
D A TA BA SE IM PLEM ENTATIO N ON
A N O B JE C T -O R IE N T ED PR O C ESSO R

A R C H ITEC TU R E

A thesis submitted in partial fulfilment
of the requirements of the

University of Abertay Dundee
for the degree of Doctor of Philosophy

Louis David Natanson

I c e r t i f y t h a t t h i s t h e s i s i s the t ru e and a c c u ra te v e r s io n
o f the t h e s i s app roved by th e e x a m in e rs .

University of Abertay Dundee
July 4, 1995

D i r e c t o r o f S t u d ie s

A b strac t
The advent of an object-oriented processor, the REKURSIV, allowed the
possibility of investigating the application of object-oriented techniques to
all the levels of a software system’s architecture. This work is concerned with
the implementation of a database system on the REKURSIV. A database
system was implemented with an architecture structured as

• An external level provided by DEAL, a database query language with
functions.

• A conceptual level consisting of an implementation of the relational
algebra.

• an internal level provided by the REKURSIV system.

The mapping of the external to the conceptual levels is achieved through
a recursive descent interpreter which was machine generated from a syntax
specification.

The software providing the conceptual level was systematically derived
from a formal algebraic specification of the relational algebra.

The internal level was experimentally investigated to quantify the na­
ture of the contribution made to computational power by the REKURSIV’s
architectural innovations.

The contributions made by this work are:

• the methodology exposed for program derivation (in class based lan­
guages) from algebraic specifications;

• the treatment of the notion of domain within formal specification;

• the development of a top-down parser generator;

• the establishment of a quantitative perfomance profile for the REKUR­
SIV.

A c k n o w l e d g e m e n t s

At a personal level I would like to thank Ian Colligan and Colin Fraser of the

University of Abertay Dundee for their encouragement throughout.

I thank Allan Milne for his intellectual robustness and curiosity and for

realising that my only mode of communication is argument.

Thanks also to Andy Wakelin for his insights and challenges.

Most of all, at all levels intellectual and personal, for showing me this

whole enjoyable side of life and patiently putting up with me, I thank Bill

Samson my supervisor.

1

C o n t e n t s

1 In tro d u c tio n 7
1.1 Background.. 7

1.2 Scope of the s t u d y .. 9

1.3 Objectives... 12

1.4 Sum m ary... 12

2 L ite ra tu re review 16
2.1 Hardware... 17

2.1.1 Programming Language support..................................... 17

2.1.2 Database m achines..................................... 23

2.2 Database Query Languages .. 24

2.2.1 Deductive Database Systems... 26

2.2.2 Functional, Deductive and Object-oriented Databases . 29

2.3 Program derivation..32

2

C O N T E N T S 3

2.4 Sum m ary... 33

3 T he R E K U R SIY 36

4 T he language DEAL 44
4.1 Introduction..44

4.2 Syntax...47

4.3 Using the DEAL interpreter.. 52

4.4 Conclusion...55

5 Im plem enting th e language 56
5.1 Introduction..56

5.2 The topmost le v e ls ... 59

5.3 Function definitions..66

5.4 Expressions.. 72

5.4.1 Expressions involving binary operators.......................... 75

5.4.2 Selection and Projection.. 77

5.4.3 Link elements.. 83

5.4.4 Function Application.. 90

5.5 The execution p h a s e .. 91

5.5.1 Binary Operators.. 92

5.5.2 The Unary operators.. 94

C O N T E N T S 4

5.5.3 Variables and C onstants..94

5.5.4 Function Application.. 95

5.5.5 Statements ..96

5.6 A complete ex a m p le 97

5.7 Sum m ary... 100

6 Specification of th e R elational A lgebra 101
6.1 Introduction.. 101

6.2 Formal techniques...102

6.3 Deriving programs from algebraic specifications........................ 112

6.4 Specifying the Relational Algebra... 120

6.5 Specifying a relational operator.. 123

6.6 Efficiency and refinement.. 127

6.7 2-3 trees.. 131

6.8 Query optimisation..142

6.9 Conclusion... 146

7 Perform ance evaluation 148
7.1 Harland’s claims ...148

7.2 A preliminary experim ent... 150

7.3 Medium scale benchmarks 154

C O N T E N T S 5

7.4 Large scale benchmarks..170
7.4.1 H ash in g ... 170
7.4.2 AVL T rees.. 174

8 Conclusions 177
8.1 Qualitative results ... 177
8.2 The use of the REKURSIV for database w o r k 179
8.3 The verdict on the R E K U R SIV ... 182
8.4 The failure...184
8.5 The fu tu re ...185

A C ode for th e prelim inary experim en t 205

B An SML specification 213

C Im plem enting In te rp re te rs 224
C.l Introduction...224
C.2 An ex am p le ...225
C.3 T ra n s la tio n ...231

C.3.1 G ram m ars... 231
C.3.2 Lexical Analysis..232
C.3.3 The syntax analyser ..236

\

CO N TEN TS___ 6

C.3.4 Adding semantic and interpretive actions..........................242

C.4 An interpreter generator... 244

C.5 Sum m ary.. 253

D A n SML specification based on 2—3 trees 255

C h a p t e r 1

I n t r o d u c t i o n

1.1 B ackgr ound
In November 1988, Dundee Institute of Technology won a grant under the

Department of Trade and Industry’s Awareness Initiative in Object-oriented

programming. The grant included the award of a REKURSIV processor [52]

board (manufactured by Linn Smart Computing, Glasgow) to be hosted on

a Sun workstation. The aim of the initiative was to develop applications

software to run on REKURSIV systems.

Workers at the Institute had for several years been actively cooperating

with workers at other institutions in the development of a relational lan­

guage DEAL (DEductive ALgebra) [26]. This work had included both query

7

C H A P T E R 1. I N T R O D U C T I O N 8

language implementation and application : HQL (an Historical Query Lan­

guage) [90] and Graphical Databases [112]. Given this experience the natural

goal of the group was to work on DEAL in the context of the REKURSIV.

The language DEAL makes use of an extended relational algebra. The

extensions aim to provide facilities useful to knowledge processing - user

defined functions, recursion and to some extent deductions.

Turning to the target machine, the REKURSIV is a microcodeable pro­

cessor that utilises a persistent object store. The processor is object-oriented

in these ways

• Objects in memory are addressed by unique object identifiers.

• Object images on disk are in direct correspondence with their main

memory image.

• Objects’ types (classes) and sizes are stored in parallel with their con­

tents allowing hardware type checking or hardware assisted dynamic

binding and method lookup.

• The virtual memory manager deals with (arbitrarily sized) objects

rather than fixed size pages and so strategies to keep the most use­

ful objects in primary storage can be employed (rather than strategies

that keep an area or page of memory that contains a useful object as

C H A P T E R ! . I N T R O D U C T I O N 9

well as parts of other objects)

In addition, the REKURSIV’s microcode level has stacks available to it which

facilitate recursive processing.

The Smalltalk-like language Lingo ([53]) provides a convenient program­

mer interface to the underlying REKURSIV hardware, obviating the need

to microcode. Harland, the REKURSIV’s designer, has claimed (informally

within conversations during the progress of the initiative) that the purpose of

the REKURSIV is to execute Lingo programs and so it can be assumed that

the microcode support for Lingo is near optimal in its use of the hardware

capability.

1.2 Scope of the study
This study concerns the implementation of a complete database system based

on DEAL on the REKURSIV. The general aim is to attempt to quantify the

advantages that the REKURSIV architecture and environment (or aspects

of it) offer for a particular approach to query language development.

The approach is based on a formal attitude towards the relational algebra.

The relational algebra, rather than an object-oriented model, is chosen since

it is a well studied and mathematically stable model. Chapter 6 discusses

C H A P T E R 1. I N T R O D U C T I O N 10

the algebraic specification of the relational algebra and the derivation of
programs from such a specification. A side benefit of such a specification is
that database terms such as domain and attribute, which are used differently
by different authors, can be given precise and unambiguous meanings.

The concern of the study is limited to memory-resident data sets. This
decision is based on these observations :

• A key feature of the REKURSIV is its object-oriented store. The issue
of its performance is more clearly aired in the absence of unassociated
disk operations which, anyway, are largely beyond an implementor’s
control. Disk operations cannot be completely avoided in a system
that has a virtual memory. An intention behind the restriction to
data sets that could reside in physically existing memory is to avoid
the contamination of performance results by factors attributable to the
system that hosts the REKURSIV, that is a SUN workstation and its
operating system.

Moreover, much database machine work [4] [6] [15] [59] [28] has centred
on increasing bandwidth of data flow from the data store (disk) to the
processing elements by using parallel processors and placing processors
as close to the disk surface as possible. Such a fundamental level of
hardware configuration was not available for this study and so the work

C H A P T E R 1. I N T R O D U C T I O N 11

reported here does not attempt to contribute to the database machine
domain.

• The computational effort that we are primarily interested in observing
emanates from the deductive nature of the queries. Such queries typ­
ically involve recursion and the building of closures rather than scans
through large relations.

The choice of a relational algebra based query language rather than a logic
programming (Prolog) approach is made given the following considerations :

• The security of the system is easier to control, and its integrity and
consistency rules are more succinctly expressed, within a framework of
types, schemas and keys, all of which are absent from Prolog.

• The resolution proof procedure of Prolog is not transparent to the pro­
grammer: some queries are only successfully expressed by judicious use
of the cut whose correct positioning is determined by considering the
route taken through rules by the Prolog proof mechanism. In addition,
there can be no consolidation of proof computation (in the form of lem­
mas or the storage of a derived clause) without recourse to metalevel
predicates assert () and re tra c t (pages 94 to 96 of [42]). Prolog con­
cerns itself with the process of the proof, giving the deduction itself as

C H A P T E R 1 . I N T R O D U C T I O N 12

a side effect.

1.3 Objectives
The objectives of the work carried out in this study are to

• Implement a database system on the REKURSIV processor.

• Use the implementation to investigate the performance of the REKUR­
SIV.

• Evaluate the results of performance experiments in terms of positive
contributions to computation made by different aspects of the REKUR­
SIV architecture.

1.4 Summary
This chapter has introduced the main ingredients of the work - object-
orientation, the REKURSIV, formal specification, deductive query languages
and the relational algebra. This disparate collection of domains is brought
to bear on the central task being undertaken (the development of a database
system) so as to exercise an object-oriented processor and evaluate its impact
on performance and the software engineering life cycle.

C H A P T E R 1. I N T R O D U C T I O N 13

To clarify the interrelation of these domains to the work, consider the

architectural diagram which is based on Date’s ([24]) generalisation of the

ANSI/SPARC Study Group on Database Management Systems architecture

([107])

• The external level concerns itself with the way data is viewed by users.

This is provided through the language DEAL for which an interpreter

(written in the language Lingo) was constructed. There is also an “em­

bedded” DEAL in the sense that the interpreter object can be interro­

C H A P T E R 1. I N T R O D U C T I O N 14

gated from any Lingo code. A description of DEAL and the synthesis

strategy used by the interpreter are discussed in chapter 4. The anal­

ysis (lexical and syntactical) phases of the interpreter are discussed

in chapter 5, along with the construction of a generalised translator

generator.

The conceptual level consists of abstract representations of the database.

This is provided by a set of Lingo objects modelling the relational alge­

bra - relational tables and relational operators. This level separates the

external level from the storage details of the database. The implemen­

tation of these Lingo objects was derived from a formal specification

(written in Standard ML). This aspect of the work is reported in chap­

ter 6.

The internal level concerns the way data is physically stored. In this

case data is stored in the REKURSIV’s persistent object store. At

this level it is the performance of the REKURSIV that is of interest.

The performance evaluation of the REKURSIV is reported in chapter

7 where two storage strategies (hash tables and balanced trees) are

compared (both on the REKURSIV and a Smalltalk/V system on an

IBM PC) and a general performance profile for the REKURSIV is

established.

C H A P T E R 1. I N T R O D U C T I O N 15

The REKURSIV itself is described in chapter 3.

The next chapter contains a literature review supporting this work.

C h a p te r 2

L ite r a tu r e r e v ie w

This chapter depicts, with reference to a body of literature, the climate which

has influenced work on the project. The structure of the chapter follows

the last chapter’s description of the different levels in a database system’s

architecture:

• The first section looks at specialised hardware support for advanced

language systems and then, specifically, database systems.

• The second section covers briefly the historical context of the develop­

ment of database query languages based on the relational model.

• The third section reviews the sources that have informed the formal

algebraic approach to program derivation that was used to implement

16

C H A P T E R 2. L I T E R A T U R E R E V I E W 17

the relational model.

2.1 Hardware
2.1.1 P rogram m ing Language support

During the late 1970s and throughout the 1980s, workers in many comput­

ing domains proposed architectures for machines (virtual or physical) that

would better support their computational paradigm. Looking first at lan­

guage based paradigms, it is instructive to consider the following:

• Functional Programming -
An evaluation strategy for applicative languages, known as SECD (Stack,

Environment, Control list, Dump) inspired abstract machines ([1, 56])

of which arguably the best known is Cardelli’s Functional Abstract

Machine (FAM, [14]) used in the University of Edinburgh’s implemen­

tation of Standard ML. The hardware support for Lisp described in

[105] has its roots in the SECD approach.

A more modern evaluation strategy is based on super-combinators and

lambda lifting ([60]) which in turn derives from the combinator ap­

proach of Turner ([108]). Again, the history of this line of development

C H A P T E R 2. L I T E R A T U R E R E V I E W 18

includes the definition of abstract machines and then their embodiment

in hardware. For the simple combinator approach, the combinators

themselves can be regarded as the instruction set for a machine ([11])

which is usually implemented virtually but has been constructed out of

hardware ([17]). ALICE (the Applicative Language Idealised Comput­

ing Engine) developed at Imperial College ([22, 23]) is an example of a

hardware embodiment of a combinator machine. The hardware was not

customised however. Instead, ALICE utilised the INMOS transputer

(a parallel processing element) and took advantage of opportunities for

parallel evaluation afforded by applicative programs.

Abstract machines that support the specialised combinators (super-

combinators) found by lambda lifting to suit a particular applicative

program include the G machine ([64]) and the Three Instruction Ma­

chine (TIM) of Fairbairn and Wray ([29]).

As well as these machine designs, thought has also been given to the

operating system layer, often as a tour de force in functional program­

ming ([67, 1, 104]).

A complete ‘functional programming workstation’ is the Symbolics

LISP machine ([114, 44]). This machine is often associated with its

object-oriented component known as flavors ([79]) and so is consid-

C H A P T E R 2. L I T E R A T U R E R E V I E W 19

ered under the next heading.

• O b jec t-o r ien ted program m ing - Perhaps the largest language de­

velopment in this area is that of Smalltalk-80 described by Goldberg in

[39]. Strictly speaking the term c Smalltalk-80’ refers to a system and

not just a programming language, since Goldberg’s book (acknowledged

as definitive) covers a language, an operating system and a program­

ming environment. The original goal of the team at Xerox Palo Alto

Research Center was to provide the complete software for a personal in­

formation management system, the Dynabook ([68]), an advanced idea

for the mid 1970s before the advent of the personal computer. From the

outset, the language development effort was affected by the search for

efficient implementations since the system aimed to present an accessi­

ble graphical interface to users which involved resource hungry compo­

nents such as a windowing system, icons and menus. Indeed the early

success of Smalltalk-72 ([98]) concentrated on graphics: the graphical

Pygmalion system ([99]) inspired the Star office system ([100]), a pre­

cursor to today’s graphical user interfaces such as Microsoft Windows.

With the experience of deficiencies in Smalltalk-72, Smalltalk-76 ([61])

established the essential message passing syntax of today’s Smalltalk

systems and introduced an intermediate language to which Smalltalk

C H A P T E R 2. L I T E R A T U R E R E V I E W 20

expressions were translated. This intermediate language increased exe­

cution speeds dramatically ([62]) and was the forerunner of the Smalltalk-

80 virtual machine established by Goldberg and others along with the

language in [39]. Two other works published at the time have also

become the definitive texts on Smalltalk systems: Goldberg [40] de­

scribed the programming environment and in [70] (edited by Krasner)

the experiences and conclusions of teams who had implemented the

Smalltalk-80 virtual machine on a spectrum of hardware platforms

from Motorola 68000 systems to Digital Equipment’s VAX minicom­

puters. Of the ten implementations compared there, only three were

on microprogrammable customised hardware: two on the Xerox Dol­

phin and a third on the Xerox Dorado ([86, 87]). The Dorado per­

formed best of the set of implementations and became the machine

used for Smalltalk by Xerox. This is perhaps hardly surprising since

the Dorado utilised Emitter-Couple Logic (EGL) technology to achieve

a short instruction time (as opposed to the MOS technologies utilised

in its competitors).

Ungar and Patterson, writing in 1987 ([111]), describe a Reduced In­

struction Set Computer (RISC [85]) approach to implementing Smalltalk

called SOAR (Smalltalk On A RISC). Based on simulation experiments,

C H A P T E R 2. L I T E R A T U R E R E V I E W 21

they claim a marginally superior perfomance to the Dorado, despite the

SOAR having an instruction time over 5 times that of the Dorado. In­

terestingly, they show that the performance advantage of the Dorado

over Motorola 68010 systems is in line with what one would expect

from the ratio of their instruction times. Taken together, these two

assertions indicate that SOAR’s performance advantage is attributable

to an architectural difference rather than a different underlying imple­

mentation technology.

The Symbolics LISP machine mentioned previously ([114, 44]) may

appear an odd candidate to support Smalltalk-like object-orientation.

Many of the difficulties in the execution of object-oriented programs,

emanate from their dynamic nature:

— run tim e ty p e checking - since new types can be created actu­

ally at run time, this appears unavoidable.

— dyn am ic b in din g of m essages - since routines are associated

with data structures, and the types of data structures are not

known until run time, the addresses of the routines to be invoked

cannot be computed at compile time.

C H A P T E R 2. L I T E R A T U R E R E V I E W 22

— dyn am ic storage m an agem en t - the message passing paradigm,

together with information hiding and encapsulation, favours heap

(dynamic) memory use. Indeed, [111] reports that Smalltalk pro­

grams tend to generate garbage ten times faster than most Lisp

programs.

Given this, run time support for object-orientation involves many ta­

bles and levels of indirection (method look-up tables, object identifiers

and so on). Lisp machines, optimised for the classical list structure,

the ‘cons’ of a ‘head’ atom to a ‘tail’ list, provide this support read­

ily. In addition, Lisp in general does not differentiate between data

and code - everything is either an atom or a list, including functions

which via A-expressions can be treated as data and generated at run

time. This property directly supports the dynamic message binding of

object-orientation.

The Symbolics, the Dorado and the SOAR are examples of ‘tagged’

architectures where some bits of every machine word are used to denote

the kind of object the word represents. In the case of the Dorado

and the SOAR a single bit is used to differentiate between integers

and pointers. The Symbolics uses its tags to differentiate between

atoms and lists. Lists are further differentiated to support a more

C H A P T E R 2. L I T E R A T U R E R E V I E W 23

efficient storage regime known as CCDR coding’ ([114]) which reduces

the number of pointers that need to be stored.

2.1.2 Database machines

A number of dedicated database processors have been designed and built.

In general, the approach has been to increase the bandwidth of database

systems by introducing parallelism and placing processing power as close to

the disk storage system as possible.

The following are two representatives of the multiprocessor approach:

• GAMMA ([28]) consisted of 17 VAX 11/750 processors connected via

a high speed token ring network. Although a distributed system, query

processing was centrally controlled.

• RDBM ([95]) contained specialised processors for sorting and support­

ing binary relational operations. These special function processors

shared a memory. It also contained a content addressable memory.

All the hardware was centrally controlled by a minicomputer.

The VERSO machine ([33]) used a device akin to a finite state automaton

to filter data more or less as it comes off the disk (actually out of the buffers

to which the disc controller had direct memory access). In this way it is

C H A P T E R 2. L I T E R A T U R E R E V I E W 24

capable of selection and projection as well as binary operations.

The emphasis on parallelism led to much work on devising parallel al­

gorithms for relational operations and configuring multiprocessor systems

([8, 9, 10]).

2.2 Database Query Languages
Following Codd’s seminal work ([18]) on the relational model languages for

information retrieval moved from being procedural and record-oriented (such

as COBOL, where programmers had to involve themselves with the intrica­

cies of strategies to perform tasks) to non-procedural languages based on

the relational calculus. Notable among these is the language QUEL of the

INGRES database management system ([103, 55]). QUEL realised the no­

tion of ‘tuple variables’ introduced by Codd in a proposed language ALPHA

([19]) which are existentially quantified variables. The general form of QUEL

queries is:

RANGE OF <tuple variable> IS <relation>
RETRIEVE

(<relation>. < attributed

WHERE <predicate>

C H A P T E R 2. L I T E R A T U R E R E V I E W 25

where both the RANGE and RETRIEVE clauses can take more than one

operand.

An example where the relation Human has scheme (age, gender, name)

is

RANGE OF X IS Human

RETRIEVE (X.gender, X.name)

WHERE X.age >= 18

which retrieves the names and genders of all humans aged 18 or more.

At about the same time, another relational calculus based language, SQL

([16]) was developed by a team at IBM. The above query could be given in

SQL as:

SELECT gender, name

FROM Human

WHERE age >= 18

which is superficially very similar to QUEL. SQL, however, differs signif­

icantly from QUEL in that it allows the formation of intermediate relations

and operations of set union and set difference on these and also a form of

nesting sub-queries. These differences give it the complete power of the re­

C H A P T E R 2. L I T E R A T U R E R E V I E W 26

lational calculus by overcoming the lack of universal quantification and also

some of the character of the relational algebra since sets can be worked with.

An interactive form of the relational calculus known as Query By Ex­

ample, QBE ([116]) is interesting as it allowed users to formulate queries

by filling in example values in on-screen forms. Gray ([42]) draws out the

interesting correspondence between QBE’s example elements and Prolog’s

variables.

2.2.1 Deductive Database System s

With the success of the relational model and the widespread adoption of

SQL, much interest has emerged in attempting to create database systems

which enhance database querying techniques by allowing logical inference.

Such systems may be termed Knowledge based systems.

The following example on ancestry, often used in discussion of deductive

capability, will be referred to throughout this subsection to elucidate the

concerns in this area.

We may have certain facts stored in a database concerning parenthood.

That is we may have a relation, parent say, with scheme (name, child). The

membership of a tuple such as (‘louis’/ru th’) in the relation parent expresses

the fact that it is true that ‘louis’ is a parent of ‘ruth’. We may also have

C H A P T E R 2. L I T E R A T U R E R E V I E W 27

knowledge based on some rules rather than the simple facts contained in

the parent relation. For example, we know that in order for X to be a

grandparent of Y , there must be a Z such that the tuples (X ,Z) and (Z ,Y)

are present in the relation parent.

Another relationship we may be interested in is that of ancestor: here P

is an ancestor of Q if there is a set of tuples (P ,7i),(7i, J2),. • • ,(7n,Q) for some

n (perhaps zero).

A difficulty with SQL is its ‘flatness’ - since it has no means of embodying

indefinite nesting of queries. Although a query can be formulated for the

grandparent relationship above, the same cannot be done for the more general

ancestor (unless a limit is artifically placed on the number of generations to

look back). More formally, it is not possible to compute the transitive closure

of a relation ([3]).

By contrast, the language Prolog allows a succinct modelling of the above.

parent(louis, ruth),
parent(odette, louis).

parent(elias, odette).

grandparent(X,Y) parent(X,Z), parent(Z,Y).
ancestor(X,Y) parent(X,Y).
ancestor(P,Q) parent(P,I), ancestor(I,Q).

At this point, the Prolog system contains both facts and rules for deriving

C H A P T E R 2. L I T E R A T U R E R E V I E W 28

new facts (such as ‘elias’ is an ancestor of ‘ruth’). These new facts, though,

are not derived until the system is appropriately queried with, for example,

?- ancestor(A ,B) . which would retrieve all ancestors.

The manner in which the marriage of facts and rules within a deductive

system is achieved has been the characterising feature of deductive query

languages. The tension exists since, on the one hand, Prolog has excellent

deductive capability and on the other, relational database systems support

the storage and retrieval of facts.

A number of language systems have been designed for data models other

than the relational model and in particular the Functional Data Model:

• DAPLEX ([97]) models the rules of a knowledge base through inten­

tionally defined functions;

• FQL ([12]) operates on streams akin to the lazily evaluated lists of

functional programming languages such as Miranda ([109]);

• FDL ([88]) addresses some deficiencies in DAPLEX - computational

completeness, uniform storage regime for all functions and support for

arbitrary construction of types.

C H A P T E R 2. L I T E R A T U R E R E V I E W 29

For the relational model, attempts have been made to build on the success

of SQL:

• SQUIRREL ([113]) extends the syntax of SQL to allow the inclusion

of rules and their manipulation by allowing relations to contain logic

statements;

• LQL ([96]) has logic-based extensions to SQL, where rules can be ex­

pressed with left hand sides as in Prolog and right hand sides SQL

expressions.

DEAL ([26]) by contrast extends SQL by allowing recursion and the def­

inition of relation returning functions. DEAL has, however, no real notion

of rules and so cannot be classified as a deductive database system any more

than a general purpose programming language which happens to have rela­

tions amongst its built-in types. More information on this can be found in

chapter 4 since DEAL is the chosen language for this work.

2.2.2 Functional, Deductive and Object-oriented Databases

There is much interplay between these three approaches. Each approach has

a characteristic essence:

C H A P T E R 2. L I T E R A T U R E R E V I E W 30

• Functional Database systems, such as Buneman’s FQL ([12]) and Ship­

man’s DAPLEX ([97]), make use of functional data models based on

1the fundamental concept of function to model relationships among real

world objects’ (Gray et al, [43]). Two kinds of item are present within

the functional data model: entities (that model real world objects) and

scalars (reals, integers, strings and so on). Functions map items to

items. Multi-valued functions are allowed for flexibility. Built-in type

constructors allow definition of sequences and tuples. Functions can

be combined in various ways: function composition and restriction are

common. In the functional data model view, the distinction between

stored and derived data is removed: queries (requests for answers) are

‘essentially requests for a value of a function, given argument values’

(Folinus et al,[30], as quoted in Gray, ([43])).

• Deductive database systems c. .. contain inference rules which can be

used to deduce new facts from those stored explicitly ’ (Frost, [31]).

Non-deductive systems may also contain rules which serve as integrity

constraints restricting the permissible database states. In contrast,

deductive systems, although they may also allow the expression of in­

tegrity constraints, contain inference rules with which to deduce new

facts. Deductive processes, such as resolution, are directly supported

C H A P T E R 2. L I T E R A T U R E R E V I E W 31

by the system and so the set of inference rules is specified by the user

rather than the process of inference and deduction.

• Object-oriented database systems generally have origins in object-

oriented programming languages: entities from the real world are rep­

resented as objects which encapsulate structure and behaviour. All

objects are members of a class or type and can only be accessed and

manipulated through operations defined on their class (Date, [24]). In

object-oriented database systems, both the data and programs associ­

ated with an object are stored. The approach can be summarised as

‘embedding semantics into database objects’ (Date, [24]). The relation­

ship between object-oriented data models and semantic data models is

close (Gray [43]).

All three approaches above concern themselves with the relationship be­

tween what can be termed, coarsely, code and data. Both the functional data

model and objected-oriented model remove the distinction largely by only

providing access to operations (code). Deductive systems are based on the

uniform treatment of data whether stored as facts (data) or deduced by the

application of rules (code).

C H A P T E R 2. L I T E R A T U R E R E V I E W 32

2.3 Program derivation
Much space is given in chapter 6 to the discipline under which the implemen­

tation of the conceptual level of the database architecture has been achieved.

In this section, the historical background to the discipline is covered.

The interpretation of abstract data types as many-sorted algebras (a col­

lection of named sets and operators between them) is due to Morris ([80]),

extended by Guttag ([45, 46]) and largely formalised by Goguen ([35, 36]).

The key insight of this work was to abstract data types away from their

representations and to show that the relationships between their operators

characterised them. A significant contribution in [36] was the application

of ideas from category theory, a branch of mathematics that is used to re­

veal ‘natural’ characteristics of algebraic structures that may be hidden by

representation detail.

Defining the semantics of operations by axioms was introduced by Hoare

([57]).

Specification languages incorporating a formal notation for abstract data

types and abstract operations were introduced by both Guttag (LARCH,

[47]) and Goguen (OBJ, [37]).

An early equational program (to insert values into 2-3 trees) was pro-

C H A P T E R 2. L I T E R A T U R E R E V I E W 33

vided by Hoffman and O’Donnel ([58]). This was extended by the inclusion

of removal of values by Reade ([89]). (Reade’s SML specifications were used

by the author to derive the balanced tree implementations used in the per­

formance experiments reported in chapter 7).

The design of programs by refinement of abstract data types towards

‘implementations’ based on abstract models of concrete representations is

discussed in [20, 65].

Goguen and others ([32, 38]) incorporated a facility to support state infor­

mation in abstract data types in the algebraic specification language OBJ2.

A survey by Samson and Wakelin ([93]) on algebraic specification of

databases reveals that little work has been done on the specification of

database operations (rather than queries). In particular, they detect a lack

in the treatment of the idea of attribute domains and recommend further

work.

2.4 Summary
This chapter has collected the main contexts in which this work has been

undertaken.

Specifically, these are:

C H A P T E R 2. L I T E R A T U R E R E V I E W 34

• Specialised hardware platforms - the work of the project was carried

out on a REKURSIV processor. The background of database machines,

machines to support the functional programming paradigm and object-

oriented platforms have been described. A detailed description of the

REKURSIV is to be found in the next chapter.

• Database Query Languages - the language implemented within the

project, DEAL, has been placed within a spectrum of other language

approaches. DEAL, which can be characterised as a ‘database query

language with functions’ is based on the relational model and falls

short of providing a deductive database system. Chapter 4 describes

the language in more detail. Chapter 5 describes the implementation

of the language.

• Program derivation - most of the underlying computational machinery

of the project that supports relational algebra operations was obtained

by deriving programs (in the language Lingo) from formal algebraic

specifications written in SML. Chapter 6 describes this derivation pro­

cess in greater detail and goes on to show how the implementation can

be further refined.

The next chapter returns to the internal level of the database architecture

C H A P T E R 2. L I T E R A T U R E R E V I E W 35

with a presentation of the hardware used for the project - the REKURSIV.

C h a p te r 3

T h e R E K U R S I V

The REKURSIV processor differs from a conventional architecture in two

principal ways.

• Data Types. At the machine level, a conventional architecture provides

the programmer with a memory consisting of an array of equally sized

cells each holding a bit pattern. The REKURSIV provides a structured

space of objects, each having a type and size associated with it. The

type and size of an object are retrieved from memory in parallel with

the actual data parts of the object and can be inspected and used to

determine execution sequence at the micrcode level.

36

C H A P T E R 3. T H E R E K U R S I V 37

Harland’s intention behind the design of the REKURSIV is to narrow

the semantic gap that exists conventionally, where, at the programmer

level, complex data types are used to maximise expressivity whereas at

the machine level these data types are implemented by complex mech­

anisms involving several memory accesses and much processing. On

the REKURSIV the burden of type checking is placed on the machine

hardware. The chore of bundling and unbundling data between its

high level structured organisation and a collection of machine words is

removed.

• An Object Store. The REKURSIV addresses memory by unique object

identifiers which are the only method of memory access available to

the programmer. The provision of a virtual memory is facilitated by

using the same representation for an object’s disk image as it has in

physical memory. This allows memory management strategies which

seek to maintain frequently used objects in real memory as opposed to

frequently accessed pages. In addition this mechanism allows the object

store to persist.

The REKURSIV is constructed from a set of proprietary chips called

LOGIK, NUMERIK, OBJEKT and KLOK.

C H A P T E R 3. T H E R E K U R S T V 38

T h e R E K U R S I V a r c h i t e c t u r e

C H A P T E R 3. T H E R E K U R S I V 39

• LOGIK is the sequencer that controls the microprogram execution. It

is connected (by separate data paths) to various memories containing

— the microcode (in the Control Store).

— the map between machine level instructions and microcode se­

quences (in the Control Store Map)

— abstract instuctions (the NAM)

— a stack for use by the microcode level (the CSTK)

LOGIK also has addressing logic for another stack memory (the ESTK),

which is used by NUMERIK as an evaluation stack.

• NUMERIK takes the place of a conventional ALU containing sixteen

thirty two bit registers. NUMERIK is connected to its own stack (the

evaluation stack or ESTK) whose addressing is controlled by LOGIK.

In addition it is connected to the main memory (the DRAM) of the

object store (which is managed by OBJEKT)

• OBJEKT manages the object store. It contains circuitry to create new

object identifiers, create space in the DRAM for objects, generate (and

range check) addresses into the DRAM. It is connected to two memories

C H A P T E R 3. T H E R E K U R S I V 40

— the DRAM — this is the main memory where the contents of ob­

jects are actually stored. OBJEKT handles all aspects of address­

ing this - indexing, range checking, allocating and deallocating

space.

— the pager tables — these take the place of the page tables in

a conventional virtual memory. The object identifier, size, type

and first word (of the contents or representation) of each object

physically present in the DRAM is stored here. When servicing a

request for an object, OBJEKT addresses the pager tables using

the bottom 16 bits of the object identifier. The object identifier

found in the pager tables is then compared with the required one

— a match indicates the object is in the DRAM. If there is no

match the object must be swapped in from DISK and OBJEKT

handles the communication with the disk processor (DP) to effect

this.

The R ekursiv ’s pedigree

Clearly the design of the Rekursiv did not occur in a vacuum. At the time

that Harland’s [52] book was published (1988), RISC architectures were the

apparent way forward for processor design and indeed Harland devotes a

C H A P T E R 3. T H E R E K U R S I V 41

section of his book to a discussion between proponents of the RISC and

EISC schools of thought. A major line of argument that Harland supports

is that RISC architectures do not tolerate changes of control flow. Many of

the advantages brought about by RISC features such as instruction caches

and pipelining, are antagonised by such changes.

It is perhaps unfortunate that Harland does not capitalise on a previous

work [51] to connect this line of argument and his concept of the semantic

gap more closely with the question of types and their promotion to first class

citizens - entities on which computation can be performed and which are a

primary means of programmer expression. Instead, the microcodability of

the Rekursiv is stressed strongly throughout the book.

It is instructive to view the progress and learning curve of project groups

under the Object-oriented initiative which in effect became the sole theatre

in which the Rekursiv showed itself to the world. Originally many groups

anticipated microcoding instruction sets tailored towards their problem areas.

When the Rekursivs were delivered, the only language compiler supplied with

them was a C compiler that compiled code which executed in one of the

Rekursiv’s stacks and allowed a very primitive interface to the object store.

At the time no mention was made of any other software for the Rekursiv,

including Lingo, and many groups concentrated on adding to the microcoded

C H A P T E R 3. T H E R E K U R S I V 42

instruction set that supported C ([102]).

About six months into the project, it became apparent that some groups

had received copies of the language Lingo (as well as a Prolog and a Forth

implemented in Lingo) on an ad hoc basis, normally because they had been

finding the C compiler inadequate and had been in communication with

Linn-Smart. At the second Rekursiv workshop, reports by these groups on

the efficacy of Lingo circulated and in the ensuing discussion it became quite

clear that the Rekursiv was intended primarily as a Lingo engine and that in

fact the language predated the processor. By the end of the initiative, with

the demise of Linn-Smart the focus was completely on Lingo. Indeed many

groups supported the intention to attempt to carry on L ingo development

on other platforms.

This ‘shifting goal-posts’ period was unfortunate since in retrospect a

clearer and cleaner justification for the Rekursiv could have been made by

focussing on the design of the language Lingo. Its ancestry is the program­

ming through types school of thought. Proponents of this line of attack

include Harland himself ([51]), Burstall and Lampson ([13]) with their lan­

guage Pebble and Milner ([77],[78]) and the polymorphism of SML.

The flat world of a conventional view of memory (and in this respect von

Neumann machines and RISC are equivalent) sits uneasily with program­

C H A P T E R 3. T H E R E K U R S I V 43

ming through types. Since these machines do not support the storage of

semantics along with data and do not support the variety of sizes and shapes

of the abstract structures on a programmer’s palette, they are forced to re­

sort to tortuous control flows to manage expressive programs. Yet changes in

control flow are precisely what defeats the features that could increase their

bandwidth.

So this is the semantic gap - advances in technology (applied to an es­

sentially unchanged architecture) will give the same improvement in per­

formance to software produced from inexpressive C as they do to software

produced from expressive functional or object-oriented languages and so C

will always be used by preference. (Or put in other terms, RISCs support C

and tolerate Smalltalk, say, only by more or less translating to C and playing

by the rules of the game in a C world!).

This vicious circle can perhaps be broken by an architectural change that

allows technology to support the expressivity that language design has given

the programmer. If types are part of the palette (just as arithmetic and

decision making are conventionally) then the architecture should allow the

technology to work directly on types (just as the hardware works directly on

arithmetic and decision making).

C h a p te r 4

T h e la n g u a g e D E A L

4.1 Introduction
Traditionally, database management systems were designed to meet needs

from business data processing applications. Areas such as Computer Assisted

or Automated Design are better supported by languages of Turing equivalent

power and with expressivity at least as high as that of modern programming

languages ([92]).

For several years, a group at Dundee Institute of Technology had been

involved with the development and utilisation of a relational query language,

DEAL ([26],[90],[112]). Some of this work was directed at using DEAL to

show that its enhanced expressivity made problems in certain application

44

C H A P T E R 4. T H E L A N G U A G E D E A L 45

areas m o re tr a c t ib le . T h e se areas in c lu d e d -

• H is to r y - r e la t io n a l d a ta b a ses w ith an in b u ilt m o d e l o f t im e [90] a llo w

s e le c t io n p r e d ic a te s to in v o lv e te m p o r a l r e la t io n s . T h is is o f u s e in a

w id e v a r ie ty o f areas in c lu d in g , w ith in en g in e e r in g , d e s ig n v e r s io n a n d

c o n fig u ra tio n co n tro l.

