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gated from any Lingo code. A description of DEAL and the synthesis
strategy used by the interpreter are discussed in chapter 4. The anal-
ysis (lexical and syntactical) phases of the interpreter are discussed
in chapter 5, along with the construction of a generalised translator

generator.

The conceptuallevel consists of abstract representations of the database.
This is provided by a set of Lingo objects modelling the relational alge-
bra — relational tables and relational operators. This level separates the
external level from the storage details of the database. The implemen-
tation of these Lingo objects was derived from a formal specification
(written in Standard ML). This aspect of the work is reported in chap-

ter 6.

The internal level concerns the way data is physically stored. In this
case data is stored in the REKURSIV’s persistent object store. At
this level it is the performance of the REKURSIV that is of interest.
The performance evaluation of the REKURSIV is reported in chapter
7 where two storage strategies (hash tables and balanced trees) are
compared (both on the REKURSIV and a Smalltalk/V system on an
IBM PC) and a general performance profile for the REKURSIV is

established.



CHAPTER 1. INTRODUCTION

15

The REKURSIV itself is described in chapter 3.

The next chapter contains a literature review supporting this work.



Chapter 2

Literature review

This chapter depicts, with reference to a body of literature, the climate which
has influenced work on the project. The structure of the chapter follows
the last chapter’s description of the different levels in a database system’s

architecture:

e The first section looks at specialised hardware support for advanced

language systems and then, specifically, database systems.

e The second section covers briefly the historical context of the develop-

ment of database query languages based on the relational model.

e The third section reviews the sources that have informed the formal

algebraic approach to program derivation that was used to implement

16
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the relational model.

2.1 Hardware

2.1.1 Programming Language support

During the late 1970s and throughout the 1980s, workers in many comput-
ing domains proposed architectures for machines (virtual or physical) that
would better support their computational paradigm. Looking first at lan-

guage based paradigms, it is instructive to consider the following:

¢ Functional Programming -

An evaluation strategy for applicative languages, known as SECD (Stack,
Environment, Control list, Dump) inspired abstract machines ([1, 56])
of which arguably the best known is Cardelli’s Functional Abstract
Machine (FAM, [14]) used in the University of Edinburgh’s implemen-
tation of Standard ML. The hardware support for Lisp described in

[105] has its roots in the SECD approach.

~ A more modern evaluation strategy is based on super-combinators and
lambda lifting ([60]) which in turn derives from the combinator ap-

proach of Turner ([108]). Again, the history of this line of development
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includes the definition of abstract machines and then their embodiment
in hardware. For the simple combinator approach, the combinators
themselves can be regarded as the instruction set for a machine ([11])
which is usually implemented virtually but has been constructed out of
hardware ([17]). ALICE (the Applicative Language Idealised Comput-
ing Engine) developed at Imperial College ([22, 23]) is an example of a
hardware embodiment of a combinator machine. The hardware was not
customised however. Instead, ALICE utilised the INMOS transputer
(a parallel processing element) and took advantage of opportunities for

parallel evaluation afforded by applicative programs.

Abstract machines that support the specialised combinators (super—
combinators) found by lambda lifting to suit a particular applicative
program include the G machine ([64]) and the Three Instruction Ma-

chine (TIM) of Fairbairn and Wray ([29]).

As well as these machine designs, thought has also been given to the
operating system layer, often as a tour de force in functional program-
ming ([67, 1, 104]).

A complete ‘functional programming workstation’ is the Symbolics
LISP machine ([114, 44]). This machine is often associated with its

object-oriented component known as flavors ([79]) and so is consid-
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ered under the next heading.

e Object—oriented programming — Perhaps the largest language de-
velopment in this area is that of Smalltalk—80 described by Goldberg in
[39]. Strictly speaking the term ‘Smalltalk—80’ refers to a system and
not just a programming language, since Goldberg’s book (acknowledged
as definitive) covers a language, an operating system and a program-
ming environment. The original goal of the team at Xerox Palo Alto
Research Center was to provide the complete software for a personal in-
formation management system, the Dynabook ([68]), an advanced idea
for the mid 1970s before the advent of the personal computer. From the
outset, the language development effort was affected by the search for
efficient implementations since the system aimed to present an accessi-
ble graphical interface to users which involved resource hungry compo-
nents such as a windowing system, icons and menus. Indeed the early
success of Smalltalk—72 ([98]) concentrated on graphics: the graphical
Pygmalion system ([99]) inspired the Star office system ([100]), a pre-

cursor to today’s graphical user interfaces such as Microsoft Windows.

With the experience of deficiencies in Smalltalk-72, Smalltalk—76 ([61])
established the essential message passing syntax of today’s Smalltalk

systems and introduced an intermediate language to which Smalltalk
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expressions were translated. This intermediate language increased exe-
cution speeds dramatically ([62]) and was the forerunner of the Smalltalk—
80 virtual machine established by Goldberg and others along with the
language in [39]. Two other works published at the time have also
become the definitive texts on Smalltalk systems: Goldberg [40] de-
scribed the programming environment and in [70] (edited by Krasner)
the experiences and conclusions of teams who had implemented the
Smalltalk—-80 virtual machine on a spectrum of hardware platforms
from Motorola 68000 systems to Digital Equipment’s VAX minicom-
puters. Of the ten implementations compared there, only three were
on microprogrammable customised hardware: two on the Xerox Dol-
phin and a third on the Xerox Dorado ([86, 87]). The Dorado per-
formed best of the set of implementations and became the machine
used for Smalltalk by Xerox. This is perhaps hardly surprising since
the Dorado utilised Emitter-Couple Logic (ECL) technology to achieve
a short instruction time (as opposed to the MOS technologies utilised

in its competitors).

Ungar and Patterson, writing in 1987 ([111]), describe a Reduced In-
struction Set Computer (RISC [85]) approach to implementing Smalltalk

called SOAR (Smalltalk On A RISC). Based on simulation experiments,
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they claim a marginally superior perfomance to the Dorado, despite the
SOAR having an instruction time over 5 times that of the Dorado. In-
terestingly, they show that the performance advantage of the Dorado
over Motorola 68010 systems is in line with what one would expect
from the ratio of their instruction times. Taken together, these two
assertions indicate that SOAR’s performance advantage is attributable
to an architectural difference rather than a different underlying imple-

mentation technology.

The Symbolics LISP machine mentioned previously ([114, 44]) may
appear an odd candidate to support Smalltalk-like object—orientation.
Many of the difficulties in the execution of object—oriented programs,

emanate from their dynamic nature:

— run time type checking - since new types can be created actu-

ally at run time, this appears unavoidable.

— dynamic binding of messages — since routines are associated
with data structures, and the types of data structures are not
known until run time, the addresses of the routines to be invoked

cannot be computed at compile time.
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— dynamic storage management — the message passing paradigm,
together with information hiding and encapsulation, favours heap
(dynamic) memory use. Indeed, [111] reports that Smalltalk pro-
grams tend to generate garbage ten times faster than most Lisp

programs.

Given this, run time support for object—orientation involves many ta-
bles and levels of indirection (method look—up tables, object identifiers
and so on). Lisp machines, optimised for the classical list structure,
the ‘cons’ of a ‘head’ atom to a ‘tail’ list, provide this support read-
ily. In addition, Lisp in general does not differentiate between data
and code — everything is either an atom or a list, including functions
which via A-expressions can be treated as data and generated at run
time. This property directly supports the dynamic message binding of

object—orientation.

The Symbolics, the Dorado and the SOAR are examples of ‘tagged’
architectures where some bits of every machine word are used to denote
the kind of object the word represents. In the case of the Dorado
and the SOAR a single bit is used to differentiate between integers
and pointers. The Symbolics uses its tags to differentiate between

atoms and lists. Lists are further differentiated to support a more
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efficient storage regime known as ‘CDR coding’ ([114]) which reduces

the number of pointers that need to be stored.

2.1.2 Database machines

A number of dedicated database processors have been designed and built.
In general, the approach has been to increase the bandwidth of database
systems by introducing parallelism and placing processing power as close to
the disk storage system as possible.

The following are two representatives of the multiprocessor approach:

e GAMMA ([28]) consisted of 17 VAX 11/750 processors connected via
a high speed token ring network. Although a distributed system, query

processing was centrally controlled.

e RDBM ([95]) contained specialised processors for sorting and support-
ing binary relational operations. These special function processors
shared a memory. It also contained a content addressable memory.

All the hardware was centrally controlled by a minicomputer.

The VERSO machine ([33]) used a device akin to a finite state automaton
to filter data more or less as it comes off the disk (actually out of the buffers

to which the disc controller had direct memory access). In this way it is
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capable of selection and projection as well as binary operations.
The emphasis on parallelism led to much work on devising parallel al-

gorithms for relational operations and configuring multiprocessor systems

([8, 9, 10]).

2.2 Database Query Languages

Following Codd’s seminal work ([18]) on the relational model languages for
information retrieval moved from being procedural and record-oriented (such
as COBOL, where programmers had to involve themselves with the intrica-
cies of strategies to perform tasks) to non—procedural languages based on
the relational calculus. Notable among these is the language QUEL of the
INGRES database management system ([103, 55]). QUEL realised the no-
tion of ‘tuple variables’ introduced by Codd in a proposed language ALPHA
([19]) which are existentially quantified variables. The general form of QUEL

queries 1s:

RANGE OF <tuple variable> IS <relation>
RETRIEVE
(<relation>.<attribute>)

WHERE <predicate>
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where both the RANGE and RETRIEVE clauses can take more than one
operand.
An example where the relation Human has scheme (age, gender, name)

is

RANGE OF X IS Human
RETRIEVE (X.gender, X.name)

WHERE X.age >= 18

which retrieves the names and genders of all humans aged 18 or more.
At about the same time, another relational calculus based language, SQL
([16]) was developed by a team at IBM. The above query could be given in

SQL as:

SELECT gender, name
FROM Human

WHERE age >= 18

which is superficially very similar to QUEL. SQL, however, differs signif-
icantly from QUEL in that it allows the formation of intermediate relations
and operations of set union and set difference on these and also a form of

nesting sub-queries. These differences give it the complete power of the re-
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lational calculus by overcoming the lack of universal quantification and also
some of the character of the relational algebra since sets can be worked with.

An interactive form of the relational calculus known as Query By Ex-
ample, QBE ([116]) is interesting as it allowed users to formulate queries
by filling in example values in on-screen forms. Gray ([42]) draws out the
interesting correspondence between QBE’s example elements and Prolog’s

variables.

2.2.1 Deductive Database Systems

With the success of the relational model and the widespread adoption of
SQL, much interest has emerged in attempting to create database systems
which enhance database querying techniques by allowing logical inference.
Such systems may be termed Knowledge based systems.

The following example on ancestry, often used in discussion of deductive
capability, will be referred to throughout this subsection to elucidate the
concerns in this area.

We may have certain facts stored in a database concerning parenthood.
That is we may have a relation, parent say, with scheme (name, child). The
membership of a tuple such as (‘louis’,‘ruth’) in the relation parent expresses

the fact that it is true that ‘louis’ is a parent of ‘ruth’. We may also have
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knowledge based on some rules rather than the simple facts contained in
the parent relation. For example, we know that in order for X to be a
grandparent of Y, there must be a Z such that the tuples (X,Z) and (Z,Y)
are present in the relation parent.

Another relationship we may be interested in is that of ancestor: here P
is an ancestor of @ if there is a set of tuples (P,I1),(f1,12),. . - ,(In,@) for some
n (perhaps zero).

A difficulty with SQL is its ‘flatness’ — since it has no means of embodying
indefinite nesting of queries. Although a query can be formulated for the
grandparent relationship above, the same cannot be done for the more general
ancestor (unless a limit is artifically placed on the number of generations to
look back). More formally, it is not possible to compute the transitive closure
of a relation ([3]).

By contrast, the language Prolog allows a succinct modelling of the above.

parent(louis, ruth).

parent (odette, louis).

parent(elias, odette).

grandparent (X,Y) :- parent(X,Z), parent(Z,Y).

ancestor(X,Y) :- parent(X,Y).
ancestor(P,Q) :~ parent(P,I), ancestor(I,Q).

At this point, the Prolog system contains both facts and rules for deriving
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new facts (such as ‘elias’ is an ancestor of ‘ruth’). These new facts, though,
are not derived until the system is appropriately queried with, for example,
7~ ancestor(4,B). which would retrieve all ancestors.

The manner in which the marriage of facts and rules within a deductive
system is achieved has been the characterising feature of deductive query
languages. The tension exists since, on the one hand, Prolog has excellent
deductive capability and on the other, relational database systems support
the storage and retrieval of facts.

A number of language systems have been designed for data models other

than the relational model and in particular the Functional Data Model:

e DAPLEX ([97]) models the rules of a knowledge base through inten-

tionally defined functions;

e FQL ([12]) operates on streams akin to the lazily evaluated lists of

functional programming languages such as Miranda ([109]);

e FDL ([88]) addresses some deficiencies in DAPLEX - computational
completeness, uniform storage regime for all functions and support for

arbitrary construction of types.
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For the relational model, attempts have been made to build on the success

of SQL:

e SQUIRREL ([113]) extends the syntax of SQL to allow the inclusion
of rules and their manipulation by allowing relations to contain logic

statements;

e LQL ([96]) has logic-based extensions to SQL, where rules can be ex-
pressed with left hand sides as in Prolog and right hand sides SQL

expressions.

DEAL ([26]) by contrast extends SQL by allowing recursion and the def-
inition of relation returning functions. DEAL has, however, no real notion
of rules and so cannot be classified as a deductive database system any more
than a general purpose programming language which happens to have rela-
tions amongst its built—in types. More information on this can be found in

chapter 4 since DEAL is the chosen language for this work.

2.2.2 Functional, Deductive and Object—oriented Databases

There is much interplay between these three approaches. Each approach has

a characteristic essence:
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e Functional Database systems, such as Buneman’s FQL ([12]) and Ship-
man’s DAPLEX ([97]), make use of functional data models based on
‘the fundamental concept of function to model relationships among real
world objects’ (Gray et al, [43]). Two kinds of item are present within
the functional data model: entities (that model real world objects) and
scalars (reals, integers, strings and so on). Functions map items to
items. Multi-valued functions are allowed for flexibility. Buﬂt—in type
constructors allow definition of sequences and tuples. Functions can
be combined in various ways: function composition and restriction are
common. In the functional data model view, the distinction between
stored aﬁd derived data is removed: queries (requests for answers) are

‘essentially requests for a value of a function, given argument values’

(Folinus et al,[30], as quoted in Gray, ([43])).

4

e Deductive database systems ‘.. contain inference rules which can be

used to deduce new facts from those stored ezplicitly’ (Frost, [31]).

Non-deductive systems may also contain rules which serve as integrity
constraints restricting the permissible database states. In contrast,
deductive systems, although they may also allow the expression of in-
tegrity constraints, contain inference rules with which to deduce new

facts. Deductive processes, such as resolution, are directly supported
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by the system and so the set of inference rules is specified by the user

rather than the process of inference and deduction.

e Object—oriented database systems generally have origins in object—
oriented programming languages: entities from the real world are rep-
resented as objects which encapsulate structure and behaviour. All
objects are members of a class or type and can only be accessed and
manipulated through operations defined on their class (Date, [24]). In
object—oriented database systems, both the data and programs associ-
ated with an object are stored. The approach can be summarised as
‘embedding semantics into database objects’ (Date, [24]). The relation-
ship between object-oriented data models and semantic data models is

close (Gray [43]).

All three approaches above concern themselves with the relationship be-
tween what can be termed, coarsely, code and data. Both the functional data
model and objected-oriented model remove the distinction largely by only
providing access to operations (code). Deductive systems are based on the
uniform treatment of data whether stored as facts (data) or deduced by the

application of rules (code).



CHAPTER 2. LITERATURE REVIEW 32

2.3 Program derivation

Much space is given in chapter 6 to the discipline under which the implemen-
tation of the conceptual level of the database architecture has been achieved.
In this section, the historical background to the discipline is covered.

The interpretation of abstract data types as many-sorted algebras (a col-
lection of named sets and operators between them) is due to Morris ([80]),
extended by Guttag ([45, 46]) and largely formalised by Goguen ([35, 36]).
The key insight of this work was to abstract data types away from their
representations and to show that the relationships between their operators
characterised them. A significant contribution in [36] was the application
of ideas from category theory, a branch of mathematics that is used to re-
veal ‘natural’ characteristics of algebraic structures that may be hidden by
representation detail.

Defining the semantics of operations by axioms was introduced by Hoare
(57)).

Specification languages incorporating a formal notation for abstract data
types and abstract operations were introduced by both Guttag (LARCH,
[47]) and Goguen (OBJ, [37]). |

An early equational program (to insert values into 2-3 trees) was pro-
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vided by Hoffman and O’Donnel ([58]). This was extended by the inclusion
of removal of values by Reade ([89]). (Reade’s SML specifications were used
by the author to derive the balanced tree implementations used in the per-
formance experiments reported in chapter 7).

The design of programs by refinement of abstract data types towards
‘implementations’ based on abstract models of concrete representations is
discussed in [20, 65].

Goguen and others ([32, 38]) incorporated a facility to support state infor-
mation in abstract data types in the algebraic specification language OBJ2.

A survey by Samson and Wakelin ([93]) on algebraic specification of
databases reveals that little work has been done on the specification of
database operations (rather than queries). In particular, they detect a lack
in the treatment of the idea of attribute domains and recommend further

work.

2.4 Summary

This chapter has collected the main contexts in which this work has been
undertaken.

Specifically, these are:
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e Specialised hardware platforms — the work of the project was carried
out on a REKURSIV processor. The background of database machines,
machines to support the functional programming paradigm and object—
oriented platforms have been described. A detailed description of the

REKURSIV is to be found in the next chapter.

e Database Query Languages — the language implemented within the
project, DEAL, has been placed within a spectrum of other language
approaches. DEAL, which can be characterised as a ‘database query
language with functions’ is based on the relational model and falls
short of providing a deductive database system. Chapter 4 describes
the language in more detail. Chapter 5 describes the implementation

of the language.

e Program derivation — most of the underlying computational machinery
of the project that supports relational algebra operations was obtained
by deriving programs (in the language Lingo) from formal algebraic
specifications written in SML. Chapter 6 describes this derivation pro-

cess in greater detail and goes on to show how the implementation can

be further refined.

The next chapter returns to the internal level of the database architecture



CHAPTER 2. LITERATURE REVIEW 35

with a presentation of the hardware used for the project — the REKURSIV.



Chapter 3

The REKURSIV

The REKURSIV processor differs from a conventional architecture in two

principal ways.

e Data Types. At the machine level, a conventional architecture provides
the programmer with a memory consisting of an array of equally sized
cells each holding a bit pattern. The REKURSIV provides a structured
space of objects, each having a type and size associated with it. The
type and size of an object are retrieved from memory in parallel with
the actual data parts of the object and can be inspected and used to

determine execution sequence at the micrcode level.

36
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Harland’s intention behind the design of the REKURSIV is to narrow
the semantic gap that exists conventionally, where, at the programmer
level, complex data types are used to maximise expressivity whereas at
the machine level these data types are implemented by complex mech-
anisms involving several memory accesses and much processing. On
the REKURSIV the burden of type checking is placed on the machine
hardware. The chore of bundling and unbundling data between its
high level structured organisation and a collection of machine words is

removed.

e An Object Store. The REKURSIV addresses memory by unique object
identifiers which are the only method of memory access available to
the programmer. The provision of a virtual memory is facilitated by
using the same representation for an object’s disk image as it has in
physical memory. This allows memory management strategies which
seek to maintain frequently used objects in real memory as opposed to
frequently accessed pages. In addition this mechanism allows the object

store to persist.

The REKURSIV is constructed from a set of proprietary chips called

LOGIK, NUMERIK, OBJEKT and KLOK.
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e LOGIK is the sequencer that controls the microprogram execution. It

is connected (by separate data paths) to various memories containing

— the microcode (in the Control Store).

— the map between machine level instructions and microcode se-

quences (in the Control Store Map)
— abstract instuctions (the NAM)

— a stack for use by the microcode level (the CSTK)

LOGIK also has addressing logic for another stack memory (the ESTK),

which is used by NUMERIK as an evaluation stack.

e NUMERIK takes the place of a conventional ALU containing sixteen
thirty two bit registers. NUMERIK is connected to its own stack (the
evaluation stack or ESTK) whose addressing is controlled by LOGIK.
In addition it is connected to the main memory (the DRAM) of the

object store (which is managed by OBJEKT)

e OBJEKT manages the object store. It contains circuitry to create new
object identifiers, create space in the DRAM for objects, generate (and

range check) addresses into the DRAM. It is connected to two memories
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— the DRAM — this is the main memory where the contents of ob-
jects are actually stored. OBJEKT handles all aspects of address-
ing this - indexing, range checking, allocating and deallocating

space.

— the pager tables — these take the place of the page tables in
a conventional virtual memory. The object identifier, size, type
and first word (of the contents or representation) of each object
physically present in the DRAM is stored here. When servicing a
request for an object, OBJEKT addresses the pager tables using
the bottom 16 bits of the object identifier. The object identifier
found in the pager tables is then compared with the required one
— a match indicates the object is in the DRAM. If there is no
match the object must be swapped in from DISK and OBJEKT
handles the communication with the disk processor (DP) to effect

this.

The Rekursiv’s pedigree

Clearly the design of the Rekursiv did not occur in a vacuum. At the time
that Harland’s [52] book was published (1988), RISC architectures were the

apparent way forward for processor design and indeed Harland devotes a



CHAPTER 3. THE REKURSIV 41

section of his book to a discussion between proponents of the RISC and
EISC schools of thought. A major line of argument that Harland supports
is that RISC architectures do not tolerate changes of control flow. Many of
the advantages brought about by RISC features such as instruction caches
and pipelining, are antagonised by such changes.

It is perhaps unfortunate that Harland does not capitalise on a previous
work [51] to connect this line of argument and his concept of the semantic
gap more closely with the question of types and their promotion to first class
citizens — entities on which computation can be performed and which are a
primary means of programmer expression. Instead, the microcodability of
the Rekursiv is stressed strongly throughout the book.

It is instructive to view the progress and learning curve of project groups
under the Object-oriented initiative which in effect became the sole theatre
in which the Rekursiv showed itself to the world. Originally many groups
anticipated microcoding instruction sets tailored towards their problem areas.
When the Rekursivs were delivered, the only la,nggage compiler supplied with
them was a C compiler that compiled code which executed in one of the
Rekursiv’s stacks and allowed a very primitive interface to the object store.
At the time no mention was made of any other software for the Rekursiv,

including Lingo, and many groups concentrated on adding to the microcoded
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instruction set that supported C ([102]).

About six months into the project, it became apparent that some groups
had received copies of the language Lingo (as well as a Prolog and a Forth
implemented in Lingo) on an ad hoc basis, normally because they had been
finding the C compiler inadequate and had been in communication with
Linn-Smart. At the second Rekursiv workshop, reports by these groups on
the efficacy of Lingo circulated and in the ensuing discussion it became quite
clear that the Rekursiv was intended primarily as a Lingo engine and that in
fact the language predated the processor. By the end of the initiative, with
the demise of Linn-Smart the focus was completely on Lingo. Indeed many
groups supported the intention to attempt to carry on Lingo development
on other platforms.

This ‘shifting goal-posts’ period was unfortunate since in retrospect a
clearer and cleaner justification for the Rekursiv could have been made by
focussing on the design of the language Lingo. Its ancestry is the program-
ming through types school of thought. Proponents of this line of attack
include Harland himself ([51]), Burstall and Lampson ([13]) with their lan-
guage Pebble and Milner ([77],[78]) and the polymorphism of SML.

The flat world of a conventional view of memory (and in this respect von

Neumann machines and RISC are equivalent) sits uneasily with program-
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ming through types. Since these machines do not support the storage of
semantics along with data and do not support the variety of sizes and shapes
of the abstract structures on a programmer’s palette, they are forced to re-
sort to tortuous control flows to manage expressive programs. Yet changes in
control flow are precisely what defeats the features that could increase their
bandwidth.

