
This thesis is dedicated to the memory of my father.

"the soul never thinks without an image"
Aristotle

A Database Query Language for Operations on Graphical
Objects

Submitted in Partial Fulfilment of the Requirements of the
CNAA

Degree of Ph.D.
in

Computer Science

by

A.W. Wakelin
Dept, of Mathematics and Computer Studies

Dundee College of Technology
Bell St.
Dundee
DD1 1HG
Scotland

Abstract of the Dissertation
A Database Query Language for Operations

on Graphical Objects

A.W. Wakelin
Dundee College of Technology

1988

ABSTRACT

The motivation for this work arose from the
recognised inability of relational databases to
store and manipulate data that is outside normal
commercial applications (e.g. graphical data).

The published work in this area is described
with respect to the major problems of representa­
tion and manipulation of complex data. A general
purpose data model, called GDB, that sucessfully
tackles these major problems is developed from a
formal specification in ML and is implemented
using the PRECI/C database system. This model uses
three basic graphical primitives (line segments,
plane surfaces - facets, and volume elements
tetrons) to construct graphical objects and it is
shown how user designed primitives can be
included.

It is argued that graphical database query
languages should be designed to be application
specific and the user should be protected from the
relational algebra which is the basis of the data­
base operations. Such a base language (an
extended version of DEAL) is presented which is
capable of performing the necessary graphical
manipulation by the use of recursive functions and
views. The need for object hierarchies is esta­
blished and the power of the DEAL language is
shown to be necessary to handle such complex
structures.

The importance of integrity constraints is
discussed and some ideas for the provision of user
defined constraints are put forward.

i

Thanks must go to my two supervisors Dr. W.B. Samson
and Prof. S.M. Deen for the quality of their guidance and
ideas. Also many thank to R. Sadeghi who wrote the PRECI/C
DEAL implementation as part of a closely related research
project. Useful discussions were had with Dr. D.A. Duce
(Rutherford Appleton Laboratory) and Dr. P. Robinson (Cam­
bridge University Computing Laboratory) and my thanks go to
them for giving up their time.

I am indebted to my colleagues at Dundee College of
Technology for their interest and support during the dura­
tion of this work.

The author would also like to thank SERC for funding
this work (Grant No. GR/D/03574).

Acknowledgments

Table of Contents

Chapter 1: Introduction 1
1.1. Aims .. 2
1.2. Structure of Thesis 3

Chapter 2: Literature Review 5
2.1. Graphical Database Models 5
2.2. Issues in Formal Specification 23

Chapter 3: Overview of Proposed Graphical DataBase
Model (GDB) .. 34

3.1. Introduction 34
3.2. Representation 39
3.3. Query Language 50

Chapter 4: Formal Specification of GDB 59
4.1. Introduction 59
4.2. Specification of a Relational Database 59
4.3. Specification of the GDB Graphical Operators
 68

Chapter 5: Implementation 73
5.2. C Language Version 73
5.3. The VMS/RDB Version 74
5.4. The PRECI/C Version 75

Chapter 6: Example Graphical Databases 83
6.1. Database (2-D) with Object Hierarchy 83

6.2. Database (3-D) with Matrix Operations 90

iii

Chapter 7: Conclusions 97
7.1. Assessment of GDB Model 97
7.2. Further Work 99

Chapter 8: Summary 113
Appendix A: Introduction to Computer Graphics 115
Appendix B: The Specification Language ML 120
Appendix C: Specification Theory 125
Appendix D: Correctness Proof of SML Function from
its Axiom ... 131
Appendix E: The DEAL Query Language 136
Appendix F: Complete BNF for D E A L 148
Appendix G: Standard ML Specification of Matrix
operations .. 154
Appendix H: Example DEAL Programs for Display 160
Appendix I: C Language Implementation 170
Appendix J : RDB Implementation 173
Appendix K: Hardware 177

iv

Table of Figures

2.1. Checklist for reviewed Texts 22
3.1. Points relation 41
3.2. Lines relation for a cube 41
3.3. Facets relation for a cube 42
3.4. Tetrons relation for a cube 42
3.5. Compound object 47

3.6. Higher order compound object 48
3.7. Matrix relation 49
3.8. Hierarchy relation 49
3.9. Compound obj ect 49
3.10. Display relation 53

3.11. Matrix as a relation 55
4.1. Graphical predicates 71
4.2. Functions 71
6.1. Hierarchy relations 84
6.2. Functions for display of hierarchy 84
6.3. Hierarchy of the 'House' 87
6.4. Screen dump of 'House' 89
6.5. Relations for cube 90
6.6. Functions and views for the cube 90
6.7. Screen dump of 'Cube' 95
7.1. GDB compared to 3-D models 97

v

7.2. Constraint symbol table 102
7.3. Object relation 104
E.l. An Overview Syntax of D E A L 137
E.2. Part Explosion Database 144
1.1. ML specification for Union 170
1.2. C implementation of Union 170

CHAPTER 1

Introduction

The graphical presentation of data on all visual media
is widely recognised as one of the best ways of communicat­
ing complex ideas. The widespread interest in computer
graphics reflects this fact and more and more software and
supporting hardware becomes available every year.

Unfortunately, these graphical systems are not gen­

erally compatible for a variety of reasons involving both
software and hardware. The advent of computer graphics stan­
dards (Core, GKS, PHIGS, IGES) has attempted to rectify this

problem by establishing software standards that enable
graphics to be portable between machines running software
that conforms to the appropriate standard.

At the same time, databases have become increasingly
important for all large data handling situations and this
increasing use has focussed attention on their shortcomings.
Among these is the lack of support for complex data struc­
tures such as those used in graphics.

It is the purpose of this thesis to show how the rela­
tional database model can be adapted to accommodate data
which is more complex in nature than simple strings and

1

numbers.

1. JL. Aims
The aim of this research is to produce a graphics data­

base that provides a general purpose data model upon which
specific applications could be built. The three main
requirements are :-

(1) A representation of graphics that would need no special
data structures i.e. the relations holding the data
could be treated in exactly the same way as non-
graphical relations in the same database, as it is
desirable to integrate all the data of an organisation

into one database to fully utilise the benefits of
reduced data redundancy and central control that accrue
from the relational model. This would enable existing
database software to be used with minimum modification.
Therefore, we seek to produce a model for a graphical

database that allows both graphics and normal informa­
tion to be held in a single logical database.

(2) A query language that is flexible enough to adequately
express the queries required of a graphical database.
These include the commands for producing on-screen
graphical displays of the results of queries.

(3) A formal specification of the database model that would
enable it to be implemented unambiguously.

2

The thesis continues in Chapter 2 with a review of
relevant literature. This is split into two sections. The
first deals with graphical database models that have been
devised for use in a number of application areas. The draw­
backs of each as a general purpose model is noted with
reference to the model developed here. The second section
deals with formal specification in the areas of databases
and graphics, and surveys the different techniques used.

In Chapter 3 the issues to be tackled and their solu­
tions are introduced informally in the context of current
database theory and graphical systems. The subjects of
representation, data input, query languages and graphical
transformations are discussed in turn and it is explained
how the problems associated with each is tackled.

A formal specification of the graphical database is
presented in Chapter 4. A detailed explanation of each part
of the specification is given (despite the commonly held
view that specifications should be easy to read - only sim­
ple ones actually are!).

Three different approaches to the implementation of the
graphical database are presented and discussed in Chapter 5.
These are an implementation in the C language of the data­
base specification in SML, an implementation in VMS/RDB (the
proprietary relational database system produced by DEC)

1 . 2 . Structure of Thesis

3

using its PASCAL interface to encode the queries and special
functions required, and a part implementation using the
PRECI/C database system with the DEAL language implementa­
tion developed by Dr. R. Sadeghi.

Chapter 6 gives examples of applications that were used
to evaluate the model as implemented in PRECI/C. Conclu­
sions are drawn in Chapter 7 together with ideas for further
work and a Summary forms Chapter 8.

Matters of a general nature are described in the Appen­
dices where computer graphics, the Standard ML language,
Specification theory and the three implementations are
described, together with details of the hardware used in
this project.

4

CHAPTER 2

Literature Review

2 . 1 . Graphical Database Models
The subject of graphical databases has been studied for

many years and the following review of this work is mostly
restricted to those papers utilising the relational model.
Other models have been advocated, particularly the hierarch­
ical approach because of the naturally hierarchical struc­
ture of many graphical representations.

The papers reviewed here are split into sections which
reflect their intended application area. Computer Aided
Design (CAD) is the most widely used graphics application
and this has been the focus of much research although most
of this has been directed to specialist database models that
are not among the commonly used commercial models. Geograph­
ical Information Systems have also attracted a lot of atten­
tion as mapping is a major activity in many different organ­
isations and is a very data hungry task that demands effi­
cient data handling.

The remaining sections look at novel approaches to the
graphics database problem and at pictorial databases.

5

The major issues in graphical databases are the choice
of representation, the query language to be used and the use
of integrity constraints. The impact of the research papers
on these issues is discussed.

2.1.1. Application Directed Models

2.1.1.1. Computer Aided Design

Lorie, Plouffe and others [1,2,3,4,5] have recognised
the need for more complex objects to be stored in relational
databases for engineering purposes such as CAD/CAM and geo­
graphical systems [6]. They build up complex objects from
tuples derived from different relations by means of a root
tuple to which they are all referenced. The referencing is
achieved by a system of pointers and 10-byte identifiers.
The queries to such a database are in an extended SQL which
allows easy access to complex objects by using predefined
"cursors'* which extract the data hierarchy from the database
and place them in a program data space ready for manipula­
tion by a host program.

They also introduce extensions to the query language
called "implicit join" and "key index". The implicit join is
designed to facilitate the retrieval of complex objects
without the user having to specify complex join predicates.
The key index allows the user to specify his own key values
rather then rely on the system generated ones used to con-

6

struct the complex tuple structures.

This work concentrates on building a relational model
that can operate as a hierarchy and they have chosen a sim­
ple 2-D points and lines representation for graphics. There
is no mention of integrity constraints or their role in

maintaining the "complex object" structure.

Other advocates of the object oriented approach are
Batory and Kim [7]. They call their concept "molecular

objects" as opposed to Lorie's "complex objects" and use the
design of VLSI chips as their example. The idea is similar
to that described above in that it defines a high level
entity in terms of aggregations of lower level entities.

They introduce integrity checking as an important part
of their model but ignore the graphical representation prob­
lem and its associated language. They do look at version
control and its problems, however.

An interesting application of graphical databases is
the molecular modelling systems as described by Todd,
Morffew et al. [8,9].

Molecular modelling systems are finding widespread use in
the pharmaceutical industry for the discovery of new phar­
macologically active chemicals by modelling the shape of
molecules accurately and matching them with models of other
molecules or active biological sites. Using the Peterlee

7

Relational Test Vehicle (PRTV) as their database system and
the Winchester Graphics system (WGS) to display the results
of graphical queries, they have six base relations ('’Atoms"
"Residues", "Linktypes", "Radii", "Ideal" and "Diagram")
which hold 3-D coordinate data and linkage information about
atoms. In addition they have some pre-defined functions, two
of which are effectively integrity constraints.

This is a fixed purpose graphical database that has no
graphical operators as part of the language (the relational
algebra). All the graphical transformations such as changing
viewpoint are handled by the WGS using data that is
transferred from the database.

A database model for graphics is proposed by Tikkanen
et. al. [10]. who developed a specialised geometric data
manager in C for a 3-D CAD application. They choose to
represent solid objects by linked lists of faces, edges and
vertices which are connected by pointers. The decision to
implement in C rather than using a conventional DBMS is on
the grounds of efficiency. Clearly there can be no argument

here that a specialised software package for a specific pur­
pose is likely to be faster in operation but you sacrifice
generality and the opportunity for integration with the rest
of the data in a normal database.

Another approach to describing 3-D objects is Construc­
tive Solid Geometry [11]. This uses a small number of basic

8

units to build up a tree which defines a new object. An
object may be a combination of other constructed objects
(i.e. defined in terms of the basic units) thus forming a
complex tree with just the basic units at its leaves.

The basic units can be combined in a number of ways by
using the set operators (union, intersection and difference)
and/or specifying translational and rotational motion to the
primitives thus describing its absolute position in space
relative to the other basic units.

This method is used by Lee and Fu [12] as the basis
for a CAD/CAM DBMS. They utilise the relational model with
the ideas of Smith and Smith [13] . Lee and Fu have
extended SEQUEL to allow relations to be defined detailing
generic relations (i.e. relations which are to be considered
as the same type) and aggregate entities (i.e. the attri­
butes of the relation).

e.g. Var Primitive :
generic

GC = (Cube, Cylinder, Cone)
of
aggregate [object#]

object# : identification number ;

GC : geometric category ;
end

This defines the basic units for this CSG database as
cubes, cylinders,and cones as relations of type "primitive".

9

They also feature the use of views (relations derived
from base relations) and triggers (automatic updates to

relations upon detection of a specified condition) and
integrity assertions (predicates which must be satisfied
before the triggering action is allowed to proceed).

This latter feature is essential to maintain the
integrity of the database where there are many semantic
associations as in Lee and Fu's model. The disadvantage of
such a complicated system is the complexity of the con­
structs that are required for comparatively simple queries.

e.g. List all primitives used in the object "shaft".
Select *
From primitive
Where 0# =

Select 0#
From object X, object Y
Where X.CC = "primitive"
And X .own_0# = Y .0#
And Y.0# =

Select 0#
From mech_parts
Where name = "shaft"

Their motivation for using such a complex scheme is
that it obviates the need for null values which would be
required to terminate the branches of a CSG tree. Also it
gives the user information about the type of primitive used

at each position in the tree and therefore eases query for­
mulation (sic).

10

The model proposed in this thesis also uses the idea of
building objects from a small set of primitives but does not
use a CSG tree. The resultant queries are easier to formu­

late than those associated with Lee and Fu's model.

The SAM* database (Su [14]) is a semantic network
approach to CAD/CAM databases that is represented as a set
of nodes pointed to by a number of directed arcs. Each node
is characterised by an association and defines a domain of
values which are the data in the database. There are seven
association types (membership, aggregation, interaction,
generalisation, composition, cross-product and summarisa­
tion) and these are used to express the semantic connection
between nodes in the database.

He argues that a relational (or indeed any other) model
cannot provide the range of semantics or datatypes required
for a fully integrated manufacturing database. Also included
are rules as a domain in the membership type of node and
thus provide for a wide range of constraints for integrity

and security purposes.

Shenoy and Patnaik [15] have devised a graphical data­
base (ARDBID) that uses base relations "point", "line", "
curve", "surface" and "volume" to describe 3-D objects using

wire frame graphics. Thus the "line" relation has attributes
"start point" and "end point" which are defined as

11

references to the key attributes in the "point" relation.
The "surface" relation has attributes that reference the key
attributes in the "line" relation together with some display
attributes (line type). Curved lines are handled by using
the parametric representation of Bezier or B-splines which
enables curves to be specified by a few control points. This
imposes a computational overhead as the data for the line
must be calculated at display time.

The graphical description of an object is stored in

relations with unique names that have the extension that
defines the type of relation (e.g. name.lin, name.cur for
line and curve relations for the object called "name").

The representation chosen by Shenoy and Patnaik is not
unlike the one presented in this thesis, but they do not
handle geometric transformations within the DBMS. All graph­
ical operations are performed on data extracted from the
relations (files) and processed as arrays in the host
language (PASCAL). Updates are performed by writing these
arrays back to the relations (files). There is no mention of
whether integrity issues have been addressed.

2 . 1 Geographical Information Systems

The systems reviewed here are all concerned with map­
ping either from satellite data or ground survey data.

12

An alternative to the usual query language interface is
proposed by Chang and Fu [16] who introduce "Query-by-
Pictorial-Example". This extends the ideas of Zloof [17]
where queries are expressed by putting example elements into

tabular representations of the relations in a database to
compose complex predicates. This implementation uses a
graphical database derived from satellite pictures of the
Earth which have the maj or features such as towns, rivers
and roads translated into coordinate data. The graphical
relations are all concerned with points and lines, and each
tuple contains the 2-D coordinates of the end points of a
line which represents part of a feature from the original

picture.

Their database does not, however, extend to any general
purpose graphical application and no graphical transforma­
tions are allowed on the pictures created. A link is main­
tained to the original satellite pictures which means that
these can also be retrieved as the result of a query.

Frank [18] proposes a query language called "Mapquery"
based on SQL for a Geographic Information System without
detailing any precise storage strategy. He argues that the
result of a query should be a graphical display which shows
the area of interest. For multiple answers the system should
automatically split the viewing surface into separate win­
dows and display an answer in each. He highlights a number

13

of similar issues concerning the graphical display of
results of graphical queries which the system should handle
automatically. This matter is discussed later with refer­
ence to the model proposed in this thesis.

Frank demonstrates that more work is required to estab­
lish a standard form of presentation for results of graphi­
cal queries taking into account a variety of factors that
are usually labelled Man Machine Interface.

Another approach to representing maps is to use a stan­
dardised grid onto which the mapped features are are over­
laid. The individual grid sections are then assigned to
features on the map. An implementation of such a system is
PICDMS [19]. It is used for storing and manipulating
satellite photographs in a general purpose database system.
The database model used is a stacked image structure which
is stored sequentially. Each record represents one grid
location and each field is the value of that location for
each image stored. The motivation for this design choice is
that new images of the same region are added by the addition
of a new field to the data record rather than by adding a
new record. This gives the database a compact format that
does not waste storage with blank records. although this
does give problems with the physical storage of variable
length records. A data dictionary keeps track of the
current structure in a user transparent way. A new language

14

is defined by giving examples of its use in a sample data­
base. This is a procedural language that resembles BASIC
with the addition of data manipulation keywords such as
"ADD", "DELETE", and "DISTANCE".

2.1.1.̂ 3. Pictorial Databases

A number of models for pictorial databases have been
proposed (e.g. [20]) but these are concerned with indexing
images (e.g. video frames) and do not allow manipulation of
objects within the picture so they are not considered here.

Kunii et al. [21] use a relational database to store
representations of images by decomposing them into the
objects depicted therein. Thus relations store data on the
image and the index to the picture together with a title.
Objects within each picture are itemised in another relation
together with a measure of their distance from the observer.
Each object is further decomposed into parts which are
ranked for distance as before. Finally a relation called

"region" is used to describe the colour of the components of
each picture with a definite boundary. The boundaries are

stored in a relation which holds the 2-D coordinates for
each.

This is a top-down approach to picture decomposition
that requires a lot of processing (either human or machine).
The system is a complex index to a set of images but as no

15

sample queries were given and no system for the reproduction
of the image was intimated it is difficult to divine the
authors' intended application area.

An integrated Database Management System for a pic­
torial database is developed by Tang [22] using a matrix
representation for the pictures (bit maps) and an extended
SEQUEL for the query language. This is essentially an index­
ing system that allows the retrieval of the pictures by a
number of keys ("text", "sub-picture" or "video frame") and
displays them on specified or default output devices.

Some decomposition of the picture is possible by
selecting parts of them to be indexed (i.e. in a picture of
a face the nose and eyes may be referenced in different
relations). Input of the pictures is by some unspecified
camera-like device and a method of matching two pictures is
assumed.

2_.1.2,. Previous Work into General Purpose Models

A. van Dam [23] gives a very early example of the use
of non-homogeneous tuples as a data structure for computer
graphics. This was only two years after Codd's seminal
paper [24] and he didn't advocate the use of a relational

database by name, van Dam proposes a simple representation
using tuples to describe points, lines and pictures and
presents a few functions that act over them. The data

16

structure he uses is hierarchical in nature with pointers to
rings of similar objects in a backing store page. Thus he is
concerned with physical devices and access problems as much
as with a good graphical representation.

Weller and Williams [25] have a general purpose graphi­
cal system as their main aim using a relational database to
store graphical data on which they build a hierarchical

structure.

This extends the earlier work by Williams [26] where he
proposed a graphical database built from points and using
ordered tuples to provide the linkage of those points by
lines. Their new model allows duplicate keys and an attri­
bute can have the name of another relation as value thus
allowing a hierarchy of relations to be constructed. This
is a higher order idea that leads to difficulties in pro­
cessing queries which are akin to the non-normal form rela­
tional systems that are being studied at the present time.

The graphical data is stored as point coordinates which
have graphical actions associated with each one. Thus by
using ordered tuples a shape can be drawn by having a rela­
tion with coordinates and the operation "line" in each

tuple. Clearly re-ordering the tuples will produce a dif­
ferent (and unexpected) shape.

Crampes et. al. [27] developed a data model for a

17

database that would hold all the information required for an
organisation and might contain any or all of data, text,
image and graphical types. The pictorial part of their model
is split into two types ; drawings and fixed images. The
first is the class of graphics represented by points, lines
and arcs. The second are images (bit mapped screens). They
do not explain how drawings are stored or reproduced in the
database but fixed images are stored on magnetic or optical
media for recall when requested by the database query
language. The pictorial information is represented in the
relations as pointers to the stored image.

This type of representation of graphics avoids the

issues of graphical representation suitable for manipulation
and query by anything less than a whole image.

The need for integration of applications and the shar­
ing of data is discussed by Spooner [28] who proposes a
general purpose interface for a interactive graphical data­
base system. He follows the philosophy of Lorie [3] in
constructing hierarchies of tuples to form complex objects.
The graphical data is held as 2-D coordinates in a single
"Points" relation and all the entities are associated with
points tuples by key values. He indicates that such a
mechanism for representing geometric information is not
flexible enough for most purposes and a better scheme is
required.

18

His novel feature is the use of a relation called
"Semantics" which holds semantic values for each attribute
in each relation. The semantic values are used by the system
for displaying the entities they refer to. So when an entity
is to be shown graphically the "Semantics" relation is con­
sulted to find the "meaning" of each attribute and the
graphical data is processed accordingly. He also advocates

the use of high level database model such as DAPLEX [29]
for graphical interfaces to other data models.

A novel approach to database structuring is proposed by
Hardwick and Sinha [30]. They use a non-normal form rela­
tional model to construct objects from a set of primitives

(e.g. polygon, line). The resulting relation has one attri­
bute for each primitive but each tuple has only one attri­
bute which contains any value; the others contain nulls.
These they call heterogeneous relations to distinguish them
from first normal form (homogeneous) relations.

This structure is very much the heterogeneous list as
used in LISP and its use in a relational environment is
inappropriate. It is not clear how the relational model is
used at all as the normal advantages conferred by that model
cannot apply here.

A different approach to modelling graphical objects is
used by Shapiro et. al. [31] for use in scene analysis.
They propose a system for describing 3-D objects

19

approximately by using a few general purpose objects they
call "blobs". These are parameterised objects that can be
used to describe an object of interest by defining a set of
relationships between them. Thus a table might be
represented as a circular "plate" supported by four "sticks"
and the database will hold the values for the sizes and
angles between these "blobs". This data is held as 10 rela­
tions which are linked to form a hierarchy of sub-objects
that construct the object of interest.

The obj ects held in the database are grouped by the
values held in the root relation and new objects to be iden­
tified from a 2-D scene are matched with a group of known
objects to restrict the search space before proceeding on to

more detailed matching.

This is another example of a specific application that
is not applicable to the general purpose graphical database
although the "blob" concept is quite appealing.

Garrett and Foley [32] have looked to a graphical data­
base system to increase programmer productivity by using a
database to hold data from an interactive graphics system.
They hold the data in relations that are analogous to the
procedures in the CORE graphics standard. Thus calls to the
graphics system are made by taking data from the appropriate
relation and passing that to the CORE procedure. In addition
they rely on defining dependencies between the relations

20

which control the update of the database via a mechanism of
production rules they call "Continuously Evaluated Qualified
Updates" (CEQUs). These cause data to change in the database
as changes are made graphically by the user.

This use of a non-procedural mechanism to specify the
operations on the database is close to a formal specifica­
tion and gives a good approach to the difficult problem of
graphical input to a database. This system is not res­
tricted to the relational model or a production rule system
and is therefore a general purpose concept.

The PROBE project [33] aims to increase the range of

complex objects that can be handled by databases and
research is continuing on a variety of topics, one of which
is graphics. They have adopted the grid approach to
representing graphical objects. (This is where a regular
grid is superimposed over the object to be represented and
the locations in the grid that coincide with the object are
identified in the database.)

They utilise Approximate Geometry (AG) to process spa­
tial queries. This is not an imprecise procedure, as the
approximation relates to the coarseness of the grid used to
define the object i.e. a large grid (few locations) is less
precise than a fine grid (many locations). Each grid loca­
tion is encoded by a "z-value" to facilitate the processing
of a particular class of query ; the range query i.e.

21

queries where the information required is retrieved by an
attribute value which lies within a range of values speci­
fied by an upper and lower bound.

The advantage of this approach is that all range
queries can be reduced to a one dimensional problem i.e. is
the attribute value between the bounds. This works for any
dimension of object due to the nature of the coding process
where the coordinates of the grid positions are converted to
binary and interleaved to give a binary number that is
unique. The sequence of these numbers traces out a regular
path through the grid which means that, in the case of three
dimensions, a volume can be described by two "z-values" and
a three-dimensional "contains" query is reduced to a one-
dimensional range query.

They define a new operation - the "spatial join"
which utilises this feature and present evidence that this
improves the processing of such spatial queries.

The following table (Figure 2.1) shows how the various

models compare with each other.

22

| Representation
| Pts | Grid | Obj

Graphics
Language 1

1
Integrity 1

1
2/3 D 1

1
Lee (12) 1 1 1 X 1 X 1 3 1Spooner (28) 1 x 1 1 1 1 2 1
Shenoy (15) 1 x 1 1 1 X 1 2 1
Chang (16) 1 x 1 1 X 1 1 2 1Garrett (32) 1 1 1 X 1 X 1 2 1Lorie (3) 1 x 1 1 X 1 X 1 2 1Shapiro (31) 1 1 1 X 1 1 3 1Morffew (8) 1 x 1 1 1 X 1 3 1Williams (26) 1 x 1 1 X 1 1 2 1Orenstein (33) 1 x 1 X 1 X 1 1 2 1Hardwick (30) 1 x I 1 X X 1 1 2 1Tang (22) 1 1 1 X 1 1 2 1Kunii (21) 1 1 1 X 1 1 2 1Chock (19) 1 1 X 1 X 1 1 2 1Frank (18) 1 x 1 1 X 1 1 2 1Su (14) 1 1 1 X 1 1 3 1Tikkanen (10) 1 x 1 1 X 1 1 3 1Batory (7) 1 1 1 1 X 1 2 1van Dam (23) 1 x 1 1 X 1 1 2 1Crampes (27) 1 1 1 X 1 1 2 i

Figure 2.1: Checklist for reviewed Texts

The "x" denotes features discussed by the authors in
their papers.