• G ra p h ic s - C A D s y s te m s n e c e s s ita te th e in te g r a t io n o f th e D a ta b a s e

M a n a g e m e n t S y s te m w ith th e a b il ity to v ie w a n d o p e r a te o n d a ta b a se

o b je c ts g r a p h ic a lly w ith in th e sa m e la n g u a g e ([1 1 2]) .

T h e u se fu ln e ss o f th e la n g u a g e D E A L in rea l a p p lic a t io n s a t th e in s t i t u t e

w as lim ite d b y th e e ff ic ien cy o f th e im p le m e n ta t io n an d th e la n g u a g e w a s v e r y

m u ch u sed as a resea rch m o d e l a g a in st w h ic h to t e s t id e a s for fu r th e r la n g u a g e

d e v e lo p m e n t [92] a n d to carry o u t e x p e r im e n ts in a lg e b r a ic s p e c if ic a t io n o f

th e R e la t io n a l A lg e b r a [91].

D E A L (D E d u c t iv e A L g eb ra) is a r e la t io n a l la n g u a g e . D E A L ’s p r o p o se r

a n d d esig n er , D e e n , ([2 6]) w a s a t t e m p t in g to p ro v id e ‘a u n ifie d fr a m ew o rk

for b o th c o n v e n tio n a l a n d d e d u c tiv e d a ta b a se p r o c e s s in g .’

R a th e r th a n su p p o r t in g k n o w le d g e b a se d s y s te m s b y p r o v id in g P r o lo g ,

say, w ith an in te r fa c e to an u n d e r ly in g r e la t io n a l d a ta b a se , in D E A L th e

r e la t io n a l la n g u a g e is e x te n d e d . “D e d u c t io n s ” are reg a rd ed as th e g e n e r a t io n

C H A P T E R 4. T H E L A N G U A G E D E A L 46

o f n ew fa c ts fro m e x is t in g fa c ts (e x te n s io n a l d a ta b a se) u s in g d e d u c t io n ru les

(in te n s io n a l d a ta b a se) .

D e s p ite D e e n ’s n o m e n c la tu r e a n d te r m in o lo g y , it is h a rd to se e th a t m o d ­

ern in te r p r e ta tio n s o f th e w ords ‘d e d u c t io n 5 a n d ‘d e d u c t iv e 5 are a p p r o p r ia te

to D E A L . D a te ([2 4]) , w r it in g on th e u se o f su ch te r m s , d e sc r ib e s d e d u c t iv e

D B M S as fo llow s:

D eductive D B M S: A D B M S th a t su p p o r ts th e p r o o f - th e o r e t ic

v ie w o f d a ta b a se s , a n d in p a r tic u la r is c a p a b le o f d e d u c in g a d ­

d it io n a l in fo r m a tio n fro m th e e x te n s io n a l d a ta b a se b y a p p ly in g

in fe r e n t ia l (or d e d u c t iv e) ru les th a t are s to r ed in th e in te n s io n a l

d a ta b a se . A d e d u c t iv e D B M S w ill a lm o st c e r ta in ly su p p o r t re ­

cu rs iv e ru les a n d so p erfo rm r e c u r s iv e q u ery p r o c e ss in g .

A s w ill b e see n in th is c h a p te r ’s d e sc r ip tio n o f D E A L , th e la n g u a g e h a s

n o rea l n o tio n o f ‘in fe r e n tia l r u le 5 in a n y d eep sen se . It d o es h a v e fu n c ­

t io n s , w h ic h ca n b e ca lled re cu rsiv e ly . T h e s e h o w ev er are im p e r a t iv e , r e s u lt ­

r e tu r n in g su b r o u tin e s th a t can m o d ify v a r ia b le s . S o m e s y n ta c t ic fe a tu r e s

(l in k v a r ia b le s) a llo w th e p ro g ra m m er to w r ite fu n c tio n s th a t h a v e a su rfa c e

s im ila r ity to th e ru les o f P ro lo g . H o w ev er , d e d u c tio n is n o t d ir e c t ly su p ­

p o r te d a n y m o re th a n it is in a g en er a l p u r p o se p r o g ra m m in g la n g u a g e su ch

as C or P a sca l.

C H A P T E R 4. T H E L A N G U A G E D E A L 47

4.2 Syntax
T h e c o n c r e te s y n ta x o f th e D E A L in te r p r e te r th a t w a s im p le m e n te d is d e ­

scr ib ed b y th e fo llo w in g e x te n d e d B N F w h e r e th e m e ta s y m b o ls { a n d } are

b e in g u sed to d e n o te zero or m ore o cc u r ren ce s o f th e e n c lo se d a n d th e m e ta ­

sy m b o ls [a n d] are u se d to in d ic a te th e o p t io n a l (z ero or o n c e) o c c u r r e n c e

o f th e e n c lo se d . In a d d it io n , a ll n o n - te r m in a ls o f th e g r a m m a r are e n c lo s e d

in a n g le b ra ck e ts ,< a n d >; te r m in a l s tr in g s are e n c lo se d in q u o ta t io n m a rk s," ;

e n t it ie s n e ith e r e n c lo se d in a n g le b ra ck e ts or q u o ta t io n m a rk s d e n o te te r m i­

n a l classes w h o se s y n ta c t ic d e sc r ip tio n is n o t fu r th e r e x p a n d e d . A n e x a m p le

o f th is is I d e n t i f i e r w h ic h d e n o te s a ll te r m in a l c h a ra c ter s tr in g s w h ic h s ta r t

w ith an a lp h a b e t ic ch a ra c ter an d are fo llo w e d b y (zero or m o r e) a lp h a b e t ic

or n u m er ic ch a ra c ters .

C H A P T E R 4. TH E L A N G U A G E D E A L 48

<input>
<input1>
<expr>
<term>

<factor>

<linkblock>
<predicatelist>
<blockl>
<block2>
<setOp>
<binOp>
<arithOpl>
<arith0p2>
<stmt>

<asgn>
<whileStatement>
<ifStatement>
<stmtList>
<asName>
<cond>
<selectionList>
<condition>
<defn>
<paramList>

<param>
<declaration>
<header>
<argList>
<funcName>
<predicate>
<relOp>
<constant>

<input1> { <input1> >
<defn> | <filecommand> | <expr>
<term> { <binOp> <term> }
<factor> [<blockl>] [<block2>]

{<arith0p2Xf actor> [<blockl>] [<block2>]}
Relation | Integer I String | <function>
I Var I LVar I LAVar I Identifier
I "(" <expr> ")" I <linkblock>
<blockl> "where" <expr> "{"<predicatelist>"]-"
<predicate> ,"<predicate>}
"[" <selectionList> "]"
"where" <condition>"*•?" | n++ii | 11 — 11 | 11**11

<setOp> | <arithOpl>
II _i_ 11 | 11 11
11*11 | 11 / ii

<asgn> | <whileStatement> I <ifStatement>
I "{" <stmtList> "}"
<asName> ":=" <expr>
"while" <cond> <stmt>
"if" <cond> <stmt> ["else" <stmt>]
{ <stmt> ";" }
Var | Relation| Identifier! LVar | Function
"(" <predicate> ")"
<expr> { "," <expr> }
<predicate> { "and" <predicate> }
"func" <funcName> "(" <paramList> ")" <stmtlist>
[<param>":"<declaration>]
{ "," <param> ":" <declaration> }
Identifier
"int" | "rel" I "at" | "char"
["(" <argList> ")"]
<expr> {","<expr>}
Identifier
<expr> <relOp> <expr>
II > II | II ̂ II j ll> —II | ll< = tl |
Integer | String

11—n I "!=" | "M " | "&&"

C H A P T E R 4. T H E L A N G U A G E D E A L 49

<function> ::= "card" "(" <expr> ")" | "#" "(" <expr> ")"
I Function "(" <argList> ")"

<filecommand> ::= "run" String I "load" (Identifier I Relation)
I "save" Relation

D E A L a llo w s S Q L -lik e q u eries. For e x a m p le , g iv e n a r e la t io n E M P (for

e m p lo y e e s) w ith sc h e m e E N A M E , D N O , S A L (e m p lo y e e n a m e , d e p a r t­

m e n t n u m b er an d sa la r y) w e can h a v e

• E M P [E N A M E] - g iv e s th e r e la t io n c o n ta in in g ju s t e m p lo y e e n a m e s .

• E M P [E N A M E , S A L] - g iv es th e r e la t io n c o n ta in in g e m p lo y e e n a m e s

a n d th e ir sa la r ies .

• E M P [E N A M E ,D N O ,N E W S A L := 1 .1 * S A L] - g iv e s a n e w r e la t io n

w h ere ea ch e m p lo y e e ’s sa la ry is in c r e a se d b y 10 p e r c e n t .

• E M P w h ere S A L > 15000 - g iv e s th e r e la t io n w ith sc h e m e E N A M E ,

D N O , S A L w h er e ea ch e m p lo y e e ea rn s o v er 15000 . T h is is a n e x a m p le

o f a tuple predicate.

F u n c tio n s ca n b e d efin ed in D E A L . For e x a m p le

func fac (n : int)
{

if n = 0
fac := 1

else
fac := n * fac(n-l);

C H A P T E R 4. T H E L A N G U A G E D E A L 50

>;

T h e p a ra m e ter s to a fu n c tio n ca n a lso in c lu d e r e la t io n s a n d a t t r ib u te

n a m es .

A m o r e re le v a n t e x a m p le o f a fu n c t io n th a t re tu rn s r e la t io n s , is th e fo l­

low in g:

f u n c a n c e s t o r (x : c h a r)

{
tem p := (p a r e n t w h e r e c h i ld n a m e = x) [p a r n a m e] ;
i f (c a r d (t e m p) = 0)

a n c e s t o r := tem p
e l s e

a n c e s t o r := t e m p + + a n c e s t o r (t e m p) ;

};

H ere , th e e x is te n c e o f a r e la t io n p a r e n t w ith sch e m e (p a r n a m e , c h i ld n a m e)

is a ssu m e d w ith in w h ic h ea ch tu p le re p r e se n ts a p a ren t r e la t io n sh ip . G iv e n

th e a b o v e fu n c t io n d e fin it io n , e v a lu a tin g an e x p r e ss io n su c h as

a n c e s t o r (" R a c h e l_ N a t a n s o n ") ;

w o u ld re su lt in a re la t io n w ith sc h e m e p a rn a m e w h er e ea ch tu p le c o n ­

ta in s e ith e r a p a ren t o f " R a c h e l_ N a ta n s o n " or th e p a ren t o f a n o th e r m e m ­

b er o f th e re la t io n . In o th e r w ord s th e re su lt is th e s e t o f a n c e s to r s o f

" R a c h e l_ N a ta n s o n " th a t are k n o w n to th e s y s t e m v ia t h e r e la t io n p a r e n t .

S o m e e x p la n a t io n o f th e form o f th e a n c e s t o r fu n c t io n is n eed ed : o n t h e

fa c e o f i t , th e fu n c tio n ta k es a s in g le p a r a m e te r o f ty p e ''c h a r " a n d y e t i t is

C H A P T E R 4. T H E L A N G U A G E D E A L 51

b e in g called, w ith in th e re cu rsiv e s te p , w ith th e a c tu a l p a r a m e te r tem p w h ic h

m u st h a v e ty p e r e la t io n as a c o n se q u e n c e o f th e p r e c e d in g a s s ig n m e n t. T h e

se m a n tic s o f fu n c t io n a p p lic a t io n e m p lo y e d b y th e in te r p r e te r are su ch th a t ,

sh o u ld an a c tu a l a rg u m e n t to a fu n c t io n b e a r e la t io n w h ere a s im p le r ty p e

w as e x p e c te d , th e a c tu a l a rg u m en t is co n s id e r e d to b e a c o lle c t io n o f in d iv id ­

u a l v a lu es to w h ic h th e fu n c tio n is a p p lie d in tu r n a n d th e n th e in d iv id u a l

re su lts are c o m b in e d to g e th e r u s in g th e r e la t io n a l u n io n o p era to r . T h is is

s im ila r to an im p lic it m ap o p era to r , as u se d w ith in fu n c t io n a l p r o g r a m m in g

to a p p ly th e sa m e fu n c t io n to all th e e le m e n ts o f a l is t . W h e r e th e c o n v e n ­

t io n a l m ap is r e la te d to th e list c o n s tr u c to r c o m m o n ly k n o w n as c o n s , th e

im p lie d o p era to r h ere is r e la te d to th e relational o p e r a to r u n io n .

C lear ly , to b e g in to a p p roach th e p r o b le m o f c a lc u la t in g su ch th in g s as

tr a n s it iv e c lo su res so m e ‘h ig h er o rd er ’ c o n s tr u c t is n ece ssa ry . G iv e n t h e b a ­

s ic n a tu re o f th e D E A L ap p ro a ch , th e m e c h a n ism as a b o v e w a s c h o se n as

re p r esen tin g a tr a d e -o f f b e tw e e n s e m a n tic a n d s y n ta c t ic o p a c ity (w h ic h w as

a lrea d y p r e c e iv e d to b e h ig h).

T h e “d e d u c t iv e ” n a tu r e o f D E A L is a p p a r en t in tw o fa c e ts - fu n c t io n s

a n d th e p o s s ib il ity o f recu rsio n a llo w th e c o m p u ta t io n o f tr a n s it iv e c lo su res .

A d d it io n a lly , a s y n ta c t ic fe a tu re p ro p o sed b y D e e n ([2 6]) , c a lle d ‘lin k e le ­

m e n ts ’, a llo w s q u er ies to b e ex p re ssed in a P r o lo g lik e fo r m (th is fe a tu r e w as

C H A P T E R 4. TH E L A N G U A G E D E A L 52

n o t im p le m e n te d b y S a d eg h i ([9 0])) . A s an e x a m p le o f th is , c o n s id e r th e

c la s s ic q u ery ‘P a u l lik es ev e ry o n e w h o lik es w in e 5 a g a in st a r e la t io n likes w ith

sc h e m a (n a m e ,o b je c t) . A n e x p r e ss io n th a t re tu rn s th e a n sw er r e la t io n is -

[name :="Paul",object := x] where likes {x=name, object="wine"};

T h e re su lt ca n b e u n io n e d w ith th e o r ig in a l r e la t io n likes a n d th e f in a l

re su lt u se d to u p d a te likes. (N o te th a t th is c o n c r e te s y n ta x is n o t e x a c t ly th a t

p ro p o sed b y D e e n a n d w as a d o p te d in ord er to fa c il ita te p a rs in g . T h e t e n s io n

in th e m a rria g e o f th e s y n ta x o f S Q L w ith th a t o f P r o lo g re a ch es b r e a k in g

p o in t h ere . T h e u n d e r ly in g m o d e l, th o u g h , (in te rm s o f th e a b s tr a c t s y n ta x)

d o es a llo w u n ific a tio n to b e e s ta b lish e d v ia r e la t io n a l a lg eb ra o p e r a t io n s) .

4.3 Using the DEAL interpreter
A n in te r a c t iv e se ss io n w ith th e D E A L in te r p r e te r is s ta r te d b y c r e a tin g an

in s ta n c e o f a D e a l c la ss o b je c t . F or e x a m p le , a ssu m in g x is a L in g o p r o c e ss

variab le:

x := Deal new;

w ill in it ia t e an in te r a c t iv e sess io n th a t w ill en d w h en a < c t r l > D is e n te r e d

for en d o f file (a s sh o w n in th e fo llo w in g d ia g r a m).

C H A P T E R 4. T H E L A N G U A G E D E A L 53

T h e o b je c t x s t i l l e x is ts , w ith w h a te v e r e n v ir o n m e n t th e D e a l o b je c t h a d ,

an d can b e q u e r ied as in:

x ask:"parts where pweight > 14" ;

T h is q u ery re tu rn s an o b je c t o f R e la t io n c la ss , t h e r e la t io n b e in g th e

su b se t o f th e p a r ts r e la t io n w h o se w e ig h t a t t r ib u te is g r e a te r th a n 14.

T h e d ia g r a m sh o w s th is in o p era tio n .

C H A P T E R 4. TH E L A N G U A G E D E A L 54

W ith in a n in te r a c t iv e sess io n , th e D E A L in te r p r e te r r e c o g n ise s tw o c a t e ­

go r ies o f s ta te m e n t .

• Q u e r i e s - th e p u r p o se o f th e la n g u a g e is to an sw er r e la t io n a l a lg e b r a

q u eries su ch as

parts where pweight > 14

b u t th e in terp re ter w ill a cc ep t a n y e x p r e ss io n - r e la t io n a l or a r ith ­

m e t ic - a n d p r in t it s re su lt.

C H A P T E R 4. T H E L A N G U A G E D E A L 55

• E n v i r o n m e n t a l s t a t e m e n t s - th e s e ch a n g e th e c o n te x t in w h ic h

q u eries are e v a lu a te d . F u n c tio n s th a t ta k e p a r a m e te r s a n d re tu rn re ­

s u lts , for e x a m p le ca n b e d efin ed ; R e la t io n s ca n b e lo a d e d fr o m t e x t

files a n d so on .

4.4 Conclusion
T h is ch a p te r h a s in tr o d u c e d th e m a jo r s y n ta c t ic an d s e m a n tic fe a tu r e s o f

th e la n g u a g e D E A L . T h e n e x t ch a p ter , c h a p te r 5 , d escr ib es th e d e ta il o f th e

a n a ly s is a n d s y n th e s is p h a se s o f th e in te r p r e te r . T h e e x e c u t io n o f D E A L

p rogram s p ro ce ed s b y tra v ers in g d a ta s tr u c tu r e s , s y n th e s is e d d u r in g in te r ­

p r e ta tio n , an d in v o k in g m ore p r im it iv e o p e r a t io n s (su c h as a r ith m e t ic a n d

r e la t io n a l a lg eb ra o p era to rs) as in d ic a te d b y th e s y n th e s is e d d a ta s tr u c tu r e s .

F o llo w in g ch a p te r 5, ch a p ter 6 d e sc r ib e s th e d e v e lo p m e n t o f th e m a in se t

o f th e s e o p e r a t io n s , th o se in v o lv e d in th e r e la t io n a l a lg eb ra , fr o m a fo r m a l

sp e c if ic a t io n .

C h a p te r 5

Im p le m e n tin g th e la n g u a g e

5.1 Introduction
T h e la s t ch a p te r g a v e a d e sc r ip tio n o f th e s y n ta x o f D E A L . T h is c h a p te r d ea ls

w ith it s im p le m e n ta t io n - th e m e th o d b y w h ic h th e la n g u a g e in te r p r e te r w a s

e ffec ted .

T h e te r m in te r p r e te r em b ra ces th e c o l le c t iv e a c t io n o f a n u m b e r o f o b je c ts .

Its o v era ll a c t io n ca n b e d e m a r c a te d in to th r e e p h ases:

• A n a l y s i s - th e recognition o f th e b a s ic le x ic a l e le m e n ts o f th e la n g u a g e

(k ey w o r d s, lite r a l co n sta n ts a n d so o n) a n d th e s y n ta c t ic s tr u c tu r e s .

T h e form er is e ffec ted in a su b p h a se k n o w n as Lexical A n alysis a n d th e

la t te r b y Syntax Analysis.

56

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 57

• S y n t h e s i s - th e construction o f d a ta s tr u c tu r e s c o n ta in in g th e e s s e n t ia l

in fo r m a tio n (d isc e r n e d in th e a n a ly s is p h a se) n e e d e d to ca rry o u t th e

in te n d e d c o m p u ta tio n .

• E x e c u t i o n - e ffe c tin g th e c o m p u ta t io n .

S e p a r a te o b je c ts are u sed for le x ic a l a n a ly s is an d s y n ta x a n a ly s is a n d

th e s e are te r m e d th e ‘sc a n n e r 5 an d th e ‘p a r se r 5 r e sp e c tiv e ly .

T h e p a rser is v ie w e d as th e ‘r o o t 5 o b je c t o f th e in te r p r e te r s in c e th e m a in

th r e a d o f e x e c u t io n th ro u g h th e in te r p r e te r is c o n ta in e d w ith in i t as fo llo w s:

• T h e c o d e to carry o u t th e a c t io n s o f th e sy n th e s is a n d e x e c u t io n p h a se s

is in te r sp e r se d th ro u g h th e c o d e o f th e p arser .

• T h e p a rser ca lls m e th o d s o f th e sca n n er as req u ired .

It is im p o r ta n t to d is t in g u ish th e s tr a te g y e m p lo y e d h ere fr o m th e c o n ­

v e n t io n a l m o d e l o f an in terp re ter or co m p ile r . C o n v e n tio n a lly , p h a se s o f a

tr a n s la to r su ch as le x ic a l a n a ly s is or s y n ta x a n a ly s is , p r o d u c e e n tir e d a ta

s tr u c tu r e s w h ic h are th e n o p e r a te d u p o n b y a fo llo w in g p h a se . T h e s y n ta x

a n a ly se r , for e x a m p le , n o rm a lly co n ce rn s i t s e l f w ith b u ild in g a parse tree

w h ic h th e se m a n tic a n a ly s is p h a se a n d c o d e g e n e r a tio n p h a se (o r e v a lu a ­

t io n p h a se , for an in terp re ter) u t il is e . T h e s tr a te g y u p o n w h ic h th is w ork is

b a se d d o es n o t b u ild an explicit p a rse tree; th is tr e e d o e s e x is t , th o u g h , as

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 58

th e thread o f execution th r o u g h th e s y n ta x a n a ly s e r ’s re c o g n ise r p ro ce d u re s .

A c o n se q u e n c e o f th is is th a t th e p r o c e ss in g o f th is im p lic it p a rse tr e e is

in t im a te ly b o u n d w ith i t s co n str u c tio n ; th a t is th a t s e m a n tic a n a ly s is a n d

sy n th e s is (c o d e g e n e r a tio n or e v a lu a tio n) o cc u r s c o n c u r r e n tly w ith s y n ta x

a n a ly s is . T h e in te r p r e te r , is in a se n se , parser driven.

T h e g en era l s tr a te g y for th e in te r p r e te r ’s a n a ly s is p h a se s (le x ic a l a n a ly s is

a n d s y n ta x a n a ly s is) is co v e red in a p p e n d ix C . T h e s y n ta x a n a ly se r u se s a

p r e d ic t iv e to p -d o w n m e th o d (r ecu rs iv e d e s c e n t) t o r e c o g n ise th e la n g u a g e ’s

s y n ta c t ic c la sse s . C o d e to effec t s e m a n tic a c t io n s is in te r sp e r se d w ith in t h e

p a rser ’s co d e . In g e n er a l, th e s e s e m a n tic a c t io n s are s y n th e t ic a n d c o n s tr u c t

d a ta s tr u c tu r es w h ic h th e in te r p r e te r ca n th e n tr a v e r se at an a p p r o p r ia te

p o in t an d th u s ‘e x e c u te ’ th e o r ig in a l D E A L so u rce co d e .

T h e o b je c ts w ith in th e s e sy n th e s ise d d a ta s tr u c tu r e s a p p r o x im a te to th e

‘o b je c t c o d e ’ th a t th e c o m p iler tr a n s la te s so u rce c o d e in to . T h e s e are c o d e d in

L in go . U n d e r ly in g th e s e o b je c ts is a c o lle c t io n o f o b je c ts p r o v id in g p r im it iv e

fu n c t io n a lity to su p p o r t re la t io n a l a lg eb ra o p e r a t io n s . T h is la s t la y e r is d e a lt

w ith in th e n e x t ch a p ter .

G iv en th e a b o v e , th e o p e r a t io n o f th e in te r p r e te r w il l b e d e sc r ib e d in th e

fo llo w in g w a y -

T h e B N F o f a s y n ta c t ic e n t ity w ill b e g iv e n an d th e p o in ts a t w h ic h

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 59

se m a n tic a c t io n s w ill b e in se r te d w ill b e n o te d . T h e s e m a n tic a c t io n s w ill

th e n b e d e sc r ib e d a lo n g w ith an y o b je c ts c o n ta in e d w ith in th e d a ta s tr u c tu r e s

th a t th e s e m a n tic a c t io n s sy n th e s ise .

5.2 The topmost levels
T h e distinguished sym bol o f D E A L ’s g ra m m a r is < in p u t> . T h e p r o d u c t io n

th a t d efin es it is

< in p u t > < i n p u t l > { < i n p u t l > }

T h e re co g n ise r p ro ce d u re (in L in g o) for < i n p u t > is an in s ta n c e m e th o d

o f th e in te r p r e te r o b je c t . In th e fo llo w in g d ia g r a m , a h e a v ie r ty p e h a s b e e n

u se d to e m p h a s iz e th e s im ila r ity o f th e r e co g n ise r p r o c e d u r e ’s s tr u c tu r e a n d

th e e x te n d e d B N F p r o d u c tio n on w h ic h i t w a s sty led :

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 60

seif input f]

i
self in p u t1 ;
seif rnustBe; /
while ((Vector (” [* '‘Relation* "Integer" "String" "Var"

* Iden i: 1 fi. e.r" * (" ” f a n e " ,! r u n "
"Fun c t i o n " "card" *4" "load" "savre !‘]}

includes' (scanner token)) do
<

self in p u t1 ;
self mustBe: ;

T h e c o n d it io n c o n tr o llin g th e w h i l e in th e a b o v e re p r e se n ts th e lo o k a h e a d

a n d p r e d ic t iv e n a tu r e o f th e p a rsin g s tr a te g y . T h e c o n d it io n a m o u n ts to

‘d o es th e cu rren t to k e n b e lo n g to th e director se t for < i n p u t l > (i .e . th e s e t

o f to k en s th a t ca n a p p ea r o n th e e x tr e m e le f t o f a n in s ta n c e o f < i n p u t l >) \

T h e a b o v e c o d e is , h o w ev e r , o n ly re p r o d u ce d h ere so th a t , in w h a t fo llo w s ,

th e co d e n e c e ssa r y for parsing ca n b e d is t in g u ish e d fro m th e c o d e in se r te d to

e ffec t sem antic a c t io n s . T h e p ro ced u re a b o v e m a y a p p ea r a l i t t l e d en se . T h is

is b e a c u se , in p r a c t ic e , th e c o d e for a ll re co g n ise r p ro ce d u re s w a s g e n e r a te d

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 61

a u to m a t ic a lly b y a p arser generator (d is c u s s e d in a p p e n d ix C) w h ic h w a s

c o n s tr u c te d sp e c if ic a lly for th is w ork . T h e p a rser g en er a to r a lso a s s is te d in

th e in se r t io n o f c o d e fo r s e m a n tic a c t io n s .

T h e se m a n tic a c t io n s , A \ . . . A 3 , a s s o c ia te d w ith th is p r o d u c tio n are in ­

d ic a te d b y a n n o ta t in g th e B N F th u s:

<input> A i <input 1 > A 2 { <input 1 > A 3 " }

T h e re co g n ise r m e th o d h a s c o d e for th e s e a c t io n s in te r sp e r se d a m o n g s t

th e c o d e g iv e n a b o v e for p a rsin g a t th e p o in ts in d ic a te d b y th e a n n o ta te d

B N F . T h e fo llo w in g d ia g r a m is in te n d e d to i l lu s tr a te th is b y r e p r o d u c in g t h e

o r ig in a l p a rsin g c o d e in a lig h ter p rin t:

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 62

In th is ca se th e a c t io n s (a s s o c ia te d w ith th is production) are

• A \ - o p en th e in it ia l is a t io n file ‘in i t .d e a l’, e x e c u te i t , th e n c lo se it a n d

th e n in t ia lis e th e e x c e p t io n h a n d lin g m e ch a n ism .

O n c e th e file (in it .d e a l) is o p e n e d , th e sca n n er is in fo r m e d to ta k e i t s

in p u t fro m it an d th e sa m e p a rs in g lo o p as th e a b o v e is e x e c u te d u n t il

th e en d o f file is rea ch ed . T h e f ile is th e n c lo sed , t h e sca n n er in fo r m e d

to ta k e its in p u t fro m sta n d a rd in p u t a n d th e e x c e p t io n h a n d lin g m e c h ­

a n ism d ir e c te d to re tu rn co n tr o l to th is p o in t in th e p r o c e ss (so th a t

C H A P T E R 5. IM P L E M E N T IN G TH E L A N G U A G E 63

s y n ta x a n d r u n - t im e errors d u r in g th e se ss io n w il l r e su lt in c o n tr o l

c o m in g b a ck to th e re c o g n it io n o f th e a lm o s t to p le v e l s y n ta c t ic e n t i ty

< i n p u t l >) . A fte r th is in it ia l is a t io n p h a se , a p r o m p t ‘Deal>’ is p r in te d

on th e u ser w in d o w to in d ic a te th a t th e in te r p r e te r is in in te r a c t iv e

m o d e .

• A 2 - A t th is p o in t , th e a c t io n s a s s o c ia te d w ith < i n p u t l > h a v e b e e n

e x e c u te d a n d so th e p ro m p t, cDeal>’ is p r in te d o n th e u s e r ’s w in d o w .

• A 3 - A g a in th e a c t io n s a s so c ia te d w ith < i n p u t 1> h a v e b e e n e x e c u te d

an d so th e p ro m p t is p r in ted .

T h e d is t in g u ish e d sy m b o l < in p u t > is n o t p a r tic u la r ly in te r e s t in g s in c e it

is m e r e ly d esc r ib in g th a t a sess io n w ith th e in te r p r e te r c o n s is ts o f an in d e f in ite

se q u e n c e o f < i n p u t l > s sep a ra ted b y s e m i-c o lo n s . T h e a b o v e e x a m p le d o es

serv e th e p u r p o se o f e lu c id a tin g th e m a n n e r in w h ic h th e im p le m e n ta t io n is

to b e d escr ib ed .

T u rn in g to th e s y n ta c t ic e n t ity < i n p u t l > , i t s B N F is

< i n p u t l > : : = < d e fn > | < f ile c o m m a n d > | < e x p r >

T h is is e x p r e s s in g th e d iffer en tia tio n o f to p - le v e l D E A L s ta te m e n ts in to

th e c a teg o r ie s

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 64

• < d e fn > - a fu n c tio n d e fin it io n .

• < f ile c o m m a n d > - T h e tw o c o m m a n d s ‘lo a d ’ a n d ‘s a v e ’ a llo w re tr ie v a l

a n d sto r a g e o f re la t io n s in e x te r n a l file s in w h ic h th e ir sc h e m e s are a lso

d e scr ib ed . T h e ‘r u n ’ c o m m a n d e x e c u te s D E A L s ta te m e n ts c o n ta in e d

in a file . T h is fa c il ity is in te n d e d to b e u se d p r im a r ily for s to r a g e o f

fu n c t io n d e fin it io n s .

• < e x p r > - th is la s t ca te g o r y r e p r esen ts e x p r e ss io n s w h ic h th e u ser w ish e s

to b e e v a lu a te d a n d th e re su lt sh o w n .

It is o n ly th is la s t a lte r n a t iv e th a t h a s a s e m a n tic a c t io n a s s o c ia te d w ith

i t (a t this level - th e o th er s h a v e se m a n tic a c t io n s w ith in th e r e c o g n it io n

p ro ce d u re s th a t are ca lled as a c o n se q u e n c e o f th e ir o w n r e c o g n it io n) . T h e

a c t io n s req u ired are to e v a lu a te th e d a ta s tr u c tu r e s y n th e s is e d b y th e reco g -

n ise r p ro ce d u re for < e x p r > an d th e n p r in t th e r e su lt . M o re c o n c r e te ly , a c t io n s

are a s so c ia te d as so:

< i n p u t l > < d e fn > | < f ile c o m m a n d > | A i < e x p r > A 2

T h e a c t io n s are as fo llo w s

• A \ - ‘r e m e m b e r ’ th e v a lu e r e tu r n e d b y th e ca ll t o th e r e c o g n it io n p ro ­

ced u re < e x p r > (th is w ill b e a d a ta s tr u c tu r e w h o se tr a v e r sa l le a d s to

th e e v a lu a tio n o f th e r e co g n ise d e x p r e s s io n) . T h is ‘r e m e m b e r in g ’ is

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 65

e ffe c te d b y a ss ig n in g th e re tu rn v a lu e o f th e p r o c e d u r e for < e x p r > to

a lo c a l (to th e m e th o d for < i n p u t l >) v a r ia b le . T h is lo c a l v a r ia b le is

c a lle d r e s u l t .

• A 2 - e v a lu a te th e e x p r e ss io n a n d p r in t th e re su lt . T h e d a ta s tr u c tu r e s

r e p r esen tin g ex p r e ss io n s are so arra n g ed th a t th e ir tr a v e r sa l is e ffe c te d

v ia a m e th o d w ith m e ssa g e se le c to r e v a lu a t e W it h : a n d : w h ic h ta k e s

tw o a rg u m e n ts . T h e first a rg u m e n t is th e g lo b a l e n v ir o n m e n t , a d ic ­

t io n a r y c o n ta in in g th e cu rren t b in d in g s o f a ll g lo b a l D E A L v a r ia b les;

th e se c o n d is th e cu rren t lo c a l e n v ir o n m e n t, a d ic t io n a r y for a c c e ss in g

th e cu rren t lo c a l D E A L d a ta a rea (fu n c t io n p a r a m e te r s , lo c a ls a n d so

o n). T h e in te r p r e te r m a in ta in s tw o L in g o v a r ia b les fo r th ese : g l o b a l s

an d l o c a l s . T h e a c t io n A 2 is th u s e f fe c te d b y t h e in c lu s io n o f th e

fo llo w in g L in g o co d e .

self printLn: (result evaluateWith: globals and: locals);

T h e se tw o a c t io n s are in se r te d in to th e re co g n ise r p r o c e d u r e for < i n p u t l >

as in d ic a te d in th e fo llo w in g d ia g ra m w h er e a lig h te r p r in t is b e in g u se d a g a in

to in d ic a te p a rsin g cod e:

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 66

H a v in g n o w e s ta b lish e d th e p r in c ip le o f o p e r a t io n o f th e in te r p r e te r th e

n e x t tw o s e c t io n s w ill d ea l w ith th e d e ta il o f h a n d lin g th e m a jo r la n g u a g e

a sp e c ts o f fu n c t io n d e fin itio n s and e x p r e ss io n s .

5.3 Function definitions
F u n c tio n d e fin it io n s h a v e th e ir to p le v e l s y n ta x d e sc r ib e d in th e p r o d u c t io n

for < d e fn > as fo llow s:

< d e fn > : : = " fu n c " < funcN am e> " (" < p a r a m L is t> ")" < s t m t l i s t >

A s a c o n c r e te e x a m p le , to fa c il ita te e x p la n a t io n , co n s id e r th e fo llo w in g

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 67

D E A L fu n c t io n d e fin it io n for th e fa c to r ia l fu n c t io n

func factorial (n : int)
{

if n=0 then
factorial := 1;

else
factorial := n * factorial(n-l);

>

E v e n th o u g h D E A L is m o r e c o n ce rn ed w ith c o m p u ta t io n in v o lv in g r e la ­

t io n s , th e a b o v e e x a m p le is u se fu l to e lu c id a te th e in te r p r e ta t io n o f fu n ction

definitions - th e n e x t s e c t io n th a t d ea ls w ith th e in te r p r e ta t io n o f e x p r e ss io n s

w ill p r o v id e th e d e ta ile d o p e r a t io n o f th e in te r p r e te r in h a n d lin g r e la t io n a l

c o m p u ta t io n as w e ll as fu n c t io n in v o c a tio n s .

C o n sid e r in g first th e c o n c r e te e x a m p le o f fa c to r ia l, th e o v er a ll a c t io n re ­

q u ired o f th e in te r p r e te r w h e n th e d e fin it io n h a s b e e n c o m p le te ly r e c o g n ise d

is to en te r th e d a ta s tr u c tu r e r e p r esen tin g th e fu n c t io n ’s b o d y in to th e g lo b a l

d ic t io n a r y (a n d u se th e s tr in g “fa c to r ia l” as th e k e y). In a d d it io n , th e p a ­

ra m ete r l is t - in th is c a se c o n ta in in g o n ly th e s tr in g “n ” , is s to r e d in a sy m b o l

ta b le w ith in th e sca n n er (in a d ic t io n a r y a s s o c ia te d w ith th e s tr in g “fa c to r ia l”

as th e k e y) so th a t la te r w h e n th e fu n c t io n is in v o k ed a lo c a l e n v ir o n m e n t

ca n b e b u ilt - th is w ill c o n s is t o f a d ic t io n a r y w h o se k e y s are th e fu n c t io n ’s

n a m e (fa c to r ia l) an d a ll th e fo rm a l p a r a m e te r s ’ n a m es .

T h e fu n c tio n b o d y is r e p r esen te d b y an in s ta n c e o f In stru c tion L ist, w h ic h

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 68

is a collection class. The members of the collection are the ‘compiled’ forms

of the individual statements from the function body and fall into one of the

following classes (whose behaviour will be described later):

• WhileStatement

• IfStatement

• Assignment

The only statement in the factorial function’s body is an if statement.

The following diagram depicts the situation:

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 69

Turning now to the general syntax for a function definition (rather than

the concrete example of the factorial function), actions are associated as

follows:

<defn> : :="func"Ai <funcName> " ("A2<paraniList>") "j43<stnitlist>A i

• A i - the formal parameters to a function can be of type integer, rela-

C H A P T E R 5. IM P L E M E N T IN G TH E L A N G U A G E TO

tion, character string or attribute (used to pass the name of a table’s

column). These are denoted by ‘int’, ‘rel’, ‘char’ and ‘at’. The scan­

ner maintains two symbol tables so that it can check that an identifier

is in scope. The first of these holds information about parameters of

the first three types (called LVars for ‘Local Variables’) and the second

holds information about attribute parameters (called LAVars for ‘Local

Attribute Variables’).

