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ABSTRACT

Determining the sequence of genes along a region of DNA 
from the results of experimental data is a difficult task 
called Map Assembly. A map indicates the order of the 
genes and other markers called restriction enzymes. It is 
a time consuming activity, carried out manually by the 
geneticist. The data from which maps are produced contain 
a high degree of error, due to experimental limitations, 
and several feasible solutions may be constructed from the 
same data. Distinguishing between competing solutions 
relies on the geneticist's subjective judgement. Although 
computer applications have been developed for map assembly 
they have been either restricted in the amount of data 
that could be handled or they addressed related problems.

This thesis has investigated and developed suitable com­
puter techniques for automating map assembly. A novel 
objective method for evaluating maps was devised that was 
based on the expert's heuristics. The method was success­
ful in identifying optimal maps. A new search technique 
based on a form of genetic algorithm(GA) was developed to 
generate potential maps from a set of experimental data. 
The objective system for evaluating maps was incorporated 
into the GA. Optimal gene maps could be generated automat­
ically, then merged together to produce a multi-gene map. 
In many cases, the sequence of genes and restriction 
enzymes was very close to the sequence as determined 
manually by the geneticist but could be produced in a 
fraction of the time.
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CHAPTER 1 - INTRODUCTION
1 Introduction

With the introduction and increasing capability of digital 
computers, the range and scale of problems that can be 
tackled by automatic means has increased dramatically. 
However, there are many problem solving activities which 
present challenges for automation for example; those which 
rely on judgement, reasoning or knowledge. Currently, 
humans are far better at solving these types of problem 
than computers. The field of Artificial Intelligence (AI) 
emerged to "study .. how to make computers do things which 
at the moment people do better"(Rich 1991).

A major problem solving exercise is underway in the field 
of genetics called the Human Genome Programme(HGP). It is 
an international research project scheduled to be complete 
in the year 2006 at an estimated cost of $3 billion. As a 
result of the HGP, vast amounts of data have been gener­
ated which present many challenges to researchers in the 
field of AI as reviewed by Hunter(1993) . One of these is 
determining the sequence of genes and other markers on the 
DNA from the results of experimental, error-prone data. 
The process is known as "map assembly". It is a difficult, 
time-consuming activity that is carried out manually by 
the geneticist and relies exclusively on their judgement. 
Previous computer applications developed were either 
restricted in the amount of data that could be handled or 
addressed related problems.

The aim of this thesis was to develop computer techniques 
for tackling highly constrained, combinatorial optimisa­
tion problems and to evaluate the techniques in the con­



text of the map assembly problem.

2 Map assembly

Geneticists are attempting to determine the sequence of 
the 100,000 or so genes along the human DNA. To work out 
the order of genes, many copies of DNA are broken up into 
fragments using substances called restriction enzymes(REs) 
that cleave the DNA at specific points. By using various 
restriction enzymes, separately and together, a number of 
DNA fragments are obtained. The fragments containing the 
genes of interest are highlighted and their lengths are 
calculated. An example of the experimental data (taken 
from Sefton et al(1990)) obtained for three genes (namely 
PIL, PI and AACT) is shown in table 1.1. The sequence of 
the genes and RE cut sites is determined by assembling the 
fragments together and is referred to as a "map". (A "map" 
can either be a "multi-gene map" which indicates the 
sequence of more than one gene and restriction enzyme cut 
sites or a "single gene map" which indicates the sequence 
of cut sites around one gene.) The map assembled by the 
geneticist using the data in table 1.1 is shown in figure
1.1. The process of assembling the map in figure 1.1 from 
the experimental data in table 1.1 is illustrated in 
figure 1.2. (A glossary of biological terms is contained 
in Appendix I.)

Map assembly is difficult because of the errors present in 
the number and lengths of the fragments due to experimen­
tal limitations. Sometimes the REs do not always cut when 
they should. This can produce several fragments of differ­
ent lengths that overlap one another.



Figure 1.1 - The map published by Sefton et al(1990) showing the sequence of the three 
genes PIL,PI, AACT and the restriction enzyme cut sites. The numbers underneath the map 
indicate the distance between the cut sites. Four restriction enzymes were used, B,M,S and F. 
Cut sites in upper case indicate sites that always cut the DNA. Cut sites in lower case indicate 
sites that only cut some of the time. The map was assembled from the experimental data 
shown in Table 1.1 below and an example of this process is illustrated in Figure 1.2.

B M S F

PIL PI AACT PIL PI AACT PIL PI AACT PIL PI AACT

250 250 355 

225 225 275  

(65) 230

350 350 350 

260 260 80 

(180)

255 255 70 165 (190) (195  

(10) (135) (175; 

80 135 

65 

10

B/M B/S B /F M/S

PIL PI AACT PIL PI AACT PIL PI AACT PIL PI AACT

250 250 230  

225 225 105 

130 130 

(65)

125 125 70 

(65)

165 (190) 135 

(10) 50 105 

10

255 255 70  

(180) 30

M /F S/F

PIL PI AACT PIL PI AACT

85 80 135 

(10) 65 85 

10

70 (130) 3C 

(10) 80 

65 

10

Table 1 . 1 -  The experimental data for the PIL,PI,AACT genes. Four restriction enzymes 
were used B,M,S and F and were applied on their own and in combinations. Each number in 
the table represents a fragment of DNA that contains the gene shown. Fragments in brackets 
indicate suspect fragments. Assembled together by the geneticist, these fragments produced 
the map shown in Figure 1.1. An example of the map assembly process is illustrated in Figure
1.2.
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MAP for PI gene
Ff

Experimental data 
(Observed data)

f  F

Expected data

pi = #

F10

Figure 1.2 - An example of the map assembly process.

The fragments observed containing the PI gene using restriction enzyme F are shown on the 
right hand side of the figure (taken from Table 1.1). Note that fragments surrounded by 
brackets indicate "weak" fragments (ie suspect fragments) and are not used to assemble the 
map initially. A section of map has been extracted from Figure 1.1 illustrating the number and 
sequence of the F cut sites around the PI gene. The fragments expected (or derived) from the 
map are drawn.

The sample of total DNA used for the experiment would contain the DNA from many cells 
and as a consequence, there would be many fragments of DNA containing the PI gene. On 
some of the DNA fragments the restriction enzyme F has not always cut at the F cut sites. 
Such cut sites are referred to as "partial cut sites" (as explained in Chapter 2, section 2.2.1 
and illustrated in Chapter 2, figure 2.4). Restriction enzyme F has two partial cut sites shown 
in lower case in figure 1.2. When the site is not cut, longer fragment lengths are obtained. For 
example, if the cut site on the right hand side of fragment length 10 had not cut, a longer 
fragment (F f  60) or (F F 75) would result. The fragment would be length 60 if the right 
hand cut site had cut. If the right hand cut site had not cut, the fragment would be length 75. 
As the sample of total DNA contains many fragments with the PI gene, all the different 
fragment lengths (10,60,75) would be generated and would all overlap one another in the 
region of the gene. Note that there would be other DNA fragments generated from the F cut 
sites shown in figure 1.2 namely fragments (f  f  50) and (f F I 5). However, the experimental 
technique only highlights the fragments that contain the gene so these fragments would not be 
detected.

When assembling a map, the geneticist makes various judgements regarding fragment lengths 
as the number of observed fragments and their lengths tend to be inexact due to limitations of 
the experimental process. Observed fragment lengths are shortened or lengthened if necessary 
to make them fit into a map. In this example, the smallest fragment observed containing the 
PI gene (F f  10) fits exactly into the map and is the fragment that would be expected. 
However, the observed fragments (F f  65) and (F F 80) would be expected to be length 60 
and length 75 respectively from the map.

A



As a consequence, there are many ways that the fragments 
can be assembled which can produce many different se­
quences of genes and cut sites. Out of these, several 
sequences of genes and cut sites may be feasible. To 
discriminate between competing maps relies on the geneti­
cist's subjective judgement. Kearney et al(1987), Cox et 
al(1987), Sefton et al(1990) and Billingsley et al(1993) 
have all published different maps for the PIL,PI,AACT 
genes and RE cut sites. Although all the genes and RE cut 
sites have an exact position and order on the chromosomes, 
it is not likely that this definitive sequence can be 
established due to the inaccuracies in the experimental 
data.

3 Strategy for automating map assembly

The strategy developed in this thesis for automating map 
assembly is based on an approach often used by the geneti­
cist. It was proposed that the overall problem of generat­
ing and evaluating multi-gene maps would be broken down 
into the simpler, yet still complex, problem of generating 
single gene maps. A single gene map shows the number, 
sequence and position of RE cut sites around one gene. 
Optimal single gene maps would be aligned with one another 
at a suitable position and would be merged to produce the 
complete multi-gene map. The multi-gene map shows the 
number, sequence and position of all the RE cut sites and 
the genes.

An objective mechanism for assessing maps was essential to 
allow existing maps to be validated and to enable an 
objective assessment to be made of potential new maps.

To generate potential single gene maps from a set of



experimental data, some type of search strategy was re­
quired. Systematic search techniques that exhaustively 
tried all possibilities to arrive at the optimal solution 
were discounted due to the unacceptable length of time 
that such processes would take. Heuristic search tech­
niques that overcome the problem of combinatorial explo­
sion were considered. Although not guaranteed to find the 
optimal solution, they generally can arrive at very good 
ones in an acceptable length of time. One of the modern 
heuristic methods suitable for combinatorial problems (as 
reviewed by Reeves(1993a) is the Genetic Algorithm(GA). 
GAs (Holland(1975)) are heuristic search procedures that 
are based on the mechanics and analogy of natural selec­
tion. They have been shown to be effective for many diffi­
cult problems where there are a large number of possible 
solutions. It has been proved that a GA carries out the 
trade-off between adequately exploring different possibil­
ities and exploiting the best ones found so far, in a near 
optimal way (Holland (1973), (1975)). The traditional GA
was developed as a "weak" method (a general method that 
can be applied to a wide variety of problem domains re­
quiring little or no problem specific knowledge), but has 
not been effective for sequencing problems as illegal 
potential solutions could be generated. Various research­
ers have investigated hybridising the traditional GA with 
problem specific features for sequencing problems and 
their results have been encouraging. It was proposed that 
a hybridised form of GA be developed to generate single 
gene maps.

Having generated optimal single gene maps, some method for 
aligning and merging the maps together was necessary to



produce a multi-gene map.
4 Summary

Determining the sequence of genes and other markers along 
the DNA, known as map assembly, is a time-consuming, 
complex, ordering problem that relies on the geneticist's 
assessment of error-prone data. Many solutions may be 
feasible and there is no objective method of assessing 
maps. The strategy for automating the problem required 
some objective means of evaluating maps; some means of 
generating potential single gene maps from a set of data 
using a modified form of genetic algorithm; and a method 
for merging single gene maps together to produce multi­
gene maps.

The overall aims of the project were; to investigate 
suitable computing techniques for automating highly con­
strained, combinatorial optimisation problems and to 
evaluate these techniques using the map assembly problem.

5 Thesis outline

Map assembly is introduced in chapter 2. The reasons why 
the process is difficult are examined. The complexity of 
the problem is analysed in terms of the number of maps 
possible for a given set of data. Previous computer appli­
cations are reviewed. Search techniques and in particular 
GAs are introduced in chapter 3. The overall strategy 
proposed to automate map assembly is presented. Developing 
an objective system for assessing maps is described in 
chapter 4. The results of applying the system are given in 
chapter 5. Developing a modified form of GA is discussed 
in chapter 6 and the results of using the modified GA to



generate gene maps are shown in chapter 7. The results of 
merging individual gene maps to produce multi-gene maps 
are presented in chapter 8. A general discussion of the 
results is provided in chapter 9, the summary is in chap­
ter 10 and conclusions are drawn in chapter 11.



CHAPTER 2 THE MAP BUILDING PROBLEM

1 Introduction

A map shows the order and position of genes and restric­
tion enzyme(RE) cut sites and their distances from one 
another. Maps are assembled from experimental data. The 
quality of the data depends on the type of DNA available. 
If the particular region of DNA of interest has been 
reproduced in the laboratory ("cloned") the experimental 
data obtained is highly accurate. When cloned DNA is not 
available, the total DNA of a cell must be used and addi­
tional experimental processes are necessary that compli­
cate the process and introduce errors. The experimental 
techniques used and the limitations of the process are 
described. The number of maps possible from a set of data 
is considered and a formula for calculating the minimum 
number devised. Previous attempts of applying computing 
techniques to the problem are reviewed. A glossary of 
biological terms is contained in Appendix I.

2 DNA Mapping Techniques

Each of the 100,000 or so genes has a specific position on 
one of the 23 pairs of chromosomes in the human DNA. DNA 
is a composite structure, partly consisting of a series of 
four bases, namely Adenine, Guanine, Cytosine and Thymine 
as shown in figure 2.1. Each gene consists of a specific 
sequence of thousands of bases. As of August 1990, the 
positions of almost 5000 genes on the chromosomes had been 
established. There are various techniques which can be 
used to map genes on chromosomes - the choice of technique 
being influenced by the type of DNA available, either



cloned DNA or total DNA. The experimental techniques of 
using restriction enzymes and Gel Electrophoresis are 
employed for both types of DNA. The additional techniques 
of using radioactively labelled probes and Southern Blot­
ting are necessary for total DNA.

2.1 Restriction Enzymes

Restriction enzymes (REs) are substances that cleave the 
DNA when they recognise a specific sequence of bases. This 
produces different lengths of DNA fragments. There is a 
wide range of REs - each recognises a particular sequence 
of bases. When a piece of cloned DNA is cut by a RE, the 
lengths of the fragments that result always add up to 
equal the original length of DNA. For example, if a piece 
of DNA of 5000 kilobase pairs(kb) was mixed with a RE 
which recognised the base sequence, say, HATCCM, the 
strand shown in figure 2.2 would be cut into four frag­
ments. Each fragment would consist of a different number 
of bases and would therefore have a different weight. The 
fragments could be separated in terms of weight by a 
technique called Gel Electrophoresis. If the fragments 
were put on a column of gel and an electric current ap­
plied, the fragments would move down the gel at a speed 
inversely proportional to their weight. The fragments 
would be visible as dark bands. Comparing the position of 
the bands with a calibrated column of gel (obtained by 
using standard fragments of known size), it would be 
possible to determine the weight and therefore the number 
of bases in each fragment as shown in figure 2.3. Using 
single REs to cut DNA is known as single digestion. Single 
digest fragments have been cut at each end by that RE.
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Figure 2.2 - Cleavage ofDNA strand by two restriction enzymes.

When restriction enzyme A is used to digest DNA 5000kb, there are three A TCC sites 
that it recognises and cuts the DNA at those points, producing four single digest 
fragments. When restriction enzyme B is used to digest DNA 5000kb, there are two 
CTGC sites that it recognises and cuts the DNA at those points, producing three single 
digest fragments. If both restriction enzymes are applied together, six double digest 
fragments are produced. The lengths of the fragments are determined from gel 
electrophoresis. Note that the number of restriction enzyme cut sites depends on the 
number of fragments obtained and the sequence of cut sites must be deduced from the 
single and double digest results.
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Figure 2.3 - Gel columns used in electrophoresis.

In the first column a sample of DNA of 5000kb was mixed with restriction enzyme A and 
the fragments were separated using gel electrophoresis. Four bands were visible on the 
gel, indicating the presence of four fragments. The fragment lengths were calculated from 
the calibrated control. Note that the fragments lengths add up to equal the initial length of 
DNA at 5000kb.
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Single digests show how many occurrences there are of a 
particular base sequence, or "recognition site", on the 
DNA. However, it is difficult to determine the sequence of 
genes on the basis of the single digest results alone.

Using two REs to cut DNA is known as double digestion. 
Double digest fragments have been cut at each end by one 
or other of the REs. Double digest information is crucial 
to allow the ordering of fragments to be deduced. The key 
to assembling a map is to identify the common fragments. 
For example, in the map shown in figure 2.2, the double 
digest fragment of length 200 is common to the A single 
digest of length 2100 and the B single digest of length 
1200. By using a number of different REs, a map can be 
assembled for a piece of cloned DNA.