2 . 2 . Issues in Formal Specification
The use of formal specification methods as a precursor

to the implementation of complex computer systems has been
shown to be of benefit in the speed of implementation and in
promoting easy maintenance of the resulting system. The
specification also serves as a medium of communication

between designer, programmer and customer.

23

In this thesis the formal specification of the proposed

model is a major objective to promote understanding the
ideas developed in the model. The sections that follow
review the extant work in the area of database specification
and graphical system specification in order to provide a
basis for the presentation of the formal specification in

Chapter 4.

2 . 2 . 1 . Formalisation of Database Models

The use of formal specification methods to describe any
system is the first stage in a generally larger task. This
means that the choice of formalism and the structure of the
specification must be geared towards the overall task. The
papers reviewed in this section demonstrate different styles
and formalisms without showing the purpose for which the
specifications are written. Indeed, in many cases the pur­
pose is an academic one that demonstrates the use of a par­
ticular formalism.

The objectives of formal specification are discussed
more fully in Appendix C, but briefly a specification should
give a precise description of an abstract syntax and seman­
tics of the system being specified with the aim of allowing
implementors to achieve a working system more easily and
giving users a clear idea of the functionality of the system
without pre-judging implementation issues [34]. A specific
type of specification method is advocated by Lockemann et

24

al. [35] who define a database specifically (i.e. as a
cartesian product of named domains) to demonstrate the use
of the concept of data abstraction in databases.

In Tompa [36] there is an algebraic definition of quo­
tient relations and the operations permissible upon them.
This is based on sets and relations which are defined as
abstract data types together with a set of operations on
them. These operations include the usual set operations and
the relational algebra operations. He also gives a commen­
tary on how he arrived at his specification and the design
decisions taken.

Quotient relations are relations that are permanently
arranged according to a "Group-by" operation on a set of
attributes. Thus a relation can be defined as R(a,t,a')
where a is the set of attributes, t is the set of tuples and
a* is the set of "group-by" attributes.

For example, his definition of relational union is :

25

type relation

syntax
parts : relation -> set[attribute]
attribs : relation -> set[attribute]
union : relation x relation -> relation

constraints
union(r,r') » attribs(r)=attribs(r*)

AND parts(r)=parts(r’)
equivalences

union(R(a,t,a'),R(a,t',a')) = RCa.tUt'.a')
attribs(R(a,t,a')) = a
parts(R(a,t,a')) = a’

end
where the functions "parts" returns the "group-by" attribute
set and "attribs" returns the full attribute set.

The datatype being used is given in the type statement
and the functions acting on that type are listed in the
"syntax" section which details just the domain and range
types. The "constraints" section is in effect the precondi­
tions that must hold before the function "union" can be
applied. The constraints are expressed as logical combina­
tions of functions and constructor patterns. Finally the
semantics of the operations are given in the "equivalences"
section.

Another algebraic approach to defining data model
semantics is described by Brodie [37] who uses a set of pro­
perties for each type to describe the semantics of each
operator for the relational model. This means that the pro­
perties are given by the tuple :

26

<(V(t) ,AV(t) ,C(t) ,AC(t) ,0(t) ,AO(t) ,ID(t)>
where t = the type of interest.

V(t) = set of values
AV(t) = set of axioms defining the properties

of type t
C(t) = set of types used to compose t
AC(t) = set of axioms defining composition

rules for t
0(t) = set of properties for operators on V(t)
AO(t) = set of axioms defining operators

named in 0 (t)
ID(t) == set of candidate keys

For relational union T = T1 + T2
V(T) = {x: x in V(Tl') or x in V(T2')}
AV(T) = AV(Tl') = AV(T2')
C(T) = C(Tl') = C(T2')
AC(T) is AC(Tl') which is the same as AC(T2')
0(T) and AO(T) are not inherited by T
ID(T) is {k:k is a key in both ID(Tl') and ID(T2')}
T1 is a T and T2 is a T
T1 and T2 are dependent on T

where Tl' and T2' are the attribute sets for each relation.

Golshani, Maibaum and Sadler [38] use modal logic to
specify a database where the emphasis is on capturing the

behaviour of the system under updates. This form of logic is
based on predicate logic and is "the logic of necessity and
possibility". They do not define a database in general
terms or even in terms of one of the usual models but use a
university database example to illustrate how their tech­
nique can be applied in specific cases.

Neuhold and Olnoff [39] use the Vienna Development
Method (VDM) as their specification formalism and define a
relational database system to demonstrate the usefulness of

27

the technique [40,41].

Another formalism used to specify a database is the
attribute method [42] as described by Niemi. He defines a
relational tuple to be a 5-tuple (<r,X,AN,Ix,Fx>) where r is
the data in a tuple, X is the type of that data, AN is the
set of attribute names, lx is a set of indices and Fx is a
function which maps attribute names to indices. For example,

(<1112,Smith,5819.20>,
int x char x real,
{Ecode,Ename,Salary},
{<1>,<2>,<3>},
{f(Ecode)=<1>,f(Ename)=<2>,f(Salary)=<3>}

)
is a tuple in an employee database.

A relation is defined as a six-tuple
(<r,X,RN,AN,lx,Fx>) with the same meanings as before and RN
as the relation name. Here the author defines an abstract
syntax for a relational database and then defines the seman­
tic and checking attributes for that model. The abstract
syntax is a series of structural productions that includes
the relational algebra together with the constructors for a

relational database. The attributes express the precise
semantics of the productions (semantic attributes) together

with restrictions (checking attributes) on the possible set
of objects that can be generated by them.

Stemple and Sheard [43] develop a specification that

28

incorporates integrity constraints as part of the main model
to ensure that the results of all operations yield valid
database states. The main aim of this specification exer­
cise is to prove theorems about the behaviour of transac­
tions on constrained databases. The relations are defined
explicitly for specific cases (as are some of the transac­
tions) . The two datatypes used are finite sets (fset) and
tuples. The axioms for the set functions are given in if-
then-else format as shown below.

member : element X fset -> boolean
member(e,s) = if s = emptyset then false

else if e = choose(s)
then true

else member(e,rest(s))

This is a recursive definition of set membership that uses
the function "choose" which selects a member of the set
determined by an internal ordering.

The tuple axioms they define to construct and select
attributes are written in a shorthand style which stands for
a whole family of axioms for selecting and constructing
tuples.

This style of specification is continued in a further
paper [44] where they use the language ADABTPL to express
their database specification. They illustrate how novel
datatypes can be incorporated into a database system and
used in database transactions.

29

This specification is executable and can be analysed
using a Boyer-Moore style theorem prover to provide semantic
checking.

2.2.2. Formalisation of Graphical Systems

The major work in this area is that of W.R.
Mallgren [45] whose objective is to provide a means of rea­
soning formally about graphics programming languages and he
gives examples showing proofs for the equivalence of two
programs using the specification as rewrite rules.

He starts by identifying three main problem areas with
existing graphics programming languages :

(1) Specialised constructs are used that are not found in
general purpose languages.

(2) These constructs are not fully understood and are
therefore difficult to specify properly.

(3) Graphics programs often involve direct interaction with

the user which is difficult to specify.

He contends that a graphical language should mirror
traditional languages by being based on a small set of well
understood concepts (e.g. datatype, assignment statements

and flow control statements). As there are no universally
fundamental graphical concepts Mallgren chooses an arbitrary

30

set on which to base his specification ("region", "picture",
"graphical transformation", "hierarchical picture structure"
and "user interaction") and provides an algebraic specifica­
tion based on these. A "region" is simply a set of points
which represents a plane in 2-D space or a volume in 3-D
space. A "picture" is defined as a partial function mapping
a set of points to values that can be considered as colours.
(In the simplest case 0 for black and 1 for white). A

"graphical transformation" is a function that maps a picture
into another picture. A "hierarchical picture" is one that
is composed of sub-pictures each of which may itself be com­
posed of sub-pictures. Finally "user interaction" is the
process of the user communicating in some way with the
graphics program. Each of these concepts has an associated
set of operations.

He defines abstract datatypes called "point", "region",
"picture" and "transformation" and operations upon them
which constitute the formal specification he aims to derive.

He also tackles the difficult problem of user interac­
tion which requires a variation on the normal specification
method to express the semantics adequately (He uses the
notions of shared datatypes, semaphores and concurrent
processes. These concepts are not relevant to this thesis).

The other authors who have tackled formal specification
of graphics systems [46,47,48] have taken different

31

approaches. Duce and Fielding have written specifications
for parts of the already implemented GKS system. Their aim
was to provide an understandable description of features of
the standard GKS system that were difficult to describe in

plain English.

Ayra does not provide a formal specification of a
graphics system as such but by using HOPE as his graphics
language he shows how manipulation can be achieved in a
functional environment.

Carson provides an axiomatic specification of the old
ANSI draft standard PMIG (Programmers Minimal Interface to
Graphics) which has now been superceded by the GKS standard.
The import of the paper is to show how formal specification
can be used as an aid to providing an unambiguous descrip­
tion of a system.

2 . 3 . Conclusions

This review of the extant work in the areas covered by
this thesis has shown that there is no clear cut candidate
for a generally useful graphical database although Lorie's
ideas seem to approach one. Also, there is a variety of
specification styles which try to encompass the semantics of
relational databases and graphics systems but do not combine
the two.

32

In the next chapter a model is proposed that will
attempt to overcome some of the problems identified in the
work reviewed above.

33

CHAPTER 3

Overview of Proposed Graphical DataBase Model (GDB)

3̂.1. Introduction

There are three main issues to be addressed in the
field of graphical databases; representation, query
languages, and graphical transformations.

Firstly, a suitable representation of graphics must be
devised. This is important because it will determine the
range and style of queries on the database. For dedicated
systems the representation chosen can reflect the user's

expected queries and give the bonus of efficient operation.
This limits the opportunities to apply the model to other
application areas where queries may become more difficult to
construct and some evaluation overheads may be incurred.

A general purpose representation should be applicable
to many tasks with a suitably flexible query language to
handle any foreseeable query. The chosen representation
should also allow the integration of graphics with the more
usual data held in databases and therefore allow complex
queries to yield graphics and text as a result.

Secondly, the query language devised to accompany a
graphical (or indeed any) database must be expressive enough

34

to extract any subset of the stored data without having a
complex syntax or having overlapping constructs (i.e. two
distinct syntactic constructs for the same semantic mean­
ing) . For a graphical database this means that the ability
to use graphical concepts for selection predicates is
required (e.g. retrieve all objects within a specified
volume of space). New constructs are needed to handle the
graphical display of the results of a query.

Finally, the subject of graphical transformations must
be considered. The DBMS must support graphical transforma­
tions to allow the user to manipulate objects represented in
the database as well as providing the means to display
objects by the choice of a suitable viewing projection
method.

The types of graphical objects to be stored in the
database is an important issue that must be clarified before
a suitable database model can be devised. There is no clear
distinction between the everyday use of the terms graphics
and images. One might use the definitions that graphics are

line drawings, sketches, commercial artwork while images are
photographs or electronic (video) frames. Unfortunately com­
mercial artwork cannot be wholly classified into either
category because it may mix a variety of styles and media.
These two varieties of non-textual representation (to avoid
the use of possibly ambiguous terms) must, therefore, be

35

considered in different ways as far as graphical databases
are concerned.

The philosophy adopted in this work is to make the dis­
tinction between images (for want of a better generic term)
that are to be decomposed in some way and those that are to
be viewed as a whole. Thus for the first type there must be
some method of decomposing the image into some useful primi­
tives (or, conversely, some way of constructing an image).
The CAD environment is typical of this type of application.

For the second type, consider the example of the
integration of photographs in a database (for security
applications perhaps). This requires the database to act
simply as an index into the store of photographs, i.e. a
query of the form "Give me the photo of John Smith" will
display the required photo by finding the value of an attri­
bute in the "John Smith" tuple which is passed to the photo
store held on a separate medium (perhaps video disc, CDROM).
In this application the user is not concerned with how the
photo is constructed because he does not want to decompose
it in any way. Some matching with a frame from a video cam­
era would be performed by digital methods rather than by
decomposition into constructional primitives.

Applications such as CAD or geographic information
systems (GIS) demand a constructional approach because they
require the facility to examine small parts of a whole

36

object and possibly create a new object from them. Again
the overlap of the categories occurs with image processing
where photographs or video frames need to be stored in such
a way that allows them to be decomposed into salient
features. This may mean that two representations of the

image are required ; one of each format.

The approach taken in this thesis is that the construc­
tional approach is the lowest level representation possible
and if a suitable candidate can be found then applications
can be built on top using only those aspects of the model
they require. Therefore, simple indexing databases or pixel
based images for image processing applications are not con­
sidered as these can be handled adequately by other software
and stored in a constructional model if required by the
application of some suitable conversion algorithm using edge
detection and similar methods.

Some of the problems associated with current graphical
databases are highlighted by Abel [49] in which he describes

the CORGIS database system used for mapping applications. He
cites four deficiencies of spatial databases (my comments
are given in parentheses) :

(1) There is no high level view of entities. (The user must
be able to deal with entities and not with the primi­
tives used to construct those entities. There is a

37

need, therefore, for grouping primitives into user
definable objects and manipulating them as such).

(2) The query language lacks spatial operators. (The query
language must support some operators which allow the
user to move entities relative to one another etc. This
includes such transformations as rotation, translation

and scaling).

(3) There is no graphical display of the results of
queries. (There must be some way of seeing graphically
the results of queries ; a list of coordinates on its
own is virtually meaningless).

(4) Physical access methods are inefficient for spatial
queries. (If graphical data can be incorporated in an
existing database system then the DBMS can handle the
disc accesses. Some queries involving spatial relation­
ships might be handled more efficiently if the data
were organised on disc in some suitable fashion but the
mapping from the logical data in the database to the
physical data on disc would be difficult. See Chapter

5).

The one feature that must be present in all graphics
systems is a conversion of the graphical representation to a
set of 2-D coordinates/instructions that can be presented to

38

an output device such that it can display the required
image. This means that (for 3-D graphics) the chosen
representation must be converted (if necessary) to some 3-D
coordinate system and then transformed to a set of 2-D
instructions by selecting a projection style. The conse­
quence of this is that any use of more abstract models than
points etc. will require extra processing to obtain a set of
3-D coordinate data before the viewing projection may be
applied. Clearly the balance between the usability of an
abstract representation and the processing time must be

made.

_3.2 . Representation

The crucial issue in this work is the choice of a
representation for graphical data that will be compatible
with the data structure provided by the relational model. As
noted in Chapter 2 a number of representations have been
adopted by workers in this field.

The use of such schemes as CSG which use solids as the
primitives for constructing objects does not allow the user
the freedom to design difficult objects in a natural way. It
is easy to decompose an object into primitive solids (such
as cubes and cylinders) but it is much more difficult to
construct a new object from such primitives. A more natural
way to do such a job is to first create an outline and then
fill in more detail later. It is also possible to create

39

"impossible" objects (such as the drawings of Escher) using
a points based model so this type of system will be applica­
ble over a wide range of applications.

Another model noted in Chapter 2 uses the database to
store a series of calls to a graphical system. In this way
an object can be displayed by passing the selected data to
the graphical system. This has the merit of being fast but
there is no possibility of being able to manipulate objects
as the data stored is only the display of the object not a
construction of that object.

The fixed format of the GKS metafile offers the facil­

ity of storage in relations but it involves varying length
records of varying scheme that would demand the use of mul­
tiple relations (one for each type of metafile record).

The representation devised for this thesis is based

upon primitive constructors which are all defined in terms
of points in space. These points are defined in turn on the
cartesian coordinate system.

The reasons for this choice are :

(1) The manipulation of cartesian coordinate systems is
widely understood and used.

(2) The point is the smallest graphical unit. More complex

40

primitives can easily be constructed from points.

(3) It allows existing systems to be interfaced to this
design with ease.

The basic GDB model consists of three primitives that
are all based on points (Figure 3.1). These are line seg­
ments, triangular surfaces ("facets") and tetrahedral
volumes ("tetrons").

Line segments can be defined by specifying the two end­
points (See Figure 3.2). This allows the construction of
"wire frame" graphics.

Points

| ptnum | x | y | z
pOOl
p0 0 2
p003
p004
p005
p006
p007
p008

0.0
10.0
10.0
0 . 0
0 . 0
10.0
10.0
0 . 0

0 . 0
0 . 0
10.0
10.0
0 . 0
0 . 0
10.0
10.0

0 . 0
0 . 0
0 . 0
0 . 0
10.0
10.0
10.0
10.0

Figure 3.1: Points relation

For more complex images the primitive called a "facet"
(Figure 3.3) can be used. This is a triangular surface that
is defined on three points which specify the positions of

41

Lines

| lnum | ptl | pt2 |
1 1 0 1 1 pOOl 1 p0 0 2
1 1 0 2 1 p0 0 2 1 p003
1103 1 p003 1 p004
1104 1 p005 1 p006
1105 1 p006 1 p007
1106 1 p007 1 p008
1107 1 p004 1 pOOl
1108 1 p008 1 p005
1109 1 pOOl 1 p005
1 1 1 0 1 p0 0 2 1 p006
1 1 1 1 1 p003 1 p007
1 1 1 2 1

1
p004 1

1
p008

Figure 3̂ .2 : Lines relation for a cube
the vertices in 3-D space.

The extension to provide a volume primitive is quite
natural and a tetrahedral volume of space called a "tetron"
(Figure 3.4) is used.

One of the advantages of defining facets and tetrons in
this way is that they are not restricted to being fixed size

or shape which reduces the number of primitives required
when compared to fixed size representations [50] which are
wasteful of storage where large areas or volumes are being
represented. The tetron model allows any precision to be

used for any shape by using more smaller primitives at
places where high precision is required.

42

Facets

| fnum | ptl | pt2 | pt3 |
fOOl
f0 0 2
f003
f004
f005
f006
f007
f008
f009
fOlO
fOll
f0 1 2

pOOl
p003
p005
p007
pOOl
p006
p0 0 2
p007
P003
p003
pOOl
pOOl

p0 0 2
p004
p006
p008
p0 0 2
p005
p006
p003
p004
p007
p005
p008

p003
pOOl
p007
p005
p006
pOOl
p007
p0 0 2
p008
p008
p008
p004

Figure 3̂.3̂: Facets relation for a cube

Tetron

| tnum 1 ptl 1 pt2 1 pt3 1 pt4 1

| tOOl 1 pOOl 1 p0 0 2 1 p004 1 p005
j t0 0 2 1 p0 0 2 1 p008 1 p004 1 p005
| t003 1 p0 0 2 1 p003 1 p004 1 p008
| t004 1 p0 0 2 1 p003 1 p006 1 p005
| t005 1 p006 1 p003 1 p007 1 p005
| t006 1

1
p005 1

1
p008 1

1
p003 1

1
p007

F i g u r e 3.4: Tetrons relation for a cube

The primitives outlined so far are sufficient to con­
struct a wide range of plane faced objects and by using a
large numbers of small line segments or facets, curved lines

and surfaces can be approximated. To represent more regular
shapes, however, it is convenient to use algebraic formulae

43

as shorthand. For example, the circumference of a circle
might be represented as a set of line segments but defining
a large number of them is cumbersome and tedious. The more
natural way is to define a circle as the set of points gen­
erated by the formula yA2=rA2 -xA 2 (or similar) where x can
range from -r to +r to generate the required set of 2-D
coordinates for a circle of radius r.

One can think of any number of such primitives e.g.
spheres, parametric cubics (Bezier, B-spline), cylinders
etc.

The representation chosen must also provide the user
with a consistent method of manipulation. This means that
any new primitives used should be able to be handled in the
same way as the predefined ones. For this representation
based on points all other primitives must be defined on
points and not in terms of scalar quantities. For instance,
lines could be defined in terms of one end point, a length
and an angle of rotation about a pre-defined axis. Transfor­
mations applied to point based primitives can be handled by
matrix methods which deal with 3-D coordinates. This method
is not possible on scalar valued objects where the opera­
tions to rotate, translate and scale must be performed
separately by different mechanisms. The points based primi­
tives can combine the three transforms into a single matrix
and apply them all in one operation.

44

The following shows the different models; the points
based and the scalar based.

Points based Model

Point
Line
Facet
Tetron
Circle
Sphere

real * real * real - x,y,z coordinates
point * point - end points
point * point * point - vertices
point*point*point*point- vertices
point * point - centre + curcumf. pt
point * point - centre + curcumf. pt

Alternative Model
Point : real * real * real
Line : point * real * real
Facet : line * line * line
Tetron: facet*facet*facet*facet
Circle: point * real
Sphere: point * real

x,y,z, coordinates
point, length, rot'n
three lines
four facets
centre and radius
centre and radius

There would be the added complexity of integrity check­
ing for the alternative model to ensure that the component
primitives created the desired primitive, e.g. constructing
the facet in the alternative model the three lines would
have to join at the ends - in the points based model the
three points always produce a triangle.

One benefit of a points based model is the ease with
which properties such as area and volume can be calculated
because the objects are already tessellated.

The problems of how to display the results of queries
are many. The implementor would have to choose between show-

45

ing graphically all the objects retrieved by a query in a
number of windows on the screen or giving the user a list of
objects from which he can opt for graphical display of one
or more. In many cases the queries will only return a single
object in which case the options are more easily reconciled.

_3._2.1. Object Hierarchies

The model detailed so far is sufficient for defining
objects that exist in isolation. An enhancement would be the
ability to define objects in terms of other objects. This is
important from the point of view of re-usability and ease of
use. This embodies the principle of top-down design where

the whole problem is split into smaller parts and these
parts are similarly decomposed until the parts are small
enough to solve individually. So if the user wishes to
define a complex object (e.g. a car) in the Graphical Data­
Base it is much easier to individually define each component
part and then define the car as a collection of these parts.

This is the well known parts tree data structure which
must be extended in the case of GDB to include some graphi­
cal information along with the expected attributes of "supe­
rior part", "inferior part" and "quantity". The graphical
information necessary describes the spatial relationship of
the inferior to its superior (i.e. their relative positions
in space). There must also be a component that converts the
world coordinate system of the inferior into the coordinate

46

system of the superior. (Clearly as each individual part is
defined in the database the scale used will be user defin­
able and it is pointless to demand that the user maintains a
constant coordinate system over all the parts. This negates
the objective of re-usability as each part would have to be
redefined for each major object it was a component of).

There are several ways that this graphical information
may be expressed in relational terms.

(1) Option one is to use 9 attributes to hold values for
the rotational, translational and scaling degrees of
freedom (Figure 3.5). This could be converted into the
necessary matrix which would be used to transform the
points associated with that inferior part.
Compound Object

Snum | Inum |Rx|Ry|Rz|Tx|Ty|Tz|Sx|Sy|Sz|
ol 1 0 8
ol 1 o9
ol 1 o9
0 8 1 olO
0 8 1 oil
o9 1 ol2
o9 1 ol4

Figure 3 . 5 :̂ Compound object

This is only feasible for a single level hierarchy. If
the inferior part is itself composed of other parts,
then these parts will each have a transform matrix
which must be multiplied together to give a total
transform matrix. These operations are possible but at

47

some intermediate stage the matrix must be stored in a
relation as the 9 attributes and this mapping involves
factoring matrices and deriving eigenvalues and eigen­

vectors to generate the scaling and rotational values
respectively.

(2) Option two is to store the relation name of the matrix
relation in the compound object relation (Figure 3.6)
which would allow matrices to be stored and multiplied
as required, but this model is then not in normal form
(because the values are not foreign keys but relation
names. This means that the normal join operation is not
applicable) and, as such, is outwith the scope of
current database technology (although research into
higher order or non-normal form relations is underway
at a number of institutions at the moment).
Compound Obj ect
| Snum | Inum | MatrixRname |

| ol [o9 [matrix2 |
| ol | 0 8 | matrixl |

Figure _3.6j Higher order compound object

(Note: values of MatrixRname are names of relations,
not normal attribute values. This is a higher order

structure which is foreign to the relational model.)

48

(3) Option three is to store all the matrices in one large
relation (Figure 3.7) which has a composite key of
unique matrix number and tuple number (The latter is
necessary to ensure that the matrix is constructed in
the correct order).

Matrices

1 MatrixID | row one two three four 1
ml | 1 1.0 0.0 0.0 0.0 1ml | 2 0.0 1.0 0.0 0.0 1ml | 3 0.0 0.0 1.0 0.0 1ml | 4 0.0 0.0 0.0 1.0 1m2 | 4 2 . 0 0.0 0.0 1.0 1m2 | 3 2 . 0 1.0 0.0 1.0 1

Figure .3.7: Matrix relation

The hierarchy that results from this approach is shown
in Figure 3.8.

Object hierarchy
Snum	Inum	MatrixID
ol	o9	m2
ol	0 8	ml

Figure 3 . 8 : Hierarchy relation

(4) Option four is to define a new datatype "matrix" within
the DBMS to allow matrices to be stored as attribute
values (Figure 3.9).

49

Compound Object
|Snum|Inum| Matrix |

| ol | o9 |(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1)1
| ol | 0 8 |(2 ,0 ,0 ,0 ,0 ,2 ,0 ,0 ,0 ,0 ,2 ,0 ,0 ,0 ,0 ,2)|

Figure 3 . 9 : Compound object
This has the advantage of making matrix manipulation

much faster as it can be coded in the implementation
language (C in the case of DEAL/PRECI-C). However, this
means that an interface between matrices and relations must
be established to support the transform operation that takes
a matrix and the points relation to produce the transformed
points relation.

The mechanism of graphical transforms is considered
later in this chapter.

2-2- Query Language
The query language devised for a graphical database

must have all the normal relational operations plus the
specialised graphical ones. The primitives used to describe
objects graphically would not be available for normal query
purposes. All manipulation of the points, lines, facets and
tetrons relations is left to the built-in operators "gjoin"
and "show". The former produces a new relation that is a
subset of the main points relation which contains only those
points that describe a selected object. The latter produces

50

a relation containing all the transformed point data neces­
sary for display purposes. This in turn is hidden by the
user operator defined to select an object and display it on
a specified portion of the screen using a specified projec­
tion style and orientation.

The user query language will be designed for the appli­
cation and will map from the users conceptual model into
calls to "show" and "gjoin". (The gjoin function is in fact
a family of functions that are defined for each type of
primitive defined in the database).

The relational operations embodied by the operator
"gjoin" are expressed in the following SQL-like statements
to transform the points for the object "Bowl". (T1-T9 are
temporary relations.)