The first action to be performed is to inform the scanner to create

new symbol tables. The name of the function is also ‘remembered’ at

this point (by assigning to a local Lingo variable) so that at the end

of this recognition procedure the binding of the function name with

the data structure describing how to perform it can be included in the

interpreter’s global symbol table. In the following, name is a Lingo local

variable used for ‘remembering’:

/* Have entered a new local scope :
start new symbol tables in scanner */

scanner freshLAVars; scanner freshLVars;
/* recognise and ‘remember' the function's name */
name := self funcName;

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 71

• A 2 - when function calls are made, local environments are created

associating formal parameters with actual parameters. The purpose of

this action is to ‘remember’ the list of formal parameter names (which

will be returned by calling the recogniser procedure for <paramList>)

so that it can later (in action A 3) be associated with the function. In

the following, params is a Lingo local variable used for ‘remembering’:

params := self paramList;

• A 3 - The scanner maintains a dictionary that associates function names

with a list of ther formal parameter names which is later used at func­

tion application to create the local environment. Within this action,

the previously remembered parameter name list is entered into the ap­

propriate dictionary within the scanner under the function’s name.

In addition, the data structure representing the statement body of the

function definition (returned by the recogniser procedure for <stmt>)

is remembered in the local Lingo variable body.

scanner bindFunction: name to: params;

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 72

body := self stmt;

• A 4 - the global environment (a dictionary) can now be updated with

an entry associating the functions name with the data structure repre­

senting its body (remembered during A 3 in the local body).

globals at: name put: body;

The analysis and synthesis associated with function definitions is now

followed by the analysis and synthesis of expressions.

5.4 Expressions
The form of expressions is defined by the following Extended BNF produc­

tions (where the metasymbols [and] are used to denote the optional single

occurence of the enclosed and { and } are used to denote the optional multiple

occurrence of the enclosed):

C H A P T E R 5. IM P L E M E N T IN G TH E L A N G U A G E 73

<expr> ::= <term> { <binop> <term> }

<term> ::= <factor> [<blockl>] [<block2>] { <arithop2> <factor> [<blockl>]
[<block2>]}

<factor> ::= <Relation> | <Integer> I <String> | <Function> I <Var>
I <LVar> | <LAVar> I <Identifier> I "(" <expr> ")"
I <linkblock>

The syntactic entity <binop> represents the binary operators on rela­

tions and the lowest precedence binary operators (addition and subtraction)

of integer arithmetic. The entity <arithop2> represents the binary arith­

metic operators multiplication and division. The further productions defin­

ing <binop> and <arithop2> are not reproduced here for the sake of clarity.

The parsing procedures for these recognise the terminal character sequences

that represent them and return approprate Lingo classes which the higher

level recogniser procedures for <term> and <expr> can instantiate with ap­

propriate instance data. The following table describes the operators:

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 74

Terminal

characters

Description Class Syntactic

class

*? intersection Intersection <binop>

++ union Union <binop>

— difference Difference <binop>

** cartesian product CartProd <binop>

+ integer addition Plus <binop>

- integer subtraction Minus <binop>

* integer multiplication Times <arithop2>

/ integer division Divide <arithop2>

The entities in the production for <factor> mainly represent items that

have a value (either as literal constants or as bindings to a variable). For

example, the entity <Integer> represents integers and its recogniser proce­

dure returns objects of type Constant which contain the actual value of the

integer constant. The recognition of variables produces objects which when

‘evaluated’ in the execution phase return the values they are currently bound

to by looking up the appropriate global or local environment.

The entities <blockl> and <block2> relate to projection and selection in

relational expressions which will be dealt with later.

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 75

The next four subsections give a detailed treatment of <expression>.

It is convenient to cover (in the first subsection) expressions involving the

binary operators. The second subsection deals with relational expressions

involving <blockl> and <block2>.

In the third subsection, the treatment of DEAL’s link elements is ex­

plained by considering the entity <linkblock>. and the fourth subsection

deals with function application.

5.4.1 Expressions involving binary operators
For now, to elucidate the general strategy, consider the integer expression:

1 + x * 2

where x is a global variable. The parse tree for this expression is given in

the following figure where the leaves have been annotated with the terminal

sequences from the source code:

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 76

The data structure created by the synthesis phase can be depicted as

follows:

C H A P T E R 5. I M P L E M E N T IN G T H E L A N G U A G E 77

5.4.2 Selection and Projection
Before returning to the complete treatment of <expr>, two of its optional
component clauses <blockl> and <block2 > will be described.

Both these entities essentially qualify a basic relational expression. The
former, <blockl>, is defined by the productions:
<blockl> ::= "[" <projectlist> "]"
<projectlist> ::= Identifier [":=" <expr>]

{ ' V Identifier [" :=" <expr>] }

and the latter, <block2 >, by:
<block2> ::= "where" <condition>
<condition> ::= <predicate> { "and" <predicate> }
<predicate> ::= <expr> <relop> <expr>
<relop> ::= ">" | "<" | ">=" | "<=" | "=" | "!="

The purpose of <blockl> is to allow certain fields to be projected from
the base relational expression which the clause qualifies. In the following, for
example, the base relational expression consists of the variable parts, and
the qualifier specifies that the pnum and pweight fields should be projected:

parts [pnum, pweight]

Furthermore, the <blockl> qualifier can be used to rename fields or in­
deed to calculate new fields. In the following, the relation parts has a scheme
which includes pnum for part number, qoh for quantity on hand and pweight

C H A P T E R 5. IM P L E M E N T I N G T H E L A N G U A G E 78

for the weight of a part. The expression evaluates to a relation whose scheme
consists of partno (the part’s number) and tweight which will be the total
weight of all the parts in stock with that part number.

parts [partno := pnum, tweight := qoh * pweight]

To deal with this, the recogniser procedure for <projectList> returns a
list each of whose entries is either an object representing the field name to be
projected or an Assignment object and this list is returned unmodified by the
recogniser procedure for <blockl>. The clause [pnum, tweight := qoh * pweight]
for example would result in the return of the data structure depicted in the
following diagram:

The data structure representing the clause [pnum, tweight := qoh * pweight]

C H A P T E R 5. IM P L E M E N T I N G T H E L A N G U A G E 79

The <block2 > clause allows the application of a selection on the basic
relational expression (the order of application of projection and selection
should both a <blockl> and <block2 > be present is dealt with later). The
recogniser procedure for <block2 > returns a data structure containing the
essential information needed to carry out the selection. For example, the
clause where pweight > 12 would result in the structure illustrated in the
following diagram:

A more complete description of <expr> can now be given. The extended
BNF definition is annotated as follows:

<expr> : := A \ <term> {A.2<binop> A 3 <term>}A4

In describing the actions use of two local (to the recogniser procedure for

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 80

<expr>) variables, theOp and resu lt, is made:
• A i - remember the result returned from the call to the recogniser pro­

cedure for <term>.

resu lt := s e l f term;

• A 2 - remember the class of the operator (which is returned from the
recogniser procedure for <binop>.

theOp := s e l f binOp;

• A3 - by instantiating the operator recognised in A2, combine the subex­
pression built so far (in resu lt) with the subexpression returned by
the next call to the procedure for <term>. Recall that the local variable
theOp contains the class of the recognised operator. All such operators
have a class method (with selector of: and:) for instantiation. The
o f : and and: parameters supply the left and right subexpressions to
the instantiated operator:

resu lt := theOp of: re su lt and: (s e lf term);

• A 4 - the complete expression has been recognised and so the variable
resu lt contains the data structure representing the expression; this is
returned (to the procedure that called the procedure for <expr>).

C H A P T E R 5. IM P L E M E N T I N G T H E L A N G U A G E 81

result;

The treatment for <term> follows a similar line, but is slightly compli­
cated by the need to ensure that should both a <blockl> (for projection)
a n d a <block2 > be present, the resultant data structure when ‘executed’ will
result in the selection being performed before the projection (since the selec­
tion may involve fields which do not appear in the projection).

<term> : := A i <factor> L4 2 <blockl>] [A 3 <block2 >] A 4

{ A 5 <arithop2 >A 6 <factor> [A 7 <blockl>] [A 8 <block2 >] Ag}Ai 0

The actions:

• A i - remember the result of the call to the procedure for <f actor>.
result := self factor;

• A 2 - if this action is taken there is a <blockl> clause. Set a flag to
mark that a projection must be constructed and remember the result
returned by the call to the procedure for <blockl>.

projectFlag := Boolean true;
projectParams := self blockl;

• A 3 - similarly, if this action is taken there is a <block2 > clause. Set
a flag to mark that a selection must be constructed and remember the
result returned by the call to the procedure for <block2 >.

C H A P T E R 5. I M P L E M E N T IN G T H E L A N G U A G E 82

selectFlag := Boolean true;
selectParams := self block2;

• A 4 - if the selection flag is set, construct the selection on the result
constructed so far and clear the flag. Then perform a similar action if
the projection flag is set:

if selectFlag do
{

result := Select of: result where: selectParams;
selectFlag := Boolean false;

>
if projectFlag do
{

result := Project of: result over: selectParams;
projectFlag := Boolean false;

>

• A 5 - remember the class of the operator returned by the call to the
procedure for <arithop2 >.

theOp := self arithop2;

• Ag - remember the result of the call to the procedure for <f actor>
tempResult := s e l f factor;

• A r - this is exactly the same as action A 2 .

• Ag - this is exactly the same as action A 3 .

C H A P T E R 5. I M P L E M E N T IN G T H E L A N G U A G E 83

• A 9 - this is similar to action A 4 in that any necessary selection and
projection is constructed. In addition, the operator remembered in
action A q is used to combine the expression constructed so far with the
subexpression stored in tempResult.

if selectFlag do
{

tempResult := Select of: tempResult where: selectParams;
selectFlag := Boolean false;

}
if projectFlag do
{

tempResult := Project of: tempResult over: selectParams;
projectFlag := Boolean false;

>

result := theOp of: result and: tempResult;

• A \ q - the complete term has been recognised and so the variable r e su lt
contains the data structure representing the term; this is returned (to
the procedure that called the procedure for <term>).

5.4.3 Link elements
An alternative in the defining production for <f actor> is <linkblock>. This
is where the link e lem en ts of DEAL are used. Recall the example DEAL
statement:

C H A P T E R 5. I M P L E M E N T IN G T H E L A N G U A G E 84

[name := "Paul", object := X] where l ik e s -Cname=X, object= ,,wine'

In the above, X is known as a lin k element. Link elements are a syntactic
feature proposed by Deen to allow queries to be expressed in a Prolog like
form. The above query represents a relation with scheme (name,object).
The relation will have, for every tuple existing in the relation l ik e s with
object field value "wine", a tuple with object value derived from the name
field of lik e s and its name field with value "Paul".

To make this a little more concrete, suppose the relation l ik e s is as fol­
lows:

name object
Paul beer
Bill beer
Bill wine
Louis wine
Bill Paul

The result of the query will be the following relation:

C H A P T E R 5. IM P L E M E N T I N G T H E L A N G U A G E 85

name object
Paul Bill
Paul Louis

The extended BNF for <linkblock> (and related components) is:

<linkblock> ::= <blockl> "where11 <expr> <predicatelist>

<predicatelist> ::= <predicate> { <predicate> }

With reference to the example query, the call to the procedure for <blockl>
will return a list, called pro j L ist 1, of two objects (both of which are actually
instances of Assignment). The diagram shows this:

an Assignment
n am e := "Paul"

an Assignment
object := X

(n am e := "Paul", object := X)

C H A P T E R 5. I M P L E M E N T IN G T H E L A N G U A G E 86

The call to the procedure for <p red icatelist> will return a list contain­
ing the two predicates ‘name = X’ and ‘object = "wine"’.

The first of these lists is scanned and must consist of Assignment objects.
Whenever an Assignment has as its right hand side a single variable that is
not in scope, it is assumed to be a link variable and added to a list (called
links). For the example, links, will be a list containing a single element,
the string "X".

The second list (of predicates) is scanned; whenever a predicate is found
involving a test for equality whose right hand side consists solely of a link
element and whose left hand side solely of an attribute name, an Assignment
object is created assigning the attribute name to the link variable. If an
Assignment was created this is appended to a list called projL ist2 and
the association of the link element to the attribute name is recorded in a
dictionary called linkDictionary. Otherwise the predicate is appended to
a list of predicates called se lL ist.

For the example, at this stage the relevant data structures (projL ist2 ,
linkDictionary and se lL ist) can be depicted as:

C H A P T E R 5. IM P L E M E N T I N G T H E L A N G U A G E 87

projList2 an Assignment
X := name

linkDictionary

selList object = "wine"

{ name = X, object = "wine"}

The logical conjunction of the individual predicates in the list s e lL is t is
constructed and called pred.

The complete computation for the query can now be constructed. The
run time order of the operations is to first of all evaluate the base expression
in the <linkblock>. Then a selection (according to the predicate pred)
is applied. To this is applied a projection (according to the information
contained within pro jL is t2). Recall that this list will contain A s s ig n m e n ts

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 88

(in this particular case £ X := name’). The projection operation in this case
will reduce to a renaming of the field (from name to X).

Finally a second projection is applied, using the information contained in
p rojL istl. Again, in this example these are both assignments. The first,
‘ name := ’'Paul*”, is used to compute a new field, named name, for each
tuple containing the value "Paul". The second,‘object := X’, reduces to
renaming the X field (of the result so far) to object.

The following diagram traces the computation (within the context of the
example).

C H A P T E R 5. IM P L E M E N T I N G T H E L A N G U A G E 89

name object
Paul beer
Bill beer
Bill wine
Louis wine
Bill Paul

Select (object = "wine")

name object
Bill wine
Louis wine

Project (X := name)
X

Bill
Louis Project (name := "Paul", object := X)

name object
Paul Bill
Paul Louis

The notion of link elements and the above exposition demonstrate a sim­
ilarity with the principle of u n ifica tio n which underlies Prolog systems. This
similarity is only of in te n t. Where unification is a symbolic computation, the

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 90

above is a computation on re la tio n s .
It must also be borne in mind that the computation (associated with link

elements) described above is carried out la te r in the execution phase. The
result of the s y n th e tic phase is the data structure represented in the following
diagram:

5.4.4 Function Application
Turning now to function applications, these have the form

<function> ::= Function "(" <argList>

C H A P T E R 5. I M P L E M E N T IN G T H E L A N G U A G E 91

The entity Function above is unquoted: it can be considered to be a
terminal c la ss rather than a terminal token; it is recognised by the scanner
and consists of an identifier that is the name of a previously declared (within
the current interpreter session) function.

The recogniser procedure for < arglist> returns a list of objects represent­
ing expressions (one for each argument). An instance of the class FunApp
is created. These objects hold three pieces of instance data:

• the n a m e of the function.

• the list of formal parameter names of the function. These were stored
(within a dictionary residing in the scanner) when the function decla­
ration was analysed.

• the list of argument expressions.

This completes the description of the synthetic phase of the interpreter.
The next section describes the execution phase.

5.5 The execution phase
The result of the analytic and synthetic phases is a data structure, all of
whose nodes are objects which possess a method with selector evaluateWith: and

C H A P T E R 5. I M P L E M E N T IN G T H E L A N G U A G E 92

The two parameters to this method supply a global and a local environment
respectively.

This set of objects together constitute the ‘virtual machine’ operators that
supports the interpreter’s execution. It is convenient to group the discussion
of these operators. The following subsections cover in turn the binary opera­
tors, the unary relational operators such as Select and Project, the operators
representing variables and constants, the function application operator and
finally the operators representing DEAL statements (Assignment, IfState-
ment, WhileStatement).

5.5.1 Binary Operators
All the binary operators of DEAL are represented by objects whose classes
are all subclasses of the class BinOp. The inherited behaviour of these objects
allows them to be instantiated (via a class method with selector of rand:).
The two parameters to this method are used to point to the left and right
subexpressions which are the operands of the operator.

The responsive behaviour of these objects to the evaluateWithrand:
message is to first pass on the message to their left subexpression and then
to their right subexpression. At that point the two results are used as the
operands to the operation that the object represents and the overall result

C H A P T E R 5. IM P L E M E N T I N G T H E L A N G U A G E 93

constitutes the object’s response.
The following table gives the Lingo class names used in the implementa­

tion of the interpreter as well as a description of their response when evalu­
ated. All these classes have BinOp as their superclass:

Class operation
CartProd cartesian product of relations
Difference difference of relations
Divide integer division
Equal equality test on either strings or integers
GreaterThan the > operation on either strings or integers
GreaterThanOrEqual the > = operation on either strings or integers
Intersection intersection of relations
LessThan the < operation on either strings or integers
LessThanOrEqual the = < operation on either strings or integers
Minus integer subtraction
Multiply integer multiplication
Not Equal inequality test on either strings or integers
Plus integer addition

C H A P T E R 5. I M P L E M E N T IN G T H E L A N G U A G E 94

5.5.2 The Unary operators
These operators all operate on a single relation. Select and Project require in
addition another operand; for Select this represents the boolean expression
that is the criterion for selecting tuples from the relation; for Project this
other operand is the list of fields to project from the relation. Recall that
this list may also contain assignments indicating that a new field (computed
from fields of the original relation) is to be derived.

The Hash operator is intended to be applied to a relation consisting of
a single tuple with only one field and then to return the value of that sole
attribute.

Class operation
Select selection
Project projection
Card cardinality
Hash coercion

5.5.3 Variables and Constants
Constants are represented by objects of the class Constant. These have an
instance variable holding the actual value being represented.

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 95

The various kinds of DEAL variable are:

• Global variables represented by instances of Global.

• Attribute references represented by instances of AttrVar.

• Local variables represented by instances of LVar.

• Local attribute variables represented by instances of LAVar.

Each of these contains an instance variable holding their string repre­
sentation. Their responsive behaviour to being evaluated is to access the
appropriate environment (global or local) using the string as the key.

5.5.4 Function Application
Function application nodes are represented by FunApp objects. These have
three instance variables. One holds the function name, the second the list
of formal parameters and the third the list of arguments (that is, the data
structures for the expressions which evaluate to the arguments).

When evaluated,FunApp objects respond by building a new local environ­
ment, a dictionary associating with each formal parameter name the result
of the evaluation of the corresponding argument. This new environment also
contains an entry for the function name. The statement body of the function

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 96

(retrieved from an interpreter symbol table) is then evaluated (within the
new local environment).

After execution of the body, the function result is then retrieved from
the environment (where it has been stored under the function name) and is
returned as the overall result.

The above operation is deviated from slightly in the case where an argu­
ment evaluates to a relation whereas the parameter list indicates an expec­
tation of some kind of atomic value (such as a string or an integer). In this
case, the function application is iterated through each tuple of the argument,
treating the tuple as an atomic value. The union of all the individual results
is returned as the overall result.

5.5.5 Statem ents
Statements are represented by instances of Assignment, IfStatement and
WhileStatement. Groups of statements are represeneted by instances of In-
structionList.

The evaluation of an InstructionList is straightforward: each individual
statement is evaluated within the same global and local environment passed
to the InstructionList.

Assignments are represented by Assignment objects which contain two in­

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 97

stance variables. One bolds the string representation of the variable involved
in the assignment; the other holds the expression to be evaluated.

The control statements are represented by instances of IfStatement and
WhileStatement. IfStatement objects contain a boolean expression and two
instances of InstructionList: one holding the statements for the true branch,
the other the statements for the false branch.

Similarly, WhileStatement objects hold a boolean expression and a single
InstructionList representing the statements within their loop bodies.

5.6 A complete example
As a complete example, consider the function ancestor (and its application)
described in the previous chapter:
func ancestor(x : char)
{

temp := (parent where childname = x) [parname];
i f (card(temp) = 0)

ancestor := temp
e lse

ancestor := temp ++ ancestor(tem p);

ancestor("Rachel_Natanson");

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 98

The above ‘session’ with the DEAL interpreter consists of two parts: the
first a function definition, the second the application of the function.

The interpreter will synthesise a data structure for the function defintion
consisting of two statement objects as depicted in the following diagrams:

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 99

This data structure (representing the statement body of the function)
is stored in the global environment dictionary bound to the function name,
ancestor.

In addition, tables within the interpreter will be updated to record the
formal parameter information (names and types).

The application of the ancestor function proceeds as follows:

• The interpreter’s tables are used to retrieve the parameter information
for the function ancestor.

• each argument is evaluated. In this case the only argument is the string
literal "Rachel_Natanson''.

• The type of each argument is checked against the declared type of the
functions formal parameters. In this case, the argument is of type char
a was the formal parameter so execution procedes unimpaired.

• A new local environment is created. This is a dictionary object con­
taining associations of each formal parameter name and the value of
the corresponding argument. In addition, there is a binding under the
name of the function, ancestor in this case, which is used for temporary
storage of the function result.

C H A P T E R 5. IM P L E M E N T IN G T H E L A N G U A G E 100

• the statement body is retrieved (from the global environment) and each
statement is passed the global and local environments and executed in
turn. In general this may involve recursion.

• When the above execution terminates, the value contained in the local
environment under the binding of the function name, ancestor, is re­
turned as the value of the expression ancestor ("Rachel_Natanson").

The recursive step above procedes similarly except that the check of the
argument type reveals a clash since the argument evaluates to a value of
type "rel" instead of the expected "char". In such a case, the argument
is treated as a list of values (of the expected type). The function is then
applied to each value in the list and all these individual results are unioned
to form the single result for the original function application.

5.7 Summary
This chapter has detailed the operation of the DEAL interpreter. Underlying
the execution phase is a virtual machine consisting of objects which effect
the computation.

The next chapter covers the development of the relational operators that
underpin the objects within the virtual machine.

C h a p te r 6

S p e c if ic a t io n o f th e R e la t io n a l
A lg e b r a

6.1 Introduction
Specification is the cornerstone of the process of software construction - with­
out a specification phase, the a ccep ta b ilty of a software product can only be
based on consumers’ reaction to the software’s operation. It is hard to con­
ceive how an a n tic ip a tio n of this reaction can usefully inform the construction
process. Even though specification is primarily concerned with communica­
tion between clients and developers, the f o r m that a specification takes can
significantly affect the software development process.

101

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 102

This chapter presents a justification for the use of f o r m a l specification
techniques and gives an overview of the two major classes of techniques:
model-based and algebraic. Approaches to the specification of database sys­
tems are examined and the appropriateness of algebraic specification to the
particular work being reported here is demonstrated. Conclusions are drawn
as to the efficacy of the methodology for the development of certain kinds of
software for the REKURSIV/Lingo system.

6.2 Formal techniques
The inadequacy of natural language to express precisely the intended be­
haviour of computer systems has been cited throughout the half-century
history of digital computation. On the other hand, it appears unrealistic to
base software construction on a theory so mathematical that the majority of
programmers would not be able to avail themselves of the problem solving
leverage which the theory enables.

Schach ([94]) finds an interesting case study in informal specifications
whose history spans some sixteen years. A demonstration of a technique for
constructing and proving a product correct (an ALGOL procedure for a text
processing problem specified in English) was given by Naur in 1969 ([83]).

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 103

Four faults were found in the 26 line procedure, 1 by Leavenworth ([71])
and 3 by London ([73]) who corrected these and gave a formal correctness
proof. In 1975 Goodenough and Gerhart ([41]) found three further faults in
London’s work and produced a new set of specifications (two of the seven
discovered faults were considered to be specification faults.).

Meyer in 1985 ([75]), writing to promote the use of formal specification
techniques (to ease the detection of contradictions, ambiguities and omissions
contained in English specifications), detected 12 faults in the work of Good-
enough and Gerhart. He presented mathematical specifications to correct
all the faults and then produced English specifications by paraphrasing the
mathematical specifications. Interestingly, an ambiguity in Goodenough and
Gerhart’s work which is pointed out by Meyer is again present in Meyer’s
own English paraphrases, according to Schach ([94]).

A major argument against the use of formal techniques, which has an
intuitive appeal is that the software production process lengthens in time
and cost since correctness proofs and the necessary mathematical skills are
not within the usual armoury of system development teams and the software
still has to be written !

It is extremely difficult to gather evidence to test the hypothesis that
formal specification techniques shortens overall product development time,

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 104

since clients are unlikely to be able to afford product development under two
different regimes in order to provide the control sample for a statistical sig­
nificance test. Some non-quantitive data does however appear. Correctness
proving is not necessary for all aspects of software and is not even the main
fruit of formal techniques. If programs can be d e r iv e d from a formal spec­
ification through a systematic method, the likelihood of introducing errors
is diminished. It has also been found that inspecting formal specifications
easily reveals faults ([84], [48]) and that the writing of formal specifications
can be taught to software professionals (with only school mathematics) in a
relatively short time ([48]). The use of formal specification may not adversely
affect overall software development costs: Hall and Pfleeger ([49]) report on
the application of formal methods in a large industrial project (about 50 per­
son years effort). They conclude that the use of formal methods appeared to
yield high quality software at no greater cost than conventional methods.

Given the above, it is clear that natural language is far from ideal for
program specification. Semi-formal techniques such as those (from systems
analysis) advocated by DeMarco ([27]), Yourdon ([115]) and Gane and Sarsen
([34]) have been used in a wide range of application areas. They (and their
hybridisations) help clarify the medium-scale structure of large systems by
allowing their description in terms of annotated diagrams. Each technique

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 105

has at its core a syntax for these diagrams and practitioners have developed
aesthetics and rules of thumb with which to inspect diagrams for signs of am­
biguity, contradiction and omission. Computer Aided Software Engineering
(CASE) tools are now available to assist system analysis according to these
regimes.

More formal still are techniques such as Finite State Machines (FSM)
and Petri nets. Again, these techniques have associated diagrammatic rep­
resentations which allow the development of an aesthetic that detects likely
problem areas in specifications under development. Unlike the techniques
of the previous paragraph, FSMs and Petri nets have a mathematical basis
which allows properties of systems to be deduced without recourse to the
diagrammatic representations.

FSMs are ideally suited to handle the complexity of event driven sys­
tems but give no insight into the management of data flow. Specifying large
systems by using FSMs is cumbersome because of the proliferation of states
since there is no concept of modularisation and encapsulation and so FSMs
are not useful for clarifying the complexity of large systems.

Petri nets bear some similarity to FSMs but also go some way towards
expressing data flow (or at least the inherent synchronisation requirements).
Their main strength has been the ability to cope with (and express) tim-

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 106

ing and synchronisation requirements. For this reason their use has been
strongest in real time systems development.

The mainstream fully formal techniques can be broadly classified as either
m odel—theoretic or algebraic. In the model-theoretic camp, the specifica­
tion language Z ([101]) is arguably the most widely used (the other contender
being the Vienna Development Method, (VDM [66])). Z specifications con­
sist of sc h e m a ta interspersed with explanatory English text. Each schema
consists of two sections - a d ec la ra tio n s section that contains variable dec­
larations (typing information) and a p re d ic a te s section which constrains the
values the variables can take. Schemata can be combined under the sc h e m a

calculus.

Essentially, Z allows the expression (using set theory and first order logic)
of the invariant aspects of the global state space of a system and then the
consequent changes to that state when operated on by procedures and func­
tions.

Algebraic techniques, by contrast, define objects by the relationship of
the operators on the object through equational rules. This approach has its
roots in abstract data type methods. The essence of the methodology is to
give an abstract denotation of the values that variables of a type can take
and to relate the operations on the type through equations.

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 107

As an example, we can specify a type Natural with an operation add as
follows

the type Natural has denotations O ne and S u c c (x) (where x denotes a
Natural). This means that the following are legitimate Natural denotations

O ne

S u c c (O n e)

S u c c (S u c c (O n e))

The operator a d d can be defined by a set of equations

a d d (O n e , y) = S u c c (y)

a d d (S u c c (x) , y) = S u c c (a d d (x) ,y)

This form of specification has come to be called a c o n s tru c to r s y s te m o f

eq u a tio n s , after ([106]), which is a restricted form of definition common to
algebraists (who use equations to define algebraic structures such as groups,
rings, vector spaces and categories themselves).

In such a system, a distinction is made between passive operators (func­
tions) which are used to construct or denote data values of a type (the S u cc

function of the above) and active functions whose definition is the purpose

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A I C

of the equations. The passive functions are normally termed constructor
functions and these may be constant (i.e. they have no domain) as O n e in
the above.

The form of the equations in such a system is restricted in that

• the left hand side always has the form f (e i, e2, . . . , en) where / is an ac­
tive function and the et- are 'pa ttern s involving variables and constructor
functions (perhaps constant).

• variables on the right of an equation are always introduced on the left

These restrictions are exactly those enforced for pattern-matching in
functional programming languages such as Standard ML ([78],[54]), which
allows the possibility of executing specifications of this kind. In addition,
the act of compilation (especially the type checking phase) gives the speci­
fier some confidence that the notation has at least been used sensibly and
correctly.

It is important to realise that the resulting computation (of an executable
specification) is purely symbolic and could be represented as a succession of
substitutions justified by the equations in the specification.

Another view on the above process is that a program has been developed
in a declarative style by ‘programming through types’ and that the meanings

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 109

o f ty p e s h a v e b e e n sp e c if ie d p u r e ly sy m b o lic a lly .

F or c la r ity , th e te r m s type , class a n d abstract data type w il l h ere b e u se d

w ith th e fo llo w in g m e a n in g s -

• types - th e s e e s s e n t ia lly p ro v id e a p a r t it io n o f th e v a lu e sp a c e o f a

p ro g ra m m in g la n g u a g e . C o m p ilers m a y a lso u se t y p e in fo r m a tio n for

r e p r e se n ta tio n p u r p o se s . M o st co m p iler s a lso u se ‘ty p e - c h e c k in g ’ (to

a le sser or g re a ter e x t e n t) to a ss is t p ro g ra m m ers a v o id lo g ic a l errors.

T h e a rg u m e n ts to o p era to rs m u s t o b e y c e r ta in t y p e ru les w h ic h m a y

b e s lig h t ly r e la x e d for b u i l t - in o p era to rs o f a la n g u a g e b u t are s tr ic t ly

en fo rced for a rg u m e n ts to p ro ce d u re s a n d fu n c tio n s .

• classes - th e s e d er iv e fr o m S im u la ([2 1 , 7]). T h e y p r o v id e a behavioural

p a r t it io n o f th e v a lu e sp a ce o f a p ro g ra m m in g la n g u a g e . T h e p e r m is ­

s ib le o p e r a t io n s on a d a ta i t e m w h ic h h a s a c la ss a re d e fin ed w ith in

th e c la ss a lo n g w ith th e d a ta o b je c ts n e c e ssa r y to p e r fo r m th e s e o p ­

e r a tio n s . T h e d a ta i t e m can o n ly b e m a n ip u la te d v ia th e o p e r a t io n s

d efin ed w ith in i t s c la ss a n d a c c e ss to i t s in te r n a l d a ta is d e n ie d (in s ta n c e

In g en era l, la n g u a g es a llo w a c la ss to b e d efin ed as a su b c la ss o f so m e

o th er c la ss , in w h ich ca se th e p e r m is s ib le o p e r a t io n s (a n d in s ta n c e

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 110

d a ta) are inherited. In a d d it io n , so m e c la s s -b a s e d la n g u a g e s , su c h as

S m a llta lk an d L in g o , tr e a t c la sse s th e m se lv e s as e le m e n ts in t h e v a lu e

sp a c e , th u s a llo w in g c o m p u ta t io n t o b e p er fo rm e d o n th e m . T h is is

o fte n p a ra p h ra sed as ‘c la sse s are fir st c la ss c it iz e n s o f t h e la n g u a g e ’.

• abstract data types - th e s e p a ck a g e th e o p era to rs o n th e d e fin e d d a ta

(in c lu d in g d a ta c o n s tr u c tio n o p e r a to r s) a n d h id e th e im p le m e n ta t io n

d e ta ils (su c h as in te r n a l su p p o r t in g d a ta s tr u c tu r e s) . A b s tr a c t d a ta

ty p e s a n d c la sse s ca n b e se e n as operationally e q u iv a le n t a lth o u g h , in

g en er a l, la n g u a g e s th a t su p p o r t a b s ta c t d a ta ty p e s d o n o t su p p o r t su b ­

c la ss in g as a b o v e a n d r e s tr ic t th e le v e l o f c o m p u ta t io n th a t c a n b e p e r ­

fo r m ed o n a b s tr a c t d a ta ty p e s th e m se lv e s (it is for e x a m p le , u n u su a l

to b e a b le to ch eck th e ty p e o f a n o b je c t a t ru n t im e) . A n e x c e p t io n

to th is is th e fu n c t io n a l p r o g ra m m in g la n g u a g e ‘P e b b le ’ p r o p o se d b y

B u r s ta ll a n d L a m p so n ([1 3]) w h ic h in c lu d e s ty p e s th e m s e lv e s as first

c la ss c it iz e n s o n w h ic h c o m p u ta t io n ca n p ro ce ed .

In th e d a ta b a se f ie ld , th e r e is a lso th e n o t io n o f dom ain ([2 4]) , w h ic h

in tu it iv e ly a p p ea rs lik e a ty p e a b o v e s in c e d o m a in s are u se d to d e l in e a te th e

se t o f v a lu e s th a t an a t tr ib u te m a y h a v e . In r e a lity th o u g h , th e s i tu a t io n is

m o re c o m p le x w h en o n e co n sid ers th e n e e d to ch eck th e v a l id ity o f s e t o p e r ­

a tio n s su ch as u n io n - w h er e ty p e c o m p a t ib il ity (r a th e r th a n ty p e c h e c k in g)

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 1 1 1

is r e q u ired o n th e d o m a in s o f th e o p e r a n d s . A la ck o f c o h e r e n t a p p r o a ch to

th is a s p e c t o f sp e c if ic a t io n is r e p o r te d b y S a m so n ([9 3]).

G iv e n th e a b o v e , th e u se o f a lg e b r a ic sp e c if ic a t io n for th e w o rk b e in g

r e p o r te d h ere , is a c o n s id e red c h o ice . A su m m a r y o f th e re a so n s is

• T h e r e is a c o h er en ce in th e u s e o f a n a lg eb ra ic te c h n iq u e to s p e c ify th e

R e la t io n a l algebra.

• A m e th o d o lo g y e x is ts for d er iv in g im p le m e n ta t io n s fr o m a lg e b r a ic s p e c ­

if ic a t io n s . In d e ed (a s r e p o r te d b e lo w) th is m e th o d o lo g y c a n b e s ig n if­

ic a n t ly s tr e a m lin e d w h ere th e ta r g e t la n g u a g e fo r im p le m e n ta t io n is

c la s s -b a s e d .

• T h e n o t io n o f a b s tr a c t d a ta ty p e s (w h ic h fo rm th e b a c k b o n e a b s tr a c t io n

for a lg e b r a ic sp e c if ic a t io n) co r resp o n d s in a n a tu r a l w a y to th e c o n c e p t

o f c la sse s .

• For d a ta b a se w ork sp ec if ica lly , p r o b le m s , su ch as th e sp e c if ic a t io n o f

th e d o m a in c o n c e p t , ca n b e r e so lv e d in a c lear a n d re g u la r m a n n e r

b y th e u se o f a b s tr a c t d a ta ty p e s (r a th e r th a n t h e l im ite d ty p in g o f

m o d e l- th e o r e t ic sp e c if ic a t io n s tr a te g ie s) .

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 112

6.3 Deriving programs from algebraic spec­
ifications

T h is s e c t io n d escr ib es in g en era l te r m s th e d er iv a tio n p r o c e ss . S u c c e e d in g

se c t io n s d e sc r ib e th e a c tu a l a p p lic a t io n o f th e p ro cess w ith in th e w ork o f th e

p r o je c t a n d it s su b se q u e n t d e v e lo p m e n t in to m o re e ffic ien t im p le m e n ta t io n s .

W e s ta r t w ith an a p p ro a ch u s in g th e la n g u a g e SM L w h ic h is a p p lic a b le

to a n y im p e r a t iv e im p le m e n ta t io n la n g u a g e , a n d n o t e s p e c ia l ly L in g o . T h e

a p p ro a ch is b a se d on th e fo llo w in g s ta g e s —

• C o n sid er a ll th e d a ta ty p e s th a t th e p ro g ra m w ill e n c o u n te r a n d s p e c ify

a ll th e s e as a b stra c t d a ta ty p e s u s in g c o n s tr u c to r fu n c t io n s .

• d efin e ea c h o p e r a t io n as an o p e r a to r o n th e s e a b s tr a c t d a ta ty p e s , u s in g

p a tte r n m a tc h in g in th e u su a l w a y to p r o v id e ca se a n a ly s is

• d efin e d e s t r u c t o r fu n c tio n s — th e s e are u se d to e x tr a c t th e a r g u m e n ts

o f a n y n o n c o n s ta n t c o n s tr u c to r fu n c tio n s

• e l im in a te p a tte r n m a tc h in g in a ll fu n c t io n d e fin it io n s (e x c e p t d e s tr u c ­

to r s)

• ch o o se an im p le m e n ta t io n la n g u a g e r e p r e se n ta tio n for e a c h a b s tr a c t

d a ta ty p e

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 113

• c o d e th e c o n s tr u c to r s a n d d e s tr u c to r s as re su lt r e tu r n in g fu n c t io n s in

th e im p le m e n ta t io n la n g u a g e

• th e d e fin it io n o f a ll th e o p era to rs is n o w e x p r e sse d e n t ir e ly in te r m s o f

fu n c t io n a p p lic a t io n . C o d in g th e s e is s im p ly a m a t te r o f tr a n s lite r a t io n .

A n e x a m p l e — s e q u e n c e s

A s an e x a m p le , co n sid e r th e r e p r e se n ta tio n o f se q u e n c e s o f in te g e r s a n d th e

im p le m e n ta t io n o f m e th o d s to rev erse th e se q u e n c e a n d to a p p e n d an in te g e r

to th e r ig h t h a n d en d o f a seq u en ce .

• an a b s tr a c t d a ta ty p e —

a b s t y p e s e q = em p ty I c o n s o f i n t * s e q

T h is sa y s th a t a seq (a s e q u e n c e) is e ith e r th e c o n s ta n t se q u e n c e ,

e m p t y , or ca n b e c o n s tr u c te d fr o m an a p p lic a t io n o f th e fu n c t io n c o n s

to an (in te g e r ,s e q u e n c e) p a ir .