So this is the semantic gap — advances in technology (applied to an es-
sentially unchanged architecture) will give the same improvement in per-
formance to software produced from inexpressive C as they do to software
produced from expressive functional or object-oriented languages and so C
will always be used by preference. (Or put in other terms, RISCs support C
and tolerate Smalltalk, say, only by more or less translating to C and playing
by the rules of the game in a C world!).

This vicious circle can perhaps be broken by an architectural change that
allows technology to support the expressivity that language design has given
the programmer. If types are part of the palette (just as arithmetic and
decision making are conventionally) then the architecture should allow the
technology to work directly on types (just as the hardware works directly on

arithmetic and decision making).



Chapter 4

The language DEAL

4.1 Introduction

Traditionally, database management systems were designed to meet needs
from business data processing applications. Areas such as Computer Assisted
or Automated Design are better supported by languages of Turing equivalent
power and with expressivity at least as high as that of modern programming
languages ([92]).

For several years, a group at Dundee Institute of Technology had been
involved with the development and utilisation of a relational query language,
DEAL ([26],[90],[112]). Some of this work was directed at using DEAL to

show that its enhanced expressivity made problems in certain application

44
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areas more tractible. These areas included —

e History — relational databases with an inbuilt model of time [90] allow
selection predicates to involve temporal relations. This is of use in a
wide variety of areas including, within engineering, design version and

configuration control.

e Graphics — CAD systems necessitate the integration of the Database
Management System with the ability to view and operate on database

objects graphically within the same language ([112]).

The usefulness of the language DEAL in real applications at the institute
was limited by the efficiency of the implementation and the language was very
much used as a research model against which to test ideas for further language
development [92] and to carry out experiments in algebraic specification of
the Relational Algebra [91].

DEAL (DEductive ALgebra) is a relational language. DEAL’s proposer
and designer, Deen, ([26]) was attempting to provide ‘a unified framework
for both conventional and deductive database processing.’

Rather than supporting knowledge based systems by providing Prolog,
say, with an interface to an underlying relational database, in DEAL the

relational language is extended. “Deductions” are regarded as the generation
guag g g
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of new facts from existing facts (extensional database) using deduction rules
(intensional database).

Despite Deen’s nomenclature and terminology, it is hard to see that mod-
ern interpretations of the words ‘deduction’ and ‘deductive’ are appropriate
to DEAL. Date ([24]), writing on the use of such terms, describes deductive

DBMS as follows:

Deductive DBMS: A DBMS that supports the proof-theoretic
view of databases, and in particular is capable of deducing ad-
ditional information from the extensional database by applying
inferential (or deductive) rules that are stored in the intensional
database. A deductive DBMS will almost certainly support re-

cursive rules and so perform recursive query processing.

As will be seen in this chapter’s description of DEAL, the language has
no real notion of ‘inferential rule’ in any deep sense. It does have func-
tions, which can be called recursively. These however are imperative, result—
returning subroutines that can modify variables. Some syntactic features
(link variables) allow the programmer to write functions that have a surface
similarity to the rules of Prolog. However, deduction is not directly sup-
ported any more than it is in a general purpose programming language such

as C or Pascal.
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4.2 Syntax

The concrete syntax of the DEAL interpreter that was implemented is de-
scribed by the following extended BNF where the metasymbols { and} are
being used to denote zero or more occurrences of the enclosed and the meta-
symbols [ and ] are used to indicate the optional (zero or once) occurrence
of the enclosed. In addition, all non-terminals of the grammar are enclosed
in angle brackets,< and >; terminal strings are enclosed in quotation marks,";
entities neither enclosed in angle brackets or quotation marks denote termi-
nal classes whose syntactic description is not further expanded. An example
of this is Identifier which denotes all terminal character strings which start
with an alphabetic character and are followed by (zero or more) alphabetic

Or numeric characters .
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<input>
<inputi>
<expr>
<term>

<factor>

<linkblock>

<blockil>
<block2>
<setOp>
<bin0Op>
<arithOp1l>
<arithOp2>
<stmt>

<asgn>

<whileStatement>::=
= "if" <cond> <stmt> ["else" <stmt>]

<ifStatement>
<stmtList>
<asName>
<cond>

<condition>
<defn>
<paramList>

<param>
<declaration>
<header>
<argList>
<funcName>
<predicate>
<relOp>
<constant>

= <inputi> ";" {
= <defn> | <filecommand> | <expr>
= <term> { <binOp> <term> }

= <factor> [<blockil>] [<block2>]

<inputi> ";" }

{<arithOp2><factor> [<blocki1>] [<block2>]}
Relation | Integer | String | <function>
| Var | LVar | LAVar |Identifier
| "(" <expr> ")" | <linkblock>

= <blockl> "where" <expr> "{"<predicatelist>"1}"
<predicatelist> ::=
= "[" <selectionList> "]"
= "where" <condition>

<predicate> {","<predicate>}

= kP | Vgt | ==t | wxxn
= <setOp> | <arithOp1>

= gu | Hnon

= gl I n/n

= <asgn> | <whileStatement> | <ifStatement>

| "{" <stmtList> "}
<asName> ":=" <expr>
“"while' <cond> <stmt>

{ <stmt> ";" }

= Var | Relation| Identifier| LVar | Function
::= "(" <predicate> ")"

<selectionList> ::=
= <predicate> { "and" <predicate> }

= "func" <funcName> " (" <paramList> ")" <stmtlist>
= [<param>":'<declaration>]

<expr> { "," <expr> }

{"," <param> ":" <declaration> }
= Identifier
- "int” I ”rel" I ”at” l "char!

- [ u(n <argList> uylj
= <expr> {","<expr>}

= Identifier
= <expr> <relOp> <expr>
= usu | ngu | fHy=n l ng= | =t "= I nlln l s34l

= Integer | String
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<function> = “eard" (" <expr> yw | ougn ou(n <expr> "y
| Function "(" <argList> ")"
<filecommand> = "run" String | "load" (Identifier | Relation)

| "save" Relation

DEAL allows SQL-like queries. For example, given a relation EMP (for
employees) with scheme ENAME, DNO, SAL (employee name, depart-

ment number and salary) we can have
e EMP [ ENAME ] - gives the relation containing just employee names.

e EMP [ ENAME, SAL ] - gives the relation containing employee names

and their salaries.

¢ EMP [ ENAME,DNO,NEWSAL := 1.1 * SAL | - gives a new relation

where each employee’s salary is increased by 10 per cent.

e EMP where SAL > 15000 — gives the relation with scheme ENAME,
DNO, SAL where each employee earns over 15000. This is an example

of a tuple predicate.

Functions can be defined in DEAL. For example

func fac (n : int )
{
if n =
fac := 1
else
fac :

o

n * fac(n-1);
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};

The parameters to a function can also include relations and attribute
names.

A more relevant example of a function that returns relations, is the fol-
lowing;:

func ancestor( x : char)

{
temp := (parent where childname = x ) [ parname];
if (card(temp) = 0)
ancestor := temp
else
ancestor := temp++ancestor(temp);

};

Here, the existence of a relation parent with scheme (parname,childname)
is assumed within which each tuple represents a parent relationship. Given
the above function definition, evaluating an expression such as

ancestor("Rachel_Natanson");

would result in a relation with scheme parname where each tuple con-
tains either a parent of "Rachel_Natanson" or the parent of another mem-
ber of the relation. In other words the result is the set of ancestors of
"Rachel_Natanson" that are known to the system via the relation parent.

Some explanation of the form of the ancestor function is needed: on the

face of it, the function takes a single parameter of type "char" and yet it is
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being called, within the recursive step, with the actual parameter temp which
must have type relation as a consequence of the preceding assignment. The
semantics of function application employed by the interpreter are such that,
should an actual argument to a function be a relation where a simpler type
was expected, the actual argument is considered to be a collection of individ-
ual values to which the function is applied in turn and then the individual
results are combined together using the relational union operator. This is
similar to an implicit map operator, as used within functional programming
to apply the same function to all the elements of a list. Where the conven-
tional map is related to the list constructor commonly known as cons, the
implied operator here is related to the relational operator union.

Clearly, to begin to approach the problem of calculating such things as
transitive closures some ‘higher order’ construct is necessary. Given the ba-
sic nature of the DEAL approach, the mechanism as above was chosen as
representing a trade-off between semantic and syntactic opacity (which was
already preceived to be high).

The “deductive” nature of DEAL is apparent in two facets - fﬁnctions
and the possibility of recursion allow the computation of transitive closures.
Additionally, a syntactic feature proposed by Deen ([26]), called ‘link ele-

ments’, allows queries to be expressed in a Prolog like form (this feature was
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not implemented by Sadeghi ([90])). As an example of this, consider the
classic query ‘Paul likes everyone who likes wine’ against a relation likes with

schema (name,object). An expression that returns the answer relation is —
[ name :="Paul",object := x ] where likes {x=name, object="wine"};

The result can be unioned with the original relation likes and the final
result used to update likes.(Note that this concrete syntax is not exactly that
proposed by Deen and was adopted in order to facilitate parsing. The tension
in the marriage of the syntax of SQL with that of Prolog reaches breaking
point here. The underlying model, though, (in terms of the abstract syntax)

does allow unification to be established via relational algebra operations).

4.3 Using the DEAL interpreter

An interactive session with the DEAL interpreter is started by creating an
instance of a Deal class object. For example, assuming z is a Lingo process

variable:
x := Deal new;

will initiate an interactive session that will end when a <ctrl> D is entered

for end of file (as shown in the following diagram).
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dialogParser

Lingo dialog] x := Deal neu ;

Deal> []

The object z still exists, with whatever environment the Deal object had,

and can be queried as in:

x ask:"parts where pweight > 14" ;

This query returns an object of Relation class, the relation being the
subset of the parts relation whose weight attribute is greater than 14.

The diagram shows this in operation.
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dialogParser

Lingo dialeg; x ask: "parts vhere pweight > 14" ;
string pnum string pname string pcolour int pueight string pecity

p6 cog red 19 london
p3 screu blue 17 rome
p2 bolt green 17 paris

Lingo dialog)} []

Within an interactive session, the DEAL interpreter recognises two cate-

gories of statement.

e Queries — the purpose of the language is to answer relational algebra

queries such as
parts where pweight > 14

but the interpreter will accept any expression — relational or arith-

metic — and print its result.
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¢ Environmental statements — these change the context in which
queries are evaluated. Functions that take parameters and return re-
sults, for example can be defined; Relations can be loaded from text

files and so on.

4.4 Conclusion

This chapter has introduced the major syntactic and semantic features of
the language DEAL. The next chapter, chapter 5, describes the detail of the
analysis and synthesis phases of the interpreter. The execution of DEAL
programs proceeds by traversing data structures, synthesised during inter-
pretation, and invoking more primitive operations (such as arithmetic and
relational algebra operators) as indicated by the synthesised data structures.

Following chapter 5, chapter 6 describes the development of the main set
of these operations, those involved in the relational algebra, from a formal

specification.
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Implementing the language

5.1 Introduction

The last chapter gave a description of the syntax of DEAL. This chapter deals
with its implementation — the method by which the language interpreter was
effected.

The term interpreter embraces the collective action of a number of objects.

Its overall action can be demarcated into three phases:

o Analysis - the recognition of the basic lexical elements of the language
(keywords, literal constants and so on) and the syntactic structures.
The former is effected in a subphase known as Lezical Analysis and the

latter by Syntaz Analysis.

56
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e Synthesis - the construction of data structures containing the essential
information (discerned in the analysis phase) needed to carry out the

intended computation.

e Execution - effecting the computation.

Separate objects are used for lexical analysis and syntax analysis and
these are termed the ‘scanner’ and the ‘parser’ respectively.
The parser is viewed as the ‘root’ object of the interpreter since the main

thread of execution through the interpreter is contained within it as follows:

e The code to carry out the actions of the synthesis and execution phases

is interspersed through the code of the parser.

e The parser calls methods of the scanner as required.

It is important to distinguish the strategy employed here from the con-
ventional model of an interpreter or compiler. Conventionally, phases of a
translator such as lexical analysis or syntax analysis, produce entire data
structures which are then operated upon by a following phase. The syntax
analyser, for example, normally concerns itself with building a parse tree
which the semantic analysis phase and code generation phase (or evalua-
tion phase, for an interpreter) utilise. The strategy upon which this work is

based does not build an ezplicit parse tree; this tree does exist, though, as
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the thread of ezecution through the syntax analyser’s recogniser procedures.
A consequence of this is that the processing of this implicit parse tree is
intimately bound with its construction; that is that semantic analysis and
synthesis (code generation or evaluation) occurs concurrently with syntax
analysis. The interpreter, is in a sense, parser driven.

The general strategy for the interpreter’s analysis phases (lexical analysis
and syntax analysis) is covered in appendix C. The syntax analyser uses a
predictive top-down method (recursive descent) to recognise the language’s
syntactic classes. Code to effect semantic actions is interspersed within the
parser’s code. In general, these semantic actions are synthetic and construct
data structures which the interpreter can then traverse at an appropriate
point and thus ‘execute’ the original DEAL source code.

The objects within these synthesised data structures approximate to the
‘object code’ that the compiler translates source code into. These are coded in
Lingo. Underlying these objects is a collection of objects providing primitive
functionality to support relational algebra operations. This last layer is dealt
with in the next chapter.

Given the above, the operation of the interpreter will be described in the
following way —

The BNF of a syntactic entity will be given and the points at which
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semantic actions will be inserted will be noted. The semantic actions will
then be described along with any objects contained within the data structures

that the semantic actions synthesise.

5.2 The topmost levels

The distinguished symbol of DEAL’s grammar is <input>. The production

that defines it is
<input> ::= <inputi1> '";" { <inputi> ";" }

The recogniser procedure (in Lingo) for <input> is an instance method
of the interpreter object. In the following diagram, a heavier type has been
used to emphasize the similarity of the recogniser procedure’s structure and

the extended BNF production on which it was styled:
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~

—

The condition controlling the while in the above represents the lookahead
and predictive nature of the parsing strategy. The condition amounts to
‘does the current token belong to the director set for <inputi> (i.e. the set
of tokens that can appear on the extreme left of an instance of <inputi1>)’.

The above code is, however, only reproduced here so that, in what follows,
the code necessary for parsing can be distinguished from the code inserted to
effect semantic actions. The procedure above may appear a little dense. This

is beacuse, in practice, the code for all recogniser procedures was generated
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automatically by a parser generator (discussed in appendix C) which was
constructed specifically for this work. The parser generator also assisted in
the insertion of code for semantic actions.

The semantic actions, A;...As, associated with this production are in-
dicated by annotating the BNF thus:

<input> ::= A; <inputi> A, ";" { <inputi> Az ";" }

The recogniser method has code for these actions interspersed amongst
the code given above for parsing at the points indicated by the annotated
BNF. The following diagram is intended to illustrate this by reproducing the

original parsing code in a lighter print:
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.. code for action Al ...
inputli;

... code for action A2 ...
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... code for action A3 ...

In this case the actions (associated with this production) are

e A, — open the initialisation file ‘init.deal’, execute it, then close it and

then intialise the exception handling mechanism.

Once the file (init.deal) is opened, the scanner is informed to take its
input from it and the same parsing loop as the above is executed until
the end of file is reached. The file is then closed, the scanner informed
to take its input from standard input and the exception handling mech-

anism directed to return control to this point in the process (so that
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syntax and run-time errors during the session will result in control
coming back to the recognition of the almost top level syntactic entity
<input1>). After this initialisation phase, a prompt ‘Deal>’ is printed
on the user window to indicate that the interpreter is in interactive

mode.

e A, — At this point, the actions associated with <inputi> have been

executed and so the prompt, ‘Deal>’ is printed on the user’s window.

e Az — Again the actions associated with <input1> have been executed

and so the prompt is printed.

The distinguished symbol <input> is not particularly interesting since it
is merely describing that a session with the interpreter consists of an indefinite
sequence of <input1>s separated by semi—colons. The above example does
serve the purpose of elucidating the manner in which the implementation is
to be described.

Turning to the syntactic entity <inputi1>, its BNF is
<input1> ::= <defn> | <filecommand> | <expr>

This is expressing the differentiation of top-level DEAL statements into

the categories



CHAPTER 5. IMPLEMENTING THE LANGUAGE 64

e <defn> — a function definition.

e <filecommand> — The two commands ‘load’ and ‘save’ allow retrieval
and storage of relations in external files in which their schemes are also
described. The ‘run’ command executes DEAL statements contained
in a file. This facility is intended to be used primarily for storage of

function definitions.

e <expr> - this last category represents expressions which the user wishes

to be evaluated and the result shown.

It is only this last alternative that has a semantic action associated with
it (at this level — the others have semantic actions within the recognition
procedures that are called as a consequence of their own recognition). The
actions required are to evaluate the data structure synthesised by the recog-
niser procedure for <expr> and then print the result. More concretely, actions
are associated as so:

<inputi> ::= <defn> | <filecommand> | A; <expr> A,

The actions are as follows

e A; - ‘remember’ the value returned by the call to the recognition pro-
cedure <expr> (this will be a data structure whose traversal leads to

the evaluation of the recognised expression). This ‘remembering’ is
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effected by assigning the return value of the procedure for <expr> to
a local (to the method for <input1>) variable. This local variable is

called result.

e A, — evaluate the expression and print the result. The data structures
representing expressions are so arranged that their traversal is effected
via a method with message selector evaluateWith: and: which takes
two arguments. The first argument is the global environment, a dic-
tionary containing the current bindings of all global DEAL variables;
the second is the current local environment, a dictionary for accessing
the current local DEAL data area (function parameters, locals and so
on). The interpreter maintains two Lingo variables for these: globals
and locals. The action A, is thus effected by the inclusion of the

following Lingo code.
self printLn: (result evaluateWith: globals and: locals);
These two actions are inserted into the recogniser procedure for <inputi>

as indicated in the following diagram where a lighter print is being used again

to indicate parsing code:
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¢ inputl § result
‘
, e Pefunevi dnciudesy {soannar Dokenl Hhes
i nci }
{ iFf Vector [*i # ~untl dnciudes s {moanser Soken) than
{ melf filecs
{ /* Al - “remember' the expr */
result := zelf axpr;
/* A2 - evaluate the expr and print */
gself printLn: (result evaluateWith: globals and: locals);
4
3

Having now established the principle of operation of the interpreter the
next two sections will deal with the detail of handling the major language

aspects of function definitions and expressions.

5.3 Function definitions

Function definitions have their top level syntax described in the production
for <defn> as follows:
<defn> ::= "func" <funcName> " (" <paramList> ")" <stmtlist>

As a concrete example, to facilitate explanation, consider the following
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DEAL function definition for the factorial function

func factorial( n : int)

{
if n=0 then
factorial := 1;
else
factorial := n * factorial(n-1);
}

Even though DEAL is more concerned with computation involving rela-
tions, the above example is useful to elucidate the interpretation of function
definitions — the next section that deals with the interpretation of expressions
will provide the detailed operation of the interpreter in handling relational
computation as well as function invocations.

Considering first the concrete example of factorial, the overall action re-
quired of the interpreter when the definition has been completely recognised
is to enter the data structure representing the function’s body into the global
dictionary (and use the string “factorial” as the key). In addition, the pa-
rameter list - in this case containing only the string “n”, is stored in a symbol
table within the scanner (in a dictionary associated with the string “factorial”
as the key) so that later when the function is invoked a local environment
can be built - this will consist of a dictionary whose keys are the function’s
name (factorial) and all the formal parameters’ names.

The function body is represented by an instance of InstructionList, which
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is a collection class. The members of the collection are the ‘compiled’ forms
of the individual statements from the function body and fall into one of the

following classes (whose behaviour will be described later):
e WhileStatement
e IfStatement
e Assignment

The only statement in the factorial function’s body is an if statement.

The following diagram depicts the situation:
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globals

/ an InstructionlList

factorial n

an IfStatement

| L Ly

/

an Expressior} | an InstructionList an InsfructionlList
n=0 Bl .

AN N

an Assignment an Assignment

factorial := 1 factorial := _
n * factorial(n-1)

Turning now to the general syntax for a function definition (rather than
the concrete example of the factorial function), actions are associated as
follows:

<defn> ::="func"A; <funcName> "("A,<paramList>")"Asz<stmtlist>A,

o A; — the formal parameters to a function can be of type integer, rela-
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tion, character string or attribute (used to pass the name of a table’s
column). These are denoted by ‘int’, ‘rel’, ‘char’ and ‘at’. The scan-
ner maintains two symbol tables so that it can check that an identifier
is in scope. The first of these holds information about parameters of
the first three types (called LVars for ‘Local Variables’) and the second
holds information about attribute parameters (called LAVars for ‘Local

Attribute Variables’).

The first action to be performed is to inform the scanner to create
new symbol tables. The name of the function is also ‘remembered’ at
this point (by assigning to a local Lingo variable) so that at the end
of this recognition procedure the binding of the function name with
the data structure describing how to perform it can be included in the
interpreter’s global symbol table. In the following, name is a Lingo local

variable used for ‘remembering’:

/* Have entered a new local scope :
start new symbol tables in scanner */
scanner freshLAVars; scanner freshLVars;
/* recognise and ‘remember’ the function’s name */
name := self funcName;
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e A, — when function calls are made, local environments are created
associating formal parameters with actual parameters. The purpose of
this action is to ‘remember’ the list of formal parameter names (which
will be returned by calling the recogniser procedure for <paramList>)
so that it can later (in action A3) be associated with the function. In

the following, params is a Lingo local variable used for ‘remembering’:

params := self paramList;

e A; — The scanner maintains a dictionary that associates function names
with a list of ther formal parameter names which is later used at func-
tion application to create the local environment. Within this action,
the previously remembered parameter name list is entered into the ap-

propriate dictionary within the scanner under the function’s name.

In addition, the data structure representing the statement body of the
function definition (returned by the recogniser procedure for <stmt>)

is remembered in the local Lingo variable body.

scanner bindFunction: name to: params;
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body := self stmt;

e A, — the global environment (a dictionary) can now be updated with
an entry associating the functions name with the data structure repre-

senting its body (remembered during A; in the local body).

globals at: name put: body;

The analysis and synthesis associated with function definitions is now

followed by the analysis and synthesis of expressions.

5.4 Expressions

The form of expressions is defined by the following Extended BNF produc-
tions (where the metasymbols [ and ] are used to denote the optional single
occurence of the enclosed and { and } are used to denote the optional multiple

occurrence of the enclosed):
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<expr> ::= <term> { <binop> <term> }
<term> ::= <factor> [<blocki>] [<block2>] { <arithop2> <factor> [<blocki>]
[<block2>]}
<factor> ::= <Relation> | <Integer> | <String> | <Function> | <Var>
| <LVar> | <LAVar> | <Identifier> | "(" <expr> ")"
| <linkblock>

The syntactic entity <binop> represents the binary operators on rela-
tions and the lowest precedence binary operators (addition and subtraction)
of integer arithmetic. The entity <arithop2> represents the binary arith-
metic operators multiplication and division. The further productions defin-
ing <binop> and <arithop2> are not reproduced here for the sake of clarity.
The parsing procedures for these recognise the terminal character sequences
that represent them and return approprate Lingo classes which the higher
level recogniser procedures for <term> and <expr> can instantiate with ap-

propriate instance data. The following table describes the operators:



CHAPTER 5. IMPLEMENTING THE LANGUAGE

74

Terminal | Description Class Syntactic
characters class

*7 intersection Intersection | <binop>

++ union Union <binop>

-- difference Difference | <binop>

*% cartesian product CartProd <binop>

+ integer addition Plus <binop>

- integer subtraction Minus <binop>

* integer multiplication | Times <arithop2>
/ integer division Divide <arithop2>

The entities in the production for <factor> mainly represent items that

have a value (either as literal constants or as bindings to a variable). For

example, the entity <Integer> represents integers and its recogniser proce-

dure returns objects of type Constant which contain the actual value of the

integer constant. The recognition of variables produces objects which when

‘evaluated’ in the execution phase return the values they are currently bound

to by looking up the appropriate global or local environment.