51

T1 = SELECT [onum]
FROM object
WHERE name = Bowl

T2 = SELECT [Inum]
FROM Tl,linelink
WHERE Tl.onum = linelink.onum

T3 = SELECT [spt,ept]
FROM T2,lines
WHERE T2.Inum = lines.Inum

T4 = SELECT [spt]
FROM T3

T5 = SELECT [ept]
FROM T3

T6 = T4 ++ T5
SubPoints = SELECT *

FROM points,T6
WHERE T6 .spt = points.ptnum

Thus a call of

SubPoints = GJOIN
WHERE object.name = Bowl

would achieve the same end. Note that gjoin for an object
defined in terms of facets requires one additional project
and one additional union operation. Similarly for an object
defined in terms of tetrons, two additional project and two
additional union operations are required.

The resulting points relation can be transformed to
produce a relation suitable for display purposes. This
involves the viewing transform as well as the transformation

52

needed to change from world coordinates to device coordi­
nates (see Appendix A). The viewing transform is specified
in ML in Appendix G, as is the "transform" function which is
used to apply that transform to a points relation.

The transformed points relation is then joined twice to
the lines relation (three times for a facet and four times
for a tetron) to produce a relation which contains the three
coordinates for each end of the line (Figure 3.10). This
relation is then processed by the device driver to draw the
object defined in the query.

lnum	xs	ys	zs	xe	ye	ze
L101	120.3	130.4	0.0	400.5	130.4	0.0
L102	400.5	130.4	0.0	800.9	200.6	10.0

Figure .3.10: Display relation

The equivalent operations for the "show" operator in
SQL syntax are :
T7 = TRANSFORM SubPoints

WITH Viewmatrix
T8 = SELECT *

FROM T7,T3
WHERE T7.ptnum = T3.spt

T9 = SELECT *
FROM T8,T3
WHERE T8 .ptnum = T3.ept

DISPLAY T9
where DISPLAY is the device driver for the output device

53

selected for display purposes (usually the screen). This is

the equivalent of

SHOW "Bowl"
USING VIEWMATRIX

The operations for compound objects (i.e. object
hierarchies) are similar except that the hierarchical struc­
ture must first be "flattened". The "gjoin" must contain all
the points for all the sub-objects of the selected object.
Given a compound object relation "parts" with scheme
(sup,inf) where "sup" is the superior object and "inf" is
the inferior object, the SQL-like syntax for the flattening
operation is :

tempi = SELECT [inf]
FROM part
WHERE sup = onum

temp2 = SELECT [inf]
FROM tempi,part
WHERE tempi.inf = part.sup

temp3 = SELECT [inf]
FROM temp2,part
WHERE temp2.inf = part.sup

etc.

Result = tempi ++ temp2 ++ temp3 -H- ...

This sequence of operations must be continued until the
resulting relation is empty (i.e. the "leaves" of the tree
have been reached. Clearly SQL is limited in that it can not

54

adequately express such operations in a simple syntax. (A

DEAL function for this operation is given in Appendix H).
The relation ’’Result" can be substituted in the query for T2
above, in place of T1.

3̂. 3.1. Graphical Transforms

Graphical transformations of points based models by
matrix methods is described in Appendix A. What follows is
a discussion of the possible options available to handle
matrices and relations. The essence of graphical transforms
is the multiplication of vectors (representing 3-D coordi­
nate points) by a matrix which embodies the desired
transformations. The 4x4 matrix is not a built-in datatype
so some provision must be made for its inclusion within the
database. One possibility is to store the matrices as rela­
tions with five attributes which represent the four columns
of the matrix together with an extra attribute which defines
the row of the matrix. Such a relation would look like Fig­
ure 3.11.

Matrixl
| Line | one || two |[three || four |

1 1 11 1 11 0 11 0 |1 0 |
1 2]1 0 |I 1 11 0 |1 o |
1 3 |1 0 |1 0 1 1 11 0 1
1 * I1 0 11 0 11 0 11 1 1

Figure 3^11: Matrix as a relation

55

It is possible to define matrix operations in terms of
relational operations given a suitably flexible query
language (e.g. DEAL). This is likely to be quite slow as
many temporary relations are created for operations such as
matrix multiplication. The other possibility is to define
matrices as data types within the DBMS and include the
appropriate operations implemented in a suitable language
(e.g. C) which are accessible from the query language.

What is also required if the latter method is adopted
is a mechanism for accessing the points relations such that
the coordinate data can be operated upon by the matrices.
The facility to define the appropriate matrices is also
required which means that the query language must have some
of the attributes of a conventional programming language and
has operations that are not relational in nature.

From the purist's point of view the former option is
preferable even if it is slower than the latter, since it
does not require extensions to the language.

A related problem involves the display of objects that
are the results of queries. A decision must be made as to
where the graphics device driver resides. The two obvious
choices are in the query language or within the DBMS. The

former will allow flexibility to use different display dev­
ices (e.g. screen, printer, plotter) as the user will be
able to write the appropriate routines in the query

56

language. The latter is more elegant in that the low level
operations are hidden from the user and the query language
is not cluttered with non-relational constructs.

The ability to manipulate objects by routines embedded
within the DBMS is essential to the efficient operation of a
graphical database. The other option is to interface the
DBMS with a specialised graphical system that would handle
all the graphical transforms. This would involve extracting
data from the DBMS and converting it into the data structure
appropriate for the host language. If graphical data input
is required then the reverse operation is also required.
The data from the graphics system must be converted into the
relational structure.

If the transformation and graphical display facilities
reside within the DBMS and are controlled by an extended
query language, then an interface must be included to define
output devices and suitable software to utilise them. If
these functions are left to a host language program then the
burden of driving devices is placed with the applications
programmer but the result of a query must be a set of data
in a standard form which can be processed by the external
program.

Choosing this latter option would allow the use of a
standard graphics system (such as GKS) to produce output.
This has obvious benefits in allowing the graphical database

57

to be widely used and married easily to existing graphics

systems.

Including the graphical transformations and graphics
calls within the DBMS does facilitate the production of
graphics for the specified device giving a speed advantage.

For this thesis the choice between these options is not

critical as the model is expounded fully and the implementor
is at liberty to choose a suitable implementation.

3̂. 4. Conclusion

The model developed informally in this chapter has

tackled the problems of devising a representation suitable
for inclusion in a database that contains the usual commer­
cial data. A discussion of the query language required has
shown that few new operators are needed to produce a working
graphical database system.

In the following chapter this model is placed on a
sound footing by providing a formal specification of the
model proposed in this chapter.

58

CHAPTER 4

Formal Specification of GDB

4.1. Introduction
The motivation for this part of the thesis stems from

the papers by Wong and Samson [51] and Mallgren [52] who
used algebraic specification methods to specify a database
system and a graphics system respectively (see Chapter 2).

Wong and Samson use the applicative language HOPE [53]
to express the semantics of the PRECI [54] relational data­
base and its algebraic language PAL. This involved specify­
ing (among other entities) schemes, tuples and relations as
abstract datatypes together with the operations on these
types (such as union compatibility, difference, join etc.).
The specification shown here was devised independently as
the notion of schemes and their inherent naming problems was
not considered an imperative part of the present specifica­
tion. (See Appendix C for the theoretical basis of specifi­
cation methods. Note that the decision to exclude schemes
illustrates the point made in the appendix about how a level
of abstraction is decided upon by individual modellers
depending on the problem under consideration.)

4.2. Specification of a Relational Database
The following is a detailed explanation of the specifi-

59

cation for a graphics database written in Standard ML (SML)
and this has been executed with suitable test data and shown
to be consistent. The proof of any specification is a
matter of conforming to the higher level axioms that govern
its behaviour. A sample proof is given in Appendix D.

The style of presentation of the specifications that
follow is to provide axioms in the manner advocated by San-
nella [55] using predicate logic to specify the properties
of the functions. These axioms are only comments and do not
form part of the executable specification. The SML functions
follow. (See Appendix B for an explanation of the syntax of
SML) .

The first step is to establish the constructors for the
datatype of interest (in this case "relations"). The "data­
type" construction of ML is used and this consists of the
following structure :

datatype < type name > = < constructors >

The constructors are the keywords that allow members of
the datatype to be constructed. So in this case, the con­
structors for a relation are "mt" (pronounced "empty") and
"tcons". (The "'a" is a type variable. This is instantiated
to a type at execution time and allows polymorphic specifi­
cations to be written i.e. the functions can be applied to
any type.)

60

datatype 'a relation = mt |
tcons of 'a * 'a relation

Thus the new type "relation" can have any scheme which
is established at run-time by the SML type checking system
according to the type used in the data.

The specification includes a number of general utility
functions of which "ismt", "member" and "card" are three.
They are used by other functions rather than invoked by the
user directly.

(•k -k 'k -k -kk -k -k 'k -k -k 'k -k -kkk 'kk 'k -kk -kkkkkk 'kkkk 'k -kkk -k -k -k 'k 'k 'k)

(* Axiom forall R => R = mt <==> ismt(R) *)
fun ismt(mt) : bool = true
| ismt(tcons(t,r)) = false
(•k k k 'k 'k 'k k ic k -k k 'k 'k -k k -k 'k k -k 'k k 'k -k -k k 'k 'k k k 'k k k -k 'k 'k 'k k k k k k k 'k -k -k -k -k -k -k 'k -k)

(* Axiom forall t,R=> R=mt ==> member(t,R) = false *)
(* Axiom forall t,R => member(t,tcons(t,R)) = true *)
fun member(t u p l e a , mt : 'a relation) = false
| member(tuple: 'a , tcons(tupa, r: 'a relation)) =
if tuple = tup
then true
else member(tuple,r)

(•k'k'k-kk-kk'kkkk'kirk'k'k'k'k'k-k'k-k'k-k'kk'kk'kk'k'kkk'k'k-kk'kk'k'k-k'k'k'k'k̂ rk'k-k)
(* card is normal cardinality function *)
(* Axiom => card(mt) = 0 *)
(* Axiom forall t,R=> card(tcons(t,R))=1 + card(R) *)
fun card(mt : 'a relation) = 0 : int
| card(tcons(t,r)) = 1 + card(r) : int

Ismt is a predicate that returns true if the relation
has no tuples and false otherwise. The usual set membership

61

function is embodied in "member" which is constrained to
take only relations as parameters. The "card" function
returns the cardinality or count of the number of tuples in
the given relation.

Two further functions are "add" and "mkrel".
(•k'k'kk'kk-k'k-k-k-k'k-kk-k-k-kk-k'k'k'k'k-k'k-k-k-k-k’k-k-k-k'k-k'k'k-k-k-k-k'k-k-k-k-k-kk'kk')

(*Axiom forall t,R=> member(t,R) = > add(t,R) = R *)
(*Axiom forall t,R=> not(member(t,R)) ==> *)
(* add(t,R) = tcons(t,R) *)
fun add(t,r) = if member(t,r) then r else tcons(t,r)
('k'k-kkk-kkkkk-kk-k-k'k'k-k'kkk'k'kkkkkk'k'k'k-kkk-k-k-k-k'k'k'k'k-k'kk'k-kk'kkk)
(* Axiom mkrel(nil) = mt *)
(* Axiom forall h,t => *)
(* mkrel(h::t) = add(h,mkrel(t)) *)
fun mkrel(nil : 'a list) = mt
| mkrel(h::t) = add(h,mkrel(t))

These functions provide the only method of building a
relation in SML. The function "mkrel" takes a list of tuples
and places them in a relational structure after using "add"
to ensure that no duplicate tuples are created.

The set functions as used in most relational database
languages are specified below.

62

(* Axiom forall t: tuple; R,S : relation => *)
(* member(t,R) or member(t,S) *=> *)
(* member(t ,union(R,S)) *)

(•k-k-k-k-k-k-k-k'kk-k'kirk-k-k-kk-k-k-k'k-k-kkk-k-k-kk-k'k-k'k-k'k'k-k-k-k'k-k-k-k'k-k'k'kk-k)

fun union(mt,r) = r
| union(tcons(t,r),rr) = if member(t,rr)
then union(r,rr)
else toons(t,union(r,rr))
(■k'k'kkk-k-k-k'k'k-k-k'k-k-k-k'k-kk'k-kk'k'k-k'k'k'k'k-k'kk'k-k-k'k-k-k'k-kkk'k-k-k-k-k'k'k'k)
(* Axiom forall t: tuple; R,S : relation => *)
(* member(t,R) and not(member(t,S)) <==> *)
(* member(t ,diff(R,S)) *)

fun diff(mt,r) = mt
| diff(tcons(t,r),rr) = if member(t,rr)
then diff(r,rr)
else tcons(t,diff(r,rr))
(■k-k-k'k'k-k-k-k'k-k'k'k'k-k'k-k'k-k-k'k-k'k'k-k'k-k-kk-k'k'k-k-k-k-k'k-k-k-k-k'k-k'k'k'kk'k'k'kk)
(* Axiom forall t: tuple; R,S : relation => *)
(* member(t,R) and member(t,S) <==> *)
(* member(t ,intersect(R,S)) *)
fun intersect(mt,r) = mt
| intersect(tcons(t,r),rr) = if member(t,rr)
then tcons(t,intersect(r,rr))
else intersect(r,rr)

These are the usual union, difference and intersect
functions constrained to apply only to relations. Note that
they all use the member function to check for the presence
of a specified tuple in a relation and thereby determine
whether that tuple is a member of the result relation. The
"member" function is polymorphic so that it will cope with
any scheme of relation.

The functions for the relational
select and project are given below.

algebra operations
These functions are

63

higher order functions i.e. they take functions as parame­
ters as well as the values to be used by those functions.
These functions are very like the "MAPCAR" function in LISP
which takes a list and a function as arguments and applies
the function to each element of the list and returns a list
as a result, which contains the same number of elements,
each of which has been transformed by the function. The
design of the function passed to these functions is critical
to their operation. The signature of the required function
is shown in the specification. The boolean returned by the
function passed to "select" determines whether the tuple is
to be included in the result relation or ignored. So for a
selection function the boolean will be true only for tuples
that are found which satisfy the selection predicate.

(•k-k-k'k'k'k'k'k'k-k~k-k~k~k~k~k'k'kmk~k'k-k'k-k~k'k'kmk'k-k'k-k-k'k'k -k-k-k-k-kkkkkkkkkkk")

(* Axiom forall t:tuple;f:function;R:relation => *)
(* member(t,R) and f(t) <==> member(t,select(R,f))*)
fun select(mt, f:('a -> bool)) = mt : 'a relation
| select(tcons(tup: 'a ,r: 'a relation), f) =
if f(tup)
then tcons(tup,select(r,f))
else select(r,f)
end

(k)

(* Axiom forall t:tuple;f:function;R:relation ==> *)
(* member(t,R) <==> member(f(t),project(R,f)) *)
fun project(mt, f:('a -> ’b)) = mt : 'b relation
| project(tcons(tup: ’a ,r: ’a relation), f) =

add(f(tup),project(r,f))

64

For example, given a relation " parts " and the selec­
tion function "pselect" the boolean returned will only be
true for those parts which satisfy ' colour = "red" * .

val parts = mkrel([("pi","nut","red"),
("p2 ","bolt","blue"),
("p3","cam","blue"),
("p4","bolt","blue"),
("p5”,"screw","green")])

fun pselect(pnum,name,colour) = (colour = "red")
fun projfun(pnum,name,colour) = (name,colour)

The use of "add" is not required in the "select" func­
tion because the input relation does not contain any dupli­
cate tuples so there is no need to check or remove them in

the result relation. On the other hand, the "project" func­
tion may generate duplicate tuples as a result of removing
attributes from the input relation. So, for example, the
function "projfun" when used with the above relation will
create two identical tuples one of which will, of course, be
ignored by "add".

Using a function which is isomorphic to "project" it is
possible to specify the "extend" operation. This has been
suggested as a useful addition to the relational algebra.
Its purpose is to create a new relation by adding one or
more columns to an existing relation as the result of a
function applied to one or more of the existing columns,
(e.g. adding an age column derived from a date of birth).

65

This is defined below.

^'k'k-k'k'k'kk-k'kk'k 'k 'k-k-k'k-k-kk'k 'kkk-k'k 'k 'k-k-k-k-kk'k-k-k-k'k-k-k-k-kkk-k-k-k-k-k'k-k^

(* Axiom forall t:tuple ;f:function;!!:relation => *)
(* member(t,R) <==> member(f(t),extend(R,f)) *)
fun extend(mt, f:('a -> 1 b)) = mt : 'b relation
| extend(toons(tup: 'a }r: 'a relation), f) =

add(f(t),extend(r,f))

The other relational algebra operations "cartesian pro­
duct" and "join" can be specified in similar fashion by
using a "MAPCAR"-like function which takes two relations and
a function as arguments and returns a relation which is the
result of the application of the function to the two argu­
ment relations. The body of the "cartesian product" and
"join" functions are similar. The "join" function requires a
predicate that determines whether the combined tuples will
be included in the result relation whereas the "cartprod"
function needs no predicate as all combinations of tuples
appear in the result relation.

66

(* The parameters of "combine" are a tuple, *)
(* a relation and a function giving *)
(* a ' a*'b relation *)

(•k-k-k-kk-k-k'k-k-k-kk-k-k'k'kk-k-k-kkk'k-k-k-k-k-k-k-k'k'kk-kk-k'kk'k-k-k-k-k-k-k-kkk-k'k')

fun combine(tup,mt,f: ('a*'b -> bool)) = mt
| combine(tup ,tcons(tt,rr), f) =
if f(tup,tt)
then tcons((tup,tt),combine(tup,rr,f))
else combine(tup,rr,f)
(•k-k-k'k-k-k-k'k'k-k-k-k-kk-k-k'k-k-k-k-k-k-k-k'k-k-k-k-k-k'k-kk-k'k'k'k-k-k-k-k-k'k-k'k-k'kk-k-k')

(* Axiom forall t,s:tuple;R,P:relation => *)
(* member(t,R) and member(s,P) and f(t,s) < = > *)
(* member((t,s),join(R,P)) *)
fun join(mt,r,f) = mt
| join(tcons(t,r),s,f) =
union(combine(t,s,f),j oin(r,s,f))
(•k-k'kk-k-k-k-k-k-k-k'kk-k-k'k-k'k'k'k-k-k-k-k-k-k-k'k-k'k-k'k'k'k-k-k-k-k'k'k'k-k'k'k'k'kkk'k'k')

(* Ccombine is similar to "combine" except that *)
(* there is no function required *)
fun ccombine(tup: ’a, mt:’b relation = mt
| ccombine(tup ,tcons(tt,rr)) =

tcons((tup,tt),ccombine(tup,rr))

('k 'k-kkk-k 'kkk 'k-k 'k-k 'k-k-k 'k 'kk 'k-k-k-k-k-kk-k-k 'kk 'k-kkkk 'k-k-k-kk-k-k 'kkk-k-k-k-k 'k)

(* Axiom forall t,s:tuple;R,P:relation =>
(* member(t,R) and
(* member(s,P) < = > member((t, s) ,prod(R, P))

*)
*)
*)

fun cartprod(mt,s) = mt
| cartprod(tcons(t,r),s) =
union(ccombine(t,s),cartprod(r,s))

This specification is sufficient to provide an execut­
able relational database that provides the base level func­

tions normally expected. There is no concept of schemes or
integrity embodied in this specification as they were not
crucial to the prototyping of the Graphical Database.
Integrity issues are discussed in Chapter 7.

67

4.2J. Specification of the GDB Graphical Operators

It is not practical to expect any user to formulate a
query in terms of the primitives (such as lines, facets or
tetrons) and explicitly specify the series of graphical
joins necessary to generate the display of the object(s)
that form the result of the query. Thus the query language
is tailored to the application and deals with entities at a
higher level. The commands in the user language are
transformed into a sequence of commands in the database
language. The following language specification defines the
low level functions that support the user oriented language.

As discussed in Chapter 3 there is one operator
("show") designed to handle the display of objects stored in
the database as lines, facets or tetrons relations. This
relies on the "gjoin" function which is a complex function
that has declared within it a number of local functions
designed to produce data in intermediate relations for later
processing.

68

(■kk-k-k-k-k-kk'k-k-k'k-k-k-k-k-k'k-k-k-k-k'k'k-k'k-k-k'k-k'k-k-k'k-k-k-k-k-k-k'k-k-k-k-k-k-k-k'k-k)

(* Axiom forall pt:point;r:relation;o : object => *)
(* member(o,r) <==> subset_of(gjoin(o),points)*)
fun gj o in(obj name,transmat) =
let val T1 = let fun sfun(name) = (name=objname) in
let fun pfun(onum,name) = onum in
project(select(object,sfun),pfun) end end

let val T2 = let fun pfun2(onuml,onum2,lnum) = lnum
in

let fun jfun2 (onumj,(onum,lnum)) = (onumj=onum) in
project(join(Tl,linelink,jfun2),pfun2) end end in
let val T3 = let fun pfun3(t21num,llnum,spt,ept) =

(spt,ept) in
let fun jfun3(t2 1 num,(llnum,spt,ept)) =

(t2 lnum=llnum) in
project(join(T2,lines,jfun3),pfun3) end end in
let val T6 = let fun pfunl6 (spt,ept) = spt in
let fun pfun26(spt,ept) = ept in
union(proj ect(T3,pfunl6),proj ect(T3,pfun26))

end end in
let val pts =
let fun jfunl((ptnum,x,y,z),pt) = (ptnum = pt) in
join(points,T6 ,jfunl) end in
let val transpts = transform(pts,transmat) in
let val inter = let

fun jf((pt,x,y),(1,spt,ept)) = (pt=spt) in
let fun pf(pt,x,y,l,spt,ept) = (l,x,y,ept) in
project(join(transpts,lines,jf),pf) end end in
let fun jf2((pt,x,y),(1,xl,yl,ept)) = (pt=ept) in
let
fun pf2(pt,x,y,1,xl,yl,ept)=(l,x,y,xl,yl) in
project(join(transpts,inter,jf2),pf2) end end ... ;

fun display(disprel) =
if card(disprel) = 0 then 1
else let val tcons(t,r) = disprel in

let val (1,txs,tys,txe,tye) = t in
(plot(4,txs,tys);plot(5,txe,tye);display(r))

end end ;
fun show(object, viewmat) =

display(transform(gjoin(object),viewmat()));

69

The overall function of this somewhat unwieldy specifi­
cation is explained in Chapter 3 where, in the section on
query language the "gjoin" function is explained in terms of
SQL like statements.

The function "plot" is based upon two functions ("byte"
and "word") which send control codes to the graphics display
device (see Appendix K). In this way the graphical output of
the proposed database model can also be checked and refined
at the specification stage. These functions are shown below.

fun putchar(c : int) = output(std_out,chr(c)) ;
fun byte(c : int) = let val c = if c< 0 then 0

else c in
if c<=15 then (putchar(c+96))

else if c<=95 then (putchar(c)) else
(putchar(1 1 2 +(c div 16));
putchar(96+(c mod 16)))
end ;

fun word(c: int) = (byte(c mod 256);
byte((c div 256) mod 256));

The coding of the "byte" function is determined by the
graphics chip installed in the BBC micro (used as graphics
terminal).

4._3.1. Predicates

The inclusion of novel data types (such as graphics)
into a database must be accompanied by a set of predicates
that enable members of the data type to be compared. Some,

70

like , are usually overloaded such that they can compare
two members of any data type, but others (e.g. ">") have
little currency outside reals, integers and characters. A
suitable set of predicates can be defined to enable queries
to be expressed easily (Figure 4.1).

share_edge
share_vertex
within
enclosed_by
enve 1 op e d__by
cross
intersects
overlaps
interpenetrate
pass_thru

facet X facet -> bool
facet X facet -> bool
point X line -> bool
point X facet -> bool
point X tetron -> bool
line X line -> bool
line X facet -> bool
facet X facet -> bool
tetron X tetron -> bool
line X tetron -> bool

Figure 4.1: Graphical predicates

There is also a set of simple functions which can be
defined that will be widely used (Figure 4.2).

length : line -> num
fun length((x,y,z),(xl,yl,zl)) <=

sqrt(sq(x-xl)+sq(y-yl)+sq(z-zl)) ;
area : facet -> num
volume : tetron -> num

Figure 4.2^ Functions

4.4. Conclusion

This formal specification of the graphical database GDB

71

has established the functionality in such a way that an
implementation should follow with few problems. The next
chapter describes the three implementations based on the
above specification.

72

CHAPTER 5

Implementation

5.1. Introduction

It is necessary to implement the ideas formulated in
this thesis for two reasons. Firstly, it is desirable to
prove that the thesis is valid and secondly, to prompt
further refinements and improvements to the model. There
were three implementations of the model :

(1) The C language implementation of the SML specification.

(2) The VMS/RDB implementation using PASCAL as host
language.

(3) The PRECI/C implementation from the SML specification.

The three versions were attempted as software became

available and was deemed appropriate for the task.

5.2̂ . C Language Version

The SML specification of the graphical database model
described in this thesis was used as the basis of an imple­
mentation in C. The process of transformation from func­

tional specification language to implementation language was
an interesting exercise in itself but was not pursued to a
fully functional database management system as this would

73

have detracted from the work on the query language and the
GDB model. The source code is described in Appendix I where
the SML axioms are shown for one of the relational opera­
tions (union) together with the C language implementation.

5.3. The VMS/RDB Version
RDB is the proprietary Relational Database Management

system marketed by the Digital Equipment Corporation. This
was used as the host database on a VAX 11/750/780/8530 clus­
ter running the VMS operating system. As it is possible to
call this database from within VMS/Pascal a graphics inter­
face was built on top of the database to display the results
of queries in GDB on a colour graphics terminal. (See Appen­
dix K for hardware details).

The advantage of using VMS/RDB was that a result could
be achieved very quickly while having a secure database sys­
tem controlling the data. Thus, the model could be explored

and substantially prove its worth. The provision of a
built-in integrity constraint system was also considered an
important feature which could be used as a test-bed for
further work.

The main disadvantage with using RDB was that there was
only a limited interactive interface via PASCAL to RDB so

all the queries had to be expressed in terms of RDB commands
and pre-compiled. This and the cumbersome query language
(RDO) meant that an alternative vehicle was sought. (The

74

RDB schema and PASCAL programs are given in Appendix J).

5.4. The PRECI/C Version
The deductive database query language for PRECI/C

called DEAL (DEductive ALgebra) [56] was implemented by Dr.
Sadeghi at Dundee College of Technology. This work was done
partly as a vehicle for HQL (Historical Query Language) [57]
and included extensions to DEAL to allow the user to express
temporal queries. The "date" attribute type was added to the
PRECI/C repertoire of integer and character string and a set
of operators for type date were included.