2.2 Constraints using total DNA

When cloned DNA is available, the experimental method is 
straightforward and the sequence of the genes and RE cut 
sites can be deduced from the single and double digest 
data. However, only a very small proportion of the total 
human DNA has been cloned. In the absence of cloned DNA, 
all the DNA in a cell, the total DNA, must be used. Maps 
can not be assembled in the same way for total DNA as for 
cloned DNA for two main reasons. Firstly, REs do not 
always cut at their recognition sites when total DNA is 
used which leads to the occurrence of overlapping frag­
ments called partial digests. Secondly, the vast amount of 
DNA present in total DNA can not be manipulated as easily 
as the small section of cloned DNA and the extra experi­
mental processes of Southern Blotting and radioactively 
labelled probes are required.

a. 3



2.2.1 Partial digests

All the bases in cloned DNA are in a particular state - 
unmethylated. When REs are used, they always cut cloned 
DNA at their recognition sites. The "nature" of recogni­
tion sites that are always cut are said to be "complete". 
In total DNA, some bases are unmethylated but others are 
in the opposite state - methylated. Methylation blocks the 
ability of a RE to cut at recognition sites and longer 
fragments are obtained. This phenomenon is known as par­
tial digestion and the "nature" of recognition sites that 
are not always cut are said to be "partial". All fragments 
obtained containing a particular gen e must overlap each 
other in the region of the gene. As there is usually more 
than one sequence of RE cut sites that can produce the 
same number of fragments, determining the correct number 
and sequence of cut sites is problematic as illustrated in 
figure 2.4.

2.2.2 Southern Blotting and Gene Probes

The sizes of fragments obtained using total DNA cannot be 
determined using Gel Electrophoresis alone. Due to the 
sheer quantity of DNA on the gels it is impossible to 
identify individual fragments. To isolate the fragments 
containing the genes of interest, a technique called 
Southern Blotting (Southern(1975)) is used in conjunction 
with radioactively labelled gene probes. Southern blotting 
is the process of transferring the DNA fragments from the 
gel to another medium, a nitrocellulose filter, to allow 
the fragments containing the genes to be identified.
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Figure 2.4 - The number and sequence of cut sites required to produce 1, 2, 3 and 4 
fragments containing the same gene (shown as a circle).

"Complete" cut sites (sites that always cut), are indicated in upper case. "Partial" cut sites 
(sites that sometimes cut), are indicated in lower case. The presence of partial cut sites 
results in different lengths of fragments containing the same gene. All fragments containing 
the same gene must overlap in the region of the gene. The presence of a complete cut site 
prohibits the generation of any longer fragments. Note that four fragments can be 
produced from either five or four cut sites and that the sequence of cut sites around the 
gene are in a different order.
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Agents called probes can be manufactured that will bind to 
particular genes. These are radioactively labelled and 
when introduced on the nitrocellulose filter bind to the 
specific gene. A technique called "autoradiography" is 
used which detects the radioactivity emitted from the gene 
probe and enables the lengths of the fragments on which 
the probe resides to be determined. If there are no par­
tial digests, the probe binds to fragments of the same 
length containing the gene. When there are partial di­
gests, the probe binds to fragments of different lengths 
that contain the gene. In order to relate the position of 
fragments and genes with one another, additional probes 
are introduced onto the filter for each gene.

2.2.3 Limitations of the experimental process

There are several aspects of the experimental process 
which contribute to poor data.

Different REs operate best under different experimental 
conditions. For single digest experiments the ideal condi­
tions can be created; however for double digest experi­
ments a compromise must be reached. As a consequence, the 
double digest results are not generally as accurate. It is 
possible to lose small fragments (approximately < 50kb), 
particularly double digests, as they can run off the end 
of the gel columns. This is why the number of double 
digest fragments observed experimentally tends to be less 
than the number of double digest fragments expected from a 
map.

The gel columns represent the visual information from 
which the geneticist subjectively determines the number



and lengths of fragments present. Sometimes, the gel 
columns become crooked due to the effect of variations in 
density in the gel. In addition, the shape of the fragment 
bands in the gel columns can vary considerably. Instead of 
being straight, the bands can be circular or triangular. 
When bands are very faint they are referred to as "weak" 
fragments. Although these may be proper fragments, they 
may be due to smudging on the gel so tend not to be used 
to assemble a map. A "good" map is one in which the weak 
fragments fit well. Errors in the lengths of fragments can 
also be contributed by the phenomenon of "DNA loading". 
Although the same amount of DNA may be used, in some 
cases, the DNA may be more tightly packed than others 
which affects the speed at which it moves down the gel.

The lengths of fragments are determined from the size 
markers used for the calibrated control. There is a lack 
of size markers available for fragment lengths exceeding 
lOOOkb and as a result, there is more error associated 
with determining the lengths of longer fragments.

As a conseguence of the poor quality data and due to the 
overlapping nature of the fragments, many feasible map 
solutions may be generated from the same data. Kearney et 
al(1987), Cox et al(1987), Sefton et al(1990) and Bill­
ingsley et al(1993) have all published different maps for 
the PIL,PI,AACT genes and RE cut sites. There has been no 
objective means of discriminating between maps.

3 Problem search space

Solving a problem can be viewed as a search through the 
space of possible alternatives to find the "best" solu­
tion. The "search space" for the^map assembly problem is



all the possible maps that can be generated from a set of 
data. The starting state is the observed experimental data 
which consists of single and double digest fragment 
lengths for several genes and various REs as shown in 
chapter 1, table 1.1. Taking the data, the geneticist 
assembles the fragment lengths to produce a map that is 
considered to represent the best fit of the data. In doing 
so, various decisions and judgements are made regarding 
the error present in the fragment lengths; the choice of 
RE cutting in the double digests; and the nature of the 
cut sites. The goal state is a map which indicates the 
position and sequence of the genes and RE cut sites. An 
example of a map generated from the data shown in chapter 
1, table 1.1 was shown in chapter 1, figure 1.1.

3.1 Calculating the number of possible maps

The number of possible maps that can be generated from a 
set of data depends on the number of genes and REs used 
and the number of fragments obtained. A general procedure 
has been devised to calculate the minimum number of maps 
possible from the data for a single gene and this is 
described in table 2.1. It is shown in table 2.2 that for 
a simplified, restricted problem instance, the number of 
maps possible for a single gene is an exponential function 
of the input. The number of maps possible for several 
genes would be much greater.

3.2 Calculation of search space for test data sets

Three sets of experimental data were used in the project 
(shown in Appendix A): the PIL/PI/AACT data; the "perfect" 
PIL/PI/AACT data; and the AT/ACE data.



1. Calculate the num ber and sequence of cut sites for each R E .

Calculate the number and sequence o f cut sites required to produce 
the single digest fragments for each restriction enzyme. The number 
of fragments (n) is a result o f the number and sequence of cut sites (as 
illustrated in figure 2.4) and can be calculated from the rules listed below.

i) (n) fragments can always be obtained from (n +  1) cut sites.

ii) If (n) is prime, (u) fragments can only be obtained 
from (n +  1) cut sites.

iii) If (n) is divisible by p, (n) fragments can be obtained from 
(p +  n/p) cut sites.

[The position of the cut sites in cases i) and ii) are always of the form 
( A * _ A ) o r ( A _ * A )  and for iii) is ( A _  * _  A ), where * represents 
the gene, _  represents any number of partial cut sites. ]

2 . Determine the map options from combining the cut sites.

The sequence of cut sites for the individual R Es must be combined together 
to produce the sequence of cut sites around one gene. It is possible that cut 
sites can be arranged around the gene in more than one way - each alternative 
is referred to as a map option. The number of map options must be calculated.

Eg. If R E A produced two fragments for a gene, and RE B  produced three 
fragments for a gene, there would be four map options possible -

A a * A + B  * b b B =  A a B * A b b B  (option 1)
A * a A + B  * b b B =  A B * a A b b B  (option2)
A a * A + B  b b * B =  A a B b b * A B  (option3)
A * a A + B  b b * B =  A B b b * a A B  (option4)

The two A single digests and three B  single digests could be produced by 
any of these map options. (Note partial cut sites are always s h o w  in lowercase.)

3. Determine the num ber of permutations per map option.

For each map option, calculate the number o f pemiutations per option. The only 
restraint was that a complete cut site could not be located nearer to the gene than 
any of its partial cut sites (eg if RE A produced two fragments, (a A  * A) would 
be illegal.)

The number of permutations per option could be calculated using the formula:

(m  +  n ) !  ( p +  q ) ! where m =  number of cut sites of RE A on LHS of gene
-------------  x  n =  number of cut sites of RE B  on LHS of gene

m ! n !  p ! q ! p =  number of cut sites of RE A o n  RHS of gene
q =  number of cut sites of RE B  on RHS of gene

4. Determine the total num ber of maps possible.

Add up the number of permutations for each map option.

In addition, the total number of permutations must be multiplied to allow each of the outer 
cut sites of each R E to be partial. (In theory, all outermost cut sites ought to be complete, 
however in practice, they may be partial.)

Table 2 . 1 -  General procedure for calculating the minimum number of maps possible 
for a single gene.
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* Consider the case of: 1 gene
2 restriction enzymes, A and B 
having (q) and (s) single digest fragments 
produced by (q + 1) and (s + 1) cut sites respectively 
the sequence of cut sites being of the form (A * _ A) 
where represents any number of partial cut sites 
" * " represents the gene

* Combining the sequence of cut sites for A and B, there would be 4 map options
possible -

A B * a _ A b _ B  
A_a B _b * A B 

A _ a B * A b _ B  
B b A * B a A

* Using the formula in table 2.1, part 3, the total number of permutations for
all 4 map options is -

_ ( ( 1  +  1 ) !  ( q  +  s ) !  ) _ ( ( q  +  s ) !  ( q  +  s ) ! )? v ------  Y  ------  +  2 v ------  x ------
( 1 ! 1 ! q ! s ! ) ( q ! s ! q ! s ! )

* If Stirling's Approximation to n! is used to see what happens as (q) and (s)
increase, the number of maps possible turns out to be an exponential 
function of the input.

1/2 n + 1/2 -n
( Stirling's Approximation to n! n ! ~ (2“TT) n e
details of which can be found in general statistical text books such as 
Fraser(1976).)

Table 2.2 - Number of maps possible for a single gene.

PIL PI AACT TOTAL
21

4,055,040 57,507,840 8,847,360 2.06 X  10

PERFECT PIL PERFECT PI PERFECT AACT TOTAL
22

4,055,040 117,411,840 140,820,480 6.70 X  10

AT ACE TOTAL
12 19

1 . 1 2 X  10 13,889,160 1.55 X  10

Table 2.3 - Number of single gene maps possible and total number of multi-gene maps.
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The main data set used was the PIL/PI/AACT data from 
Sefton et al(1990) (also shown in chapter 1, table 1.1). 
Given the map for PIL/PI/AACT the "perfect" data was 
calculated. The data was perfect in that all the fragment 
lengths and the number of fragments expected were exact. 
The third data set was the ACE/AT data set from Sefton et 
al(1990). The number of possible maps for each of the 
single genes in each of the data sets was calculated using 
the procedure described in table 2.1 and the results are 
shown in table 2.3.

3.3 Problem characteristics

Map assembly is an example of a combinatorial, sequencing 
problem that requires the optimisation of fragment lengths 
to produce a best fit map that indicates the sequence of 
genes and the number and sequence of restriction enzyme 
cut sites. The number of maps possible for a data set was 
found to be at minimum an exponential function of the 
input. 4

4 Previous applications of computing techniques to map 
assembly

A review of the literature showed there were several 
programs which employed different approaches to solve the 
simpler problem of assembling maps for cloned DNA. There 
was only one application which attacked the same problem 
as this thesis, that of assembling maps using total DNA. 
Although using cloned DNA greatly simplified the problem, 
it was considered relevant to review the applications for 
cloned DNA to see if there were any useful pointers for 
the total DNA problem.



4.1 Applications using cloned DNA

Stefik(1978), Pearson(1982) and Hoffman(1991) have de­
veloped programs to generate DNA maps from the results of 
experiments using REs on cloned DNA.

Stefik(1978) used an exhaustive model-driven problem-solv­
ing approach. He generated all possible solutions using 
the experimental data, then evaluated them. It arrived at 
the correct solution in a few seconds.

Using an exhaustive search strategy with the total DNA 
problem would not be feasible due to the time required to 
generate all possible maps. Stefik's evaluation mechanism 
relied on all the data fitting accurately in the map. Such 
a mechanism would not be appropriate for the total DNA 
problem due to the error in the number and lengths of 
fragments.

Pearson(1982) developed an algorithm that generated all 
possible permutations for the single digest fragments and 
aligned them until the overlap agreed with the double 
digest data. To evaluate potential solutions, the expected 
double digest data was calculated and compared with the 
observed double digest data. A sum of squares was calcu­
lated and the potential map with the lowest sum of squares 
was considered to be correct. The program was not practi­
cal when a digest had more than seven or eight fragments 
due to the factorial explosion in the search.

Such a method would not be feasible for the total DNA 
problem due to the extremely large number of possible 
permutations of the single digest fragments.

Hoffman(1991) developed a support tool called COMAP to



assist the user with the construction of DNA maps from 
digest data using cloned DNA. It was not so much suited to 
constructing a map from scratch, but to the fine tuning of 
previously assembled maps or to adding in new enzymes to 
already optimised maps. It provided an interactive, graph­
ical display which showed the observed data and the data 
expected from a proposed map. Existing maps were evaluated 
by considering what would be expected from a proposed map 
compared to what was observed. A measure of map quality 
was produced by calculating a penalty function for the map 
where every difference between observed fragments and 
expected fragments was penalised.

The method COMAP used for evaluating maps was sufficient 
for cloned DNA as there was a one to one correspondance 
between the fragments expected and the fragments observed. 
There is not the same relationship between expected and 
observed data when total DNA is used. Sometimes fragments 
which would be expected from a map are not observed and 
more critically, fragments that have been observed are not 
expected from the map. However, it was proposed that the 
same principle that Hoffman used be applied to generate 
some system for scoring maps based on differences between 
the observed and expected data.

4.2 Applications using total DNA

Shifman et al(1992) and Wright et al(1992) developed a 
tool to allow the interactive construction, merging and 
storage of maps from the results of experimental data 
using total DNA. The program acted as a support tool that 
provided the geneticist with facilities to store the data; 
to create and display possible maps on a screen; and to



store assembled maps. The tool could automatically gener­
ate possible maps using four REs and twenty double digest 
combinations. Maps were ranked according to the goodness 
of fit of the expected and observed data.

The tool tackles the same problem as this thesis; however 
it is limited in that it could only process up to four REs 
and their double digest combinations. (It is not clear how 
many genes the tool could handle at once). The method used 
to build up a map relied on exhaustive search. It was 
proposed that the techniques developed in this thesis 
would use some form of heuristic technique and therefore 
would not be limited in the same way.

Cinkosky and Fickett(1992) and Fickett and Cinkosky (1992)
(1993) as part of the Human Genome Information Resource at 
Los Alamos have developed a System for Integrated Genome 
Map Assembly(SIGMA) to enable the building, evaluating, 
viewing and submitting of genome maps. It was an object- 
oriented, X-windows based graphical map assembly tool. 
Data from many types of map at different levels, from the 
physical map down to the base sequence map, could be 
entered. The tool provided the ability to integrate map 
data and to view map information at different levels. They 
use a genetic algorithm (GA) to assembly "contig" maps.

"Contig" maps are different types of maps from the re­
striction maps being considered here. The same approach of 
using a form of GA was independently proposed to be an 
appropriate mechanism for assembling restriction maps by 
this thesis.