The entities <block1> and <block2> relate to projection and selection in

relational expressions which will be dealt with later.
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The next four subsections give a detailed treatment of <expression>.
It is convenient to cover (in the first subsection) expressions involving the
binary operators. The second subsection deals with relational expressions
involving <block1> and <block2>.

In the third subsection, the treatment of DEAL’s link elements is ex-
plained by considering the entity <linkblock>. and the fourth subsection

deals with function application.

5.4.1 Expressions involving binary operators

For now, to elucidate the general strategy, consider the integer expression:
1+ x %2

where x is a global variable. The parse tree for this expression is given in
the following figure where the leaves have been annotated with the terminal

sequences from the source code:
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<term> <binop> erm>

<factor>  <arithop1> <fcic’ror> <arithop2> <factor>
<in|eger> <v]:r> <infeger>

L} 'I L H+I IXII nn ”2'

Parse tree for: 1+x*2

The data structure created by the synthesis phase can be depicted as

follows:

a Plus
et —
/
a Constant a Multiply
1 // \
a Global a
X" 2

Constant

Data structure representing:1 + x * 2
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5.4.2 Selection and Projection

Before returning to the complete treatment of <expr>, two of its optional
component clauses <block1> and <block2> will be described.
Both these entities essentially qualify a basic relational expression. The

former, <block1>, is defined by the productions:

<blocki> = "[" <projectlist> "]"
<projectlist> ::= Identifier [ ":=" <expr> ]
{"," Identifier [ ":=" <expr> ] }

and the latter, <block2>, by:

<block2> ::= "where" <condition>

<condition> ::= <predicate> { "and" <predicate> }
<predicate> = <expr> <relop> <expr>

<re10p> ca= NyM | e | y = | ng=m I t=n I ny=u

The purpose of <block1> is to allow certain fields to be projected from
the base relational expression which the clause qualifies. In the following, for
example, the base relational expression consists of the variable parts, and

the qualifier specifies that the pnum and pweight fields should be projected:
parts [ pnum, pweight]

Furthermore, the <block1> qualifier can be used to rename fields or in-
deed to calculate new fields. In the following, the relation parts has a scheme

which includes pnum for part number, qoh for quantity on hand and pweight
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for the weight of a part. The expression evaluates to a relation whose scheme
consists of partno (the part’s number) and tweight which will be the total

weight of all the parts in stock with that part number.
parts [ partno := pnum, tweight := qoh * pweight ]

To deal with this, the recogniser procedure for <projectList> returns a
list each of whose entries is either an object representing the field name to be
projected or an Assignment object and this list is returned unmodified by the
recogniser procedure for <block1>. The clause [pnum, tweight := qoh * pweight]
for example would result in the return of the data structure depicted in the

following diagram:

an Attrvar an Assignment
"onum’ / \
an Attrvar a Multiply
"twelght"
an Aftrvar an Attrvar
Ilqohll n pwe‘gh.‘.ll

The data structure representing the clause [ pnum, tweight := qoh * pweight ]
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The <block2> clause allows the application of a selection on the basic
relational expression (the order of application of projection and selection
should both a <block1> and <block2> be present is dealt with later). The
recogniser procedure for <block2> returns a data structure containing the
essential information needed to carry out the selection. For example, the
clause where pweight > 12 would result in the structure illustrated in the

following diagram:

a GreaterThan

/ \
/ AN

anAttrVar a Constant

"pweight” 12

Data structure representing the clause "where pweight > 12"

A more complete description of <expr> can now be given. The extended
BNF definition is annotated as follows:
<expr> ::= A; <term> {A;<binop> A3 <term>}A,

In describing the actions use of two local (to the recogniser procedure for
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<expr>) variables, theOp and result, is made:

e A; - remember the result returned from the call to the recogniser pro-

cedure for <term>.
result := self term;

e A, - remember the class of the operator (which is returned from the

recogniser procedure for <binop>.
thelOp := self binOp;

e Az - by instantiating the operator recognised in A,, combine the subex-
pression built so far (in result) with the subexpression returned by
the next call to the procedure for <term>. Recall that the local variable
theOp contains the class of the recognised operator. All such operators
have a class method (with selector of: and:) for instantiation. The
of: and and: parameters supply the left and right subexpressions to

the instantiated operator:
result := theOp of: result and: (self term);

e A, — the complete expression has been recognised and so the variable
result contains the data structure representing the expression; this is

returned (to the procedure that called the procedure for <expr>).
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~

result;

The treatment for <term> follows a similar line, but is slightly compli-
cated by the need to ensure that should both a <blocki> (for projection)
and a <block2> be present, the resultant data structure when ‘executed’ will
result in the selection being performed before the projection (since the selec-
tion may involve fields which do not appear in the projection).
<term> ::= A; <factor> [A;<blockil>] [A3z<block2>]A,
{As<arithop2>Ae<factor> [A7<blocki1>] [ Ag<block2>]Ag}A;p

The actions:

e A; — remember the result of the call to the procedure for <factor>.

result := self factor;

o A, — if this action is taken there s a <blockl> clause. Set a flag to
mark that a projection must be constructed and remember the result
returned by the call to the procedure for <blocki>.

projectFlag := Boolean true;
projectParams := self blockil;

e A3 — similarly, if this action is taken there is a <block2> clause. Set
a flag to mark that a selection must be constructed and remember the

result returned by the call to the procedure for <block2>.
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selectFlag := Boolean true;
selectParams := self block?2;
o A, — if the selection flag is set, construct the selection on the result
constructed so far and clear the flag. Then perform a similar action if

the projection flag is set:

if selectFlag do

{
result := Select of: result where: selectParams;
selectFlag := Boolean false;

X

if projectFlag do

{
result := Project of: result over: selectParams;
projectFlag := Boolean false;

1

e As — remember the class of the operator returned by the call to the

procedure for <arithop2>.

theOp := self arithop2;

o Ag — remember the result of the call to the procedure for <factor>

tempResult := self factor;

A7 — this is exactly the same as action A,.

Ag — this is exactly the same as action Aj.
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e Ag — this is similar to action A4 in that any necessary selection and
projection is constructed. In addition, the operator remembered in
action Ag is used to combine the expression constructed so far with the

subexpression stored in tempResult.

if selectFlag do

{
tempResult := Select of: tempResult where: selectParams;
selectFlag := Boolean false;

),

if projectFlag do

{
tempResult := Project of: tempResult over: selectParams;
projectFlag := Boolean false;

X

result := thelOp of: result and: tempResult;

e A;o— the complete term has been recognised and so the variable result
contains the data structure representing the term; this is returned (to

the procedure that called the procedure for <term>).

5.4.3 Link elements

An alternative in the defining production for <factor> is <linkblock>. This
is where the link elements of DEAL are used. Recall the example DEAL

statement:
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[name := "Paul", object := X ] where likes {name=X, object="wine"};

In the above, X is known as a link element. Link elements are a syntactic
feature proposed by Deen to allow queries to be expressed in a Prolog like
form. The above query represents a relation with scheme (name,object).
The relation will have, for every tuple existing in the relation likes with
object field value "wine", a tuple with object value derived from the name
field of 1ikes and its name field with value "Paul".

To make this a little more concrete, suppose the relation likes is as fol-

lows:

name | object

Paul | beer

Bill beer

Bill wine

Louis | wine

Bill Paul

The result of the query will be the following relation:
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name | object

Paul | Bill

Paul | Louis

The extended BNF for <linkblock> (and related components) is:

<linkblock> ::= <blockl> "where" <expr> "{" <predicatelist> "}"

<predicatelist> ::= <predicate> { "," <predicate> }

With reference to the example query, the call to the procedure for <block1>
will return a list, called projList1, of two objects (both of which are actually

instances of Assignment). The diagram shows this:

an Assignment

name := "Paul’

an Assignment

object =X

(name = "Paul’, object := X)
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The call to the procedure for <predicatelist> will return a list contain-
ing the two predicates ‘name = X’ and ‘object = "wine'’.

The first of these lists is scanned and must consist of Assignment objects.
Whenever an Assignment has as its right hand side a single variable that is
not in scope, it is assumed to be a link variable and added to a list (called
links). For the example, links, will be a list containing a single element,
the string "X".

The second list (of predicates) is scanned; whenever a predicate is found
involving a test for equality whose right hand side consists solely of a link
element and whose left hand side solely of an attribute name, an Assignment
object is created assigning the attribute name to the link variable. If an
Assignment was created this is appended to a list called projList2 and
the association of the link element to the attribute name is recorded in a
dictionary called linkDictionary. Otherwise the predicate is appended to
a list of predicates called selList.

For the example, at this stage the relevant data structures (projList2,

linkDictionary and sellList) can be depicted as:
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projList2 an Assignment

X := name

linkDictionary X = name

selList object = "wine"

{ name = X, object = "wine" }

The logical conjunction of the individual predicates in the list selList is
constructed and called pred.

The complete computation for the query can now be constructed. The
run time order of the operations is to first of all evaluate the base expression
in the <linkblock>. Then a selection (according to the predicate pred)
is applied. To this is applied a projection (according to the information

contained within projList2). Recall that this list will contain Assignments
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(in this particular case ¢ X := name’). The projection operation in this case
will reduce to a renaming of the field (from name to X).

Finally a second projection is applied, using the information contained in
projListi. Again, in this example these are both assignments. The first,
‘ name := "Paul'’, is used to compute a new field, named name, for each
tuple containing the value "Paul". The second,‘object := X’, reduces to
renaming the X field (of the result so far) to object.

The following diagram traces the computation (within the context of the

example).
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name object

Paul beer Select (object = "wine")

Bill beer

Bill wine name object
Louis wine Bill wine
Bill Paul Louis wine

Project ( X := name)

Bill
Louis Project (name := "Paul", object := X)

name  object
Paul Bill
Paul Louis

The notion of link elements and the above exposition demonstrate a sim-
ilarity with the principle of unification which underlies Prolog systems. This

similarity is only of intent. Where unification is a symbolic computation, the
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above is a computation on relations.

It must also be borne in mind that the computation (associated with link
elements) described above is carried out later in the execution phase. The
result of the synthetic phase is the data structure represented in the following

diagram:

a Project (name := "Paul",object:= X)

/

a Project (X := name)

e

a Select (object="wine")

/

likes

5.4.4 Function Application

Turning now to function applications, these have the form

<function> ::= Function " (" <argList> ")"
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The entity Function above is unquoted: it can be considered to be a
terminal class rather than a terminal token; it is recognised by the scanner
and consists of an identifier that is the name of a previously declared (within
the current interpreter session) function.

The recogniser procedure for <arglist>returns a list of objects represent-
ing expressions (one for each argument). An instance of the class FunApp

is created. These objects hold three pieces of instance data:

o the name of the function.

e the list of formal parameter names of the function. These were stored
(within a dictionary residing in the scanner) when the function decla-

ration was analysed.

e the list of argument expressions.

This completes the description of the synthetic phase of the interpreter.

The next section describes the execution phase.

5.5 The execution phase

The result of the analytic and synthetic phases is a data structure, all of

whose nodes are objects which possess a method with selector evaluateWith:and:.
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The two parameters to this method supply a global and a local environment
respectively.

This set of objects together constitute the ‘virtual machine’ operators that
supports the interpreter’s execution. It is convenient to group the discussion
of these operators. The following subsections cover in turn the binary opera-
tors, the unary relational operators such as Select and Project, the operators
representing variables and constants, the function application operator and
finally the operators representing DEAL statements (Assignment, IfState-

ment, WhileStatement).

5.5.1 Binary Operators

All the binary operators of DEAL are represented by objects whose classes
are all subclasses of the class BinOp. The inherited behaviour of these objects
allows them to be instantiated (via a class method with selector of:and:).
The two parameters to this method are used to point to the left and right
subexpressions which are the operands of the operator.

The responsive behaviour of these objects to the evaluateWith:and:
message is to first pass on the message to their left subexpression and then
to their right subexpression. At that point the two results are used as the

operands to the operation that the object represents and the overall result



CHAPTER 5. IMPLEMENTING THE LANGUAGE 93

constitutes the object’s response.
The following table gives the Lingo class names used in the implementa-
tion of the interpreter as well as a description of their response when evalu-

ated. All these classes have BinOp as their superclass:

Class operation

CartProd cartesian product of relations

Difference difference of relations

Divide integer division

Equal equality test on either strings or integers
GreaterThan the > operation on either strings or integers
GreaterThanOrEqual | the >= operation on either strings or integers
Intersection intersection of relations

LessThan the < operation on either strings or integers
LessThanOrEqual the =< operation on either strings or integers
Minus integer subtraction

Multiply integer multiplication

NotEqual inequality test on either strings or integers
Plus integer addition
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5.5.2 The Unary operators

These operators all operate on a single relation. Select and Project require in
addition another operand; for Select this represents the boolean expression
that is the criterion for selecting tuples from the relation; for Project this
other operand is the list of fields to project from the relation. Recall that
this list may also contain assignments indicating that a new field (computed
from fields of the original relation) is to be derived.

The Hash operator is intended to be applied to a relation consisting of
a single tuple with only one field and then to return the value of that sole

attribute.

Class operation

Select selection

Project | projection

Card cardinality

Hash coercion

5.5.83 Variables and Constants

Constants are represented by objects of the class Constant. These have an

instance variable holding the actual value being represented.
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The various kinds of DEAL variable are:

o Global variables represented by instances of Global.

Attribute references represented by instances of AttrVar.
e Local variables represented by instances of LVar.

e Local attribute variables represented by instances of LAVar.

Each of these contains an instance variable holding their string repre-
sentation. Their responsive behaviour to being evaluated is to access the

appropriate environment (global or local) using the string as the key.

5.5.4 Function Application

Function application nodes are represented by FunApp objects. These have
three instance variables. One holds the function name, the second the list
of formal parameters and the third the list of arguments (that is, the data
structures for the expressions which evaluate to the arguments).

When evaluated,Fun App objects respond by building a new local environ-
ment, a dictionary associating with each formal parameter name the result
of the evaluation of the corresponding argument. This new environment also

contains an entry for the function name. The statement body of the function
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(retrieved from an interpreter symbol table) is then evaluated (within the
new local environment).

After execution of the body, the function result is then retrieved from
the environment (where it has been stored under the function name) and is
returned as the overall result.

The above operation is deviated from slightly in the case where an argu-
ment evaluates to a relation whereas the parameter list indicates an expec-
tation of some kind of atomic value (such as a string or an integer). In this
case, the function application is iterated through each tuple of the argument,
treating the tuple as an atomic value. The union of all the individual results

1s returned as the overall result.

5.5.5 Statements

Statements are represented by ins;tances of Assignment, IfStatement and
WhileStatement. Groups of statements are represeneted by instances of In-
structionList.

The evaluation of an InstructionList is straightforward: each individual
statement is evaluated within the same global and local environment passed
to the InstructionList.

Assignments are represented by Assignment objects which contain two in-
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stance variables. One holds the string representation of the variable involved
in the assignment; the other holds the expression to be evaluated.

The control statements are represented by instances of IfStatement and
WhileStatement. IfStatement objects contain a boolean expression and two
instances of InstructionList: one holding the statements for the true branch,
the other the statements for the false branch.

Similarly, WhileStatement objects hold a boolean expression and a single

InstructionList representing the statements within their loop bodies.

5.6 A complete example

As a complete example, consider the function ancestor (and its application)

described in the previous chapter:

func ancestor( x : char )

{
temp := (parent where childname = x) [parname];
if (card( temp ) = 0 )
ancestor := temp
else
ancestor := temp ++ ancestor(temp);
};

ancestor("Rachel_Natanson');
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The above ‘session’ with the DEAL interpreter consists of two parts: the

first a function definition, the second the application of the function.

The interpreter will synthesise a data structure for the function defintion

consisting of two statement objects as depicted in the following diagrams:

anh Assighment

e ~
temp a Project
- .
parname a Select
/ \
childname=x parent

temp := (parent where childname = x) (parname);

an lfStatement
( card(temp) =0)

/

an Assignment

~

an Assignment

/ AN Z \
ancestor temp ancestor a Union
- e~
temp a FunApp
Z —
ancestor temp

The if statement from the ancestor function
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This data structure (representing the statement body of the function)
is stored in the global environment dictionary bound to the function name,
ancestor.

In addition, tables within the interpreter will be updated to record the
formal parameter information (names and types).

The application of the ancestor function proceeds as follows:

e The interpreter’s tables are used to retrieve the parameter information

for the function ancestor.

e cach argument is evaluated. In this case the only argument is the string

literal "Rachel_Natanson".

e The type of each argument is checked against the declared type of the
functions formal parameters. In this case, the argument is of type char

a was the formal parameter so execution procedes unimpaired.

e A new local environment is created. This is a dictionary object con-
taining associations of each formal parameter name and the value of
the corresponding argument. In addition, there is a binding under the
name of the function, ancestor in this case, which is used for temporary

storage of the function result.
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o the statement body is retrieved (from the global environment) and each
statement is passed the global and local environments and executed in

turn. In general this may involve recursion.

e When the above execution terminates, the value contained in the local
environment under the binding of the function name, ancestor, is re-

turned as the value of the expression ancestor("Rachel_Natanson").

The recursive step above procedes similarly except that the check of the
argument type reveals a clash since the argument evaluates to a value of
type "rel" instead of the expected "char". In such a case, the argument
is treated as a list of values (of the expected type). The function is then
applied to each value in the list and all these individual results are unioned

to form the single result for the original function application.

5.7 Summary

This chapter has detailed the operation of the DEAL interpreter. Underlying
the execution phase is a virtual machine consisting of objects which effect
the computation.

The next chapter covers the development of the relational operators that

underpin the objects within the virtual machine.



Chapter 6

Specification of the Relational

Algebra

6.1 Introduction

Specification is the cornerstone of the process of software construction — with-
out a specification phase, the acceptabilty of a software product can only be
based on consumers’ reaction to the software’s operation. It is hard to con-
ceive how an anticipation of this reaction can usefully inform the construction
process. Even though specification is primarily concerned with communica-
tion between clients and developers, the form that a specification takes can

significantly affect the software development process.

101
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This chapter presents a justification for the use of formal specification
techniques and gives an overview of the two major classes of techniques:
model-based and algebraic. Approaches to the specification of database sys-
tems are examined and the appropriateness of algebraic specification to the
particular work being reported here is demonstrated. Conclusions are drawn
as to the efficacy of the methodology for the development of certain kinds of

software for the REKURSIV/Lingo system.

6.2 Formal techniques

The inadequacy of natural language to express precisely the intended be-
haviour of computer systems has been cited throughout the half-century
history of digital computation. On the other hand, it appears unrealistic to
base software construction on a theory so mathematical that the majority of
programmers would not be able to avail themselves of the problem solving
leverage which the theory enables.

Schach ([94]) finds an interesting case study in informal specifications
whose history spans some sixteen years. A demonstration of a technique for
constructing and proving a product correct (an ALGOL procedure for a text

processing problem specified in English) was given by Naur in 1969 ([83]).
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Four faults were found in the 26 line procedure, 1 by Leavenworth ([71])
and 3 by London ([73]) who corrected these and gave a formal correctness
proof. In 1975 Goodenough and Gerhart ([41]) found three further faults in
London’s work and produced a new set of specifications (two of the seven
discovered faults were considered to be specification faults.).

Meyer in 1985 ([75]), writing to promote the use of formal specification
techniques (to ease the detection of contradictions, ambiguities and omissions
contained in English specifications), detected 12 faults in the work of Good-
enough and Gerhart. He presented mathematical specifications to correct
all the faults and then produced English specifications by paraphrasing the
mathematical specifications. Interestingly, an ambiguity in Goodenough and
Gerhart’s work which is pointed out by Meyer is again present in Meyer’s
own English paraphrases, according to Schach ([94]).

A major argument against the use of formal techniques, which has an
intuitive appeal is that the software production process lengthens in time
and cost since correctness proofs and the necessary mathematical skills are
not within the usual armoury of system development teams and the software
still has to be written !

It is extremely difficult to gather evidence to test the hypothesis that

formal specification techniques shortens overall product development time,
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since clients are unlikely to be able to afford product development under two
different regimes in order to provide the control sample for a statistical sig-
nificance test. Some non—quantitive data does however appear. Correctness
proving is not necessary for all aspects of software and is not even the main
fruit of formal techniques. If programs can be derived from a formal spec-
ification through a systematic method, the likelihood of introducing errors
is diminished. It has also been found that inspecting formal specifications
easily reveals faults ([84], [48]) and that the writing of formal specifications
can be taught to software professionals (with only school mathematics) in a
relatively short time ([48]). The use of formal specification may not adversely
affect overall software development costs: Hall and Pfleeger ([49]) report on
the application of formal methods in a large industriai project (about 50 per-
son years effort). They conclude that the use of formal methods appeared to
yield high quality software at no greater cost than conventional methods.
Given the above, it is clear that natural language is far from ideal for
program specification. Semi—formal techniques such as those (from systems
analysis) advocated by DeMarco ([27]), Yourdon ([115]) and Gane and Sarsen
([34]) have been used in a wide range of application areas. They (and their
hybridisations) help clarify the medium-—scale structure of large systems by

allowing their description in terms of annotated diagrams. Each technique
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has at its core a syntax for these diagrams and practitioners have developed
aesthetics and rules of thumb with which to inspect diagrams for signs of am-
biguity, contradiction and omission. Computer Aided Software Engineering
(CASE) tools are now available to assist system analysis according to these
regimes.

More formal still are techniques such as Finite State Machines (FSM)
and Petri nets. Again, these techniques have associated diagrammatic rep-
resentations which allow the development of an aesthetic that detects likely
problem areas in specifications under development. Unlike the techniques
of the previous paragraph, FSMs and Petri nets have a mathematical basis
which allows properties of systems to be deduced without recourse to the
diagrammatic representations.

FSMs are ideally suited to handle the complexity of event driven sys-
tems but give no insight into the management of data flow. Specifying large
systems by using FSMs is cumbersome because of the proliferation of states
since there is no concept of modularisation and encapsulation and so FSMs
are not useful for clarifying the complexity of large systems.

Petri nets bear some similarity to FSMs but also go some way towards
expressing data flow (or at least the inherent synchronisation requirements).

Their main strength has been the ability to cope with (and express) tim-
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ing and synchronisation requirements. For this reason their use has been
strongest in real time systems development.

The mainstream fully formal techniques can be broadly classified as either
model-theoretic or algebraic. In the model-theoretic camp, the specifica-
tion language Z ([101]) is arguably the most widely used (the other contender
being the Vienna Development Method, (VDM [66])). Z specifications con-
sist of schemata interspersed with explanatory English text. Each schema
consists of two sections — a declarations section that contains variable dec-
larations (typing information) and a predicates section which constrains the
values the variables can take. Schemata can be combined under the schema
calculus.

Essentially, Z allows the expression (using set theory and first order logic)
of the invariant aspects of the global state space of a system and then the
consequent changes to that state when operated on by procedures and func-
tions.

Algebraic techniques, by contrast, define objects by the relationship of
the operators on the object through equational rules. This approach has its
roots in abstract data type methods. The essence of the methodology is to
give an abstract denotation of the values that variables of a type can take

and to relate the operations on the type through equations.
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As an example, we can specify a type Natural with an operation add as

follows
the type Natural has denotations One and Succ(z) (where x denotes a

Natural ). This means that the following are legitimate Natural denotations

One
Succ(One)

Succ(Succ(One))
The operator add can be defined by a set of equations

add(One, y ) = Succ(y)

add(Succ(z), y) = Succ(add(z),y)

This form of specification has come to be called a constructor system of
equations, after ([106]), which is a restricted form of definition common to
algebraists (who use equations to define algebraic structures such as groups,
rings, vector spaces and categories themselves).

In such a system, a distinction is made between passive operators (func-
tions) which are used to construct or denote data values of a type (the Succ

function of the above) and active functions whose definition is the purpose
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of the equations. The passive functions are normally termed constructor
functions and these may be constant (i.e. they have no domain) as One in
the above.