• th e o p era to rs —

— r ig h t a p p e n d —

f u n r a p (e m p t y , i) = c o n s (i , e m p t y)
I r a p (c o n s (h , t) , i) = c o n s (h , r a p (t , i))

C H A P T E R 6 . S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 1 U

N o tic e th e u se o f p a tte r n m a tc h in g h ere . T h e first l in e s ta te s th a t

r ig h t a p p e n d in g an in te g e r to th e e m p ty se q u e n c e r e su lts in a se ­

q u e n c e c o n ta in in g ju s t th a t in te g e r , w h ic h is o b ta in e d b y a p p ly in g

c o n s to th e in te g e r an d e m p t y (w h ic h is a v a lid se q u e n c e) .

T h e sec o n d lin e m a tc h e s th e c a se w h ere an in te g e r is b e in g r ig h t

a p p e n d e d to a n o n e m p ty seq u en ce ; th is s e q u e n c e , b e in g n o n e m p ty ,

m u st b e c o n s tr u c t ib le b y an a p p lic a t io n o f c o n s to s o m e in te g e r ,

h say, a n d so m e seq u e n c e , t say. C lea r ly th is r e cu rs io n w ill c o m e

to an en d .

— th e rev erse fu n c t io n , s im ila r ly —

fun rev(empty) = empty
I rev(cons(h,t)) = rap(rev(t),h)

• D e fin e d e s tr u c to r fu n c t io n s .I n b o th th e fu n c tio n d e fin it io n s a b o v e p a t ­

te rn m a tc h in g h as b e e n u se d to b rea k a c o n s tr u c te d i t e m in to it s c o m ­

p o n e n t p a r ts . H ere w e w o u ld d efin e d e s tr u c to r fu n c t io n s —

- fun head(empty) = raise seqFault
I head(cons(h,t)) = h

— fun tail(empty) = raise seqFault
I tail(cons(h,t)) = t

T h e ra ise e x p r e ss io n s h ere are p a rt o f S M L ’s e x c e p t io n m e c h a n ism .

T h e y rep resen t th e (a b n o r m a l) te r m in a tio n o f a c o m p u ta t io n .

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 115

• E lim in a te p a tte r n m a tc h in g b y u s in g d e s tr u c to r fu n c t io n s —

fun rap(s,i) = if s = empty then
cons(i,empty)

else
let val h = head(s) in

let val t = tail(s) in
cons(h,rap(t,i));

end
end;

a n d s im ila r ly for rev .

• C h o o se a r e p r e se n ta tio n in th e im p le m e n ta t io n la n g u a g e . In g e n e r a l,

w e d ec la re a c la ss o f o b je c ts , ea c h w ith a s in g le in s ta n c e v a r ia b le as

in —

Seq is Object
[sequence]

a n d w e c o d e in s ta n c e m e th o d s to a cc ess th is d a ta —

sequence [] sequence,
sequencers [] { sequence := s ;

• C o d e th e c o n s tr u c to r a n d d e s tr u c to r fu n c t io n s . T h e c o n s tr u c to r s , w h ic h

c r e a te n ew ite m s o f th e c la ss , are n a tu r a lly c o d e d as c la ss m e th o d s —

empty [] { " (super new) ; }.
cons: anlnteger with: aSequence []

{ ~ (super new sequence: (Pair of:anlnteger and:aSequence));}.

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 116

N o tic e th e u se o f a c la ss P a ir . T h is is a p p r o p r ia te , p a ir s (in d e e d n tu -

p le s) are a b u i l t - in ty p e in S M L w h ic h h a s n o d ir e c t c o r r e sp o n d e n t in

L in go so w e c o d e i t . P a ir h a s tw o in s ta n c e m e th o d s: f i r s t a n d s e c ­

o n d ; th e s e are d e s tr u c to r fu n c tio n s fo r e x tr a c t in g th e c o m p o n e n ts o f a

p air . W ith th e s e , th e d e s tr u c to r fu n c t io n s for S eq are c o d e d as in s ta n c e

m e th o d s —

— head [] { if (sequence = nil) then
raise seqException

else
(sequence first);

}.
— tail [] { if (sequence = nil) then

raise seqException
else

(sequence second);
>.

• C o d e th e o p era to rs . A g a in , w e u se in s ta n c e m e th o d s s in c e o n e o f th e ir

a rg u m e n ts is a lw a y s an in s ta n c e o f th is c la ss .

self rap: anlnteger [h t]
{
if sequence = nil then

Seq consOf: anlnteger with: self
else
{

h := self head; t := self tail ;
Seq consOf:h with:(t rap: anlnteger);

}

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 117

W h ic h is c lea r ly in o n e t o on e c o r r e sp o n d e n c e w ith th e o r ig in a l S M L .

A r e f i n e m e n t o f t h e t e c h n i q u e

O n e so u rce o f in e ff ic ie n c y in an im p le m e n ta t io n d e r iv e d as a b o v e c o m e s fr o m

p a tte r n m a tc h in g . W h e n tr a n s la t in g in to a la n g u a g e su c h as P a sc a l or C ,

p a tte r n m a tc h in g w o u ld m a k e u se o f ta g fie ld s w ith in a v a r ia n t reco rd or a

u n io n ty p e . In L in g o , w e c a n d o b e t te r b y u s in g in h e r ita n c e . C o n sid e r a g a in

th e S M L for th e se q a b s ty p e —

abstype seq = empty | cons of int * seq

W e can rep resen t s e q u e n c e s by a c la ss S eq , as b e fo r e , a n d h a v e tw o s p e ­

c ia lisa tio n s E m p ty a n d C o n s. T h e c o n s tr u c to r fu n c t io n s e m p t y a n d c o n s

b e c o m e in s ta n c e c r e a tin g cla ss m e th o d s o f S e q ’s su b c la s se s E m p ty a n d C on s

r e sp e c t iv e ly —

Seq is Object
C]

W h ic h n e e d s n o c la ss m e th o d s s in c e o n ly it s su b c la s se s sh o u ld ev e r b e

in s ta n t ia te d .

Empty is Seq
[]

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 118

W h ic h n e e d s n o c la ss m e th o d s — s im p ly c r e a tin g an o b je c t o f th is ty p e

w ith i t ’s in h e r ite d n e w m e th o d is e n o u g h .

C o n s, w h o se in s ta n c e s are n o n e m p ty is c o d e d a lo n g w ith d e s tr u c to r s h e a d

a n d ta i l as in s ta n c e m e th o d s —

Cons is Seq
[sequence]
{
ofranlnteger and:aSeq []
{

((super new) sequence: (Pair of:anlnteger with:aSeq));
}.

head [] { ~ sequence first;
tail [] { sequence second; }.
sequence [] f sequence; }.
sequencer [] { sequence := s; }.

N o w if a g a in w e co n s id e r th e S M L fu n c t io n re v

fun rev(empty) = empty
I rev(cons(h,t)) = rap(rev(t),h)

w e ca n v ie w re v as h a v in g tw o s p e c ia lis a t io n s , o n e a fu n c t io n w h ic h h a s as

d o m a in o n ly th o se in s ta n c e s o f th e a b s ty p e th a t are e m p ty , th e o th e r h a s th e

c o m p le m e n ta r y d o m a in o f a ll n o n e m p ty seq s . W e ad d a n in s ta n c e m e th o d

w ith in th e E m p ty cla ss as

r e v [] { Em pty new } .

a n d an in s ta n c e m e th o d to th e C o n s c la ss as

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 119

self rev [] { ~ (((self tail) rev) rap:(self head)); }.

W h ic h is c o n c ise . N o t ic e th is fa c il i ty c a n n o t b e m irro red in S M L s in c e

S M L h a s n o fa c il it ie s to sp e c ia lise a ty p e .

T h e re fin e m en t o u t l in e d a b o v e h a s a s tr o n g e r re su lt th a n m e r e ly p r o v id in g

a su c c in c t im p le m e n ta t io n . T h e fo llo w in g o b se r v a t io n s c a n b e m a d e o n t h e

e ffec t o f r e m o v in g (fro m th e te c h n iq u e) th e n e e d to re m o v e p a tte r n m a tc h in g

• T h e im p le m e n ta t io n n o lo n g er m a k es u s e o f an u n d e r ly in g data s tru c­

ture a n d is th u s m o re a b s tr a c t a n d c lo ser to th e p u r e ly d e n o ta t io n a l

sp e c if ic a t io n .

• S e le c t io n (c h a n g e s in co n tro l flo w in im p le m e n ta t io n s d e r iv e d b y th e

c o n v e n tio n a l te c h n iq u e) h as b e e n re m o v e d a n d r e p la c e d b y u se o f th e

c la ss in g (or ty p in g) m e c h a n ism o f th e im p le m e n ta t io n la n g u a g e . A s

p ro ce sso r a r c h ite c tu r e s m o v e to su p p o r t o b je c t -o r ie n t a t io n (a n d th u s

re m o v e th e p ro b le m s a s so c ia te d w ith ch a n g es in c o n tr o l flo w) th is a p ­

p ro a ch is fa v o u re d . In p a r ticu la r , a d v a n ta g e ca n b e ta k e n o f th is w h e n

im p le m e n tin g in th e la n g u a g e L in g o o n th e R E K U R S I V w h ic h h a s

h a rd w a re su p p o r t for ty p in g .

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 120

6.4 Specifying the Relational Algebra
T h e p r e v io u s s e c t io n d e sc r ib e d th e g e n e r a l a p p ro a ch to p ro g ra m d e r iv a tio n .

W ith in th is s e c t io n , th e fu n d a m e n ta l a b s ty p e s u s e d in th e a c tu a l a p p lic a t io n

o f th e a p p r o a ch to th e im p le m e n ta t io n o f th e r e la t io n a l a lg e b r a are d e sc r ib e d .

T h e n e x t s e c t io n w ill d e ta il th e d e r iv a tio n o f a p a r tic u la r o p e r a to r (a re la ­

t io n a l jo in) . T h e c o m p le te sp e c if ic a t io n d o es h o w ev er a p p e a r in a p p e n d ix

B .

In o rd er to m o d e l th e r e la t io n a l a lg eb ra , 7 a b s tr a c t d a ta ty p e s w ere d e ­

fin ed in S ta n d a r d M L . T h e d e c la r a t io n s o f th e s e , d e sc r ib in g a lso th e c o n ­

s tr u c to r fu n c t io n s for th e a b s tr a c t d a ta ty p e s are:

• R e la t io n s are d ec la red as

relation = rel of (scheme * tupset);

T h is ex p r e sse s th e in te n t io n th a t a r e la t io n is a p a ir d raw n fr o m th e

p r o d u c t o f th e se t o f schem es a n d th e se t o f tu psets (th e s e ty p e s are

d efin ed b e lo w).

• S c h e m e s are d efin ed to c o n ta in in fo r m a tio n a b o u t th e a t tr ib u te s in ­

v o lv e d in a r e la t io n ’s tu p le s . E a c h a t t r ib u te h as a n a m e as w e ll as a

ty p e , w h ic h are m o d e lle d b y th e a b s ty p e s nam e a n d dom ain r e s p e c ­

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 121

t iv e ly . S ch em e s a lso h o ld a l is t o f nam es w h ich are u se d t o d e n o te th e

k ey s o f th e re la tio n :

abstype scheme = sch of((name list)*((domain * name) list))
abstype domain = dom of string
abstype name = nam of string

• T h e d a ta w ith in a r e la t io n is m o d e lle d as a se t o f tu p le s b y

abstype tupset = set of (tuple list);

• T u p le s c o n ta in d a ta v a lu e s w h ic h are a b s tr a c t ly r e p r e se n te d b y th e

a b str a c t d a ta ty p e attribute w h ic h h a s a c o n s tr u c to r for e a c h a c tu a l

ty p e o f d a ta th a t th e re la t io n s c a n h o ld (in th is c a se ju s t s tr in g s a n d

in te g e r s) .

abstype tuple = tup of (attribute list)
abstype attribute = ival of int | cval of string

T h e a b o v e are m e r e ly th e first p a r ts o f c o m p le te a b s ty p e d e c la r a t io n s .

E a ch in tr o d u c e s th e d e fin it io n o f o p e r a t io n s o n th e a b s tr a c t ty p e . F or t h e

ty p e R e la t io n , th e k e y fu n c tio n s (to g e th e r w ith th e ir s ig n a tu r e s are):

• s e le c t : r e la t io n x (tu p le —► b o o l) —» r e la t io n

• p r o je c t : r e la t io n x (n a m e l is t) —» r e la t io n

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 122

• cartprod : relation x relation —» relation

• union : relation x relation —» relation

• difference : relation X relation —» relation

• in te r s e c t io n : r e la t io n x r e la t io n —* r e la t io n

• eq u ijo in : r e la t io n x r e la t io n x n a m e —» re la t io n

A s a s p e c im e n , th e d e ta ile d s p e c if ic a t io n o f th e e q u i j o i n o p e r a to r is

e la b o r a te d in th e n e x t se c t io n .

A d e ta il to n o t ic e w ith in th e a b o v e is th e s ig n a tu r e o f se le c t: th is a llo w s

th e a p p lic a t io n o f a n y fu n c t io n w h o se ty p e (o r s ig n a tu r e)is tu p le —» b o o l to

th e tu p le s w ith in a r e la t io n , g iv in g a g r e a t d eg re e o f fr e e d o m in s e le c t io n

p r e d ic a te s .

In a d d it io n to th e fu n c tio n s l is te d a b o v e th e r e are n u m e r o u s o p e r a to r s

w h o se u se is to ch eck th e v a lid ity o f an o p e r a t io n (u n io n c o m p a t ib il ity , fo r

e x a m p le) as w e ll as ser v ic e fu n c tio n s to c r e a te e le m e n ts o f t h e a b s tr a c t ty p e s

(s in c e th e c o n s tr u c to r fu n c tio n s o f an a b s ty p e ca n o n ly b e u se d w ith in th e

a b s ty p e) .

T h e tr e a tm e n t o f d o m a in s is n o t r e s tr ic t iv e . A n y o th e r c a n d id a te t y p e

for a ttr ib u te s w ith in re la t io n s (r e la t io n , e v e n) co u ld s im p ly b e m o d e lle d b y

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 123

a d d in g a n o th e r c o n s tr u c to r to th e a b s ty p e . T h e fu n c t io n v a lid d o m en su res

th e ty p e sa fe ty o f th e se t o p e r a t io n s .

6.5 Specifying a relational operator
T h e p r e v io u s s e c t io n o n ly sk e tc h e d th e b ro a d te r m s o f th e fo r m a l sp e c if ic a t io n

o f th e r e la t io n a l a lg eb ra . T h is s e c t io n g iv e s th e d e ta il o f t h e s p e c if ic a t io n o f

a p a r tic u la r o p era to r , an eq u ijo in . T h is o p e r a to r h a s b e e n c h o se n as th e

‘s p e c im e n 5 s in c e it s e ff ic ie n c y w ith in th is abstract s p e c if ic a t io n is p o o r . T h e

fo llo w in g se c t io n s w ith in th is ch a p ter w ill th e n d e m o n s tr a te th e p r o c e ss o f

r e p la c in g th e abstract sp e c if ic a t io n w ith a m o r e concrete sp e c if ic a t io n w ith in

w h ic h a n eq u ijo in o p e r a t io n ca n b e sp e c if ie d w ith a b e t t e r e ffic ien cy .

T h e s ig n a tu r e o f th e o p era to r is g iv e n b y

e q u ijo in : r e la t io n X re la t io n x n a m e —> r e la t io n

T h is in d ic a te s th a t th e fu n c t io n ta k e s th r e e a rg u m e n ts: th e tw o o p era n d

r e la t io n s for th e jo in a n d th e nam e o f an a t tr ib u te fr o m t h e sc h e m e o f th e

first o p era n d . It is a ssu m e d , for c la r ity , th a t th e se c o n d o p e r a n d r e la t io n ’s

sch e m e h a s a s in g le hey a t tr ib u te a n d th a t th e jo in is t o b e p er fo rm e d on

th e n a m e d a ttr ib u te fr o m th e first o p era n d a n d th e key a t t r ib u te fr o m th e

seco n d .

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 124

A t th e le v e l o f th e a b s ty p e r e l a t i o n , th is o p era to r is c o d e d in S M L as:

fun equijoin(rel(sl,tsl),rel(s2,ts2),n) =
rel(schappend(sl,s2),tjoin(tsl,si,ts2,s2,n))

T h e p u r p o se serv ed b y th is fu n c t io n is tw o fo ld . F ir s t ly , p a t te r n m a tc h ­

in g is b e in g u se d to e x tr a c t th e s c h e m e in fo r m a tio n fr o m th e tw o o p e r a n d

r e la t io n s a n d p a ss th e m a lo n g w ith th e b o d ie s (t u p s e t s) o f th e r e la t io n s

to th e fu n c t io n t j o i n w h ich a c tu a lly p er fo rm s th e jo in o n th e b o d ie s . (T h e

sc h e m e in fo r m a tio n is n e e d e d to m a tc h a t t r ib u te s) . S e c o n d ly , th e r e s u lt in g

r e la t io n h a s a sch em e d er iv ed b y a p p e n d in g th e sch em es o f th e tw o o p e r a n d

r e la t io n s .

T h e o p e r a to r t j o i n (a t th e le v e l o f th e a b s ty p e t u p s e t) c o n ta in s th e

jo in a lg o r ith m . T h e b o d ie s o f r e la t io n s (m o d e lle d b y th e a b s ty p e t u p s e t) are

e s s e n t ia lly l is t s o f tu p le s (w h ic h are th e m s e lv e s e s s e n t ia lly l i s t s o f a t t r ib u te s) .

W ith in th e o p era to r t j o i n , i t is n e c e s sa r y to tra v erse t h e first o p e r a n d (a

l is t) a n d , fo r ea c h e le m e n t, e x tr a c t th e jo in a t tr ib u te a n d sea rch t h e se c o n d

t u p s e t for a m a tc h (th is w ill b e re q u ire a lin e a r sea r ch). T h e su c c e ss o f th is

sea rch d e te r m in e s w h e th e r or n o t to a p p e n d tu p le s fr o m th e tw o t u p s e t s

an d in se r t th e n ew tu p le in to th e r e s u lta n t r e la t io n .

In m o r e d e ta il, th e d e fin it io n o f t j o i n req u ires th e c o n s id e r a tio n o f tw o

cases: w h e n th e first o p era n d is e m p ty a n d w h e n it is n o t .

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 125

• th e o p era n d is em p ty . C lea r ly th e jo in r e su lt is a lso e m p ty :

tjoin(set(nil),sl,ts2,s2,n) = set(nil)

• th e o p era n d is n o n -e m p ty . In th is ca se , p a tte r n m a tc h in g is u s e d to

e x tr a c t th e ‘h e a d ’ tu p le fro m t h e first o p era n d

tjoin(set(h::t),sl,ts2,s2,n) =

T o e x tr a c t th e jo in a ttr ib u te fr o m h th e o p e r a to r t u p l e p r o j is u se d .

T h is ta k e s th r e e a rg u m en ts: a tu p le , a s c h e m e a n d a l is t o f n a m e s . T h e

o p era to r ‘p r o je c t s ’ th e a ttr ib u te s fr o m th e tu p le w h o se n a m e s a p p e a r

in th e l is t o f n a m e s . T h e SM L ex p re ss io n :

let val firstPart = tupleproj(h,si, [n]) in

e x tr a c ts th e jo in a ttr ib u te (n a m e d n) a n d s to r es th e r e su lt in a lo ­

ca l S M L v a lu e n a m e d f i r s t P a r t (a c tu a lly a l is t c o n ta in in g o n ly o n e

e le m e n t) .

T o sea rch for a m a tc h in g tu p le in th e se c o n d t u p s e t (n a m e d t s 2) th e

fu n c t io n a tK e y is u se d w h ic h g iv e n a k e y a n d a s e t o f tu p le s r e tu r n s

th e m a tc h in g tu p le fro m th e set:

let val partner = atKey(firstPart,ts2) in

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 126

S in c e se ts o f tu p le s are fu n d a m e n ta lly s to r e d as l i s t s , t h e e f f ic ie n c y o f

th e fu n c t io n a t K ey is 0 (n) .

I f t h e sea rch is su c c e ss fu l th e tw o tu p le s ca n b e jo in e d w ith t h e o p e r a to r

tu p a p p e n d a n d in se r te d in to th e o v er a ll r e su lt w ith f a s t i n s e r t s in c e

th e jo in c a n n o t in tr o d u c e d u p lic a te v a lu e s i f th e tw o o r ig in a l r e la t io n a ls

w ere d u p lic a te free .

P u t to g e th e r , th e S M L for th e c o m p le te o p era to r t j o i n is:

fun tjoin(set(nil),sl,ts2,s2,n) = set(nil)
I tjoin(set(h::t),sl,ts2,s2,n) =

let val firstPart = tupleproj(h,sl, [n]) in
let val partner = atKey(firstPart,ts2) in
if tupnull(partner) then

tjoin(set(t),sl,ts2,s2,n)
else

fastinsert(tupappend(h,partner),tjoin(set(t),sl,ts2,s2,n))
end

end

A s ca n b e see n th e e ff ic ie n c y o f th is a lg o r ith m (a n d h e n c e i t s L in g o c o u n ­

te r p a r t) is d e te r m in e d b y th e req u ired n u m b e r o f ca lls t o th e fu n c t io n t j o i n

a n d th e e ff ic ien cy o f th e sea rch in g fu n c t io n a tK e y w h ic h , as in d ic a te d p r e v i­

o u s ly is O (n) . T h is g iv es a n o v era ll e ff ic ie n c y o f 0 (n 2) .

C lear ly , th e c o m p o n e n t to w ork o n in ord er to im p r o v e th e e f f ic ie n c y

is th e sea r ch in g fu n c tio n , s in c e th e n u m b e r o f ca lls t o th e t j o i n fu n c t io n

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 127

(w h ic h w ill a lw a y s b e e q u a l to th e c a r d in a lity o f th e first o p e r a n d) c a n n o t b e

red u ced .

T h e n e x t s e c t io n d escr ib es th e d e v e lo p m e n t o f th e s p e c if ic a t io n to in c o r ­

p o r a te m o re e ffic ien t a lg o r ith m s.

6.6 Efficiency and refinement
A d iff icu lty a s so c ia te d w ith th e p ro g ra m d e r iv a tio n o u t l in e d in th e la s t s e c ­

t io n s is th a t th e e ff ic ie n c y o f th e a lg o r ith m s is lo w . S ea rc h in g o n a k ey , s in c e

i t is lin e a r , h a s 0 (n) . S to r a g e te c h n iq u e s su ch as tr e e s tr u c tu r e s a n d h a sh

ta b le s [24] offer a d v a n ta g es for su ch sea r ch in g (< 9 (lo g (n)) for tr e e s , a n d c o n ­

s ta n t ord er for h a sh in g) . T h e in e ff ic ie n c y o f th e jo in o p e r a to r sp e c if ie d in th e

p rev io u s s e c t io n (w ith in a l is t b a sed s p e c if ic a t io n) is p a r t ic u la r ly m a rk ed .

It is im p o r ta n t to n o t ic e th a t th is in e ff ic ie n c y e m a n a te s fr o m th e b a s ic

data structure (in th is ca se l is t s) e m b o d ie d w ith in th e s p e c if ic a t io n ra th e r

th a n th e fa c t th a t th e im p le m e n ta t io n h a s b e e n derived.

A p o ss ib le w a y to p r o c e e d to a m o r e e ffic ien t im p le m e n ta t io n is t o w ork

o n th e d er iv ed L in go p ro g ra m an d in c o r p o r a te a d a ta s tr u c tu r e w h ic h a llo w s

m o re e ffic ien t sea rch in g , s in c e th is is th e fu n d a m e n ta l is s u e a ffe c tin g th e

e ffic ie n c y o f th e r e la t io n a l o p era to rs . C a n d id a te s tr u c tu r e s are h a sh ta b le s

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 128

an d tr ees . T h e fo llo w in g d ia g ra m i l lu s tr a te s th e p o s s ib le ro u te :

Abstract Specification SML Implementation (list based)
derivation Lingo

programming
M/Implementation (tree based) Lingo

A possible route to producing a more efficient implementation

T h is is is n o t w h o lly sa t is fa c to r y s in c e th e r e la t io n sh ip b e tw e e n th e l is t

b a sed im p le m e n ta t io n a n d th e tr e e b a se d im p le m e n ta t io n (in te r m s o f p ro ­

g ra m p r o p e r t ie s) is in tr a c ta b le fro m th e fo r m a l p o in t o f v ie w d e p e n d in g as it

d o es o n r e fe r e n tia lly o p a q u e p ro g ra m m in g . S o m e o f th e b e n e f its o f an in it ia l

fo rm a l sp e c if ic a t io n are lo s t b y th e in tr o d u c t io n o f th is p r o g r a m m in g s te p .

A n a lte r n a t iv e a p p ro a ch is to fo r m a lly s p e c ify th e d a ta s tr u c tu r e (tr e e s ,

sa y) th a t is in te n d e d to b e u sed a n d u s e th e d e r iv a tio n te c h n iq u e t o d e r iv e a

m o re e ffic ien t L in go im p le m e n ta t io n . T h e c o r r e sp o n d e n c e o f th e tw o fo r m a l

sp e c if ic a t io n s ca n b e e s ta b lish e d th r o u g h r e a so n in g s in c e th e y are e q u a t io n a l

an d th e co r resp o n d e n c e b e tw e e n th e tw o im p le m e n ta t io n s ca n b e r e a so n a b ly

in ferred s in c e th e y h a v e b e e n p ro d u c ed b y a d e r iv a tio n m e th o d th a t p rese rv es

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 129

p ro g ra m p r o p e r t ie s .

B o th fo r m a l sp e c if ic a t io n s sp e c ify th e s a m e th in g , b u t th e l is t b a se d s p e c ­

if ic a tio n is in a se n se m o r e a b stra c t s in c e it d ea ls w ith th e r e la t io n sh ip o f

o p era to rs w h er ea s th e tr e e b a sed s p e c if ic a t io n is m o r e c o n c r e te s in c e i t d e a ls

w ith a s p e c ts o f an u n d e r ly in g d a ta s tr u c tu r e .

T h is a p p ro a ch , w h ic h is w h a t w a s c h o se n for th is w ork (b u t n o t fo llo w e d

in it s e n t ir e ty) , is d e p ic te d in th e fo llo w in g d iagram :

Abstract Specification SML
t derivation ^

Implementation (list based) Lingo

Concrete Specification SML derivation ^

1
\!/Implementation (tree based) Lingo

An alternative route to producing a more efficient implementation

T h e co r r e sp o n d e n c e b e tw e e n th e a b s tr a c t a n d c o n c r e te sp e c if ic a t io n s is

e s ta b lis h e d in th e fo llo w in g w ay. A n abstraction fu n c t io n is d e fin ed r e la t ­

in g o b je c ts w ith in th e c o n c r e te sp e c if ic a t io n a n d o b je c ts w ith in th e a b s tr a c t

sp e c if ic a t io n (in th is ca se th e o b je c ts w ill b e th e r e p r e se n ta tio n s o f r e la ­

t io n s) . For e x a m p le , i f th e a b s ty p e c r e l a t i o n m o d e ls r e la t io n s in a m o r e

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 130

‘concrete’ specification and the abstype re la tio n models relations in the
abstract specification, an abstraction function (called Abstract, say) would
be defined with signature

Abstract : crelation —» relation

In p r in c ip le , th e r e co u ld b e m a n y c o n c r e te s p e c if ic a t io n s , ea c h h a v in g a n

a ss o c ia te d a b s tr a c tio n fu n c tio n m a p p in g to th e a b s tr a c t sp e c if ic a t io n . T o

sh ow th a t th e c o n c r e te sp e c if ic a t io n o f an o p e r a to r (s e le c t , for e x a m p le) h a s

at le a s t th e p r o p e r tie s o f it s co u n ter p a r t in th e a b s tr a c t sp e c if ic a t io n , i t is

req u ired to p ro v e th a t th e re su lt o f a p p ly in g th e a b s tr a c t io n fu n c t io n t o th e

re su lt o f th e c o n c r e te o p era to r on th e c o n c r e te r e la t io n is e q u iv a le n t t o th e

re su lt o f a p p ly in g th e a b str a c t o p era to r to th e r e su lt o f a p p ly in g th e a b s tr a c ­

t io n fu n c t io n to th e c o n c r e te r e la t io n . For e x a m p le , i f A b s tra c t d e n o te s th e

a b s tr a c tio n fu n c t io n , crconc a n d craba th e c o n c r e te a n d a b s tr a c t s e le c t o p e r a to r s

(r e s p e c t iv e ly) a n d R c th e c o n c r e te r e la t io n , th is ca n b e e x p r e s se d as

A b s tr a c t(a conc(R c)) = a abg(A b s tr a c t(R c))

T h e a b o v e e q u a lity ca n b e re p r e se n te d b y th e s ta te m e n t th a t th e fo llo w in g

d ia g r a m ‘c o m m u te s ’ (a n o tio n fro m c a te g o r y th e o r y o n w h ic h th e fo r m a l

fo u n d a t io n o f th is a p p ro a ch is b a se d) in th a t th e r e su lta n t (a b s tr a c t) r e la t io n s

o b ta in e d v ia e ith e r c o m p u ta tio n a l r o u te are e q u iv a le n t:

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 131

tree
operand

A b stract

a cy (FL)conc v a conc ^/ W

A b stract

Nj/
A b stract (Fp ogbs ■> 8st based result

Relationship of abstract and concrete operators

In th e c a se th a t su ch a p ro o f is in tr a c ta b le , th e p r o c e ss s t i l l h a s th e a d ­

v a n ta g e th a t w ith th e e q u a tio n a l n a tu r e o f th e s p e c if ic a t io n a n d th e u se o f

p a tte r n m a tc h in g , th e d iffer en tia tio n a n d c h a r a c te r isa t io n o f t e s t ca se s is a u ­

to m a t ic , a llo w in g c o n v e n tio n a l t e s t in g to b e ca rr ied o u t in a v e r y d is c ip lin e d

w ay.

6.7 2—3 trees
M o v in g n o w to th e sp ec if ic ca se o f th e r e la t io n a l a lg eb ra , a c a n d id a te d a ta

s tr u c tu r e th a t w o u ld im p ro v e th e e f f ic ie n c y o f o p era to rs is th e b a la n c e d tr e e

CHAPTER 6. SPECIFICATION OF THE RELATIONAL ALGEBRA 132

structure known as a 2-3 tree.

Balanced trees are often used for storing large sets of indexed data items

and algorithms of 0(log(n)) exist for storage and retrieval. 2-3 trees are a

special case where each subtree is either empty, a node containing a value, a

left subtree and a right subtree (a 2-node) or a node containing two values

and a left, middle and right subtrees (a 3-node).

The diagram gives an example 2-3 tree, where E denotes an empty sub­

tree:

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A I C

In addition, 2-3 trees are:

• ordered - the value contained in a 2-node is greater than any value

found in the left subtree and less than any value to be found in the

right subtree. The ‘left’ value in a 3-node is greater than any to be

found in the left subtree and less than any value in the middle subtree

and the ‘right’ value is greater than any in the middle subtree and less

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 134

than any in the right subtree.

• balanced - all subtrees of any node have the same depth.

Reade ([89]) presents an equational program in SML for insertion into

2-3 trees which is proved to maintain the ordering and balance properties.

The program makes use of the following datatype declaration

datatype 'a tree23
= E
I Tr2 of ’a tree23 * * a * ;a tree23
I Tr3 of 'a tree23 * ,a * 'a tree23 * * a * * a tree23
I Put of * a tree23 * ,a * * a tree23

The constructor functions E, Tr2 and Tr3 are used to model empty sub­

trees, 2-nodes and 3-nodes respectively. The constructor Put is used for

nodes that are created during insertion and then removed during rebalanc­

ing. The details are in Reade ([89]) along with the proofs and algorithms for

removal.

The 2-3 tree given in the last diagram would be represented in SML as

Tr3(Tr2(E,50,E),60,Tr2(E,80,E),90,Tr3(E,95,E,99))

For the purposes of the relational algebra, 2-3 trees were incorporated

into the formal specification described in section 6.4 to provide a more con­

crete specification. The counterpart (within the concrete specification) of the

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 135

abstract specification’s abstype tupset (which is used to hold the data set

‘body’ for relations) is the following:
abstype tree23

= E
I Tr2 of tree23 * tag * tuple * tree23
I Tr3 of tree23 * tag * tuple * tree23 * tag * tuple * tree23
I Put of tree23 * tag * tuple * tree23

Reade’s values are replace by pairs of tags and tuples. The tag component

is some unique key value used to order and identify information for retrieval.

Since an ordering relationship is defined for the abstype tuple, the type tag

was implemented as a type synonym for tuple. The tag component will

contain attributes drawn from the tuple component according to the scheme

defined for the relation in which the tuple resides.

As an example, (taken from Date [24]), consider the body of the relation

‘supplier’, with fields ‘snum’ (supplier number), ‘sname’ (supplier name),

‘status’ (status value) and ‘city’ (location):

snum sname status city

si smith 20 london

s2 jones 10 paris

s3 blake 30 paris

s4 dark 20 london

s5 adams 30 athens

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A I C

The field ‘snum’ can be used for the index tag since it uniquely identifies

tuples.

The concrete counterpart of the abstype relation is:

abstype crelation = crel of scheme * tree23

In order to establish the correspondence between the concrete and ab­

stract specifications, abstraction functions were defined on both the abstype

tree23 (mapping to the abstype tupset) and the abstype crelation (map­

ping to the abstype relation). Proofs, utilising these abstraction functions,

of the correspondence of the results of concrete and abstract operations are

not given since they are laborious and not practically feasible without an au­

tomated ‘proof assistant’. No proof assistant is generally available for SML

at present.

Counterpart operators (of a sample of those in the abstract specification)

were defined on these abstypes. The detailed SML code is to be found in ap­

pendix D. For the purposes of this section, an equijoin operator is detailed.

The operator is named cjoin (for concrete join). It takes three arguments:

the two operand relations of the join and the name of an attribute field from

the scheme of the first operand. It is assumed (for clarity) that the sec­

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 137

ond operand uses a single attribute for its index tags, and that the join is

performed on the named attribute from the first operand and the tagging

attribute from the second.

At the level of the abstype cr el at ion this operator is coded in SML as:

fun cjoin(crel(sl,tsl),crel(s2,ts2),n) =
crel(schappend(sl,s2),ctreejoin(tsl,sl,ts2,s2,n))

This function is fairly cosmetic: pattern matching is being used to extract

the schemes of the two operand relations and pass them along with the tree

bodies of the relations to the function (at the tree level) which actually per­

forms on the join on the bodies. The scheme information is needed to match

attributes from named fields. In addition, the resulting relation (whose body

is computed by the function ctreejoin) has a scheme derived by appending

the schemes of the two operands.

The operator ctreej oin (at the level of the abstype tree23) is altogether

more complicated given the separate cases that must be considered. Briefly,

the algorithm involves traversing the first (tree) operand, and at each node

that contains values, extracting the join attributes from the values and using

these as the look up tags in the second tree operand. If the look up fails,

the attributes do not contribute to the join result; if the look up succeeds

the retrieved value from the second operand is appended to the value at the

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A I C

node under inspection and the resulting tuple is inserted into the join result.

The traversal is controlled by recursion through subtrees and subtree results

are recomposed by performing unions.

In more detail, there are four primary cases to consider. These are dealt

with by pattern matching on the first (traversed) tree operand and are:

• the operand is an ‘Empty’ node - that is it is the value E. Clearly

the join result consists of the empty tree E. This case terminates the

recursion. In fact, in the case where the second operand is E, it is

pointless to continue as well. In SML, where the underscore symbol, _,

is used for anonymous unification:

c t r e e j o i n (E , = E I
ctreejoin(_,_,E,_,_) = E

• the operand is a Put node. This represents an error, since Put nodes

should only exist transiently as trees are rebalanced on the addition of

a value. The computation is aborted by raising an exception.

c t r e e j o i n (P u t (_ , = raise putException

• the operand is a ‘2-node’: that is, it has been constructed by an appli­

cation of Tr2 , as in:

ctreejoin(Tr2(left, tag, value, right),si,ts2,s2,n)

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A 139

The lookup tag (for retrieval from the second operand) is computed

by projecting out from value the attribute named by the argument

n. The tupleproj operator computes this from three arguments: the

tuple from which to project, the scheme relating the attribute field

names to position, and a list of attribute field names to project out. In

this case, it is most convenient to have a locally scoped value in SML,

to avoid unnecessarily repeated computation:

let val firstPart = tupleproj(value,si,[n]) in

The look up (in the second operand) can now be performed, using

firstPart as the tag. As was noted in the development of the join

operator based on the abstract, list-based specification, the efficiency

of the search function is crucial to the efficiency of the join algorithm.

The tree-based counterpart to the atKey function (from the list based

specification) is the operator at, which, given a tag, returns a tuple

from a tree if the tag is found and a null tuple if the tag is not present.

Again, a local value is used:

let val partner = at(firstPart,ts2) in

The efficiency of the at function is clearly crucial. It returns a tuple

given a tag and a relation body (a tree). The algorithm for this is to

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T IO N A L A L G E B R A U O

compare the presented tag with those at the root of the tree (there may

be one or two at the root depending on whether the root is a 2-node

or 3-node). If the tag is present in the root, the search is successful; if

not, then the search is directed to the appropriate subtree as a result of

the comparison, bearing in mind that the tree is ordered. The number

of comparisons made is bounded by the depth of the tree. Since the

tree is balanced, the depth of a tree containing n items is proportional

to log(n) and so the efficiency of this search by the function at is

0(log(n)) as opposed to 0(n) for the function atKey within the list-

based implementation.

Now, if partner has a null value, the current node contributes nothing

to the eventual result which will be the union of the join operator

applied to the left and right subtrees.

On the other hand, if partner has a non-null value, the tuple formed

by ‘joining’ value with partner should be in the result. The joined

tuple is computed by using the tupappend operator as in:

tupappend(value,partner)

In order to insert it into the result, a tag value must be computed.