5 Summary

Geneticists are attempting to determine the sequence of 
the 100,000 or so genes in the human genome. The experi­
mental techniques used to manipulate DNA to obtain data 
for constructing maps are described. REs are used in 
various combinations to cleave the DNA. The lengths of the 
fragments are determined by electrophoresis for cloned 
DNA. When only total DNA is available, the use of Southern 
Blotting and radioactively labelled probes are employed. 
Due to limitations of the experimental processes, the 
fragment lengths are inaccurate. The number of maps possi­
ble for a data set was shown to be very large. Map assem­
bly was considered to be a combinatorial sequencing prob­
lem that required the optimisation of fragment lengths to 
produce a best fit map. Previous attempts to apply comput­
ing techniques to map assembly were reviewed. Most relied 
on the use of cloned DNA. An existing computer application 
which tackled the same problem was restricted to handling 
a small number of REs, possibly because an 
search strategy was utilised for map assembly.

exhaustive



CHAPTER 3 SEARCH STRATEGIES
1 Introduction

This chapter considers search strategies in general and 
introduces a form of heuristic search strategy based on 
the processes of evolution - a genetic algorithm (GA). GAs 
and how they work are described. The idea of a non-stand­
ard, or hybrid GA is introduced. An overall strategy for 
tackling the problem based on a GA is proposed.

2 Search strategies

The process of searching is fundamental to finding solu­
tions to problems. Depending on the type of problem to be 
solved, search can vary from a straightforward task, when 
the problem is well defined and there is a procedure for 
finding the solution, to a more complicated process when 
the problem is not well defined, a large number of poten­
tial solutions exist and the method of arriving at the 
solution is not obvious. Any search of a search space 
involves a tradeoff between two apparently conflicting 
objectives - that of adequately exploring the search space 
and exploiting the information found so far. There are 
numerous techniques described in the literature for per­
forming search and these have been categorised in many 
different ways. Here, search strategies are split into two 
main groups as shown in figure 3.1: those strategies which 
are guaranteed to find the optimal solution to a problem? 
and in contrast, those strategies not guaranteed to find 
the optimal solution but seek to find near optimal solu­
tions in a reasonable length of time. The latter type of 
strategies are referred to as "heuristic" methods.



1. Generate an initial population

2. Evaluate the population 

Repeat

3. Reproduce and generate a new population

4. Evaluate the new population

Until the number of trials is up 

Figure 3.2 - The operation of a classical Genetic Algorithm
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2.1 Methods guaranteed to find the optimal solution

Brute-force algorithms are algorithms which guarantee to 
find the optimal solution by carrying out an exhaustive 
search of the search space. Such algorithms include any 
systematic form of search procedure. As these total enu­
meration algorithms explore the whole search space they 
tend to be applied mainly to small problems as the length 
of computing time required for problems with larger search 
spaces is not practical. In an attempt to overcome the 
effect of combinatorial explosion, various exact algo­
rithms have been developed. The simplex algorithm was 
developed for linear programming problems. Other methods 
were based on implicit enumeration such as branch and 
bound methods and dynamic programming. Such algorithms 
find the optimal solution to problems more efficiently 
than complete enumeration. However, many are only effi­
cient for small problem instances. With the increasing 
performance of computers, studies were conducted to meas­
ure how the computational cost of finding the problem 
solution varied with the size of the problem. For some 
problems the computational cost grew as a low-order poly­
nomial in the problem size. However, the computational 
cost for other problems grew as an exponential function of 
the size of the problem. Cook(1971) developed the theory 
of "NP-completeness" which could be used to classify 
problems into different groups. (The Open University 
text(1981) provides an introduction to the theory of NP-

Within these two main groups, various algorithms have been
developed and these are briefly reviewed in the sub-sec­
tions that follow.



completeness and Garey and Johnson(1979) describe many 
examples of NP-complete problems.) For some difficult 
problems, there did not appear to be any polynomial time 
algorithm for solving them. Karp(1972) showed that if a 
polynomial time algorithm could be discovered for one of 
these difficult problems, then polynomial algorithms would 
exist for the other problems in the group. It now seems 
likely that exact polynomial algorithms do not exist for a 
difficult group of problems and as a consequence, there 
has been a increase in interest in the development of 
heuristic methods.

2.2 Heuristic methods

Heuristic strategies can be categorised in several ways. 
Some of the main groups that emerged as a result of a 
survey by Zanakis(1989) are shown in figure 3.1. Many 
heuristic methods use various combinations of these 
strategies. Constructive strategies build up a solution to 
the problem one element at a time from a set of data which 
defines a particular problem instance. In general, a 
complete solution is not produced until the process is 
finished. The "greedy algorithm" is an example of this 
kind of heuristic which attempts to maximise improvement 
at each step. Improvement strategies start with a poten­
tial solution to the problem and attempt to progressively 
improve upon it through a sequence of changes. Local 
search algorithms such as hillclimbing and simulated 
annealing are examples of this group. Decomposition or 
partitioning strategies attempt to solve problems by 
breaking them down into smaller more manageable compo­
nents. Components are solved either independently or by 
exchanging information and the result is used to build up



a solution. Mathematical programming strategies involve 
using a formal mathematical model with a procedure for 
generating an exact solution. The procedure is altered to 
obtain an efficient heuristic for the problem. Restriction 
and relaxation strategies involve either reducing the 
problem space or expanding the problem space to produce a 
tractable problem.

3 Genetic algorithms

A Genetic Algorithm (GA) is a heuristic method that uses 
principally an improvement strategy which mimics the 
process of evolution. GAs were introduced by Holland(1975) 
as adaptive procedures based on the mechanics and analogy 
of natural selection. They have generated much interest in 
recent years and some of their recent practical applica­
tions are reviewed in Goldberg(1994). Holland recognised 
that natural systems were more robust than artificial 
systems and attempted to achieve robustness by developing 
an algorithm which emulated the processes of natural 
selection. In natural selection, the individuals which are 
best adapted to their environment tend to have the great­
est chance of survival and reproduce more often, passing 
on their genes to the next population. GAs have been de­
veloped as search procedures that are population based and 
proceed over a number of generations. The criteria of 
"survival of the fittest" provides evolutionary pressure 
for populations to develop increasingly fit individuals. A 
brief review of the classical GA will be given, the reader 
is referred to Goldberg(1989) for a fuller introduction.



3.1 Description

In the "traditional" genetic algorithm (as defined by- 
Davis (1991a)), a "chromosome" or potential solution to 
the problem is represented as a binary coded fixed length 
string. A number of potential solutions are generated at 
random to produce what is called an initial population. 
The "fitness" of the population is evaluated by assessing 
the fitness of each individual (or potential solution) in 
the population. A new population is produced by performing 
operations patterned after genetic operations such as 
sexual recombination (crossover) and fitness proportionate 
reproduction (Darwinian survival of the fittest). The more 
fit individuals (the better solutions) reproduce (combine 
together) in an attempt to generate more highly adapted 
individuals (solutions that are better still.) This proc­
ess is repeated and each successive population is called a 
generation. After a fixed number of generations (trials), 
the fittest individual represents the solution. The steps 
in a classical genetic algorithm are shown in figure 3.2.

The GA is a "parallel" algorithm in that it transforms a 
population of individual objects into a new population. 
During reproduction, parents are selected to mate, the 
recombination operators are applied and the children are 
inserted into the new population. Selection is the surviv­
al of the fittest in a GA. Selecting parents to reproduce 
in proportion to fitness ensures that above average par­
ents are selected to reproduce more frequently. In the 
traditional GA, a whole new population of individuals are 
created, saving the best one from the previous generation 
(known as Generational Replacement with Elitism) which 
ensures that when the best solution is found, it is not

3 1



lost through disruption from crossover or mutation.

3.2 Implementation

In order to apply a GA to a particular problem, there are 
various issues that must be addressed such as representa­
tion; generating the initial population; selecting an 
objective function; choosing operators; and setting the 
parameters to appropriate values.

The problem must be "represented" in GA notation - tradi­
tionally a fixed length binary string representation is 
used. Some technique must be chosen to generate the ini­
tial population for the GA. This is a constructive process 
and at the simplest level potential solutions can be 
generated at random. During reproduction, recombination 
operators analogous to the biological operators of cross­
over and mutation are applied. Traditionally, the cross­
over operator involves exchanging strings at random, 
combining parts of good individuals in an attempt to 
create a more fit individual. This is illustrated in 
figure 3.3. The role of crossover is to provide an oppor­
tunity for the best attributes of both parent strings to 
be incorporated into the offspring. Mutation is a mecha­
nism for introducing variation into the population - it 
tends to be applied less frequently and is considered to 
play a secondary role. Mutation involves changing a single 
value in an individual in order to generate some unexpect­
ed variation in the population and is illustrated in 
figure 3.4. There are various parameters that must be set 
for the GA such as population size, frequency of applica­
tion of the genetic operators and number of generations to 
run. For traditional GAs, these values have been deter­



mined.

The objective function in a GA plays the role of the 
environment by rating potential solutions in terms of 
their fitness. In order to apply a GA to a problem, there 
must be some method of measuring the goodness of potential 
solutions. The evaluation function is the one area where 
the traditional GA requires problem specific knowledge. 
For some types of problems, the choice of evaluation 
function is obvious but for other problems it is not as 
straightforward. DeJong and Spears(1989) discuss some of 
the problems associated with developing evaluation func­
tions for difficult problems.

3.3 Theory

There is a well established theory which has been de­
veloped by Holland to explain why GAs work and it is based 
on a binary representation and the notion of a schema. A 
brief informal overview is given here - a complete mathe­
matical description is contained in Goldberg(1989).

A schema can be thought of as a similarity template which 
is used to describe subsets of strings which share simi­
larities at different string positions. A schema is gener­
ated by introducing a "don't care" symbol "*" into the 
binary alphabet (0,1,*).

A schema (plural - schemata) represents all strings that 
match it on all positions other than "*". For example, 
schema *000 describes a subset of two strings namely 1000 
and 0000. The number of "don't care" symbols in a schema 
determines the number of strings matched by the schema.



position 1 2 3 4 5 6 7 position 1 2 3 4 5 6 7

parent 1 1 1 1 1 1 0  1 parent 2 1 0  1 1 0  0 0

f crossover's. 
1 between j 
V  positions /

child 1 1 1 1 1 0 0 0 child 2 1 0 1  1 1 0 1

Figure 3.3 - The crossover operator.

(The individuals are represented in binary notation.)

position 1 2 3 4 5 6 7

string 1 1 1 1 0 0 0

mutation at 
position 7

\ /
new string 1 1 1 1 0 0 1

Figure 3 . 4 -  The mutation operator.
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A schema has two properties - order and length. The order 
of a schema is the number of fixed positions present. This 
is the length of the template minus the number of "don't 
care" symbols. The length of a schema is the distance 
between the first and the last fixed string positions. For 
example,

Schema order length
1*1**110 5 7
***10*11 4 4

Using the notion of a schema provides a compact way of 
talking about the similarities among strings. It is possi­
ble to calculate the number of schemata in a population 
and to look at the effect that reproduction, crossover and 
mutation have on them. As one string contains many schema­
ta, it can be shown that there are a large number of 
schemata present in a population. The result of this is 
that a large number of schemata are tested in each genera­
tion and this property of GAs is referred to as "intrinsic 
parallelism". Providing a reproductive plan that makes 
reproductive chance proportional to fitness is used, 
reproduction allows above average schemata to grow by 
giving them an increased number of trials. Below average 
schemata die off as they are allocated with a decreasing 
number of trials. Crossover tends to disrupt long schemata 
whereas shorter length schemata have a greater chance of 
remaining intact. As mutation is normally applied at very 
low rates, it does not have much effect on schemata. The 
Schema Theorem was put forward by Holland to describe the 
dynamics of a GA. The Schema Theorem says that short, 
low-order, above average schemata will increase their 
representation in subsequent generations of a GA. This



occurs because simple crossover does not disturb short 
schemata with high frequency, reproduction allocates more 
copies to the best schemata, and because mutation has 
little effect.

Goldberg(1989) refers to the short, low-order above aver­
age schemata as "building blocks" and describes the dynam­
ics of a GA in terms of the Building Block Hypothesis 
(BBH) . The BBH says that a GA seeks near optimal perform­
ance through the juxtaposition of building blocks. A GA 
search attempts to reduce the complexity of a problem by 
constructing better and better strings from the best 
partial solutions of past samplings. That better and 
better strings are created has not been proved, however, 
there is a large body of empirical evidence to suggest 
that the BBH holds for many problem classes. The conse­
quences of the BBH are discussed in Goldberg et al(1993).

3.4 Comparison with conventional search methods

In contrast to search methods which guarantee to find the 
optimal solution to a problem, a GA is a heuristic method 
that will seek to find a near optimal solution in a rea­
sonable length of time. A GA uses some form of construc­
tion strategy to generate an initial population of poten­
tial solutions. At the simplest level, this can involve 
initialising the population at random. The improvement 
strategy that is used takes the form of a multi-direction­
al search. GA search differs from local search in that 
these improvement strategies search from point to point. 
One of the main problems with local search techniques is 
that they find the optimum point in the current neighbor­
hood and this is dependent on the starting point. Local



search exploits the best among known possibilities - 
exploration is restricted. GAs attempt to overcome these 
limitations by maintaining a database of points and by 
performing search in parallel. GAs are inherently per­
forming an even wider search by virtue of their property 
of intrinsic parallelism. The theoretical analysis of GAs 
suggest they manage the tradeoff between exploration and 
exploitation in a near-optimal way (Holland(1973), 
(1975)).

GAs were developed as general-purpose search techniques. 
In contrast to those search methods that rely on auxiliary 
information or assumptions regarding the search space, the 
only problem specific knowledge required by the GA is con­
tained in the objective function. It is in this sense that 
GAs are described as being robust and they have been found 
to perform well across a wide variety of problem domains.

The GA method is based on a probabilistic process rather 
than a deterministic process. Although the GA uses proba­
bility, it is unlike a random search as the search is 
directed into promising regions of the search space. 
Random search concentrates wholly on exploring the search 
space with no exploitation of promising points found.

In the past it was argued that the use of recombination 
operators, in particular the crossover operator, distin­
guished a GA from other optimisation techniques. However, 
nowadays there is considerable overlap amongst several 
evolutionary algorithms such as evolutionary strategies 
(Rechenberg (1965)) and evolutionary programming (Fogel et 
al(1966)) and the boundaries between them have become 
fuzzy (Back and Schwefel(1993)).



4 Non-standard genetic algorithms

The standard or traditional GA is one which uses binary 
fixed length string representation, one-point crossover 
and mutation, generational replacement normally with 
elitism and some fitness normalisation process. The tradi­
tional GA has the theoretical underpinnings of the Schema 
Theorem. A central goal in GA research has been to develop 
an algorithm that is robust and can perform well across a 
variety of problem domains with no problem specific knowl­
edge. There are many researchers who are still pursuing 
this goal and working with the traditional GA. There has 
also been considerable interest in the application of GAs 
to real-world problems. From an AI perspective, the stand­
ard GA can be classed as a "weak method" as it makes few 
assumptions about the problem domain and is widely ap­
plicable. As a weak method, the traditional GA is unlikely 
to be the best algorithm to use for any particular prob­
lem. Various modifications to the traditional GA have been 
proposed and the concept of a "hybrid GA" (HGA) has been 
suggested by a number of authors ((Bosworth et al(1972), 
Bethke(1981), Goldberg(1983)) and Davis(1991a). Some re­
search has been conducted on HGAs and has shown that such 
an approach is successful for combinatorial optimisation 
problems. Goldberg and Lingle(1985), Oliver et al(1987), 
Whitley et al(1989)(1991) and Grefenstette et al(1985) 
have applied GAs to the Travelling Salesman Problem. 
Syswerda(1991) applied an HGA to the NP-hard problem of 
schedule optimisation. A review of some of the differences 
between the traditional GA and HGA is provided in the next 
section.



4.1 Representation

It was recognised that the binary string representation 
was not the most suitable for certain types of problems. 
In some cases, the most natural representation involved 
more complex data structures and by linearising the data 
structure into a string representation the window by which 
the system observed the world was limited. Davis(1991b) 
and Michalewicz(1993) reported that for numerical optimi­
sation problems that required a high degree of precision, 
real number representation gave solutions with greater 
accuracy and in fewer generations than equivalent imple­
mentations using binary. Other representations have used 
character strings, gray coding, integers and matrices. 
Goldberg et al(1989),(1990) investigated using variable 
length strings developing the "messy GA".