The main features of the language are the user defined
functions and views, which can be recursive. Imperative
features such as assignment and while loops were also pro­
vided. These features allow very complex queries to be for­
mulated relatively easily. There is also the possibility of
a straightforward translation from ML specifications into
DEAL functions and views which allows ML to be used a proto­
typing language for database queries.

In order to utilise DEAL as the language for the Graph­
ical Database substantial extensions to the existing imple­

mentation were required and this work is described here.

The primary requirement was for the attribute type
"real" to allow real numbers to be stored and manipulated.
This is not straightforward because the PRECI/C implementa­

75

tion stores all the data as files of integers. This is a
strategy that produces a compact database with quick access
times provided the only attribute types are integers and
character strings, but precludes the possibility of storing
floating point numbers. The solution chosen was to convert
all real numbers into character strings prior to insertion
into a PRECI/C relation and convert the strings back into
floating point again when arithmetic operations were
required. This conversion uses the C language functions
"sscanf" and "sprintf".

In addition, a new datatype (called "dble") was intro­
duced into the DEAL language and the normal arithmetic
operators (already defined for integer operations) were
overloaded to accept floating point numbers as operands and
results. Having established a viable scheme for handling
real numbers in both PRECI/C and DEAL the necessary opera­
tors for the Graphical Database were defined. These included
sine, cosine, atan, floor, square root etc. with the usual C
meaning.

To perform the necessary matrix operations which form
the basis of graphical transformations (Appendix A) it is
necessary to take the points data from the relation and per­
form a matrix multiplication with the transform matrix. This
transforms the x,y and z coordinates into values that are
suitable for the viewing operation. There are two methods

76

of performing this operation. Firstly one could move the
points data into a matrix structure and, after performing
the necessary operations, insert the data into a new rela­
tion. The second option entails storing the matrices as
relations and performing all the operations by using a suit­
ably modified database language.

The latter approach was adopted as the expressive power
of DEAL was capable of supporting the operation required by
the use of functions and views. The first option would be
more suitable if an implementation using an imperative host
language was attempted as the requisite data structures
would be readily available.

The necessary matrices can be created from DEAL and
exist in the database as empty relations until some graphi­
cal transforms are required, at which time data is inserted
by the use of DEAL views. As this data is not committed to
the database it exists only for the duration of the query
session. In this way there is no storage overhead for large
numbers of relations with only four tuples. There is clearly
a computational overhead in calculating and inserting data
at run time but this is a small price to pay for the flexi­
bility such a system provides to the user.

All the necessary matrix operations can be written in
DEAL and, as intimated above, are translations from the ML
specification. The full DEAL programs are given in Appendix

77

H but some of the typical operations are described here.

Firstly consider the translation matrix. This is usu­
ally written

1 0 0 0
0 1 0 0
0 0 1 0
Tx Ty Ty 1

where Tx, Ty, Tz are the translation factors for each
axis. This is created as a PRECI/C relation with following
DEAL statement.

create table trans (number int(l) nonull ,
one real,
two real,
three real,
four real);

Note that a key attribute is included because the rela­
tional model has no natural ordering of tuples while,

clearly, the matrix has precisely ordered rows. The attri­
bute names were chosen for the same reason. The matrix
operations can be defined easily using the keys and attri­
butes names without the need for sorting the relation prior
to performing any transformation operation.

The data can be inserted into this relation by the use
of a DEAL parameterised view.

78

view translate(Tx:dble,Ty:dble,Tz:dble) as {
insert into trans values (1 ,1 .0 ,0 .0 ,0 .0 ,0 .0);
insert into trans values (2 ,0 .0 ,1 .0 ,0 .0 ,0 .0);
insert into trans values (3,0.0,0.0,1.0,0.0);
insert into trans values (4,Tx,Ty,Tz,1 .0);

translate := trans ;
};

The four insert statements place the data into the
relation "trans" and this is returned as the result of
invoking this "view". In this way the required relations
(matrices) can be constructed when needed. The use of the
insert statement within a view was not a feature of the ori­

ginal HQL implementation and was added to facilitate this
type of operation.

Two other major operators are "matrix multiplication"
(required for composing a total transformation matrix) and
"point transformation" (the application of a matrix to a

points relation). Both these view definitions are supported
by function definitions for low level functions to extract
values and perform arithmetic operations.

The view definition "matmult" shows a recursive struc­
ture which has the side effect of inserting a tuple into the
result relation for each pass through the "else" branch of
the body. The operators "first" and "rest" are the rela­
tional equivalent of the selector functions "head" and
"tail" for lists and provide a means of terminating the
recursion by testing for the empty relation using the

79

built-in function "card" which returns the cardinality of
the relation.

view matmult(matrixa:rel, matrixb:rel, result:rel)
as {
if (card(matrixa) = 0) {
matmult := result;
} else {
fr := first(matrixa);
amatval := #(fr [number]);
rcl := rcmult(fr,matrixb,one);
rc2 := rcmult(fr,matrixb,two) ;
rc3 rcmult(fr.matrixb,three);
rc4 := rcmult(fr,matrixb,four);
insert into result values (amatval,rcl,rc2,rc3,rc4);
matmult := matmult(rest(matrixa),matrixb,result) ;
}
);

The symbol '#' is an operator that when applied to a
relation with a single tuple with a single attribute
extracts the value which is then assigned to the variable on
the left hand side of the assignment.

The view definition for "transformpts" is similar in
structure to the matrix multiplication view but requires a
points relation as first parameter rather than a matrix
(relation).

80

view transformpts(pts:rel, matrix:rel ,result:rel)
as {
if (card(pts) = 0) {
transformpts := result;
} else {
fr := first(pts);
ptval := #(fr [ptnum]);
rcl := rcpts(fr,matrix,one);
rc2 := rcpts(fr,matrix,two) ;
rc3 := rcpts(fr,matrix,three);
insert into result values (ptval, rcl,rc2,rc3) ;
transformpts:=transformpts(rest(pts).matrix,result);
}
};

In practice it was found that although it was possible
to write DEAL functions to perform matrix multiplication,
the implementation of PRECI/C was unable to cope with the
large number of relations and variables created. This was
due to its simplistic heap management and garbage collection
algorithms whose performance degrades rapidly as the allo­
cated space is used and released space becomes more frag­
mented. Increasing the heap space has little effect.

Consequently, it was necessary to build in the matrix
multiplication operation into the DEAL language (using the
symbol |x|) which would allow two relations representing

matrices to be multiplied and return the result in a tem­
porary relation. An example DEAL view is shown below.

view test(matl : relation, mat2 : relation) as {
test := matl |x| mat2 ;

}

81

5.5. Conclusion

In this chapter the implementation issues involved in
providing a vehicle for exploring the GDB model was given
based upon the formal specification which appears in Chapter
4. The PRECI/C implementation using DEAL as a query
language was the main development system used as its expres­
sive power and flexibility proved ideal for the purpose.
This work is exemplified in the next chapter where a trial
application is described which uses the PRECI/C - DEAL sys­
tem.

82

CHAPTER 6

Example Graphical Databases

Two different examples were implemented to demonstrate
the facilities of the proposed database model. The first was
a simple database of a two-dimensional hierarchical object
to illustrate the "flatten" function which is necessary to
produce relations suitable for the "gjoin" and "show" func­
tions . The second was a database of a cube without hierarchy
to demonstrate the matrix transformations in action for a
three dimensional object.

The examples are designed to show different features of
the proposed system and are therefore slightly artificial. A
real application would combine all the features of flatten­
ing, viewing matrices, perspective transforms and display
functions. The separation of these features in these exam­
ples is intended to clarify the explanation of the func­
tions .

€>.l. Database (2-D) with Object Hierarchy

A simple picture of a house with a window and a door

was chosen the illustrate an object hierarchy. The relations
are shown in Figure 6.1 and the associated functions to pro­
duce a display are shown in Figure 6.2.

83

Obj ect
| onum | oname

ol 1 roof
o2 1 door
o3 1 window
o4 1 wall
o5 1 house
o7 1 frame
0 8 1 window2

Hierarchy
| sup | inf |
o5 1 ol
o5 1 o2
o5 1 o3
o5 1 o4
0 6 1 ol
0 6 1 o2
0 6 1 o3
0 6 1 o4
o2 1 o7
o2 1 0 8

Figure 6.1: Hierarchy relations

84

(■ k-k -kkkkk 'k -k -k -k -k -kk -k -kk -k -kk -kk-k 'k 'kkk-kkk-k -k -kk -kkk-k -k -kkkk 'k -kkk-k -k)

(* Getall recursively produces all the leaves of *)
(* the hierarchy *)
view getall (recrel : rel , part : rel) as {

if (card(recrel) = 0) { getall := recrel ;}
else {

temp := ((recrel (inf,sup) part)
rename [0:=sup,1:=inf]) ;

getall :=(recrel--(temp [sup])) ++
getall(temp [inf],part) ;

}

(•k-k-k-k-k-k'k-kkk'k'k-k-k-k-k-k-k-kk-k-k'kkkk-k-k-k-k-k'kkk-k'k-kk-k'k-k-k-kkk-k-k-k-k)
(•* Flatten is top level procedure to decompose *)
(* a hierarchical object *)
view flatten (onum : char , part : rel) as {

tempi := (part where sup = onum) [inf]
flatten := getall(tempi,part) ;

);
(•k-k-k-k'k'k-k-k-kk'k'k'k'k-k-kk-k-k'k'k'k'k-k-k-kk'k-k-k-kk'k-k'k-k'k'k-k-k-k-k-k-k-k-k-k-k-k)

(* This is the gjoin for an object defined only *)
(* in terms of line primitives *)
view gjoin(objname:char) as {
nrel := (xobject where oname = objname) [onum] ;
frel := flatten(#(nrel),xhier);
lrel := ((frel (inf,onum) xlinelink)

rename [l:=lnum]) [lnum];
12rel := (lrel (lnum,lnum) xlines)

rename [0:=lnum,1:=spt,2:=ept];
ptl := (12rel (spt,ptnum) xpoint)

rename [0:=lnum,2:=ept,3:=sx,4:=sy];
ptltmp := ptl [lnum,ept,sx,sy] ;
pt2 := (ptltmp (ept,ptnum) xpoint)

rename [0:=lnum,2:=sx,3:=sy,4:=ex,5:=ey];
fin := pt2 [lnum,sx,sy,ex,ey] ;
gjoin:= fin ;
};
(k - k k k k k - k - k - k k k k 'k k k k 'k k k 'k 'k k k)

(* Display takes the final relation of x,y pairs *)
(* and produces screen output using plot *)

func display(scrpts :rel) {
if (card(scrpts) = 0) { display := 1 }
else {
fr := first(scrpts);

85

stx := #(fr [sx]);
sty := #(fr [syj);
enx := #(fr [ex]);
eny := #(fr [ey]);
ds := plot(4,floor(stx),floor(sty));
de := plot(5,floor(enx),floor(eny));
display := display(rest(scrpts));

(•k'kk-k-k-k-kkk-k-k'k-k-k-k-k-k-kkk'k-k-kk'kkkk-k-k-k'kkk'k-k-k'k'kk-kk'k-k-kk-k-k-k)
(* Show selects the object to be displayed and *)
(* calls gjoin and display to do the job. *)
func show(objname : char) {

d := setup();
show := display(gjoin(objname));
};

(■kkickk'k-k-k-k-k-k'k'k-k'k-k-k-k-k'k-k-k-k-k'k'kick'k-k'k'k-k-k-kick-k'k'k-k-kk-k-k-k-k-k-k)
(* Actual call to "show" for the object "House1' *)
show("house");

Figure 6.2: Functions for display of hierarchy

The main DEAL views of interest here are "flatten" and
"getall". As discussed briefly in Chapter 3, the hierarchy
of objects and sub-objects must be broken down into a flat
structure which contains only the lowest level objects i.e.

those which are not composed of any other objects. The
example used here depicts a simple two dimensional house
which is composed of a wall, a roof, a window and a door.
The door is composed of a frame and a small window. The
coordinates were chosen so that no workstation transforma­
tion was necessary (see Appendix A for definition).

From the hierarchy relation the selection of inferior

86

objects to "05" yields objects "ol", "o2", "o3", and "o4".
Object "o2" ("door") also appears in the "sup" attribute of
the hierarchy relation so must be decomposed to get the
ultimate objects "o7" and "0 8 ". A diagram of the hierarchy
is shown in Figure 6.3. The final relation must contain
objects "ol", "o3", "o4", "o7" and "0 8 ". This operation of
decomposition is performed by "flatten" which obtains the
immediate sub-parts of the chosen object and then passes
that relation to "getall" which recursively joins the
derived relations to the hierarchy relation until there are
no sub-parts remaining.

House

Wall Roof Door Window

Frame Window2

Figure £>.̂3: Hierarchy of the 'House'

These two views make use of the "rename" facility of
DEAL which allows attributes to be renamed. This is neces­
sary because the naming convention of PRECI/C after a rela­
tional join is to prefix the attribute name with the parent

relation names to create unique names for the attributes of
the result relation. To write recursive views it is

87

necessary to have consistent and predictable names so the
"rename" facility is essential. The attribute number (nor­
mally internal to PRECI/C) is used to identify the attribute
to be renamed and the identifier after the ":=" is taken to
be the new name.

The view "gjoin" has the meaning described in Chapter 3
and produces a relation suitable for display after joins
with the "line_link", "lines" and "points" relations. The
function "display" extracts the values from the resulting
relation and uses the function "plot" to produce graphical
output (see Figure 6.4). The function "setup" is used to
initialise the display device to give a graphics window and
a small text window.

The full details of the DEAL program for this section
are given in Appendix H.

88

Figure .6.4: Screen dump of 1 House*

89

6 . 2 . Database (3̂ -D) with Matrix Operations

The relations for a simple cube are shown in Figure 6.5
and its associated functions and views in Figure 6.6.

bpts

1 n u m 1 x 1 y 1 z

1 1 | 0 . 0 | 0 . 0 | 0 . 0

1 2 j 5 0 . 0 | 0 . 0 | 0 . 0

1 3 | 5 0 . 0 (5 0 . 0 | 0 . 0

1 4 | 0 . 0 | 5 0 . 0 | 0 . 0

1 5 | 0 . 0 | 0 . 0 | 5 0 . 0

1 6 | 5 0 . 0 | 0 .0 .| 5 0 . 0

1 7 | 5 0 . 0 j 5 0 . 0 | 5 0 . 0

1 8 | 0 . 0 | 5 0 . 0 | 5 0 . 0

dines
| lnum | spt | ept |
"11" 1 1 1 2
"12" 1 2 1 3
"13" 1 3 1 4
"14" 1 4 1 1
"15” 1 5 1 6
"16" 1 6 1 7
"17" 1 7 1 8
"18" 1 8 1 5
"19" I 1 1 5
"110" 1 2 1 6
"111" 1 3 1 7
"112" 1 4 1 8

Figure 6.5: Relations for cube

90

(■k'k'kk-kkk-k'k'kk'k-kk-k'k-kk'k-kkk-k-k-k'k-k'k-kk-k-k-k-k'kk-k'k-k-k'k-kk-kk-k-k-kk)

(* Getcol, rval, cval and rcpts extract data *)
(* values from the points and matrix relations *)
(* and multiply them together to give the *)
(* transformations required. *)
view getcol(arel :rel,num :at) as {

getcol : — arel [number,num] ;
);
func rval(pts :rel, col rat) {rval := #(pts [col]);
};
func cval(xmat rrel, cname :at,n :int){
cval := #((getcol(xmat,cname)) [cname]

where number = n);
};
func rcpts(pts:rel,bmat:re1,cname:at) {

rcpts := rval(pts,x) * cval(bmat,cname,1)
+ rval(pts,y) * cval(bmat,cname,2)
+ rval(pts,z) * cval(bmat,cname,3)
+ 1.0 * cval(bmat,cname,4) ;

);
(■k'k-k'k-k-k-k-k'k-k'k-k'k-k-k-kk-k-k-k-k-k-k'k'kk'k-k'k'k'k'k'k'k'k'k-k-k-k'k'kk'k-k'k-k'k'k-k)

(* Transformpts calls the above functions to *)
(* perform the transform of a points relation by *)
(* the matrix relation *)
view transformpts(pts :rel,amatrix :rel,c rrel) as{
if (card(pts) = 0) {

transformpts := c; } else {
fr := first(pts);
ptval := #(fr [ptnum]);
rcl := rcpts(fr,amatrix,one);
rc2 := rcpts(fr,amatrix,two) ;
rc3 := rcpts(fr,amatrix,three);
vsx := (511.5 * (rcl/rc3)) + 511.5 ;
vsy := (511.5 * (rc2/rc3)) + 511.5 ;
insert into c values (ptval, vsx,vsy,0.0) ;
transformpts := transformpts(rest(pts),amatrix,c) ;

(•k-k'k-k-k'kkkkk-k'k-k-k-k-k'k-kk-kkk'k-k-k-k'k-k'k'kk-k'kk-kk-k-k-k-k-k-k-k-kk-k'k-k-k)

(* Simplified gjoin that doesn't use linking *)
(* relations. *)
view gjoin(npts:rel) as {
ptl := (dines (spt,ptnum) npts)

rename [0:=lnum,2:=ept,3:=sx,4:=sy];
ptltmp := ptl [lnum,ept,sx,sy] ;
pt2 := (ptltmp (ept,ptnum) npts)

91

rename [0:=lnum,2:=sx,3:=sy,4:=ex,5:=ey];
gjoin := pt2 [lnum,sx,sy,ex,ey] ;
};
(•kk'k-k-k-k-k-k'kk'k-k-k-k-k'k-k-k-kk-kk'kk-k-k-k'k-k'kk-k'k-k'k'k-k'k-k-k-kk'kk-k'k-kk-k)

(* This produces the viewing matrix *)
view viewmat(vx:dble,vy:dble,vz:dble,dx:dble,

dy:dble,dz:dble,azrot:dble) as {
if (vx=dx) { vdx := 1.0 ; } else { vdx := vx-dx ;}
if (vy=dy) { vdy := 1.0; } else { vdy := vy-dy ;}
nvx := 0.0 - vx ;
nvy := 0.0 - vy ;
nvz := 0.0 - vz ;
ml := translate(nvx,nvy,nvz) ;
m2 := rotx(90.0,xtmpl) ;
n3val := 0.0 - (180.0+(atan((vdx)/(vdy))

*180.0/3.142)) ;
m3 := roty(n3val);
n4val := 0.0 - (atan((vz-dz)/

(sqrt((vdy*vdy)+(vdx*vdx))))*180.0/3.142);
m4 := rotx(n4val,xtmp2) ;
nl := 0.0 - 1.0 ;
m5 := scale(l.0,1.0,nl,stmpl) ;
m6 := scale(4.0,4.0,1.0,stmp2) ;
viewmat := ((((ml |x| m2) |x| m3) |x| m4)

view vmat() as (
vmat := xviewmat(100.0,200.0,100.0,0.0,

0.0,0.0,135.0,xtmp);

(•k-k'k'kk-k-k-k'k-k-k-k-k-k'k'kickkirk'k'k-k'k-k'k'kk-kk-k-k'k-k'k-k'k-kk'k'k'k'k-k-kk-k-k)
(* Show selects the object to be displayed and *)
(* calls gjoin and display to do the job. *)
func showx(pts:rel) {
d := setup() ;
showx:=display(gjoin(transformpts(bpts,vmat,cpt)));
(-k 'k 'k-k-kk 'k-kk-kk-k 'k-k 'k-kk 'kkk-k-k-kkk-k-k 'k-k-k-k-k-k-k-kkk'kk-k 'k-k-k-k-k 'k 'k 'kk)

(* Actual call to "show" for the object "Housel" *)
showx(bpts);

Figure £>.(5: Functions and views for the cube

As described in Appendix A, the transformations neces-

92

sary to produce coordinates suitable for a display device
involve constructing a matrix from a number of matrices that
embody the desired transformation. The complexity is mainly
due to the viewing transform which requires a view point and
a direction vector which is used to determine the apparent
position in space of each point in the object being viewed.

The DEAL views which perform these functions in this
example are "viewmat" and "transformpts". The view "viewmat"
produces a matrix relation that represents the viewing
transformation for the scene from the designated view point
passed as parameters vx, vy and vz. The parameters dx, dy
and dz are the coordinates of a point that, when joined to
the view point produces the viewing direction vector. The
parameter "azrot" fixes the final degree of freedom to pro­
duce the desired orientation of the final image.

The individual matrix relations for the viewing
transform are specified as parameterised views previously
defined (see Chapter 5 for an example). The total viewing

matrix relation is produced by multiplying together the
individual matrix relations using the "|x|" operator
described in the previous chapter.

The viewing matrix relation is used by the view
"transformpts" to change the coordinate values of the points
for the 3-D object of interest to simulate the view from the
view point. The perspective transform is performed to

93

produce the final 2-D points (vsx and vsy) which can be
displayed on the output device by the function "display".
The result of these operations is shown in Figure 6.7.

94

Figure 6.7_: Screen dump of * Cube *

95

6.3. Conclusion

In this chapter it has been shown how object hierar­
chies and viewing transforms are defined in DEAL and how the
"gjoin" operation is defined in practice. The combination of
all the ideas embodied in this chapter would implement a
system as described in Chapter 3. In the next chapter the
related topics not investigated in this thesis are discussed
with a view to providing a plan for further work.

96

CHAPTER 7

Conclusions

_7.1. Assessment of GDB Model
The GDB model as described in this thesis provides a

graphical database with a powerful query language (DEAL)
that is capable of accessing hierarchically built objects
and displaying the results of queries graphically under user
control. This thesis addresses the major issues cited in
Chapter 1 of representation and expressive query languages
and provides an overall solution to this type of database
that the reviewed texts do not.

The table in Figure 7.1 shows how the GDB model com­
pares with the other 3-D models reviewed in Chapter 2.
Using a points based representation the GDB model provides a
query language (DEAL) which enables graphical manipulation
together with a database query language of great expressive
power. None of the other languages with graphical operators
can perform such complex queries with any ease.

97

Representation
Pts | Grid | Obj

Lee (12) 1 I 1 X I 1 X 1 3 I
Shapiro (31) 1 1 1 X 1 1 1 3 j
Morffew (8) 1 x 1 1 1 1 X 1 3 |
Su (14) 1 1 1 X 1 [1 3 l
Tikkanen (10) 1 x 1 1 1 X 1 1 3 I
GDB 1 x 1 1 1 X 1 X 1 3+1

Graphics
Language

Integrity 2/3 D

Figure 1_. 1: GDB compared to .3-D models

Of the reviewed work only that of Garrett and
Foley [32] treat integrity as a fundamental issue and the
GDB model matches that work with several possible
solutions to providing integrity checking in DEAL.
(See section 7.2.2)

The necessity of expressing objects as hierarchies of
sub-objects has been explored by Lorie et. al. Their "com­
plex object" model addresses the problems of hierarchical

structures but they do not provide a display of the stored
objects as DEAL is capable of doing. Their use of an
enhanced SQL as query language reflects the growing impor­
tance of this as the standard database language despite its
deficiencies in solving complex problems such as parts
explosions [57].

This thesis has shown that a more powerful language is

98

necessary to cope with such "real life” problems.

7.2^ Further Work
The following issues have only been considered briefly

and constitute areas where future research can be directed.
Each of the following sub-sections introduce the topics of
interest and show how they affect the model proposed here.

]_. 2.1. Physical Access Methods

As noted in Chapter 2 there may be benefits to be had
from organising the DBMS to hold the graphical representa­
tion of a single object on contiguous sectors of a disc to
improve the speed of access. It is beyond the scope of this
thesis to delve deeply into how this might be achieved but a
brief discussion follows.

Abel's proposition [49] is that a query that has spa­
tial properties is slow to answer if the data referring to
that space is not clustered in some way on the storage dev­

ice. Similar views are expressed by Frank [58] who points
out the problem of artificial clusters of data which produce
fixed size areas for retrieval only provide fast access if
the query returns areas of that size.

7.2.2. Integrity Constraints

99

Integrity constraints are an essential part of the
relational model and are used to ensure that the database
always contains information that is consistent. This is
important after any operation that changes the data stored
in the base relations. For example, if we add a new line to
the lines relation this includes two references to the
points relation and these values must exist for the new line
to be accepted. If the the values are not present in the
points relation then the line cannot be displayed as there
will be no data available concerning its position in 3-D
space.

Similarly when deleting from the points relations there
can be no deletions of points that are referenced in other
relations in the database as these primitives would then be
rendered meaningless.

In any real application the user would want to define
integrity constraints on the objects of interest to him, so
a mechanism must be available for him to do so. In the
current implementation of DEAL there are problems with
implementing integrity constraints as the language does not

yet support the delete and rollback functions. Constraints
can be explored for the insert function which is supported.
Three possible solutions are :

(1) Include integrity checking into the appropriate opera­
tions. This is simply a matter of including boolean

100

functions which will prevent any semantically irregular

operations. For example :

func line-insert(Lnum : id,spt : id,ept : id){
if card((points where ptnum=spt) +

card(points where ptnum=ept))= 0
{ error("Line invalid") }
else insert(ptnum,lines);

(2) Establish an "Object oriented" implementation where
each relation inherits some subset of the basic opera­
tors as well as its own set of operators that include
integrity checking. Thus the only interface to members
of that class is by the declared specialist operators.
The following is a simple syntax for the declaration of
relations.

declare relation <name>(<attribute list>)
of class <class name>
<attribute name> : <type>
with operations <function list>

For example,

101

declare relation map-points(ptnum,x,y,z)
of class point
ptnum identifier
X real
y real
z real
with operations union,

intersection,
difference,
select,
point-proj ect,
point-insert,
point-delete,
join.

where the "point" prefixed operations are inherited
from the class of points relations. Any operations

specific to this instance of a points relation can be
defined at this time.

(3) A third option is to use parametised integrity con­
straints (whose syntax would be similar to functions)
and would be triggered by the invocation of an update,
delete or insert function on the target relation. Such
a system might use a symbol table as in Figure 2.

| relation | constraint |
| point | delpt
I lines I delln

Figure]_.2\ Constraint symbol table
The constraints could be "activated" or "deactivated"
by commands from the language which would install or

102

remove them from the table. Only those constraints
that were in the table would be executed when a update
statement was encountered and only those constraints
pertinent to the relation would be activated.

7.2.2.1. Obiect Level Integrity

It is convenient to classify objects that might be

stored in a graphical database into four groups : rigid,
semi-rigid,scaleable and malleable.

(1) A rigid object is any object that has no articulated
parts and cannot change its size or shape. Therefore,
only rotation and translation are permissible opera­

tions .