Since the scheme of the resulting relation is formed by merging the

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T I O N A L A L G E B R A U 1

schemes of the two operands, the tag value for the new tuple is formed
by concatenating the tag values of the two tuples from which the new
tuple was formed:

tupappend(tag,firstPart)

This tuple is inserted, by its tag value, into the union of the results for
the left and right subtrees. Put together, the SML for the 2-node case
is:

ctreejoin(Tr2(left,tag,value,right),sl,ts2,s2,n) =
let val firstPart = tupleproj(value,si,[n]) in

let val partner = at(firstPart,ts2) in
if tupnull(partner) then (* doesn't contribute *)
treeunion(ctreejoin(leftl,sl,ts2,s2,n),

ctreej oin(right1,si,ts2,s2,n))
else

insert23(tupappend(tag,firstPart), (* the tag *)
tupappend(value,partner), (* the value *)
treeunion(ctreej oin(leftl,si,ts2,s2,n),

ctreejoin(right1,si,ts2,s2,n)))

• The fourth case is that of the 3-node. This is a straightforward ex­
tension of the 2-node case, although, since 3-nodes contain two values
as opposed to the single value in 2-nodes, two look ups are performed.
This leads to four possible cases: both look ups succeed, both fail, the
‘left’ succeeds where the ‘right’ fails and vice versa. The SML is con­
sequently long (roughly 4 times as long as the 2-node case) but is not

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T I O N A L A L G E B R A U 2

detailed here since nothing new is added (the code is to be found in
appendix D).

The purpose in elaborating the detail of the development above was to
establish that efficiency gains can be accomplished by manipulations at the
formal specification level. As can be seen, the efficiency of the tree-based join
on two relations depends linearly on the cardinality of the first relation and
depends on the search efficiency algorithm for the second (which is O(log(n)).
Hence the overall efficiency is O(nlog(n)). Therefore, an implementation in
Lingo d e r iv e d (by the methodology explored in the previous section) from
this more concrete specification, would itself be 0(nlog(n)).

6.8 Query optimisation
The previous section elaborated one aspect of improving the efficiency of
implementations of relational operators. Another aspect is that of improving
the efficiency of c o m p o s itio n s of these operators where a reordering of the
operations can produce an equivalent overall result but at less cost - query
optimisation. This section deals with demonstrating how query optimisation
can be incorporated into the algebraic approach to program derivation.

Date ([24]) identifies four broad stages in the query optimisation process:

C H A P T E R 6. S P E C IF IC A T IO N O F T H E R E L A T I O N A L A L G E B R A 143

1. Cast the query into some internal representation

2. Convert to a canonical form

3. Choose candidate low-level procedures

4. Generate query plans and choose the cheapest

Although no query optimisation process was incorporated into this work,
the approach reported within this chapter can provide a basis for limited
query optimisation in two ways.

Firstly, the assurance of state preservation properties of the clow-level
procedures’ allows query modification to take place safely. The correctness of
a mathematically justified reordering of operators within a relational algebra
expression assures the correctness of the same reordering of operators in the
physical implementation.

Secondly, since the reordering rules can be expressed as eq u a tio n a l equiva­
lences, the interrelationship of operators can be defined through an algebraic
specification in SML.

In order to demonstrate the approach and scratch the surface of query op­
timisation, the rest of this section will concentrate on two query optimisation
rules reported by Date ([24]).

C H A P T E R 6. S P E C I F I C A T I O N O F T H E R E L A T I O N A L A L G E B R A 144

The first rule is that where a projection is followed by another projection,
only the second projection needs to be carried out. The second rule is that
where a projection is followed by a selection, the equivalent result can be
obtained by performing the selection first and then the projection.

In order to incorporate these specimen query optimisation rules, another
layer is introduced to the existing specification. This layer contains an SML
abstype to represent relational algebra e x p ress io n s themselves with construc­
tor functions defined for each relational algebra operator. Essentially the
abstype provides the the internal representation alluded to by Date.

In the case of the specimen, only two operators are concerned: Select
and Project. In addition, there is a constructor in the abstype to allow
‘named’ relations to appear in relational algebra expressions (otherwise it is
impossible to express the notion of operand).
abstype relExpr = Project of relExpr * nameList

I Select of relExpr * whereClause
I Literal of relName

The equational equivalences can now be expressed using pattern match­
ing within the definition of a function optim ise which maps relExpr to
relExpr. Both rules (the removal of redundant projections and the reorder­
ing of projections followed by selections) are individually straightforward but

C H A P T E R 6. S P E C I F I C A T I O N O F T H E R E L A T I O N A L A L G E B R A 145

interfere together in the sense that the reordering performed by the second
rule may generate redundant projections to be removed by the first rule.

Consider the following SML:
fun optimise(Project(Project(anExpr,nameListl),nameList2) =

Project(optimise(anExpr,nameList2))

Although this would successfully remove redundant projections which
were originally adjacent within the relational expression, it would fail to
cater for adjacencies produced by reorderings produced by the second opti­
misation rule. In a sense, the optimisation of redundant projections is being
performed ‘from left to right’ whereas the optimisation of projections followed
by selections moves projections ‘from right to left’.

In order to counter this interference, recursion is used to control the order
of optimisation from right to left:
fun optimise(Literal(x)) = Literal(x)
I optimise (Project(x,p)) = let val y = optimise(x) in

if isProject(y) then
y

else
Project(y,p)

end
I optimise (Select(x,w)) = let val y = optimise(x) in

if isProject(y) then
let val Project(z,p) = y in

Proj ect(Select(z,w),p)
end

else

C H A P T E R 6. S P E C I F I C A T I O N O F T H E R E L A T I O N A L A L G E B R A 1 A 6

Select(y,w)
end

The function isP roject, given a relational expression, returns a boolean:
true if the expression’s ultimate opertaor is a pro j ect and false otherwise.
fun isProject(Project(x,n)) = true
I isProject(Select(r,w)) = false
I isProject(Literal(r)) = false

A Lingo derivation of this optimisation layer would then form an optimi­
sation component within the DEAL architecture (chapter 5) and come into
operation to process the synthesised data structures before their ‘execution’.

The precise point at which to perform the optimisation, however, would
depend on the nature of the optimisation strategies employed.

6.9 Conclusion
The areas of algebraic specification, abtract data type theory, functional pro­
gramming and class-based object-oriented programming languages appear
naturally together as weapons in an armoury serving the conquest of differ­
ent phases of the software life cycle. These approaches allow an adaptive life
cycle to be adopted and are particularly well suited to the development of a

C H A P T E R 6. S P E C I F I C A T I O N O F T H E R E L A T I O N A L A L G E B R A U 7

platform system (such as a computational engine providing support for the
relational algebra).

Other aspects of a system may favour different formal techniques. For
example, the specification phase of a programming language development
may be better suited by BNF and denotational semantics.

In addition, the implementation technique corresponds well with the
hardware support for class-based languages afforded by the REKURSIV pro­
cessor.

The equational, referentially transparent nature of the technique provides
a sound basis for further work. For example, some approaches to query
optimisation can be formulated as equations stating the equivalence of results
obtained by performing operations in different orders. These equivalences, as
well as the conditions under which they hold, can be specified equationally
allowing access to a query optimisation layer within the architecture of the
system being reported here.

The following chapter describes experiments carried out on the REKUR­
SIV system to investigate its performance for various ‘component’ activities
among which are handling of data sets using tree based storage strategies
and hashing techniques.

C h a p t e r 7

P e r f o r m a n c e e v a l u a t i o n

To evaluate the performance of the Lingo/REKURSIV system’s a rc h ite c tu re ,
a means to factor out the effect of its implementation technology (in terms
of semiconductor integration scale and its effect on processor clock rates)
has to be found. The approach taken for this work is to distill a hypothesis
(from the work of the system’s designer and implementor) and to design
experiments that test this hypothesis.

7.1 Harland’s claims
The general claim by Harland for the REKURSIV system is that it narrows
the semantic gap ([52]). The figure expresses this notion informally. The

148

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 149

Performance

horizontal axis imagines a spectrum of programming languages ranged ac­
cording to their ‘expressivity’, where C is taken to be at the low end and
languages such as Smalltalk are taken to be highly expressive (intermedi­
ate to these may lie languages such as Pascal, Ada, Lisp, Prolog and the
functional languages.).

The vertical axis indicates performance, perhaps for a given task or per­
haps for a suite.

The notion of expressivity is too diffuse to be quantified, and the curves
in the graphs are merely a suggestion that performance approaches a lower
bound as expressivity increases.

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 150

Harland’s argument is that the REKURSIV can be implemented in any
technology and so can perform as well as a C machine built on a regular von
Neumann architecture (or a RISC variant). The g ra d ie n ts of the performance
graph, however, are unaffected by implementation technology but are affected
by the architectural arrangement of the underlying technology.

7.2 A preliminary experiment
To illustrate the approach, consider the following, preliminary, experiment.

Two benchmarks were coded in each of Smalltalk, Lingo and C. The
Smalltalk programs were executed on both an IBM RS/6000 (using Gnu
Smalltalk-80) and an IBM Personal Computer (using Digitalk’s Smalltalk/V
for Windows, an 80386SX processor running at 16MHz with 12 MBytes of
memory and Microsoft Windows version 3.1). The Lingo programs were
executed on the REKURSIV. The C programs were also executed on all
three systems.

The first benchmark evaluates an arithmetic expression

(ll+(10+(9+(8+(7+(6-f(5+(4+(3+(2+l))))))))))

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 151

represented as a tree (using instances of classes to represent nodes in the
Smalltalk/Lingo code, and using union structures (variant records) in the C
code). The code (in Smalltalk and C) for this test is given in Appendix A.

In the second benchmark, the contents of a 100 element (integer) array-
are computed by multiplying elements of two other arrays (the ith element
is computed by multiplying the ith element of the first array by the (100-
i)th element of the second array. The first array contains the integers 1 to
100, the second has the integers 100 down to 1. Again, the code is given in
Appendix A.

The figures give the number of evaluations per second.

• Benchmark 1
Evaluations per second
Smalltalk/Lingo c

RS6000 588 29400
REKURSIV 3333 22700
IBM PC m i 3570

• Benchmark 2

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 152

Evaluations per second
Smalltalk/Lingo C

RS6000 50 12500
REKURSIV 116 10000
IBM PC 53 1640

The first benchmark can be seen as making use of expressive features of
Smalltalk and Lingo which are absent in C. (The computation’s control flow
is explicitly programmer controlled in the C versions whereas it is embedded
in the behaviour of objects in the other versions.).

The second benchmark represents a task which is naturally expressed in
a similar way in both the Smalltalk/Lingo and C versions.

The effect of implementation technology can be factored out by consid­
ering the ratios of values for the first benchmark to those of the second.

In particular, the ratios for the C implementations are -

RS6000 2.35
REKURSIV 2.27
IBM PC 2.17

These figures represent the ratio of computational effort expended in exe­
cuting the benchmarks. Across platforms, the second benchmark appears to

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 153

require a factor of about 2.25 as much time as the first benchmark to execute.
The similarity of these figures is expected under Harland’s hypothesis - the
regular von Neumann features of the platforms are being exercised in both
cases.

Turning to the ratios for the Smalltalk/Lingo implementations we have -

RS6000 12
REKURSIV 29
IBM PC 21

These figures indicate that making use of object-oriented features has
changed the relative computational costs of the two benchmarks across all
platforms. Loosely, the first benchmark has become ‘easier5 to perform (than
the second) when use is made of inheritance and polymorphism.(The other
possibility, that the second task has become ‘harder5 is unlikely since the
computation involved in the second benchmark does not make any special use
of object-orientation and the hardware’s reaction to this kind of computation
has already been demonstrated through the C programs). The more likely
explanation is that all three systems have narrowed the semantic gap but
to differing extents by being allowed to exercise their facilities for object-
orientation.

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 154

7.3 Medium scale benchmarks
As implementations of Smalltalk-80 on various processors began to pro­
liferate in the early 1980s, interest was shown in measuring their relative
performance. [70] (the so-called ‘green book’) accounts the experiences of
implementing teams and in particular, a chapter ([74]) reports facilities for
objectively comparing the efficiency of implementations. These facilities are
generally known as the ‘Smalltalk-80 benchmarks’.

Many of the micro benchmarks are only relevant to Smalltalk-80 imple­
mentations (based on the ‘blue book’ [39]) and exercise particular bytecodes
and primitives of the Smalltalk-80 virtual machine. Such benchmarks are
not directly applicable to measuring the efficiency of Lingo implemented on
the REKURSIV. Examples in this category are -

• testTextScanning - this tests the speed of the (primitive) method
that displays characters on the screen. Within the Lingo implemen­
tation, this speed is largely determined by the performance of the X -
windows system running on the host Sun workstation).

• testB itB lt - this tests the block transfer of pixel values, an important
feature in early Smalltalk-80 systems with their emphasis on the con­
struction of Graphical User Interfaces without direct windowing and

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 155

event support from an underlying operating system.

• testLoadThisContext - this measures how quickly the current con­
text (the execution environment containing the local variables and so
on) can be pushed onto the stack. Within the Lingo implementation
it is hard to see how this operation could be isolated and in any case
the significance of the time for its execution is probably less for Lingo
than for Smalltalk systems. In Smalltalk for example, control struc­
tures such as an if statement are not an inherent part of the language.
Instead, they are synthesised by methods (within appropriate classes)
which take Blocks (code objects) as arguments. An if-then-else state­
ment, for example, is forged by including a method ifTrue: ifFalse:
in the class Boolean, so that we may for instance write

x < y
ifTrue: [y := y -x.]

ifFalse: [~ y].

(Pairs of square brackets delineate Blocks).
The execution of either branch will require the pushing of a context
on to the stack. Lingo however, whilst still allowing the synthesis of

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 156

control structures, has the more common varieties available in the core
language which are recognised by the compiler and efficiently compiled.

None of the macro benchmarks from [74] appear to be of direct relevance
for measuring the Lingo system since they mainly deal with the methods
involved in providing the programmer environment.

For this study, the spirit of the Smalltalk-80 micro benchmarks was used
to model a suite of tests which measure slightly coarser grain activity (at
roughly the statement, rather than the primitive/bytecode level). The fol­
lowing tables describe the tests. Each table groups tests that exercise similar
implementation activities.

The first group exercise access to the execution environment - instance
variables, class variables, locals and method arguments -

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 157

Environment
test name description

A testLoadlnstVar return the value of
an instance variable

B testLoadTem pNRef return a local
C testLoadTempNRef2 assign to and then

return a local
D testL iteralN R ef return an integer literal
E testLoadLiteralln direct return the value of

a class variable
F testPopStorelnstV arl assign an integer

literal to an instance variable
G testPopStoreTem pl assign an integer

literal to a local

The arithmetic tests are performed for both ‘small’ integers and integers
since with small integers (16 bit) the Smalltalk/V implementation can use
the processor’s ALU directly -

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 1 5 8

Arithmetic
test name description

H test3Plus4 3 + 4
i test3LessThan4 3 < 4
J test3Tim es4 C

O *
K test3D iv4 3 / 4
L test35000Plus45000 35000 + 45000
M test35000LessThan45000 35000 < 45000
N test35000Tim es45000 35000 * 45000
0 test35000Div45000 35000 / 45000

The control flow tests exercise selection and iteration -

Control Flow
test name description

p testShortBranch i f fa ls e then . . e lse . .
Q test W hile

(mean time per iteration over
2000 iterations)

an empty while loop

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 159

Array manipulation is a fundamental activity (objects of whatever com­
plexity can be modelled as arrays containing object identifiers). Character
strings are stored (conceptually) as arrays of characters, yet require packing
and unpacking of 8 bit quantities for storage efficiency -

Array and String manipulation
test name description

R test Array At accessing an array element
s test Array A tPut assigning to an array element
T testStringAt accessing a character within a string
U testStringA tPut assigning to a character within a string
V testSize finding the size of a string

The last group of tests concentrate on strongly object-oriented aspects -

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 160

Object operations
test name description

w testEq testing object equality
X testClass determining the class of an object
Y testValue performing a Block
Z testCreate creating an object

The raw results obtained (in microseconds) for the two systems (Lingo
and Smalltalk) are presented in the following tables along with the perfor­
mance ratio of Lingo to Smalltalk (the Smalltalk time divided by the Lingo
time). The timings obtained for the Lingo system were highly consistent,
typically varying by less than 2 per cent across several (5 or more) repeti­
tions of a test. Occasional ‘rogue’ results were obtained (and excluded from
the averaging process). These were associated with the triggering of garbage
collections as a consequence of the REKURSIV’s pager tables being full. The
Smalltalk system showed a far greater variability in timings (15 per cent).
This was attributed to the incremental garbage collection strategy employed
and the coarse resolution of the timer (1 millisecond).

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 161

Environment
test name Lingo Sm alltalk/V Performance

tim e tim e ratio
A testLoadlnstVar 1.19 2.20 1.85
B testLoadTem pNRef 1.41 8.30 5.89
C testLoadTempNRef2 2.71 13.60 5.01
D testL iteralN R ef 0.58 6.60 11.38
E testLoadLiterallndirect 2.40 9.80 4.08
F testPopStorelnstV arl 1.45 8.20 5.66
G testPopStoreTem pl 1.84 5.40 2.93

It is clear that the performance p ro file s of the two systems differ, even
within this narrow spectrum of activities. This difference can be emphasised
by computing a normalised performance ratio - the mean of the absolute
ratios in the group is taken, and a new score is calculated as a proportion of
that mean. A score of 1 indicates that the Lingo system has performed to an
expectation in line with the general expectation based on the results for the
test group as a whole. A score greater than 1 indicates that the Lingo system
has operated better than expected on a particular test. A spread of scores

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 162

indicates that the Lingo system reacts differentially to these test activities
(and that the system is not merely faster or slower overall than the Smalltalk
system).

The mean for this group is 5.26 and the normalised performance ratios,
R , are_________________________________

Environment
test name R

A testLoadlnstVar 0.35
B testLoadTem pNRef 1.12
C testLoadTempNRef2 0.95
D testL iteralN R ef 2.16
E testLoadLiterallndirect 0.78
F testPopStorelnstV arl 1.08
G testPopStoreTem pl 0.56

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 163

In the Arithmetic group, the normalised performance ratios have been cal­
culated excluding the timings for the division tests since these timings were
so large for the Smalltalk system. The mean (unnormalised) performance
ratio was 13.1. It is unsurprising that the Lingo system operates similarly
for arithmetic on both 16 and 32 bit integers since it is essentially a 32 bit
machine.

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 164

Arithmetic
test name Lingo Smalltalk R

tim e tim e ratio
H test3Plus4 3.97 13.10 0.25
I test3LessThan4 3.48 15.80 0.35
J test3Tim es4 11.04 16.90 0.12
K test3D iv4 20.20 900.70 <0.01
L test35000Plus45000 5.24 170.70 2.49
M test35000LessThan45000 4.74 78.00 1.26
N test35000Tim es45000 12.43 247.20 1.52
0 test35000Div45000 21.69 3931.00 <0.01

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 165

The Control Flow group has only two tests; the same analysis is computed
though for the sake of completeness (The mean unnormalised performance
ratio for the group was 3.85).

Control Flow
test name Lingo Smalltalk R

tim e tim e ratio

p testShortBranch 2.60 7.70 0.77

Q testW hile 5.21 10.46 1.23

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 166

The Array and String manipulation group tests displayed the smallest
variation in performance ratios and also the smallest mean performance ratio
(2-51).__________________________________

Array and String manipulation
test name Lingo Smalltalk R

tim e tim e ratio
R testArrayAt 12.28 33.50 1.09
s test Array A tPut 12.29 38.00 1.23
T testStringAt 12.69 31.30 0.98
u testStringA tPut 16.50 37.80 0.91
V testSize 11.97 23.60 0.78

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 167

The last group. Object operations, exhibited a wide variation of ratios
and the largest mean performance ratio.

Object operations
test name Lingo Smalltalk R

time tim e ratio
w testEq 12.51 22.50 0.25
X test Class 2.38 23.60 1.35
Y testValue 16.65 215.20 1.75
Z testC reate 13.18 65.90 0.65

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 168

The following radar diagram summarises the medium scale testing of the
REKURSIV/Lingo system by giving its relative profile (against the Smalltalk/V
system used in the tests). The circle in the middle (the grid line for an R

value of 1) indicates parity - roughly, if the two systems reacted similarly
to different tasks, points on the diagram would be distributed on the circle.
Points outside the circle indicate that the REKURSIV system performs the
task more efficiently than would be expected from a comparison of averages.

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 169

Overall performance profile (REKURSIV:Smalltalk)

This profile confirms that the REKURSIV is a success to the extent that
it supports the squeezing of the semantic gap for Smalltalk-like object-
oriented programming languages. Attribute Y , testValue, is involved in
every method call (message send) and so is fundamental to the execution
of programs. Class determination (attribute X , testC lass) is an important
feature in object-oriented programming and the REKURSIV’s hardware sup­

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 170

port for this has had a positive effect.
Further discussion and evaluation of these results is to be found in chapter

8.

7.4 Large scale benchmarks
In order to assess the large scale behaviour (for database systems) of the
REKURSIV/Lingo system, two general experiments were conceived. Both
relate to the storage of relations and the retrieval of tuples within them.

7.4.1 Hashing
In the first such experiment, a hashing scheme was devised for the storage
of tuples of a relation. Under the scheme, a hash table consists of a set
of buckets and the size of this set is fixed. The hash function determines
the bucket address in which a tuple should be stored. Each bucket is a
Dictionary object - these are associative structures which hold (key,value)
associations. Dictionary is a built in collection class in both Smalltalk/V
and Lingo.

Collisions are not handled in any way. Since a Dictionary can hold an
indefinite number of associations there is no need to do so. Once dictionaries

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 171

start to contain a great number of entries though, accessing the hash table
can become very time consuming. The scheme can be used as the basis for
an extensible hashing method, where the hash table itself is increased in
size when the average load factor (the number of tuples in the relation
divided by the number of buckets in the table) rises above a threshold of
acceptability. Indeed, a purpose of this first experiment is to determine this
threshold of acceptability.

The above (inextensible) hashing scheme was programmed in both Lingo
and Smalltalk/V, and used to store a relation of cardinality 5000. The size of
the hash table was varied from 1 to 5000 buckets, giving a range of ultimate
average load factors of from 1 to 5000. The first graph shows the average
time taken (in milliseconds) to insert a tuple into a hash table in both the
Lingo and Smalltalk/V systems.

Ti
me
 (m
s)

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 172

Inserting tuples into hash tables

for a particular record.

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 173

Search by key in hash tables

P o in ts to th e e x tr e m e le ft o f th e s e g ra p h s rep resen t th e s i tu a t io n w h e n

th e h a sh ta b le s to r a g e h a s r e d u ce d to s to r a g e in a d ic t io n a r y (s in c e th e h a sh

ta b le h a s n o w o n ly o n e b u c k e t - w h ic h is a d ic t io n a r y !) .

T h e tw o s y s te m s , S m a llta lk a n d L in g o im p le m e n t d ic t io n a r ie s d ifferen tly .

In S m a llta lk , d ic tio n a r ie s are im p le m e n te d v ia e x te n s ib le h a sh ta b le s a n d

th e r e su lts con firm th is - th e p er fo rm a n ce is in d e p e n d e n t o f lo a d fa c to r a n d

so th e r e is n o a d v a n ta g e in c r e a tin g an e x te n s ib le fo rm o f th e e x p e r im e n ts

h a sh in g sch em e s in c e th e r e is n o c lea r lo a d fa c to r a t w h ic h to tr ig g e r th e

e x te n s io n o f th e h a sh ta b le .

In th e L in go sy s te m , h o w ev er , d ic t io n a r ie s are im p le m e n te d as a r r a y - l ik e

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 174

o b je c ts . T h e a d d it io n o f a k ey ,v a lu e a s s o c ia t io n (th e a t : p u t : m e th o d)

is m a n a g e d b y lin e a r ly sea rch in g th e array for an e x is t in g a s s o c ia t io n w ith

th e n e w k e y an d th e o v er w r itin g o f th e o ld a s so c ia t io n i f th is e x is t s or th e

a d d it io n o f a n e w array e le m e n t if th e k e y is n o t a lrea d y p r e se n t . T h is m e th o d

is m ic r o c o d e d . T h e re su lts in d ic a te th a t b a s in g an e x te n s ib le h a sh in g s c h e m e

o n th is p r o to ty p e sc h e m e w o u ld b e a d v a n ta g e o u s i f th e s c h e m e tr ig g e r e d

an e x te n s io n w h e n th e a v era g e lo a d fa c to r ro se a b o v e 10. A t th e s e le v e ls ,

th e L in go s y s te m w o u ld b e p er fo rm in g b e t t e r th a n th e S m a llta lk s y s t e m

b y a fa c to r o f 70 (for cr ea tio n o f r e la t io n s) a n d 8 (for se a r c h in g th r o u g h

r e la t io n s) . T h is se c o n d fa c to r is in l in e w ith an e x p e c ta t io n b a se d o n th e

s im p le e x p e r im e n ts re p o r ted in s e c t io n 7 .2 ea r lier w ith in th is ch a p te r . T h e

first fa c to r d e m o n str a te s th e a d v a n ta g e th e L in g o s y s te m ca n g a in th r o u g h

m ic r o c o d in g fe a tu r e s su ch as m e m o r y a llo c a t io n (w h ere S m a llta lk m u s t m a k e

ca lls to an o p e r a t in g s y s te m .)

7.4.2 AVL Trees
In th e se c o n d e x p e r im e n t, th e tu p le s o f a r e la t io n w ere s to r e d in a s e m i-

b a la n c e d tr e e s tr u c tu r e . E a ch n o d e o f th e tr e e ca n c o n ta in (th e o b je c t id e n ­

tifier s o f) u p to tw o tu p le s a n d (th e o b je c t id e n tifier s o f) u p to th r e e su b tr e e s .

T h e in se r t io n o f a tu p le is m a n a g ed in su ch a w a y th a t th e le n g th s o f th e

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 175

r o u te s fro m th e ro o t n o d e to a le a f n e v e r d iffer b y m o re th a n o n e (c o m p le te

b a la n c in g is n o t e n su r e d). T h e tr e e is a lso ord ered in th e se n se th a t th e

co rrec t ro u te to th e in se r t io n lo c a t io n for an in c o m in g tu p le is d e te r m in e d

c o m p le te ly b y k e y co m p a r iso n s as is th e sea rch for th e p r e se n c e o f a tu p le .

T h e b a la n c in g en su res th a t th e n u m b e r o f co m p a r iso n s th a t are m a d e is

w ith in o n e o f th e o p tim u m .

T h e fo llo w in g gra p h sh o w s th e a v era g e t im e (p er tu p le , in m ill is e c o n d s)

ta k e n to to c r ea te a tr e e a g a in s t th e u lt im a te c a r d in a lity o f th e tr e e (a g a in

for b o th th e L in go a n d S m a ll ta lk /V s y s te m s) .

Creating trees
100

CO£
_GL>
Q_
fj 10
CD
C L
CDEh-

1
100 1000 10000 100000

Cardinality
T h e n e x t grap h sh o w s th e a v era g e t im e ta k e n to sea rch fo r a tu p le b y k e y

C H A P T E R 7. P E R F O R M A N C E E V A L U A T I O N 176

in tr e e s o f v a ry in g ca rd in a lity .

cn
E
CDQ_
13

CDQ.
CDEi-

Searching by key in trees

Cardinality
T h is se c o n d gra p h con firm s a g en er a l p e r fo r m a n c e r a t io o f 8 t o 1 in fa v o u r

o f th e L in g o s y s te m w h e n m a n ip u la tin g d a ta s tr u c tu r e s (t h e sh arp d e te r io ­

r a tio n in th e L in go p er fo rm a n ce for c a r d in a lit ie s in e x c e s s o f 800 0 or so is

a ttr ib u te d to th e a g rea t in c rea se in ‘p a g er ta b le fu l l ’ fa u lts a n d th e ir c o n s e ­

q u en t g a rb a g e c o lle c t io n s a n d d isk a c c e s se s) . T a k en to g e th e r w ith th e r e su lts

for th e s im p le h a sh in g sch em e , th e g rap h s in d ic a te th a t fo r b o th th e L in g o

an d S m a llta lk sy s te m s h a sh sto r a g e a n d tr e e s to r a g e p er fo rm s im ila r ly for

sea r ch in g th ro u g h re la t io n s o f c a r d in a lity le s s th a n a fe w th o u sa n d . F u rth er

d isc u ss io n a n d e v a lu a tio n o f th e s e r e su lts is t o b e fo u n d in ch a p te r 8 .

C h a p t e r 8

C o n c l u s i o n s

8.1 Q u a l i t a t i v e r e s u l t s

T h e c o n tr ib u tio n s o f th is w ork fa ll in to tw o ca m p s . O n th e q u a lita t iv e s id e ,

th e e x p e r ie n c e o f so ftw a re c o n s tr u c tio n fo r th e L in g o /R E K U R S I V h a s y ie ld e d

re su lts th a t are tr a n sfe r a b le to o b je c t -o r ie n t e d d e v e lo p m e n t p la tfo r m s su c h

as S m a llta lk .

T h e se c o n tr ib u tio n s (o th e r th a n th e im p le m e n ta t io n o f a d a ta b a s e s y s ­

te m) are

• In th e fie ld o f F o rm a l S p e c if ic a tio n m e th o d s , th e m e th o d o lo g y e x p o s e d

in ch a p ter 6 for p ro g ra m d e r iv a tio n is an a d a p ta t io n n e w t o th is w o rk .

T h e m e th o d o lo g y ca n o n ly b e a p p lie d to d er iv e p ro g ra m s in c la ss b a s e d

177

C H A P T E R 8. C O N C L U S IO N S 178

la n g u a g e s . A r e la t io n sh ip b e tw e e n a n e q u a t io n a l s ty le o f fu n c t io n a l

p ro g ra m m in g a n d o b je c t -o r ie n te d p ro g ra m m in g h a s b e e n e s ta b lis h e d .

T h e fo r m a l sp e c if ic a t io n i t s e lf is n o v e l in th a t i t ta c k le s th e n a tu r e o f

d o m a in s .

• T h e d e v e lo p m e n t o f a to p -d o w n p a rser g e n e r a to r (c h a p te r 5) is n o v e l in

th a t th e u su a l a u to m a te d g e n e r a tio n s tr a te g y is ta b le d r iv en . T h e a d ­

v a n ta g e g a in e d b y u s in g a to p d o w n s tr a te g y lie s in th e e a se w ith w h ic h

se m a n tic a c t io n s c a n b e a tta c h e d . T h e d y n a m ic b in d in g o f S m a llta lk

(or L in g o) is th e e s s e n t ia l p r o p e r ty th a t a llo w s th e in c lu s io n o f s e m a n tic

a c t io n s to b e r e la t iv e ly tr a n sp a re n t.

• T h e m a in c o n tr ib u tio n o f th e w ork , th o u g h , is t o a rr iv e a t q u a n t ita t iv e

re su lts on th e p er fo rm a n ce o f th e R E K U R S I V d e ta ile d in th e fo llo w in g

se c t io n .

F u tu re w ork , b a se d o n th e s e c o n tr ib u t io n s , th a t th e a u th o r w o u ld lik e t o

e n g a g e in con cern :

• A m o v e m e n t a w a y fr o m th is p r o je c t ’s t ig h t c o u p lin g w ith th e r e la t io n a l

m o d e l, to w a rd s th e fu n c tio n a l m o d e l a n d a s u ita b le q u ery la n g u a g e

su ch as F D L [88]. T h is w o u ld a llo w fu n c t io n a l la n g u a g e im p le m e n ta ­

t io n te c h n iq u e s (su c h as th e su p e r c o m b in a to r a p p r o a ch in v e s t ig a te d b y

C H A P T E R 8. C O N C L U S IO N S 179

K h a n [69] to b e e m p lo y e d , as w e ll as p r o v id in g a h a r m o n io u s a n d m o r e

u n ifo r m tr e a m e n t o f th e d ifferen t le v e ls o f th e a r c h ite c tu r e .

• T h e fu r th e r d e v e lo p m e n t o f c o m p ile r w r it in g to o ls . A d if f ic u lty w ith

th e p a r se r -g e n e r a to r d e v e lo p e d w ith in th is p r o je c t is th e d if f ic u lty o f

d ise n ta n g lin g s y n ta c t ic an d s e m a n tic d e f in it io n s w ith in th e so u rce file .

V is u a l p ro g ra m m in g te c h n iq u e s w ith in a w e ll c o n s id e r e d u ser in te r fa c e

m a y y ie ld a tr u ly u se a b le c o m p ile r w ork b e n c h . In a d d it io n , w ork

sh o u ld b e d o n e to in c o rp o ra te a m o r e fo r m a l a p p r o a ch to s e m a n tic s

sp e c if ic a t io n .

• T h e re fin e m en t o f p ro g ra m d e r iv a tio n fr o m a lg e b r a ic sp e c if ic a t io n s .

T h e q u e s t io n o f s ta te in su ch s p e c if ic a t io n s a n d th e in c lu s io n o f h ig h e r -

ord er fu n c tio n s re m a in as ch a lle n g e s .

8 . 2 T h e u s e o f t h e R E K U R S I V f o r d a t a b a s e

w o r k

T h e r e su lts , p a r tic u la r ly fro m ch a p ter 7, in d ic a te th a t th e R E K U R S I V is n o t

an id e a l ta r g e t for d a ta b a se im p le m e n ta t io n s in it s p r e se n t fo rm .

A cru c ia l fa c to r in d a ta b a se w ork is th e e ffic ien t s to r a g e a n d r e tr ie v a l

C H A P T E R 8. C O N C L U S IO N S 180

o f la rg e se ts o f d a ta . T h e e x p e r im e n ts c o m p a r in g h a sh s to r a g e a n d tr e e

s to r a g e , in d ic a te th e R E K U R S I V ’s p e r fo r m a n c e is fin e u n t i l , p u t cr u d e ly , i t

is ‘f u l l ’, a t w h ic h p o in t th e r e is a c a ta s tr o p h ic d e te r io r a tio n in p er fo rm a n ce .

T h e tr a g e d y is th a t th is ‘fu lln e s s ’ is fa lla c io u s - th e rea l p h y s ic a l m e m o r y is

p e r fe c t ly ca p a b le o f c o n ta in in g th e s m a ll r e la t io n s o f c a r d in a lity 800 0 or so

a n d is n o t c o m p le te ly a llo ca te d ; it is th e pager tables th a t are fu ll s in c e th e

s y s te m , in p u r su a n c e o f th e r e la t io n a l o p e r a t io n , h a s g e n e r a te d in e x c e s s o f

6 4 K o b je c ts . T h e e n su in g g a rb a g e c o lle c t io n (a n d i t s a s s o c ia te d d isk a c c e s s e s)

th e n c o m p le te ly sw a m p s p er fo m a n ce as th e s y s t e m tr ie s to m a k e sp a c e in t h e

p a g er ta b le s for a n o th e r o b je c t id e n t if ie r w h ils t k e e p in g as m a n y associated

o b je c t id e n tif ier s in p la c e as p o ss ib le . T h e m a jo r ity o f r e s id e n t o b je c ts are

a s s o c ia te d b y v ir tu e o f re p r esen tin g tu p le s fr o m th e o p e r a n d s o f w h a te v e r

r e la t io n a l o p e r a t io n is cu rr en tly b e in g p erfo rm e d .

L arger p a g er ta b le s w o u ld a llo w th e d e g r a d a tio n p o in t n o t to b e r e a c h e d

u n t il h ig h er c a r d in a lit ie s w ere e n c o u n te r e d b u t w o u ld n o t re m o v e th e p r o b ­

le m a lto g e th e r . A lte r n a tiv e ly , an in v e s t ig a t io n o n o p t im a l g a rb a g e c o lle c t io n

s tr a te g ie s m a y a m e lio r a te th e c a ta s tr o p h ic d e g r a d a tio n fo r particu lar d a ta

s to r a g e re g im es .

T h e R E K U R S IV re co g n ise s s o m e c la sse s o f o b je c ts as com pact. C o m p a c t

o b je c ts h a v e th e ir ty p e s an d v a lu es c o d e d in to th e ir 4 0 - b i t o b je c t id e n tif ie r s

C H A P T E R 8. C O N C L U S IO N S 181

a n d d o n o t req u ire u se o f th e p a g er ta b le s . T h e u se o f c o m p a c t o b je c ts

se e m s u n r e a lis t ic , h o w ev e r , s in c e th e L in g o s y s t e m i t s e l f m u s t b e m o d if ie d to

r e c o g n ise th e m a n d it is n o t c o m p le te ly c lea r h o w th is c a n b e d o n e .

A ra d ic a l a p p ro a ch to d a ta b a se im p le m e n ta t io n u s in g th e R E K U R S I V

w o u ld b e to r e m o v e i t fro m th e H A D E S co n fig u r a tio n a lto g e th e r a n d p r o v id e

i t w ith i t s o w n d isk p ro cesso r ra th e r th a n th e a r t if ic ia l a r r a n g e m e n t o f u s in g

th e h o s t c o m p u te r ’s U n ix f ile s to r e . In a d d it io n , for d e d ic a te d d a ta b a s e

w ork , it is u n n e c e s sa r y to h a v e th e R E K U R S I V co n fig u red for th e g e n e r a l

p u r p o se p ro g ra m m in g la n g u a g e L in g o w ith th e o v er h e a d s th a t p r o v is io n o f

g en er a l p u r p o se p o w er e n ta il . In p r in c ip le , s to r a g e r e g im e s , su ch as b a la n c e d

tr e e s a n d e x te n s ib le h a sh ta b le s , c r u c ia l a s p e c ts o f d a ta b a se w ork , c o u ld

b e m ic r o c o d e d a n d su p p o rt a n y R E K U R S I V co n fig u ra tio n . A t p r e se n t , th e

o n ly b u i l t - in a s s o c ia t iv e sto ra g e s tr u c tu r e a v a ila b le o n th e R E K U R S I V is

th e D i c t i o n a r y c la ss , w h o se m e th o d s are m ic r o c o d e d . H o w ev e r , th e s e are

im p le m e n te d as lin e a r a r r a y -lik e s tr u c tu r e s for w h ic h sea r ch a n d lo o k u p h a s

0 (n) e ffic ien cy . A s s o c ia t iv e s tr u c tu r e s b a se d o n A V L tr e e s (w h e r e lo o k u p h a s

O (lo g (n)) e f f ic ie n c y) w o u ld p erfo rm b e t t e r fo r su ff ic ie n tly la rg e c a r d in a lity

n (th e n u m b e r o f e le m e n ts s to r ed in th e s tr u c tu r e) . M ic r o c o d in g A V L tr e e s

w o u ld d e c r e a se th e th r e sh o ld c a r d in a lity a t w h ic h a d v a n ta g e is g a in e d . T h is

b e n e fit , h o w ev e r , w o u ld o n ly h o ld as lo n g as th e c a r d in a lity w a s sm a ll e n o u g h

C H A P T E R 8. C O N C L U S IO N S 182

to a v o id d isk p r o c e ss in g (th r o u g h e ith e r th e p h y s ic a l o b je c t s to r e or th e p a g er

ta b le s b e in g fu ll) a t w h ic h p o in t th e in p u t /o u t p u t co st b e c o m e s th e im p o r ta n t

fa c to r .