4.2 Operators

Applying the traditional GA to sequencing problems pre­
sented difficulties as illegal sequences could be generat­
ed. For example, in the case of the Travelling Salesman 
Problem, there are constraints placed on the symbol string 
that represents a tour of the cities, in that no city can 
appear more than once. The classical recombination opera­
tors which worked well when solutions were coded as bit 
strings did not work when the solutions were coded as 
sequences. As crossover and mutation rearranged symbols 
independently of each other, this could lead to cities 
appearing more than once or not at all. Various approaches 
have been taken to enable the application of the tradi­
tional GAs to constraint problems. Two main methods have 
been used - the first involves using a penalty function in



the objective function. Potential solutions which violate 
constraints are generated, but are heavily penalised. 
There are disadvantages to this approach and it is gener­
ally considered feasible only if the number of constraints 
is small. The second method involves the use of specia­
lised decoders and repair algorithms but these are often 
computationally costly to run. A third approach is to 
modify the traditional GA in terms of the problem repre­
sentation and to devise new operators.

A variety of operators have been developed for sequencing 
problems (Goldberg and Lingle(1985); Davis(1985); Oliver 
et al(1987); Davis(1991a); Whitley et al(1989); Whitley et 
al(1991); Fox and McMahon(1991)). Evidence suggests that 
the effectiveness of different types of operator depends 
on the nature of the problem (Starkweather et al(1991)). 
All ordering problems are not similiar - in some, the 
relative order of tasks is important and in others, adja­
cency is important. Operators differ in the kind of 
information they attempt to preserve during recombination. 
In general, it is recommended that potential solutions 
should be broken up in a way that is natural for the 
problem. If there are heuristics that can be applied, it 
is often useful to incorporate these into the operator set 
to provide domain based guidance to the search process 
(for example: Bosworth(1972); Grefenstette(1987)).

4.3 Theory for non-standard genetic algorithms

Holland's Schema Theorem is well developed for problems 
that can be encoded as a binary string and use the stand­
ard operators. However, for many problems binary represen­
tation is not a natural coding and for ordering problems



various different operators have been developed. Several 
authors have attempted to re-examine and generalise schema 
analysis and the notion of implicit parallelism to provide 
a theoretical foundation for non-standard GAs (Goldberg 
and Lingle(1985), Oliver et al(1987), Goldberg(1989), 
Antonisse(1989), Whitley et al(1989), Vose and 
Liepins(1991), Radcliffe(1991a, 1991b, 1993, 1994), Rad- 
cliffe and George(1993), Eshelman and Schaffer 
(1992,1993)).

In terms of representation, Antonisse(1989) provided an 
alternative interpretation of the schema notation which 
overturned the binary coding constraint. This allowed the 
use of alternative codings for a problem using a higher 
cardinality alphabet. Recent results from Radcliffe and 
Surry(1994a) provide further evidence that casts doubts on 
the appropriateness of low cardinality representations. 
For real-coded GAs, Eshelman and Schaffer(1993) introduced 
"interval schemata" as a tool for analyzing their perform­
ance .

Goldberg and Lingle(1985) extended the concept of schemata 
for ordering problems by defining o-schemata (ordering 
schemata). They used the notion of o-schemata to analyse 
the effect of a new operator PMX (Partially Mapped Cross­
over) on the performance of the GA for ordering problems 
and demonstrated that PMX preserved ordering building 
blocks (low order, o-schemata) with a high probability. 
This gave the desirable result of an operator which 
searched among both ordering and allele combinations (o- 
schemata and a-schemata) that lead to good fitness. Oliver 
et al(1987) proposed a modified definition of o-schemata. 
They found that the performance of operators for ordering



problems determined using o-schema analysis depended on 
the type of ordering problem. Goldberg(1989) described how 
a family of definitions of an o-schema could be developed 
to meet the requirements of different types of ordering 
problems (for example, when absolute or relative position 
mattered).

Whitley et al(1989) investigated operators for ordering 
problems in the context of the Traveling Salesman 
Problem(TSP) and devised the "edge recombination 
operator". They proposed that the important information in 
the TSP was not the position of a particular city but the 
critical links between cities. Their edge recombination 
operator searched for critical edge recombinations. They 
showed that as an underlying binary representation existed 
for edge information, the operator could be related to 
Holland's Schema Theorem and there was no need for any new 
notion of a schema.

Vose and Liepins(1991) analysed schema disruption and 
formalised a "building block hypothesis" based on the 
interaction of the crossover operator with schemata. They 
argued that the building blocks should be determined from 
considering the interaction of the crossover operator with 
schemata. They noted that with the increasing application 
of GAs to combinatorial problems, non-standard crossover 
operators were being developed and that sometimes the 
"building blocks" of the problem were not clear.

Radcliffe(1991a,1991b,1993) has extended the notion of 
intrinsic parallelism and the associated Schema Theorem to 
general non-string representations through the introduc­
tion of arbitrary equivalence relations. Radcliffe calls



his general version of a schema a "forma" (plural 
"formae"). A forma is used to describe subsets of chromo­
somes that are similar in some general way. His focus is 
on finding sets of formae that characterise the regulari­
ties in the particular problem or class of problems under 
consideration and developing operators that manipulate 
these to good effect. To this end, Radcliffe has proposed 
several "design principles" for devising useful equiva­
lence relations, representations and recombination opera­
tors. Applying his design principles, Radcliffe has de­
veloped a family of representation independent operators. 
Using Radcliffe's approach, new recombination operators 
can be designed that possess desirable properties such as 
"respect" (if both parents have the same characteristic, 
the offspring should inherit that characteristic), "proper 
assortment" (if both parents have different characteris­
tics, it should at least be possible that both character­
istics can be inherited by the offspring) and "strict 
transmission" (if one parent has one of two characteris­
tics, the offspring must inherit one of the two character­
istics). As these properties may not always be compatible 
various trade-offs must be made between them as described 
in Radcliffe(1993) and Radcliffe and George(1993).

5 Problem solving strategy

The map building problem is difficult as it relies on 
error-prone data; there can be more than one solution 
feasible? there are a large number of possible maps; and 
the method used to arrive at a solution is based on sub­
jective judgement. The approach the expert takes to handle 
the problem complexity was examined. The geneticist often

■a 3



concentrates on assembling potential single gene maps and 
then postulates how well the single gene maps could be 
fitted together and maps are built up incrementally. The 
human approach is a form of problem decomposition using a 
bottom-up strategy to make the process manageable and 
subsequently a merge operation is carried out which in­
volves aligning the single gene maps with one another over 
fragments common to pairs of maps. It was proposed that a 
similiar strategy be adopted to automate map assembly. It 
was proposed that a form of GA be developed to determine 
the sequence of cut sites for single gene maps from the 
results of experimental data. As standard GAs have not 
been effective for sequencing types of problems (illegal 
sequences could be generated), a modified GA was proposed 
that would incorporate the objective system for assessing 
maps. Once several "acceptable" maps have been developed 
for individual genes a merge process would be carried out 
to merge maps on common fragments. The merged map would 
determine the sequence of all the genes and cut sites.

An objective system for assessing maps would be developed 
- techniques would be used to collect and process the 
geneticist's expert knowledge.

6 Summary

Search strategies were discussed. The traditional GA was 
introduced and ways of modifying the GAs to handle complex 
problems were considered. The strategy for automating map 
assembly was presented that consisted of developing a 
method of objectively assessing maps; developing a modifed 
form of GA for generating potential single gene maps from 
experimental data; and developing a system for aligning



single gene maps together to generate a complete multi­
gene map.



1 Introduction

Evaluating maps relies on the subjective judgement of the 
geneticist. Obtaining the data to assemble maps from is 
time-consuming and problematic and the data itself tends 
to be inexact. Once a map has been assembled that appears 
to represent a good fit of the fragments, there is no 
mechanism for objectively assessing the map.

To develop an objective system for assessing maps, four 
main tasks were identified. Firstly, a knowledge elicita­
tion process was conducted to determine what were the 
"good" and "bad" features of maps. Secondly, alternative 
maps for the same genes were analysed to highlight dis­
crepancies between maps. Thirdly, using the map informa­
tion, a questionnaire was devised to enable maps to be 
scored. Lastly, a general mechanism for evaluating single 
gene maps was developed.

2 Knowledge Elicitation Stage

A series of informal interviews and discussions were held 
with the geneticists in an attempt to identify what they 
regarded as general features or characteristics of "good" 
and "bad" maps and to find out what rules of thumb or 
heuristics they used when carrying out map assembly. The 
heuristics and techniques used by the geneticist are 
summarised in table 4.1.

CHAPTER 4 - DEVELOPING AN OBJECTIVE SYSTEM FOR ASSESSING
MAPS



1 Take into account the strength of fragments.
The strength o f  fragments on the gel lane can vary considerably. Have the most confidence in 
the strong fragments that show up distinctly.

2 Allow for variation in length of fragments.
Some allowance must be made for fragment lengths as they can vaiy due to experimental limitations 
Allow + / - 1 0 %  on fragments up to lOOOkb and + /-  20%  on fragments between 1000  to 2000kb.

3 Identify common fragments in a dataset.
For a gene. All fragments containing a particular gene must overlap one another in 
region o f the smallest length fragment containing the gene.

Between single and double digest fragments o f the same gene. If a double digest fragment is the same 
length as a single digest fragment, it is likely they represent the same fragment.

Between genes. If the same length o f fragment is obtained for two or more genes using the same 
restriction enzyme, it is possible that it is a  common fragment and contains both genes.

4 Identify partial digests
Look at tlie number o f fragments obtained using a particular restriction enzyme. If more than 
one fragment is obtained for a gene, there must be partial digests.
(Refer to figure 2 .4  for examples.)

5 Determine relationships between fragments
The relationship between fragments can be determined using the double digest results.

6 Identify cut sites common between genes.
If  two genes are close on the DNA, it is likely that the cut sites from the single 
gene maps will overlap. For example

7 Consider the number of restriction enzymes and length of the map.
If several potential maps have been assembled from the same data, compare the number o f cut sites 
and length between file maps. The map with the least cut sites and shortest length is likely to be a 
good map as this indicates that file data has fitted well into the map.

8 Assemble single gene maps.
Take each gene in turn and develop single gene maps. Merge file maps together on a common cut site.

9 Assemble a map by considering pairs of genes.
Select a pair o f genes and examine the single and double digest information for the pair and generate a 
tentative solution. Repeat the process for other pairs o f genes then merge the gene pair maps together.

10 Assemble a map from the smallest fragment.
Choose the smallest strong fragment containing a gene as the starting point. All other fragments must 
overlap it.

Table 4.1 - The geneticist's heuristics used for map assembly.

i
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3 Analysis of published maps stage

The second exercise involved analysing published maps and 
the data from which they were generated to gain insight 
into the error tolerated in maps. Four different maps have 
been published for the PIL,PI,AACT genes. Kearney et 
al(1987) reported that the genes were ordered PIL-PI-AACT, 
whereas Cox et al(1987) reported the genes were ordered 
PI-PIL-AACT. Both groups revised their original maps: the 
Kearney group published a revised map in Sefton et 
al(1990); and the Cox group published a revised map in 
Billingsley et al(1993). Although the order of the genes 
in the revised maps agreed (PIL-PI-AACT), there were many 
differences in the order and number of the RE cut sites. 
The Sefton map and Billingsley map were analysed in detail 
as was a third map assembled by the author using the 
Sefton et al(1990) data (the Proposed Map) that appeared 
to represent a good fit of the data. The three maps are 
shown in figure 4.1. Taking each map in turn, the frag­
ments that would be expected were calculated and discrep­
ancies between the observed data (the experimental data) 
and the data expected from the map were noted. The number 
of discrepancies found for each map is summarised in table
4.2. (The detailed analysis for each map is contained in 
Appendix B.) The nature of the discrepancies is summarised 
below.

* Fragments observed but not expected from the map.
* Fragments expected from the map but not observed.
* Different lengths of fragments expected from the map 
compared to the observed fragment lengths.
* Differences in the nature and number of cut sites in the 
map to allow the observed fragments to be fitted.
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PIL PI AACT TOTAL

Sefton map 6 5 9 20

Billingsley map 8 8 7 23

Proposed map 5 4 6 15

Table 4.2 - Summary of the number of discrepancies found between the observed and 
expected data in the Sefton, Billingsley and Proposed maps for the PIL,PI,AACT 
genes. _______________________________________________________________

PIL PI AACT

Sefton map 7 minor 6 minor 2 minor

1 significant 1 critical 1 minor - significant

1 critical 2 serious

28 - unacceptable 24 - unacceptable 21 - unacceptable

Billingsley map 5 minor - serious 1 minor - serious 2 minor

1 minor - serious

5 - adequate 1 - good 3 - good

Proposed map 3 minor 2 minor 2 minor

2 significant 2 significant - serious
3 - good 8 - acceptable 8 - acceptable

Table 4.3 - Summary of gene map scores. (The total scores for each gene map are 
expressed in units of minor problems and can be calculated as follows - score 1 for a 
minor problem; 3 for a significant problem; 9 for a serious problem; 18 for a critical 
problem.)

Questionnaire
Section 1

Evaluation
2 3

1. Fragment lengths Y N Y

2. Nature of cut sites N Y N

3. Weak fragments N N N

4. Length of single digests Y N Y

5. Yield of double digests N Y N

6. Length of double digests N N Y

Table 4.4 - Evaluation coverage of the questionnaire.
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4 Quantifying map features

The geneticist's heuristics provided information regarding 
map characteristics as did the analysis of the PIL/PI/AACT 
maps. Some mechanism was required to utilise the informa­
tion to generate an objective system for assessing maps. 
It was proposed that a questionnaire be devised to measure 
the relative importance of the various map features.

4.1 Developing a questionnaire

The approach to questionnaire design as described in 
Oppenheim(1966) was followed. Several general areas used 
to assess maps formed the basis of the questionnaire and 
the geneticist was asked to rate various problem situa­
tions described in each area. Every effort was made to 
ensure that questions were worded to prevent bias and to 
minimise ambiguity. In order to measure the geneticist's 
opinion of each map problem and of its overall importance 
to a map, a rating system was devised. The geneticist was 
given five ratings which could be applied to each problem 
- "no problem", "minor problem", "significant problem", 
"serious problem" or "critical problem". (It was consid­
ered that any fewer in the rating scale would not ade­
quately represent the range of problem types and any more 
would generate a difficulty in discriminating between 
them.) Once all the problems were rated, the geneticist 
was asked to specify how many problems would be tolerated 
in an "ideal", "good", "acceptable" and "unacceptable" 
map.

The six areas the questionnaire examined are briefly 
summarised here. Section 1 considered fragment lengths. 
Errors were present in the observed fragments due to



experimental limitations - the amount of error tolerated 
in fragments of different lengths was established. Section 
2 examined the importance of the nature (partial or com­
plete) and number of the cut sites relative to the number 
of fragments observed. The role of weak fragments in map 
assembly was considered in Section 3. Section 4 assessed 
how single digest fragments fitted into a map in relation 
to other single digest fragments. The effect of differ­
ences in the number and type of double digests observed 
and expected was measured in Section 5. Section 6 deter­
mined the number of minor, significant, serious and criti­
cal problems that could be tolerated in an "ideal", 
"good", "adequate" or "unacceptable" maps.

The questionnaire was completed by the external advisors, 
Povey and Bickmore, and is contained in appendix C.

4.2 Analysis of questionnaire results

The use of a rating system in questionnaires does invite 
possible errors (Oppenheim (1966)). One of the main prob­
lems lies in the ease with which ratings can be influenced 
by variables of which the rater is unaware. Ratings may 
differ due to the raters having different "frames of 
reference". This is a general problem that can lead to 
much misunderstanding. To minimise the problem, the frame 
of reference the rater was expected to use was described 
as far as possible in each question. On reviewing the 
questionnaire results, it became clear that the external 
advisors did have different frames of reference which 
appeared to be due to the different types of work each was 
involved with. For the region of chromosome that the 
Bickmore group was interested in^ there was information



available in the literature which influenced the design of 
their experiments and provided them with benchmarks along 
the chromosome. As a result, it was not necessary to carry 
out all combinations of double digests. For the particular 
region of chromosome that the Povey group was interested 
in, there was little additional information available in 
the literature to draw upon. The experiments carried out 
by the Povey group were self-contained in that all the 
information required to generate the map was determined as 
a result of carrying out the single digests and all combi­
nations of double digests. It was proposed that the system 
for automating map assembly should be self-contained in 
the first instance and therefore the scores applied by the 
Povey group were used as the basis for the scoring system.