(2) A semi-rigid object is one where there are a number of
constituent parts which are rigid but are connected in
some well defined way such that there is constrained
relative motion between them (e.g. a hinged lid on a
box). The transformations allowed on these objects must
preserve the shape and size of the parts while allowing
the parts to be moved relative to each other. (e.g.
open the lid of the box). Possible articulations might
include hinges, pins, sliding fit. Another form of

connecting two objects is by gluing. Clearly operations
must preserve the juxtaposition.

103

(3) A scaleable object can be scaled but only by equal
amounts in all axes. Thus a sphere will still be spher­
ical under all allowable transforms. Rotations and
translations are allowed.

(4) A malleable object can be conceived to be made of
rubber that can be deformed in any way. Thus any
transformation is permissible and such objects would be
used as templates for constructing other objects by
suitable use of transformations, (e.g. a standard cube
could be used as the template for all regular paral­
lelepipeds which can be derived by selective scaling
operations.)

The objects relation will have one attribute that con­
tains the type of object as shown in Figure 3.

Obj ect
| onum || oname | material | type | . . .

1 ol || nut || steel | rigid |

1 °2 | screw |[steel | malleable |

Figure 7.3: Object relation

These ideas have scope for further development in the
light of the GDB model proposed in this thesis.

104

7.2.3. Triangulation

The use of the primitives "facet" and "tetron" for con­
structing objects that are to be stored and manipulated in
the Graphical Database raises the question of how these
primitives are created. It would be inconceivable to expect
the user to construct an object using these primitives as
they are not the usual intuitive method of describing
objects. There must be some automatic way of transforming
the user's input (probably in terms of the boundaries of the
object) into the necessary primitives.

Such methods have been developed for use in the field
of Finite Element Analysis (FEA - a technique for the
analysis of stress on objects by decomposing the surface
into a finite number of elements which can be analysed indi­
vidually and the results summed to give a model of the per­
formance of the whole surface). These primarily produce
triangular elements for 2-D analysis and tetrahedra for 3-D

analysis although other polygons and polyhedra can be gen­
erated.

The different algorithms for FEA are reviewed in a
recent paper by Ho-Le [59] who classifies the methods by
element type, element shape, mesh density control and effi­
ciency.

One important difference between the algorithms for FEA

105

is the requirement for small regularly shaped polygons (
i.e. the elimination of long thin triangles - all angles
should be approximately equal). This is not a constraint
for the GDB where the requirement is simply for the least
number of primitives to accurately describe the object
regardless of its topology provided they are triangular (or
tetrahedral if solid objects are required).

Thus it should be possible to develop a simplified
algorithm based upon those used for FEA ignoring the testing
and processing used to eliminate poorly shaped elements.

7.2.4. Extension to n-Dimensions

The extension of this system to more than three dimen­
sions is facilitated by the fact that the primitives are all
based upon points. There are two situations to consider;
3-D primitives in a n-D world and n-D primitives in an n-D
world.

It is intuitively obvious that one does not need primi­
tives that extend in all the possible dimensions to describe

and object exists in those dimensions e.g. a 3-D object
(cube) may be represented as a collection of 1-D primitives
(lines). Thus we can postulate a 4-D world represented by
1-, 2- or 3-D primitives with the points relation extended
to include values for the fourth dimension.

106

This notion is easily extended to n-D by increasing the
degree of the points relation to n+1 while retaining the set
of primitives as described for the 3-D world.

To extend the model to cope with n-D primitives then
suitable primitives must be found and expressed as relations
containing references to the expanded points relations.

The graphical transformations are just as easily han­
dled by increasing the number of rows and columns in the
transformation matrices to maintain them both at n+1 for a
n-D world.

It may be argued that this extension is of little prac­
tical value as it does not describe the real world as we
perceive it but nevertheless, multiple dimensions are
mathematically possible and find application in the field of
sub-atomic physics (super-strings). The model proposed here
is capable of storing and manipulating data describing such
a situation.

7.2. .5 . Data Input

The input of data to a database system as described
here is not straightforward. A number of possibilities exist
at the present time. The most awkward method is to type the
coordinate data into the system manually. Clearly this is of
limited use when trying to construct a new object interac-

107

tively, although some facility for reading data files will
be required to enable data from other systems to be incor­
porated into the graphical database.

The use of a digitising table is acceptable for the
copying of 2-D objects such as maps and drawings. A suitable

system could be devised to accept engineering drawings
(three view) and create the 3-D coordinate data from those.
Three dimensional digitising is possible for models of

objects but clearly has limitations.

To allow the user to design some object, a suitable
graphical drawing package is required but the subsequent
translation of a pixel based image into precise 3-D coordi­
nate data is not easy although some recent research has pro­
duced a scheme for providing such data from perspective
views of objects.

In addition to the problems with supplying the data in
a suitable format the sequence of operations required to
establish those data in the requisite relations must be con­
sidered. To input a new object into the Graphical Database
requires a cascade of of functions to achieve the insertion
of tuples that maintains the model as described above.

For example, to insert a new object called "bracket"
into the objects relation, not only must a new tuple be
created in that relation with an unique identifier (value

108

for the "onum" attribute), but new tuples must be created in
the link and primitives relations as well as the points
relation. So if "bracket" is based on tetrons then the
tetron-link and tetron relations must be updated to reflect
the existence of the new object.

The sequence of operations is important if integrity
constraints are enforced for each stage of this operation
and is typically :

(1) Insert set of points into Points relation.

(2) Insert tetron data into Tetron relation.

(3) Insert tuples into Tetron-link relation.

(4) Insert new tuple into Objects relation.

As noted above, the collection of point data is not
trivial and may require 3-D coordinate values to be typed in
by hand. The generation of tetrons can be performed by
existing mesh generation techniques from the points data.
Once all the data is available the other steps are
automatic.

Deletions

To delete an object from the Graphical Database
requires a similar scheme of operations to those described
in the previous section except that the order is reversed.

109

Also it is possible to utilise the normal relational set
operations to perform the deletion.

To delete the object bracket requires the following :

(1) Delete tuple from Object relation.

(2) Delete tuples from Tetron-link relation

(3) Delete tuples from Tetrons relation.

(4) Delete tuples from Points relation.

A complication can arise if the sharing of primitives
is allowed. This would be adopted to reduce the data stored
by removing redundant tuples which referenced the same prim­

itive in more than one object. Thus after the creation of a
new object the database can be checked for redundant tuples
and the references from each object rationalised to reduce
the storage overhead.

For instance if a two objects both used the line from
(0,0,0) to (2,3,4) they would initially each have a refer­
ence to this line called "L23" and "L77" respectively. Each
line would reference the same coordinates but they would be
called differently (e.g. pt267,pt268 and pt299,pt300). Thus
the lines relation hold one extra tuple and the points rela­
tion two extra tuples. To rationalise this situation the
line would be represented only once as "L23" and the link-
relations for the two objects would be updated accordingly.

110

7_.2.1_. Object Oriented models

As indicated above, the use of object classes (rigid,
semi-rigid etc.) suggests investigation into more object
oriented database models following the ideas of SMALLTALK-80
where objects have precisely defined "interfaces" (permissi­
ble queries) and a hierarchical structure. Work in this
field has already been published with reference to ordinary
database applications [60,61].

7.2.j3. Temporal models

There is application in animated films for the use of a
graphical database to store the data for the construction of
"frames" that would then be transferred to film for display
purposes. The sequence of frames is of importance so there
must be some time attributes stored with the other data.

For example, consider the making of a film concerning

an archaeological site showing the changes in the boundaries
and buildings over a period of years. The data for each
"frame" will be mostly the same with only a few changes. The
database would hold data (e.g. lines) that would have a time
attribute attached that describes the time span of that
line. The "frame" can be constructed by selecting only those
lines that are valid for a certain time period.

The work for temporal queries has already been imple-

111

merited in DEAL [57,62] and the combination of temporal and
graphical queries has yet to be investigated.

112

CHAPTER 8

Summary

Having established the need for integrated graphics
databases that can incorporate data from traditional commer­
cial style databases, this thesis shows that the published
literature offers no global solution to this problem.

The work described here establishes a model for a
graphics database based on a boundary representation using
points, lines, facets, and tetrons as primitives to describe
objects. This representation can be stored in a relational
database along with the usual character based data. User
defined primitives can also be defined together with the
necessary functions for their manipulation.

A formal specification of this system is given using
Standard ML as a specification language and the usefulness
of specification prior to implementation is demonstrated by

the initial C language version of the database and by the
easy translation of ML functions into DEAL functions and
views.

A language to manipulate and display the objects held
in the database is described and the power of the language
and its suitability for answering complex queries has been
demonstrated. (No absolute method exists to quantify the

113

expressibility of a language so the suitability of DEAL, as
described here, is a matter of judgement on the part of the
author.) The ideas expounded here have been explored in
several implementations of relational database management
systems.

The problems of complex object hierarchies and
integrity constraints are discussed and possible strategies
are suggested. The use of object oriented models and the
extension of the model to more than three dimensions is also
discussed. The problems associated with data input and
deletion are highlighted as areas for further work.

114

APPENDIX A

Introduction to Computer Graphics

Computer graphics is the display, on a suitable device,
of the geometric data describing an object. The sophistica­
tion of the image formed is dependent on the data and com­
puter power available.

The subject can be split into two separate parts; the

geometric description of an object and the display of that
obj ect.

The geometric description of an object consists of a
set of boundary and surface parameters expressed in a coor­
dinate system. Of the possible coordinate systems the
cartesian system with its three mutually perpendicular axes
is the most commonly used. The three axes are usually
labelled x, y and z, and any point in this space can be
described precisely by an ordered triple of numbers
representing distances along each axis from a designated
origin where the three axes meet.

Edges can be expressed as line segments joining two
points. Thus an object can be described by a list of edges
which denote its boundary. This can be extended to describe
a solid as a list of polygonal surfaces (or indeed a list of
volume elements).

115

There are a variety of graphical output devices includ­
ing dot matrix printers, plotters, bit mapped and vector
graphics CRTs.

To display a 2-D object on such devices all that is
required is a mapping to be applied to the list of points
describing the object which converts the values to the range
of values addressable on the device.

For the display of a 3-D object there is more computa­
tion required as the mapping must now remove the data from
the unwanted third dimension. This could be performed by
simply ignoring one member of the triplet (z) and plotting
the x and y values as before by using the mapping described
above. This leads to a parallel projection of the object
which gives an unsatisfying image on the output device. This
is due to the nature of human vision which gives a perspec­
tive view of a scene i.e. an object viewed from a short dis­
tance will appear larger then if viewed from a longer dis­
tance and parallel lines appear to converge as the distance
from the viewer increases. This type of transformation is
easily applied to the 3-D data, and involves dividing the x
and y values by the depth value (z) and then multiplying
them by a factor which is a ratio of the screen size and the
optimum distance of the screen from the eye.

To represent the required mappings and transformations
concisely, a matrix is commonly used. A 3-D point can be

116

represented by a row vector (x y z h) and the transformation
by a 4-by-4 matrix. The extra row and column are required to
express the 3-D point in a homogeneous coordinate system
which allows all the transformations to be applied by the
multiplication of the vector by the matrix (otherwise trans­
lations would be performed by addition of matrices while the
others - rotation and scaling - would use multiplication).

The translation matrix is
1 0 0 0
0 1 0 0
0 0 1 0
Tx Ty Ty 1

where Tx, Ty, Tz are the translation factors for each axis.

The scaling matrix is
Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

where Sx, Sy, Sz are the scaling factors for each axis.

The x-axis rotation matrix is
1 0 0 0
0 R1 R2 0
0 R3 R4 0
0 0 0 1

117

where Rl, R2, R3, and R4 are the rotation factors.

Rl = cos(a)
R2 = -sin(a)
R3 = sin(a)
R4 = cos(a)
a = angle of rotation around the x-axis

measured in an anti-clockwise direction
when viewed from the origin.

The y-axis rotation matrix is
Rl 0 R2 0
0 1 0 0
R3 0 R4 0
0 0 0 1

where Rl, R2, R3, and R4 are the rotation factors.

Rl = cos(a)
R2 = sin(a)
R3 = -sin(a)
R4 = cos(a)
a = angle of rotation around the y-axis

measured in an anti-clockwise direction
when viewed from the origin.

The z-axis rotation matrix is
Rl R2 0 0
R3 R4 0 0
0 0 1 0
0 0 0 1

where Rl, R2, R3, and R4 are the rotation factors.

118

Rl = cos(a)
R2 = -sin(a)
R3 = sin(a)
R4 = cos(a)
a = angle of rotation around the z-axis

measured in an anti-clockwise direction
when viewed from the origin.

In addition to these operations, account must be taken
of the different coordinate systems of the representation
and the output devices. The established approach (CORE, GKS)
is to perform several transformations to convert from the
"world coordinates" used to specify the objects to the "dev­
ice coordinates" used by the display hardware. This is
achieved by creating an intermediate "normalised device"
coordinate (NDC) system.

The NDC space is defined as 0 to 1 in both vertical and
horizontal axes. The normalisation transformation maps a
predefined window in world coordinates onto a viewport in
the NDC space (windows and viewports are rectangular regions
of 2-D space). The workstation transformation maps a NDC

window onto a display device ("workstation") viewport. In
this way several objects can be mapped onto the NDC space
and the whole space mapped onto the workstation thus allow­

ing the output to be "composed" on the NDC device before
being displayed.

119

APPENDIX B

The Specification Language ML

There are several publications by the research group
who devised Standard ML [63,64] which are available from
Edinburgh University's Laboratory for the Foundation of Com­
puter Science. In addition there is an excellent introduc­
tion to the language by Wikstrom [65] which sadly does not
go into the more difficult area of modules.

ML is a strongly typed functional programming language
which is similar in ethos to HOPE [53] and, although not
directly descended from HOPE, they do share similar con­
structs. Functional programming languages in general can be
contrasted with the more conventional languages (e.g. FOR­
TRAN, PASCAL, COBOL etc.) in that they are not procedural.
That is, the programmer does not specify the procedure to
adopt to solve a particular problem. A functional solution
comprises of a collection of functions which will each solve
a small part of the problem and can be combined into a sin­
gle function call that will provide a solution (or a partial
solution) to the problem.

Such languages are not particularly efficient when com­
pared with procedural languages (although the advent of
parallel machine architectures may enable them to become

120

viable alternatives) but they enable the programmer to
specify the solution to a problem in a form that can more
easily be proven to be correct with respect to the original
specification. Thus they can be used as a formal specifica­
tion which, when proven correct, can be transformed into a
procedural language by clearly defined steps that preserve
its correctness. Thus a procedural solution can be produced
that will be less error prone than that produced by conven­
tional methods.

SML has been used in this thesis as a formal specifica­
tion tool with which ideas could be explored quickly and
with little programming effort. The specification includes a
relational database specification together with a set of
relational algebra functions sufficient to demonstrate the
features of the graphical database. It was thus possible to
provide a functional specification of the new relational
expressions required for this work.

The facilities offered by Standard ML are many (includ­
ing some imperative constructs such as while loops and case
structures) but the specification detailed in this thesis is
restricted to a subset of the language just sufficient for
the purpose. A fuller treatment of the facilities offered
can be found in the references quoted above.

A ML program can be considered as a collection of data-

121

types and a collection of functions which represent the
functionality of the problem domain. So it looks schemati­
cally like :

datatype < name > = < constructors >
fun < name > < parameter list > = < body >
fun < name > < parameter list > = < body >
fun < name > < parameter list > = < body >

The datatype structure allows the user to define new

types of his choosing and add these to the in-built ones
(e.g. int, bool, real, list etc.). For instance :-

datatype queue = empty | enqueue of (alpha * queue);
fun add_to_end (element : alpha, q : queue) =

enqueue(element,q) ;
fun service_q (enqueue(e,q)) = (e , q) ;
fun is_empty(empty) = true

| is_empty(enqueue(e,q)) = false ;

The constructors for the type "queue" are "empty" and
"enqueue" (the "|" is pronounced "or" and separates the pos­
sible constructors). This means that members of the type
queue can only be built from these keywords. Three functions
are shown

122

(1) add_to_end : adds new elements to the queue

(2) service_q : to get the head of the queue

(3) is_empty : tests for the occurrence of an empty queue
and returns one of the in-built boolean values true or
false.

The latter function demonstrates the pattern matching
capability where two axioms (separated by "I") are given to
cope with the two possible constructors. This feature allows
the programmer to provide axioms for all the possible
occurrences of a datatype by considering all the construc­
tors in turn. Thus, an application that requires the struc­
ture of a queue can use these three functions to implement a
queue.

The body of a function can have a variety of constructs
which are illustrated in the examples below.

A specification for the operation of a supermarket
might include a function that describes the function of the
check-outs.

fun shopping(q : queue) = if is_empty(q)
then shut_down
else let val (s, ql) = service(q) in
(check_out(s),shopping(ql))
end ;

The two possible courses of action are programmed as the

123

branches of an if-then-else construct depending on whether
the queue is empty or not. (Note that in this example pat­
tern matching on the constructors of a queue is a possible
alternative). The functions "check_out" and "shut_down"
will have been defined beforehand to perform the required
actions (In the strongly typed environment of ML the result
types of both these functions must be the same). The "let-
val-in-end" construct is also shown here that allows the
separate parts of the result of function "service" to be
obtained by pattern matching.

Constant values (i.e. data) can be defined as functions
(possibly parameterised) or as "variables".

fun data = (iteml, item2, item3, ...)
val data = (iteml, item2, item3, ...)

The effect of both options is to establish data that
can be used as parameters to function calls.

The Standard ML language also contains "abstypes",
which are abstract data types with defined public interfaces
and "structures", which embody object oriented ideas via

imprecise public interfaces ("signatures") and modifying
functions ("functors"). These constructs were not utilised
in the specification of the GDB model and are, therefore,

not described here. The Standard ML manual should be con­
sulted for further information.

124

APPENDIX C

Specification Theory-

In general terms the formal specification of a system
is a concise, precise description of its structure and
behaviour. It is essentially a model of the system that can
be used to explore parts of the construction and its
behaviour without the penalty of investing many hours of
effort in coding in a procedural language. The modelling of
any real world system by some formal specification method
must be preceded by the modeller making a decision about the
level of abstraction required to achieve the task in hand.
At some stage the specification will be transformed into an
implementation in an appropriate procedural language, so
decisions must be made then concerning low level implementa­
tion details (such as optimisation, I/O devices), but ini­
tially the specification can be written independently of
such issues. This high level approach is one of the major
benefits of formal specification methods as they free the

modeller from low level problems which can be tackled later

after the major behaviour of the system as a whole has been
modelled to the desired precision.

Much of the pioneering work on algebraic specification
systems was performed by Guttag and his co-
workers [66,67,,68,69] and the so-called ADJ group [70] who

125

have established the mathematical basis of specification
languages and have demonstrated the benefits of such formal­
isms. The advantages of formal specification have also been
investigated by Duce and Fielding [71], who detail its bene­
fits with respect to the chosen application.

Other major workers in this field are Liskov and Zil-
lies who give a clear definition of abstract data types as

... a class of abstract objects which is com­
pletely characterised by the operations available
on those objects. ... When a programmer makes use
of an abstract data object, he is concerned only
with the behaviour which that object exhibits, but
not with any details of how that behaviour is
achieved by means of an implementation.

The basis of most specification methods is some form of
abstraction together with modularity. The former allows com­
plex systems to be described in a simple way by hiding
unnecessary details. This method of "black boxing" a complex

subj ect is natural in everyday language and has been used to
great effect in algebraic specification techniques using
"abstract data types". The use of modularity has long been
recognised as a useful technique for tackling large problems
by breaking them down into more manageable sub-tasks.

126

The objective of using a formal specification is to
produce a good software product quickly with the minimum of
errors undetected.

The production of a correct program is a difficult con­
cept to quantify, however, as it is not possible to deter­
mine whether a program is completely correct. The only
definite quantification is "if a program is used without
error for all of its life then it is probably correct". This
is still not absolute because there may be paths through the

code which were never taken. This definition is, of course,
of little use when designing software as it demands hind­
sight. What is really required is a method that will
predict the correctness of a program before it is used. This
is where the current research into formal specification
methods is leading.

It is a commonly held belief that a formal specifica­
tion of a system can be written quickly and modified easily
as well as being easy to understand. Thus a "correct"
specification can be attained more quickly than a "correct"
program. The testing of a specification can be achieved
more easily if the formalism used allows the specification
to be executable (i.e. the specification can be "run" like a
program with test data to ensure it's syntactic and, in some
part, its semantic correctness).

127

The choice of specification formalism is not an easy-
one as each different method has its drawbacks. Executable
formalisms are useful (while admitting that some features of
a system cannot be modelled) because of the increased confi­
dence in the resultant specification. An executable specifi­

cation method is thus desirable if the benefits of execution
outweighs the lack of modelling abilities.

Examples of constructional (non-executable) specifica­
tion languages are the Vienna Development Method (VDM) and Z
which are both model based methods. They are built up of
data objects representing the inputs, outputs and states of

the system together with operators which manipulate these
objects. Essentially, these methods consist of a series of
statements about the system which are specified in terms of
predicates about the data objects.

Examples of the different styles of specification are
shown below where each formalism is used to specify a graph­
ics system that consists of pictures (i.e. a screen) and two
operations (add a line and delete a line).

First the VDM approach which defines the state as the
picture with the two operations defined in terms of pre- and
post-conditions.

128

State :: picture : line set
line = (pl,p2) where pi and p2 are points

addline (L : line)
Ext picture : line set
Pre pi O p2 where L = (pl,p2)
Post picture' = union(picture, L)
del-line (L : line)
Ext picture : line set
Pre member(L,picture)
Post picture' = picture - L

Algebraic specification languages such as Standard ML
[63] and OBJ [72], both of which are executable, (although

not all algebraic methods are) can be used to check the syn­
tax of the specification as well as form the basis of a

working prototype of the system. These methods establish a
set of axioms which define the relationship between opera­
tors on the data objects rather than defining a model.

Firstly the ML version.

datatype picture = nopic |
mkpic of (line * picture);

fun addline(L,p) = if ok(L) then mkpic(L,p) else p;
fun del-line(L :line,nopic :picture):picture = nopic

| del-line (L, mkpic(Ll,p)) = if equal (L,L1)
then p else
mkpic (Ll,del-line(L,p)) ;

129

The OBJ version can be seen to be similar to the ML
version but is not as compact.

obj Picture
sorts picture
ops
nop ic
mkpic
addline
del-line

-> picture
line picture -> picture
line picture -> picture
line picture -> picture

vars
L
pt,ptl
P.pl

line
point
picture

eqns
(addline(L,nopic) = mkpic(L,nopic))
(addline(L,mkpic(LI,p)) = mkpic(L,mkpic(LI,p)))
(del-line(L,nopic) = nopic)
(del-line(L,mkpic(Ll,p)) = p if equal(L,Ll))
(del-line(L,mkpic(Ll,p)) = mkpic(Ll,del-line(L,pl))

if not(equal(L,LI)))
jbo

A comparison of the VDM and OBJ formalisms was made by
Duce and Fielding [73] who found both methods useful in that
VDM encourages a more top-down approach, while OBJ (and

algebraic methods in general) promotes a more bottom-up
approach to problem solving. They view the ability to exe­
cute a specification as of great benefit.

130

APPENDIX D

Correctness Proof of SML Function from its Axiom

As noted in Chapter 4 a SML specification can only be
shown to be consistent by execution, a proof can only be
made against a more abstract specification. In this case the
specification is an implementation of axioms expressed in a
predicate calculus.

The function "union" is proved by showing that the
implementation in SML supports assertions made in the axiom.
The procedure is to take each side of the axiom and show
that the implementation supports the implication of the
other side of the axiom.

The following proof uses induction to show that the
axioms can be shown to hold for the SML equations in each of
the cases which together constitute all the possible cases.

The parts of the implementation are numbered for ease
of reference in the following proof.

131

Equations used in SML implementation :
union(mt,r2) = r2 {1}
union(tcons(h,rl),r2) = union(rl,r2) if member(h,r2) {2}

or tcons(h,union(rl,r2)) if not member(h,r2) {3}
member(t,mt) = false {4}
member(t,tcons(h,r)) = true if t = h {5}

or member(t,r) if toh {6}
Axiom :

member(t,rl) V member(t,r2) <=> member(t,union(rl,r2))
Proof that axiom can be deduced from the equations :

Show first
member(t,rl) V member(t,r2) => member(t,union(rl,r2)) {7}

** Case 1 rl = mt
member(t,mt) V member(t,r2) = false V member(t,r2) From {4}

= member(t,r2)
= member(t,union(rl,r2)) From {1}

** Case 2 rl O mt
Using induction, assume without loss of
generality, that {7} holds for rl with
n members and show that for tcons(h,rl)
with n+1 members the following holds.

member(t,tcons(h,rl)) V member(t,r2) =>
member(t,union(tcons(h,rl),r2)) {8}

* Case 2.1.1 t = h and member(h,r2)
member(t,tcons(h,rl)) V member(t,r2) =

true V member(t,r2) From {5}
= member(t,rl) V member(t,r2) {9}

member(t,union(tcons(h,rl),r2)) = member(t,union(rl,r2)) {10}
From {2}

Substituting into {4} from {9} and {10} gives
member(t,tcons(h,rl)) V member(t,r2) =>

member(t,union(tcons(h,rl),r2))
Hence {8} is true by induction in this case.

132

* Case 2.1.2 t = h and not member(h,r2)
member(t,tcons(h,rl)) V member(t,r2) = true V member(t,r2)

From {5}
member(t,union(tcons(h,rl),r2)) =

member(t,tcons(h,union(rl,r2))) From {3}
= true From {5} &

case assumption
and so {8} holds in this case.

* Case 2.2.1 t O h and member(h,r2)
member(t,tcons(h,rl)) V member(t,r2) =

member(t,rl) V member(t,r2) {11} From {6}
member(t.union(tcons(h,rl),r2)) =

member(t,union(rl,r2)) {12} From {2}
Substituting from {11} and {12} into {7} gives
member(t,tcons(h,rl)) V member(t,r2) =>

member(t.union(tcons(h,rl),r2))
hence {8} by induction in this case.

* Case 2.2.2 t O h and not member(h,r2)
member(t,tcons(h,rl)) V member(t,r2) =

member(t,rl) V member(t,r2) {13} From {6}
member(t,union(tcons(h,rl),t2)) =

member(t,tcons(h,union(rl,r2))) From {3}
= member(t,union(rl,r2)) {14}

From {6} &
case assumption

Substituting from {13} and {14} into {7} gives
member(t,tcons(h.rl)) V member(t,r2) =>

member(t,union(tcons(h,rl),r2))
hence {8} by induction in this case.