8 . 3 T h e v e r d i c t o n t h e R E K U R S I V

T h e e x p e r im e n ta t io n for th is is p r e se n te d in ch a p te r 7. H o w is th is t o b e

ju d g ed ? C lea r ly , it is im p o ss ib le to g iv e a p o s it iv e v e r d ic t o n th e R E K U R ­

S IV - th e w o r ld h a s a lrea d y d e n ie d th is w ith th e d e m is e o f L in n -S m a r t

C o m p u tin g .

O n te c h n ic a l g ro u n d s th e R E K U R S I V is a su c c e ss . T h e r e s u lts in c h a p te r

7 sh o w th a t it s c o m p u ta t io n a l p ro file is d ifferen t fro m a c o n v e n t io n a l p ro ­

cessor a n d th a t its p ro file fa v o u rs th e fu n d a m e n ta l o p e r a t io n s th a t su p p o r t

o b je c t -o r ie n ta t io n (c la ss d e te r m in a t io n , m e ssa g e se n d in g , m e th o d lo o k - u p

an d so o n) .

T h e R E K U R S I V ’s h a n d lin g o f la rg e d a ta se ts is ra th er h a rd er to d isc e r n -

a ra th e r g o o d p er fo rm a n ce su d d e n ly w o r se n s as th e m e c h a n ic s o f th e v ir tu a l

m e m o r y m a n a g e m e n t s y s te m are b r o u g h t in to p lay . P a r t ly th is is u n fa ir to

th e R E K U R S I V , s in c e i t w as d e s ig n e d to o p e r a te w ith it s o w n d isk p r o c e sso r

m a n a g in g th e sw ap sp a ce ra th er th a n c o m m u n ic a te w ith a u n ix f ile s y s t e m

C H A P T E R 8. C O N C L U S IO N S 183

th r o u g h so m e r e g is ter s o n th e V M E b u s o f th e h o s t S u n w o r k s ta t io n . O n

th e o th e r h a n d , th e p r o b le m r e a lly e m a n a te s fr o m th e p a g er ta b le s b e in g

to o sm a ll (o r f ix e d in s iz e a t a ll) ra th e r th a n m a in o b je c t m e m o r y b e in g

fu ll. T h is d e ta il d o es n o t se r io u s ly d e tr a c t fr o m th e te c h n ic a l su c c e s s o f th e

R E K U R S I V ch ip se t .

T h e rea l p r o b le m lie s in th e R E K U R S I V p r o je c t i t s e lf . I t is e x tr e m e ly

d o u b tfu l th a t architectural a d v a n ces in p r o c e sso r d es ig n ca n b e su c c e s s fu l

a t le a s t w h e n p r e se n te d o n th e ir o w n w ith o u t ta k in g s ig n ific a n t a d v a n ta g e

o f a n a d v a n c e in th e u n d e r ly in g im p le m e n ta t io n te c h n o lo g y . H a r la n d h a s

a rg u ed th a t h is a r c h ite c tu r e sq u e e z e s th e s e m a n tic g a p a n d th a t a d v a n c es

in u n d e r ly in g te c h n o lo g y i f a p p lie d to th e R E K U R S I V w o u ld m a in ta in its

a d v a n ta g e over c o n v e n tio n a l p ro ce sso rs . T h is m is se s th e p o in t th a t th e s e

te c h n o lo g ic a l a d v a n c es are so g rea t th a t th e y c o m p le te ly sw a m p a r c h ite c tu r a l

a d v a n ta g e . In a d d it io n , te c h n o lo g ic a l a d v a n c e o cc u r s in r e a c t io n to a n e e d .

T h e a d v e n t o f R IS C p ro cesso rs in th e la te n in e te e n e ig h tie s g e n e r a te d a n e e d

for fa s t ca c h e te ch n o lo g y . T od ay , th e fr u its o f ca c h e te c h n o lo g y h a v e b e e n

a p p lie d to n o n -R I S C p ro cesso rs su ch as th e In te l 8 0486 to a llo w p ro ce sso r

c lo c k r a te s an ord er o f m a g n itu d e g re a te r th a n w ere p o s s ib le s ix y ea rs ago .

It is a lso fa lla c io u s to b e lie v e th a t th e r e is su ch a th in g as a c o n v e n t io n a l

p ro ce sso r . T h e d is tr ib u tio n o f ‘in te l l ig e n c e ’ th r o u g h o u t a c o m p u te r (in te r r u p t

C H A P T E R 8. C O N C L U S IO N S 184

m e c h a n ism s , d ir ec t m e m o r y a cc ess , f lo a t in g -p o in t a n d g r a p h ic s p r o c e sso r s ,

in te l l ig e n t d isc co n tro llers a n d so o n) h a v e c o m p le te ly d is ta n c e d th e c o m p u te r

fr o m its a n cesto rs . T h e s e a d v a n ces re p r esen t c o n tin u e d effort a t s tr e a m lin in g

th e c o m p u ta t io n p ro ce ss r a th e r th a n a t t e m p ts to r e v o lu t io n is e th e c o m p u ta ­

t io n a l b a s is . T h is la s t is a v a in g o a l - in th e e n d a ll p r o c e s s in g m a c h in e s are

T u r in g eq u iv a le n t .

8 . 4 T h e failure

T h e la s t s e c t io n p a in ts a b le a k p ic tu r e . W h a t are th e le s so n s to b e lea rn ed ?

It is in s tr u c t iv e to r e m em b e r th a t in th e f ie ld o f p ro ce sso r d e s ig n , as in so

m u c h o f C o m p u tin g , id e a s a c h ie v e su c c e ss i f th e co st o f im p le m e n t in g th e m

w ill o b v io u s ly b e re co u p e d q u ick ly . T h e su c c e ss o f th e p e r so n a l c o m p u te r

w a s n o t d u e to it s te c h n ic a l m e r it . I t d id n o t im m e d ia te ly r e v o lu t io n is e p e o ­

p le ’s w ork p r a c tic e . In s te a d it in s in u a te d i t s e l f in to in d is p e n s a b il ity th r o u g h

g ra d u a l s ta g e s o f u se fu ln e ss , m o st o f w h ic h w ere a d v a n c es in so ftw a re a p p li­

c a t io n s .

T h e R E K U R S IV w as to o la rg e a b it e to sw a llo w . O n a ll fr o n ts i t w a s a

n o v e lty .

• U sers req u ired a S u n w o r k sta t io n to u se th e ir R E K U R S I V . N o o th e r

C H A P T E R 8. C O N C L U S IO N S 185

processor in this target market was hosted in this way. The Sun work­

station itself became cheaper and more powerful than its embedded

REKURSIV.

• The language Lingo was a proprietary product. Smalltalk or C + +

would have given an aroma of familiarity.

• The system could not communicate with any existing software or data

systems.

8.5 T h e f u t u r e

Putting to one side the political and economic factors surrounding the REKUR­

SIV project Harland’s work has shown an object-oriented processor is feasi­

ble. To move into the future the following recommendation can be made.

A standard for processor architectures should be established. The SPARC

standard is an example of such a standard. The specification (SPARC) is

separated from the implementation. This allows a gradualist introduction

of coprocessor support since the processor-coprocessor interface is defined.

From there, an investigation of the processing needs of object-oriented ap­

plications could delineate specific activities to build coprocessor support for

(this approach has been successfully used for the introduction of graphics

C H A P T E R 8. C O N C L U S IO N S 186

terminals and dedicated X-terminals).

What such an investigation would reveal is beyond the author. High

performance message sending and hardware typing support, the technical

successes of the REKURSIV, will no doubt be important but it is too early to

devise a clearly interfaced mechanism that will allow a conventional processor

to successfully share its burden with an object-oriented coprocessor.

The irony is, in the end, that despite the seductive naturalness of object-

orientation, the real question is “What do we mean by an object?”.

B i b l i o g r a p h y

[1] Abramsky, S. and Sykes, R. 1985. SECD-M: A Virtual Machine for

Applicative Programming. In: Functional Program m ing Languages and

C om puter Architectures, L N C S 201 , London: Springer-Verlag.

[2] Aho, A.V., Sethi, R. and Ullman, J.D. 1986. C om pilers : P rin cip les,

Techniques and Tools, Reading, Mass:Addison-Wesley.

[3] Atkinson, M.P. and Buneman, O.P. 1989. Types and P ersisten ce in

D atabase Program m ing Languages, Persistent Programming Research

Report 17-85, Universities of Glasgow and St. Andrews.

[4] Babb, E. 1979. Implementing a relational database by means of spe­

cialised hardware. A C M Transactions on D atabase S ystem s, 4(1): 1-

29.

187

B I B L I O G R A P H Y 188

[5] Backus, J. 1959. The Syntax and Semantics of the Proposed Inter­

national Algebraic Language of the Zurich ACM-GAMM conference.

In: Proceedings In ternational Conference on In form ation P rocessing ,

Paris: UNESCO, 125-132.

[6] Bell, D. 1990. Database Machines. In: A practica l guide to D atabase

system s edited by S.M. Deen. London: Pitman, chapter 11.

[7] Birtwhistle, G., Dahl, O.J., Myhrhaug, B. and Nygaard, K. 1973. SIM ­

ULA begin, New York: Petrocelli Charter.

[8] Bitton, D., Boral, H., De W itt, D.J. and Wilkinson, W.W. 1983. Par­

allel Algorithms for the Execution of Relational Database Operations.

A C M Transactions on D atabase S ys tem s , 8 (3), 324-353.

[9] Bitton, D., De W itt, D.J., Hsiao, D.K. and Menon, J. 1984. A Taxon­

omy of Parallel sorting. A C M C om puting Su rveys , 16 (3), 287-318.

[10] Boral, H. and De W itt, D.J. 1981. Processor Allocation Strategies for

Multiprocessor Database Machines. A C M Transactions on D atabase

S ystem s , 6 (2), 227-254.

B I B L I O G R A P H Y 189

[11] Boutel, B. 1987. Combinators as Machine Code for Implementing Func­

tional Languages. In: F unctional Program m ing: Languages, Tools and

A rchitectures , edited by S. Eisenbach. Chichester: Ellis Horwood.

[12] Buneman, P., and Frankel, R.E. 1979. FQL - A Functional Query

Language. In: Proceedings o f S IG M O D 79 Conference, B oston , edited

by P.A. Bernstein, 52-59.

[13] Burstall, R.M. and Lampson, B. 1984. A Kernel Language for Abstract

Data Types and Modules. In: Proceedings o f Sem an tics o f D a ta Types

Conference, S oph ia-A n tipo lis , France, L N C S 1173 , London: Springer-

Verlag.

[14] Cardelli, L. 1983. ML under UNIX. In: P olym orph ism : The

M L /L C F /H o p e N ew sletter, 1 (3).

[15] Cesarini, F. and Salza, S. (Editors). 1987. D atabase M achine perfor­

m ance: m odelling m ethods and evaluation strategies, L N C S 257, Lon­

don: Springer-Verlag.

[16] Chamberlin, D.D. et al. 1976. SEQUEL 2: a unified approach to data

definition, manipulation and control. IB M jou rn a l o f R esearch and D e­

velopm ent, 20 (6), 560-575.

B I B L I O G R A P H Y 190

[IT] Clarke, T.J.W., Gladstone, P.J.S., MacLean, C.D. and Norman, A.C.

1980. SKIM - the S, K, I Reduction Machine. In: L isp Conference,

Standford, 1980..

[18] Codd, E.F. 1970. A relational model of data for large shared data

banks. C om m unications o f the A C M , 13 (6), 377-387.

[19] Codd, E.F. 1971. A database sublanguage founded on the relational

calculus. In: Proceedings o f the 1971 A C M -S IG F ID E T W orkshop on

D ata D escrip tion , Access and Control, San Diego, C aliforn ia , 35-68.

[20] Correll, C.H. 1978. Proving Programs Correct through Refinement.

A cta In form atica , 121-132.

[21] Dahl, 0 . J. and Nygaard, K. 1966. Simula - an ALGOL-based simula­

tion language. C om m unications o f the A C M , 9 (9), 671-678.

[22] Darlington, J. and Reeve, M.J. 1981. ALICE, a Multiprocessor Reduc­

tion Machine for the Parallel Evaluation of Applicative Languages. In:

Proceedings A C M Conference o f Functional Program m ing Languages

and C om puter A rchitectures, P ortsm ou t, N ew H am pshire, 1981 , ACM,

166-170.

B I B L I O G R A P H Y 191

[23] Darlington, J. and Reeve, M.J. 1983. ALICE and the Parallel Evalua­

tion of Logic Programs. In: Proceedings o f the 10th A nnual A C M /IE E E

S ym posium on C om puter A rchitecture, Stockholm, 1983 , ACM.

[24] Date, C.J. 1991. A n In troduction to D atabase M anagem en t system s,

Volume I, Reading,Mass: Addison-Wesley.

[25] Davie, A.J.T. and R. Morrison, R. 1981. R ecursive D escen t C om piling ,

Chichester: Ellis Horwood.

[26] Deen, S.M. 1985. DEAL - a relational language with deduction, func­

tions and recursion. D ata and K now ledge E ngineering , 1 .

[27] DeMarco, T. 1978. Structured A n alysis and S ystem Specification, New

York: Yourdon Press.

[28] De W itt, D.J. et al. 1986. Gamma - a high performance dataflow

database machine. In: Proceedings o f the In tern a tion al Conference on

Very Large D atabases, 1986 , 228-237.

[29] Fairbairn, J. and Wray, S. 1987. Tim - A simple, lazy abstract ma­

chine to execute supercombinators. In: Proceedings o f the Third Con­

ference on Functional Program m ing Languages and C om pu ter A rch i­

tecture, L N C S 274- Berlin: Spinger-Verlag.

B I B L I O G R A P H Y 192

[30] Folinus, J.J., Madnick, S.E. and Shutzmann, H.B. 1974 Virtual infor­

mation in database systems. A C M S IG F ID E T , 6.

[31] Frost, R.A. 1986. In troduction to K now ledge B ased System s. Collins,

London.

[32] Futatsugi, K., Goguen, J., Meseguer, J. and Okada, K. 1987.

Parametrized Programming in OBJ2. In: Proceedings o f the 9th In ­

tern a tion al Conference on Softw are Engineering, M on terey , 51-60.

[33] Gamerman, S. and Scholl, M. 1985. Hardware versus Software Data

Filtering - the VERSO experience. In: Proceedings o f the J[th In ter­

national W orkshop on D atabase M achines, G rand B aham a Islands.

Berlin: Springer-Verlag, 125-136.

[34] Gane, C. and Sarsen, T. 1979. Structured S ystem s A n alysis: tools and

techniques, Englewood Cliffs, NJ: Prentice-Hall.

[35] Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. 1977.

Initial Algebra Semantics and Continuous Algebras. Journal o f the

A C M , 24, 68-95.

[36] Goguen, J.A., Thatcher, J.W. and Wagner, E.G. 1978. An initial alge­

bra approach to the specification, correctness and implementation of

B I B L I O G R A P H Y 193

abstract data types. In: C urrent trends in Program m ing M ethodology,

Volume IV , edited by R. Yeh. Prentice-Hall.

[37] Goguen, J.A. 1983. P aram eterized Program m ing. Menlo Park, Ca.: SRI

International Computer Science Lab.

[38] Goguen, J.A. and Meseguer. 1987. Unifying Functional, O bject-

oriented and Relational Programming. In: R esearch D irection s in

O bject-orien ted Program m ing , edited by B.Shriver and P. Wegner,

Cambridge, Mass.: MIT press, 417-477.

[39] Goldberg, A. and Robson, D. 1983. S m allta lk -80 : the language and

its im plem en ta tion , Reading, Mass.: Addison-Wesley.

[40] Goldberg, A. 1984. Sm allta lk -80 : the in teractive program m ing envi­

ron m en t, Reading, Mass.: Addison-Wesley.

[41] Goodenough, J.B. and Gerhart, S.L. 1975. Towards a theory of test

data selection. IE E E Trans, on Software E ngineering , SE—1 (J u n e) ,

156-173.

[42] Gray, P. 1984. Logic, Algebra and D atabases, Chichester: Ellis Hor-

wood.

B I B L I O G R A P H Y 194

[43] Gray, P.M.D., Paton, N.W. and Kulkarni, K.G. 1992. O bject-O rien ted

D atabases: a Sem an tic D a ta M odel Approach, Prentice-Hall Interna­
tional.

[44] Greenblatt, R.D., Knight, T.F., Holloway, J. et al. 1984. The LISP
Machine. In: In teractive Program m ing E nvironm ents, edited by D.R.
Barstow, H.E. Shrobe and E. Sandwell. New York: McGraw-Hill, 326-
352.

[45] Guttag, J.V. 1977. Abstract Data Types and the Development of Data
Structures, C om m unications o f the A C M , 20, 396-404.

[46] Guttag, J.V., Horowitz, E. and Musser, D.R. 1978. Abstract Data
Types and Software Validation, C om m unications o f the A C M , 21,
1048-1064.

[47] Guttag, J.V. and Horning, J.J. 1983. P relim in ary R ep o rt on the Larch

Shared Language. Palo Alto, Ca.: Xerox Corporation.

[48] Hall, A. 1990. Seven Myths of Formal Methods. IE E E Software, 4
(S ep tem ber), 11-19.

B I B L I O G R A P H Y 195

[49] Hall, A. and Pfleeger, S.L. May 1995. Some metrics from a formal
development. In: IE E Colloquium on: P ractica l A pplica tions o f F orm al

M ethods.

[50] Held, G.D., Stonebraker, M. and Wong, E. 1975. INGRES - A rela­
tional database management system. In: Proceedings o f A F IP S 1975

N C C Vol. 44- Montvale N.J.: AFIPS Press, 409-416.

[51] Harland, D.M. 1984. P olym orph ic Program m ing Languages, Chich­
ester: Ellis Horwood.

[52] Harland, D.M. 1988. R E K U R S IV : an object-orien ted arch itecture ,

Chichester: Ellis Horwood.

[53] Harland, D.M. 1989. A Guide To Lingo, Glasgow: Linn Smart Com­
puting Limited.

[54] Harper, R., MacQueen, D. and Milner, R. 1986. S tandard M L, E C S -

L F C S -8 6 -2 , Edinburgh: Laboratory for Foundations of Computer Sci­
ence, University of Edinburgh.

[55] Held, G.D., Stonebraker, M. and Wong, E. 1975. INGRES - A rela­
tional database management system. In: Proceedings o f A F IP S 1975

N C C Vol. 4 4 • Montvale N.J.: AFIPS Press, 409-416.

B I B L I O G R A P H Y 196

[56] Henderson, P. 1980. Functional Program m ing: A pplica tion and Im ple­

m en ta tion . Englewood Cliffs, NJ: Prentice Hall International.

[57] Hoare, C.A.R. 1969. An Axiomatic Basis for Computer Programs.
C om m unications o f the A C M , 12, 576-580.

[58] Hoffman, C.M. and O’Donnell, M.J. 1982. Programming with Equa­
tions. A C M Transactions on Program m ing Languages and S ys tem s , 4
(6 Jan u ary), 83-112.

[59] Hsiao, D.K. 1983. Advanced database m achine architecture, Englewood
Cliffs, NJ: Prentice Hall International.

[60] . Hughes, J. 1982. Graph reduction w ith S u per-C om bin ators, P R G -2 8 ,
Oxford: Oxford University Computing Laboratory.

[61] Ingalls, D.H.H. 1978. The Smalltalk-76 Programming System Design
and Implementation. In: Proceedings o f the 5th P O P L , Tucson, A r i­

zona, 9-17.

[62] Ingalls, D.H.H. 1984. The Evolution of the Smalltalk-80 Virtual Ma­
chine. In: S m allta lk-80 : bits o f h is to ry , w ords o f advice, edited by G
Krasner. Reading, Mass.: Addsion-Wesley, 153-174.

B I B L I O G R A P H Y 197

[63] Johnson, S.C. 1975. Yacc - y e t another com piler com piler , C .S. Tech­

nical report 32, Murray Hill, NJ: Bell Telephone Laboratories.

[64] Johnsson, T. 1984. Efficient Computation of Lazy Evaluation. A C M

S IG P L A N , 19 (6), 58-69.

[65] Jones, C.B. 1980. Software D evelopm ent: A R igorous A pproach , En­
glewood Cliffs, NJ.: Prentice-Hall International.

[66] Jones, C.B. 1986. S ystem atic Softw are D evelopm ent using V D M , En­
glewood Cliffs, NJ: Prentice Hall International.

[67] Jones, S.B. and Sinclair, A.F. 1989. Functional Programming and Op­
erating Systems. The C om puter Journal, 32 (2), 162-174.

[68] Kay, A. and Goldberg, A. 1977. Personal Dynamic Media. C om pu ter ,
10 (3), 31-42.

[69] Khan, M.Y. 1993. The Im plem en ta tion o f Functional Languages on an

O bject-orien ted A rchitecture, PhD Thesis, Dundee Institute of Tech­
nology.

[70] Krasner, G. (Editor). 1983. S m allta lk -80 : bits o f h istory , w ords o f

advice, Reading, Mass.: Addison-Wesley.

B I B L I O G R A P H Y 198

[71] Leavenworth, B. 1970. Review #19420. C om puting R eview s , 11 (Ju ly),
396-397.

[72] Lesk, M.E. and Schmidt, E. 1975. Lex - A Lexical A n a lyzer G ener­

ator, C.S. Technical R eport No. 39, Murray Hill, NJ: Bell Telephone
Laboratories.

[73] London, R.L. 1971. Sotware Reliablity through Proving Programs Cor­
rect. In: Proceddings o f IE E E In tern ation al S ym posium on Fault Tol­

erant C om puting , Los Alamitos, CA: IEEE.

[74] McCall, K. 1983. The Smalltalk-80 Benchmarks” . In: S m allta lk -80 :

bits o f h istory, w ords o f advice, edited by G Krasner. Reading, Mass.:
Addsion-Wesley, 153-174.

[75] Meyer, B. 1985. On Formalism in Specifications. IE E E Software, 2
(January), 6-26.

[76] Milne, A.C. 1984. A Syntax A n a lyser and M anipulation T ool M.Sc.
thesis, University of St. Andrews.

[77] Milner, R. 1979. A Theory of Type Polymorphism in Programming.
Journal o f Com p. Sys. Sci, 17 (3), 1979.

B I B L I O G R A P H Y 199

[78] Milner, R. 1984. A Proposal for Standard ML. In: Proceedings o f

A C M Sym posium on L isp and Functional Program m ing, A ustin , Texas,

ACM.

[79] Moon, D. and Weinreb, D. 1986. Object-oriented Programming with
Flavors. In: Proceedings o f the 1st O O P SL A , Portland, Oregon. 1-8.

[80] Morris, J.H. 1973. Types are not Sets. In: Proceedings o f the 1 st A C M

sym posiu m on P rincip les o f Program m ing Languages, 120-124.

[81] Natanson, L.D., Samson, W.B. and Wakelin, A.W. 1991. A Recursive
Database Query Language on an Object-Oriented Processor. In: A pp li­

cations o f Supercom puters in Engineering II. edited by C.A. Brebbia,D.
Howard and A. Peters. Southampton: Computational Mechanics Pub­
lications, 191-205.

[82] Naur, P. 1960. Report on the Algorithmic Language ALGOL60. C om ­

m unications o f the A C M , 3 (5), 229-314.

[83] Naur, P. 1969 Programming by Action Clusters. B IT , 9 (3), 250-258.

[84] Nix, C.J. and Collins, B.P. 1988. The Use of Software Engineering,
Including the Z Notation, in the Development of CICS. Q uality A ssu r­

ance, 14 (S ep tem ber), 103-110.

B I B L I O G R A P H Y 200

[85] Patterson, D.A. 1985. Reduced Instruction Set Computers. C om m uni­

cations o f the A C M , 28 (1), 8-21.

[86] Peter Deutsch, L. 1983. The D orado Sm allta lk -80 Im plem en ta tion :

H ardware A rch itectu re’s Im pact on Software Architecture. Reading
Mass.: Addison-Wesley.

[87] Pier, K.A. 1983. A Retrospective on the Dorado, a High Performance
Personal Computer. In: Proceedings o f the 10th A nnual Sym posiu m on

C om puter Architecture, Stockholm , 252-269.

[88] Poulovassilis, A. 1992. The Implementation of FDL, a Functional
Database Language. The C om pu ter Journal, 35 (2), 119-128.

[89] Reade, C.M.P. 1989. Balanced Trees w ith R em ovals: an E xercise in

R ew riting and P ro o f Brunei University Computer Studies Technical
Report CSTR-89-3.

[90] Sadeghi, R. 1988. HQL - A Historical Query Language. In: Proceedings

o f B N C O D 6, Cambridge: Cambridge University Press.

[91] Samson, W.B, Deen, S.M. Wakelin, A.W. and Sadeghi R. 1987. For­
malising the Relational Algebra — Some specifications, observations,

B I B L I O G R A P H Y 201

problems and suggestions. Presented at: Form al M ethods W orkshop,

Teesside Polytechnic (U K).

[92] Samson,W.B. and Wakelin, A.W. 1989. PEARL - a database query
language for the integration of data and knowledge bases. In: Proceed­

ings o f the In ternational conference on A I in in du stry and governm ent,

Hyderabad, India , edited by P. Balagurusamy, London: Macmillan.

[93] Samson, W.B. and Wakelin, A.W. 1992. Algebraic Specification of
Databases - a survey from a Database Persepective. In: Specification o f

D atabase System s, Glasgow 91, edited by D. J. Harper and M.C. Norrie.
Berlin: Springer-Verlag.

[94] Schach, S.R. 1993. Software Engineering, 2nd E d itio n , Homewood, II:
Aksen Associates, 160-161

[95] Schweppe, H. Zeidler, H. Hell, W. et al. 1983. RDBM - a Dedi­
cated Multiprocessor System for Database Management. In: A dvanced

D atabase M achine A rch itecture , edited by D.K. Hsiao. Prentice-Hall,
36-86.

[96] Shao, J., Bell, D.A. and Hull, M.E.C. 1988. LQL: A Unified Language
for Deductive Database Systems. In: Proceedings o f IF IP In tern a tion a l

B I B L I O G R A P H Y 202

Conference on the Role o f A I in D atabases and In form ation S ystem s.

[97] Shipman, D.W. 1981. The functional data model and the data language
DAPLEX. A C M tran saction s on D atabase S ystem s , 6 (1).

[98] Shoch, J.F. 1979. An Overview of the Programming Language
Smalltalk-72. A C M S IG P L A N N otices , 14 (9), 64-73.

[99] Smith, D.E. 1975. P ygm alion , a Creative P rogram m ing E nvironm ent.

AI memo 26, Cambridge Mass.: Massachusetts Institute of Technology
AI lab.

[100] Smith, D.C, Irby, C., Kimball, R. et al. 1983. Designing the Star User
Interface. In: Integrated In teractive Com puting S ys tem s , edited by P.
Degano and E. Sandwell, Amsterdam: North-Holland, 297-313.

[101] Spivey, J.M. 1992. The Z nota tion : a refem ce m anual, second edition ,

New York: Prentice Hall.

[102] Stabler, H., Drummond, B., Rose, S. and Harland, D. 1989. The

R E K U R S IV C in stru ction s , Glasgow: Linn Smart Computing Lim­
ited.

B I B L I O G R A P H Y 203

[103] Stonebraker, M., Wong, E. and Kreps, P. 1976. The Design and Im­
plementation of INGRES. A C M Transactions on D atabase S ys tem s , 1

(3), 189-222.

[104] Stoye, W.' 1985. The im plem en ta tion o f function al languages using cus­

tom hardware. Ph.D. thesis, Technical report 81. University of Cam­
bridge.

[105] Sussman, G.J. 1981. Scheme-79-Lisp on a Chip. IE E E C om pu ter , 14
(7), 10-21.

[106] S Thatte, S. 1987. A Refinement of strong sequentiality for term rewrit­
ing with constructors. In form ation and C om pu ta tion , 72 (1), 46-55

[107] Tsichritzis, D.C. and King, A. (editors). 1978. The ansi/X3/SPARC
DBMS Framework: report of the study group on Data Base Manage­
ment Systems. Inform ation sy s tem s (3).

[108] Turner, D. 1979. A New Implementation Technique for Applicative
Languages. Software Practice and E xperience, 9

[109] Turner, D. 1985. Miranda - a non-strict functional language with poly­
morphic types. In: Proceedings o f the conference on F unctional P ro -

B I B L I O G R A P H Y 204

gram m ing Languages and C om pu ter Architecture, L N C S 201 , Berlin:
Springer-Verlag.

[110] Ullman, J.D. 1982. P rincip les o f D atabase System s. Rockvile, Md.:
Computer Science Press.

[111] Ungar, D. and Patterson, D. 1987. What Price Smalltalk? IE E E C om ­

p u ter , 18 (1), 67-74.

[112] Wakelin, A.W. 1988. A database query language for operations on
graphical objects. Ph.D. thesis, Dundee Institute of Technology.

[113] Waugh, K.G, Williams, M.H., Kong, Q. Salvani, S. and Chen, G. 1990.
Designing SQUIRREL: an extended SQL for a deductive database sys­
tem. The C om puter Journal, 33 (6), 535-546.

[114] Weinreb, D. and Moon, D. 1981. L IS P M achine m anual, Cambridge
Mass.: Symbolics Inc.

[115] Yourdon, E. and Constantine, L.L. 1979. Structured D esign: Funda­

m entals o f a D iscipline o f C om pu ter Program and S ystem D esign En­
glewood cliffs, NJ: Prentice Hall.

[116] Zloof, M.M. 1977. Query By Example: a Database Language. IB M

S ystem s Journal, 16, 324-343.

A p p e n d i x A

C o d e f o r t h e p r e l i m i n a r y

e x p e r i m e n t

In Smalltalk, nodes involving addition are modelled by the class P lu s -
Object su b c lass: #Plns

instanceVariableNam es: J l e f t r i g h t 1
classVariableNam es: })
p o o lD ic tio n a rie s : >} !

!Plus c la ss methods!
of: a and: b
"c rea te a new node rep resen tin g a + b "

((super new) l e f t : a r ig h t : b); ;
!Plus methods!
"p riv a te - se t in stan ce v a r ia b le s of newly c rea ted in stan ce"
l e f t : a r i g h t : b

l e f t := a.
r ig h t := b .

205

A P P E N D I X A . C O D E F O R T H E P R E L I M I N A R Y E X P E R I M E N T 206

I
compute
" re tu rn th e r e s u l t of th e ad d itio n fo r th i s node"

((l e f t compute) +(r ig h t compute))i i

For this scheme to work, N um ber objects (which may reside in the left
and right branches of nodes) must be able to respond to com pute messages

!Number methods!
compute

s e l fi i

The actual test is contained as a class method, te s t, of the class Bench,
which also has a class method, in it, to create the original tree -
Object subc lass: #Bench

instanceVariableN am es: }>
classVariableNam es: , th eT ree i
p o o lD ic tio n a rie s : >} !

!Bench c la ss methods!
i n i t
l a b e l
a := Plus of: 2 and: 1.
b := 3.
[b <= 11.] whileTrue:
[

a := Plus of: b and: a.
b := b + 1.

].
theTree := a.

A P P E N D I X A . C O D E F O R T H E P R E L I M I N A R Y E X P E R I M E N T 207

theTree p rin tN l .

t e s t l a b e l
a := 0.
[a <= 1000.] whileTrue:
C

b := 1.
[b <= 1000 .] whileTrue:
c

c := theT ree compute,
b := b + 1.

].
a p rin tN l.
a := a + 1.

].

The C version is -

#include <stdio .h>
#define NUMBER 0
#define PLUS 1
#define MINUS 2
#define TIMES 3
#define DIVIDE 4
typedef s t r u c t node

{
in t kind;
union
{

in t number;
s t ru c t nodes { s tru c t node * l e f t , * r ig h t ; } nodes;

} body;
} node ;

A P P E N D I X A . C O D E F O R T H E P R E L I M I N A R Y E X P E R I M E N T 208

node * new()
{

node * temp;
temp = (node *) m allo c (sizeo f(n o d e));
re tu rn temp;

}
void show(x)
node * x;
{

sw itch (x->kind)
{

case NUMBER : p r in t f (" °/«d " , x->body.number) ; break;
d e fa u lt : p r i n t f (" (") ; show(x->body.nodes. l e f t) ;

sw itch (x-> kind)
{

case PLUS : p r i n t f ("+"); break;
case MINUS : p r i n t f ("+"); break;
case TIMES : p r i n t f ("+"); break;
case DIVIDE : p r i n t f ("+"); break;

}
show (x->body.nodes.right);
p r i n t f (")") ;

}
}
in t e v a l(x)
node * x;
{ in t l e , r i ;

sw itch (x->kind)
{

case NUMBER : re tu rn x->body.number;
d e fa u lt : le = ev a l(x -> b o d y .n o d e s .le ft) ;

r i = eval(x -> body .nodes.righ t) ;
sw itch (x-> kind)
{

A P P E N D I X A . C O D E F O R T H E P R E L I M I N A R Y E X P E R I M E N T 209

case PLUS : re tu rn (le + r i) ;
case MINUS : re tu rn (le - r i) ;
case TIMES : re tu rn (le * r i) ;
case DIVIDE : re tu rn (le / r i) ;

>
}

}
main()
{

node * to p ,* i ,* j ,* k ;
in t how;

in t t h e , qu, quo=0;
i = new ();
j = new ();
top = new ();
j-> body .number=2;
i-> k ind = NUMBER;
i->body.number=1;
j-> k ind = NUMBER;
top->kind = PLUS;
to p -> body .nodes.le ft = j ;
top-> body .nodes.righ t = i ;
fo r (how = 3; how <= 11; how ++)
{

j=new ();
j->body.number = how;
j-> k ind = NUMBER;
i = new ();
i-> k ind = PLUS;
i-> b o d y .n o d es .le ft = j ;
i-> body .nodes.righ t = top ;
top = i ;

>
show (top);
while (1)
{

A P P E N D I X A . C O D E F O R T H E P R E L I M I N A R Y E X P E R I M E N T 210

fo r (the=0; the<1000; the++)
qu = e v a l(to p);

p r in t f ("'/.d\n" ,quo++) ;
}

}

In the second benchmark, the contents of a 100 element (integer) array
are computed by multiplying elements of two other arrays (the ith element
is computed by multiplying the ith element of the first array by the (100-i)th
element of the second array. The first array contains the integers 1 to 100,
the second has the integers 100 down to 1.

The Smalltalk for this is -

Object subc lass: #Bench2
instanceVariableN am es: >}
classVariableNam es:

'Ac Ab Aa '
p o o lD ic tio n a rie s : } } !

!Bench2 c la ss methods !
i n i t | i j k |

Aa := Array new: 100.
Ab := Array new: 100.
Ac := Array new: 100.
i : := 1.
[i <= 100] whileTrue
[

Aa a t : i p u t : i .
Ab a t: (101-i) p u t: i .
i := i+1.

].!

A P P E N D I X A . C O D E F O R T H E P R E L I M I N A R Y E X P E R I M E N T 211

t e s t | i j k q |
T ran sc rip t nextPutA ll: 'g o in g * ; c r .
i := 1. j := 1.
[j <= 1000.] whileTrue:
[

i := 1.
[i <= 1000.] whileTrue:
[

k := 1.
[k <= 100.] whileTrue:
[

Ac a t : k p ut: ((Aa a t : k) * (Ab a t : (1 0 1 - k))) .
k := k + 1 .

].
i := i + 1.

].
j printO n: T ra n sc r ip t. T ran sc rip t c r .
j *•= j + 1.