4.3 Scoring maps based on questionnaire results

The Povey group's answers to the questionnaire were ap­
plied to the problems in the three PIL/PI/AACT maps shown 
in figure 4.1 which were described in full in Appendix B, 
to see which map scored best. The scoring of the discre- 
pencies is shown in detail in Appendix D and the map 
scores are summarised in table 4.3. A score of 0 indicated 
an ideal map; 1-3 indicated a good map; 4-9 indicated an 
acceptable map; and 10+ indicated an unacceptable map. 
Overall, the Billingsley map appeared to score best, 
however, if it had been possible to include the Mlul 
restriction enzyme information for the Billingsley map, 
the score may have been different. Both the Billingsley 
map and the Proposed map were classed as acceptable maps. 
The Sefton map contained critical problems (as illustrated 
in Appendix E) and would not be considered acceptable.
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Figure 4.2 - The Sefton revised published map.
The complete revised multi-gene map and single gene maps 
for PIL,PI,AACT are shown.
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As a result, the Sefton group revised aspects of their 
published map. Three extra restriction enzyme cut sites 
were added and three restriction enzyme cut sites were 
changed from being complete cut sites to partial cut 
sites. The order of the genes was unaltered. The revised 
published map is shown in figure 4.2. The changes made to 
the original published map and the scoring of the revised 
map are shown in detail in Appendix E. The revised map was 
scored and was now classed an acceptable map containing 
no critical problems.

5 Developing a general mechanism for scoring maps

As the strategy for tackling map assembly involved assem­
bling single gene maps, a general mechanism for objective­
ly assessing such maps was required. (The method of evalu­
ating multi-gene maps is described in chapter 8.)

It was proposed that the evaluation mechanism would take 
as input the observed experimental data for one gene and a 
potential map assembled from that data, and would generate 
a score for the gene map. Different ways of evaluating 
maps were considered based on the responses to the ques­
tionnaire and three main evaluation methods emerged. The 
first evaluation assessed a gene map on how well the 
observed single digest results fitted. The second evalua­
tion assessed a gene map on how well the double digest 
results fitted. The third evaluation assessed a gene map 
on how well all the observed data fitted into the gene 
map. The broad areas of the questionnaire that each evalu­
ation covered are shown in table 4.4. Each evaluation was 
not considered appropriate as the sole means of assessing 
maps. For this reason, a gene map was awarded a score from
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each evaluation which were summed together to produce a 
total score. The total score was expressed in units of 
minor problems. Depending on the score of a map (or in 
other words, the number of minor problem equivalents 
present in the map), the map was classifed as "ideal", 
"good", "adequate" or "unacceptable". An "ideal" map was a 
map which scored zero and therefore had no minor problems. 
The number of minor problems tolerated in "good", "ade­
quate" and "unacceptable" maps depended on the size of the 
map. For large gene maps, a "good" map had up to three 
minor problems, an "adequate" map had between four and 
nine minor problems. More than nine minor problems and the 
map was considered unacceptable.

Each of the three evaluations are described in the follow­
ing sections. Examples of applying the evaluations are 
given in the Appendix F.

5.1 Evaluation 1 - Fit of single digest data

The first method of evaluating a gene map was based on how 
well the observed single digest fragments fitted into the 
map. The single digest fragments were the fragments ob­
tained using a single restriction enzyme. Each single 
digest fragment was the result of a restriction enzyme 
cutting the DNA on either side of the gene.

Evaluation 1 took as input a gene map and the observed 
single digest data for each restriction enzyme and "as­
signed" the lengths of each of the observed single digest 
fragments to the single digest fragments that would be 
expected from the map. As all single digests obtained for 
a particular gene must overlap in the region of the gene,



it was likely that some single digests would be nested 
within other single digests in the map. The pairs of 
restriction enzyme cut sites producing each single digest 
were checked to see if any pair of cut sites were nested 
within another pair of cut sites. Where this was the case, 
the observed fragment lengths that had been assigned to 
each digest were examined. If a nested single digest was 
found to be bigger than the outer fragment, this indicated 
a problem with the map. A map score was awarded which 
reflected the difference in fragment sizes.

The map score was based on the amount by which the nested 
fragment was larger in relation to the outer fragment and 
was expressed in units of minor problems. The difference 
between the nested fragment and the outer fragment was 
calculated, taking into account the possibility that each 
of the fragment lengths might have been out by up to 10% 
(for fragments <1000 kb). In addition to the 10% allowable 
error, if the nested fragment was greater than the outer 
fragment by

0 or less - no problem score = 0
up to 10% - minor problem score = 1
11 - 24% - significant problem score = 3
25 - 49% - serious problem score = 9
50% + - critical problem score = 18

The score indicated how well the observed single digest data 
fitted into the map.

In some maps, it was difficult to assign the lengths of 
the observed fragments to the fragments expected from a 
map because of the number of cut sites producing the 
fragments, and to differences between the number of frag­
ments expected from a map and the number of fragments



observed. For example, if the number of cut sites in a map 
for a particular restriction enzyme, say "B", was even and 
of the form nB b * b B" (where "*" indicated the gene, "B" 
was the outer complete cut site and "b" indicated a par­
tial cut site), four fragments would be expected. If all 
four fragment were observed, how would they be fitted to 
the cut sites ? The largest observed fragment could be 
fitted to the MB * BM cut sites and the smallest observed 
fragment could be fitted to the "b * b" cut sites. Howev­
er, it would be difficult to say which of the two remain­
ing observed fragments could be fitted to "B * b" and "b * 
B" without knowing the distance between the cut sites. So, 
even when the same number of fragments were expected as 
observed, there would be uncertainty surrounding the 
assignment of fragment lengths.

The experimental results for single digest fragments were 
more accurate than for double digest fragments because of 
the optimal operating conditions that could be created for 
a single restriction enzyme. As inconsistencies in the 
number of fragments observed and expected were not consid­
ered frequent, it was proposed the evaluation would be 
applied only to maps that had the same number of single 
digests observed as expected. (This restriction was not 
applied to double digests as described in section 5.3.)

Given the same number of single digests expected as ob­
served, when there was a matching problem between the 
observed and expected fragments, the length of the largest 
observed fragment was assigned to the cut sites that 
resulted in the widest position in the map. As a prelimi­
nary measure, the lengths of the remaining fragments were 
assigned on a "first-come first-serve" basis. However, it



was proposed that this method be reviewed at a later date 
as it could lead to a good match being excluded.

5.2 Evaluation 2 - Fit of double digest data

The second method of evaluating the quality of a gene map 
was based on determining the number and type of double 
digests expected from a map compared to the number and 
type of double digests observed from the experimental 
data.

The double digest fragments were the fragments obtained 
when two restriction enzymes were used to chop up the DNA. 
Each double digest fragment was the result of one or other 
of the restriction enzymes cutting the DNA on either side 
of the gene. A double digest fragment could be classified 
usually as either a single digest fragment or as a new 
double digest fragment. The double digest fragment would 
be considered a single digest if the length the double 
digest was the same as the length of a single digest 
(indicating that the other restriction enzyme had not cut 
within it). A double digest whose length was different 
from both single digests would be considered a new double 
digest. This is illustrated using by example in figure
4.3.

Evaluation 2 took as input a gene map and the observed 
double digest fragments. For each of the observed double 
digest fragments, the following procedure was carried out. 
(Weak fragments were ignored.)
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Figure 4.3 - Types of double digest.

The length of the single digest fragments for two restriction enzymes, M and S are shown. 
The lengths of the double digest fragments, when both restriction enzymes 
were used together is shown. The MS double digest of length 70 is likely to be the 
S single digest fragment as they are the same length. The small MS double digest of length 
30 is likely to be a fragment cut at one end by m and the other by S as there were no 
single digests of that length. A map showing the number and sequence of the M and S cut 
sites that would generate the fragment lengths is shown (not to scale).
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1. From the table of observed data, each double digest 
fragment was classed as either a new fragment or as a 
single digest fragment. The likely ordering of the re­
striction enzyme cut sites around the gene was determined.

2. The ordering of the double digests fragments expected 
from the map was calculated and this was compared with 
the ordering of restriction enzyme cut sites of the ob­
served double digests that was calculated in step 1.

3. Based on the comparison described above, a score was 
awarded for the map as follows. The percentage of the type 
of double digest fragments observed which were expected 
was scored.

SCORE
95%+ - no problem = 0
91 - 94% - minor problem = 1
90% - significant problem = 3
<90% - critical problem = 18

The percentage of the type of double digest fragments 
expected which were observed was scored.

SCORE
70%+ - no problem = 0
61 - 69% - minor problem = 1
60% - significant problem = 3
51-59% - serious problem = 9
<50% - critical problem = 18

(Note that the percentage "bands" used were based directly 
on the geneticist's responses to the questionnaire. Rather 
than introduce possible errors by attempting to even out 
the bands, it was proposed that they be left intact. )

Both the scores were added together to give a total score 
for a gene map on evaluation 2.



5.3 Evaluation 3 - Fit of total data

Evaluation 3 considered the gene map as a whole and award­
ed a score based on how well all the lengths of the ob­
served fragments (both single and double digests) fitted 
into the map.

Evaluation 3 took as input a gene map and the observed 
data. The map was represented as a series of simultaneous 
equations where the intervals between the restriction 
enzyme cut sites were variables whose values were unknown. 
Each observed fragment length was "assigned" to an appro­
priate expected fragment from the map. The length of the 
expected fragment was the sum of the intervals from the 
position of the left-hand restriction enzyme cut site to 
the position of the right-hand restriction enzyme cut site 
in the map. Treating fragments in this way enabled equa­
tions to be generated. If the series of simultaneous 
equations could be solved, the lengths of the intervals 
between the cut sites could be determined. If all the 
intervals between the cut sites were positive, this indi­
cated that the observed data fitted well into the map. If 
any interval was negative, this suggested that the re­
striction enzyme cut sites on either side of the interval 
were in the wrong order and that the sequence of restric­
tion enzyme cut sites in the map was not correct. Such a 
map should not be feasible but as fragment lengths were 
allowed to vary (by up to 10% for fragments < lOOOkb), 
some allowance for small negative intervals was taken into 
account. If an interval between cut sites was zero, this 
indicated that the cut sites were coincident. (Coincident 
cut sites arise when the recognition site of one restric­
tion enzyme is contained within 6the recognition cut site



of another. For example, a restriction enzyme which recog­
nised "ATC" would cut the DNA one base before a restric­
tion enzyme which recognised "GTCTATCG".)

If it was not possible to assign a minimal number of the 
observed digest lengths to the expected digests in the 
map, a situation arose where there were more unknown 
intervals than there were equations. As a result, the set 
of equations could not be solved. (The problem instance is 
said to be "under-determined".) In such cases where the 
observed data did not fit well into the map, the map was 
not considered feasible and was awarded a poor score. If 
there were more equations than there were unknown inter­
vals, a transformation was applied to obtain the same 
number of equations and unknown variables (as described in 
Appendix F.)

In many maps, attempting to assign the lengths of the ob­
served fragments to the fragments expected from a map was 
problematic. This was due to two factors - the number of 
cut sites producing digests and to differences between the 
number of fragments expected from a map and the number of 
fragments observed. The way in which the number of cut 
sites present in a map could create problems for the 
assignment of observed fragment lengths to expected frag­
ments was the same problem that arose in evaluation 1, 
when fitting the single digest lengths, as described in 
section 5.1. Even when the same number of fragments were 
expected as observed, there were problems in assigning 
their lengths. If more or less fragments were observed 
than expected, it became even more difficult to calculate 
the position of any of the fragments. Inconsistencies



between the number of fragments observed and expected was 
one of the characteristics of the map assembly problem, 
more commonly associated with double digests than single 
digests. The method for dealing with single digests was 
described in section 5.1. When there was a matching prob­
lem between the observed and expected data for the double 
digests, the decision was made to try out several differ­
ent ways of fitting the observed double digests and to 
calculate the score for the map. The best score generated 
from the different possibilities was the one that was 
awarded to the map. If there were several options which 
resulted in an "ideal" scoring map, the map with the 
shortest length was considered the best map, based on the 
genticist's heuristic described in section 2 that the 
shorter the map, the better the fit of the data.

The score awarded by evaluation 3 was based on the number 
and size of any negative intervals in a map. If there were 
no negative intervals present, the observed data was 
considered to fit well and the map was awarded the best 
score. To accomodate errors in fragment lengths small 
negative intervals were tolerated. The size of the nega­
tive interval in relation to the length of the map was 
calculated and a score was awarded as shown below. If the 
map had more than one negative interval, the map was 
awarded a poor score.

Number of negative intervals Size Score
0 not applicable 0
1 < 1% of the map length 1

< 2% of the map length 3
> 2% of the map length 9

not applicable 18>1



Calculating the distances between the cut sites in the map 
by solving the series of equations, produced a series of 
residual vectors that indicated the amount of error in­
volved in solving the equations. As a preliminary measure, 
the residual information was not used to contribute to the 
map score.
6 Summary

An objective system for assessing maps was developed. A 
knowledge elicitation stage was carried out to identify 
and capture the expert's subjective judgements and differ­
ent maps for the PIL/PI/AACT genes were analysed to gain 
insight into the type of discrepancies present in maps. A 
questionnaire was developed to estimate the relative 
importance of different map features to the overall quali­
ty of a map. A general mechanism for scoring maps that 
consisted of three types of evaluations was developed. 
The mechanism took as input a gene map and a set of ob­
served data, applied three evaluations to generate a score 
for the gene map and classified the map as "ideal", 
"good", "adequate" or "unacceptable".



CHAPTER 5 - MAP EVALUATION RESULTS

1 Introduction
The general system developed for objectively evaluating 
single gene maps was described in chapter 4. The system 
comprised three evaluations that assessed various map fea­
tures and awarded a score indicating how well the observed 
data fitted into the map. The total score classed a map as 
"ideal11, "good", "adequate" or "unacceptable". Maps in the 
"ideal", "good" or "adequate" categories were all consid­
ered to be acceptable maps to the geneticist.

The results of testing the evaluation mechanism are de­
scribed in this chapter. The evaluation mechanism was 
applied to a test list of maps generated using three 
different data sets. These included maps that contained no 
errors and maps the geneticist considered were optimal. To 
determine the effectiveness of the evaluation mechanism in 
identifying acceptable maps, all the maps possible for a 
particular data set were systematically generated. Each 
map was evaluated and categorised. The total number of 
maps belonging to each category was established. All the 
maps in the "ideal" category were examined in detail. As a 
result of these activities, it was proposed that the map 
evaluation mechanism was a plausible system for assessing 
gene maps.

2 Testing the evaluation mechanism

A test list of maps was compiled to test the ability of 
the evaluation mechanism in identifying optimal maps. The 
list contained maps generated using three different data 
sets - the first data set consisted of ideal data, the



second and third consisted of experimental data. The three 
data sets are contained in Appendix A and are described in 
more detail below. The list of maps is contained in Appen­
dix G.

To test the evaluation mechanism, it was proposed that the 
evaluation mechanism be applied to "perfect" maps generat­
ed from "perfect" data, ie where all fragments were 
present and all fragment lengths were accurate. A "per­
fect" data set was generated from the Sefton revised map 
for PIL/PI/AACT by calculating the "perfect" data expected 
from each gene map. The aim was to determine whether or 
not the evaluation mechanism was successful in handling 
the ideal case.

The second data set was the observed experimental data for 
PIL/PI/AACT taken from Sefton et al(1990). (As the data 
was experimental data, it contained errors.) The maps in 
the test list for this data set were those assembled 
manually by the geneticist and represented, in their 
opinion, the optimal maps for the data. Maps assembled 
manually by the author and proposed as optimal maps were 
included also.

The third data set used was the observed experimental data 
for AT/ACE taken from Sefton et al(1990). The maps were 
found to contain certain problems in the number of cut 
sites used to generate the single digests. Two minor 
amendments were made to the maps. Nevertheless, it was 
considered that the maps represented near-optimal maps.