So {8} is true in all cases.
Secondly show

member(t,union(rl,r2)) => member(t,rl) V member(t,r2) {15}
** Case 1 rl = mt
member(t,union(mt,r2)) = member(t,r2)

= member(t,rl)

therefore {15} holds in this case.

From {1}
V member(t,r2)

From def'n
of 'OR'

133

* * Case 2 rl O mt

Using induction, assume without loss of
generality, that {15} holds for rl with
n members and show that for tcons(h,rl)
with n+1 members the following holds.

member(t,union(tcons(h,rl),r2)) =>
member(t,tcons(h,rl)) V member(t,r2) {16}

* Case 2.1.1 t = h and member(h,r2)
member(t,union(tcons(h,rl),r2)) =

member(t,union(rl,r2)) From {2}
= true {17}

From inductive assumption
member(t,tcons(h,rl)) V member(t,r2) = true V true {18}

From {5} &
case assumption

Substituting {17} and {18} into {16} gives
true = true V true

hence {16} holds by induction in this case.
* Case 2.1.2 t = h and not member(h,r2)

member(t,union(tcons(h,rl),r2)) =
member(t,tcons(h,union(rl,r2)) From {3}

= true {19} From {5} &
case assumption

member(t,tcons(h,rl)) V member(t,r2) =
true V true {20} From {5} &

case assumption
Substituting {19} and {20} into {16} gives

true = true V true
hence {16} holds by induction in this case.

* Case 2.2.1 t O h and member(h,r2)
member(t,union(tcons(h,rl),r2))) = member(t,union(rl,r2)) {21}

From {2}
member(t,tcons(h,rl)) V member(t,r2) =

member(t,rl) V member(t,r2) {22}
From {6} &

case assumption
Substitute {21} and {22} into {16} gives {15}

134

member(t,union(rl,r2)) => member(t,rl) V member(t,r2) {15}
hence {16} holds by induction.

* Case 2.2.2 t O h and not member(h,r2)
member(t,union(tcons(h,rl),r2)) =

member(t,tcons(h,union(rl,r2)) From {3}
= member(t,union(rl,r2) {23}

From {6} &
case assumption

member(t,tcons(h,rl)) V member(t,r2) =
member(t,rl) V member(t,r2) {24}

From {6} &
case assumption

Substitute {23} and {24} into {16} gives {15}
member(t,union(rl,r2)) => member(t,rl) V member(t,r2) {15}
hence {16} holds by induction.

So {16} is true in all cases,
but {8} is also true in all cases hence
member(t,rl) V member(t,r2) <=> member(t,union(rl,r2))

(which is the original axiom). QED.

Thus it is shown by induction that the implementation
satisfies the axiom.

135

APPENDIX E

The DEAL Query Language

DEAL (Deductive Algebra) [56] is a proposed extension
of a relational language, capable of supporting user-defined
functions, recursions and deductions based on the full
first-order predicate calculus. DEAL was intended to provide
a unified framework for all database processing - conven­
tional and deductive.

In the design of DEAL, special attention was given to
the orthogonality of its constructs. The advantage of ortho­
gonality is that it leads to a coherent language, one which

is simple, clean, and with a consistent structure. It is
based on the belief that orthogonality must be the guiding
principle in language design.

E.l. Relational Operations

The syntax of a DEAL query is

base-expression [attribute-spec]
where selection predicate

The base-expression can be a relational expression, or
another DEAL query. As a relational expression, it may
include any valid relational operations. The "attribute-
spec" is a list of attributes that will appear in the result
relation (c.f. project) and the "selection predicate"

136

determines which tuples will appear in the result relation
(c.f. select).

The principal operations allowed within a base-
expression are

Cartesian product (**), Union (++)
Outer union (+?), and Difference (--)

The definitions of these relational operations is given in
[74].

Figure-E.l gives the main part of the DEAL syntax. The
complete syntax of DEAL is given in Appendix F.

query
1

query_expr
func-defs

query-expr : : =
1

query-block
query-expr set-op query-block

query-block : : = rel-expr
['[' selection-list ']']
[where condition]

rel-expr ::=
1

relation-name
(query-expr)

Figure E.l: An Overview Syntax of DEAL

The syntax of DEAL compared with SQL is illustrated below

137

DEAL SQL
Emp[name,city]
where enum > 2

select name,city
from Emp
where enum > 2

Emp select *
from Emp

Emp select *
where city = 'london' from Emp

where city = 'london'

DEAL, unlike SQL, supports nesting at the external or
user's level, for example the DEAL query

(Emp [enum,name,salary] where city = 'London')
where salary > 50k;

can not be directly translated into a SQL query without
defining a view (for London employees first). The advantage
of DEAL, in this instance, is that queries are expressed in
a natural way and are therefore easier to understand.

A query to find the employee names and their department
names for departments in Paris may be written in DEAL as:

The base-expression contains a join of Emp and Dept over the
common domains edno and dno.

E.1.1. Retrieval involving a subquery

(Emp (edno , dno) Dept) [name,dname]
where loc = 'Paris';

138

As an example, consider Dates well-known supplier-parts -
shipment database [75].

The following example queries show the use of sub-
queries which are not permitted in SQL.

(1) Get supplier numbers for suppliers who are located in
the same city as supplier si.

supplier [snum]
where city =

(supplier [city]
where snum = si);

(2) Get suppliers with above average status.

supplier
where status >

(average(supplier [status]));

E.1.2. Query involving Set operations

Get part numbers for parts that either weigh more than 16
pounds or are supplied by supplier s2 (or both).

(parts [pnum] where weight >16)
++
(shipment [pnum] where snum = s2);

E.l.̂ 3. Views

Views in DEAL are represented by function-like con­
structs (see the following section for more detailed discus­
sion of functions). Like functions, views are not executed

139

when they are created but they are merely stored in the sys­
tem. For example, london suppliers could be defined as a
view as follows:

view london_supplier() as {
london_supplier := supplier where city = 'london';
}

where '{' and 1}' are used to indicate the beginning and end
of the function body.

Unlike SQL, any relational expression is permitted in
the definition of a view in DEAL.

E.2. Functions and Recursion

The power of any query language is considerably
enhanced by allowing constructs for looping and conditional
execution. In the past this was achieved by embedding the
query language into a high level programming language such
as PL1 or PASCAL. In DEAL however these constructs and some
others such as assignments and print statements are incor­
porated in the query language. Functions may also be
defined, allowing recursive queries to be expressed. Given
the built-in function "first" (first is view which takes a
relation and returns a relation with a single tuple from the
original relation) we can define the function "rest" as fol­
lows :

140

view rest(xirel) {
rest := x -- first(x) ;

}

Other complicated functions can also be defined with
the help of built-in view "first" and the function "empty".
For example there follows two versions of the aggregate
function max. The first version is iterative and the second
version is recursive.

func max(x:rel) {
MAX := 0;
if (empty(x)) max := 0;
while (not(empty(x)))

f := first(x);
if (#f > MAX) {

MAX := #f;
}
x := x -- f;

}
max : = MAX;

}
is used to cast a relation
with one tuple and one attribute
to its value.
func max(x:rel) {

if (empty(x)) {
max := 0;

} else {
if (#first(x)

max :
} else max :=

}
}

> max(rest(x)))
#first(x);

max(rest(x));
{

For example the query "find employees whose salary is
greater than max salary of associate profs." is

141

employee where salary > max(employee [salary]
where position = 'associate');

Other examples which demonstrates how DEAL can be used
for answering queries which cannot be handled by conven­
tional query languages are illustrated below.

E.2.1. Ancestor Problem

Given the relation parents, we can retrieve the pater­
nal ancestors of a given person by using the following two
functions which use recursion.

parents(dad,mum,pname)
dad mum pname

derek jane joe
fred mary jim
greg alison jane
jim beth derek
john joan beth

It is assumed that people's names are unique.
view father(x:char) as {

father := parents [dad] where pname = x;
}
view ancestor(x:char) as {

if (empty(father(x))) ancestor := null; else {
ancestor := father(x) ++ ancestor(father(x));
}

}

"null" is a built-in relation with no tuples and arbitrary
columns.

142

The call ancestor('joe') will then return a relation with
three tuples which are paternal ancestors of joe i.e. derek,
fred and jim.

E.2.2. Parts Explosion Problem

The parts explosion problem, which arises quite fre­
quently in a practical context, is well known as a problem
that is beyond the capabilities of classical relational
algebra. It is also well known that it is impossible to for­
mulate a parts explosion as a single expression in the rela­
tional algebra or relational calculus. The current rela­
tional query languages such as SQL or QUEL therefore can not

handle this problem without some comparatively major exten­
sions [76] .

In DEAL however, the parts explosion problem can be
solved using a set of user-defined functions which use
recursion.

The following two relations parts and link are assumed:

parts (pnum.cost)
link(supp,inf,qty)

A given part may contain any number of other parts as
immediate components and may itself be an immediate com­
ponent of any number of other parts. In other words, rela­
tion link represents a many-to-many relationship between

143

parts and parts.

Figure-E.2 is an extension of relations parts and link.

parts

link

pnum cost
1 10
2 15
3 20
4 12
5 8
6 15
7 20
8 30

sup inf qty
1 2 2
1 4 5
1 7 5
2 4 3
3 6 3
4 7 5
5 3 1
5 6 8
6 1 9

Figure E.2: Part Explosion Database
given the above relations, the parts explosion problem can
now be stated as follows:

- Find the total cost of some given part to all levels

Or equivalently:

- Produce the bill of material for any given part.

The relation 'link' can be regarded as a collection of
trees, for example part number 3 could be represented as:

144

3
6
1

/ I \
/ I \2 | 4

/ 7 |
4 7
7

To produce the total cost of a given part, one would evalu­
ate each branch of the tree completely and sum the cost over
all branches.

The DEAL functions used to perform the task are as follows:

145

view cost_of(pno:int) as [
cost_of := parts [cost] where pnum = pno

}
view allparts(pno:int,z:rel) as {

allparts := z where sup = pno;
}
view rest(pno:int,m:rel) as {

rest := m -- first((allparts(pno,m)));
}
view quant(pno:int,z:rel) as {

quant := first((z [qty] where sup = pno));
}
view infer(pno:int,z:rel) as {

infer := first((z [inf] where sup = pno));
}
func link__cost(pno: int, z: rel) {

if (empty(allparts(pno,z))) {
link_cost : = cost_of(pno);

} else {
link_cost := quant(pno,z) *

link_cost(infer(pno,z),z) +
link_cost(pno,(rest(pno,z)));

}
}
func total_cost(pno:int) {

total_cost := link_cost(pno,link);
}

In [76] two approaches are given based on extending a
relational language such as SQL or QUEL to deal with the
parts explosion problem. These highlight the inadequacy of
current programming languages to deal with the parts explo­
sion problem.

The second approach gives a series of changes to SQL to
enable it to handle the "tree" type problems and the propo­

sals include user defined functions and increased func­
tionality. DEAL implements these ideas and the functions

146

quoted above illustrate the validity of these ideas.

147

APPENDIX F

Complete BNF for DEAL

The following is a complete BNF for the DEAL language
which supports both historical [57] and graphical queries.
The lines marked with a *{G}’ represent those productions
that are required for graphical operations. The lines
marked ’ {*)' indicate the changes required to enable more
complex functions and views to be constructed.

148

input

query

query_expr ::=

simple_t_pred

query_block ::

block

rename ::=

input ';'
input generals 1;'
input defn ';'
input ddl ';'
input dml ';'
input query ';'
input function ';'
input error ';'
query_expr
let_in
query_block
query expr WHEN simple _t_pred
query_expr DIFF query expr
query expr INTER query expr
query_expr UNION query_expr
query_expr CART query_expr
query_expr join query_expr
query_expr MM query_expr {G}
'(' query_expr
'(' query_expr *)' block
'(' query expr ')' rename

BEFORE expr
AFTER expr
MEETS expr
OVERLAP expr
STARTS expr
SAME expr
FINISHES expr
CONTAINS expr
BETWEEN expr
LONGER expr
SHORTER expr
EQUAL expr
rel name
rel_name block
query_block rename
FIRST_GROUP query_block BY

'[' selection_list ']'
'[' selection_list ']'
WHERE condition
’[' selection_list ']'

WHERE condition
RENAME '[' rename_list ']'

149

rename_list ::=
I

join ::=
asgn ::=

I
as_name ::=

I
I
I

stmt ::=

cond ::=

if : : =
while ::=
end ::=

begin ::=
stmtlist ::=

I
prlist ::=

I
list_item ::=

I
I
I

selection_list

I
condition ::=

const BEQ attr_name
rename_list ',' const BEQ attr_name
'(' attr_name ’,' attr_name ')'
as_name BEQ expr
ARG BEQ expr
VAR
L_VAR
NUMBER
RELATION
procname BEQ expr
dml {*}
generals
defn
asgn
PRINT prlist
while cond stmt end
if cond stmt end
if cond stmt end ELSE stmt end
'{' stmtlist '}'
'(' predicate ')'
IF
WHILE
/* nothing */
/* nothing */
stmtlist ';'
stmtlist stmt
list_item
prlist ',' list_item
QSTRING
ARG
L_VAR
DOUBLE

expr
selection_list ',' expr
predicate
condition AND predicate

150

defn : : =
1

FUNC funcname ’(’paramlist')1 stmt
VIEW funcname '('paramlist1)' AS stmt

paramlist : : =
1

param *:' declaration
paramlist ',' param 1:' declaration

param : : =
1

VAR
ARG

declaration ::
1
1
1
1

:= INT
DBLE
REL
AT
CHAR

header ::= '(' arglist ')'
arglist ::=

1
expr
arglist ',' expr

procname ::=
1

FUNCTION
VIEWDEF

funcname ::=
1
1

VAR
FUNCTION
VIEWDEF

predicate ::=
1
1
1
1
1
1
1
1

expr
predicate GT predicate
predicate GE predicate
predicate LT predicate
predicate LE predicate
predicate NE predicate
predicate EQ predicate
predicate C_AND predicate
predicate C_OR predicate

expr ::=
1
1

arith_term
expr '+' arith_term
expr ’-' arith_term

arith term ::=
1
1

arith_factor
arith_term ' arith factor
arith_term '/' arith factor

arith factor :

1
primary
'-' primary %prec UNARYMINUS

primary ::=
1
1

const
field_spec
function

151

let_in ::=

const ::=
I
I
I
I
I
I

time_point ::=
time_interval

I
I
I

function ::=
I
I

field_spec ::=
dml ::=

list_tup ::=
I

tup : : =
I
I
I
I
I
I

ddl ::=

create_table ::

f_d_l ::=
I

query_expr
’#' primary
'(' expr ')’
LET as_name EQEQ expr
IN query
NUMBER
DBLE {G}
DOUBLE {G}
QSTRING
time_point
NOW
time_interval
NUMBER ’/' NUMBER '/' NUMBER

'[' expr ',* expr ']'
MONTH NUMBER
MONTH
':1 NUMBER
FUNCTION begin '(' arglist ')•
BLTINFUNC '(• arglist ')•
DBLTINFUNC '(' arglist ')' {G}
attr name
INSERT INTO rel_name

VALUES '('list_tup')'
tup
list_tup ',' tup
QSTRING
ARG
L_VAR
BLTINFUNC '(' arglist ’)'
DBLTINFUNC '(' arglist *)' {G}
DOUBLE {G}
NUMBER
create table

CREATE TABLE VAR '(' f_d_l ')1
f_d
f_d_l ',1 f_d

152

f d : : =
1

attr name atype
attr name atype NONULL

atype ::=
1
1
1

CHAR '(' NUMBER ')'
REAL {G}
INT *(' NUMBER 1)'
DATE

attr name ::= VAR
rel name ::=

1
1
1
1

RELATION
VIEUDEF begin header
BLTINVIEW '(' expr ')'
ARG
L_VAR

generals ::=
1
1
1
1
1
1
1

TRACE ON
TRACE OFF
DISPLAY
DISPLAY NUMBER
COMMIT
MAKEHIST ' (1 RELATION ')'
SHELL
CLOSE {*}

This forms the basis of the grammar for the YACC parser
generator.

153

APPENDIX G

Standard ML Specification of Matrix operations

The following Standard ML specification encapsulates
the multiplication of matrices and the mixed operations
necessary to transform a points relation by use of a matrix
composed to reflect the desired operations, e.g. viewing
transforms.

datatype matrix = null
| matcons of ((real list) * matrix) ;
exception mkmat : unit
fun mkmat((rows : real list)::rest)=

matcons(rows,mkmat(rest))
| mkmat((nil : real list)::rest) = raise mkmat
| mkmat(nil) = null ;

The datatype "matrix" is defined as "null” (an empty
matrix) or as a number of lists of real (as opposed to
integer) values. This allows matrices of any size to be
accommodated. The main construction function is "mkmat"
which takes a list of lists of reals (i.e. rows of the
resulting matrix) and applies the matrix constructor to them
to create the matrix. There is no checking to ensure that
the matrices are rectangular.

154

(* matrix -> row Returns next row from matrix *)
fun getrow(null) = nil

| getrow(matcons(r,m)) = r ;
(* matrix -> col Returns next column from matrix *)
fun getcol(null) = nil
| getcol(matcons((nil:real list),m)) = nil
| getcol(matcons(r,m)) = hd(r) :: getcol(m) ;

(* matrix -> matrix *)
(* strips row and returns rest of matrix *)
fun rows(null) = null
| rows(matcons(r,m)) = m ;

(* matrix -> matrix *)
(* strips col and returns rest of matrix *)
fun cols(null) = null
| cols(matcons(r,m)) = matcons(tl(r),cols(m)) ;

The above functions serve to deconstruct a matrix and
thus allow access to the individual rows and columns as
required in the subsequent functions.

155

(* row X col -> num Multiplies a row by a column *)
fun rcmult(r:real list,nil:real list) = 0 . 0
| rcmult(nil:real list,c:real list) = 0 . 0
| rcmult(nil:real list,nil:real list) = 0 . 0
| rcmult(h::t,hl::tl) = h*hl + rcmult(t,tl) ;

(* Creates row of result matrix by multiplying *)
(* row by each column of matrix *)
(* row X matrix -> row *)
fun mkrow(r,null) = nil
| mkrow(r,matcons(nil,m)) = nil
| mkrow(r,m) = rcmult(r,getcol(m)) ::

mkrow(r,cols(m)) ;
(**■** Tests if two matrices are ***)
(**** multiply compatible ■***)
(* matrix X matrix -> boolean *)
fun mult_compatible(ml,m2) =

length(getrow(ml)) = length(getcol(m2)) ;

(* matrix X matrix -> matrix ;*)
fun mm(null,ml:matrix) = null
| mm(ml:matrix,m2:matrix) =

if mult_compatible(ml,m2) then
matcons(mkrow(getrow(ml),m2),mm(rows(ml),m2))

else null;

These functions perform the multiplication of two
matrices after checking that they are compatible for the

multiplication operation. (The "length" function is built-in
a returns the number of members of a list).

156

(* converts a tuple into a matrix *)
fun mkptmat(x,y,z):matrix = mkmat([x,y,z,1 .0]::nil)

end;
(* Degree to radian conversion *)
fun dtor(n : real) = n * (3.14159 / 180.0) ;
(* num X num X num -> matrix *)
fun translate(x:real,y:real,z:real) =

mkmat([[1 .0 ,0 .0 ,0 .0 ,0 .0],
[0 .0 ,1 .0 ,0 .0 ,0 .0],
[0 .0 ,0 .0 ,1 .0 ,0 .0],
[x,y,z,1 .0]]) ;

(* num X num X num -> matrix *)
fun scale(x:real,y:real,z:real) =

mkmat([[x,0 .0 ,0 .0 ,0 .0],
[0 .0 ,y,0 .0 ,0 .0],
[0 .0 ,0 .0 , z, 0 .0] ,
[0 .0 ,0 .0 ,0 .0 ,1 .0]]) ;

(* num -> matrix *)
fun zrot(n:real) =

mkmat([[cos(dtor(n)),0.0-sin(dtor(n)),0.0,0.0],
[sin(dtor(n)),cos(dtor(n)),0.0,0.0],
[0.0,0.0,1.0,0.0],
[0.0,0.0,0.0,1.0]]) ;

(* num -> matrix *)
fun yrot(nrreal) =

mkmat([[cos(dtor(n)),0.0,sin(dtor(n)),0.0],
[0.0,1.0,0.0,0.0],
[0.0-sin(dtor(n)),0.0,cos(dtor(n)),0.0],
[0.0,0.0,0.0,1.0]]) ;

(* num -> matrix *)
fun xrot(n:real) =

mkmat([[1.0,0.0,0.0,0.0],
[0.0,cos(dtor(n)),0.0-sin(dtor(n)),0.0],
[0.0,sin(dtor(n)),cos(dtor(n)),0.0],
[0.0,0.0,0.0,1.0]]) ;

The functions above produce the transform matrices

necessary for rotation, scaling and translation operations.
They can be combined into a single matrix by multiplication.

157

fun sqr(n : real) = n*n ;
(*... - ... -*)
(*real Xreal Xreal Xreal XrealXrealXreal -> matrix*)
(*vx vy vz dx dy dz arbitrary *)
(* view point target point rotation *)
fun viewmat(vx,vy,vz,dx,dy,dz,azrot) =
let val vdx = if vx=dx then 1 . 0 else vx-dx in
let val vdy = if vy=dy then 1 . 0 else vy-dy in
let val ml = translate(vx, vy, vz) in
let val m2 = xrot(90.0) in
let val m3 = yrot((180.0+(arctan((vdx)/(vdy))*

180.0/3.142))) in
let val m4 = xrot((arctan((vz-dz)/

(sqrt(sqr(vdy)+sqr(vdx))))*180.0/3.142)) in
let val m5 = scale(1.0,1.0, 1.0) in
let val m 6 = zrot(azrot) in

mm(ml,mm(m2,mm(m3,mm(m4,mm(m5,m6)))))
end end end end end end end end ;

\

The viewing matrix is constructed by multiplying
together the transform matrices necessary to perform the
viewing function. The precise details of this function can
be found in standard texts on graphics (e.g [7 7].).

158

(* ... *)
(* This function takes a single row matrix and *)
(* produces a tuple suitable for insertion into *)
(* a points relation *)
fun mkptup(key:string,m:matrix) =

let val one :: two :: three :: r = getrow(m) in
(key,one,two) end ;

(* .. . *)
(* relation X matrix -> relation *)
(* takes a subset of the main points relation *)
(* and returns a x,y points relation *)
fun transform(r:'a relation, m:matrix):'a relation=

if ismt(r) then nil else
let val (k,pt) = first(r) in
add(mkptup(k,mm(mkptmat(pt),m)),

transform(rest(r),m))
end ;

The "transform" function performs the mixed type opera­
tion of applying a matrix to a points relation such that the
resulting relation contains points whose coordinates have
been transformed by multiplication with the matrix.

159

APPENDIX H

Example DEAL Programs for Display

The following functions and views are common to

examples described in Chapter 6 .
both

160

view rest(x:rel) as {
rest := x -- first(x);

);
func mode(m:int) {

d := byte(22);
d := byte(m);
mode := d;
>;

func plot(st:int,x:int,y:int) {
d := byte(25);
d := byte(st);
d := word(x);
d := word(y);
plot := d;
};

func setup() {
d := byte(2 2);
d := byte(l);
d := byte(24);
d := word(O);
d := word(128);
d := word(1279);
d := word(1023);
d := byte(28);
d := byte(O);
d := byte(31);
d := byte(39);
d := byte(28);
d := byte(18);
d := byte(O);
d := byte(l);
setup := 1 ;
};

func display(scrpts :rel) {
if (card(scrpts) = 0) (display := 1 }
else {

fr := first(scrpts);
stx := #(fr [sx]);
sty := #(fr [sy]);
enx := #(fr [ex]);
eny := #(fr [ey]);
ds := plot(4,floor(stx),floor(sty));
de := plot(5,floor(enx),floor(eny));
display:= display(rest(scrpts));
}

161

The following DEAL program shows the creation and
ling of the relations for the "house" in Chapter 6 .

fil-

162

create table object (onum char(9) nonull,
oname char(9)) ;

insert into object values
insert into object values
insert into object values
insert into object values
insert into object values
insert into object values
insert into object values
insert into object values

("ol","roof");
("o2 ","door");
("o3","window");
("o4","wall");
("o5","housel");
("0 6 ","house2 ");
("o7","frame");
("0 8 ","port");

create table hierarchy (sup char(9) nonull,
inf char(9) nonull) ;

insert into hierarchy
insert into hierarchy
insert into hierarchy
insert into hierarchy
insert into hierarchy
insert into hierarchy
insert into hierarchy
insert into hierarchy
insert into hierarchy
insert into hierarchy
create table linelink

values ("o5","ol");
values ("o5","o2 ");
values ("o5","o3");
values ("o5","o4");
values ("0 6 ","ol");
values ("0 6 ","o2 ");
values ("0 6 ","o3");
values ("o6","o4");
values ("o2","o7");
values ("o2 ","0 8 ");
(onum char(9) nonull,
lnum char(9) nonull)

insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values
insert into linelink values

("ol" , "11");
("ol" , "12");
("ol" , "13");
("o7" ,"15");
("o7" , "16");
("o7" , "14");
("o3" , "17");
("o3" ,, "18");
("o3" ,, "19");
("o3",,"110
("o4",,"111
("o4" ,,"112
("o4",,"113
("08", "114
(j

00o "115
('

00o "116
(''’08", "117

create table lines (lnum char(9) nonull,
spt char(9),
ept char(9)) ;

163

insert into lines values ("11" ,"pi", "P2");
insert into lines values ("12", "P2","p3");
insert into lines values ("13" ,»p3", "pi");
insert into lines values ("14", "pll" ,"plO");
insert into lines values ("15" ,"plO" ,"P9");
insert into lines values ("16", ”p9","p8");
insert into lines values ("17", "pl2" , "pl3");
insert into lines values ("18", "pl3" ,"pl4");
insert into lines values ("19" ,"pl4" ,"pl5");
insert into lines values ("110" , "pl5","pl2");
insert into lines values ("111" , "p4" ,"p5");
insert into lines values ("112" ,"p5" ,"p6");
insert into lines values ("113" ,"p6" ,"P7");
insert into lines values ("114" , "pl6","pl7");
insert into lines values ("115" , "Pl7","pl8");
insert into lines values (•116" > "pl8","pl9");
insert into lines values (*117" , "pl9","pl6");
create table point (ptnum char(9) nonull,

x real,
y real,
z real) ;

insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values
insert into point values

("pi",100.0,600.0,0.0);
("p2",400.0,900.0,0.0);
("p3",700.0,600.0,0.0);
("p4",200.0,600.0,0.0);
("p5",200.0,400.0,0.0);
("p6",600.0,400.0,0.0);
("p7",600.0,600.0,0.0);
("p8",450.0,400.0,0.0);
("p9",450.0,500.0,0.0);
("plO",380.0,500.0,0.0)
("pll",380.0,400.0,0.0)
("pl2",240.0,520.0,0.0)
("pl3",280.0,520.0,0.0)
("pl4",280.0,440.0,0.0)
("pl5",240.0,440.0,0.0)
("pl6",400.0,480.0,0.0)
("pl7",430.0,480.0,0.0)
("pl8",430.0,450.0,0.0)
("pl9",400.0,450.0,0.0)

view getall (recrel : rel , part : rel) as {
if (card(recrel) = 0) { getall := recrel ;}
else {

temp := ((recrel (inf,sup) part)
rename [0:=sup,l:=inf]) ;

getall := (recrel -- (temp [sup])) ++
getall(temp [inf],part) ;

}

164

};
view flatten (onum : char , part : rel) as {

tempi := (part where sup = onum) [inf]
flatten := getall(tempi,part) ;

);
view gjoin(objname:char) as {
nrel := (object where oname = objname) [onum] ;
frel := flatten(#(nrel),hierarchy);
lrel := ((frel (inf,onum) linelink)

rename [l:=lnum]) [lnum] ;
12rel := (lrel (lnum,lnum) lines)

rename [0:=lnum,1:=spt,2:=ept];
ptl := (12rel (spt,ptnum) point)

rename [0:=lnum,2:=ept,3:=sx,4:=sy];
ptltmp := ptl [lnum,ept,sx,sy] ;
pt2 := (ptltmp (ept,ptnum) point)

rename [0:=lnum,2:=sx,3:=sy,4:=ex,5:=ey];
fin := pt2 [lnum,sx,sy,ex,ey] ;
gjoin:= fin ;
};
func show(objname : char) {

d := setup();
show := display(gjoin(objname));
};

show("housel");

The following DEAL program details the relations and
functions for the ’’cube" example in Chapter 6.