].! !

and the corresponding C code is -

main()
{

in t a[100] ,b[100] ,c[100] ;
in t i , j ,k = 0 ;
fo r (i= 0 ; i<=99; i++) { a [i]= i ; b [9 9 -i]= i;}
while (1)
{

fo r (i= 0 ; i<=1000; i++)
{

fo r (j=0;j<=99;j++)

A P P E N D I X A . C O D E F O R T H E P R E L I M I N A R Y E X P E R I M E N T 212

{
c [j] = a [j] * b [9 9 - j] ;

}
}
p r in t f ("°/,d\n" ,k++) ;

}
}

A p p e n d i x B

A n S M L s p e c i f i c a t i o n

abstype domain = dom of s tr in g
with

exception domexception
fun validdom(dom s) = s = " in t" o re lse s = " s tr in g "
fun nameofdom(dom s) = s
fun displaydom(dom s) = p r in t s
fun makedom s = l e t v a l d = dom s in

i f validdom d then d
e ls e r a is e domexception

end
end
abstype name = nam of s tr in g
with

fun nameofnam(nam s) = s
fun makenam s = nam s
fun nameq(nam s i , nam s2) = sl=s2
fun displaynamCnam s) = p r in t s

end

213

A P P E N D I X B . A N S M L S P E C I F I C A T I O N 214

abstype a t t r ib u te = iv a l of in t | cval of s t r in g
w ith

exception a ttex cep tio n
fun m akeival(i) = iv a l (i)
fun m akecval(s) = cv a l(s)
fun g e t iv a l (iv a l (i)) = i

I g e tiv a l(c v a l(c)) = r a is e a tte x ce p tio n
fun g e tc v a l(c v a l(c)) = c

I g e tc v a l (iv a l (i)) = r a is e a tte x ce p tio n
fun ty p e 2 s t r in g (iv a l (i)) = " in t"

I ty p e 2 s tr in g (c v a l(c)) = " s tr in g "
fun a t t2 s t r in g (iv a l (i)) = m akestring i

Ia t t2 s tr in g (c v a l(c)) = c
fun a t t e q (iv a l (_) , cv a l(_))= fa lse

I a t te q (c v a l(_) , iv a l (_))= fa lse
I a t t eq (iv a l (x) , iv a l(y)) =x=y
Ia t te q (c v a l(x) , cval(y)) =x=y

fun a t t g t (i v a l (_) ,c v a l(_))= fa lse
I a t tg t (c v a l (_) , iv a l (_))= fa lse
I a t t g t (iv a l (x) , iv a l(y)) =x>y
I a t tg t (c v a l (x) , cv a l(y)) =x>y

fun a t t l t (i v a l (_) ,cv a l(_))= fa lse
I a t t l t (c v a l (_) , iv a l (_))= fa lse
I a t t l t (i v a l (x) , iv a l(y)) =x<y
I a t t l t (c v a l (x) , cv a l(y)) =x<y

fun a t tn e (iv a l (_) ,cv a l(_))= fa lse
Ia t tn e (c v a l(„) , iv a l (_))= fa lse
I a t tn e (iv a l (x) , iv a l(y)) =x<>y
Ia t tn e (c v a l(x) , cv a l(y)) =x<>y

fun a ttg e (a ,b) = a t te q (a ,b) o re lse a t tg t (a ,b)
fun a t t l e (a ,b) = a t te q (a ,b) o re lse a t t l t (a ,b)

end
abstype scheme = sch of ((name l i s t) * ((domain * name) l i s t))
(* The f i r s t name l i s t i s th e names of th e key a t t r ib u te s *)
w ith

exception schemeexception

A P P E N D I X B . A N S M L S P E C I F I C A T I O N 215

fun second(x,y) = y
fun makesch (11,12) = sch (11,12)
fun sch leng th(sch (11,12)) = length(12)
fun v a lid sc h e m e (sc h (h ::t ,[])) = f a l s e
I validschem e(sch([] ,_)) = tru e
I v a lid s c h e m e (sc h (h l:: t l ,h 2 :: t2)) = i s in (h l ,h 2 : :t2) andalso

v a lid sch em e(sch (tl,h 2 : : t2))
and i s i n (x , []) = f a ls e
I i s i n (x , (h l ,h 2) : : t) = nameq(x,h2) o re lse i s i n (x , t)
fun keyofschem e(sch(ll,12)) = 11
fun nam esinschem e(sch(q ,h::t)) = second(h): :nam esinschem e(sch(q,t))
I name s in s ch erne (sch (_, [])) = []
fun bodyofschem e(sch(ll,12)) = 12
fun schhd(sch (11,12)) = hd 12
fun s c h tl(s c h (11,12)) = t l 12
fun sch ap p en d (sch (lll,112),sch(121 ,122))= sch ((1110121),(1120122))
fun sch n u ll(sch (11,12)) = 12 = n i l
fun e q u iv (s i :scheme, s2 : scheme):bool = i f s c h n u ll(s l) andalso sch n u ll(s2)

then tru e e lse
i f sc h len g th (s l) <> sch leng th (s2) then f a l s e e ls e
nam eofdom (first(schhd s i)) = nam eofdom (first(schhd s2)) andalso

equiv(sch([] , sc h tl s i) , s c h ([] ,s c h t l s2))
and f i r s t (x ,y) = x
exception renam efault
fun renam e(s,13,14) = l e t v a l s i = sch(13,14) in

i f e q u iv (s ,s l) andalso validschem e(sl) then s i e lse
r a is e renam efault

end
fun posinschem e(s: scheme,n:name) = i f schnu ll s then r a i s e schemeexception

e ls e i f nameofnam(n) = nameofnam(second(schhd s)) then 1
e lse 1 + posinschem e(sch([] , sc h tl s) ,n)

(* ldn 13.2.91 *)
fun isinscheme(s:scheme,n:name) = i f schnu ll s then f a l s e e ls e

i f nameofnam(n) = nameofnam(second(schhd s)) then t ru e
e lse isinschem e(sch([] , s c h tl s) ,n)

(* ldn 13.2.91 *)
fun domofnaminscheme(sch(_,[]) ,n) = r a is e schemeexception

A P P E N D I X B . A N S M L S P E C I F I C A T I O N 216

I domofnaminscheme(sch(_, (d l ,n l) : : s t) ,n) =
i f nameq(nl,n) then d l e ls e domofnaminscheme(sch([] , s t) ,n)

(* ldn 13.2.91 *)
fun sc h p ro j(sc h (_ ,[]) ,h : : t) = r a is e schemeexception

I schproj (s , []) = sch(□ , [])
I s c h p ro j(s ,h : : t)= i f isinschem e(s,h) then

schappend(sch([h], [(dom ofnam inschem e(s,h),h)]),
s c h p ro j(s ,t)) e ls e r a is e schemeexception

(* cut out by ldn 13.2.91
fun sch p ro j(sch (_ , []) ,h : : t) = r a i s e schemeexception

I schproj (s , []) = sch([] , [])
I sc h p ro j(sc h (_ ,(d 2 ,n 2): : s t2) ,h : : t) = i f nameq(n2,h) then

schappend(sch([n2], E (d2,n2)]) , s c h p ro j(sc h ([] , s t 2) , t)) e ls e
sc h p ro j(sc h ([] , s t 2) , t)

*)
fun schem e2string (sch(_ ,[])) = ""

I schem e2string(sch (1 1 ,(d ,n) : : t)) = (nameof dom (d)"~nam eofnam (n)~
" "~scheme2s tr in g (sc h ([] , t))) (* ''" \n " *)

fun displayscheme s = p r in t schem e2string(s)
end
abstype tu p le = tup of (a t t r ib u te l i s t)
w ith

exception tupexcep tion l
exception tupexception2
fun m aketup(al) = tup a l
fun tuphd (tup a l) = hd a l
fun tu p t l (tup a l) = t l a l
fun tu p e q (tu p ([]) , tu p (h : : t)) = f a ls e
I tu p e q (tu p (h : : t) , tu p ([]))= fa ls e
I tupeq(tup ([]) , tup ([])) = true
I tu p e q (tu p (h l : : t l) , tu p (h 2 : : t2))= a t te q (h l ,h 2) andalso tu p e q (tu p (t1) , tu p (
fun tu p l t (tu p ([]) , tu p (h : : t)) = fa lse
I tu p l t (tu p (h : : t) , tu p ([])) = f a l s e
I tu p l t (tup ([]) , tup ([]))=f a lse
I tu p l t (tu p (h l : : t l) , tu p (h 2 ::t2))

= i f a t t l t (h l ,h 2) then tru e

A P P E N D I X B . A N S M L S P E C I F I C A T I O N 217

e ls e i f a t te q (h l,h 2) then tn p l t (t n p (t l) , t u p (t2))
e lse f a ls e

fun tu p g t(tu p [] , tu p (_)) = f a ls e
I t u p g t (tu p (h : : t) , tup []) = tru e
I tu p g t(tu p (h l : : t l) , t u p (h 2 : : t2)) = i f a t tg t (h l ,h 2) then t ru e

e ls e t u p g t (t u p (t l) ,tu p (t2))
fun tupappend(tup 11, tup 12) = tup (11012)
fun tu p len g th (tup a l) = len g th a l
fun tu p n u ll(tu p a l) = a l = n i l
fun m atch(t-.tuple , s:scheme) = (tu p n u ll(t) andalso s c h n u ll(s)) o re lse

i f n o t(tu p n u ll(t) o re lse sc h n u ll(s)) then
(ty p e2 string (tu p h d t)=nam eofdom (first(schhd s)))

andalso m atch (tu p (tu p tl t) ,m a k e sc h ([] , s c h tl s))
e lse fa ls e

fun tu p n th (t :tu p le ,n : in t) = i f n<=0 then r a is e tu p ex cep tio n l
e ls e i f tu p n u ll t then r a i s e tupexcep tion l

e lse i f n=l then tu p h d (t) e ls e tu p n th (tu p (tu p tl t) , n - l)
fun d o t (t : tu p le , s:scheme, n:name) = i f no t(m a tc h (t ,s)) then

r a i s e tupexception2 e lse tu p n th (t,p o sin sch em e(s ,n))
fun tu p le p ro j(t ,s ,h n l : : tn l)= tu p a p p e n d (tu p ([d o t(t ,s ,h n l)]) , tu p le p ro j (t , s , t n

I tu p lep ro j (t , s , [])= tu p ([])
(* fun tu p le p ro j(t ,s ,n l)= tu p a p p e n d (tu p ([d o t(t ,s ,h d (n l))]) , t u p l e p r o j (t , s , t l (

I tu p lep ro j (t , s , [])= tu p ([]) *)
fun tu p 2 s tr in g (tu p (h : : t)) = a t t 2 s t r i n g (h) " ' 't u p 2 s t r i n g (t u p t) (* ~ u\n" *)

I tu p 2 s tr in g (tu p [])= "\n "
end
data type comparator = g t | ge | eq | le I I t | ne
abstype tu p se t = se t of (tu p le l i s t)
w ith

v al emptyset = s e t ([])
fun m aketupset(tl) = s e t (t l)
fun t h d (s e t (h : : t)) = h
fun t t l (s e t (h : : t)) = t
fun s e t 2 1 i s t (s e t (t l)) = t l

fun t a d d a t t r (_ ,s e t ([])) = emptyset

A P P E N D I X B . A N S M L S P E C I F I C A T I O N 218

I t a d d a t t r (a ,s e t (h : : t)) = m aketupset(tupappend(h,m aketup([a])) : : s e t2 1 is t
fun t s u m (i ,s e t ([])) = 0
I t s u m (i ,s e t (h : : t)) = g e t iv a l(tu p n th (h ,i)) + tsu m (i, s e t (t))

fun member(t:t u p l e ,n i l :tu p le l i s t) = f a ls e
I m em ber(t,h::1)= i f tu p e q (t,h) then tru e e ls e m em ber(t,l)

(* fun t p a r t i t i o n (r l , s e t ([]) ,_) = [m akerel(schem eof(rl),em ptyset)]
I t p a r t i t i o n (r l , s e t (h : : t) ,n) =

p r o js e l (r l ,n ,h) : : (t p a r t i t i o n (r l , s e t (t) ,n)) *)
fun is_ em pty (se t(s)) = len g th (s) = 0
(* in s e r t to be used when th e re i s no p o s s ib i l i ty of d u p lic a te s *)
fun f a s t in s e r t (t , s e t (l)) = s e t (t : : l)
(* in s e r t which guards ag a in st tu p le d u p lic a tio n *)
fun s a fe in s e r t (t , s e t (l)) = i f m em ber(t,l) then s e t (l)

e lse s e t (t : :1)
(* In an e f f ic ie n t im plem entation i t i s l ik e ly to be f a s t e r to

use th e f a s t in s e r t fo r a l l in s e r t io n s and e lim in a te d u p lic a te s by
so r tin g th e l i s t w ith a q u ick so rt then looking fo r repeated ad jacen t
values in a f in a l pass. This i s Onlogn ra th e r than 0n~2 *)

fun tu n io n (s e t([]) , s e t (l)) = se t 1
I t u n io n (s e t (h : : t) , s e t (l)) = tu n io n (s e t (t) , s a f e in s e r t (h ,s e t (1)))
fun t in te r s e c t (se t ([]) , se t (1)) = s e t ([])
I t i n t e r s e c t (s e t (h : : t) , s e t (1)) = i f member(h,l) then f a s t in s e r t (h ,

t i n t e r s e c t (s e t (t) , s e t (1))) e lse
t i n t e r s e c t (s e t (t) , s e t (1))

fun td i f f e r e n c e (s e t ([]) , s e t (1)) = s e t ([])
I td i f f e r e n c e (s e t (h : : t) , s e t (1)) = i f member(h,l) then td i f f e r e n c e (s e t (t)

s e t (l)) e lse
f a s t i n s e r t (h , td i f f e r e n c e (s e t (t) , s e t (1)))

fun tu p le p ro d (t:tu p l e , s e t ([])) = s e t ([])
I tu p le p ro d (t ,s e t(h : :1)) = fa s t in s e r t(tu p a p p e n d (t ,h) , tu p le p r o d (t ,s e t (l)
fun tc a r tp ro d (se t ([]) ,s) = s e t ([])
I t c a r tp r o d (s e t (h : : t) ,s) = tu n io n (tu p le p ro d (h ,s) , tc a r tp r o d (s e t (t) ,s))
fun t s e l e c t (s e t ([]) , cond :tup le -> bool) = s e t ([])
I t s e le c t (s e t (h : : t) ,c o n d) = i f cond(h) then f a s t i n s e r t (h , t s e l e c t (s e t (t) ,

cond))
e lse t s e l e c t (s e t (t) , cond)

A P P E N D I X B . A N S M L S P E C I F I C A T I O N 219

(* PRECI-style s e le c t *)
fun t p r e s e l (s e t ([]) ,s :sch em e,n :nam e,c :com p ara to r,a :a ttr ibu te) = s e t ([])
I t p r e s e l (s e t (h : : t) , s , n ,g t , a) = i f a t tg t (d o t (h ,s ,n) ,a) then

f a s t i n s e r t (h , t p r e s e l (s e t (t) , s ,n , g t , a))
e lse t p r e s e l (s e t (t) , s , n ,g t , a)

I t p r e s e l (s e t (h : : t) , s ,n ,g e ,a) = i f a t tg e (d o t (h ,s ,n) ,a) then
f a s t in s e r t (h , t p r e s e l (s e t (t) , s ,n , g e , a))

e lse t p r e s e l (s e t (t) , s ,n ,g e ,a)
I tp r e s e l (s e t (h : : t) , s ,n ,e q ,a) = i f a t te q (d o t(h ,s ,n) ,a) then

f a s t in s e r t (h , t p r e s e l (s e t (t) , s ,n , eq , a))
e lse t p r e s e l (s e t (t) , s ,n ,e q ,a)

I t p r e s e l (s e t (h : : t) , s , n , l e , a) = i f a t t l e (d o t (h ,s ,n) ,a) then
f a s t in s e r t (h , tp r e s e l (s e t (t) , s ,n , l e , a))

e lse t p r e s e l (s e t (t) , s , n , l e , a)
I t p r e s e l (s e t (h : : t) , s , n , I t , a) = i f a t t l t (d o t (h , s ,n) , a) then

f a s t i n s e r t (h , t p r e s e l (s e t (t) , s , n , I t , a))
e lse t p r e s e l (s e t (t) , s , n , I t , a)

I t p r e s e l (s e t (h : : t) , s ,n ,n e ,a) = i f a t tn e (d o t(h ,s ,n) ,a) then
f a s t i n s e r t (h , t p r e s e l (s e t (t) , s ,n ,n e ,a))

e ls e tp r e s e l (s e t (t) , s ,n ,n e ,a)
fun t p r o je c t (s e t ([]) ,s:schem e, nl:nam e l i s t) = s e t ([])
I t p r o je c t (s e t (h : : t) , s , n l) = s a f e in s e r t (t u p le p r o j(h ,s ,n l) ,

t p r o je c t (s e t (t) , s ,n l))
fun t c a rd (s e t (t s))= le n g th (t s)
fun s e t2 s t r in g (s e t (h : :t))= tu p 2 str in g (h) ~ se t2 str in g (se t t) (* ''"\n" *)

I s e t2 s t r in g (s e t [])= ""
fun te x te n d _b y (se t([]) ,_) = s e t ([])

I te x te n d _b y (se t(h ::t) ,m :tu p le -> a ttr ib u te)=
tu n io n (s e t ([tupappend(h,maketup([m(h)]))]) ,te x te n d _b y(se t (t) ,m))

fun t p r o j s e l (s e t ([]) = se t ([])
I t p r o j s e l (s e t (h : : t) ,n l , t u , s) =

i f tu p e q (tu p le p ro j(h ,s ,n l) ,tu) then
f a s t in s e r t (h , tp ro j s e l (s e t (t) , n l , t u , s))

e ls e
t p r o j s e l (s e t (t) ,n l , t u , s)

fun a t K e y (t ,s e t (n i l) , s) = m aketup(n il)

A P P E N D I X B . A N S M L S P E C I F I C A T I O N 220

I a tK ey (t, se t(h : : t l) ,s) =
l e t v a l tag = tu p lep ro j(h ,s ,k ey o fsch em e(s)) in

i f tu p e q (h ,t) then
h

e lse
a tK e y (t ,s e t (t l) ,s)

end
fun t j o i n (s e t (n i l) , s l , t s 2 , s 2 ,n) = s e t (n i l)

I t j o i n (s e t (h : : t) , s l , t s 2 , s 2 ,n) =
l e t v a l f i r s t P a r t = tu p le p r o j (h ,s i , [n]) in

l e t v a l p a r tn e r = a tK e y (f ir s tP a r t , ts 2 ,s 2) in
i f tu p n u ll(p a r tn e r) then

t j o i n (s e t (t) , s l , t s 2 , s 2 ,n)
e lse

fa s t in se r t(tu p a p p e n d (h ,p a r tn e r) ,
t j o i n (s e t (t) , s l , t s 2 , s 2 ,n))

end
end

end
abstype r e la t io n = r e l of (schem e*tupset)
w ith

exception re lex ce p tio n l
exception re lexcep tion2
exception re lexcep tion3
exception re lexcep tion4
exception duplicate_keys_re l

(* fun p a r t i t i o n (r l , r e l (s , t s)) = tp a r ti t io n (r l ,ts ,n a m e s in sc h e m e (s)) *)
fun s e to f (r e l (s , t s)) = t s
fun sc h em e o f(re l(s ,ts)) = s
fun n a m e lis to f (re l (s , ts)) = namesinscheme(s)
fun m a k e re l(s ,t)= re l(s , t)
fun v a l i d r e l (r e l (s , t)) = validschem e(s) andalso

i f no t(is_ em p ty (t)) then m a tc h (h d (s e t2 1 is t(t)) , s) e ls e t ru e
(* t h i s v a lid a tio n i s s im p lis t ic . Could be improved on *)

fun i n s e r t (t , r e l (s , t s)) = i f not (m a tch (t,s)) then r a i s e re le x c e p tio n l

A P P E N D I X B . A N S M L S P E C I F I C A T I O N 221

e ls e i f m em ber(tup lepro j(t, s,keyofschem e(s)) ,
s e t2 1 is t(tp ro je c t(ts ,s ,k e y o fsc h e m e (s))))
then r a is e dup lica te_keys_ re l e ls e r e l (s , f a s t i n s e r t (t , t s))

fun u n i o n (r e l (s l , t s l) , r e l (s 2 , t s 2))= i f n o t(e q u iv (s l , s2)) then
r a is e re lexcep tion2

e ls e r e l (s l , t u n io n (t s l , t s 2))
fun i n t e r s e c t (r e l (s i , t s l) , r e l (s 2 , t s 2)) = i f n o t(e q u iv (s l , s2)) then

r a is e re lexcep tion3
e ls e r e l (s l , t i n t e r s e c t (t s l , t s 2))

fun d i f f e r e n c e (r e l (s l , t s l) , r e l (s 2 , t s 2)) = i f n o t(e q u iv (s l , s2)) then
r a is e re lexcep tion4

e ls e r e l (s l , t d i f f e r e n c e (t s l , t s 2))
fun s e le c t (r e l (s , t s) ,c o n d) = r e l (s , t s e le c t (t s ,c o n d))

(* PRECI-style s e le c t *)
fun p re s e l(re l(s ,ts) ,n :n a m e ,c :c o m p a ra to r ,a :a t tr ib u te) =

r e l (s , t p r e s e l (t s , s , n , c , a))
fun p r o je c t (r e l (s , t s) ,n l) = r e l (s c h p r o j (s ,n l) , t p r o j e c t (t s , s ,n l))
fun c a r tp r o d (r e l (s l , t s l) , r e l (s 2 , t s 2)) = r e l (s c h a p p e n d (s l ,s 2) ,

t c a r tp r o d (t s l , t s 2))
fun c a r d in a l i ty (r e l (s , t s)) = tc a r d (t s)
fun d e g re e (re l(s ,ts))= sc h le n g th (s)
fun r e l2 s t r in g (r e l (s ,t))= sc h e m e 2 s tr in g (s) ''" \n "~ se t2 s tr in g (t) ~"\n"
fun p r o j s e l (r e l (s , t s) , n l , t) = r e l (s , t p r o j s e l (t s , n l , t , s))
fun su m (n ,re l(s ,ts)) = tsum (posinschem e(s,n),ts)
fun a ttrsu m (n ,r) = m akeival(sum (n,r))
fun e q u i jo in (r e l (s l , t s l) , r e l (s 2 , t s 2) ,n) =

re l(sc h a p p en d (s l, s 2) , t j o i n (t s l , s i , t s 2 , s2 ,n))
end
v al suppsch = makesch([makenam("snum")] , [(m akedom ("string") ,makenam("snum"))
(makedom("string") ,makenam("sname")) ,
(makedom("int") ,m akenam ("status")),
(makedom("string") ,makenam ("city"))])
v a l s i = maketup([m akecval("sl") ,mcLkecval("smith") ,m akeival(20) ,

m akecval("london")])
v a l s2 = m aketup([m akecval("s2"),m akecval("jones"),m akeival(10),m £Lkecval("pa

A P P E N D I X B . A N S M L S P E C I F I C A T I O N 222

v al s3 = maketupC [makecval("s3") , makecval ("blake") ,m akeival(30) ,makecval("pa
v a l s4 = maketupC [makecval("s4") ,m akecva l("dark") ,m akeival(20) ,m akecval("lo
v a l s5 = maketupC [makecval("s5") , makecval ("adams") ,m akeival(30) ,m akecval("at
v a l s6 = maketupC [makecval("s6") ,makecval("andy") ,m akeival(10) ,makecval("rom
v al q l = maketupC[makeival(30)])
v a l sts= m a k e tu p se t([s l,s2 ,s3 ,s4 ,s5])
v a l supprel = m akerel(suppsch ,sts)
v a l p a rts sc h = makesch([makenam("pnum")], C(makedom("string"),makenam("pnum")

CmakedomC"string"),makenam("pname")) ,
(makedomC"string"),makenam("colour")),
(makedom("int") ,makenam("weight")) ,
(makedom("string") ,m akenam ("city"))])

v a l p i = maketupC[m akecval("pi
m ake iva l(12)

v a l p2 = maketupC[makecval("p2
m ake iva l(17)

v a l p3 = maketupC[makecval("p3
m ake iva l(17)

v a l p4 = maketupC[makecval("p4
m ake iva l(14)

v a l p5 = maketupC[makecval("p5
m ake iva l(12)

v a l p6 = maketupC[makecval("p6
m ake iva l(19)

v a l p ts = m aketupset([p i,p 2 ,p 3

') ,m ak ecva l("n u t"),m ake cva l(" red "),
m akecval("london")])
') ,m a k e cv a l("b o lt") , m akecva l("g reen "),
m ak ecva l("p aris")])
') ,m akecval("screw ") ,m akecval("b lue") ,
m akecval("rom e")])

) ,m akecval("screw ") ,m akecval("red") ,
m akecval("london")])

') ,m akecva l("cam "),m akecva l("b lu e"),
m a k e c v a l("p a ris")])

') , m akecval("cog"),m ak ecva l("red "),
m akecval(" london")])
p 4 ,p 5 ,p 6])

v a l p a r t s r e l = m a k e re l(p a rtssch ,p ts)

v a l sh ip sch = makesch([makenam("snum"),makenam("pnum"),makenam("qty")],

A P P E N D I X B . A N S M L S P E C I F I C A T I O N 223

[(makedomC"string") ,makenairi("snum")) ,
(makedomO'string") ,makenam("pnum")) ,
(makedomC " in t") ,makenam("qty"))])

val sh l = m aketupC [m akecval("sl"),m akecval("pl"),m akeival(300)])
v a l sh2 = m aketupC [m akecval("si"),m akecval("p2"),m akeival(200)])
v a l sh3 = m aketupC [m akecval("sl"),m akecval("p3"),m akeival(400)])
v a l sh4 = maketupC [m akecval("sl") ,makecval("p4") ,m akeival(200)])
v a l sh5 = mciketupC [m akecval("sl") ,makecval("p5") ,m akeival(100)])
v a l sh6 = mcLketupC Cmakecval("sl") ,makecval("p6") ,m akeival(100)])
val sh7 = maJcetupC [makecval("s2") ,maLkecval("pl") ,m akeival(300)])
v a l sh8 = maketupC[makecval("s2"),m akecval("p2"),m akeival(400)])
val sh9 = maketupC [makecval("s3") ,mak:ecval("p2") ,mcLkeival(200)])
v a l shlO = m aketupC[m ak:ecval("s4"),m akecval("p2"),m akeival(200)])
v a l s h l l = m aketupC[m akecval("s4"),m akecval("p4"),m akeival(300)])
v a l shl2 = m aketupC[m akecval("s4"),m akecval("p5"),m akeival(400)])
v a l sh ip ts = m a k e tu p se t([sh l,sh 2 ,sh 3 ,sh 4 ,sh 5 ,sh 6 ,sh 7 ,sh 8 ,sh 9 ,sh l0 ,sh ll,sh l2]
v a l sh ip re l = m akerel(sh ip sch ,sh ip ts)

A p p e n d i x C

I m p l e m e n t i n g I n t e r p r e t e r s

C .l Introduction
This appendix covers the principles involved in constructing the kind of in­
terpreter outlined by the main thesis. Since there are no compiler tools (such
as Le x [72] and Yacc [63] of the U nix system) available for the Lingo system,
the interpreter was constructed from scratch. The following two sections il­
lustrate the construction strategy by applying it to the implementation of a
simple interpreter for an SQL-like language. Although the implementation
language is Lingo, the techniques employed transfer readily to Smalltalk.

The last section of this appendix deals with the construction of a parser
generator that was built to afford a similar functionality to Yacc. The Lingo

224

A P P E N D I X G. IM P L E M E N T I N G I N T E R P R E T E R S 225

version of the parser generator was an essential tool in controlling the de­
velopment of the DEAL interpreter since it allowed a separation of concerns
(parsing as against semantic considerations) to minimise the complexity of
the task.

C.2 An example
The following subsections will make use of a simple SQL-like language. The
general form of an SQL query is

SELECT f ie ld s FROM tab les WHERE p re d ic a te

in which the WHERE qualifying clause is optional.
It is assumed that a number of tables (relations) are known to the system

and have names whose lexical formation is governed by the conventional rules
for forming identifiers in a language such as Pascal. A f ie ld follows the same
naming rules and refers to a column of a table. For example (taken from
Date [24]), a relation named ‘supplier’, with fields ‘snum’ (supplier number),
‘sname’ (supplier name), ‘status’ (status value) and ‘city’ (location) is tabu­
lated as

A P P E N D I X G. IM P L E M E N T I N G I N T E R P R E T E R S 226

snum sname status city
si smith 20 london
s2 jones 10 paris
s3 blake 30 paris
s4 dark 20 london
s5 adams 30 athens

Given this, a query that retrieves all supplier names and their locations
is

SELECT sname, c i ty FROM su p p lie r

The resulting table is

sname city
smith london
jones paris
blake paris
dark london
adams athens

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 227

A query involving a WHERE clause can be used to retrieve the names of all
suppliers whose status is less than or equal to 20 -

SELECT sname FROM su p p lie r WHERE s ta tu s <= 20

with resulting table

sname
smith
jones
dark

The FROM clause may name more than one table. If, in addition to the
table supplier, we have the table parts given as

A P P E N D I X G. IM P L E M E N T I N G I N T E R P R E T E R S 228

pnum pname colour weight city

Pi nut red 12 london
p2 bolt green 17 paris
p3 screw blue 17 rome
p4 screw red 14 london
p5 cam blue 12 paris
p6 cog red 19 london

and the table shipments (connecting suppliers and parts) given by

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 229

snum pnum qty
si pi 300
s2 p2 200
si p3 400
si p4 200
si p5 100
si p6 100
si pi 300
s2 p2 400
s3 p2 200
s4 p2 200
s4 P4 300
s4 p5 400

we may now retrieve the names of all suppliers who ship screws

SELECT sname FROM su p p lie r , p a r t s , shipments WHERE pname =

Although SQL is based on the relational ca lcu lu s, the inclusion of set

"screw"

operations allows its use as a convenient syntactic interface to relational al­
gebra. Consider the generalised SQL query -

A P P E N D I X C. I M P L E M E N T IN G I N T E R P R E T E R S 230

SELECT A i , . . . ,A n
FROM R \ , . . . , Rm
WHERE B O b

An equivalent in the relational algebra (Ullman, [110])is the projection of
attributes from the selection of tuples from a cartesian product (in practice,
the cartesian product would be replaced by an appropriate join) -

.....An{̂B6bRl X . . . X Rm)
This is excessively dense and opaque. An equivalent in Lingo is unthink­

ably large and unwieldy. As a taste, the first query above -

SELECT sname, c i ty FROM su p p lie rs

could be expressed in Lingo (given the appropriate class definitions) as

(tab leD ic tio n ary a t : "su p p lie rs") p ro je c t: ["sname" " c ity "]

The following section describes how to effect this transformation.

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 231

C.3 Translation
C.3.1 Grammars
The informal description of SQL syntax given in the preceding section is
insufficently detailed to form the basis for a parser. The BNF notation, due
to Backus [5] and Naur [82], is usually used for this purpose -
<query>
<selectF>
<selectFW>
< fie ld L ist>
<fieldName>
<fromList>
<predicateTerm>
<comparison>
<expression>
<constant>

= <selectF> | <selectFW>
= "SELECT" < fie ld L is t> "FROM" <fromList>
= "SELECT" < fie ld L is t> "FROM" <fromList>

"WHERE" <predicateTerm>
= <fieldName> | < fie ld L is t> " ," <fieldName>
= I d e n t i f ie r
= TableName | <fromList> " ," TableName
= <expression> <comparison> <expression>
_ i i_ ii | i i ^ u | n ^ t i | i i ^ _ n | u > —ii | i i^ ^ ii

= <fieldName> I <constant>
= S trin g | In teg e r

Here, non-terminals such as <query> and <f ie ld L is t> (entities defined
by appearing on the left hand side of some rule in the BNF description) are
denoted by enclsure within angle brackets < and >. An entity that is quoted,
such as "FROM", indicates that it is terminal and its component characters
must appear exactly in the input stream.

Entities such as TableName example have no definition. We will consider
these as terminal c la sses denoting entities whose syntactic structure is con­
ventional and simple and analysed by a translator phase other than parsing.

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 232

In the case of In teg er, for example, this denotes the class of integers whose
members are easily recognised at the lex ica l rather than s y n ta c tic a l level.
Similarly for the classes I d e n t i f ie r and S tring . TableName refers to
the subset of the class I d e n t i f ie r that names relations known to the sys­
tem (for example, supp lier).

C.3.2 Lexical Analysis
The process of recognising a language’s constructs from the arrangement of
indvidual characters in an input stream is conventionally split into two phases

• Lexical A nalysis concerns itself with the recognition of groups of
characters (such as keywords of the language, identifiers, numbers and
so on). Recognised groups are associated with to k e n s with which the
lexical analyser (or scanner) communicates its analysis to other phases.

• S yn tax A nalysis is concerned with the recognition of structured pat­
terns of tokens (such as language statements, expressions and so on).
The syntax analyser (or parser) usually communicates its analysis to
other phases by associating tree structures with a language construct.
These structures may either be explicit data structures, or may be im­

A P P E N D I X C. I M P L E M E N T IN G I N T E R P R E T E R S 233

plicitly constructed through program execution and the state of the
procedure stack.

This section deals with the lexical analysis phase. The coding of this
phase is tedious and error-prone as it deals with the input-output section of
the interpreter. Lexical analyser generators are widely available, perhaps the
best known being Lex [72].

Such tools have a power beyond simply providing lexical analysers within
compilers. The author takes the view that the lexical analysis phase of an
interpreter for a programming language warrants a rather simpler approach.
The objective is to define a general class, Scanner say, which can be instan­
tiated to provide a lexical analyser for any given language.

We observe that the microsyntax (with which lexical analysis concerns it­
self) of most languages reduces to just a few terminal classes. Most languages
use the same rules for describing the syntax of integers and identifiers. Ad­
ditionally most languages have the same rules for dealing with white space.
Keywords usually form a subset of the terminal strings that could otherwise
be considered to be identifiers. Keywords, identifiers and integers are sepa­
rated by white space, punctuation characters or operator terminals (such as

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 234

Punctuation characters are those characters that cannot prefix other ter­
minal strings. For example, ‘(’ is usually a punctuation character, whereas
‘< ’ is not since the character may be the prefix of the terminal string c< = \
Some characters (such as ‘< ’) have different lexical significance depending
whether they appear on their own or grouped with other such characters.
We call such characters cryp tic characters, following the terminology used
in the lexical analyser used for the object-oriented language Lingo [53].

Given a set of keywords, a set of punctuation characters and a set of cryp­
tic characters, an algorithm to recognise terminal classes is straightforward
to code. The preliminary decision on which terminal class is being recog­
nised is based on the first non-white character in the source (that is the first
character that is not a space, a tab or a newline).

• a decimal digit - an integer is being recognised; accumulate all following
decimal digits and return the token ‘Integer’ (a string literal).

• a punctuation character - return a string containing just the punctua­
tion character itself as the token and advance the input stream to the
next character.

• a cryptic character - accumulate the character and any following cryp­
tic characters into a string which is returned as the token.

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 235

• an alphabetic character - accumulate the character and any follow­
ing numeric or alphabetic characters into a string. Then search the
keywords vector, if a match is found return the string as the token;
otherwise return the string ‘Identifier’

A class, Scanner, has been programmed in Lingo along the above lines. It
has a class method for instantiation which takes as parameters collections
of keywords, punctuation characters and cryptic characters and also a file
descriptor for the source text (a stream or file). Scanner’s instance methods
include getToken which returns the current token and advances through
the source stream. There are also methods th eN u m b er and th e ld en tif ie r
which return the actual values found in the source for the tokens ‘Integer’
and ‘Identifier’ respectively.

Interestingly, some of the context sensitive aspects of a language are very
easily handled by this approach using inheritance. Consider the Pascal ex­
pression -

x + y ;

With an instance of Scanner as above, x and y will be recognised as
Identifiers although for semantic analysis purposes it may be more useful to
recognise them as ‘Variables’ or ‘Functions’. As in either case they should
have been previously defined and thus present in a symbol table it is possible

A P P E N D I X G. I M P L E M E N T I N G I N T E R P R E T E R S 236

to determine their particular significance in the lexical analysis phase. To do
this, a class, PascalScanner say, is defined as a specialisation of Scanner. It
has an additional instance variable to hold a symbol table and access methods
to place and look up entities in this table. The inherited getToken method
is overridden in PascalScanner- the specialisation calls the superclasses get­
Token and then inspects the returned token. If it is ‘Identifier’ the actual
terminal string is searched for in the symbol table. If a match is found, the
appropriate token is returned ; if it is not matched, ‘Identifier’ is returned.

C.3.3 The syntax analyser
With the strategy adopted here, the syntax analyser is the driving spirit of
the interpreter: no ex p lic it parse tree is constructed to inform later analytic
and synthetic phases. Instead, an im p lic i t parse tree is contained within the
thread of execution of the syntax analyser and so, in order to traverse the
parse tree, the syntax analyser itself invokes further analytic and synthetic
procedures.

The purpose, then, of the syntax analyser is to recognise the language’s
syntactic structures and then invoke appropriate semantic routines to effect
the intent of the original source program.

The starting point for writing a syntax analyser is a description of the

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 237

g ra m m a r o f th e la n g u a g e in th e fo rm o f a B N F sp e c if ic a t io n .

T h e re c u r s iv e d e sc e n t m e th o d [25] a llo w s a s y n ta x a n a ly se r to b e w r it te n

a lm o st d ir e c t ly fr o m a B N F d escr ip tio n . E a ch n o n te r m in a l in th e g ra m m a r

is r e p r e se n te d b y a m e th o d w ith th e r e s p o n s ib il ity o f r e c o g n is in g i t s o w n

n o n te r m in a l’s sy n ta x . In a d d itio n th e r e is a m e th o d , (m u s t B e : , sa y) t h a t

ta k e s a to k e n r e p r e se n tin g a te r m in a l, a n d ch eck s th a t t h e to k e n i t is p a s s e d

is th e sa m e as th a t cu r r e n tly h e ld b y th e le x ic a l a n a ly se r . In L in g o , w e c a n

arran ge a ll th e s e m e th o d s (th o s e r e p r e se n tin g n o n te r m in a ls a n d m u s tB e :) a s

in s ta n c e m e th o d s o f a c la ss , P a r s e r say . A n in s ta n c e v a r ia b le , s c a n n e r ,

h o ld s th e le x ic a l a n a ly se r . A n o th e r in s ta n c e v a r ia b le , t o k e n , h o ld s th e la s t

to k e n r e tu rn ed b y th e le x ic a l a n a ly ser . T h e m e th o d m u s tB e : is s im p ly -

mustBe: aToken []
{

if (token = aToken) then
{ token := scanner getToken}

else
{ "syntax error\n" printedOn: FileDescriptor output}

}

T h e m e th o d s for n o n term in a ls are w r it te n b y e x a m in in g th e r ig h t h a n d

sid es o f th e ir d e fin in g ru les w ith in th e B N F . I f th e r e are n o a lte r n a t iv e s in

th e ru le , th a t is th e r ig h t h a n d s id e is m e r e ly a s e q u e n c e , th e m e th o d is c o d e d

as a se q u e n c e o f ca lls: in th e ca se o f a n o n te r m in a l, a c a ll t o i t s a s s o c ia te d

m e th o d , in th e c a se o f a te r m in a l, a c a ll t o th e m e th o d m u s tB e : u s in g t h e

A P P E N D I X C. I M P L E M E N T I N G I N T E R P R E T E R S 238

to k e n r e p r e se n tin g th e te r m in a l as an a c tu a l p a ra m e ter .