It was not unusual for maps to contain coincident cut 
sites - ie obtained when the recognition site of one 
restriction enzyme was contained^within the recognition



site of another. As maps were input to the evaluation 
mechanism sequentially, each different map permutation was 
entered to accomodate coincident cut sites. For example, 
if the cut sites "B" and "S" overlapped in a map, two 
permutations would be evaluated - the map with permutation 
"BM" and the map with permutation "MB”.

2.1 Results of applying the evaluation mechanism to the 
test list of maps

Each of the maps in the test list were input to the evalu­
ation mechanism along with the appropriate data set and 
the maps were awarded a score. Map scores were expressed 
in units of minor problems. Depending on the score of the 
map, the map was categorised as an "ideal", "good", 
"adequate" or "unacceptable" map. An "ideal" map contained 
no problems, a "good" map tolerated between one and 
three problems, an "adequate" map tolerated between four 
and nine problems. Any map with more than nine problems 
was regarded as an "unacceptable" map. Note that a map 
that was "ideal", "good" or "adequate" was considered an 
acceptable map by the geneticist.

The results of applying each evaluation separately to the 
test list of maps are shown in table 5.1. Based on evalua­
tion 1 alone, all the maps in the test list were either 
"ideal" or "good". Using evaluation 2 alone, all the maps 
in the test list were acceptable apart from the maps 
proposed by the author using data set 2. All the maps in 
the test list scored as acceptable using evaluation 3 
alone. When all three evaluations were summed together to 
produce a total score, all maps apart from those proposed 
by the author were considered acceptable.
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Map Map Map Score Classification

Identification E l E 2 E3 E 1 2 3

PPIL-1 B b F m S * F B S m m 0 0 0 0 ID EA L

PP IL-2 B b F m S * F B i i i S i n 0 0 0 0 ID EA L

PPI1 B  b in S F  *  f  B  f  f  F  S in in 0 0 0 0 ID EA L

PPI2 B  b ni S F  * f  B  f  f  F  in S m 0 0 0 0 ID EA L

PA A CT1 m B F b m S * F m S b b B 0 0 0 0 ID EA L

PA A C T2 m B F b m S ^ m F S b b B 0 0 9 9 A C C E P T A B L E

P IL-P U B R 1 B b F m S * F B S m m 0 0 3 3 GOOD

P IL -P U B R 2 B b F m S * F B m S m 0 0 0 0 ID EA L

PIL-P R O P B  b F M S *  F B S m M 0 18 3 21 U N A C C EP T A B L E

PI-PU BR 1 B  b ni S F  * f  B  f  f  S in m 0 0 0 0 ID EA L

PI-PU B R 2 B b m S F * f B f f n i S m 0 0 0 0 ID EA L

PI-PRO P 1 B  b M S F *  f  B  f  F m S M 1 18 0 19 U N A C C EP T A B L E

PI-PR O P2 B b M S F U ' B f F S m M 1 18 0 19 U N A C C EP T A B L E

A A C T -PU B R 1 m F  b in S * F  m S b b B 0 0 0 0 ID EA L

A A C T -P U B R 2 m F b m S * m F S b b B 0 1 0 1 GOOD

A A C T-PR O P1 M B S m F * S M b F b B 0 18 0 18 JN A C C E P T A B L E

A A C T -PR O P2 M B S F m  * S M b F b B 0 18 0 18 JN A C C E P T A B L E

A T I S B  s m b f  * f  B  f  f  f  f  s S f  m E m m M 0 0 0 0 ID EA L

A T 2 S B  s m b f  *  f  B  IT  f  f  s S m f  F  m m M 0 0 0 0 ID EA L

A C E1 M F f f B S * f m b F S m B m M 0 1 0 1 GOOD

A C E 2 M  F  f  f  B  S * m f  b F  S m B  m M 0 1 0 1 GOOD

A C E 3 M F f f B  S * f m  b F m  S B  m M 0 1 1 2 GOOD

A C E 4 M  F  f  f  B  S * m l b  F  m S B  m M 0 1 0 1 GOOD

Table 5 . 1 -  Scores awarded to the test list of maps by evaluations 1, 2 and 3.

The test list contained three blocks of maps as shown. The first block contained the 
perfect maps for PIL,PI, AACT generated from the perfect data. The second block 
contained the geneticist's optimal maps (map identification PUBR) and the author's 
proposed maps (map identification PROP) for PIL,PI,AACT generated from the Sefton et 
al(1990) data. The third block contained the geneticist's optimal maps for ACE/AT 
generated from the Sefton et al(l 990) data. Where there were coincident cut sites present, 
all the map permutations were evaluated (the map permutation number is the last figure in 
the map identification.)
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The number of maps possible for the PIL/PI/AACT genes, 
using the experimental data in Sefton et al(1990), was 
calculated in chapter 2. There were 4,055,040 maps possi­
ble for PIL; 57,507,840 maps for PI; and 8,847,360 maps 
for AACT. The revised published maps that the Sefton group 
assembled using the observed data were classified as 
"ideal" maps using the evaluation mechanism. How many 
other maps out of all the possible maps were also "ideal"? 
If there were very many, the evaluation mechanism would 
need to be revised to be more specific. In order to assess 
the specificity of the evaluation mechanism, it was pro­
posed that every possible map for each of the PIL/PI/AACT 
genes be enumerated using the Sefton data. Each map had 
the three evaluations applied separately and together. 
Maps were categorised as "ideal", "good", "adequate" or 
"unacceptable". The results of this exercise are shown in 
table 5.2. (One of the reasons for opting for a heuristic 
method rather than a systematic method was the length of 
time required for systematic approaches as shown in table
5.3. )

Using all three evaluations together there were 112 
"ideal" maps possible for AACT, 208 "ideal" maps for PI 
and 96 "ideal" maps for PIL. (As would be expected, the 
Sefton revised published maps were amongst the ideal 
maps.) When the "ideal" maps were examined in more detail, 
it was found that many maps had the same number of cut 
sites in the same order. The only difference between the 
maps was the nature of the cut sites (ie whether or not 
they were complete cut sites or partial cut sites). When

3 Investigating the specificity of the evaluation mecha­
nism



the nature of the cut site was ignored, maps reduced to a 
basic form which was referred to as a "template". A tem­
plate specified a particular number and sequence of cut 
sites around the gene, but ignored their nature. (The 
number of cut sites depended on the number of fragments in 
the data set, as illustrated in figure 2.4.) It was found 
that the 112 "ideal" maps for AACT reduced to 8 "ideal" 
templates, shown in figure 5.1; the 96 "ideal" maps for 
PIL reduced to 7 "ideal" templates, shown in figure 5.2; 
and the 208 "ideal" maps for PI reduced to 11 "ideal" tem­
plates. As 4 of these templates were identical( due to 
coincident cut sites), 7 unique templates are shown for PI 
in figure 5.3. Considering only templates reduced the 
number of possible maps for PIL from 4,055,040 to 15,840; 
for PI from 57,507,840 to 224,640; and for AACT from 
8,847,360 to 34,560.

The "ideal" templates for each of the genes had the same 
number of cut sites but the sequence of the cut sites 
differed markedly between templates illustrating just how 
many alternative ways the same fragments could be assem­
bled to give templates with unique sequences and varying 
lengths.



AACT PIL PI

Number of maps 

in the search space

8,847,360 4,055,040 57,507,840

EVALUATION 1

Ideal maps 1,439,744 1,233,920 11,161,600

Good maps 0 0 0

Adequate maps 238,080 584,192 3,206,144

Unacceptable maps 7,169,536 2,236,928 43,140,096

EVALUATION 2

Ideal maps 2,800 1,928 13,392

Good maps 29,152 22,376 171,224

Adequate maps 169,488 44,992 483,208

Unacceptable maps 8,645,920 3,985,744 56,840,016

EVALUATION 3

Ideal maps 28,288 16,896 14,336

Good maps 17,024 12,800 26,624

Adequate maps 376,384 179,712 336,384

Unacceptable maps 8,425,664 3,845,632 57,130,496

EVALUATION 1, 2, 3

Ideal maps 112 96 208

Good maps 528 576 672

Adequate maps 2,568 1,240 2,640

Unacceptable maps 8,844,152 4,053,128 57,504,320

Table 5.2 - Results of categorising all the maps possible for the PIL/PI/AACT data set
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PIL PI AACT

IBM compatible PC 
(386 processor) 10.25 days 146.5 days 22.5 days

DEC Alpha AXP 
workstation 1.75 hrs 1 day 4 hrs 33 mins 4 hrs 53 mins

Table 5.3 - Computing time required to enumerate and evaluate all possible maps in the 
PIL/PI/AACT data set
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Figure 5.1 - All AACT "ideal" templates
These templates were found by generating and evaluating 
all 8,847,360 maps possible for AACT. All the templates 
have the same number of cut sites (11) and range in length 
from 396.6 to 578.3 kb.
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Figure 5.2 - All PIL "ideal" templates
These templates were found by generating and evaluating 
all 4,055,040 maps possible for PIL. All the templates 
have the same number of cut sites (10) and range in length 
from 382.5 to 595 kb.
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Figure 5.3 - All PI "ideal" templates
These templates were found by generating and evaluating 
all 57,507,840 maps possible for PI. All the templates 
have the same number of cut sites (12) and range in length 
from 355 to 470kb.
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Examining the ideal templates in more detail indicated 
that they consisted of different cut site "options". (An 
"option" was the term given to the alternative ways that 
the restriction enzyme cut sites could be combined around 
a gene, as described in chapter 2, table 2.1.) For exam­
ple, when the PIL templates in figure 5.2 were analysed, 
the first five maps had the B and M cut sites arranged as 
"bbmm*bm" and the remaining two maps had the B and M cut 
sites arranged as "bbm*mmb". The "ideal" templates ranged 
in length from 382.5kb to 595kb. In the AACT "ideal" 
templates shown in figure 5.1, four templates had the 
option "bm*mmbbb" and four had the option "bmm*mbbb". The 
"ideal" templates ranged in length from 396.6kb to 
578.3kb. In the PI "ideal" templates shown in figure 5.3, 
there were four options - "fbm*bbmmfff"; "fbbm*bmmfff"; 
"bmmf*fffbbm" and "bbmmf*fffbm". The "ideal" templates 
ranged in length from 355kb to 470kb.

The percentage of "ideal" maps out of all the possible 
maps (using all three evaluations together) for PIL, PI 
and AACT was calculated to be 0.002%, 0.0004% and 0.001% 
respectively.

4 Discussion

When each of the evaluations was applied to the maps in 
the test list, only the Proposed maps (as generated by the 
author for data set 2) were classed as "unacceptable". 
Although the observed data fitted well into the Proposed 
maps as determined by evaluation 3, the yield and type of 
double digests observed and expected from the maps as 
calculated by evaluation 2, were not consistent.



All the "perfect" maps assembled from the "perfect" 
data(apart from PAACT2) were classed as "ideal" maps. 
PAACT2, was classed only as an "adequate" map, due to the 
evaluation from evaluation 3. In PAACT2, there were a 
large number of "BM" double digests to be fitted and the 
position of the fragments that would have resulted in an 
"ideal" map was overlooked. Nevertheless, PAACT2 was still 
acceptable and the alternative permutation of the cut 
sites, PAACT1 was "ideal". These results indicated that 
the evaluation mechanism was successful in identifying 
"perfect" maps as mainly "ideal" maps, but all as accept­
able.

All the optimal maps, as determined by the geneticists, 
were classed as "ideal" or "good" maps by the evaluation 
mechanism.

From the results of the exhaustive search described in 
section 3 it was clear that evaluation 1, which evaluated 
maps on how well the observed single digest data fitted, 
was very broad. A large number of maps scored as accept­
able based on evaluation 1 alone. It was more difficult 
for maps to score as acceptable using evaluations 2 and 3. 
Evaluation 2 scored a map on the yield and type of double 
digests expected from a map compared to the yield and type 
of double digests observed. Evaluation 3 scored a map on 
how well all the observed fragment lengths fitted into the 
map. Each of the evaluations applied individually were not 
sufficient to identify an optimal map. There were various 
problems with the "ideal" maps found by evaluations 1, 2 
and 3 when applied individually. Generally all three 
evaluations were applied to identify optimal maps although



as evaluation 1 was a subset of evaluation 3, applying 
evaluations 2 and 3 would have been sufficient. The number 
of acceptable maps using all three evaluations was low 
compared to the total number of maps in the search space, 
there were still too many for the geneticist to consider 
manually. The number of acceptable maps was narrowed down 
to those that were "ideal" maps, then further still to 
"ideal" templates. Considering only "ideal" templates 
resulted in a more manageable number of possibilities for 
PIL, PI and AACT. The "ideal" templates for each gene 
contained different cut site options which indicated that 
the "ideal" templates were not close to one another. As 
expected, templates for each of the revised published maps 
for the genes were among the "ideal" templates found by 
exhaustive search. Shorter "ideal" templates than the 
revised published maps were found for each of the genes 
which in theory represented better maps than the revised 
published maps. (Problems with these shorter templates 
were not apparent until the time came to merge the maps 
together to create a multi-gene map as described in chap­
ter 8) .

5 Summary

The results of applying the evaluation mechanism to the 
test list of maps showed that the evaluation mechanism 
could identify "perfect" maps assembled from "perfect" 
data as mainly "ideal" maps. The maps assembled by the 
geneticist and considered optimal were identified as 
"ideal" or "good" by the evaluation mechanism.

Given two competing maps generated from the same data, the 
evaluation mechanism was successful in discriminating



between maps and highlighting map problems. This was 
illustrated using the author's Proposed maps and the 
geneticist's optimal maps. The evaluation mechanism dis­
counted the Proposed maps as "unacceptable" due to incon­
sistencies between the number and type of double digests 
expected and observed. The reason why the Proposed maps 
were not better than the geneticist's maps had not been 
clear to date.

All possible maps from the Sefton et al(1990) PIL/PI/AACT 
data were systematically enumerated, evaluated and classi­
fied. The number of acceptable maps was reduced by defin­
ing the notion of a template. All the "ideal" templates 
present for each gene were shown. Better "ideal" templates 
than the geneticists maps were found for each of the 
genes. (These were discounted at a later stage when gene 
maps came to be merged together.)



CHAPTER 6 DEVELOPING A HYBRID GENETIC ALGORITHM
1 Introduction

Automating map assembly required some means of generating 
potential gene maps and an approach using a hybrid genet­
ic algorithm (HGA) was proposed. A Genetic Algorithm (GA), 
as introduced in chapter 3, is a type of search strategy 
based on the mechanics of natural selection that has had 
good success finding near-optimal solutions to a range of 
difficult problems with large search spaces and inexact 
data. A hybrid approach was chosen as the traditional GA 
could not be applied to sequencing problems and because 
the traditional GA was a general method. The development 
of the HGA is described in this chapter and the results of 
applying the HGA to generate potential maps from different 
data sets are contained in the next chapter. There were 
several areas that had to be addressed to develop an HGA, 
such as problem representation, choice of reproduction 
operators and choice of evaluation function, that were 
introduced in chapter 3. These issues are discussed in the 
following sections. The implementation of the HGA is 
outlined and methods for determining the success of the 
HGA are considered.

2 Representing the problem

In the "traditional" GA (as defined by Davis(1991a), 
"chromosomes" were represented as binary coded fixed 
length strings. When developing a hybrid GA, Davis(1991a) 
recommends that a representation which reflects the prob­
lem be adopted. Having considered several options, it was 
decided that "chromosomes" would be represented as single 
gene maps. A "chromosome" (gene map) consisted of a number



of Restriction Enzyme(RE) cut sites and the gene, in a 
particular order as shown below. Here, four R E s , 
"B", "M" , "S" and "F" were used. The complete cut sites 
(those that cut every time) are indicated in upper case 
and the partial cut sites (those that sometimes cut) are 
indicated in lower case.

eg B b M m S F * S M F B

The number of cut sites in the map depended on the number 
of single and double digest fragments observed experimen­
tally.