165

create table stmpl (number int(l) nonull
one real,
two real,
three real,
four real);

create table stmp2(number int(l) nonull
one real,
two real,
three real,
four real);

create table xtmp (number int(l) nonull
one real,
two real,
three real,
four real);

create table dines (lnum char(9) nonull
spt int(l),
ept int(l));

insert into dines values ("11" 1,2)
insert into dines values ("12" 2,3)
insert into dines values ("13" 3,4)
insert into dines values ("14" 4,1)
insert into dines values ("15" 5,6)
insert into dines values ("16" 6,7)
insert into dines values ("17" 7,8)
insert into dines values ("18" 8,5)
insert into dines values ("19" 1,5)
insert into dines values ("110 ,2,6)
insert into dines values ("111 ,3,7)
insert into dines values ("112 ,4,8)

view getcol(arel:rel,num : at) as {
getcol := arel [number,num] ;
};

view translate(x:dble,y:dble,z:dble) as {
insert into trans values (1,1.0,0.0,0.0,
insert into trans values (2,0.0,1.0,0.0,
insert into trans values (3,0.0,0.0,1.0,
insert into trans values (4,x,y,z,1.0);

translate := trans ;
};
view scale(x:dble,y:dble,z:dble,st : rel)
insert into st values (l,x,0.0,0.0,0.0);

.0)

.0)

.0)

as {

166

insert into st values (2,0.0,y,0.0,0.0);
insert into st values (3,0.0,0.0,z,0.0);
insert into st values (4,0.0,0.0,0.0,1.0);

scale := st ;
};

view rotz(angle:dble) as {
cosangle := cosine(angle);
sinangle := sine(angle);
negsinangle := - sinangle ;
insert into zrot values (1,cosangle,negsinangle,

0.0,0.0);
insert into zrot values (2,sinangle,cosangle,

0.0,0.0);
insert into zrot values (3,0.0,0.0,1.0,0.0);
insert into zrot values (4,0.0,0.0,0.0,1.0);

rotz := zrot ;
};
view rotx(angle:dble,xt:rel) as {
cosangle := cosine(angle);
sinangle := sine(angle);
negsinangle := - sinangle ;
insert into xt values (1,1.0,0.0,0.0,0.0);
insert into xt values (2,0.0,cosangle,

negsinangle,0.0);
insert into xt values (3,0.0,sinangle,

cosangle,0.0);
insert into xt values (4,0.0,0.0,0.0,1.0);

rotx := xt ;
};
view roty(angle:dble) as {
cosangle := cosine(angle);
sinangle := sine(angle);
negsinangle := - sinangle ;
insert into yrot values (1,cosangle,0.0,

sinangle,0.0);
insert into yrot values (2,0.0,1.0,0.0,0.0);
insert into yrot values (3,negsinangle,0.0,

cosangle,0.0);
insert into yrot values (4,0.0,0.0,0.0,1.0);

roty := yrot ;
};
insert into bpts values (1,0.0,0.0,0.0);
insert into bpts values (2,50.0,0.0,0.0);
insert into bpts values (3,50.0,50.0,0.0);
insert into bpts values (4,0.0,50.0,0.0);
insert into bpts values (5,0.0,0.0,50.0);
insert into bpts values (6,50.0,0.0,50.0);

167

insert into bpts values (7,50.0,50.0,50.0);
insert into bpts values (8,0.0,50.0,50.0);
func rval(pts :rel, col : at) {

rval := #(pts [col]);
);
func cval(xmat : rel, cname : at,n : int){

cval := #((getcol(xmat,cname)) [cname]
where number = n);

func rcpts(pts:rel,bmat:rel,cnamerat) {
rcpts := rval(pts,x) * cval(bmat,cname,1)

+ rval(pts.y) * cval(bmat,cname,2)
+ rval(pts,z) * cval(bmat,cname,3)
+ 1.0 * cval(bmat,cname,4) ;

);

view transformpts(pts:rel,amatrix:rel,c:rel) as {
if (card(pts) = 0) {

transformpts := c;
} else {

fr := first(pts);
ptval := #(fr [ptnum]);
rcl :== rcpts (fr, amatrix, one) ;
rc2 := rcpts(fr,amatrix,two) ;
rc3 := rcpts(fr,amatrix,three);
vsx := (511.5 * (rcl/rc3)) + 511.5;
vsy := (511.5 * (rc2/rc3)) + 511.5;
insert into c values (ptval, vsx, vsy,0.0) ;
transformpts := transformpts(rest(pts),amatrix,c);

view gjoin(nptsrrel) as {
ptl := (dines (spt,ptnum) npts)

rename [0:=lnum,2:=ept,3:=sx,4:=sy];
ptltmp := ptl [Inum,ept,sx,sy] ;
pt2 := (ptltmp (ept,ptnum) npts)

rename [0:=lnum,2:=sx,3:=sy,4:=ex,5:=ey];
fin := pt2 [lnum,sx,sy,ex,ey] ;
gjoin:= fin ;
};

168

view viewmat(vx: dble ,vy: dble, vz : dble, dx: dble,
dy:dble,dz:dble,azrot:dble) as {

if (vx=dx) { vdx := 1.0 ; } else { vdx := vx-dx ;}
if (vy=dy) { vdy := 1.0; } else { vdy := vy-dy ;}
nvx := 0.0 - vx ;
nvy : = 0.0 - vy ;
nvz := 0.0 - vz ;
ml := translate(nvx,nvy,nvz) ;
m2 := rotx(90.0,xtmpl) ;
n3val := 0.0 - (180.0+(atan((vdx)/(vdy))*

180.0/3.142)) ;
m3 := roty(n3val);
n4val := 0.0 - (atan((vz-dz)/(

sqrt((vdy*vdy) + (vdx*vdx))))*180.0/3.142) ;
m4 := rotx(n4val,xtmp2) ;
nl := 0.0 - 1.0 ;
m5 :== scale(l.0,1.0 ,nl, stmpl) ;
m6 := scale(4.0,4.0,1.0,stmp2) ;
viewmat := ((((ml |x| m2) |x| m3) |x| m4)

|x| m5) |x| m6;

view vmatQ as {
vmat := viewmat(100.0,200.0,100.0,0.0,0.0,0.0,

135.0,xtmp)

func showx(pts:rel) {
d := setup();
showx:=display(gj oin(transformpts(pts,vmat,cpt)));
};
show(bpts) ;

169

APPENDIX I

C Language Implementation

The following shows a small part of the implementation
in C from the ML specification of the graphical database.
The ML specification (Figure 1.1) and the C implementation
(Figure 1.2) for the '’union" operation is shown.

fun union(mt,r) = r
| union(tcons(t,r),rr) = if member(t,rr)
then union(r,rr)
else tcons(t,union(r,rr))

Figure I_.l: ML specification for Union

170

typedef union anything
{
int num;
char ch ;
float real ;
char *word ;
char *attname;
struct list *11 ;
} typevar ;

/** This C union mimics the polymorphic types of ML
by enabling a variable of type "typevar" to be of
any of the quoted types. **/

typedef struct list
{
char type ;
typevar item ;
struct list *next;
} Hist ;

/** This linked list structure can contain elements
of any type allowed in the "typevar" union. The type
of any item is indicated by the "type" field of this
s true ture. **/

typedef llist set ;
typedef llist tuple ;
typedef struct rel

{
set ^tuples;
} relation ;

relation *runion(rell,rel2)
relation *rell,*rel2 ;
{
relation *temp;

temp = (relation *) malloc(sizeof(relation))
temp->tuples = (set *) sunion(rell->tuples,

rel2->tuples)
return(temp) ;

171

}
set *sunion(setone,settwo)
set *setone,*settwo;
{

}

if (setone = NULL) return(settwo);
if (settwo = NULL) return(setone);
else return(add(setone->type,setone->item,

sunion(setone->next,settwo)));

/** The original ML function for "union" must be
split into two to allow for the allocation of
storage for the result of the "union" operation. **/

Figure 1.2: C implementation of Union

172

APPENDIX J

RDB Implementation

The following shows the RDB schema and PASCAL programs
used for this implementation. The "define" statements of
RDO (the DML/DDL for RDB) establish views which constitute
the "gjoin" for a line segment representation.

define view cstart of
1 in line_segs cross
p in newpoints with
lnum from 1.lnum.
sx from p.x.
sy from p.y.
sz from p .z.
end cstart view.

define view cfin of
1 in line_segs cross
p2 in newpoints with
lnum from 1.Inum.
ex from p2.x.
ey from p2.y.
ez from p2.z.
end cfin view.
define view dines of
s in cstart cross
e in cfin with
s.lnum = e.lnum.
lnum from s.lnum.
sx from s.sx.
sy from s.sy.
sz from s.sz.
ex from e.ex.
ey from e.ey.
ez from e.ez.
end dines view.

l.st_pt = p.ptnum .

1.end_pt = p2.ptnum .

173

The following is the PASCAL program for selecting the
object to be displayed and then using the device driver rou­
tines to perform the display operation. The "%include" files
contain the device driver procedures and functions and those
for matrix operations. The RDB interface is via the non-
PASCAL statements which are converted into VMS/PASCAL by a
pre-processor prior to compilation.

174

program gdb(input,output);
{ This is TERMULATOR version }

%include 'decls.inc'
database db = pathname 'cdd$top.me.t.aww.graphic'
%include 'exter.inc'
procedure nerase ;
begin

for n in newpoints ;
erase n ;
end_for ;

end;
procedure transform(tmat : matrix) ;
var mat,nmat : matrix ;

num : integer ;
begin

num: =0;
for p in points cross o in op
with (o.onum = "o004") and (o.pnum = p.ptnum)

num : = num + 1;
mat[1,1] := p.x ;
mat[1,2] := p.y ;
mat[1,3] := p .z ;
mat[1,4] := 1.0 ;
nmat := matmult(mat,tmat,1,4,4,4) ;
store n in newpoints using ;
n.ptnum := p.ptnum ;
n.x := nmatfl,1] ;
n .y := nmat[1,2] ;
n.z := nmat[1,3] ;
end_store ;

end_for ;
end;

procedure show(xmin,xmax,ymin,ymax,dist,
scr:integer);

var vsx,vsy,vex,vcy : real ;
xls,yls,x2s,y2s real ;
sx,sy,sz,ex,ey,ez : real ;
persp,nsz,nez : real ;

begin
vsx := (xmax-xmin)/2 ;

175

vsy := (ymax-ymin)/2 ;
vex := (xraax+xmin)/2 ;
vcy := (ymax+ymin)/2 ;
persp := dist/scr ;
for 1 in clines ;
if l.sz = 0.0 then nsz:=1.0 else nsz:=l.sz
if l.ez = 0.0 then nez:=1.0 else nez:=l.ez
xls := vsx * persp * (l.sx/(nsz)) + vex ;
yls := vsy * persp * ((1.sy)/(nsz)) + vcy
x2s := vsx * persp * (l.ex/(nez)) + vex ;
y2s := vsy * persp * ((1.ey)/(nez)) + vcy
plot(4,trunc(xls),trunc(yls));
plot(5,trunc(x2s),trunc(y2s));
writeln ;
end_for;

end;
{Start of main program}
begin

start_transaction read_write;
startup ;
transform(viewmat(39600.0,31800.0,1000.0

, 39600.0,31800.0,0.0,135.0)) ;
show(0,1200,128,1020,40,11);
nerase;

end.

176

APPENDIX K

Hardware

The hardware used for this work is as follows.

(1) VAX cluster (running VMS)

(2) VAX 11/750 (running ULTRIXO)

(3) Sun 3/160 (running SUN-OS)

Systems 1 and 2 use a BBC micro as a graphics terminal
using the ACORNSOFT TERMULATOR and the Cambridge University
Computing Laboratory GTERM graphics terminal emulator. An
Epson LX-86 dot matrix printer was used for hardcopy of the
screen dumps produced by the GDB system.

Porting the system to the SUN workstation proved trou­
blesome as there were problems with the internal representa­
tion of integers and reals which forced a rewrite of some of
the PRECI/C source code. The graphical interface to the SUN
console is not functional at the time of writing.

0 ULTRIX and VAX are a trademark of Digital Equipment Corporation.

177

References

1. R.A. Lorie and W. Plouffe, "Complex Objects and their
Use in Design Transactions", in ACM/IEEE Proc. Ann.
Meet. : Engineering Design Applications, pp. 115-121,
1983.

2. R.L. Haskin and R.A. Lorie, "On Extending the Functions
of a Relation Database System", in ACM SIGMOD Int.
Conf. on Management of Data, pp. 207-212, 1982.

3. R. Lorie, W. Kim, D. McNabb, W. Plouffe, and A. Meier,
"Supporting Complex Objects in a Relational System for
Engineering Databases", in Query Processing in Database
Systems, ed. W. Kim, D.S. Reiner, D.S. Batory, pp.
145-155, S-V, 1985.

4. R.A. Lorie, "Issues in Databases for Design Applica­
tions", in File Structures & Databases for CAD, ed.
Encarnacao J. & Krause F.L., North-Holland, 1982.

5. G. Hallmark and R.A. Lorie, "Towards VLSI Design Sys­
tems Using Relational Databases", in Proc. 28th. Int.
Conf. IEEE Compcon, pp. 326-329, IEEE, 1984.

6. R.A. Lorie and A. Meier, "Using A Relational DBMS for
Geographical Databases", Geo-Processing, vol. 2, pp.
243-257, 1984.

7. D.S. Batory and W. Kim, "Modelling Concepts for VLSI
CAD Objects", ACM TODS, vol. 10, no. 3, pp. 322-346,
Sept 1985.

8. A.J. Morffew, S.P. Todd, and M.J. Snelgrove, "The Use
of a Relational Database for Holding Molecular Data in
a Molecular Graphics System", Comp. and Chem., vol. 7,
no. 1, pp. 9-16, 1983.

9. S.J.P. Todd, A.J. Morffew, and J. Burridge, "Applica­
tion of Relational Database and Graphics to the Molecu­
lar Sciences", in Proceedings of the Third British
National Conference on Databases, ed. Longstaff J.,
C.U.P., 1984.

10. M. Tikkanen, M. Mantyla, and M.Tamminen, "GWB/DMS: A
Geometric Data Manager", in Eurographics '83, ed. P.W.
ten Hagen, pp. 99-111, 1983.

11. A.A.G. Requicha, "Representations for Rigid Solids",
ACM Comp. Surv., vol. 12, no. 2, pp. 437-464, Dec.
1980.

178

12. Y.C. Lee and K.S. Fu, "A CGS Based DBMS for CAD/CAM and
its Supporting Query Language", in Proc. Annual Meeting;
- Engineering Design Applications - Database Week, pp.
123-130, May 1983.

13. J.M. Smith and D.C.P. Smith, "Database Abstractions:
Aggregation and Generalisation", ACM TODS, vol. 2, no.
2, pp. 105-133, June 1977.

14. S.Y.W. Su, "Modelling Integrated Manufacturing Data
with SAM*", Computer, vol. 19, no. 1, pp. 34-49, Jan
1986.

15. R.S. Shenoy and L.M. Patnaik, "Data Definition and
Manipulation for a CAD database", CAD, vol. 15, no. 3,
pp. 131-134, May 1983.

16. N.S. Chang and K.S. Fu, "A Query Language for Rela­
tional Image Database Systems", in Proc. Workshop on
Picture Data Descriptions and Management, pp. 377-397,
Aug 1980.

17. M.M. Zloof, "Query-by-Example - A Database Language",
IBM Sys. J . , vol. 16, no. 4, pp. 324-343.

18. A. Frank, "MAPQUERY: Database Query Language for
Retrieval of Geometric Data and their Graphical
Representation", ACM Computer Graphics, vol. 16, no. 3,
pp. 199-207, July 1982.

19. M. Chock, A.F. Cardenas, and A. Klinger, "Database
Structure and Manipulation Capabilities of a Picture
Database Management System (PICDMS)", IEEE Trans. Pat­
tern Analysis and Machine Intelligence, vol. PAMI-6,
no. 4, pp. 484-492, July 1984.

20. W.I. Grosky, "Toward a Data Model for Integrated Pic­
torial Databases", Comp. Vision, Graph. and Image Pro­
cessing, vol. 25, no. 3, pp. 371-382, March 1984.

21. T.L. Kunii, S. Weyl, and J.M. Tenenbaum, "A Relational
Database Schema for Describing Complex Pictures", in
Proc. 2nd. Int. Joint Conf. Pattern Recognition, pp.
310-316, Aug 1974.

22. G.Y. Tang, "A Management System for an Integrated Data­
base of Pictures and Alphanumeric Data", Comp. Graph.
and Image Process., vol. 16, pp. 270-286, 1981.

23. A. van Dam, "Some Implementation Issues Relating to
Data Structures for Interactive Graphics", Int. J.
Comp. and Info. Sciences, vol. 1, no. 4, 1972.

179

24. E.F. Codd, "A Relational Model of Data for Large Shared
Data Banks", Comms. ACM, vol. 13, no. 6, Jun 1970.

25. D. Weller and R. Williams, "Graphic and Relational
Database Support for Problem Solving", Comp. Graphics,
vol. 10, no. 2, pp. 183-189, Summer 1976.

26. R. Williams, "On The Application of Relational Data
Structures in Computer Graphics", in Proceedings of the
1974 IFIP Congress, pp. 722-726, North-Holland Publish­
ing.

27. J.B. Crampes, C.Y. Chrisment, and G. Zurfluh, "The BIG
Project", in ICOD 2, 1983.

28. D.L. Spooner, "Database Support for Interactive Com­
puter Graphics", SIGMOD Rec., vol. 14, no. 2, pp. 90-
99, June 1984.

29. D.W. Shipman, "The Functional Data Model and The Data
Language DAPLEX", ACM TODS, vol. 6, no. 1, pp. 140-173,
Mar 1981.

30. M. Hardwick and G. Sinha, "A Data Management System for
Graphical Objects", in Proc. Int. Conf. Data Engineer­
ing, pp. 447-455, Feb 1986.

31. L.G. Shapiro, J.D. Moriarty, P.G. Mulgaonkar, and R.M.
Haralick, "A Generalised Blob Model for 3-Dimensional
Object Representation", in Proceedings of the IEEE
Workshop on Picture Data Description and Management,
pp. 109-116, Aug 1980.

32. M.T. Garrett and J.D. Foley, "Graphics Programming
using a Database System with Dependency Declarations",
ACM Transactions on Graphics, vol. 1, no. 2, pp. 109-
128, 1982.

33. J.A. Orenstein, "Spatial Query Processing in an
Object-Oriented Database System", SIGMOD Record, vol.
15, no. 2, pp. 326-336, June 1986. Proc. SIGMOD '86 -
International Conf. on Management of Data

34. H. Ehrig, H-J. Kreowski, and H. Weber, "Algebraic
Specification Schemes for Database Systems", in Proc.
4th. VLDB Conf., pp. 427-440, Berlin, 1978.

35. P.C. Lockemann, H.C. Mayr, W.G. Weil, and W.H.
Wohlleber, "Data Abstractions for Database Systems",
ACM TODS, vol. 14, pp. 60-75, March 1979.

180

36. F.W. Tompa, "A Practical Example of the Specification
of Abstract
244, 1980.

Data Types", Acta. Inf. , vol. 13, pp. 205-

37. M.L. Brodie, "Axiomatic Definitions for Data Model
Semantics",
1982.

Inform. Sys.,, vol., 7, no 2, pp. 183-197,

38. F. Golshani, T.S.E. Maibaum, and M.R. Sadler, A Modal
System of Algebras for Database Specification and
Query/Update Language Support, pp. 331-339.

39. E.J. Neuhold and T. Olnhoff, "The Vienna Development
Method (VDM) and its Use for the Specification of a
Relational Database System", in Information Processing
80, ed. S.H. Lavington, pp. 3-16, IFIP/North Holland,
1980.

40. M.L. Brodie, "Research Issues in Database Specifica­
tion", ACM SIGMOD Record, vol. 13, no. 3, pp. 42-45,
1983.

41. A.L. Furtado and E.J. Neuhold, in Formal Techniques for
Database Design, Springer-Verlag, 1986.

42. T. Niemi, "Specification of a Query Language by the
Attribute Method", BIT, vol. 24, no. 2, pp. 171-186,
1984.

43. D. Stemple and T. Sheard, "Database Theory for Support­
ing Specification-Based Database System Development",
in Proc. 8th. Int. Conf. on Software Engineering, pp.
34-49, IEEE, 1985.

44. D. Stemple, T. Sheard, and R. Bunker, "Abstract Data
Types in Databases - Specification, Manipulation and
Access", in Proc. Int. Conf. Data Engineering, pp.
590-597, Feb 1986.

45. W.R. Mallgren, "Formal Specification of Graphic Data
Types", ACM Trans. Prog. Lang., vol. 4, no. 4, pp.
687-710, 1982.

46. G.S. Carson, "An Approach to the Formal Specification
of Computer Graphics Systems", Computers & Graphics,
vol. 8, no. 1, pp. 51-57, 1984.

47. D.A. Duce, E.V.C. Fielding, and L.S. Marshall, "Formal
Specification and Graphics Software", RAL-84-068, 1984.

48. K. Ayra, "A Functional Approach to Picture Manipula­
tion", Computer Graphics Forum, vol. 3, no. 1, pp. 35-

181

46, Mar 1984.
49. D.J. Abel and J.L. Smith, "A Relational GIS Database

Accommodating Independent Partitionings of the Region",
in Proc. 2nd. Int. Sympsium on Spatial Data Handling,
pp. 213-224, Int. Geographical Union, 1986.

50. G.T. Herman, "Surfaces of Objects in Discrete Three
Dimensional Space", in Computer Graphics Conf., 1980.

51. E. Wong and W.B. Samson, "The Specification of a Rela­
tional Database (PRECI) as an Abstract Data Type and
its Realisation in Hope", Computer Journal, vol. 29,
no. 3, pp. 261-268, 1986.

52. W.R. Mallgren, Formal Specification of Interactive
Graphics Programming Languages, MIT Press, 1983.

53. R.M. Burstall, D.B. MacQueen, and D.T. Sannella, "HOPE.
An Experimental Applicative Language", Proc. 1980 LISP
Conference, pp. 136-143, 1980.

54. S.M. Deen, D. Nikodem, and A. Vashishta, "The Design of
a Canonical Database System (PRECI)", Comp. J. , vol.
24, no. 3, Aug. 1981.

55. D. Sannella, "Formal Specification of ML Programs",
LFCS, 1987.

56. S.M. Deen, "DEAL : A Relational Language with Deduc­
tions, Functions and Recursion", Data and Knowledge
Engineering, vol. 1, 1985.

57. R. Sadeghi, A Database Query Language for Operations on
Historical Data, Dundee College of Technology, 1987.
Ph.D. Thesis

58. A.U. Frank, "Requirements for Database Systems Suitable
to Manage Large Spatial Databases", in Proc. Int. Symp.
on Spatial Data Handling, pp. 38-60, Geographisches
Institut, 1984.

59. K. Ho-Le, "Finite Element Mesh Generation Methods : A
Review and Classification", CAD, vol. 20, no. 1, pp.
27-37, Jan/Feb 1988.

60. L. Zhao and S.A. Roberts, "An Object Oriented Data
Model for Database Modelling, Implementation and
Access", Comp. J., vol. 31, no. 2, pp. 116-124, April
1988.

182

61. M.R. Blaha, W.J. Premerlani, and J.E. Rumbaugh, "Rela­
tional Database Design Using an Object-Oriented Metho­
dology", CACM, vol. 31, no. 4, pp. 414-427, April 1988.

62. R. Sadeghi and W.B. Samson, "HQL - A Historical Query
Language", in Proceedings of BNCOD-6, CUP, 1988.

63. R. Milner, "The Standard ML Core Language", Polymor­
phism, vol. 2, no. 2, pp. 1-28, Oct 1985.

64. L. Cardelli, ML Under UNIX, Bell Labs..
65. A. Wikstrom, "Functional Programming Using Standard

ML", in Functional Programming Using Standard ML, Pren­
tice Hall, 1987.

66. J. Guttag, "Notes on Type Abstraction", in Proceedings:
Specification of Reliable Software, 1979.

67. J.V. Guttag and J.J Horning, "The Algebraic Specifica­
tion of Abstract Data Types", Acta Informatica, no. 10,
pp. 27-52, 1978.