For e x a m p le , a B N F ru le su ch as -

<selectF> ::= "SELECT" <fieldList> "FROM" <fromList>

w o u ld b e c o d e d as

self selectF []
{

self mustBe: "SELECT";
self fieldList;
self mustBe: "FROM";
self fromList;

>

W h e r e a r ig h t h a n d s id e c o n ta in s a lte r n a t iv e s , e a c h a lte r n a t iv e is in ­

s p e c te d to d e te r m in e th e s e t o f te r m in a ls th a t ca n a p p e a r a t it s s ta r t . T h e s e

se ts are te r m e d d i r e c t o r s e t s s in c e th e y are u se d to d ir e c t th e p a r se .I f th e s e

se ts are n o t d is jo in t, th e m e th o d w ill n o t b e su c c e ssfu l a n d th e r e d e fin it io n

o f th e la n g u a g e sh o u ld b e a t te m p te d . I f th e d irec to r s e t s are d is jo in t , t h e y

ca n b e u se d to d e c id e w h ic h a lte r n a t iv e ru le sh o u ld b e fo llo w e d b y f in d in g

w h ic h o f th e se ts th e cu rren t to k e n is a m e m b e r of. C o n s id e r th e ru les

<expression> ::= <fieldName> I <constant>
<fieldName> ::= Identifier
<constant> ::= String | Integer

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 239

T h e ru le for e x p r e s s i o n c o n ta in s tw o a lte r n a t iv e s . T h e d ir e c to r s e t for

th e first a lte r n a t iv e c o n ta in s o n ly ‘I d e n t if ie r ’. T h e sec o n d a l te r n a t iv e ’s d ir e c ­

to r s e t is { ‘S tr in g ’, ‘I n te g e r ’ } . T h e m e th o d for e x p r e s s io n is c o d e d as

self expression []
{

if (["Identifier"] includes: token) then
{ self fieldName; }

else
{ self constant;}

}

U n fo r tu n a te ly , th e ca se s w h ere d ir e c to r s e ts are n o t d is jo in t are su ffi­

c ie n t ly c o m m o n th a t co n s id e r a tio n m u s t b e g iv e n to g ra m m a r m a n ip u la t io n .

F r e q u e n tly th e p ro b le m a rises s in c e th e n a tu r a l w a y to e x p r e ss a s e q u e n c e in

B N F is to u se recu rsio n . C o n sid er , for e x a m p le th e p r o d u c t io n

<fromList> ::= TableName | <fromList> "," TableName

T h e in te n t io n is to ex p re ss th a t a fr o m L ist is a se q u e n c e o f T a b le N a m e s

se p a r a te d b y co m m a s. V a r ia tio n s o f B N F (w h ic h w e sh a ll c a ll E x te n d e d B N F

or E B N F) a llo w ite r a t io n to b e e x p r e s se d . W e sh a ll u se th e m e ta s y m b o l

p a ir s ‘[’ ’] ’ a n d ‘{ ’ ‘} ’ to in d ic a te ze ro or o n e a n d zero or m o r e (r e s p e c t iv e ly)

r e p e t it io n s o f th e B N F fr a g m en ts t h e y e n c lo se . T h is a llo w s , fo r e x a m p le , th e

a b o v e p r o d u c tio n to b e rep h ra sed as

<fromList> ::= TableName { "," TableName }

A P P E N D I X G. I M P L E M E N T IN G I N T E R P R E T E R S 240

R u le s c o n ta in in g th e ite r a t io n m e ta s y m b o ls { a n d } a re c o d e d b y d e r iv in g

th e d ir ec to r se t for th e e n c lo se d se q u e n c e . T h e ite r a t io n c o n d it io n is th e n

th a t th e cu rren t to k e n is in th e d ir e c to r s e t . T h e m e th o d for fr o m L ist is

self fromList []
{

self mustBe: 'TableMan^* .
while ([] includes: token)
{

self mustBe: ",";
self mustBe: "TableName";

}

T h e m e ta sy m b o ls [a n d] are tr e a te d in a s im ila r w ay, u s in g ifT ru e: r a th e r

th a n w h ileT ru e:.

A n o th e r o fte n o cc u r r in g s itu a t io n is th a t a B N F r u le e x p r e s se s th a t a

s e n te n c e h as tw o v a r ia n ts ea c h o f w h ic h s ta r ts w ith t h e sa m e s tr u c tu r e , b u t

th e n fin ish es d ifferen tly . For e x a m p le w e h a v e -

<query> ::= <selectF> | <selectFW>
<selectF> ::= "SELECT" <fieldList> "FROM" <fromList>
<selectFW> ::= "SELECT" <fieldList> "FROM" <fromList> "WHERE" <predicat

F ro m th is , a q u ery a lw a y s s ta r ts w ith a s e le c tF , b u t m a y o p t io n a lly h a v e

a W H E R E c la u se . J u s t as w ith B N F , E B N F can b e u se d t o fa c to r o u t

th e c o m m o n a lity an d re m o v e th e d is ju n c t io n in th e f ir s t p r o d u c t io n (w h o s e

d is ju n c ts h a v e co in c id e n t d irec to r s e t s) , i .e .

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 241

<query> ::= "SELECT" <fieldList> "FROM" <fromList> [<whereClause>]
<whereClause> "WHERE" <predicateTerm>

T h e re a d er is referred to M iln e [76] fo r a fu lle r a c o u u n t o f th e s e is s u e s .

A n E B N F d e sc r ip tio n o f ou r sa m p le la n g u a g e is

<query> : := "SELECT" <fieldList> "FROM" <fromList> [<whereClause>]
<whereClause> : := "WHERE" <predicateTerm>
<fieldList> <fieldName> { "," <fieldName> }
<fieldName> ::= Identifier
<fromList> ::= TableName { "," TableName }
<predicateTerm> ::= <expression> <comparison> <expression>
<comparison> ::= "=" | "<" | ">" | "<=" | ">=" | "<>"
<expression> : := <fieldName> | <constant>
<constant> ::= String | Integer

A n is s u e th a t m u st b e a d d ressed is e r r o r r e c o v e r y . T h e p r e d ic t iv e

n a tu r e o f th e re cu rs iv e d e sc e n t m e th o d m e a n s th a t w h e n a s y n ta x error d o e s

o cc u r , th e s y n ta x a n a ly se r lo ses s y n c h r o n isa t io n w ith th e so u rce t e x t b e in g

p a rsed a n d m a n y c o n se q u e n tia l s y n ta x errors are r e p o r te d . It is n o t p o s s ib le

to re co v er b y m e r e ly sca n n in g t i l l a s ta te m e n t te r m in a to r is fo u n d , s in c e

a t th e t im e o f th e error, th e th r e a d o f e x e c u t io n w ill in g en er a l b e a t s o m e

d e e p ly n e s te d p o in t d u e to th e d e p e n d e n c e o n recu rsio n . [25] g iv e s a n e le g a n t

a lg o r ith m for error re co v er y in su ch a s itu a t io n , w h ic h m e r e ly a d d s a fe w

l in e s to th e m u stB e : m e th o d . (N o t e th a t L in g o [53] p ro v id e s a n e x c e p t io n

fa c ility . R a is in g an e x c e p t io n str ip s b a ck th e p ro ce d u re s ta c k t o i t s s t a t e a t

th e m o m e n t o f d e c la r a tio n o f th e e x c e p t io n . T h is m e c h a n ism c a n b e u s e d

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 242

to a llo w re tu rn to th e to p le v e l o f s y n ta x a n a ly s is on e n c o u n te r in g th e f ir s t

s y n ta x error a n d w a s u se d for th e D E A L im p le m e n ta t io n) .

C.3.4 Adding semantic and interpretive actions
N o w th a t a co rrec t p ro g ra m ca n b e re c o g n ise d b y th e s y n ta x a n a ly s is p h a se ,

w e w ish to in v e s t m e a n in g in to i t s s ta te m e n ts . T h is is t h e m o s t im a g in it iv e

p a r t o f th e p ro ce ss o f c r e a tin g an in te r p r e te r . It is a p p r o a ch ed b y a s s o c ia t in g

a c t io n s w ith fr a g m e n ts o f th e B N F for th e la n g u a g e . T h e s e a c t io n s a re

th e n e f fe c te d b y in se r t in g lin e s o f c o d e w ith in th e p a r s in g m e th o d s a t t h e

p o in ts in d ic a te d b y th e ir a s s o c ia t io n w ith th e B N F (b e a r in m in d th a t t h e

r e cu rs iv e d e sc e n t m e th o d g iv e s a o n e to o n e c o r r e sp o n d e n c e w ith th e c o d e o f

th e p a rsin g m e th o d s) .

C o n sid er th e ru le -

<query> : "SELECT" <fieldList> "FROM" <fromList> [<whereClause>]

W e a d o p t th e s tr a te g y th a t th e ‘m e a n in g ’ o f a q u e r y is t o d isp la y i t s

r e su lt in g re la t io n . W e ca n v ie w th e B N F as a fra m ew o rk o n w h ic h to h a n g

a p r e sc r ip tio n o f h o w to d e te r m in e a q u e r y ’s m e a n in g fr o m its c o m p o n e n ts ,

th a t is h o w to c o n s tr u c t i t s m e a n in g fro m th e m e a n in g s o f i t s c o m p o n e n ts .

T o d o th is , w e a s s o c ia te a c t i o n s A i . . . A 3 w ith p o in ts in th e B .N .F . -

A P P E N D I X C. I M P L E M E N T IN G I N T E R P R E T E R S 243

<query> : : = "SELECT" <fieldList> Ai"FROM" <fromList> A 2 [<whereClause> .

T h e in fo rm a l d e sc r ip tio n o f th e s e a c t io n s is

• A i - s to r e th e f ie ld L is t ’s re su lt (a l is t o f f ie ld s to b e p r o je c te d fr o m th e

r e la t io n r e su lt in g fro m th e re st o f th e e x p r e s s io n) .

• A 2 - s to r e th e fr o m L is t’s re su lt (a r e la t io n - th e b a s e th a t t h e re st o f

th is e x p r e s s io n is m o d ify in g in so m e w a y) as th e r e su lt for q u ery so far .

• A3 - u se th e s e le c t io n cr iter ia r e tu r n e d b y w h e r e C la u se on th e r e su lt o f

th e q u ery (w h ic h w a s sto r ed in A 2) . T h e r e su lt in g r e la t io n is s to r e d as

th e re su lt for query. W e can arra n g e th a t th e m e a n in g o f w h e r e C la u se is

a L in go M o d u l e (L in g o ’s co u n ter p a r t to S m a llta lk ’s B l o c k C o n t e x t ’s

- th e s e are a n o n y m o u s p ie ces o f c o d e , w h ic h can ta k e p a r a m e te r s , a n d

are s im ila r to la m b d a ex p r e ss io n s o f th e la m b d a c a lc u lu s .) . T h e re ­

tu r n e d m o d u le can b e e x a c t ly th a t c o d e w h ic h w h e n p a sse d to th e

s e l e c t : m e th o d o f R e l a t i o n o b je c ts p erfo rm s th e se le c t io n .

• A 4 - p er fo rm th e p r o je c t io n o f th e f ie ld s sp e c if ie d d u r in g A i a n d d isp la y

th e r e su lt in g d isp la y re la t io n .

T h is ca n b e c o d e d in L in g o as

s e l f q u e r y [p r o j e c t L i s t r e s u l t b l o c k]

A P P E N D I X G. IM P L E M E N T I N G I N T E R P R E T E R S 244

{
self mustBe: "SELECT";
projectList := self fieldList; /* action A1 */
self mustBe: "FROM";
result := self fromList; /* action A2 */
if (["WHERE"] includes: token) then
■C
block := self whereClause; /* { action A3 */
result := result select: block; /* { */

}
(result project: projectList) /* action A4 */

printedOn: FileDescriptor output;

C.4 An interpreter generator
T h e s tr a te g y o u t lin e d in th e p r e c e d in g s e c t io n ca n b e tu r n e d o n i t s e lf . C o n ­

s id er th e e x te n d e d B N F -

<grammar>
<rule>
<nonterminal>
<ruleexp>
<ruleterm>
<rulefactor>

= <rule> { <rule> }
= <nonterminal> "::=" <ruleexp> ";"
= "<" Identifier ">"
= <ruleterm> { "|" <ruleexp> }
= <rulefactor> { <rulefactor> }
= "[" <ruleexp> "]" | "{" <ruleexp>
| "(" <ruleexp> ")" | <nonterminal>
I QuotedStringLiteral I Identifier

T h is d escr ib es th e g ra m m a r o f th e e x te n d e d B N F itse lf th a t h a s b e e n

u se d in th is rep o rt (e x c e p t th a t p r o d u c tio n s are te r m in a te d w ith a s e m i­

c o lo n) , a n d y e t is sh o rter th a n th e B N F d e sc r ip tio n o f th e e x a m p le la n g u a g e

A P P E N D I X C. I M P L E M E N T IN G I N T E R P R E T E R S 245

p u r su e d in th is p a p er . A p a rser for e x te n d e d B N F can th u s b e w r it te n (u s in g

th e s tr a te g ie s o f th e p r e c e d in g s e c t io n) . In ord er for th is E B N F -p a r s e r to

b e a b le to g e n e r a te a s y n ta x a n a ly se r fo r a p r e se n te d la n g u a g e , i t is o n ly

n e c e s sa r y to in c lu d e w ith in i t in te r p r e t iv e a c t io n s th a t

• b u ild a n d fill d a ta s tr u c tu r e s c a p tu r in g th e e s s e n t ia l in fo r m a tio n o f th e

p r e se n te d gra m m a r.

• u se th e s e d a ta s tr u c tu r e s to d e te r m in e th e d ir ec to r s e t s for a ll th e n o n ­

te r m in a ls o f th e p r e se n te d g ra m m a r

• c r e a te a c la ss d e fin it io n c o n ta in in g re co g n ise r m e th o d s w h ic h m a k e u s e

o f th e d e te r m in e d d irec to r s e ts .

In d e ta il , th e a b o v e is e ffe c te d in th e fo llo w in g w ay: a n a b s tr a c t s y n ta x

tr e e is c r e a te d (b y th e E B N F -p a r s e r) fo r th e r ig h t h a n d s id e o f e v e r y p r o d u c ­

t io n en c o u n te r e d in th e E B N F so u rce . A sy m b o l ta b le a s s o c ia te s , fo r e a c h

p r o d u c t io n , th e n o n - te r m in a l’s n a m e a n d th e tr e e r e p r e se n tin g th e p r o d u c ­

t io n ’s r ig h t h a n d s id e . In a d d it io n , e a c h sy m b o l ta b le e n tr y h a s a f ie ld w h ic h

ca n c o n ta in o n e o f th r e e v a lu es (n o t S t a r t e d , i n P r o g r e s s a n d c o m p l e t e) .

T h is fie ld is u se d to m a rk th e p rogress o f d ir ec to r se t c o m p u ta t io n (w h ic h is

d e sc r ib e d m o r e fu lly b e lo w) an d is in i t ia l ly s e t to n o t S t a r t e d .

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 246

T h e a b s tr a c t s y n ta x tr e e s m a k e u s e o f e ig h t k in d s o f n o d e , o n e fo r e a c h

ty p e o f u n ita r y te r m w ith in E B N F .

1. N o n T e r m i n a l - th e s e n o d e s c o n ta in th e n a m e o f a n o n - te r m in a l .

2 . S t r i n g L i t e r a l - th e s e c o n ta in th e ch a ra c ter s tr in g s r e c o g n ise d b y th e

E B N F -p a r s e r as Q u o te d S tr in g L ite r a ls .

3 . I d e n t i f i e r - th e s e co rresp o n d to th e Id en tifier e n t i t ie s o f th e E B N F -

p a rser a n d m e r e ly co n ta in th e ch a ra c ter s tr in g s th a t w ere r e c o g n ise d .

4 . A l t e r n a t i v e - th e s e n o d e s co r r e sp o n d t o a lte r n a t iv e s w ith in t h e E B N F .

T h e y c o n ta in p o in te r s to th e tw o a lte r n a t iv e s .

5 . S e q u e n c e - th e s e n o d e s co r resp o n d to a se q u e n c e o f te r m s w ith in th e

E B N F . T h e y c o n ta in p o in te r s to th e le a d te r m an d t h e fo llo w in g te r m s .

6 . Z e r o O r M o r e - T h e s e n o d e s co r resp o n d to te rm s w h ic h are sp e c if ie d

w ith in th e ‘zero or m o r e ’ i te r a t io n m e ta s y m b o ls { a n d } . T h e n o d e s

c o n ta in a p o in te r to th e ite r a te d e x p r e ss io n .

7. Z e r o O r O n c e - s im ila r ly , th e s e n o d e s rep resen t o p t io n a l E B N F e x p r e s ­

s io n s (e n c lo se d b y th e m e ta s y m b o ls [a n d]). T h e n o d e s c o n ta in a

p o in te r to th e o p tio n a l ex p r e ss io n .

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 247

8 . O n c e - th e s e n o d e s rep resen t e x p r e s s io n s th a t are e n c lo se d w ith in th e

m e ta s y m b o ls (a n d). A g a in , th e y c o n ta in a p o in te r to th e p a r e n th e ­

s ise d ex p r e ss io n .

T h e fo llo w in g d ia g r a m re p r esen ts th e a b s tr a c t s y n ta x tr e e th a t w o u ld b e

c r e a te d for th e r ig h t h a n d s id e o f th e p r o d u c tio n :

<alpha> : := { <beta> } “is" I <gamma> "was"

A P P E N D I X C. I M P L E M E N T I N G I N T E R P R E T E R S 248

O n c e th e sy m b o l ta b le h a s b e e n b u ilt , i t is tr a v e r se d (l in e a r ly) . A s ea ch

e n tr y is tr a v erse d , o u tp u t is g e n e r a te d (th e c o d e o f th e c o m p u te d p a rser).

F ir s t , th e p ro ce d u re h e a d e r for th e n o n - te r m in a l’s r e c o g n ise r p ro ce d u re is

o u tp u t . For th e e x a m p le p r o d u c tio n a b o v e , for e x a m p le , th e fo llo w in g L in g o

c o d e w o u ld b e g en era ted :

s e l f []

i
T h e a s so c ia te d a b s tr a c t s y n ta x tr e e is th e n tr a v erse d (in p o s t -o r d e r w h er e

th e n o d e s are n o t s in g ly -b r a n c h e d) . T h e o u tp u t g e n e r a te d d e p e n d s o n th e

ty p e o f n o d e e n c o u n te r e d . For N o n T e r m i n a l n o d e s , a c a ll to th e corre­

sp o n d in g re co g n ise r p ro ce d u re is g e n e r a te d .

In c o n c r e te te r m s , i f x is a L in g o v a r ia b le c o n ta in in g t h e N o n T e r m i n a l

n o d e , c o n t e n t s is a N o n T e r m i n a l m e th o d r e tu r n in g th e s tr in g c o n ta in e d

in a N o n T e r m i n a l n o d e a n d p r i n t is a L in g o o u tp u t m e th o d , th e fo llo w in g

L in go fr a g m en t is th e a c t io n p erfo rm ed o n e n c o u n te r in g a N o n T e r m i n a l

n ode:

" s e l f " p r i n t ;
(x c o n t e n t s) p r i n t ;
" ; \n " p r i n t ;

For S t r i n g L i t e r a l a n d I d e n t i f i e r n o d e s , a p p r o p r ia te c a lls t o m u s tB e :

are o u tp u t . C o n c r e te ly (a g a in a s su m in g th e v a r ia b le x c o n ta in s th e n o d e in

q u e s tio n) , th e L in go for th e a c t io n is:

A P P E N D I X C. I M P L E M E N T I N G I N T E R P R E T E R S 249

" s e l f m u s tB e : 11 p r i n t ;
(x c o n t e n t s) p r i n t ;
" ; \n " p r i n t ;

S e q u e n c e n o d e s are tr e a te d b y g e n e r a tin g c o d e fo r th e ir le a d te r m a n d

th e n th e ir fo llo w in g te rm s.

(x l e a d) g e n e r a t e ;
(x f o l l o w i n g) g e n e r a t e ;

For O n c e n o d e s , th e a lg o r ith m is s tra ig h tfo rw a rd : o u tp u t a le f t b r a c e c{*

(w h ic h is th e L in g o to k e n for s ta r t in g a c o d e b lo c k) , g e n e r a te th e o u tp u t for

th e e x p r e ss io n th e n o d e p o in ts c o n te n ts p o in t to (b y r e c u r s iv e ly c a llin g th e

g e n e r a t e m e th o d) a n d f in a lly o u tp u t a r ig h t b ra ce c} } (w h ic h is th e L in g o

to k e n for e n d in g a c o d e b lo c k) .

" { \n " p r i n t ;
(x c o n t e n t s) g e n e r a t e ;
" } \n " p r i n t ;

T h e tr e a tm e n t o f th e r e m a in in g n o d e ty p e s A l t e r n a t i v e , Z e r o O r O n c e

a n d Z e r o O r M o r e m a k es u se o f d ir ec to r s e ts . T h e s e a re c o m p u te d v ia a

m e th o d g e t S t a r t e r s : w h ic h ta k e s as a p a r a m e te r a p o in te r to th e e x p r e s ­

s io n w h o se d ir ec to r se t is to b e c o m p u te d . W h e r e th is p a r a m e te r is a n o n ­

te r m in a l, it m a y b e th a t th is c o m p u ta t io n is m e r e ly a r e tr ie v a l s in c e th e

d ir ec to r se t h as a lrea d y b e e n c o m p u te d . (T h e a lg o r ith m fo r g e t S t a r t e r s :

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 250

is detailed more fully below since it is crucial to the parser generating strat­

egy). Returning to the three node types in question, they are dealt with as

follows:

Alternative "if ((Vector [" print;
(self getStarters: (x left)) print;
"]) includes: (scanner token)) then\n{" print;
x left generate;
"}\nelse\n{\n" print;
x right generate;
"}\n" print;

ZeroOrOnce "if ((Vector [" print;
(self getStarters: (x body)) print;
"]) includes: (scanner token)) do\n{" print;
x body generate;
"}\n" print;

ZeroOrMore "while ((Vector [" print;
(self getStarters: (x body)) print;
"]) includes: (scanner token)) do\n{" print;
x body generate;
"}\n" print;

Calculating director sets
The method getStarters: alluded to above is based on the following:

1. The director set for an expression that contains a sole StringLiteral

or Identifier node is the singleton set containing the character string

contents of the node.

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 251

2. In general, the director set for a Sequence node or a Once node is the
director set of the first node in the sequence. However, since there is
the possibility of null productions, the computation is more complex.
Consider the computation of the director set for the rule

{ alpha } beta gamma

Since an alpha term may not be present, the director set for the overall
rule is computed as the u n io n of the director sets for alpha and for
beta. In addition, the parser generator checks that the two sets are
disjoint and reports an error if they are not since this indicates that
the grammar does not satisfy the LL(1) citerion.

3. For an Alternative node, the director set is computed from the union
of the director sets of the node’s component subexpressions (which are
also checked for disjointness).

4. ZeroOrOnce and ZeroOrMore nodes have their director set com­
puted from the director set of the expressions within their bodies. In
addition, since both these node types indicate the presence of a null
production within a rule, their director sets contain a special element
n u ll which indicates the presence of a null production to the algorithm
(for use in step 2 above).

A P P E N D I X C. IM P L E M E N T I N G I N T E R P R E T E R S 252

5. Finally, in the case of a NonTerminal node, the algorithm proceeds
according to the setting of the state field (notStarted, inProgress or
complete) within the non-terminal’s symbol table entry.
If the state is complete, the director set has already been computed
and is returned. If the state is inProgress, this indicates that the
LL(1) criteria have not been met since left recursion (perhaps indirect)
is present and an error report is generated.
If the state is notStarted, it is set to inProgress, and the tree repre­
senting the rule for the non-terminal is retrieved from the symbol table
and presented to the algorithm. The resulting director set is stored in
the symbol table (for later use) and also returned.

A slight refinement to the above allows the incorporation of semantic and
interpretive actions, by introducing new metasymbols @ and '/,. These are
used to indicate that the text they delimit (which should be Lingo fragments)
is to be literally inserted into the generated parser at the indicated point. @
delimits text to be inserted p r io r to the EBNF term that follows, '/, delimits
text to be inserted a f te r the recognition of the EBNF term it follows. In
addition if @ is used before the : := of a production the delimited text is
inserted in the local variable declaration area of the recogniser method for

A P P E N D I X C. I M P L E M E N T IN G I N T E R P R E T E R S 253

that nonterminal. As an example, the syntax and interpretive actions for
query (as derived in the previous section) would be described by -
<query> @ projectList result block @

::= "SELECT" @ projectList := 0 <fieldList>
"FROM" @ result := 0 <fromList>
[0 block := 0 <whereClause>

'/, result := result select: block; '/,]
% (result project: projectList)

printedOn; FileDescriptor output; '/,

C . 5 S u m m a r y

The recursive descent method of compiling has been shown to transfer nat­
urally to implementation in Lingo and coding the lexical analysis phase is
greatly simplified through inheritance.

The parsing method is transparent enough to allow programmers to easily
include statements that carry out semantic actions - and the method is simple
enough for programmers to carry out themselves.

The definition of an Extended B.N.F. in itself may take only a few lines.
Paradoxically, the creation of a general parser generator which will gener­
ate a parser for a language from its presented EBNF is simpler than gener­
ating the parsers directly. A parser generator was constructed for Lingo.

Further work could be carried out to improve the interface to the parser

A P P E N D I X G. I M P L E M E N T IN G I N T E R P R E T E R S 254

generator whose input files can quickly become unreadable since they carry
so much information. In addition, the area of grammar manipulation (in
order to achieve suitability for the recursive descent method) is important
for a language of moderate syntactic complexity.

A p p e n d ix D

A n S M L sp e c if ic a t io n b a se d o n
2—3 tr e e s
abstype tree23 = E

I Tr2 of tree23 * tuple * tuple * tree23
I Tr3 of tree23 * tuple *tuple * tree23 * tuple * tuple * tree23
I Put of tree23 * tuple * tuple * tree23

with
exception putException
exception atException

fun at (k :tuple , E:tree23) : tuple = raise atException
I at (_,P u t = raise putException
I at (k, Tr2(tl, kl,vl, t2)) =

if tupeq(k, kl) then
vl
else
if tuplt(k , kl) then

at(k,tl)

255

A P P E N D I X D . A N S M L S P E C I F I C A T I O N B A S E D O N 2 - 3 T R E E S 256

else
at(k,t2)

I at (k, Tr3(tl,kl,vl,t2,k2,v2,t3)) =
if tupeq(k , kl) then vl
else if tu.peq(k,k2) then v2
else if tuplt(k , kl) then at(k,tl)
else if tuplt(k , k2) then at(k,t2)
else at(k,t3)

fun at2 (k :tuple , E:tree23) : tuple = maketup(nil)
I at2 (_,Put(_,_,_,_)) = raise putException
I at2 (k, Tr2(tl, kl,vl, t2)) =

if tupeq(k, kl) then
vl
else
if tuplt(k , kl) then

at2(k,tl)
else

at2(k,t2)
I at2 (k, Tr3(tl,kl,vl,t2,k2,v2,t3)) =

if tupeq(k , kl) then vl
else if tupeq(k,k2) then v2
else if tuplt(k , kl) then at2(k,tl)
else if tuplt(k , k2) then at2(k,t2)
else at2(k,t3)

fun isMember (k:tuple , E:tree23) = false
I isMember (_,Put(_,_,_,_)) = raise putException
I isMember (k, Tr2(tl, kl,vl, t2)) =

if tupeq(k, kl) then
true
else
if tuplt(k , kl) then

isMember(k,tl)
else

isMember(k,t2)

A P P E N D I X D . A N S M L S P E C I F I C A T I O N B A S E D O N 2 - 3 T R E E S 257

I isMember (k, Tr3(tl,kl,vl,t2,k2,v2,t3)) =
if tupeq(k , kl) then true
else if tupeq(k,k2) then true
else if tuplt(k , kl) then isMember(k,tl)
else if tuplt(k , k2) then isMember(k,t2)
else isMember(k,t3)

fun put k v E = Put (E,k,v,E)
I put k v (Tr2(tl,k2,v2,t2))

= if tupeq(k2 , k) then Tr2(tl,k,v,t2) else
if tuplt(k, k2) then tr2(put k v tl, k2, v2, t2) else
tr2(tl,k2, v2, put k v t2)
I put k v (Tr3(tl,k2,v2,t2,k3,v3,t3))

= if tupeq(k,k2) then Tr3(tl,k2,v2,t2,k3,v3,t3) else
if tupeq(k, k3) then Tr3(tl,k2,v2,t2,k3,v3,t3) else
if tuplt(k, k2) then tr3(put k v tl,k2,v2,t2,k3,v3,t3) else
if tuplt(k, k3) then tr3(tl,k2,v2,put k v t2,k3,v3,t3) else

tr3(tl,k2,v2,t2,k3,v3,put k v t3)
I put k v y = raise putException
and
tr2(Put(tl,kl,vl,t2),k2,v2,t3) = Tr3(tl,kl,vl,t2,k2,v2,t3)
I tr2(tl,kl,vl,Put(t2,k2,v2,t3)) = Tr3(tl,kl,vl,t2,k2,v2,t3)
I tr2 other = Tr2 other
and
tr3(Put(tl,kl,vl,t2),k2,v2,t3,k3,v3,t4)

= Put(Tr2(tl,kl,vl,t2),k2,v2,Tr2(t3,k3,v3,t4))
I tr3(tl,kl,vl,Put(t2,k2,v2,t3),k3,v3,t4)

= Put(Tr2(tl,kl,vl,t2), k2,v2,Tr2(t3,k3,v3,t4))
I tr3(tl,kl,vl,t2,k2,v2,Put(t3,k3,v3,t4))

= Put(Tr2(tl,kl,vl,t2), k2,v2,Tr2(t3,k3,v3,t4))
I tr3 other = Tr3 other;
fun checkTop(Put(tl,k,v,t2)) = Tr2(tl,k,v,t2)
I checkTop other = other
fun insert23(k,v, t) = checkTop (put k v t)
fun keyOf1(aTuple , s) =

tupleproj(aTuple,s,keyofscheme(s))

A P P E N D I X D . A N S M L S P E C I F I C A T I O N B A S E D O N 2 - 3 T R E E S 258

fun makeTree(nil,s : scheme) = E
I makeTree(h::t,s) = insert23 (keyOf1(h,s),h,makeTree(t,s))

fun treeunion(Put(_,_,_,_),_) = raise putException I
treeunion(E,x) = x |
treeunion(x,E) = x I
treeunion(Tr2(leftl,key,value,right1),x) =
let val belongs = isMember(key,x) in

if belongs then
treeunion(leftl,treeunion(right1,x))

else
insert23(key,value,treeunion(left1,treeunion(right1,x)))
end
I
treeunion(Tr3(left,keyi,valuel,middle,key2,value2,right),x) =
let val belongsl = isMember(key1,x)

and belongs2 = isMember(key2,x) in
if belongsl andalso belongs2 then

treeunion(left,treeunion(middle,treeunion(right,x)))
else

if belongs2 andalso (not(belongsl)) then
insert23(keyl,valuel,treeunion(left,

treeunion(middle,treeunion(right,x))))
else

if belongsl andalso (not(belongs2)) then
insert 23 (key2,value2, treeunion (left, treeunion (middle, treeunion (right ,x))

else
insert23(keyl,valuel,

insert23(key2,value2,treeunion(left,
treeunion(middle,treeunion(right,x)))))

end

fun c t r e e j o i n (P u t = raise putException |
ctreejoin(E,sl,ts2,s2,n2) = E |
ctreejoin(tsl,sl,E,s2,n2) = E |
ctreejoin(Tr2(leftl,key,value,rightl),sl,ts2,s2,n2) =

A P P E N D I X D . A N S M L S P E C I F I C A T I O N B A S E D O N 2 - 3 T R E E S 259

let val firstPart = tupleproj(value,si,[n2]) in
let val partner = at2(firstPart,ts2) in

if tupnull(partner) then
treeunion(ctreej oin(leftl,si,ts2,s2,n2),ctreej oin(rightl,si,ts2,s2,
else

insert23(
tupappend(tupleproj(value,si, keyofscheme(si)),

firstPart),
tupappend(value,at(firstPart,ts2)),
treeunion(ctreejoin(left1,sl,ts2,s2,n2),ctreejoin(right1,sl,ts2,s2

end
end
I
ctreej o in(Tr3(left,key1,valuel,middle,key2,value2,right),sl,ts2,s2,n2) =
let val firstPartl = tupleproj(valuel,si,[n2])

and firstPart2 = tupleproj(value2,si,[n2]) in
let val partnerl = at2(firstParti,ts2)

and partner2 = at2(firstPart2,ts2) in

if tupnull(partnerl) andalso tupnull(partner2) then
treeunion(ctreejoin(left,si,ts2,s2 ,n2),
treeunion(ctreejoin(middle,si,ts2,s2,n2),

ctreejoin(right,si,ts2,s2,n2)))
else

if tupnull(partnerl) andalso not(tupnull(partner2)) then
insert23(tupappend(tupleproj(value2,si,keyofscheme(si)),

firstPart2),
tupappend(value2,partner2),

treeunion(ctreejoin(left,si,ts2,s2,n2),
treeunion(ctreejoin(middle,si,ts2,s2,n2),

ctreejoin(right,si,ts2,s2,n2))))
else

if tupnull(partner2) andalso not(tupnull(partnerl)) then
insert23(tupappend(tupleproj(valuel,si,keyofscheme(si)),

firstPartl),
tupappend(valuel,partnerl),

treeunion(ctreejoin(left,si,ts2,s2,n2),

A P P E N D I X D . A N S M L S P E C I F I C A T I O N B A S E D O N 2 - 3 T R E E S 260

treeunion(ctreejoin(middle,sl,ts2,s2,n2),
ctreejoin(right,sl,ts2,s2,n2))))

else
insert23(tupappend(tupleproj(value2,si,keyofscheme(si)),

firstPart2),
tupappend(value2,partner2),

insert23(tupappend(tupleproj(value2,si,keyofscheme(si)),
firstPart2),
tupappend(value2,partner2),

treeunion(ctreejoin(left,sl,ts2,s2,n2),
treeunion(ctreej oin(middle,si,ts2,s2,n2),

ctreejoin(right,si,ts2,s2,n2)))))

end
end

fun tree2string(Put(_,_,_,_)) = raise putException
I tree2string (E) = ""
I tree2string(Tr2(treel,key,value,tree2)) =

tree2string(treel) ~tup2string (value) ~tree2string(tree2)
I tree2string(Tr3(treel,keyl,valuel,tree2,key2,value2,tree3)) =

tree2string(treel)~tup2string(valuel) ~tree2string(tree2)
~tup2string(value2) ~tree2string(tree3)

(*
fun absT (E) = nil
I absT(Put(_,_,_)) = raise putException
I absT(Tr2(treel,value,tree2)) = absT(treel)@[value]0absT(tree2)
I absT(Tr3(treel,valuel,tree2,value2,tree3))=

absT(treel)0[valuel]OabsT(tree2)@[value2]QabsT(tree3)
*)
end

abstype crelation = crel of (scheme * tree23)
with
exception crelexceptionl
exception crelexception2
exception crelexception3
exception crelexception4

A P P E N D I X D . A N S M L S P E C I F I C A T I O N B A S E D O N 2 - 3 T R E E S 261

fun cmakerel (s,t) = crel(s,t)
fun keyOf(aTuple , crel(s,ts)) =

tupleproj(aTuple,s,keyofscheme(s))

fun crel2string(crel(s,ts)) =scheme2string(s)~"\n"~tree2string(ts)~"\n"

fun cinsert(t,crel(s,ts)) = if not (match(t,s)) then
raise crelexceptionl

else
if isMember(keyOf(t,crel(s,ts)),ts) then

raise crelexception2
else

crel(s,insert23(keyOf(t,crel(s,ts)),t,ts))
fun cunion(crel(sl,tsl),crel(s2,ts2)) =

if not (equiv(sl,s2)) then
raise crelexception3

else
crel(sl,treeunion(tsl,ts2))

fun cjoin(crel(sl,tsl),nl,crel(s2,ts2),n2) =
crel(schappend(sl,s2),ctreejoin(tsl,si,ts2,s2,n2))

end

val stree = makeTree([si,s2,s3,s4,s5,s6],suppsch)
val streel = makeTree([si,s2,s3],suppsch)
val stree2 = makeTree([s4,s5,s6],suppsch)
val suppcrel = cmakerel(suppsch,stree)
val supplcrel = cmakerel(suppsch,streel)
val supp2crel = cmakerel(suppsch,stree2)

The two published papers cited below have
been removed from the e-thesis due to
copyright restrictions

P u b l i s h e d W o r k

' O b j e c t - o r i e n t e d I m p l e m e n t a t i o n s f r o m a F u n c t i o n a l
S p e c i f i c a t i o n ’

P r o c e e d i n g s o f t h e S o f t w a r e Q u a l i t y W o r k s h o p ,
J u n e 1 9 9 0 , D u n d e e Institute o f T e c h n o l o g y

P u b l i s h e d W o r k

'A Recursive Database Query Language on an Object-
oriented Processor'.

In: Applications of Supercomputers in Engineering II.
Edited by C.A. Brebbia, D.Howard and A.Peters.
Southampton: Computational Mechanics Publications, 191-
205.

	Blank Page