3 Developing a set of genetic operators

The role of the genetic operators in a GA was to take 
either one or two potential solutions (referred to as 
"parents" in GA notation) to a problem, and to recombine 
them in such a way as to create potential solutions that 
were better still (referred to as "children"). The tradi­
tional operators for GAs consisted of one-point crossover 
and mutation, and relied on a binary representation. As 
binary representation was not being used and because the 
map assembly problem was a sequencing problem, different 
recombination operators to the traditional operators were 
required. To develop appropriate operators for map assem­
bly, the way in which the geneticist approached the prob­
lem was examined and a way of breaking up the maps that 
was natural for the problem was sought, taking into ac­
count previous work on operators for sequencing problems 
(Goldberg and Lingle(1985) , Davis(1985), Oliver et
al(1987), Davis(1991a), Whitley et al(1989), Goldberg
(1989), Whitley et al(1991) and Fox and McMahon(1991)).



Three operators were developed - side swap, order swap and 
case swap. Given a map, the operators allowed different 
maps to be reached within the "option" space of the map. 
An "option" was the name (as introduced in chapter 2, 
table 2.1) used to describe the several alternative ways 
that cut sites could be combined around a gene and yet 
generate the same data. The number of maps possible for a 
given data set was calculated by taking the number of 
single digests and calculating the number of ways these 
could be generated from different numbers of cut sites on 
either side of the gene (different options). Then, the 
number of ways the cut sites could be permutated for each 
option was calculated. Adding up the number of permuta­
tions for each map option arrived at the total number of 
maps possible for a single gene. It was proposed that the 
operators would permit searching within a map option space 
but would not permit different map options to be mixed. 
Using the operators to mix map options would be benefi­
cial, in that it would allow all the maps possible to be 
reached; however it would create problems as to how such 
maps would be evaluated. The mechanism developed to evalu­
ate maps was based on the likelihood that the number of 
single digests expected would be the same as the number 
observed. (It was more common for the number of double 
digests to vary and this was taken account of in the 
evaluation mechanism.) Mixing map orders would result in 
problems with assigning the observed fragment lengths to 
the fragments expected from the map. It was proposed that 
a reasonably large initial population of maps would be 
created to ensure that the various map options were 
present.

8 3



The operators are described in more detail in the follow­
ing sections.

3.1 Side swap

The side swap operator was a modified form of the tradi­
tional crossover operator - crossover occurring at the 
position of the gene. Side swap swapped the left side of 
one parent map with the right side of the other parent 
map, as shown in figure 6.1. Side swap was permitted 
between two parent maps providing the resulting two chil­
dren yielded the correct number of observed fragments. For 
example, consider the case below where two maps are shown, 
each consisting of a series of RE cut sites and a gene, 
indicated by an asterisk.

map l - B b M S * b B M S  
map 2 - B M S * b b b B M S

Four single digest fragments would be observed for the 
gene using RE "B". There would be three ways the "B" cut 
sites could be arranged around the gene to give four 
fragments - "B b * b B" (as shown in map 1), "B * b b b B" 
(as shown in map 2) or MB b b b * B" (map 2 reversed). If 
side swap were to occur between these two maps, two child 
maps would be obtained as shown. From child map 1, eight 
"B" fragments would be expected and from child map 2, two 
"B" fragments would be expected.

child map l - B b M S * b b b B M S  (8 "B" fragments) 
child map 2 - B M S * b B M S  (2 "B" fragments)

It was determined from discussions with geneticists, that 
it was likely that more fragments would be expected from a



map than would be actually observed, as fragments could go 
missing or could be misinterpreted. This situation was 
considered typical for double digests results, due to the 
experimental technique required to perform double digests. 
It was not considered to be as common for single digests 
results as the single digest results tended to be much 
more accurate. This was one of the reasons why side swaps 
that would result in an inconsistent number of fragments 
were disallowed. The other reason was the difficulties 
that such a situation would create when it came to evalu­
ating the maps. The evaluation mechanism determined how 
well a set of observed experimental data fitted into a 
map. In evaluations 1 and 3, the observed single digest 
lengths had to be assigned to positions in the map. Even 
when there was the same number of observed and expected 
fragments, there was uncertainty with assigning the 
lengths (as described in detail in chapter 4 section 5.1.) 
So, it was proposed that the side swap operator only be 
applied to two maps that would result in the correct 
number of single digests expected as observed. This con­
straint did not apply to double digests as it was more 
likely that there would be differences in the number of 
double digests expected and observed and a method of 
handling the inconsistencies had been incorporated into 
evaluation 3 (as described in chapter 4, section 5.3.)

3.2 Order swap

Normally, there are two types of map that the geneticist 
can refer to for the region of DNA they are interested in, 
a "framework map" and a "comprehensive map". A framework 
map shows amongst other things, the position of genes, RE 
cut sites and probes for a particular region of DNA. The



information within a framework map is very reliable as it 
has been verified by several sources. A map that is still 
under trial is called a comprehensive map. A comprehensive 
map shows the same type of information as the framework 
map however the information within it is not supported to 
the same degree as the information in the framework map. 
The geneticist has most confidence in the information 
described in a framework map. The geneticist will attempt 
to fit the sequence of genes and cut sites in a potential 
map, into the comprehensive map. The geneticist examines 
the consequences of moving cut sites one position to the 
left or right of their current position - a concept known 
as "local support".

An operator called "order swap" was developed to allow for 
cut sites to be moved on either side of a map, implement­
ing the local support concept. Order swap was considered a 
mutation operator as it carried out local modification of 
a single map. It introduced variation within each side of 
a map by swapping the order of two different REs providing 
the swap was legal. A swap was considered legal providing 
a complete cut site was not moved closer to the gene than 
any of its partial cut sites. As a complete cut site 
always cut, it should not be possible to obtain fragments 
as a result of a more distant cut site cutting. A partial 
cut site can not be moved further away from the gene than 
its complete cut site. Order swap is illustrated in figure 
6 .2.

3.3 Case Swap

Some mechanism for enabling the nature of cut sites (ie 
whether or not the cut site x*;as jDartial or complete) to be



altered was required. The position of a complete cut site 
in a map prevented any of the same type of cut sites 
further away from the gene from producing fragments. The 
position of a partial cut site enabled longer fragments to 
be generated as illustrated in chapter 2, figure 2.4. 
Generally, more double digests tended to be expected from 
a map than were observed. To allow for variation in the 
number of double digest fragments expected, it was pro­
posed that an operator for changing the nature of cut 
sites was required. A "case swap" operator was devised. 
Case swap swapped the outermost cut site for a particular 
RE to partial if complete, and to complete if partial. The 
operation of case swap is illustrated in figure 6.3. Case 
swap worked by randomly selecting a RE and a side of map 
(left or right) and changed the case of the outermost cut 
site for the RE.

4 Developing the evaluation function

A GA requires some method of evaluating the goodness, or 
"fitness" (using GA terminology) of potential solutions. 
This is referred to as the evaluation function. The way in 
which potential solutions are assessed is critical to the 
success of any GA as this has a direct influence on the 
parents of the next generation. For the map assembly 
problem, it was essential that an evaluation function 
captured the essence of a good or bad map. The evaluation 
function for assessing maps was based on the map evalua­
tion mechanism developed and tested in chapters 4 and 5. 
The mechanism awarded a score to a map that indicated the 
goodness of fit of the observed experimental data in a 
potential map.
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Figure 6.1 - Side swap

B b M S F * b M F B S  

position 0 1 2 3 4 5 6 7 8 9  10

order swap positions 2/4 >  B bF S M  * b M F B S

Figure 6.2 - Order swap

B b M  S F * b M F B S  

position 0 1  2 3 4 5 6 7 8 9  10

case swap position 2 >  B bm S F * b M F B S

Figure 6.3 - Case swap



The mechanism comprised three evaluations : evaluation 1 
which assessesed the fit of the single digest data; evalu­
ation 2 which assessesed the nature and yield of the 
double digest data; and evaluation 3 which assesses the 
fit of the total data. The mechanism was applied to a 
test list of maps assembled from three different sources 
of data. The results, shown in chapter 5, indicated that 
the evaluation mechanism was successful in identifying 
perfect maps and the maps that the geneticist considered 
optimal.

5 Setting parameter values

There are several parameters in a GA that require to be 
set to appropriate values - population size, number of 
trials and operator probabilities. There are established 
parameter settings described in the literature for GAs 
using binary representation, binary crossover and mutation 
(Schaffer et al(1989)) however, finding good setting for 
non-binary representations is not a trivial task 
(Davis(1989)). Poor settings for parameter values can have 
a profound impact on GA performance. In order to investi­
gate the effect of changing parameter settings, the HGA 
was equipped with a front-end menuing system to allow 
parameters to be changed easily to tune performance.

5.1 Population size

The size of the population is an important parameter in a 
GA. If the population size chosen is too small, the GA 
tends to end up with a population consisting primarily of 
similiar individuals (population has "converged") with 
insufficient processing of too few types of potential



solution. If the population size is too large, the GA 
tends to take a long time before significant improvement 
is achieved as there is not enough mixing of building 
blocks per unit of computation time. Goldberg(1989) 
carried out a theoretical analysis of optimal population 
sizes which suggested that optimal population size for 
traditional GAs increased exponentially with the length of 
the string. However, empirical studies have found that 
population sizes of 50-100(DeJong(1975)), 30 (Grefenstette
(1986)), 20-30(Schaffer et al(1989)) and a value between n 
and 2n (where n=string length) (Alander(1992)) were opti­
mal. Reeves(1993b) investigated the performance of GAs 
with very small population sizes and reported that small 
populations were adeguate for binary strings but for non­
binary strings, larger population sizes were necessary.

DeJong(1975) suggested good performance be obtained from 
high crossover probability/low mutation rates and moderate 
population size for traditional GAs.

For the experiments conducted here, the size of the popu­
lation and number of trials were varied to optimise per­
formance. Reasonably large populations were chosen to 
ensure that all the map options for a data set were 
present. For each experiment, 20 runs were performed.
5.2 Number of trials

The number of trials or generations to run is closely 
linked to the size of the population. In general, a GA 
either runs until the population converges, or for a fixed 
time slot.



5.3 Operator probabilities

The rate at which operators are applied while the GA is 
running has to be set appropriately. The optimal rate 
depends on the reproduction technique employed. If a 
policy of replacing the whole population at each genera­
tion is adopted (refered to as "Generational Replacement 
without Elitism"), the rate at which the operators are 
applied needs to be kept low to ensure that the good 
material is not all lost. However, if the best solution is 
preserved and automatically put forward to the next gener­
ation, an "elitist" strategy, the operator rates can be 
higher as the best material is preserved. Traditional GAs 
tended to use a Generational Replacement with Elitism 
policy and studies found crossover rates of 0.6 
(DeJong(1975)), 0.95(Grefenstette(1986)) and 0.75-0.95
(Schaffer et al(1989)) to be optimal. The optimal mutation 
rate tended to be much lower at 0.001 (DeJong(1975)), 0.01 
(Grefenstette(1986) ) and 0.005-0.01 (Schaffer et al
(1989)).

Three operators were used: side swap, order swap and case 
swap and the rates of applying them were varied.

6 Generating the initial population

Traditional GAs generated the initial population at ran­
dom. However, it was recognised that if domain specific 
knowledge was available, it could be usefully exploited in 
the GA. It was decided that the HGA would use the domain 
specific information in the form of the experimental data 
to generate maps. A "gene map builder" was developed which 
took as input the single digest data for a gene (as shown



in chapter 1, table 1.1) and generated as many maps as 
specified by the population size. Given the number of 
strong fragments per digest, the way in which the cut 
sites could be ordered were calculated. For each map, an 
order for each digest was selected at random and legal 
gene maps for the initial population were created.

7 Selecting a reproduction technique

Three main types of reproduction technique are described 
in the literature and reviewed by Davis(1991a) - genera­
tional replacement(GR), generational replacement with 
elitism(GRE) and steady-state replacement without dupli- 
cates(SSWD). With GR, all the members of the parent gener­
ation were replaced by the new generation of children. The 
traditional GA used GR normally with an "elitist" strate­
gy, copying the best member of the current population into 
the new population. Although in some cases elitism in­
creased the speed of dominance of a super individual, it 
appeared to improve GA performance.

Whitley(1988) and Syswerda(1989) investigated modifying 
the reproduction technique so that only one or two indi­
viduals were replaced at a time - a technique Syswerda 
called "steady-state"(SS) reproduction. Only a small 
number of new potential solutions were created in each 
generation. The same number of members were deleted from 
the population and selection for deletion was done through 
inverse ranking, starting with the worst member in the 
population. A form of automatic elitism existed in that 
good members tended not to be deleted. Syswerda(1989) 
believed that SS worked better than the standard GR 
technique for two main reasons. Firstly, that SS was not



as susceptable to higher error rates and secondly, that SS 
took better advantage of good schemata in the population. 
Initially researchers found that this technique did not do 
as well as GR, however, it was found that if SS replace­
ment was applied with the strategy of discarding any 
duplicate children, resulting in every population member 
being different, it out performed GR. This technique was 
known as "steady-state replacement without duplicates".

All three reproduction techniques were included as op­
tions in the HGA.

8 Selecting a parent selection technique

The purpose of parent selection is to give a greater 
reproductive chance to the most fit members of the popula­
tion. There are several ways this can be done which are 
described in the literature (DeJong(1985),Brindle(1981) 
and Goldberg(1989)). One of the most well known and com­
monly used parent selection techniques is called Roulette 
Wheel Parent Selection and for these reasons, it was 
chosen for the HGA. Roulette wheel parent selection works 
by summing the fitnesses of all the population members to 
obtain the total fitness. A random number between zero and 
the total fitness is generated and the first population 
member whose fitness when added to the fitness of the 
preceeding population members is greater than or equal to 
the random number is returned.

9 Selecting a fitness technique

The method of converting the evaluation figure into a 
fitness value is called the fitness technique. The sim­
plest technique is to assign the value arrived at by the



evaluation function as the fitness value, however, there 
are problems with this approach. For example, if there is 
a potential solution in a population with a very high 
fitness value and the rest of the individuals have low 
fitness values, it is likely that the highly scoring 
individual is selected for reproduction more often than 
the low scoring individuals and after a number of genera­
tions, the population prematurely converges. The low scor­
ing individuals would not have had much chance to be 
selected and the amount of recombination between the lower 
scoring individuals and the high scoring individuals would 
be low. Another problem arises if there are a number of 
individuals with fitness values clustered together. It is 
possible that there is not enough of a difference to allow 
the better ones to reproduce more often.

There are scaling techniques described in the literature, 
such as "windowing" and "linear normalisation", that can 
be used to convert the evalution figure into a fitness 
value. The aim of these techniques is to ensure that 
appropriate levels of competition are maintained through a 
run by re-scaling the evaluation values to produce a 
distribution which smoothes out exceptionally high evalu­
ations or widens a band of similiar evaluations.

For the HGA, linear normalisation was chosen as the fit­
ness technique as it handles the problems of very highly 
fit individuals, and tightly packed individuals well(Davis 
1991a). The maps were ordered by increasing evaluation. 
The map with the lowest score was assigned the top fitness 
value of 100. Subsequent maps were assigned fitness values 
which decremented at a constant rate. As a preliminary 
measure, the decrement value chosen was 5. The next lowest9 4



score was assigned the fitness value 95 and so on. The 
minimum fitness value was set at 1.

10 Implementation issues

As it was essential that the HGA parameters were varied 
until satisfactory results were achieved, it was decided 
that a "front-end" menuing system would be developed to 
allow for various features to be selected. This would 
facilitate implementation and allow the effect of changing 
parameters to be observed. The HGA program was written in 
Microsoft C version 6 and developed on an IBM compatible 
PC. The software package Liant C-scape was used to assist 
with the user interface. The main steps of the program are 
illustrated in figure 6.4.

11 Determining the success/1imitations of the HGA

Silver(1980) discussed four properties of a good heuris­
tic. A good heuristic should : perform well on average; 
minimise the chance of a very poor solution; be simple to 
understand; and should use a realistic amount of computa­
tional effort. Reeves(1993a) considered how the perform­
ance of a heuristic could be measured by using analytical 
methods, empirical testing and statistical inference. The 
success of a GA in any application area can only be deter­
mined by experimentation (Davis(1991a), Bagchi(1991)).