68. J.V Guttag, E. Horowitz, and D.R Musser, "Abstract Data
Types and Software Validation", Comms ACM, vol. 21, pp.
1048-1064, 1978.

69. J.V. Guttag, "Abstract Data Types and the development
of Data structures.", Comms. ACM, vol. 20, no. 6, pp.
396-404, June 1977.

70. J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B.
Wright, "Abstract Data Types as Initial Algebras and
Correctness of Data Representations", in ACM Conference
on Computer Graphics, pp. 89-93, May 1975.

71. D.A. Duce and E.V.C. Fielding, "Better Understanding
Through Formal Specification", RAL-84-128, Rutherford
Appleton Laboratory, Dec 1984.

72. J.A. Goguen, "Some Design Principles and Theory for
OBJ-O, A language to Express and Execute Algebraic
Specifications of Programs", in Proc. Int. Conf.
Mathematical Studies of Inf. Processing, pp. 425-473,
Springer-Verlag, 1978. LNCS 75

73. D.A. Duce and E.V.C. Fielding, "Formal Specification
A Comparison of Two Techniques", RAL-85-051, July 1985.

74. C.J. Date, An Introduction to Database Systems, Volume
II, Addison-Wesley, Reading, Mass., 1982.

183

75. C. J. Date, An Introduction to Database Systems, Volume
I, Fourth Edition, Addison-Wesley, Reading, Mass.,
1986.

76. C.J. Date, Relational Database: Selected Writings,
Addison-Wesley, 1986.

77. W.M. Newman and R.F. Sproull, Principles of Interactive
Computer Graphics, McGraw-Hill.

184

Published Papers

W.B. Samson and A.W. Wakelin, "The Representation of
Graphics in Databases", Database Technology Information
Update, vol. 1, no. 2, pp. 36-46, Pergamon Press, Dec
1987.
W.B. Samson, S.M. Deen, A.W. Wakelin, and R. Sadeghi,
"Formalising the Relational Algebra - Some Specifica­
tions, Observations, Problems and Suggestions.", in
Proc. of the Formal Methods Workshop, Middlesborough.,
July 1988.

The published paper cited below has been removed
from the e-thesis due to copyright restrictions:

Samson, W. and Wakelin, A. (n.d.) The
representation of graphics in databases. In:
Database Technology, pp.36-46.

formalrdb. out

FORMALISING THE RELATIONAL ALGEBRA - SOME SPECIFICATIONS,
OBSERVATIONS, PROBLEMS AND SUGGESTIONS.
W B Samson*, S M Deen**, A W Wakelin*, R Sadeghi*,

*Department of Mathematics and Computer Studies, Dundee Col­
lege of Technology, Bell Street, Dundee, Scotland.

**DAKE Centre, University of Keele, Keele, Staffordshire,
England.

ABSTRACT

A number of different specifications, with varying closeness
to actual implementations of the operators of the relational
algebra are proposed. The specifications of individual
operators are compared with their implementations in a real
query language and it is demonstrated that while a relative­
ly simple specification can encapsulate the fundamental
ideas involved in the operators, a much more complex specif­
ication is needed if the semantics of a real query language
is to be approached.

1. Introduction
A number of authors have used formal specification

techniques for various aspects of database query languages
[1,2,3,4,5,6,7,8,9,14,15,16,17]. Some of these look only at
a limited subset of operators while others have attempted to
specify an entire query language [2,5,6,7,8,9,14,15,16,17].

In the course of investigating the design of a database
query language for operations on complex objects the authors
have attempted to formally specify operators as the design
has progressed. There are two reasons for this:

(1) Formal specification is more likely to lead to a com­
plete, consistent and correct implementation than
informal specification.

(2) Equational specifications may be implemented more or
less directly in a functional language, leading to
rapid prototyping of the software.

The authors have found, however, that the specification
of the traditional relational algebra operators [10] is not
trivial and, however it is done, leads sooner or later to
problems of expression as a realistic syntax is approached.

In this paper two styles of specification are used -

(a) Quantified predicates are used to define the properties
of operators in a non-executable, but easily understood
way, and

(b) The algebraic, or equational style of specification is
used in order to provide executable specifications
which are provably correct in terms of (a).
This algebraic method is quite different from a first-

order logic specification, as it is expressed in a logic
programming language, such as Prolog. The differences are
summarised below:

(1) Algebraic semantics are used to specify abstract data
types (or sorts) and operators (or functions) involving
these data types in terms of a minimal set of operators
(constructors) which may be used to represent any
instance of the data type. In this way the operators
of relational algebra may be specified. Logic pro­
grams, on the other hand, allow specific queries to be
specified; the concept of an operator being more or
less foreign to the Prolog paradigm. Algebraic seman­
tics is, then, a meta-language in which query language
operators and, to a limited extent, constructs may be
defined. Prolog, on the other hand, may be viewed as a
particularly expressive query language.

(2) A relation, in algebraic semantics, is considered to be
a data type, while it is regarded as a set of predi­
cates in Prolog.

(3) A query formulated in algebraic terms is a function
call which will return a relation as a result. A Pro­
log query is a predicate, whose value is either true or
false - NB it does not return a relation.

(4) Algebraic semantics is many sorted - ie it is based on
a number of distinct data types. Prolog is not many
sorted; although there is no reason why a logic
programming language should not be many sorted. 5

(5) If-then-else is an essential part of algebraic seman­
tics. In Prolog its place is taken by pattern matching
and by appropriate conjunctions and disjunctions of
predicates.

2. Relations and Tuples
The data structure employed in the relational model is

the relation, which is considered to be a set of tuples (or
records). This is usually visualised as a table, whose rows
are the tuples and whose columns are known as the attributes
of the relation, eg

EMPLOYEE
! EMPNO! NAME ! AGE GRADE DEPT !

! El ! SMITH! 26 2 D1 !
! E2 ! JONES! 43 5 D3 !
! E3
i
i

! BROWN!
r i
i t

64 8 D1 !
f
f

i
etc.

i i i

NB Each row comprises an ordered n-tuple of values with
various sorts (data types).

3. The Set Operators
The traditional set operations of union, intersection,

difference and Cartesian product are defined for relations
as sets of tuples. Normally, however, union, intersection
and difference will only be applied to relations with the
same kinds of tuples, although extended operators such as
"outer union" etc have been proposed to overcome this prob­
lem.

The following symbols will be used in our specifica­
tions :

V - the universal quantifier
3 - the existential quantifier
G - set membership
A - logical AND
V - logical OR
- - logical NOT

Assuming that set membership, G , has been defined, we
may formally specify union, difference and Cartesian product
with the following predicates:

Union:
(V R1,R2:relation, t.’tuple)
t e R1 v t e R2 <-> t e Union(Rl,R2)

Difference:
(V R1,R2:relation, t:tuple)
t £ R1 A t C R2 <-> t e Difference(Rl,R2)

Product:
(V R1,R2:relation, t,s:tuple)
t e R1 A s £ R2 <-> (t,s) € Product(R1,R2)

Where (t,s) is the concatenation of the tuples t and s.
Intersection may, of course, be defined in terms of

Union and Difference.
The signature of each of the set operators is

relation X relation -> relation
and so each of the set operators involves only one sort
relation.

4. Other operators of relational algebra.
As well as the set operators defined above, there are

two other fundamental relational algebra operators, Select
(sometimes called Restrict) and Project which, although they
return relations as results, require also to operate on
objects of sort tuple. No author has, as far as we know,
yet produced a simple, clear specification for either of
these apparently straightforward operators. Maibaum [14]
has not considered Select, and has dealt with Project in a
slightly limited specification.

4.1. Select

The Select operator returns a subset of a relation con­
taining only those tuples which satisfy some condition. Such
a condition is itself an operator which takes a tuple as its
argument and returns a truth value (true or false) as its
result - ie its signature is:

tuple -> truval.

This means that the Select operator itself has two
arguments:

(i) a relation, and
(ii) a condition.

The signature of Select is therefore:
relation X (tuple -> truval) -> relation.

This has a number of serious implications:

(1) Select is a "higher-order" operator which takes an
operator as an argument.

(2) As a result, it is not possible to specify Select using
first-order predicates, as we did for the set operators
in section 3.
There are two ways of specifying select - the first is

written using only first-order predicates (by assuming that
the selection condition is predefined)- the second uses a
higher-order specification.

4.1.1.
We assume that Select is a family of operators, each of

which uses a different "global" condition which is prede­
fined.
For example, suppose that we have already defined a set of
conditions, Cl, C2, ...,Cnwith identical signatures:

Ck: tuple -> truval, k - l,..,n

A corresponding family of Select operators have signatures
Selectk: relation -> relation, k — l,..,n

We may then specify Selectk, say, as follows:

(V R:relation, t:tuple, k:l..n)
t e R A Ck(t) <-> t G Selectk(R).

This method, although precise, and easily handled in
terms of correctness proofs, does not mirror the actual
operation of Select in a query language, where the condition
is defined "on the fly".

eg in DEAL [11] or SQL we have
SELECT * FROM EMPLOYEE WHERE AGE >27.

4.1.2.
The other way in which the more general select operator

may be defined uses higher-order logic:
Select: relation X (tuple->truval) -> relation

(V R:relation, t:tuple, C:(tuple->truval))
t E R A C(t) <-> t E Select(R,C) .

4.2. Project
Projection is intended to return only a subset of the

columns of its argument relation. The required columns are
usually presented, in real query languages, as a list of
column names:

eg in SQL orDEAL
SELECT [NAME, DEPT] FROM EMPLOYEE

will return the two columns, NAME and DEPT from the EMPLOYEE
relation, as its result relation, with any duplicate rows in
the result eliminated in order to preserve the idea of a
relation as a set of tuples.

There are a number of ways in which it is possible to
express a specification of the Project operator:

4.2.1.

Like Select, it is possible to express Project as a
family of operators based on pre-defined mappings from one
kind of tuple into another which contains a subset of the
attributes of the first.

For example, suppose we have the pre-defined mappings

Mk: tuple -> tuple, k =■ l,..,n

and corresponding projections
Projectk: relation -> relation, k =■ l,..,n

We can specify Projectk as follows:
(V Rrrelation, t,s:tuple, k:l..n)
(t G R -> Mk(t) G Projectk(R)) A
(s G Projectk(R) -> (3 t G R) Mk(t) =• s)

As with Select, this definition does not mirror the
actual operation of Project in a real query language, where
the mapping (as a column subset) is defined "on the fly”.

Specifications using this simple logic are given in
Appendix 1, Specification 1(a) and, in executable form,
Appendix 2, Specification 2(a).

4.2.2.
Higher-order logic may again be used in the definition

of a more general Project:
Project: relation X (tuple -> tuple) -> relation
(V R:relation, t,s:tuple, M:(tuple -> tuple))
(t G R -> M(t) G Project(R,M)) A
(s G Project(R,M) -> (3 t G R) M(t) =■ s)

This is closer to a real query operator and is, in
fact, a generalisation of Project, allowing any mapping from
a tuple into a tuple. Such a generalisation allows us, for
example, to "Expand" [12] a relation to contain additional
columns which contain values which are functions of the
values of elements in the other columns.

Specifications for these operators are given in Appen­
dix 1, Specification 1(b), and Appendix 2, Specification
2(b).

Despite the advantage of generalisation, it would also
be useful to be able to define Project in terms of a rela­
tion and a list of attribute names to mirror the operation
of such languages as DEAL and SQL. Such an apparently sim­
ple change does, however, lead to complications throughout
the algebra, since tuples must now have names associated
with each of their attributes, and these must be taken into
account when naming the columns of result relations - which
is non-trivial when more than one relation is used to pro­
duce a result. For example, the choice of names for the
columns of a Union of two relations is tricky if it is
intended that Union should be truly commutative.

The problem of naming conventions has no standard,
universally recognised solution - although a number of prac­
tical solutions have been implemented. In order to avoid
being caught up in the naming convention controversy, it is
possible to sacrifice readability and ''name” the attributes
1, 2, 3,... according to the order in which they appear in
the tuples of a relation. Such a strategy avoids ambiguity
of names in a relation, as well as the case where there
might be a choice of name sets. It also avoids the need to
incorporate the names of argument relations in the attri­
butes of result relations, which can lead to very long names
indeed, after a few operations.

If this attribute numbering convention is adopted then
a function needs to be defined which will return the value
of any attribute for any degree of tuple:

value: tuple X num -> alpha
where alpha may be any type [13].
For a unary tuple,
value(a,n) — if n=l then a else undefined

For a binary tuple,
value((a,b) ,n) =■ if n=l then a

else if n=2 then b
else undefined

For a triple,
value((a,b,c),n) - if n-1 then a

else if n=2 then b
else if n=3 then c
else undefined

Such a function definition is potentially infinite and
so is not entirely satisfactory. It is, of course, heterog­
eneous ; returning one of a variety of types which appear in
the tuple. This feature makes it hard, if not impossible to
define generally, in a strongly typed system.

This type of formal specification is also close to
practical implementations of database systems and therefore
could be used to investigate the properties of data diction­
ary systems more closely.

b.3. Other operators
The other operators of relational algebra are, of

course, easily specified in terms of the five considered
above.

There are, however, certain operators which are now
generally expected to be in the repertoire of any relational
database - these include outer join, outer union and extend.
These are easily specified in much the same way as the
operators considered above - extend is, in fact, just a spe­
cial case of the higher-order project defined above. The
•'outer" operators each involve "null" values and it is
beyond the scope of this study to deal with these.

4.4. Tuples as Lists
Languages like LISP have traditionally treated tuples

as lists of values, rather than as the Cartesian product of
their component domains. In a strongly typed, many sorted
formalism, however, there is no analogue of the virtually
typeless lists of LISP. Instead, it is only possible to
define homogeneous lists of elements with the same sort, if
strong typing is to be maintained. The advantage of using
list representation for tuples is that a simple, finite
definition for the ith element of a list is possible. It is
possible to define a function which "coerces" any of the
sorts of value which might be expected to occur in a tuple
into a single sort to effectively allow elements of various
sorts.

The disadvantage of this representation for tuples is
that it now becomes necessary to check the consistency of
types of values and lengths of tuples held in a relation.

This strategy was adopted by Wong and Samson [9], It
leads to executable specifications but at a high cost in
terms of clarity.

A side-effect of this strategy is that the Cartesian
product involves concatenation of lists, rather than the
formation of ordered pairs of tuples.

Maibaum [14] deals with projection using a model which
is not unlike this one. He models a tuple as a set of
attributes and corresponding values. He avoids the problem
of naming conventions by insisting that attribute names in
the database are all distinct and that no two attributes
with different names are union-compatible.

An algebraic specification for an algebra based on
tuples modelled as lists is given in Appendix 3.

5. Conclusions
The formal specification of Codd's relational algebra

is not as straightforward as one might expect. Problems
arise because:

(1) Select and Project are most naturally expressed as
higher-order operators, making theorem proving diffi­
cult.

(2) The naming of attributes needed for a concrete syntax
substantially increases the complexity of the specifi­
cation - tending to bias the specifier towards a par­
ticular implementation by, for example, modelling
tuples as lists.
The various levels of abstraction might be viewed as

steps along a path from a truly abstract specification to
something approaching an implementation. Specifications at
three levels of abstraction are appended. Specifications
1(a) and 1(b) present predicates which show the important
features of the operators of relational algebra - 1(a) uses
many sorted first-order logic only - 1(b) uses higher-order
logic. Specifications 2(a) and 2(b) are executable equa-
tional specifications for 1(a) and 1(b) which are provably
correct. Specification 3 is an executable equational
specification which includes the concept of tuples as lists.

All of the executable equational specifications are
written in a dialect of HOPE, an experimental applicative
language [13].

APPENDIX 1

dec Union: relation X relation -> relation
(V Rl,R2:relation, t:tuple)

t G R1 V t 6 R2 <-> t G Union(Rl,R2)

dec Difference: relation X relation -> relation

(V Rl,R2:relation, t:tuple)
t G R1 A ^(t G R2) <-> t G Difference(Rl,R2)

dec Product: relation X relation -> relation
(V Rl,R2.’relation, t,s:tuple)

t 6 R1 A s G R2 <-> (t,s) G Product(R1 ,R2)

dec Ck: tuple -> truval, k =■ l,..,n
.'These may have any convenient specification!

dec Selectk: relation -> relation, k =» l,..,n

(V R:relation, t:tuple, k:l..n)
t G R A Ck(t) <-> t e Selectk(R) .

dec Mk: tuple -> tuple, k - 1,..,n
dec Projectk: relation -> relation, k - 1,..,n

Specification 1(a) - using many-sorted first-order logic

(V R:relation, t,s:tuple, k:l..n)
(t G R -> Mk(t) G Projectk(R)) A
(s G Projectk(R) -> (3 t G R) Mk(t) - s)

Specification 1(b) - using many-sorted higher-order logic
[- As for 1(a) except for Select and Project:]
dec Select: relation X (tuple -> truval) -> relation
(V R:relation, t:tuple, C:(tuple->truval))
t G R A C(t) <-> t G Select(R,C).

dec Project: relation X (tuple -> tuple) -> relation
(V R:relation, t,s:tuple, M:(tuple -> tuple))
(t G R -> M(t) G Project(R,M)) A
(s G Project(R,M) -> (3 t G R) M(t) - s)

APPENDIX 2
Specification 2(a) - an executable model of specification 1(a).
[- without higher-order functions.]

typevar tuple, tuplel, tuple2; ! Use polymorphism of Hope!

infix :: :6; ! constructor for relation!
data relation(tuple) — nil ++ tuple :: relation(tuple);
! membership of relation !
infix G :5;
dec g : tuple X relation(tuple) -> truval;
--a G nil <=■ false;
-- a G(b::r) <- if a-b then true else a G r;
!Insertion of tuple, avoiding duplicate tuples !
dec insert: tuple X relation(tuple) -> relation(tuple);

— insert(t,r) <= if t G r then r else t :: r;
dec Union: relation(tuple) X relation(tuple) -> relation(tuple);
— Union(nil,r) <- r;
— Union(t::rl, r2) <=■ insert(t, Union(rl, r2));
dec Difference: relation(tuple) X relation(tuple) ->
relation(tuple);
-- Difference(nil, r) <- nil;
— Difference(t::rl, r2) <- if t G r2 then Difference(rl, r2)
else t: .'Difference(rl, r2) ;

! Auxiliary operator needed for definition of Product !

dec tprod: tuplel X relation(tuple2) -> relation(tuplel X
tuple2);
-- tprod(t, nil) <- nil;
— tprod(a, b::r) <=■ insert((a,b), tprod(a, r));
dec Product: relation(tuplel) X relation(tuple2) ->
relation(tuplel X tuple2);
— Product(nil, r) O nil;
— Product(a::rl, r2) <- Union(tprod(a, r2), Product(rl, r2));
! Selection condition !
dec cond: tuple -> truval;

! Define as required !
dec Select: relation(tuple) -> relation(tuple);
--Select(nil) <=- nil;
— Select(t::r) <- if cond(t) then t::Select(r) else Select(r);
! tuple mapping for projection !

dec f: tuplel -> tuple2;
! define as required !
dec Project: relation(tuplel) -> relation(tuple2);

— Project (nil) <=■ nil;
— Project(t::r) <- insert(f(t), Project(r));

Specification 2(b) - using higher-order functions.

[as for Specification 2(a) except for Select and Project.]
! Higher-order select !
dec Select: relation(tuple) X (tuple->truval) -> relation(tuple)
-- Select(nil,c) <= nil;
— Select(t::r, c) <=■ if c(t) then t::Select(r, c) else
Select(r,c);
! Higher-order project !

V

dec Project: relation(tuplel) X (tuplel->tuple2) ->
relation(tuple2);
— Project (nil, f) <- nil;
— Project(t: :r, f) <=» insert(f(t), Project(r, f));

APPENDIX 3
Specification 3 - with tuples modelled as lists:

typevar alpha; ! Polymorphic type !
! A new sort to coerce existing sorts into a single sort !
data atom — al(num) ++ a2(char) ++ a3(list(char)) ++ a4(alpha);
! Any other sorts may be added to this definition !

data typecode =■ tnum ++ tchar ++ tlistchar ++ talpha;
! Operator to detect nature of coercion !
dec typeof: atom -> typecode;
— typeof(al(x)) <- tnum;
— typeof(a2(x)) <=» tchar;
— typeof(a3(x)) <- tlistchar;
— typeof(a4(x)) <=* talpha;
! Define a tuple to be a list of atoms !
type tuple = list(atom);
! Define the "type" of a tuple to be a list of typecode !
type tuptype — list(typecode);
! Define an operator to return "type" of a tuple !
dec type_of_tup: tuple -> tuptype;
-- type_of_tup(nil) <= nil;
— type_of_tup(a:: t) <=- typeof (a):: type_of_tup(t);
! Define relation as a tuptype along with a list of tuples !
type relation — tuptype X list(tuple);

! Membership of relation !
infix e :5;
dec e: tuple X relation -> truval;
— t e (tt,nil) <=* false;
— t E (tt,a::l) <- if t=a then true else t E (tt,l);
! Insertion of tuple into relation without duplication !

dec Insert: tuple X relation -> relation;
— insert(t,(tt,l)) <- if type_of_tup(t) - tt then if t G

if t e (tt,l) then (tt,l)
else (tt,t::l) else undefine;

! list membership !
dec elem:alpha X list(alpha) -> truval
— elem(a,nil) <- false;
— elem(a,b::c) <= if a=b then true else elem(a,c);

! Auxiliary operation for list concatenation with duplicate
elimination!
dec listunion: list(alpha) X list(alpha) -> list(alpha);
— listunion(nil,a) <=■ a;
— listunion(a::b,c) <- a::listunion(b,c) if not elem(a,c) els
listunion(b,c);

! Relational algebra Union !
dec Union: relation X relation -> relation;
— Union((ttl,bl),(tt2,b2)) <=* if ttl=*tt2 then (ttl,
listunion(bl,b2)) else undefine;
! Relational algebra difference !
dec Difference: relation X relation -> relation;
— Difference((ttl,nil),(tt2,1)) <=■ if ttl=tt2 then (ttl,nil)
else undefine;
— Difference((ttl,a::bl),(tt2,b2)) <=* if ttl=tt2 then if
elem(a,b2) then Difference((ttl,bl),(tt2,b2)) else
Insert(a,Difference((ttl,bl),(tt2,b2))) else undefine;
! Auxiliary operator !
dec tprod: tuple X relation -> relation;

— tprod(a,(tt,nil)) <=* (concat(ta,tt),nil) where ta =
typ e_o f_tup(a);
— tprod(a,(tt,b::c)) <= insert((a,b), tprod(a,(tt,c)));
! Cartesian product !

dec Product: relation X relation -> relation;

— Product((ttl,nil),(tt2,r)) O (concat(ttl,tt2),nil);
— Product((ttl,a::b),r) <-
Union(tprod(a,r),Product((ttl,b),r));

! Selection !
dec Select: relation X (tuple -> truval) -> relation;

— Select((tt,nil),f) <- nil;
— Select((tt,a::1),f) <=» if f(a) then
Insert(a,Select((tt,l),f))) else Select((tt,1),f);

! Auxiliary operator !

dec element: list(alpha) X num -> alpha;

-- element(nil,succ(n)) <- undefine;
--element(a::b,n) <- if n-1 then a else element(b, n-

! Auxiliary operator !

dec sublist: list(alpha) X list(num) -> list(alpha);
-- sublist(a,nil) <- nil;
-- sublist(a,n::t) <- element(a,n)::sublist(a,t);

! Relational algebra Projection !

dec Project: relation X list(num) -> relation;

— Project((tt,nil),lnum) <= (sublist(tt,lnum),nil);
-- Project((tt,a::b),lnum) <=* Insert(sublist(a,lnum),
Project((tt,b),lnum)));

REFERENCES
1. Brodie, M L & Schmidt, J (1978) "What is the use of Abstract
Data Types in Databases", Proc VLDB 1978, pp 140-141
2. Date C J (1982) "A Formal Definition of the Relational Model"
in "An Introduction to Database Systems" Vol 2, pp 187-196
3. Ehrig, H, Kreowski, H-J & Weber, H (1978) "Algebraic
Specification of Schemes for Data Base Systems", Internal
publication of Habn-Meitner-Institut, Berlin.
4. Gehani, N (1982) "Specifications: formal and informal - a case
study", Software Practice and Experience, Vol 12, pp 433-444

5. Golshani, F, Maibaum, T S, & Sadler, M R (1983) "A Model
System of Algebra for Database Specification and Query/Update
Language Support" Proc VLDB 1983.
6. Louis, G & Pirotte, A (1982) " A Denotational Definition of
the Semantics of DRC, a Domain Relational Calculus", Proc. VLDB
1982, pp 348-356
7. Maibaum, T S (1977) "Mathematical Semantics and a Model for
Data Bases", Information Processing 1977, pp 133-137, IFIP.
8. Pirotte, A. (1982), "A Precise Definition of Basic Relational
Notions and of the Relational Algebra", ACM Sigmod Record, 1982,
pp 30-35.
9. Wong, E Y & Samson W B (1986) "The Specification of a
Relational Database (PRECI) and its Realisation in HOPE", the
Computer Journal, vol 29, no 3, pp 261-268
10. Codd, E F (1970) "A Relational Model for Large Shared Data
Banks" CACM, vol 13, no 6, pp 377-387

11. Deen, S M (1985) "A Relational Language with Deductions,
Functions and Recursions", Data and Knowledge Engineering, Vol 1.

12. Chamberlin, D D, Astrahan, M M, Eswaran, K P, Griffiths, P P,
Lorie, R A, Mehel, J W, Reisner, P & Wade, B W (1976) "SEQUEL2: A
Unified Approach to Data Definition, Manipulation and Control",
IBM Jnl of Research and Development, Nov 1976, pp560-575.
13. Burstall, R M, Macqueen, D B, & Sannella, D T (1980) "Hope:
An Experimental Applicative Language", Univ. of Edinburgh, Dept,
of Computing Science Internal Report CSR-62-80.
14. Maibaum T S (1985) "Database Instances, Abstract Data Types
and Database Specification", Comp. J., vol 28, no 2, pp 154-161
15. Turner R & Lowden B G (1985) "An Introduction to the Formal
Specification of Relational Query Languages", Comp. J., vol 28,
no 2, pp 162-169

16. Stemple D. & Sheard T. (1985) "Database Theory for Supporting
Specification-Based Database System Development", Proc. (th Int.
Conf on Soft. Eng., pp 34-49

17. Furtado A L & Neuhold E J (1986) "Formal Techniques for
Database Design", Springer Verlag.
18. Ullman J (1982) Principles of Database Systems" , Pitman

	Blank Page