The form of the equations in such a system is restricted in that

e the left hand side always has the form f(ey,eq,...,e,) where f is an ac-
tive function and the e; are patterns involving variables and constructor

functions (perhaps constant).
e variables on the right of an equation are always introduced on the left

These restrictions are exactly those enforced for pattern—-matching in
functional programming languages such as Standard ML ([78],[54]), which
allows the possibility of executing specifications of this kind. In addition,
the act of compilation (especially the type checking phase) gives the speci-
fier some confidence that the notation has at least been used sensibly and
correctly.

It is important to realise that the resulting computation (of an executable
specification) is purely symbolic and could be represented as a succession of
substitutions justified by the equations in the specification.

Another view on the above process is that a program has been developed

in a declarative style by ‘programming through types’ and that the meanings
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of types have been specified purely symbolically.
For clarity, the terms type, class and abstract data type will here be used

with the following meanings —

e types — these essentially provide a partition of the value space of a
programming language. Compilers may also use type information for
representation purposes. Most compilers also use ‘type—checking’ (to
a lesser or greater extent) to assist programmers avoid logical errors.
The arguments to operators must obey certain type rules which may
be slightly relaxed for built-in operators of a language but are strictly

enforced for arguments to procedures and functions.

e classes — these derive from simula ([21, 7]). They provide a behavioural
partition of the value space of a programming language. The permis-
sible operations on a data item which has a class are defined within
the class along with the data objects necessary to perform these op-
erations. The data item can only be manipulated via the operations

defined within its class and access to its internal data is denied (instance

data).

In general, languages allow a class to be defined as a subclass of some

other class, in which case the permissible operations (and instance
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data) are inherited. In addition, some class—based languages, such as
Smalltalk and Lingo, treat classes themselves as elements in the value
space, thus allowing computation to be performed on them. This is

often paraphrased as ‘classes are first class citizens of the language’.

e abstract data types — these package the operators on the defined data
(including data construction operators) and hide the implementation
details (such as internal supporting data structures). Abstract data
types and classes can be seen as operationally equivalent although, in
general, languages that support abstact data types do not support sub-
classing as above and restrict the level of computation that can be per-
formed on abstract data types themselves (it is for example, unusual
to be able to check the type of an object at run time). An exception
to this is the functional programming language ‘Pebble’ proposed by
Burstall and Lampson ([13]) which includes types themselves as first

class citizens on which computation can proceed.

In the database field, there is also the notion of domain ([24]), which
intuitively appears like a type above since domains are used to delineate the
set of values that an attribute may have. In reality though, the situation is
more complex when one considers the need to check the validity of set oper-

ations such as union -~ where type compatibility (rather than type checking)
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is required on the domains of the operands. A lack of coherent approach to
this aspect of specification is reported by Samson ([93]).
Given the above, the use of algebraic specification for the work being

reported here, is a considered choice. A summary of the reasons is

o There is a coherence in the use of an algebraic technique to specify the

Relational algebra.

e A methodology exists for deriving implementations from algebraic spec-
ifications. Indeed (as reported below) this methodology can be signif-
icantly streamlined where the target language for implementation is

class—based.

o The notion of abstract data types (which form the backbone abstraction
for algebraic specification) corresponds in a natural way to the concept

of classes.

e For database work specifically, problems, such as the specification of
the domain concept, can be resolved in a clear and regular manner
by the use of abstract data types (rather than the limited typing of

model-theoretic specification strategies).
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6.3 Deriving programs from algebraic spec-

ifications

This section describes in general terms the derivation process. Succeeding
sections describe the actual application of the process within the work of the
project and its subsequent development into more efficient implementations.

We start with an approach using the language SML which is applicable
to any imperative implementation language, and not especially Lingo. The

approach is based on the following stages —

o Consider all the data types that the program will encounter and specify

all these as abstract data types using constructor functions.

¢ define each operation as an operator on these abstract data types, using

pattern matching in the usual way to provide case analysis

o define destructor functions — these are used to extract the arguments

of any nonconstant constructor functions

e eliminate pattern matching in all function definitions (except destruc-

tors)

e choose an implementation language representation for each abstract

data type
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o code the constructors and destructors as result returning functions in

the implementation language

e the definition of all the operators is now expressed entirely in terms of

function application. Coding these is simply a matter of transliteration.

An example — sequences

As an example, consider the representation of sequences of integers and the
implementation of methods to reverse the sequence and to append an integer

to the right hand end of a sequence.

e an abstract datatype —

abstype seq = empty | cons of int * seq

This says that a seq (a sequence) is either the constant sequence,
empty, or can be constructed from an application of the function cons

to an (integer,sequence) pair.
e the operators —

— right append —

fun rap(empty,i) = cons(i,empty)
| rap(cons(h,t),i) = cons(h,rap(t,i))
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Notice the use of pattern matching here. The first line states that
right appending an integer to the empty sequence results in a se-
quence containing just that integer, which is obtained by applying

cons to the integer and empty (which is a valid sequence).

The second line matches the case where an integer is being right
appended to a nonempty sequence; this sequence, being nonempty,
must be constructible by an application of cons to some integer,
h say, and some sequence, t say. Clearly this recursion will come

to an end.

— the reverse function, similarly —
fun rev(empty) = empty
| rev(cons(h,t)) = rap(rev(t),h)
e Define destructor functions.In both the function definitions above pat-
tern matching has been used to break a constructed item into its com-

ponent parts. Here we would define destructor functions —

— fun head(empty) = raise seqFault
| head(cons(h,t)) = h

— fun tail(empty) = raise seqFault
| tail(cons(h,t)) =t

The raise expressions here are part of SML’s exception mechanism.

They represent the (abnormal) termination of a computation.
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e Eliminate pattern matching by using destructor functions —

fun rap(s,i) = if s = empty then
cons (i,empty)
else

let val h = head(s) in

let val t = tail(s) in
cons(h,rap(t,i));
end
end;

and similarly for rev.

e Choose a representation in the implementation language. In general,
we declare a class of objects, each with a single instance variable as
in —

Seq is Object

[ sequence ]

and we code instance methods to access this data —

sequence [] sequence.
sequence:s [] { sequence := s ; }.

¢ Code the constructor and destructor functions. The constructors, which

create new items of the class, are naturally coded as class methods —

empty [] { ° ( super new) ; I}.
cons: anInteger with: aSequence []
{ =~ (super new sequence: (Pair of:anInteger and:aSequence));}.
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Notice the use of a class Pair. This is appropriate, pairs (indeed ntu-
ples) are a built—in type in SML which has no direct correspondent in
Lingo so we code it. Pair has two instance methods: first and sec-
ond; these are destructor functions for extracting the components of a
pair. With these, the destructor functions for Seq are coded as instance
methods —

— head [] { if (sequence = nil ) then
raise seqException
else
~ (sequence first);

}.

— tail [] { if (sequence = nil ) then
raise seqException
else
~ (sequence second);

e Code the operators. Again, we use instance methods since one of their

arguments is always an instance of this class.

self rap: anInteger [ h t ]
{
if sequence = nil then

" Seq consOf: anInteger with: self
else

{
h := self head; t := self tail ;
" Seq consOf:h with:( t rap: anInteger);
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Which is clearly in one to one correspondence with the original SML.

A refinement of the technique

One source of inefficiency in an implementation derived as above comes from
pattern matching. When translating into a language such as Pascal or C,
pattern matching would make use of tag fields within a variant record or a
union type. In Lingo, we can do better by using inheritance. Consider again
the SML for the seq abstype —

abstype seq = empty | cons of int * seq

We can represent sequences by a class Seq, as before, and have two spe-
cialisations Empty and Cons. The constructor functions empty and cons
become instance creating class methods of Seq’s subclasses Empty and Cons
respectively —

Seq is Object
[]
Which needs no class methods since only its subclasses should ever be

instantiated.

Empty is Seq
]
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Which needs no class methods — simply creating an object of this type
with it’s inherited new method is enough.

Cons, whose instances are nonempty is coded along with destructors head
and tail as instance methods —

Cons is Seq
[ sequence ]

{
of:anInteger and:aSeq []

{

* ((super new) sequence: (Pair of:anInteger with:aSeq));

1.
head [] { - sequence first; }.
tail [] { ~ sequence second; }.
sequence [] { " sequence; }.
sequence:s [] { sequence := s; }.
Now if again we consider the SML function rev
fun rev(empty) = empty
| rev(cons(h,t)) = rap(rev(t),h)
we can view rev as having two specialisations, one a function which has as
domain only those instances of the abstype that are empty, the other has the
complementary domain of all nonempty seqs. We add an instance method

within the Empty class as

rev [] { ~ Empty new }.

and an instance method to the Cons class as
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self rev [] { = ((( self tail) rev) rap:(self head)); }.

Which is concise. Notice this facility cannot be mirrored in SML since
SML has no facilities to specialise a type.

The refinement outlined above has a stronger result than merely providing
a succinct implementation. The following observations can be made on the

effect of removing (from the technique) the need to remove pattern matching

e The implementation no longer makes use of an underlying data struc-
ture and is thus more abstract and closer to the purely denotational

specification.

e Selection (changes in control flow in implementations derived by the
conventional technique) has been removed and replaced by use of the
classing (or typing) mechanism of the implementation language. As
processor architectures move to support object-orientation (and thus
remove the problems associated with changes in control flow) this ap-
proach is favoured. In particular, advantage can be taken of this when
implementing in the language Lingo on the REKURSIV which has

hardware support for typing.
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6.4 Specifying the Relational Algebra

The previous section described the general approach to program derivation.
Within this section, the fundamental abstypes used in the actual application
of the approach to the implementation of the relational algebra are described.
The next section will detail the derivation of a particular operator (a rela-
tional join). The complete specification does however appear in appendix
B.

In order to model the relational algebra, 7 abstract data types were de-
fined in Standard ML. The declarations of these, describing also the con-

structor functions for the abstract data types are:

o Relations are declared as

relation = rel of (scheme * tupset);

This expresses the intention that a relation is a pair drawn from the
product of the set of schemes and the set of tupsets (these types are

defined below).

e Schemes are defined to contain information about the attributes in-
volved in a relation’s tuples. Each attribute has a name as well as a

type, which are modelled by the abstypes name and domain respec-
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tively. Schemes also hold a list of names which are used to denote the

keys of the relation:

abstype scheme = sch of (( name 1list)*((domain * name) list))
abstype domain = dom of string
abstype name nam of string

e The data within a relation is modelled as a set of tuples by

abstype tupset = set of (tuple list);

e Tuples contain data values which are abstractly represented by the
abstract data type attribute which has a constructor for each actual
type of data that the relations can hold (in this case just strings and

integers).

abstype tuple = tup of (attribute list)
abstype attribute = ival of int | cval of string

The above are merely the first parts of complete abstype declarations.
Each introduces the definition of operations on the abstract type. For the

type Relation, the key functions (together with their signatures are):
e select : relation x (tuple — bool) — relation

e project : relation x (name list) — relation
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e cartprod : relation x relation — relation

e union : relation X relation — relation

o difference : relation x relation — relation

e intersection : relation X relation — relation

e equijoin : relation X relation X name — relation

As a specimen, the detailed specification of the equijoin operator is
elaborated in the next section.

A detail to notice within the above is the signature of select: this allows
the application of any function whose type (or signature)is tuple — bool to
the tuples within a relation, giving a great degree of freedom in selection
predicates.

In addition to the functions listed above there are numerous operators
whose use is to check the validity of an operation (union compatibility, for
example) as well as service functions to create elements of the abstract types
(since the constructor functions of an abstype can only be used within the
abstype).

The treatment of domains is not restrictive. Any other candidate type

for attributes within relations (relation, even) could simply be modelled by
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adding another constructor to the abstype. The function validdom ensures

the type safety of the set operations.

6.5 Specifying a relational operator

The previous section only sketched the broad terms of the formal specification
of the relational algebra. This section gives the detail of the specification of
a particular operator, an equijoin. This operator has been chosen as the
‘specimen’ since its efficiency within this abstract specification is poor. The
following sections within this chapter will then demonstrate the process of
replacing the abstract specification with a more concrete specification within
which an equijoin operation can be specified with a better efficiency.

The signature of the operator is given by

equijoin : relation X relation X name — relation

This indicates that the function takes three arguments: the two operand
relations for the join and the name of an attribute from the scheme of the
first operand. It is assumed, for clarity, that the second operand relation’s
scheme has a single key attribute and that the join is to be performed on
the named attribute from the first operand and the key attribute from the

second.
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At the level of the abstype relation, this operator is coded in SML as:
fun equijoin(rel(si,tsl),rel(s2,ts2),n) =

rel(schappend(s1,s2),tjoin(tsl,sl,ts2,s2,n))

The purpose served by this function is twofold. Firstly, pattern match-
ing is being used to extract the scheme information from the two operand
relations and pass them along with the bodies ( tupsets) of the relations
to the function tjoin which actually performs the join on the bodies. (The
scheme information is needed to match attributes). Secondly, the resulting
relation has a scheme derived by appending the schemes of the two operand
relations.

The operator tjoin (at the level of the abstype tupset) contains the
join algorithm. The bodies of relations (modelled by the abstype tupset) are
essentially lists of tuples (which are themselves essentially lists of attributes).
Within the operator tjoin, it is necegsary to traverse the first operand (a
list) and, for each element, extract the join attribute and search the second
tupset for a match (this will be require a linear search). The success of this
search determines whether or not to append tuples from the two tupsets
and insert the new tuple into the resultant relation.

In more detail, the definition of tjoin requires the consideration of two

cases: when the first operand is empty and when it is not.
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e the operand is empty. Clearly the join result is also empty:

tjoin(set(nil),sl,ts2,s2,n) = set(nil)

e the operand is non-empty. In this case, pattern matching is used to

extract the ‘head’ tuple from the first operand

tjoin(set(h::t),sl,ts2,s2,n) =

To extract the join attribute from h the operator tupleproj is used.
This takes three arguments: a tuple, a scheme and a list of names. The
operator ‘projects’ the attributes from the tuple whose names appear

in the list of names. The SML expression:

let val firstPart = tupleproj(h,si,[n]) in

extracts the join attribute (named n) and stores the result in a lo-
cal SML value named firstPart (actually a list containing only one

element).

To search for a matching tuple in the second tupset (named ts2) the
function atKey is used which given a key and a set of tuples returns

the matching tuple from the set:

let val partner = atKey( firstPart,ts2) in
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Since sets of tuples are fundamentally stored as lists, the efficiency of

the function atKey is O(n).

If the search is successful the two tuples can be joined with the operator
tupappend and inserted into the overall result with fastinsert since
the join cannot introduce duplicate values if the two original relationals

were duplicate free.

Put together, the SML for the complete operator tjoin is:

fun tjoin(set(nil),si,ts2,s2,n) = set(nil)
|  tjoin(set(h::t),s1,ts2,s2,n) =
let val firstPart = tupleproj(h,si,[n]) in
let val partner = atKey( firstPart,ts2) in
if tupnull(partner) then
tjoin(set(t),sl,ts2,s2,n)
else

fastinsert(tupappend(h,partner),tjoin(set(t),s1,ts2,s2,n))
end
end

As can be seen the efficiency of this algorithm (and hence its Lingo coun-
terpart) is determined by the required number of calls to the function tjoin
and the efficiency of the searching function atKey which, as indicated previ-
ously is O(n). This gives an overall efficiency of O(n?).

Clearly, the component to work on in order to improve the efficiency

is the searching function, since the number of calls to the tjoin function
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(which will always be equal to the cardinality of the first operand) cannot be
reduced.
The next section describes the development of the specification to incor-

porate more efficient algorithms.

6.6 Efficiency and refinement

A difficulty associated with the program derivation outlined in the last sec-
tions is that the efficiency of the algorithms is low. Searching on a key, since
it is linear, has O(n). Storage techniques such as tree structures and hash
tables [24] offer advantages for such searching (O(log(n)) for trees, and con-
stant order for hashing). The inefficiency of the join operator specified in the
previous section (within a list based specification) is particularly marked.

It is important to notice that this inefficiency emanates from the basic
data structure (in this case lists) embodied within the specification rather
than the fact that the implementation has been derived.

A possible way to proceed to a more efficient implementation is to work
on the derived Lingo program and incorporate a data structure which allows
more efficient searching, since this is the fundamental issue affecting the

efficiency of the relational operators. Candidate structures are hash tables
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and trees. The following diagram illustrates the possible route:

Abstract Specification

Implementation (list based)
SML

> Lingo

derivation
programming

Implementation (tree based)
Lingo

A possible route to producing a more efficient implementation

This is is not wholly satisfactory since the relationship between the list
based implementation and the tree based implementation (in terms of pro-
gram properties) is intractable from the formal point of view depending as it
does on referentially opaque programming. Some of the benefits of an initial
formal specification are lost by the introduction of this programming step.

An alternative approach is to formally specify the data structure ( trees,
say) that is intended to be used and use the derivation technique to derive a
more efficient Lingo implementation. The correspondence of the two formal
specifications can be established through reasoning since they are equational
and the correspondence between the two implementations can be reasonably

inferred since they have been produced by a derivation method that preserves
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program properties.

Both formal specifications specify the same thing, but the list based spec-
ification is in a sense more abstract since it deals with the relationship of
operators whereas the tree based specification is more concrete since it deals
with aspects of an underlying data structure.

This approach, which is what was chosen for this work (but not followed

in its entirety), is depicted in the following diagram:

AbStraSCi:[/I Epecification ~ Implerlzl_entation (list based)
— > ingo
derivation N
|
v
Concrete Specification >, Implementation (tree based)
SML derivation = Lingo

An alternative route to producing a more efficient implementation

The correspondence between the abstract and concrete specifications is
established in the following way. An abstraction function is defined relat-
ing objects within the concrete specification and objects within the abstract
specification (in this case the objects will be the representations of rela-

tions). For example, if the abstype crelation models relations in a more
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‘concrete’ specification and the abstype relation models relations in the
abstract specification, an abstraction function (called Abstract, say) would
be defined with signature
Abstract : crelation — relation

In principle, there could be many concrete specifications, each having an
associated abstraction function mapping to the abstract specification. To
show that the concrete specification of an operator (select, for example) has
at least the properties of its counterpart in the abstract specification, it is
required to prove that the result of applying the abstraction function to the
result of the concrete operator on the concrete relation is equivalent to the
result of applying the abstract operator to the result of applying the abstrac-
tion function to the concrete relation. For example, if Abstract denotes the
abstraction function, ocone and ogp, the concrete and abstract select operators

(respectively) and R, the concrete relation, this can be expressed as

Abstract(ocone(Re)) = abs(Abstract(R.))

The above equality can be represented by the statement that the following
diagram ‘commutes’ (a notion from category theory on which the formal
foundation of this approach is based) in that the resultant (abstract) relations

obtained via either computational route are equivalent:
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GCOHC GCOI'IC ( FE)
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Abstract Abstract
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Abstract ( Rc) c

abs

V

Relationship of abstract and concrete operators

In the case that such a proof is intractable, the process still has the ad-
vantage that with the equational nature of the specification and the use of
pattern matching, the differentiation and characterisation of test cases is au-
tomatic, allowing conventional testing to be carried out in a very disciplined

way.

6.7 2—-3 trees

Moving now to the specific case of the relational algebra, a candidate data

structure that would improve the efficiency of operators is the balanced tree



CHAPTER 6. SPECIFICATION OF THE RELATIONAL ALGEBRA132

structure known as a 2-3 tree.

Balanced trees are often used for storing large sets of indexed data items
and algorithms of O(log(n)) exist for storage and retrieval. 2-3 trees are a
special case where each subtree is either empty, a node containing a value, a
left subtree and a right subtree (a 2-—node) or a node containing two values
and a left, middle and right subtrees (a 3?node).

The diagram gives an example 2-3 tree, where E denotes an empty sub-

tree:
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60 90

A 2-3 tree (from Reade, 1989)

In addition, 2-3 trees are:

e ordered - the value contained in a 2-node is greater than any value
found in the left subtree and less than any value to be found in the
right subtree. The ‘left’ value in a 3-node is greater than any to be
found in the left subtree and less than any value in the middle subtree

and the ‘right’ value is greater than any in the middle subtree and less
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than any in the right subtree.
¢ balanced - all subtrees of any node have the same depth.

Reade ([89]) presents an equational program in SML for insertion into
2-3 trees which is proved to maintain the ordering and balance properties.
The program makes use of the following datatype declaration
datatype ’a tree23

= E

| Tr2 of ’a tree23 * ’a x ’a tree23

| Tr3 of ’a tree23 * ’a * ’a tree23 * ’a * ’a tree23

| Put of ’a tree23 * ’a * ’a tree23

The constructor functions E, Tr2 and Tr3 are used to model empty sub-
trees, 2-nodes and 3-nodes respectiveiy. The constructor Put is used for
nodes that are created during insertion and then removed during rebalanc-
ing. The details are in Reade ([89]) along with the proofs and algorithms for
removal.

The 2-3 tree given in the last diagram would be represented in SML as

Tr3(Tr2(E,50,E),60,Tr2(E,80,E),90,Tr3(E,95,E,99))

For the purposes of the relational algebra, 2-3 trees were incorporated
into the formal specification described in section 6.4 to provide a more con-

crete specification. The counterpart (within the concrete specification) of the
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abstract specification’s abstype tupset (which is used to hold the data set

‘body’ for relations) is the following:

abstype tree23
= E
| Tr2 of tree23 * tag * tuple * tree23
| Tr3 of tree23 * tag * tuple * tree23 * tag * tuple * tree23
| Put of tree23 * tag * tuple * tree23

Reade’s values are replace by pairs of tags and tuples. The tag component
is some unique key value used to order and identify information for retrieval.
Since an ordering relationship is defined for the abstype tuple, the type tag
was implemented as a type synonym for tuple. The tag component will
contain attributes drawn from the tuple component according to the scheme
defined for the relation in which the tuple resides.

As an example, (taken from Date [24]), consider the body of the relation
‘supplier’, with fields ‘snum’ (supplier number), ‘sname’ (supplier name),

‘status’ (status value) and ‘city’ (location):

snum | sname | status | city

sl smith 20 | london
s2 jones 10 | paris
s3 blake 30 | paris
s4 clark 20 | london

) adams 30 | athens
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The field ‘snum’ can be used for the index tag since it uniquely identifies
tuples.
The concrete counterpart of the abstype relation is:

abstype crelation = crel of scheme * tree23

In order to establish the correspondence between the concrete and ab-
stract specifications, abstraction functions were defined on both the abstype
tree23 (mapping to the abstype tupset) and the abstype ci‘ela‘tion (map-
ping to the abstype relation). Proofs, utilising these abstraction functions,
of the correspondence of the results of concrete and abstract operations are
not given since they are laborious and not practically feasible without an au-
tomated ‘proof assistant’. No proof assistant is generally available for SML
at present.

Counterpart operators (of a sample of those in the abstract specification)
were defined on these abstypes. The detailed SML code is to be found in ap-
pendix D. For the purposes of this section, an equijoin operator is detailed.
The operator is named cjoin (for concrete join). It takes three arguments:
the two operand relations of the join and the name of an attribute field from

the scheme of the first operand. It is assumed (for clarity) that the sec-
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ond operand uses a single attribute for its index tags, and that the join is
performed on the named attribute from the first operand and the tagging
attribute from the second.

At the level of the abstype crelation this operator is coded in SML as:
fun cjoin(crel(si,tsl),crel(s2,ts2),n) =

crel(schappend(si,s2),ctreejoin(tsi,sl,ts2,s2,n))

This function is fairly cosmetic: pattern matching is being used to extract
the schemes of the two operand relations and pass them along with the tree
bodies of the relations to the function (at the tree level) which actually per-
forms on the join on the bodies. The scheme information is needed to match
attributes from named fields. In addition, the resulting relation (whose body
is computed by the function ctreejoin) has a scheme derived by appending
the schemes of the two operands.

The operator ctreejoin (at the level of the abstype tree23)is altogether
more complicated given the separate cases that must be considered. Briefly,
the algorithm involves traversing the first (tree) operand, and at each node
that contains values, extracting the join attributes from the values and using
these as the look up tags in the second tree operand. If the look up fails,
the attributes do not contribute to the join result; if the look up succeeds

the retrieved value from the second operand is appended to the value at the
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node under inspection and the resulting tuple is inserted into the join result.
The traversal is controlled by recursion through subtrees and subtree results
are recomposed by performing unions.

In more detail, there are four primary cases to consider. These are dealt

with by pattern matching on the first (traversed) tree operand and are:

e the operand is an ‘Empty’ node — that is it is the value E. Clearly
the join result consists of the empty tree E. This case terminates the
recursion. In fact, in the case where the second operand is E, it is
pointless to continue as well. In SML, where the underscore symbol, _,

is used for anonymous unification:

E |
E

ctreejoin(E,_,_,_,_)
ctreejoin(_,_,E,_,_)

o the operand is a Put node. This represents an error, since Put nodes
should only exist transiently as trees are rebalanced on the addition of

a value. The computation is aborted by raising an exception.

ctreejoin(Put(_,_,_,_),_,_,_,_) = raise putException

o the operand is a ‘2-node’: that is, it has been constructed by an appli-

cation of Tr2 , as in:

ctreejoin(Tr2(left, tag, value, right),si,ts2,s2,n)
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The lookup tag (for retrieval from the second operand) is computed
by projecting out from value the attribute named by the argument
n. The tupleproj operator computes this from three arguments: the
tuple from which to project, the scheme relating the attribute field
names to position, and a list of attribute field names to project out. In
this case, it is most convenient to have a locally scoped value in SML,

to avoid unnecessarily repeated computation:

let val firstPart = tupleproj(value,si,[n]) in

The look up (in the second operand) can now be performed, using
firstPart as the tag. As was noted in the development of the join
operator based on the abstract, list-based specification, the efficiency
of the search function is crucial to the efficiency of the join algorithm.
The tree-based counterpart to the atKey function (from the list based
specification) is the operator at, which, given a tag, returns a tuple
from a tree if the tag is found and a null tuple if the tag is not present.

Again, a local value is used:

let val partner = at(firstPart,ts2) in

The efliciency of the at function is clearly crucial. It returns a tuple

given a tag and a relation body ( a tree). The algorithm for this is to



CHAPTER 6. SPECIFICATION OF THE RELATIONAL ALGEBRA140

compare the presented tag with those at the root of the tree (there may
be one or two at the root depending on whether the root is a 2-node
or 3-node). If the tag is present in the root, the search is successful; if
not, then the search is directed to the appropriate subtree as a result of
the comparison, bearing in mind that the tree is ordered. The number
of comparisons made is bounded by the depth of the tree. Since the
tree is balanced, the depth of a tree containing n items is proportional
to log(n) and so the éfﬁciency of this search by the function at is
O(log(n)) as opposed to O(n) for the function atKey within the list-

based implementation.

Now, if partner has a null value, the current node contributes nothing
to the eventual result which will be the union of the join operator

applied to the left and right subtrees.

On the other hand, if partner has a non-null value, the tuple formed
by ‘joining’ value with partner should be in the result. The joined

tuple is computed by using the tupappend operator as in:

tupappend (value,partner)

In order to insert it into the result, a tag value must be computed.

Since the scheme of the resulting relation is formed by merging the
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schemes of the two operands, the tag value for the new tuple is formed
by concatenating the tag values of the two tuples from which the new
tuple was formed:

tupappend (tag,firstPart)

This tuple is inserted, by its tag value, into the union of the results for
the left and right subtrees. Put together, the SML for the 2-node case
is:

ctreejoin(Tr2(left,tag,value,right),s1,ts2,s2,n) =
let val firstPart = tupleproj(value,si,[n]) in
let val partner = at(firstPart,ts2) in
if tupnull(partner) then (* doesn’t contribute *)
treeunion(ctreejoin(lefti,s1,ts2,s2,n),
ctreejoin(rightl,s1,ts2,s2,n))
else
insert23(tupappend(tag,firstPart), (* the tag *)
tupappend(value,partner), (* the value *)
treeunion(ctreejoin(lefti,sl,ts2,s2,n),
ctreejoin(rightl,sl,ts2,s2,n)))

o The fourth case is that of the 3-node. This is a straightforward ex-
tension of the 2-node case, although, since 3-nodes contain two values
as opposed to the single value in 2-nodes, two look ups are performed.
This leads to four possible cases: both look ups succeed, both fail, the

‘left’ succeeds where the ‘right’ fails and vice versa. The SML is con-

sequently long (roughly 4 times as long as the 2-node case) but is not
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detailed here since nothing new is added (the code is to be found in

appendix D).

The purpose in elaborating the detail of the development above was to
establish that efficiency gains can be accomplished by manipulations at the
formal specification level. As can be seen, the efficiency of the tree-based join
on two relations depends linearly on the cardinality of the first relation and
depends on the search efficiency algorithm for the second (which is O(log(n)).
Hence the overall efficiency is O(nlog(n)). Therefore, an implementation in
Lingo derived (by the methodology explored in the previous section) from

this more concrete specification, would itself be O(nlog(n)).

6.8 Query optimisation

The previous section elaborated one aspect of improving the efficiency of
implementations of relational operators. Another aspect is that of improving
the efficiency of compositions of these operators where a reordering of the
operations can produce an equivalent overall result but at less cost — query
optimisation. This section deals with demonstrating how query optimisation
can be incorporated into the algebraic approach to program derivation.

Date ([24]) identifies four broad stages in the query optimisation process:
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1. Cast the query into some internal representation
2. Convert to a canonical form

3. Choose candidate low-level procedures

4. Generate query plans and choose the cheapest

Although no query optimisation process was incorporated into this work,
the approach reported within this chapter can provide a basis for limited
query optimisation in two ways.

Firstly, the assurance of state preservation properties of the ‘low-level
procedures’ allows query modification to take place safely. The correctness of
a mathematically justified reordering of operators within a relational algebra
expression assures the correctness of the same reordering of operators in the
physical implementation.

Secondly, since the reordering rules can be expressed as equational equiva-
lences, the interrelationship of operators can be defined through an algebraic
specification in SML.

In order to demonstrate the approach and scratch the surface of query op-

timisation, the rest of this section will concentrate on two query optimisation

rules reported by Date ([24]).
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The first rule is that where a projection is followed by another projection,
only the second projection needs to be carried out. The second rule is that
where a projection is followed by a selection, the equivalent result can be
obtained by performing the selection first and then the projection.

In order to incorporate these specimen query optimisation rules, another
layer is introduced to the existing specification. This layer contains an SML
abstype to represent relational algebra ezpressions themselves with construc-
tor functions defined for each relational algebra operator. Essentially the
abstype provides the the internal representation alluded to by Date.

In the case of the specimen, only two operators are concerned: Select
and Project. In addition, there is a constructor in the abstype to allow
‘named’ relations to appear in relational algebra expressions (otherwise it is
impossible to express the notion of operand).

abstype relExpr = Project of relExpr * nameList
| Select of relExpr * whereClause
| Literal of relName

The equational equivalences can now be expressed using pattern match-
ing within the definition of a function optimise which maps relExpr to
relExpr. Both rules (the removal of redundant projections and the reorder-

ing of projections followed by selections) are individually straightforward but
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interfere together in the sense that the reordering performed by the second

rule may generate redundant projections to be removed by the first rule.
Consider the following SML:

fun optimise(Project(Project(anExpr,namelListl) ,nameList2) =
Project (optimise(anExpr,nameList2))

Although this would successfully remove redundant projections which
were originally adjacent within the relational expression, it would fail to
cater for adjacencies produced by reorderings produced by the second opti-
misation rule. In a sense, the optimisation of redundant projections is being
performed ‘from left to right’ whereas the optimisation of projections followed
by selections moves projections ‘from right to left’.

In order to counter this interference, recursion is used to control the order
of optimisation from right to left:

fun optimise(Literal(x)) = Literal(x)
| optimise (Project(x,p)) = let val y = optimise(x) in
if isProject(y) then
y
else
Project(y,p)
end
| optimise (Select(x,w)) = let val y = optimise(x) in
if isProject(y) then
let val Project(z,p) = y in
Project(Select(z,w),p)
end
else
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Select(y,w)
end

The function isProject, given a relational expression, returns a boolean:
true if the expression’s ultimate opertaor is a project and false otherwise.

fun isProject(Project(x,n)) = true
| isProject(Select(r,w)) false
| isProject(Literal(r)) false

A Lingo derivation of this optimisation layer would then form an optimi-
sation component within the DEAL architecture (chapter 5) and come into
operation to process the synthesised data structures before their ‘execution’.

The precise point at which to perform the optimisation, however, would

depend on the nature of the optimisation strategies employed.

6.9 Conclusion

The areas of algebraic specification, abtract data type theory, functional pro-
gramming and class-based object-oriented programming languages appear
naturally together as weapons in an armoury serving the conquest of differ-
ent phases of the software life cycle. These approaches allow an adaptive life

cycle to be adopted and are particularly well suited to the development of a
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platform system (such as a computational engine providing support for the
relational algebra).

Other aspects of a system may favour different formal techniques. For
example, the specification phase of a programming language development
may be better suited by BNF and denotational semantics.

In addition, the implementation technique corresponds well with the
hardware support for class—based languages afforded by the REKURSIV pro-
cessor.

The equational, referentially transparent nature of the technique provides
a sound basis for further work. For example, some approaches to query
optimisation can be formulated as equations stating the equivalence of results
obtained by performing operations in different orders. These equivalences, as
well as the conditions under which they hold, can be specified equationally
allowing access to a query optimisation layer within the architecture of the
system being reported here.

The following chapter describes experiments carried out on the REKUR-
SIV system to investigate its performance for various ‘component’ activities
among which are handling of data sets using tree based storage strategies

and hashing techniques.



Chapter 7

Performance evaluation

To evaluate the performance of the Lingo/REKURSIV system’s architecture,
a means to factor out the effect of its implementation technology (in terms
of semiconductor integration scale and its effect on processor clock rates)
has to be found. The approach taken for this work is to distill a hypothesis
(from the work of the system’s designer and implementor) and to design

experiments that test this hypothesis.

7.1 Harland’s claims

The general claim by Harland for the REKURSIV system is that it narrows

the semantic gap ([52]). The figure expresses this notion informally. The

148
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Performance

REKURSIV

Von Neumann

c . . Smalitalk
Expressivity

horizontal axis imagines a spectrum of programming languages ranged ac-
cording to their ‘expressivity’, where C is taken to be at the low end and
languages such as Smalltalk are taken to be highly expressive (intermedi-
ate to these may lie languages such as Pascal, Ada, Lisp, Prolog and the
functional languages.).

The vertical axis indicates performance, perhaps for a given task or per-
haps for a suite.

The notion of expressivity is too diffuse to be quantified, and the curves
in the graphs are merely a suggestion that performance approaches a lower

bound as expressivity increases.
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Harland’s argument is that the REKURSIV can be implemented in any
technology and so can perform as well as a C machine built on a regular von
Neumann architecture (or a RISC variant). The gradients of the performance
graph, however, are unaffected by implementation technology but are affected

by the architectural arrangement of the underlying technology.

7.2 A preliminary experiment

To illustrate the approach, consider the following, preliminary, experiment.

Two benchmarks were coded in each of Smalltalk, Lingo and C. The
Smalltalk programs were executed on both an IBM RS/6000 (using Gnu
Smalltalk-80) and an IBM Personal Computer (using Digitalk’s Smalltalk/V
for Windows, an 80386SX processor running at 16MHz with 12 MBytes of
memory and Microsoft Windows version 3.1). The Lingo programs were
executed on the REKURSIV. The C programs were also executed on all
three systems.

The first benchmark evaluates an arithmetic expression

(114(10-+(94-(84(7+H(6+(5+(4+B+C2+1)NNNN)
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represented as a tree (using instances of classes to represent nodes in the
Smalltalk/Lingo code, and using union structures (variant records) in the C
code). The code (in Smalltalk and C) for this test is given in Appendix A.

In the second benchmark, the contents of a 100 element (integer) array
are computed by multiplying elements of two other arrays (the ith element
is computed by multiplying the ith element of the first array by the (100-
i)th element of the second array. The first array contains the integers 1 to
100, the second has the integers 100 down to 1. Again, the code is given in
Appendix A.

The figures give the number of evaluations per second.

e Benchmark 1

Evaluations per second

Smalltalk/Lingo C

RS6000 588 | 29400
REKURSIV 3333 | 22700
IBM PC 1111 | 3570

e Benchmark 2



CHAPTER 7. PERFORMANCE EVALUATION 152

Evaluations per second

Smalltalk /Lingo C

RS6000 50 | 12500
REKURSIV 116 | 10000
IBM PC 53 | 1640

The first benchmark can be seen as making use of expressive features of
Smalltalk and Lingo which are absent in C. (The computation’s control flow
is explicitly programmer controlled in the C versions whereas it is embedded
in the behaviour of objects in the other versions.).

The second benchmark represents a task which is naturally expressed in
a similar way in both the Smalltalk/Lingo and C versions.

The effect of implementation technology can be factored out by consid-
ering the ratios of values for the first benchmark to those of the second.

In particular, the ratios for the C implementations are —

RS6000 2.35

REKURSIV | 2.27

IBM PC 2.17

These figures represent the ratio of computational effort expended in exe-

cuting the benchmarks. Across platforms, the second benchmark appears to
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require a factor of about 2.25 as much time as the first benchmark to execute.
The similarity of these figures is expected under Harland’s hypothesis — the
regular von Neumann features of the platforms are being exercised in both
cases.

Turning to the ratios for the Smalltalk/Lingo implementations we have —

RS6000 12

REKURSIV | 29

IBM PC 21

These figures indicate that making use of object-oriented features has
changed the relative computational costs of the two benchmarks across all
platforms. Loosely, the first benchmark has become ‘easier’ to perform (than
the second) when use is made of inheritance and polymorphism.(The other
possibility, that the second task has become ‘harder’ is unlikely since the
computation involved in the second benchmark does not make any special use
of object-orientation and the hardware’s reaction to this kind of computation
has already been demonstra;ted through the C programs). The more likely
explanation is that all three systems have narrowed the semantic gap but
to differing extents by being allowed to exercise their facilities for object-

orientation.
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7.3 Medium scale benchmarks

As implementations of Smalltalk-80 on various processors began to pro-
liferate in the early 1980s, interest was shown in measuring their relative
performance. [70] (the so—called ‘green book’) accounts the experiences of
implementing teams and in particular, a chapter ([74]) reports facilities for
objectively comparing the efficiency of implementations. These facilities are
generally known as the ‘Smalltalk-80 benchmarks’.

Many of the micro benchmarks are only relevant to Smalltalk—80 imple-
mentations (based on the ‘blue book’ [39]) and exercise particular bytecodes
and primitives of the Smalltalk—80 virtual machine. Such benchmarks are
not directly applicable to measuring the efficiency of Lingo implemented on

the REKURSIV. Examples in this category are —

o testTextScanning — this tests the speed of the (primitive) method
that displays characters on the screen. Within the Lingo implemen-
tation, this speed is largely determined by the performance of the X-

windows system running on the host Sun workstation).

o testBitBIlt — this tests the block transfer of pixel values, an important
feature in early Smalltalk-80 systems with their emphasis on the con-

struction of Graphical User Interfaces without direct windowing and
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event support from an underlying operating system.

¢ testLoadThisContext — this measures how quickly the current con-
text (the execution environment containing the local variables and so
on) can be pushed onto the stack. Within the Lingo implementation
it is hard to see how this operation could be isolated and in any case
the significance of the time for its execution is probably less for Lingo
than for Smalltalk systems. In Smalltalk for example, control struc-
tures such as an if statement are not an inherent part of the language.
Instead, they are synthesised by methods (within appropriate classes)
which take Blocks (code objects) as arguments. An if-then—else state-
ment, for example, is forged by including a method ifTrue: ifFalse:

in the class Boolean, so that we may for instance write

x<y
ifTrue: [y :=y -x. ]

ifFalse: [ ~ y ].

(Pairs of square brackets delineate Blocks).

The execution of either branch will require the pushing of a context

on to the stack. Lingo however, whilst still allowing the synthesis of
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control structures, has the more common varieties available in the core

language which are recognised by the compiler and efficiently compiled.

None of the macro benchmarks from [74] appear to be of direct relevance
for measuring the Lingo system since they mainly deal with the methods
involved in providing the programmer environment.

For this study, the spirit of the Smalltalk—80 micro benchmarks was used
to model a suite of tests which measure slightly coarser grain activity (at
roughly the statement, rather than the primitive/bytecode level). The fol-
lowing tables describe the tests. Each table groups tests that exercise similar
implementation activities.

The first group exercise access to the execution environment — instance

variables, class variables, locals and method arguments —
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Environment

test name

description

A | testLoadInstVar

return the value of

an instance variable

B | testLoadTempNRef

return a local

C | testLoadTempNRef2

assign to and then

return a local

D | testLiteralNRef

return an integer literal

E | testLoadLiteralIndirect

return the value of

a class variable

F | testPopStorelnstVarl

assign an integer

literal to an instance variable

G | testPopStoreTempl

assign an integer

literal to a local

The arithmetic tests are performed for both ‘small’ integers and integers

since with small integers (16 bit) the Smalltalk/V implementation can use

the processor’s ALU directly -
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Arithmetic
test name description
H | test3Plus4 3+4
I | test3LessThan4 3<4
J | test3Times4 3*4
K | test3Div4 3/4
L | test35000Plus45000 35000 + 45000
M | test35000LessThan45000 | 35000 < 45000
N | test35000Times45000 35000 * 45000
O | test35000Div45000 35000 / 45000

The control flow tests exercise selection and iteration —

Control Flow

(mean time per iteration over

2000 iterations)

test name description
P | testShortBranch if false then .. else ..
Q | testWhile an empty while loop
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Array manipulation is a fundamental activity (objects of whatever com-
plexity can be modelled as arrays containing object identifiers). Character
strings are stored (conceptually) as arrays of characters, yet require packing

and unpacking of 8 bit quantities for storage efficiency —

Array and String manipulation

test name description
R | testArrayAt accessing an array element
S | testArrayAtPut | assigning to an array element
T | testStringAt accessing a character within a string
U | testStringAtPut | assigning to a character within a string
V | testSize finding the size of a string

The last group of tests concentrate on strongly object-oriented aspects —
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Object operations

test name | description

testEq testing object equality

testClass | determining the class of an object

< x| =

testValue | performing a Block

N

testCreate | creating an object

The raw results obtained (in microseconds) for the two systems (Lingo
and Smalltalk) are presented in the following tables along with the perfor-
mance ratio of Lingo to Smalltalk (the Smalltalk time divided by the Lingo
time). The timings obtained for the Lingo system were highly consistent,
typically varying by less than 2 per cent across several (5 or more) repeti-
tions of a test. Occasional ‘rogue’ results were obtained (and excluded from
the averaging process). These were associated with the triggering of garbage
collections as a consequence of the REKURSIV’s pager tables being full. The
Smalltalk system showed a far greater variability in timings ( 15 per cent).
This was attributed to the incremental garbage collection strategy employed

and the coarse resolution of the timer (1 millisecond).
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Environment

test name Lingo | Smalltalk/V | Performance
time time ratio

A | testLoadInstVar 1.19 2.20 1.85
B | testLoadTempNRef 1.41 8.30 5.89
C | testLoadTempNRef2 2.71 13.60 5.01
D | testLiteralNRef 0.58 6.60 11.38
E | testLoadLiteralIndirect 2.40 9.80 4.08
F | testPopStorelnstVarl 1.45 8.20 5.66
G | testPopStoreTempl 1.84 5.40 2.93

It is clear that the performance profiles of the two systems differ, even

within this narrow spectrum of activities. This difference can be emphasised

by computing a normalised performance ratio — the mean of the absolute

ratios in the group is taken, and a new score is calculated as a proportion of

that mean. A score of 1 indicates that the Lingo system has performed to an

expectation in line with the general expectation based on the results for the

test group as a whole. A score greater than 1 indicates that the Lingo system

has operated better than expected on a particular test. A spread of scores
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indicates that the Lingo system reacts differentially to these test activities
(and that the system is not merely faster or slower overall than the Smalltalk
system).

The mean for this group is 5.26 and the normalised performance ratios,

R, are
Environment

test name R
A | testLoadInstVar 0.35
B | testLoadTempNRef 1.12
C | testLoadTempNRef2 0.95
D | testLiteralNRef 2.16
E | testLoadLiteralIndirect | 0.78
F | testPopStorelnstVarl 1.08
G | testPopStoreTempl 0.56
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25 -

Environment tests

In the Arithmetic group, the normalised performance ratios have been cal-
culated excluding the timings for the division tests since these timings were
so large for the Smalltalk system. The mean (unnormalised) performance
ratio was 13.1. It is unsurprising that the Lingo system operates similarly
for arithmetic on both 16 and 32 bit integers since it is essentially a 32 bit

machine.
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Arithmetic

test name Lingo | Smalltalk R
time time | ratio

H | test3Plus4 3.97 13.10 | 0.25
I | test3LessThan4 3.48 15.80 | 0.35
J | test3Times4 11.04 16.90 | 0.12
K | test3Div4 20.20 900.70 | <0.01
L | test35000Plus45000 5.24 170.70 2.49
M | test35000LessThan45000 4.74 78.00 1.26
N | test35000Times45000 12.43 24720 | 1.52
O | test35000Div45000 21.69 3931.00 | <0.01
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Arithmetic tests

The Control Flow group has only two tests; the same analysis is computed
though for the sake of completeness (The mean unnormalised performance

ratio for the group was 3.85).
Control Flow

test name Lingo | Smalltalk R
time time | ratio

P | testShortBranch 2.60 | 7.70 | 0.77
Q | testWhile 5.21 10.46 | 1.23
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The Array and String manipulation group tests displayed the smallest

variation in performance ratios and also the smallest mean performance ratio

(2.51).
Array and String manipulation

test name Lingo | Smalltalk R

time time | ratio

R | testArrayAt 12.28 33.50 | 1.09

S | testArrayAtPut | 12.29 38.00 | 1.23

T | testStringAt 12.69 31.30 | 0.98

U | testStringAtPut | 16.50 37.80 | 0.91

V | testSize 11.97 23.60 | 0.78




CHAPTER 7. PERFORMANCE EVALUATION

167

13 ¢
12 +
11 +

09 +
0.8 +
0.7 +
0.6 +

05 4+

Array and String manipulation

The last group, Object operations, exhibited a wide variation of ratios

and the largest mean performance ratio.

Object operations
test name | Lingo | Smalltalk R
time time | ratio
W | testEq 12.51 22.50 | 0.25
X | testClass 2.38 23.60 | 1.35
Y | testValue 16.65 215.20 | 1.75
Z | testCreate | 13.18 65.90 | 0.65
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Object operations

The following radar diagram summarises the medium scale testing of the
REKURSIV /Lingo system by giving its relative profile (against the Smalltalk/V
system used in the tests). The circle in the middle (the grid line for an R
value of 1) indicates parity — roughly, if the two systems reacted similarly
to different tasks, points on the diagram would be distributed on the circle.
Points outside the circle indicate that the REKURSIV system performs the

task more efficiently than would be expected from a comparison of averages.
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Environment
Object operations

Arrays and Strings

Q  control Flow

Overall performance profile ( REKURSIV:Smallitalk)

This profile confirms that the REKURSIV is a success to the extent that
it supports the squeezing of the semantic gap for Smalltalk-like object—
oriented programming languages. Attribute Y, testValue, is involved in
every method call (message send) and so is fundamental to the execution
of programs. Class determination (attribute X, testClass) is an important

feature in object—oriented programming and the REKURSIV’s hardware sup-
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port for this has had a positive effect.

Further discussion and evaluation of these results is to be found in chapter

7.4 Large scale benchmarks

In order to assess the large scale behaviour (for database systems) of the
REKURSIV/Lingo system, two general experiments were conceived. Both

relate to the storage of relations and the retrieval of tuples within them.

7.4.1 Hashing

In the first such experiment, a hashing scheme was devised for the storage
of tuples of a relation. Under the scheme, a hash table consists of a set
of buckets and the size of this set is fixed. The hash function determines
the bucket address in which a tuple should be stored. Each bucket is a
Dictionary object — these are associative structures which hold (key,value)
associations. Dictionary is a built in collection class in both Smalltalk/V
and Lingo.

Collisions are not handled in any way. Since a Dictionary can hold an

indefinite number of associations there is no need to do so. Once dictionaries
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start to contain a great number of entries though, accessing the hash table
can become very time consuming. The scheme can be used as the basis for
an extensible hashing method, where the hash table itself is increased in
size when the average load factor (the number of tuples in the relation
divided by the number of buckets in the table) rises above a threshold of
acceptability. Indeed, a purpose of this first experiment is to determine this
threshold of acceptability.

The above (inextensible) hashing scheme was programmed in both Lingo
and Smalltalk/V, and used to store a relation of cardinality 5000. The size of
the hash table was varied from 1 to 5000 buckets, giving a range of ultimate
average load factors of from 1 to 5000. The first graph shows the average
time taken (in milliseconds) to insert a tuple into a hash table in both the

Lingo and Smalltalk/V systems.
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Inserting tuples into hash tables
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The second graph shows the average time taken to search a (full) hashtable

for a particular record.
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Search by key in hash tables
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Points to the extreme left of these graphs represent the situation when
the hash table storage has reduced to storage in a dictionary (since the hash
table has now only one bucket — which is a dictionary!).

The two systems, Smalltalk and Lingo implement dictionaries differently.
In Smalltalk, dictionaries are implemented via extensible hash tables and
the results confirm this — the performance is independent of load factor and
so there is no advantage in creating an extensible form of the experiments
hashing scheme since there is no clear load factor at which to trigger the
extension of the hash table.

In the Lingo system, however, dictionaries are implemented as array-like
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objects. The addition of a key,value association (the at: put: method)
is managed by linearly searching the array for an existing association with
the new key and the overwriting of the old association if this exists or the
addition of a new array element if the key is not already present. This method
is microcoded. The results indicate that basing an extensible hashing scheme
on this prototype scheme would be advantageous if the scheme triggered
an extension when the average load factor rose above 10. At these levels,
the Lingo system would be performing better than the Smalltalk system
by a factor of 70 (for creation of relations) and 8 (for searching through
relations). This second factor is in line with an expectation based on the
simple experiments reported in section 7.2 earlier within this chapter. The
first factor demonstrates the advantage the Lingo system can gain through
microcoding features such as memory allocation ( where Smalltalk must make

calls to an operating system.)

7.4.2 AVL Trees

In the second experiment, the tuples of a relation were stored in a semi—
balanced tree structure. Each node of the tree can contain (the object iden-
tifiers of ) up to two tuples and (the object identifiers of ) up to three subtrees.

The insertion of a tuple is managed in such a way that the lengths of the
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routes from the root node to a leaf never differ by more than one (complete
balancing is not ensured). The tree is also ordered in the sense that the
correct route to the insertion location for an incoming tuple is determined
completely by key comparisons as is the search for the presence of a tuple.
The balancing ensures that the number of comparisons that are made is
within one of the optimum.

The following graph shows the average time (per tuple, in milliseconds)
taken to to create a tree against the ultimate cardinality of the tree (again

for both the Lingo and Smalltalk/V systems).
Creating trees
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The next graph shows the average time taken to search for a tuple by key
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in trees of varying cardinality.

Searching by key in trees
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This second graph confirms a general performance ratio of 8 to 1 in favour

of the Lingo system when manipulating data structures (the sharp deterio-

ration in the Lingo performance for cardinalities in excess of 8000 or so is

attributed to the a great increase in ‘pager table full’ faults and their conse-

quent garbage collections and disk accesses). Taken together with the results

for the simple hashing scheme, the graphs indicate that for both the Lingo

and Smalltalk systems hash storage and tree storage perform similarly for

searching through relations of cardinality less than a few thousand. Further

discussion and evaluation of these results is to be found in chapter 8.



Chapter 8

Conclusions

8.1 Qualitative results

The contributions of this work fall into two camps. On the qualitative side,
the experience of software construction for the Lingo/REKURSIV has yielded
results that are transferable to object—oriented development platforms such
as Smalltalk.

These contributions (other than the implementation of a database sys-

tem) are

o In the field of Formal Specification methods, the methodology exposed
in chapter 6 for program derivation is an adaptation new to this work.

The methodology can only be applied to derive programs in class based

177
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languages. A relationship between an equational style of functional

programming and object-oriented programming has been established.

The formal specification itself is novel in that it tackles the nature of

domains.

o The development of a top-down parser generator (chapter 5) is novel in
that the usual automated generation strategy is table driven. The ad-
vantage gained by using a top down strategy lies in the ease with which
semantic actions can be attached. The dynamic binding of Smalltalk
(or Lingo) is the essential property that allows the inclusion of semantic

actions to be relatively transparent.

e The main contribution of the work, though, is to arrive at quantitative
results on the performance of the REKURSIV detailed in the following

section.

Future work, based on these contributions, that the author would like to

engage in concern:

e A movement away from this project’s tight coupling with the relational
model, towards the functional model and a suitable query language
such as FDL [88]. This would allow functional language implementa-

tion techniques (such as the supercombinator approach investigated by
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Khan [69] to be employed, as well as providing a harmonious and more

uniform treament of the different levels of the architecture.

e The further development of compiler writing tools. A difficulty with
the parser-generator developed within this project is the difficulty of
disentangling syntactic and semantic definitions within the source file.
Visual programming techniques within a well considered user interface
may yield a truly useable compiler work bench. In addition, work
should be done to incorporate a more formal approach to semantics

specification.

e The refinement of program derivation from algebraic specifications.
The question of state in such specifications and the inclusion of higher—

order functions remain as challenges.

8.2 The use of the REKURSIV for database

work

The results, particularly from chapter 7, indicate that the REKURSIV is not
an ideal target for database implementations in its present form.

A crucial factor in database work is the efficient storage and retrieval
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of large sets of data. The experiments comparing hash storage and tree
storage, indicate the REKURSIV’s performance is fine until, put crudely, it
is ‘full’, at which point there is a catastrophic deterioration in performance.
The tragedy is that this ‘fullness’ is fallacious — the real physical memory is
perfectly capable of containing the small relations of cardinality 8000 or so
and is not completely allocated; it is the pager tables that are full since the
system, in pursuance of the relational operation, has generated in excess of
64K objects. The ensuing garbage collection (and its associated disk accesses)
then completely swamps perfomance as the system tries to make space in the
pager tables for another object identifier whilst keeping as many associated
object identifiers in place as possible. The majority of resident objects are
associated by virtue of representing tuples from the operands of whatever
relational operation is currently being performed.

Larger pager tables would allow the degradation point not to be reached
until higher cardinalities were encountered but would not remove the prob-
lem altogether. Alternatively, an investigation on optimal garbage collection
strategies may ameliorate the catastrophic degradation for particular data
storage regimes.

The REKURSIV recognises some classes of objects as compact. Compact

objects have their types and values coded into their 40-bit object identifiers
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and do not require use of the pager tables. The use of compact objects
seems unrealistic, however, since the Lingo system itself must be modified to
recognise them and it is not completely clear how this can be done.

A radical approach to database implementation using the REKURSIV
would be to remove it from the HADES configuration altogether and provide
it with its own disk processor rather than the artificial arrangement of using
the host computer’s Unix file store. In addition, for dedicated database
work, it is unnecessary to have the REKURSIV configured for the general
purpose programming language Lingo with the overheads that provision of
general purpose power entail. In principle, storage regimes, such as balanced
trees and extensible hash tables, crucial aspects of database work, could
be microcoded and support any REKURSIV configuration. At present, the
only built-in associative storage structure available on the REKURSIV is
the Dictionary class, whose methods are microcoded. However, these are
implemented as linear array-like structures for which search and lookup has
O(n) efficiency. Associative structures based on AVL trees (where lookup has
O(log(n)) efficiency) would perform better for sufficiently large cardinality
n (the number of elements stored in the structure). Microcoding AVL trees
would decrease the threshold cardinality at which advantage is gained. This

benefit, however, would only hold as long as the cardinality was small enough
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to avoid disk processing (through either the physical object store or the pager
tables being full) at which point the input/output cost becomes the important

factor.

8.3 The verdict on the REKURSIV

The experimentation for this is presented in chapter 7. How is this to be
judged? Clearly, it is impossible to give a positive verdict on the REKUR-
SIV - the world has already denied this with the demise of Linn—Smart
Computing.

On technical grounds the REKURSIV is a success. The results in chapter
7 show that its computational profile s different from a conventional pro-
cessor and that its profile favours the fundamental operations that support
object-orientation (class determination, message sending, method look—up
and so on).

The REKURSIV’s handling of large data sets is rather harder to discern —
a rather good performance suddenly worsens as the mechanics of the virtual
memory management system are brought into play. Partly this is unfair to
the REKURSIV, since it was designed to operate with its own disk processor

managing the swap space rather than communicate with a unix file system
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through some registers on the VME bus of the host Sun workstation. On
the other hand, the problem really emanates from the pager tables being
too small (or fixed in size at all) rather than main object memory being
full. This detail does not seriously detract from the technical success of the
REKURSIV chip set.

The real problem lies in the REKURSIV project itself. It is extremely
doubtful that architectural advances in processor design can be successful
at least when presented on their own without taking significant advantage
of an advance in the underlying implementation technology. Harland has
argued that his architecture squeezes the semantic gap and that advances
in underlying technology if applied to the REKURSIV would maintain its
advantage over conventional processors. This misses the point that these
technological advances are so great that they completely swamp architectural
advantage. In addition, technological advance occurs in reaction to a need.
The advent of RISC processors in the late nineteen eighties generated a need
for fast cache technology. Today, the fruits of cache technology have been
applied to non-RISC processors such as the Intel 80486 to allow processor
clock rates an order of magnitude greater than were possible six years ago.

It is also fallacious to believe that there is such a thing as a conventional

processor. The distribution of ‘intelligence’ throughout a computer (interrupt
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mechanisms, direct memory access, floating—point and graphics processors,
intelligent disc controllers and so on) have completely distanced the computer
from its ancestors. These advances represent continued effort at streamlining
the computation process rather than attempts to revolutionise the computa-
tional basis. This last is a vain goal — in the end all processing machines are

Turing equivalent.

8.4 The failure

The last section paints a bleak picture. What are the lessons to be learned?

It 1s instructive to remember that in the field of processor design, as in so
much of Computing, ideas achieve success if the cost of implementing them
will obviously be recouped quickly. The success of the personal computer
was not due to its technical merit. It did not immediately revolutionise peo-
ple’s work practice. Instead it insinuated itself into indispensability through
gradual stages of usefulness, most of which were advances in software appli-
cations.

The REKURSIV was too large a bite to swallow. On all fronts it was a

novelty.

o Users required a Sun workstation to use their REKURSIV. No other
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processor in this target market was hosted in this way. The Sun work-

station itself became cheaper and more powerful than its embedded

REKURSIV.

e The language Lingo was a proprietary product. Smalltalk or C++

would have given an aroma of familiarity.

o The system could not communicate with any existing software or data

systems.

8.5 The future

Putting to one side the political and economic factors surrounding the REKUR-
SIV project Harland’s work has shown an object—oriented processor is feasi-
ble. To move into the future the following recommendation can be made.

A standard for processor architectures should be established. The SPARC
standard is an example of such a standard. The specification (SPARC) is
separated from the implementation. This allows a gradualist introduction
of coprocessor support since the processor—coprocessor interface is defined.
From there, an investigation of the processing needs of object—oriented ap-
plications could delineate specific activities to build coprocessor support for

(this approach has been successfully used for the introduction of graphics
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terminals and dedicated X-terminals).

What such an investigation would reveal is beyond the author. High
performance message sending and hardware typing support, the technical
successes of the REKURSIV, will no doubt be important but it is too early to
devise a clearly interfaced mechanism that will allow a conventional processor
to successfully share its burden with an object—oriented coprocessor.

The irony is, in the end, that despite the seductive naturalness of object—

orientation, the real question is “What do we mean by an object?”.
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Appendix A

Code for the preliminary

experiment

In Smalltalk, nodes involving addition are modelled by the class Plus —

Object subclass: #Plus
instanceVariableNames: ’left right’
classVariableNames: ’’
poolDictionaries: ’’ !

!Plus class methods!

of: a and: b

"create a new node representing a + b "
~ ((super new) left: a right: b)

N

!Plus methods!

"private - set instance variables of newly created instance"

left: a right: b
left := a.
right := b.

205
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|
compute
"return the result of the addition for this node"

~ ((left compute) +(right compute))
¥

For this scheme to work, Number objects (which may reside in the left

and right branches of nodes) must be able to respond to compute messages

!Number methods!
compute

"~ self
1

The actual test is contained as a class method, test, of the class Bench,
which also has a class method, init, to create the original tree —

Object subclass: #Bench
instanceVariableNames: ’°
classVariableNames: ’theTree’
poolDictionaries: ’’ !

!Bench class methods!

init
| abc |

a := Plus of: 2 and: 1.
b := 3.

[ b <= 11.] whileTrue:
[

1]

Plus of: b and: a.
b+ 1.

a :
b :
1.

theTree := a.
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theTree printN1 .
I

test | a b c |

a :=0.

[ a <= 1000. ] whileTrue:
L

b
[ b<
[

n

1000 .] whileTrue:

c :
b :

1.

a printNl.

a:=a+1.

theTree compute.
b+ 1.

The C version is —

#include <stdio.h>
#tdefine NUMBER O
#define PLUS 1
#define MINUS 2
#define TIMES 3
#define DIVIDE 4
typedef struct mnode
{
int kind;
union
{
int number;
struct nodes { struct node * left, * right; } nodes;
} body;
} node ;
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node * new()

{
node * temp;
temp = ( node * ) malloc(sizeof(node));
return temp;

3

void show( x)
node * x;
{
switch (x->kind)
{
case NUMBER : printf(" %d ", x->body.number); break;
default : printf("("); show(x->body.nodes.left);
switch (x-> kind)
{
case PLUS : printf("+"); break;
case MINUS : printf("+"); break;
case TIMES : printf("+"); break;
case DIVIDE : printf("+"); break;
}
show(x->body.nodes.right) ;
printf(")");

}
}
int eval( x)
node * Xx;
{ int le, ri;
switch (x->kind)
{
case NUMBER : return x->body.number;
default : le = eval(x->body.nodes.left);
ri = eval(x->body.nodes.right);
switch (x-> kind)
{
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case PLUS : return (le + ri);
case MINUS : return (le - ri);

case TIMES : return (le * ri);
case DIVIDE : return (le / ri);
}
}
}
main()
{
node * top,*i,*j,x*k;
int how;

int the,qu,quo=0;
i = new();
j = new();
top = new();
j=>body.number=2;
i->kind = NUMBER;
i=->body.number=1;
j=>kind = NUMBER;
top—>kind = PLUS;
top->body.nodes.left = j;
top->body.nodes.right = i;
for (how = 3; how <= 11; how ++)

{
j=new();
j—>body.number = how;
j—->kind = NUMBER;
i = new();
i->kind = PLUS;
i->body.nodes.left = j;
i->body.nodes.right = top;
top = i;

b

show(top) ;

while (1)

{
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for (the=0; the<1000; the++)
qu = eval(top);
printf ("%d\n",quo++) ;
}
}

In the second benchmark, the contents of a 100 element (integer) array
are computed by multiplying elements of two other arrays (the ith element
is computed by multiplying the ith element of the first array by the (100-i)th
element of the second array. The first array contains the integers 1 to 100,
the second has the integers 100 down to 1.

The Smalltalk for this is —

Object subclass: #Bench2
instanceVariableNames: ’’
classVariableNames:

’Ac Ab Aa ’
poolDictionaries: ’’ !

!Bench2 class methods !

init | i j k |
Aa := Array mnew: 100.

Ab := Array new: 100.
Ac := Array new: 100.
i:=1.

[ i <= 100 ] whileTrue:
L

Aa at: i put: 1.
Ab at: (101-i) put:
i = i+1.

1.1

[8



APPENDIX A. CODE FOR THE PRELIMINARY EXPERIMENT

211

test | 1 jk q |

T
i
L
[

]

ranscript nextPutAll: ’going’; cr.
:=1. j :=1.
j <= 1000. ] whileTrue:

i=1.
[ i <= 1000.] whileTrue:
L

k
[ k <
[

=

100. ] whileTrue:

Ac at: k put: ((Aa at: k ) * ( Ab at: (101-k))).
k :=k + 1. |

i:=1i+1.

=3 + 1.

1.
j printOn: Transcript. Transcript cr.
J
At

and the corresponding C code is —

main()

{

int a[100],b[100],c[100];
int i,j,k=0;

for (i=0;i<=99;i++) { alil=i; b[99-i]l=i;}

while (1)

{
for(i=0;i<=1000;i++)
{
for (j=0;j<=99;j++)
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{
c[j] = alj] * b[99-j1;
+
}
printf ("%d\n",k++);
}
}
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An SML specification

abstype domain = dom of string
with
exception domexception
fun validdom(dom s) = s = "int" orelse s = "string"
fun nameofdom(dom s) = s
fun displaydom(dom s) = print s
fun makedom s = let val d = dom s in
if validdom d then d
else raise domexception
end
end

abstype name = nam of string
with
fun nameofnam(nam s) = s
fun makenam s = nam s
fun nameq(nam si, nam s2) = si=s2
fun displaynam(nam s) = print s
end

213
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abstype attribute = ival of int | cval of string
with

exception attexception

fun makeival(i) = ival(i)

fun makecval(s) = cval(s)

fun getival(ival(i)) = i
|getival(cval(c)) = raise attexception

fun getcval(cval(c)) = c
|getcval(ival(i)) = raise attexception

fun type2string(ival(i)) = "int"
|type2string(cval(c)) = “"string"

fun att2string(ival(i)) = makestring i
att2string(cval(c)) = ¢

fun atteq(ival(_),cval(_))=false
fatteq(cval(_),ival(_))=false
|atteq(ival(x) ,ival(y))=x=y
latteq(cval(x),cval(y))=x=y

fun attgt(ival(_),cval(_))=false
lattgt(cval(_),ival(_))=false
lattgt (ival(x),ival(y))=x>y
lattgt (cval(x),cval(y))=x>y

fun attlt(ival(_),cval(_))=false
lattlt(cval(_),ival(_))=Ffalse
[attlt (ival(x) ,ival(y))=x<y
[attlt(cval(x),cval(y))=x<y

fun attne(ival(_),cval(_))=false
|attne(cval(_ ),ival(_))=Ffalse
|attne(ival(x),ival(y))=x<>y
lattne(cval(x),cval(y))=x<>y

fun attge(a,b) = atteq(a,b) orelse attgt(a,b)

fun attle(a,b) = atteq(a,b) orelse attlt(a,b)

end

abstype scheme = sch of ( (name list) * (( domain * name ) list ))
(* The first name list is the names of the key attributes *)
with

exception schemeexception
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fun second(x,y) =y
fun makesch (11,12) = sch (11,12)
fun schlength(sch (11,12)) = length(12)
fun validscheme(sch(h::t,[])) = false
|  validscheme(sch([],_)) = true
| validscheme(sch(hl::t1,h2::t2)) = isin(hl,h2::t2) andalso
validscheme(sch(t1,h2::t2))
and isin(x,[]) = false
| isin(x, (h1,h2)::t) = nameq(x,h2) orelse isin(x,t)
fun keyofscheme(sch(11,12)) = 11
fun namesinscheme(sch(q,h::t)) = second(h)::namesinscheme(sch(q,t))
| namesinscheme(sch(_,[1)) = []
fun bodyofscheme(sch(11,12)) = 12
fun schhd(sch (11,12)) = hd 12
fun schtl(sch (11,12)) = t1 12
fun Schappend(sch(111,112),sch(l21,122))=SCh((1116121),(112©122))
fun schnull(sch (11,12)) = 12 = nil
fun equiv(si:scheme, s2:scheme):bool = if schnull(sl) andalso schnull(s2)
then true else
if schlength(sl) <> schlength(s2) then false else
nameofdom(first(schhd s1)) = nameofdom(first(schhd s2)) andalso
equiv(sch([],schtl s1), sch([],schtl s2))
and first(x,y) = x
exception renamefault
fun rename(s,13,14) = let val s1 = sch(13,14) in
if equiv(s,s1) andalso validscheme(sl) then sl else
raise renamefault
end
fun posinscheme(s:scheme,n:name) = if schnull s then raise schemeexception
else if nameofnam(n) = nameofnam(second(schhd s)) then 1
else 1 + posinscheme(sch([],schtl s),n)
(x* 1dn 13.2.91 %)
fun isinscheme(s:scheme,n:name) = if schnull s then false else
if nameofnam(n) = nameofnam(second(schhd s)) then true
else isinscheme(sch([],schtl s),n)
(* 1dn 13.2.91 %)
fun domofnaminscheme(sch(_,[]),n) = raise schemeexception
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domofnaminscheme(sch(_, (d1,n1)::st),n) =
if nameq(nl,n) then d1 else domofnaminscheme(sch([],st),n)

(* 1dn 13.2.91 x)

fun

schproj(sch(_,[]),h::t) = raise schemeexception

schproj(s,[]) = sch([],[1)

schproj(s,h::t)= if isinscheme(s,h) then

schappend(sch([h], [(domofnaminscheme(s,h),h)]),
schproj(s,t)) else raise schemeexception

(* cut out by ldn 13.2.91

fun
I
I

fun

fun
end

schproj(sch(_,[]),h::t) = raise schemeexception

schproj (s, [1) = sch([1,[])

schproj(sch(_, (d2,n2) : :st2) ,h::t)= if nameq(n2,h) then
schappend(sch([n2],[(d2,n2)]), schproj(sch([],st2),t)) else
schproj(sch([],st2),t)

scheme2string(sch(_,[])) = "

scheme2string(sch (11,(d,n)::t)) = (nameofdom(d)~" "“nameofnam(n)"
" "“scheme2string(sch([], t))) (*x ~"\n" %)

displayscheme s = print scheme2string(s)

abstype tuple = tup of (attribute list)

with

exception tupexceptionil
exception tupexception2

fun
fun
fun
fun

maketup(al) = tup al
tuphd (tup al) = hd al
tuptl (tup al) = tl1 al

tupeq(tup([]) ,tup(h::t))=false
tupeq(tup(h::t),tup([]))=false
tupeq (tup([1),tup([]))=true
tupeq(tup(hi::t1) ,tup(h2::t2))=atteq(hl,h2) andalso tupeq(tup(ti),tup(
tuplt (tup([]),tup(h::t))=false
tuplt (tup(h::t),tup([]))=Ffalse
tuplt (tup([]1),tup([]l))=Ffalse
tuplt (tup(hi::t1),tup(h2::t2))
= if attlt(h1,h2) then true
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else if atteq(hl,h2) then tuplt(tup(tl),tup(t2))
else false
fun tupgt(tup [1, tup(l)) = false
|  tupgt(tup(h::t), tup [1) = true
|  tupgt(tup(hi::t1),tup(h2::t2)) = if attgt(hl,h2) then true
else tupgt(tup(tl),tup(t2))
fun tupappend(tup 11, tup 12) = tup (11@12)
fun tuplength (tup al) = length al
fun tupnull(tup al) = al = nil
fun match(t:tuple ,s:scheme) = (tupnull(t) andalso schnull(s)) orelse
if not(tupnull(t) orelse schnull(s)) then
(type2string(tuphd t)=nameofdom(first(schhd s)))
andalso match(tup(tuptl t),makesch([],schtl s))
else false
fun tupnth(t:tuple,n:int) = if n<=0 then raise tupexceptionil
else if tupnull t then raise tupexceptionl
else if n=1 then tuphd(t) else tupnth(tup(tuptl t),n-1)
fun dot(t:tuple, s:scheme, n:name) = if not( match(t,s)) then
raise tupexception2 else tupnth(t,posinscheme(s,n))
fun tupleproj(t,s,hnl::tnl)=tupappend(tup([dot(t,s,hnl)]),tupleproj(t,s,tn
| tupleproj(t,s,[1)=tup([])
(* fun tupleproj(t,s,nl)=tupappend(tup([dot(t,s,hd(nl))]),tupleproj(t,s,t1(
| tupleproj(t,s,[J)=tup([]) *)
fun tup2string(tup(h::t))=att2string(h)~" "~tup2string(tup t) (*~'"\n" *)
| tup2string(tup [1)="\n"
end

datatype comparator = gt | ge | eq | 1le | 1t | ne
abstype tupset = set of (tuple list)

with
val emptyset = set([])

fun maketupset(tl) = set(tl)
fun thd(set(h::t)) = h
fun ttl(set(h::t)) =t

fun set2list(set(tl)) = t1
fun taddattr(_,set([])) = emptyset
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| taddattr(a,set(h::t)) = maketupset(tupappend(h,maketup([a]))::set2list
fun tsum(i,set([])) =0

| tsum(i,set(h::t)) = getival(tupnth(h,i)) + tsum(i,set(t))

fun member(t:tuple,nil:tuple list) = false
|  member(t,h::1)= if tupeq(t,h) then true else member(t,l)
(* fun tpartition(ril,set([]),_) = [makerel(schemeof(rl),emptyset)]
| tpartition(rl,set(h::t),n) =
projsel(ri,n,h) ::(tpartition(rl,set(t),n)) *)
fun is_empty(set(s)) = length(s) = 0
(* insert to be used when there is no possibility of duplicates *)
fun fastinsert (t, set(l)) = set(t::1)
(* insert which guards against tuple duplication *)
fun safeinsert (t, set(l)) = if member(t,l) then set (1)
else set(t::1)
(* In an efficient implementation it is likely to be faster to
use the fastinsert for all insertions and eliminate duplicates by
sorting the list with a quicksort then looking for repeated adjacent
values in a final pass. This is Onlogn rather than On"2 *)
fun tunion(set([]), set(l)) = set 1
| tunion(set(h::t),set(1l)) = tunion(set(t),safeinsert(h,set(1)))
fun tintersect(set([]),set(1)) = set([])
| tintersect(set(h::t),set(1l)) = if member(h,l) then fastinsert(h,
tintersect(set(t),set(1))) else
tintersect (set(t),set (1))
fun tdifference(set([]),set(1)) = set([])
| tdifference(set(h::t),set(1l)) = if member(h,l) then tdifference(set(t)
set(1l)) else
fastinsert(h,tdifference(set(t),set(1)))
fun tupleprod(t:tuple,set([])) = set([])
|  tupleprod(t,set(h::1)) = fastinsert(tupappend(t,h), tupleprod(t,set(l)
fun tcartprod(set([]),s) = set([])
|  tcartprod(set(h::t),s) = tunion(tupleprod(h,s), tcartprod(set(t),s))
fun tselect(set([]), cond:tuple -> bool) = set([])
| tselect(set(h::t),cond) = if cond(h) then fastinsert(h,tselect(set(t),
cond))
else tselect(set(t), cond)
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(* PRECI-style select *)

fun tpresel(set([]),s:scheme,n:name,c:comparator,a:attribute) = set([])

| tpresel(set(h::t),s,n,gt,a) =

| tpresel(set(h::t),s,n,ge,a)

| tpresel(set(h::t),s,n,eq,a) =

| tpresel(set(h::t),s,n,le,a)

| tpresel(set(h::t),s,n,1t,a)

| tpresel(set(h::t),s,n,ne,a)

fun tproject(set([]),s:scheme, nl:

if attgt(dot(h,s,n),a) then
fastinsert(h,tpresel(set(t),s,n,gt,a))
else tpresel(set(t),s,n,gt,a)

if attge(dot(h,s,n),a) then
fastinsert(h,tpresel(set(t),s,n,ge,a))
else tpresel(set(t),s,n,ge,a)

if atteq(dot(h,s,n),a) then
fastinsert(h,tpresel(set(t),s,n,eq,a))
else tpresel(set(t),s,n,eq,a)

if attle(dot(h,s,n),a) then
fastinsert(h,tpresel(set(t),s,n,le,a))
else tpresel(set(t),s,n,le,a)

if attlt(dot(h,s,n),a) then
fastinsert(h,tpresel(set(t),s,n,lt,a))
else tpresel(set(t),s,n,lt,a)

if attne(dot(h,s,n),a) then
fastinsert(h,tpresel(set(t),s,n,ne,a))
else tpresel(set(t),s,n,ne,a)

name list) = set([])

| tproject(set(h::t),s, nl) = safeinsert(tupleproj(h,s,nl),

tproject (set(t),s,nl))
fun tcard(set(ts))=length(ts)

fun set2string(set(h::t))=tup2string(h) “set2string(set t) (* ~"\n" x*)

| set2string(set [])=""
fun textend_by(set([]),_)=set([])

| textend_by(set(h::t),m:tuple->attribute)=
tunion(set([tupappend (h,maketup([m(h)]))]1),textend_by(set(t),m))

fun tprojsel(set([]1),_,_,_) = set
| tprojsel(set(h::t),nl,tu,s) =

qup

if tupeq(tupleproj(h,s,nl),tu) then
fastinsert (h,tprojsel(set(t),nl,tu,s))

else
tprojsel(set(t),nl,tu,s)

fun atKey(t,set(nil),s) = maketup(nil)
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| atKey(t,set(h::tl),s) =
let val tag = tupleproj(h,s,keyofscheme(s)) in
if tupeq(h,t) then
h
else
atKey(t,set(tl),s)
end

fun tjoin(set(nil),si,ts2,s2,n) = set(nil)
| tjoin(set(h::t),s1,ts2,s2,n)
let val firstPart = tupleproj(h,si,[n]) in
let val partner = atKey(firstPart,ts2,s2) in
if tupnull(partner) then
tjoin(set(t),s1,ts2,s2,n)
else
fastinsert(tupappend(h,partner),
tjoin(set(t),s1,ts2,s2,n))

end
end
end

abstype relation = rel of (scheme*tupset)
with
exception relexceptioni
exception relexception2
exception relexception3d
exception relexception4
exception duplicate_keys_rel
(* fun partition(ril,rel(s,ts)) = tpartition(rl,ts,namesinscheme(s)) *)
fun setof(rel(s,ts)) = ts
fun schemeof(rel(s,ts)) = s
fun namelistof(rel(s,ts)) = namesinscheme(s)
fun makerel(s,t)=rel(s,t)
fun validrel(rel(s,t)) = validscheme(s) andalso
if not(is_empty(t)) then match(hd(set2list(t)),s) else true
(* this validation is simplistic. Could be improved on *)
fun insert(t,rel(s,ts))=if not (match(t,s)) then raise relexceptioni
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else if member(tupleproj(t,s,keyofscheme(s)),
set2list (tproject(ts,s,keyofscheme(s))))
then raise duplicate_keys_rel else rel(s,fastinsert(t,ts))
fun union(rel(si,tsl1),rel(s2,ts2))= if not(equiv(sl,s2)) then
raise relexception2
else rel(si,tunion(tsi,ts2))
fun intersect(rel(si,tsl),rel(s2,ts2))= if not(equiv(sl,s2)) then
raise relexception3
else rel(sl,tintersect(tsi,ts2))
fun difference(rel(si,tsl),rel(s2,ts2))= if not(equiv(si,s2)) then
raise relexception4
else rel(sl,tdifference(tsi,ts2))
fun select(rel(s,ts),cond)=rel(s,tselect(ts,cond))
(* PRECI-style select *)
fun presel(rel(s,ts),n:name,c:comparator,a:attribute) =
rel(s,tpresel(ts,s,n,c,a))
fun project(rel(s,ts),nl)=rel(schproj(s,nl),tproject(ts,s,nl))
fun cartprod(rel(sl,tsl),rel(s2,ts2))=rel(schappend(si,s2),
tcartprod(tsi,ts2))
fun cardinality(rel(s,ts))=tcard(ts)
fun degree(rel(s,ts))=schlength(s)
fun rel2string(rel(s,t))=scheme2string(s)~"\n""set2string(t)""\n"
fun projsel(rel(s,ts),nl,t) = rel(s,tprojsel(ts,nl,t,s))
fun sum(n,rel(s,ts)) = tsum(posinscheme(s,n),ts)
fun attrsum(n,r) = makeival(sum(n,r))
fun equijoin(rel(si,tsl),rel(s2,ts2),n) =
rel(schappend(si,s2),tjoin(tsl,sl,ts2,s2,n))
end

val suppsch = makesch([makenam('snum")], [(makedom("string") ,makenam('"snum"))
(makedom("string") ,makenam("sname")),

(makedom("int") ,makenam("status")),

(makedom("string") ,makenam("city"))])

val s1 = maketup([makecval("s1"),makecval("smith") ,makeival(20),
makecval("london")])
val s2 = maketup([makecval("s2"),makecval("jones") ,makeival(10) ,makecval('pa
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val
val
val
val
val
val

val

val

val

val

val

val

val

val

val

val

val

s3 =
s4 =
sb =
s6 =
ql

sts=

maketup ([makecval("s3"),makecval ("blake") ,makeival (30) ,makecval('"pa
maketup ([makecval("s4") ,makecval ("clark") ,makeival(20) ,makecval("lo
maketup ([makecval("s5") ,makecval ("adams") ,makeival (30) ,makecval("at
maketup([makecval("s6") ,makecval ("andy") ,makeival (10) ,makecval ("rom
maketup ([makeival(30)])

maketupset ([s1,s2,s3,s4,s5])

supprel = makerel (suppsch,sts)

partssch = makesch([makenam("pnum")], [(makedom("string") ,makenam("pnum")

o)
ary
1

el
N
]

e}
B
i}

p5

p6

pts

(makedom("string") ,makenam("pname")),
(makedom("string") ,makenam("colour")),
(makedom("int") ,makenam("weight")),
(makedom("string") ,makenam("city"))])

maketup ([makecval("pi"),makecval ("nut"),makecval ("red"),
makeival(12) ,makecval ("london")])

maketup( [makecval("p2") ,makecval("bolt") ,makecval ("'green"),
makeival(17) ,makecval("paris")])

maketup( [makecval("p3") ,makecval ("screw") ,makecval ("blue"),
makeival(17) ,makecval ("rome")])

maketup( [makecval("p4") ,makecval ("screw") ,makecval(‘'red"),
makeival (14) ,makecval ("london")])

maketup([makecval("p5") ,makecval("cam") ,makecval ("blue"),
makeival(12) ,makecval ("paris")])

maketup ([makecval ("p6") ,makecval ("cog") ,makecval ("red"),
makeival(19) ,makecval ("london")])

= maketupset([pi,p2,p3,p4,p5,p6l)

partsrel = makerel(partssch,pts)

shipsch = makesch([makenam("snum") ,makenam("pnum") ,makenam("qty")],
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[(makedom("string") ,makenam('snum")),
(makedom("string") ,makenam("pnum")),
(makedom("int") ,makenam("qty")) 1)

val shl = maketup([makecval("s1") ,makecval("pi"),makeival(300)])
val sh2 = maketup([makecval('s1") ,makecval("p2"),makeival(200)])
val sh3 = maketup([makecval("s1") ,makecval("p3"),makeival(400)])
val sh4 = maketup([makecval("si") ,makecval("p4"),makeival(200)])
val shb5 = maketup([makecval("s1"),makecval("p5"),makeival(100)])
val sh6 = maketup([makecval("s1") ,makecval("p6"),makeival (100)]1)
val sh7 = maketup([makecval("s2") ,makecval("pi"),makeival(300)])
val sh8 = maketup([makecval("s2") ,makecval("p2"),makeival (400)])
val sh9 = maketup([makecval("s3") ,makecval("p2"),makeival (200)])

val sh10 = maketup([makecval("s4") ,makecval("p2") ,makeival(200)])
val shll = maketup([makecval("s4"),makecval("p4"),makeival(300)])
val sh12 = maketup([makecval("s4"),makecval("p5") ,makeival(400)])

val shipts = maketupset([shl,sh2,sh3,sh4,sh5,sh6,sh7,sh8,sh9,sh10,sh11,sh12]

val shiprel = makerel(shipsch,shipts)



Appendix C

Implementing Interpreters

C.1 Introduction

This appendix covers the principles involved in constructing the kind of in-
terpreter outlined by the main thesis. Since there are no compiler tools (such
as Lez [72] and Yacc [63] of the Unix system) available for the Lingo system,
the interpreter was constructed from scratch. The following two sections il-
lustrate the construction strategy by applying it to the implementation of a
simple interpreter for an SQL-like language. Although the implementation
language is Lingo, the techniques employed transfer readily to Smalltalk.
The last section of this appendix deals with the construction of a parser

generator that was built to afford a similar functionality to Yacc. The Lingo

224
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version of the parser generator was an essential tool in controlling the de-
velopment of the DEAL interpreter since it allowed a separation of concerns
(parsing as against semantic considerations) to minimise the complexity of

the task.

C.2 An example

The following subsections will make use of a simple SQL-like language. The

general form of an SQL query is
SELECT fields FROM tables WHERE predicate

in which the WHERE qualifying clause is optional.

It is assumed that a number of tables (relations) are known to the system
and have names whose lexical formation is governed by the conventional rules
for forming identifiers in a language such as Pascal. A field follows the same
naming rules and refers to a column of a table. For example (taken from
Date [24]), a relation named ‘supplier’, with fields ‘snum’ (supplier number),
‘sname’ (supplier name), ‘status’ (status value) and ‘city’ (location) is tabu-

lated as
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snum | sname | status | city

sl smith 20 | london
s2 jones 10 | paris
s3 blake 30 | paris
s4 clark 20 | london
sb adams 30 | athens

Given this, a query that retrieves all supplier names and their locations
is
SELECT sname, city FROM supplier

The resulting table is

sname | city

smith | london

jones | paris

blake | paris

clark | london

adams | athens
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A query involving a WHERE clause can be used to retrieve the names of all

suppliers whose status is less than or equal to 20 -

SELECT sname FROM supplier WHERE status <= 20

with resulting table

sname

smith

jones

clark

The FROM clause may name more than one table. If, in addition to the

table supplier, we have the table parts given as
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pnum | pname | colour | weight | city

pl nut red 12 | london
p2 bolt green 17 | paris
p3 screw | blue 17 | rome
p4 screw | red 14 | london
pb cam blue 12 | paris
p6 cog red 19 | london

and the table shipments (connecting suppliers and parts) given by
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snum | pnum | qty

sl | pl 300

s2 p2 200

sl p3 400

sl p4 200

sl pd 100

sl p6 100

sl pl 300

2 |p2 | 400

3  |p2 |200

s4 p2 200

s |pd ]300

sd  |p5 | 400

we may now retrieve the names of all suppliers who ship screws

SELECT sname FROM supplier, parts, shipments WHERE pname = "screw"

Although SQL is based on the relational calculus, the inclusion of set
operations allows its use as a convenient syntactic interface to relational al-

gebra. Consider the generalised SQL query —
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SELECT Ai,..., A,
FROM Ry,...,Rm
WHERE B6b

An equivalent in the relational algebra (Ullman, [110])is the projection of
attributes from the selection of tuples from a cartesian product (in practice,

the cartesian product would be replaced by an appropriate join) —

Tay,..A.(0BosR1 X ... X Rpy)

This is excessively dense and opaque. An equivalent in Lingo is unthink-

ably large and unwieldy. As a taste, the first query above —
SELECT sname, city FROM suppliers
could be expressed in Lingo (given the appropriate class definitions) as
(tableDictionary at: "suppliers") project: ['sname" "city"]

The following section describes how to effect this transformation.
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C.3 Translation

C.3.1 Grammars

The informal description of SQL syntax given in the preceding section is
insufficently detailed to form the basis for a parser. The BNF notation, due

to Backus [5] and Naur [82], is usually used for this purpose —

<query> ::= <selectF> | <selectFW>

<selectF> ::= "SELECT" <fieldList> "FROM" <fromList>

<selectFW> = "SELECT" <fieldList> "FROM" <fromList>
"WHERE" <predicateTerm>

<fieldList> ::= <fieldName> | <fieldList> "," <fieldName>

<fieldName> ::= Identifier

<fromList> ::= TableName | <fromList> "," TableName

<predicateTerm> ::= <expression> <comparison> <expression>

<comparison> saz= H=N | ugn | L] ‘ ne=t l ny =t | PSS

<expression> ::= <fieldName> | <constant>

<constant> ::= String | Integer

Here, non—-terminals such as <query> and <fieldList> (entities defined
by appearing on the left hand side of some rule in the BNF description) are
denoted by enclsure within angle brackets < and >. An entity that is quoted,
such as "FROM", indicates that it is terminal and its component characters
must appear exactly in the input stream.

Entities such as TableName example have no definition. We will consider
these as terminal classes denoting entities whose syntactic structure is con-

ventional and simple and analysed by a translator phase other than parsing.
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In the case of Integer, for example, this denotes the class of integers whose
members are easily recognised at the lezical rather than syntactical level.
Similarly for the classes Identifier and String. TableName refers to
the subset of the class Identifier that names relations known to the sys-

tem (for example, supplier).

C.3.2 Lexical Analysis

The process of recognising a language’s constructs from the arrangement of

indvidual characters in an input stream is conventionally split into two phases

e Lexical Analysis concerns itself with the recognition of groups of
characters (such as keywords of the language, identifiers, numbers and
so on). Recognised groups are associated with tokens with which the

lexical analyser (or scanner) communicates its analysis to other phases.

e Syntax Analysis is concerned with the recognition of structured pat-
terns of tokens (such as language statements, expressions and so on).
The syntax analyser (or parser) usually communicates its analysis to
other phases by associating tree structures with a language construct.

These structures may either be explicit data structures, or may be im-



APPENDIX C. IMPLEMENTING INTERPRETERS 233

plicitly constructed through program execution and the state of the

procedure stack.

This section deals with the lexical analysis phase. The coding of this
phase is tedious and error-prone as it deals with the input-output section of
the interpreter. Lexical analyser generators are widely available, perhaps the
best known being Lex [72].

Such tools have a power beyond simply providing lexical analysers within
compilers. The author takes the view that the lexical analysis phase of an
interpreter for a programming language warrants a rather simpler approach.
The objective is to define a general class, Scanner say, which can be instan-
tiated to provide a lexical analyser for any given language.

We observe that the microsyntax (with which lexical analysis concerns it-
self) of most languages reduces to just a few terminal classes. Most languages
use the same rules for describing the syntax of integers and identifiers. Ad-
ditionally most languages have the same rules for dealing with white space.
Keywords usually form a subset of the terminal strings that could otherwise
be considered to be identifiers. Keywords, identifiers and integers are sepa-
rated by white space, punctuation characters or operator terminals (such as

(<=))'
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Punctuation characters are those characters that cannot prefix other ter-
minal strings. For example, ‘(’ is usually a punctuation character, whereas
‘<’ is not since the character may be the prefix of the terminal string ‘<=".
Some characters (such as ‘<’) have different lexical significance depending
whether they appear on their own or grouped with other such characters.
We call such characters cryptic characters, following the terminology used
in the lexical analyser used for the object-oriented language Lingo [53].

Given a set of keywords, a set of punctuation characters and a set of cryp-
tic characters, an algorithm to recognise terminal classes is straightforward
to code. The preliminary decision on which terminal class is being recog-
nised is based on the first non-white character in the source (that is the first

character that is not a space, a tab or a newline).

e a decimal digit — an integer is being recognised; accumulate all following

decimal digits and return the token ‘Integer’ (a string literal ).

¢ a punctuation character — return a string containing just the punctua-
tion character itself as the token and advance the input stream to the

next character.

e a cryptic character — accumulate the character and any following cryp-

tic characters into a string which is returned as the token.
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e an alphabetic character — accumulate the character and any follow-
ing numeric or alphabetic characters into a string. Then search the
keywords vector, if a match is found return the string as the token;

otherwise return the string ‘Identifier’

A class, Scanner, has been programmed in Lingo along the above lines. It
has a class method for instantiation which takes as parameters collections
of keywords, punctuation characters and cryptic characters and also a file
descriptor for the source text ( a stream or file). Scanner’s instance methods
include getToken which returns the current token and advances through
the source stream. There are also methods theNumber and theldentifier
which return the actual values found in the source for the tokens ‘Integer’
and ‘Identifier’ respectively.

Interestingly, some of the context sensitive aspects of a language are very
easily handled by this approach using inheritance. Consider the Pascal ex-
pression —

x+y

With an instance of Scanner as above, x and y will be recognised as
Identifiers although for semantic analysis purposes it may be more useful to
recognise them as ‘Variables’ or ‘Functions’. As in either case they should

have been previously defined and thus present in a symbol table it is possible
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to determine their particular significance in the lexical analysis phase. To do
this, a class, PascalScanner say, is defined as a specialisation of Scanner. It
has an additional instance variable to hold a symbol table and access methods
to place and look up entities in this table. The inherited getToken method
is overridden in PascalScanner— the specialisation calls the superclasses get-
Token and then inspects the returned token. If it is ‘Identifier’ the actual
terminal string is searched for in the symbol table. If a match is found, the

appropriate token is returned ; if it is not matched, ‘Identifier’ is returned.

C.3.3 The syntax analyser

With the strategy adopted here, the syntax analyser is the driving spirit of
the interpreter: no ezplicit parse tree is constructed to inform later analytic
and synthetic phases. Instead, an implicit parse tree is contained within the
thread of execution of the syntax analyser and so, in order to traverse the
parse tree, the syntax analyser itself invokes further analytic and synthetic
procedures.

The purpose, then, of the syntax analyser is to recognise the language’s
syntactic structures and then invoke appropriate semantic routines to effect
the intent of the original source program.

The starting point for writing a syntax analyser is a description of the
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grammar of the language in the form of a BNF specification.

The recursive descent method [25] allows a syntax analyser to be written
almost directly from a BNF description. Each nonterminal in the grammar
is represented by a method with the responsibility of recognising its own
nonterminal’s syntax. In addition there is a method, (mustBe:, say) that
takes a token representing a terminal, and checks that the token it is passed
is the same as that currently held by the lexical analyser. In Lingo, we can
arrange all these methods (those representing nonterminals and mustBe:) as
instance methods of a class, Parser say. An instance variable, scanner,
holds the lexical analyser. Another instance variable, token, holds the last

token returned by the lexical analyser. The method mustBe: is simply -

mustBe: aToken [ ]

{
if (token = aToken) then
{ token := scanner getToken}
else
{ "syntax error\n" printedOn: FileDescriptor output}
}

The methods for nonterminals are written by examining the right hand
sides of their defining rules within the BNF. If there are no alternatives in
the rule, that is the right hand side is merely a sequence, the method is coded
as a sequence of calls: in the case of a nonterminal, a call to its associated

method, in the case of a terminal, a call to the method mustBe: using the
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token representing the terminal as an actual parameter.

For example, a BNF rule such as -

<selectF> ::= "SELECT" <fieldList> "FROM" <fromList>

would be coded as

self selectF []

{
self mustBe: "SELECTY;
self fieldList;
self mustBe: "FROM";
self fromList;

}

Where a right hand side contains alternatives, each alternative is in-
spected to determine the set of terminals that can appear at its start. These
sets are termed director sets since they are used to direct the parse.If these
sets are not disjoint, the method will not be successful and the redefinition
of the language should be attempted. If the director sets are disjoint, they
can be used to decide which alternative rule should be followed by finding

which of the sets the current token is a member of. Consider the rules

<expression> ::= <fieldName> | <constant>
<fieldName> ::= Identifier
<constant> = String | Integer



APPENDIX C. IMPLEMENTING INTERPRETERS 239

The rule for expression contains two alternatives. The director set for
the first alternative contains only ‘Identifier’. The second alternative’s direc-

tor set is { ‘String’, ‘Integer’ }. The method for expression is coded as

self expression []

{
if (["Identifier"] includes: token) then
{ self fieldName; }
else
{ self constant;}

Unfortunately, the cases where director sets are not disjoint are suffi-
ciently common that consideration must be given to grammar manipulation.
Frequently the problem arises since the natural way to express a sequence in

BNF is to use recursion. Consider, for example the production
<fromList> ::= TableName | <fromList> "," TableName

The intention is to express that a fromList is a sequence of TableNames
separated by commas. Variations of BNF (which we shall call Extended BNF
or EBNF) allow iteration to be expressed. We shall use the metasymbol
pairs ‘[’ ]’ and ‘{’ ‘}’ to indicate zero or one and zero or more (respectively)
repetitions of the BNF fragments they enclose. This allows, for example, the
above production to be rephrased as

<fromList> ::= TableName { "," TableName }
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Rules containing the iteration metasymbols { and } are coded by deriving
the director set for the enclosed sequence. The iteration condition is then
that the current token is in the director set. The method for fromList is

self fromList []

{
self mustBe: ’TableName’.
while ( [ "," ] includes: token)
{
self mustBe: ",";
self mustBe: '"TableName";
}
}

The metasymbols [ and | are treated in a similar way, using ifTrue: rather
than whileTrue:.

Another often occurring situation is that a BNF rule expresses that a
sentence has two variants each of which starts with the same structure, but

then finishes differently. For example we have —

<query> = <selectF> | <selectFW>
<selectF> = "SELECT" <fieldList> "FROM" <fromList>
<selectFW> = "SELECT" <fieldList> "FROM" <fromList> "WHERE" <predicat

From this, a query always starts with a selectF, but may optionally have
a WHERE clause. Just as with BNF, EBNF can be used to factor out
the commonality and remove the disjunction in the first production (whose

disjuncts have coincident director sets). i.e.
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"SELECT" <fieldList> "FROM" <fromList> [ <whereClause> ]
"WHERE" <predicateTerm>

<query>
<whereClause>

The reader is referred to Milne [76] for a fuller acouunt of these issues.

An EBNF description of our sample language is

<query> = "SELECT" <fieldList> "FROM" <fromList> [ <whereClause> ]
<whereClause> = "WHERE" <predicateTerm>

<fieldList> ::= <fieldName> { "," <fieldName> }

<fieldName> ::= Identifier

<fromList> ::= TableName { "," TableName }

<predicateTerm> ::= <expression> <comparison> <expression>

<comparison> cez= Wzt | pal l 1y | ng=n | ny = | g

<expression> = <fieldName> | <constant>

<constant> ::= String | Integer

An issue that must be addressed is error recovery. The predictive
nature of the recursive descent method means that when a syntax error does
occur, the syntax analyser loses synchronisation with the source text being
parsed and many consequential syntax errors are reported. It is not possible
to recover by merely scanning till a statement terminator is found, since
at the time of the error, the thread of execution will in general be at some
deeply nested point due to the dependence on recursion. [25] gives an elegant
algorithm for error recovery in such a situation, which merely adds a few
lines to the mustBe: method. (Note that Lingo [53] provides an exception
facility. Raising an exception strips back the procedure stack to its state at

the moment of declaration of the exception. This mechanism can be used
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to allow return to the top level of syntax analysis on encountering the first

syntax error and was used for the DEAL implementation).

C.3.4 Adding semantic and interpretive actions

Now that a correct program can be recognised by the syntax analysis phase,
we wish to invest meaning into its statements. This is the most imaginitive
part of the process of creating an interpreter. It is approached by associating
actions with fragments of the BNF for the language. These actions are
then effected by inserting lines of code within the parsing methods at the
points indicated by their association with the BNF (bear in mind that the
recursive descent method gives a one to one correspondence with the code of
the parsing methods).

Consider the rule -
<query> ::= "SELECT" <fieldList> "FROM" <fromList> [ <whereClause> ]

We adopt the strategy that the ‘meaning’ of a query is to display its
resulting relation. We can view the BNF as a framework on which to hang
a prescription of how to determine a query’s meaning from its components,
that is how to construct its meaning from the meanings of its components.

To do this, we associate actions A; ...A; with points in the B.N.F. —-
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<query> ::= "SELECT" <fieldList> A;"FROM" <fromList> A, [ <whereClause> .

The informal description of these actions is

o A, - store the fieldList’s result (a list of fields to be projected from the

relation resulting from the rest of the expression).

e A, — store the fromList’s result (a relation — the base that the rest of

this expression is modifying in some way) as the result for query so far.

e A3z — use the selection criteria returned by whereClause on the result of
the query (which was stored in A;). The resulting relation is stored as
the result for query. We can arrange that the meaning of whereClause is
a Lingo Module (Lingo’s counterpart to Smalltalk’s BlockContext’s
— these are anonymous pieces of code, which can take parameters, and
are similar to lambda expressions of the lambda calculus.). The re-
turned module can be exactly that code which when passed to the

select: method of Relation objects performs the selection.

e A, - perform the projection of the fields specified during A; and display

the resulting display relation.

This can be coded in Lingo as

self query [ projectList result block ]
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{
self mustBe: "SELECT";
projectList := self fieldList; /* action Al */
self mustBe: "FROM";
result := self fromList; /* action A2 *x/
if (["WHERE"] includes: token) then
{
block := self whereClause; /* { action A3 */
result := result select: block; /* { */
)
(result project: projectList) /* action A4 x*/
printedOn: FileDescriptor output;
}

C.4 An interpreter generator

The strategy outlined in the preceding section can be turned on itself. Con-

sider the extended BNF-

<grammar> = <rule> { <rule> }
<rule> ::= <nonterminal> "::=" <ruleexp> ";"
<nonterminal> ::= "<" Identifier '">"
<ruleexp> = <ruleterm> { "|" <ruleexp> }
<ruleterm> = <rulefactor> { <rulefactor> }
<rulefactor> ::= "[" <ruleexp> "]" | "{" <ruleexp> "}"
| "(" <ruleexp> ")" | <nonterminal>
I

QuotedStringlLiteral | Identifier

This describes the grammar of the extended BNF itself that has been
used in this report (except that productions are terminated with a semi-

colon), and yet is shorter than the BNF description of the example language
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pursued in this paper. A parser for extended BNF can thus be written (using
the strategies of the preceding section). In order for this EBNF-parser to
be able to generate a syntax analyser for a presented language, it is only

necessary to include within it interpretive actions that

¢ build and fill data structures capturing the essential information of the

presented grammar.

e use these data structures to determine the director sets for all the non-

terminals of the presented grammar

o create a class definition containing recogniser methods which make use

of the determined director sets.

In detail, the above is effected in the following way: an abstract syntax
tree is created (by the EBNF—parser) for the right hand side of every produc-
tion encountered in the EBNF source. A symbol table associates, for each
production, the non-terminal’s name and the tree representing the produc-
tion’s right hand side. In addition, each symbol table entry has a field which
can contain one of three values (notStarted, inProgress and complete).
This field is used to mark the progress of director set computation (which is

described more fully below) and is initially set to notStarted.
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The abstract syntax trees make use of eight kinds of node, one for each

type of unitary term within EBNF.

1. NonTerminal- these nodes contain the name of a non-terminal.

2. StringLiteral- these contain the character strings recognised by the

EBNF-parser as QuotedStringLiterals.

3. Identifier— these correspond to the Identifier entities of the EBNF-

parser and merely contain the character strings that were recognised.

4. Alternative- these nodes correspond to alternatives within the EBNF.

They contain pointers to the two alternatives.

5. Sequence- these nodes correspond to a sequence of terms within the

EBNF. They contain pointers to the lead term and the following terms.

6. ZeroOrMore— These nodes correspond to terms which are specified
within the ‘zero or more’ iteration metasymbols { and }. The nodes

contain a pointer to the iterated expression.

7. ZeroOrOnce- similarly, these nodes represent optional EBNF expres-
sions (enclosed by the metasymbols [ and ]). The nodes contain a

pointer to the optional expression.
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8. Once- these nodes represent expressions that are enclosed within the

metasymbols ( and ). Again, they contain a pointer to the parenthe-

sised expression.

The following diagram represents the abstract syntax tree that would be

created for the right hand side of the production:

<alpha> ::= { <beta> } "is" | <gamma> "was"

Alternative

Sequence

PN

s

ZeroOrMore StringLiteral

Sequence

VAN

|
NonTerminal

NonTerminal

StringLiteral

] iS“

Ilgammall

llwasll

] betall

Abstract syntax tree for { <beta> } "is" | <gamma> "was"
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Once the symbol table has been built, it is traversed (linearly). As each
entry is traversed, output is generated (the code of the computed parser).
First, the procedure header for the non-terminal’s recogniser procedure is
output. For the example production above, for example, the following Lingo

code would be generated:

self []
{

The associated abstract syntax tree is then traversed (in post-order where
the nodes are not singly-branched). The output generated depends on the
type of node encountered. For NonTerminal nodes, a call to the corre-
sponding recogniser procedure is generated.

In concrete terms, if x is a Lingo variable containing the NonTerminal
node, contents is a NonTerminal method returning the string contained
in a NonTerminal node and print is a Lingo output method, the following
Lingo fragment is the action performed on encountering a NonTerminal

node:

"self " print;
(x contents) print;
";\n" print;

For StringLiteral and Identifier nodes, appropriate calls to mustBe:
are output. Concretely (again assuming the variable x contains the node in

question), the Lingo for the action is:
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"self mustBe: " print;
(x contents) print;
";\n" print;

Sequence nodes are treated by generating code for their lead term and

then their following terms.
(x lead) generate;
(x following) generate;

For Once nodes, the algorithm is straightforward: output a left brace ‘{’
(which is the Lingo token for starting a code block), generate the output for
the expression the node points contents point to (by recursively calling the
generate method) and finally output a right brace ‘}’ (which is the Lingo

token for ending a code block).

“{\n" print;
(x contents) generate;
"Fn" print;

The treatment of the remaining node types Alternative, ZeroOrOnce
and ZeroOrMore makes use of director sets. These are computed via a
method getStarters: which takes as a parameter a pointer to the expres-
sion whose director set is to be computed. Where this parameter is a non—
terminal, it may be that this computation is merely a retrieval since the

director set has already been computed. (The algorithm for getStarters:
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is detailed more fully below since it is crucial to the parser generating strat-
egy). Returning to the three node types in question, they are dealt with as
follows:

Alternative "if ((Vector [ " print;
(self getStarters: (x left)) print;
"]) includes: (scanner token)) then\n{" print;
X left generate;
"Inelse\n{\n" print;
X right generate;
"}F\n" print;

ZeroOrOnce "if ((Vector [" print;
(self getStarters: (x body)) print;
"]) includes: (scanner token)) do\n{" print;
x body generate;
"}\n" print;

ZeroOrMore ‘"while ((Vector [" print;
(self getStarters: (x body)) print;
"]) includes: (scanner token)) do\n{" print;
X body generate;
"}\n" print;

Calculating director sets
The method getStarters: alluded to above is based on the following:
1. The director set for an expression that contains a sole StringLiteral

or Identifier node is the singleton set containing the character string

contents of the node.
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2. In general, the director set for a Sequence node or a Once node is the
director set of the first node in the sequence. However, since there is

the possibility of null productions, the computation is more complex.

Consider the computation of the director set for the rule
{ alpha } beta gamma

Since an alpha term may not be present, the director set for the overall
rule is computed as the union of the director sets for alpha and for
beta. In addition, the parser generator checks that the two sets are
disjoint and reports an error if they are not since this indicates that

the grammar does not satisfy the LL(1) citerion.

3. For an Alternative node, the director set is computed from the union
of the director sets of the node’s component subexpressions (which are

also checked for disjointness).

4. ZeroOrOnce and ZeroOrMore nodes have their director set com-
puted from the director set of the expressions within their bodies. In
addition, since both these node types indicate the presence of a null
production within a rule, their director sets contain a special element
null which indicates the presence of a null production to the algorithm

(for use in step 2 above).
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5. Finally, in the case of a NonTerminal node, the algorithm proceeds
according to the setting of the state field (notStarted, inProgress or

complete) within the non-terminal’s symbol table entry.

If the state is complete, the director set has already been computed
and is returned. If the state is inProgress, this indicates that the
LL(1) criteria have not been met since left recursion (perhaps indirect)

is present and an error report is generated.

If the state is notStarted, it is set to inProgress, and the tree repre-
senting the rule for the non-terminal is retrieved from the symbol table
and presented to the algorithm. The resulting director set is stored in

the symbol table (for later use) and also returned.

A slight refinement to the above allows the incorporation of semantic and
interpretive actions, by introducing new metasymbols @ and %. These are
used to indicate that the text they delimit (which should be Lingo fragments)
is to be literally inserted into the generated parser at the indicated point. @
delimits text to be inserted prior to the EBNF term that follows, % delimits
text to be inserted after the recognition of the EBNF term it follows. In
addition if @ is used before the ::= of a production the delimited text is

inserted in the local variable declaration area of the recogniser method for
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that nonterminal. As an example, the syntax and interpretive actions for
query (as derived in the previous section) would be described by ~
<query> @ projectList result block @
::= "SELECT" @ projectList := @ <fieldList>
"FROM" @ result := @ <fromList>
[ @ block := @ <whereClause>
% result := result select: block; % ]

% (result project: projectList)
printedOn; FileDescriptor output; %

C.5 Summary

The recursive descent method of compiling has been shown to transfer nat-
urally to implementation in Lingo and coding the lexical analysis phase is
greatly simplified through inheritance.

The parsing method is transparent enough to allow programmers to easily
include statements that carry out semantic actions - and the method is simple
enough for programmers to carry out themselves.

The definition of an Extended B.N.F. in itself may take only a few lines.
Paradoxically, the creation of a general parser generator which will gener-
ate a parser for a language from its presented EBNF is simpler than gener-
ating the parsers directly. A parser generator was constructed for Lingo.

Further work could be carried out to improve the interface to the parser
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generator whose input files can quickly become unreadable since they carry
so much information. In addition, the area of grammar manipulation (in
order to achieve suitability for the recursive descent method) is important

for a language of moderate syntactic complexity.
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An SML specification based on

2—3 trees

abstype tree23 = E
| Tr2 of tree23 x* tuple * tuple * tree23
| Tr3 of tree23 * tuple *tuple * tree23 * tuple * tuple * tree23
| Put of tree23 # tuple * tuple * tree23

with

exception putException

exception atException

fun at (k :tuple , E:tree23) : tuple = raise atException
| at (_,Put(_,_,_,_)) = raise putException
| at (k, Tr2( t1, k1,vl, t2)) =

if tupeq(k, k1) then

vl

else

if tuplt(k , k1) then

at(k,t1)

255
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else
at(k,t2)

| at (k, Tr3(t1,k1,v1,t2,k2,v2,t3)) =
if tupeq(k , k1) then vi
else if tupeq(k,k2) then v2
else if tuplt(k , k1) then at(k,t1)
else if tuplt(k , k2) then at(k,t2)
else at(k,t3)

fun at2 (k :tuple , E:tree23) : tuple = maketup(nil)
| at2 (_,Put(_,_,_,_)) = raise putException
| at2 (k, Tr2( t1, k1,vl, t2)) =
if tupeq(k, k1) then
vl
else
if tuplt(k , k1) then
at2(k,t1)
else
at2(k,t2)
| at2 (k, Tr3(t1,k1,v1,t2,k2,v2,t3)) =
if tupeq(k , k1) then vi
else if tupeq(k,k2) then v2
else if tuplt(k , ki) then at2(k,t1)
else if tuplt(k , k2) then at2(k,t2)
else at2(k,t3)

fun isMember (k:tuple , E:tree23) = false
| isMember (_,Put(_,_,_,.)) = raise putException
| isMember (k, Tr2( t1, ki,vi, t2)) =
if tupeq(k, ki) then
true
else
if tuplt(k , k1) then
isMember(k,t1)
else
isMember (k,t2)
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| isMember (k, Tr3(t1,ki1,v1,t2,k2,v2,t3)) =
if tupeq(k , k1) then true
else if tupeq(k,k2) then true
else if tuplt(k , k1) then isMember(k,t1)
else if tuplt(k , k2) then isMember(k,t2)
else isMember(k,t3)

fun put k v E = Put (E,k,v,E)
| put k v (Tr2(t1,k2,v2,t2))
= if tupeq(k2 , k) then Tr2(ti,k,v,t2) else
if tuplt(k, k2) then tr2(put k v t1, k2, v2, t2) else
tr2(t1,k2, v2, put k v t2)
| put k v (Tr3(t1,k2,v2,t2,k3,v3,t3))
= if tupeq(k,k2) then Tr3(t1,k2,v2,t2,k3,v3,t3) else
if tupeq(k, k3) then Tr3(t1,k2,v2,t2,k3,v3,t3) else
if tuplt(k, k2) then tr3(put k v t1,k2,v2,t2,k3,v3,t3) else
if tuplt(k, k3) then tr3(t1,k2,v2,put k v t2,k3,v3,t3) else
tr3(t1,k2,v2,t2,k3,v3,put k v t3)
| put k vy = raise putException
and
tr2(Put (t1,k1,v1,t2),k2,v2,t3) = Tr3(t1,k1,v1,t2,k2,v2,t3)
| tr2(t1,k1,v1,Put(t2,k2,v2,t3)) = Tr3(+1,k1,v1,t2,k2,v2,t3)
| tr2 other = Tr2 other
and
tr3(Put (t1,k1,v1,t2),k2,v2,t3,k3,v3,t4)
= Put(Tr2(t1,k1,v1,t2) ,k2,v2,Tr2(t3,k3,v3,t4))
| tr3(t1,k1,vi,Put(t2,k2,v2,t3),k3,v3,t4)
= Put(Tr2(t1,ki,v1,t2), k2,v2,Tr2(+3,k3,v3,t4))
| tr3(t1,k1,v1,t2,k2,v2,Put(t3,k3,v3,t4))
= Put(Tr2(t1,k1,v1,t2), k2,v2,Tr2(t3,k3,v3,t4))
| tr3 other = Tr3 other;
fun checkTop(Put(ti,k,v,t2)) = Tr2(t1,k,v,t2)
| checkTop other = other
fun insert23( k,v, t) = checkTop (put k v t )
fun keyOfi(aTuple , s ) =
tupleproj(aTuple,s,keyofscheme(s))
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fun makeTree(nil,s : scheme) = E
| makeTree(h::t,s) = insert23 (key0fi(h,s),h,makeTree(t,s))

fun treeunion(Put(_,_,_,_),_) = raise putException |
treeunion(E,x) = x |
treeunion(x,E) = x |
treeunion(Tr2(leftl,key,value,rightl) ,x) =
let val belongs = isMember(key,x) in
if belongs then
treeunion(leftl,treeunion(righti,x))
else
insert23(key,value,treeunion(leftl,treeunion(righti,x)))
end
|
treeunion(Tr3(left,keyl,valuel,middle,key2,value2,right) ,x) =
let val belongsl = isMember (keyl,x)
and belongs2 = isMember(key2,x) in
if belongsl andalso belongs2 then
treeunion(left,treeunion(middle,treeunion(right,x)))
else
if belongs2 andalso (not( belongsl)) then
insert23(keyl,valuel,treeunion(left,
treeunion(middle,treeunion(right,x))))
else
if belongsl andalso (not( belongs2)) then
insert23(key2,value2,treeunion(left,treeunion(middle,treeunion(right,x))
else
insert23(keyl,valuel,
insert23(key2,value2,treeunion(left,
treeunion(middle,treeunion(right,x)))))
end

fun ctreejoin(Put(_,_,_,_),_,_,_,_) = raise putException |
ctreejoin(E,s1,ts2,s2,n2) = E |
ctreejoin(tsl,s1,E,s2,n2) = E |
ctreejoin(Tr2(leftl,key,value,rightl),sl,ts2,s2,n2) =
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let val firstPart = tupleproj(value,sl,[n2]) in
let val partner = at2(firstPart,ts2) in
if tupnull(partner) then
treeunion(ctreejoin(leftl,sl,ts2,s2,n2),ctreejoin(rightl,si,ts2,s2,
else
insert23(
tupappend (tupleproj(value,sl,keyofscheme(sl)),
firstPart),
tupappend(value,at (firstPart,ts2)),
treeunion(ctreejoin(lefti,sl,ts2,s2,n2),ctreejoin(rightl,sl,ts2,s2
end
end
|
ctreejoin(Tr3(left,keyl,valuel,middle,key2,value2,right),s1,ts2,s2,n2) =
let val firstPartl = tupleproj(valuel,si,[n2])
and firstPart2 = tupleproj(value2,si,[n2]) in
let val partnerl = at2(firstPartil,ts2)
and partner2 = at2(firstPart2,ts2) in

if tupnull(partnerl) andalso tupnull(partner2) then
treeunion(ctreejoin(left,s1,ts2,s2,n2),
treeunion(ctreejoin(middle,si1,ts2,s2,n2),
ctreejoin(right,si,ts2,s2,n2)))
else
if tupnull(partnerl) andalso not(tupnull(partner2)) then
insert23(tupappend (tupleproj(value2,si,keyofscheme(sl)),
firstPart2),
tupappend(value2,partner2),
treeunion(ctreejoin(left,si,ts2,s2,n2),
treeunion(ctreejoin(middle,s1,ts2,s2,n2),
ctreejoin(right,sl,ts2,s2,n2))))
else
if tupnull(partner2) andalso not(tupnull(partneri)) then
insert23(tupappend (tupleproj(valuel,si,keyofscheme(sl)),
firstPartl),
tupappend(valuel,partnerl),
treeunion(ctreejoin(left,si,ts2,s2,n2),
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treeunion(ctreejoin(middle,s1,ts2,s2,n2),
ctreejoin(right,si,ts2,s2,n2))))
else
insert23(tupappend (tupleproj(value2,s1,keyofscheme(sl)),
firstPart?2),
tupappend (value2,partner2),
insert23(tupappend(tupleproj(value2,sl,keyofscheme(sl)),
firstPart2),
tupappend (value2,partner2),
treeunion(ctreejoin(left,s1,ts2,s2,n2),
treeunion(ctreejoin(middle,si,ts2,s2,n2),
ctreejoin(right,s1,ts2,s2,n2)))))

end
end
fun tree2string(Put(_,_,_,_)) = raise putException
|  tree2string (E) = ""
| tree2string(Tr2(treel,key,value,tree2)) =
tree2string(treel) “tup2string(value) “tree2string(tree2)
| tree2string(Tr3(treel,keyl,valuel,tree2,key2,value2,treed)) =
tree2string(treel) “tup2string(valuel) “tree2string(tree2)
“tup2string(value2) “tree2string(tree3)
(*
fun absT (E) = nil
| absT(Put(_,_,_.)) = raise putException
| absT(Tr2(treel,value,tree2)) = absT(treel)@[value]QabsT(tree2)
| absT(Tr3(treel,valuel,tree2,value2,treel))=
absT(treel)@[valuel]@absT(tree2)@[value2] @absT (tree3)
*)

end

abstype crelation = crel of (scheme * tree23)
with

exception crelexceptionl

exception crelexception2

exception crelexception3

exception crelexception4
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fun
fun

fun

fun

cmakerel (s,t) = crel(s,t)
keyOf (aTuple , crel(s,ts) ) =
tupleproj(aTuple,s,keyofscheme(s))

crel2string(crel(s,ts)) =scheme2string(s)~"\n""tree2string(ts)~"\n"

cinsert(t,crel(s,ts)) = if not (match(t,s)) then -
raise crelexceptionl

else
if isMember(keyOf(t,crel(s,ts)),ts) then

raise crelexception2

else

crel(s,insert23(key0f (t,crel(s,ts)),t,ts))

fun

cunion(crel(si,tsl),crel(s2,ts2)) =

if not (equiv(si,s2)) then

raise crelexception3d

else

fun

end

val
val
val
val
val
val

crel(sl,treeunion(tsi,ts2))
cjoin(crel(si,ts1),nl,crel(s2,ts2),n2) =
crel(schappend(sl,s2),ctreejoin(tsi,sl,ts2,s2,n2))

stree = makeTree([s1,s2,s3,s4,s5,s6],suppsch)
streel = makeTree([sl1,s2,s3],suppsch)

stree2 = makeTree([s4,s5,s6],suppsch)
suppcrel = cmakerel (suppsch,stree)

supplcrel = cmakerel(suppsch,streel)
supp2crel = cmakerel (suppsch,stree2)
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