Figure 6.4 - Hybrid genetic algorithm description

(Note, the process is repeated either for a fixed period of time or until the population has
converged.)

96



The performance of the HGA was assessed in five different 
ways -

* the number of acceptable maps found by the end of a run;

* the average map score at the end of a run;

* comparison of performance of the HGA with the perform­
ance of a similiar program that generated new maps at 
random, rather than using the operators and fitness pro­
portionate selection of the HGA;

* the amount of time the HGA took to generate acceptable 
maps was compared with the time required for an exhaustive 
search; and

* the percentage of ideal templates found by the HGA with 
respect to the fraction of search space examined.

An acceptable map was an "ideal", "good" or "adequate" 
map. The number of acceptable maps generated was a result 
of the score of the maps. In general, a population of maps 
would initially have a high average map score which would 
hopefully improve over the run. When a map in the popula­
tion achieved a score of nine or less, the map was consid­
ered acceptable. At the end of each HGA run the acceptable 
maps generated were analysed and any enhancements that 
could be made to the evaluation function to improve the 
search were incorporated, where possible. Whether or not 
the optimal map, as assembled manually by the geneticist, 
was present at the end of a run was noted. The effective­
ness of the different components of the evaluation func­
tion (evaluations 1,2 and 3) in identifying acceptable 
maps was determined by comparing the actual number of



acceptable maps, as established by exhaustive search, with 
the number of acceptable maps generated using the HGA. Two 
types of performance graphs were produced showing the 
average number of acceptable maps generated over a number 
of trials and showing the average map score over a number 
of trials.

The difference in performance between two or more runs was 
measured by comparing the number of acceptable maps or 
average map score over the run. The number of acceptable 
maps or average map score was plotted on the y-axis of a 
graph where the x-axis represented the number of trials in 
the run. The points on the y-axis were transformed into 
straight lines, where necessary, generally using a loga­
rithmic or reciprocal transformation. This produced a 
straight line for the data for each of the runs. An analy­
sis of covariance was applied to the two or more lines to 
determine whether or not all the points could be fitted by 
one line. The null hypothesis was that a single line was 
sufficient to fit all the points from the two or more 
runs. If the null hypothesis was rejected at the five 
percent level, the runs were considered to be significant­
ly different.

12 Summary
A hybrid genetic algorithm(HGA) was developed to generate 
single gene maps given a set of experimental data. Gene 
maps were represented in GA notation; three problem spe­
cific operators were devised; the evaluation function was 
chosen; and the options for other features were outlined. 
Ways of determining the success of the HGA were consid­
ered. The results of applying the HGA to different data 
set are contained in the next chapter.



CHAPTER 7 - HYBRID GENETIC ALGORITHM RESULTS

1 Introduction

The results of using the HGA to generate acceptable single 
gene maps from three different sets of data are described. 
The principal data set used in the experiments to deter­
mine the parameter settings for the HGA was the Sefton et 
al(1990) PIL/PI/AACT data set. Once reasonable parameter 
settings had been achieved, the HGA was run using two 
further data sets, the perfect PIL/PI/AACT data and the 
ACE/AT data. (All three data sets are contained in Appen­
dix A.) Various modifications were made to the HGA as a 
consequence of the results. (The four versions of the HGA 
used are summarised in Appendix H. They are referred to as 
HGAvO, HGAvl, HGAv2 and HGAv3, respectively.) The perform­
ance of the HGA in generating acceptable gene maps is 
discussed.

2 HGA results using data set 1 - PIL/PI/AACT

Several experiments were performed to tailor the HGA to 
the map assembly problem and the experiments and their 
results are described in the following sections. As the 
HGA was a probabilistic algorithm, twenty runs were con­
ducted to calculate the average performance (unless other­
wise stated). (That twenty runs were sufficient was estab­
lished by running the same experiment three times (sixty 
runs in total) and calculating that there was no signifi­
cant difference between the results of the three experi­
ments .)

Three different reproduction techniques were available in 
the HGA: Generational Replacement (GR); Generational



Replacement with Elitism (GRE); and Steady-State(SS). 
Early experiments using GR showed that although acceptable 
gene maps were produced during the course of a run they 
tended to get lost. The GRE technique was used for several 
experiments and the effect of varying the population size 
was investigated for AACT. Populations of 80, 40 and 20 
maps were used. The large populations converged quicker 
than the smaller population, but took more time. Although 
there appeared to be a high proportion of acceptable maps 
in the population (between 25% - 50% by trial 30), many of 
the maps were identical which made interpreting the re­
sults complicated. For this reason, the decision was made 
to use a Steady State reproduction technique for future 
experiments.

2.1 Varying the evaluation mechanism

The effect of the different evaluations on the number of 
acceptable maps was investigated for AACT. Evaluations 
were applied separately (Evaluation 1(E1), Evaluation 
2(E2), Evaluation 3(E3)) and in combinations (E12, E13, 
E23, E123) and the results are shown in Figure 7.1. The 
number of acceptable maps using evaluation 1 alone was 
very high - 80% of the population consisted of acceptable 
maps by the end of the run. The number of acceptable maps 
obtained at the end of the run using evaluations 2 and 3 
alone was lower than evaluation 1 as it was harder for 
maps to score well on these evaluations.
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Figure 7.1 The effect of the different evaluations on the number of acceptable maps for 
AACT using HGAvl. (Steady-State reproduction technique used replacing 2 maps at 
each trial; operators applied 30% each; and population size =  100.)

Number of trials

Figure 7.2 The change in the average map score for PIL, PI and AACT using evaluations 
1,2 and 3, HGAvl. (Steady-State reproduction technique used replacing 2 maps at each 
trial; operators applied 30% each; and population size =  100.)
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Using all three evaluations together produced a low number 
of acceptable maps at the end of 50 trials for 
AACT(1.25),PIL(1.65) and PI(2.8). The corresponding change 
in average map score over the run is shown in figure 7.2 
for PIL, PI and AACT (using all three evaluations, HGA 
vl). Although there was a significant improvement in map 
score over the run (64.5% for AACT; 49.9% for PIL; and 
70.6% for PI) it did not have a great impact on the number 
of acceptable maps. This was probably because the average 
map score had to improve to nine or less before a map was 
classed as acceptable.

2.2 Tailoring the reproduction technique

A "Steady-State-Without-Duplicates" (SSWD) reproduction 
technique was introduced in an attempt to improve upon the 
results shown in section 2.1. Figures 7.3 and 7.4 show the 
effect on the number of acceptable maps of applying the 
evaluations separately and in different combinations for 
PIL and PI using the SSWD reproduction technique. Figure
7.5 shows the effect on the number of acceptable maps of 
applying all three evaluations together for AACT. The 
change in the average map score for PIL, PI and AACT 
applying all three evaluations together is shown in figure
7.6. When all three evaluations were applied together the 
number of unique acceptable maps increased significantly 
for AACT and PI. The average map score improved over the 
run as shown in Figure 7.6.



Figure 7.3 The effect of the different evaluations (E1,E2,E3,E123) on the number of 
acceptable maps for PIL using HGAv2. (Steady-State-Without-Duplicates reproduction 
technique was used, replacing 2 maps at each trial; operators applied 30%  each; and 
population size =  100.)

Number of trials

Figure 7.4 The effect of the different evaluations (E1,E2,E3,E123) on the number of 
acceptable maps for PI using HGAv2. (Steady-State-Without-Duplicates reproduction 
technique used, replacing 2 maps at each trial; operators applied 30% each; and 
population size =  100.)
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Figure 7.5 The number of acceptable maps for AACT using evaluations 1,2 and 3 and 
HGAv2. (Steady-State-Without-Duplicates strategy used, replacing 2 maps at each trial; 
operators applied 30% each; and population size =  100.)

Number of trials

Figure 7.6 The change in average map score for PIL,PI and AACT using evaluations 1,2 
and 3, HGAv2. (Steady-State-Without-Duplicates strategy used, replacing 2 maps at each 
trial; operators applied 30% each; and population size =  100.)
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2.3 Cutting down on duplicate templates and illegal maps

Although there were no identical maps present, there were 
many maps which had the same number of cut sites in the 
same position which differed only in the nature of the cut 
sites (whether or not the cut site was partial or com­
plete) . It was conjectured that much of the search effort 
may have been spent modifying the same basic map with cut 
site variations. In an attempt to broaden the search and 
improve performance, the SSWD reproduction technique was 
adjusted to become a "steady-state without duplicate 
templates"(SSWDT) technique. A map template was defined as 
a map where the nature of the cut sites was not relevant. 
The SSWDT technique did not allow duplicate map templates 
to be added to the population unless the new template 
scored better than an existing template.

Further examination of the acceptable maps revealed a high 
proportion of maps that scored well using evaluation 3. 
With evaluation 3, it was possible that intervals between 
cut sites could be zero which allowed for the representa­
tion of coincident cut sites. A problem arose when the 
interval over the gene was set to zero as this had the 
potential of creating an illegal map. Many of the maps 
that had scored well using evaluation 3 had a zero inter­
val across the gene. Evaluation 3 was revised to check for 
and penalise such a situation. (Modifying the reproduction 
technique and revising evaluation 3 resulted in HGA v3.) 
The effect of these changes on the number of acceptable 
maps and the map score is shown in figures 7.7 and 7.8 for 
PI.
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Figure 7.7 The effect of disallowing duplicate templates between HGA v2 and v3 on the 
no. of acceptable maps for PI using evaluation 1(E1), evaluation 2(E2) and evaluation 
3(E3). (SSWDT strategy used; operators applied 30%  each; and population size =  100.)

Number of trials

Figure 7.8 The effect of disallowing duplicate templates between HGA v2 and v3 on the 
average map score for PI usingevaluation 1 (E 1), evaluation 2(E2) and evaluation 3(E3). 
(SSWDT reproduction technique used; operators applied 30% each; and population size 
= 100.)
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Using evaluation 1, all the maps in the population became 
acceptable maps by trial 70. There was a significant 
difference in the number of acceptable maps generated up 
to trial 70 between the two versions of the HGA. Disallow­
ing identical templates had a significant effect on the 
number of acceptable maps generated using evaluation 2. 
Using evaluation 3 alone, there was a significant drop in 
the number of acceptable maps at the end of the run. It 
was conjectured that this was the result of the combined 
effect of revising evaluation 3 to penalise maps with a 
zero interval over the probe, and disallowing identical 
templates.

2.4 Varying parameter settings

The rate of applying the three operators had been set at 
30%. The effect of varying the operator settings on the 
number of acceptable maps and the average map score for 
AACT and PI was examined. Case, order and side swap were 
applied at the following rates for AACT using all three 
evaluations and HGAvl: experiment A - 20% each; experiment 
B - 30% 30% 60%; and experiment C - 100% each. For PI, 
HGAv3 was used with all three evaluations and case, order 
and side swap were applied at the following rates: experi­
ment A - 30% each; experiment B - 50% 50% 0%; and experi­
ment C - 50% 50% 25%.

For both genes, there was a significant difference in 
performance between the three settings (settings from 
experiment C were best for AACT and from experiment B for 
PI) however, the difference was not enough to have a 
practical effect on the number of acceptable maps. (All 
other parameters were set as for section 2.3.)



The effect of extending the number of trials over which 
the HGA ran on the average map score and on the average 
number of acceptable maps was examined and the results are 
shown in figures 7.9 and 7.10 for PIL using HGAv3. The 
operator rates were set at 30% each. Reducing the popula­
tion size to fifty significantly improved the map score 
although this did not have much of a practical effect on 
the number of acceptable maps.

2.5 Random replacement

The effect of using fitness proportionate selection cou­
pled with the problem specific operators in the HGA was 
compared with a random replacement scheme and the results 
are shown for PI in figure 7.11. (AACT and PIL displayed a 
similiar trend.) HGAv3 was modified so that new maps were 
produced by the gene map builder and not by selecting 
parents and applying the operators. As before, the worst 
maps in the population were replaced at each generation. 
The fitness of the population, as indicated by the map 
score, for each of the three genes was significantly 
poorer using the random replacement scheme.
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Figure 7.9 The number of acceptable maps for PIL using evaluations 1,2 and 3, HGAv3 
and a population size of 100 (A) and 50 (B). (Steady-State-Without-Duplicate-Templates 
strategy used; and operators applied 30% each.)

Number of trials

Figure 7.10 The change in average map score for PIL using evaluations 1,2 and 3, HGAv3 
and a population size of 100 (A) and 50 (B). (Steady-State-Without-Duplicate-Templates 
stratgey used; and operators applied 30%  each.)
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Figure 7.11 The effect of replacing maps at random compared to using fitness 
proportionate parent selection and the special operators (as in HGAv3) on the map score 
for PI using evaluations 1,2 and 3.
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2.6 HGA success rate

The average number of acceptable maps generated at the end 
of 100 trials using HGAv3 and applying all three evalua­
tions together was found to be low for PIL(4.2 maps), PI(3 
maps) and AACT(4.85 maps). The results represented the 
average of 20 runs. When the cumulative number of ideal 
maps alone generated for the 20 runs was examined, the HGA 
appeared to have been reasonably successful in finding a 
high proportion of ideal templates for each gene from 
examining a small fraction of the total search space. The 
number of map evaluations carried out at each trial de­
pended on the reproduction technique employed. For exam­
ple, when Generational Replacement with Elitism (GRE) was 
used initially 100 maps were produced and evaluated at 
each trial.

A disadvantage of GRE was the amount of time spent evalu­
ating a completely new population at each generation 
coupled with the probability that time was being spent 
evaluating identical maps as there were likely to be a 
high number of identical maps produced at each generation. 
For a population size of 100 and 100 trials, 100,000 new 
maps were generated and evaluated. This was in contrast to 
a steady state reproduction technique when a small number 
of maps were produced and evaluated at each generation. 
Using a population size of 100 and 100 trials, replacing 2 
maps at each generation, 298 new maps were produced and 
evaluated. Each experiment of 20 runs conducted would have 
produced and evaluated 5960 maps (([100 maps in the ini­
tial population + (2 new maps each generation x 99 genera­
tions) ]x2 0) .
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A - PIL 37.6 % of the PIL search space was examined in total by the HGA over 20  
runs. 66%  of the ideal templates were found.

B - PI 2.6%  o f the PI search space was examined in total by the HGA over 20 runs. 60%  
of the ideal templates were found.

C- AACT 17.2% of the AACT search space was examined in total by the HGA over 20 
runs. 41%  of the ideal templates were found.

Figure 7.12 The fraction of the search space sampled by the HGA for PIL (A), PI (B) and 
AACT (C) and the percentage of ideal templates discovered.
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Using a steady-state reproduction technique, 37.6% of all 
possible maps for PIL were examined and 66% of all the 
ideal templates were found. 2.6% of all the possible maps 
for PI were examined and 60% of all the ideal templates 
were found. 17.2% of all the possible maps for AACT were 
examined and 41% of all the ideal templates were found. 
These figures are shown pictorially in figure 7.12.

2.7 HGA dynamics

The behaviour of the HGA was examined in terms of the 
number of acceptable maps generated over the 20 runs and 
when during the run the acceptable maps were produced. 
(Operators applied 30% each; population size = 100; and a 
steady-state-without-duplicate-templates strategy, replac­
ing 2 maps at each trial.)

The acceptable maps produced at the end of selected runs 
were examined and it was found that the maps were very 
close in terms of the operations required to go from one 
acceptable map to another. When the whole search space for 
AACT was examined (as described in chapter 5, section 3), 
the number of acceptable maps was split almost evenly 
between the four map options. It was conjectured that if 
all map options could be preserved during a run, there 
would be a greater number of acceptable maps generated 
than from those runs which lost map options. The results 
obtained from this exercise were inconclusive. It was 
conjectured that the results from a larger number of runs 
would need to be examined.

The point in the run at which the first acceptable map was 
produced was investigated. It was conjectured that the 
presence of acceptable maps either in the initial popula­



tion or early on in the run would give rise to an in­
creased number of acceptable maps for that population. It 
was found that the majority of acceptable maps were pro­
duced prior to generation 50.

3 HGA results using data set 2 - perfect PIL/PI/AACT data

The exact data that would be expected from the Sefton 
revised map was calculated for PIL/PI/AACT. The perfect 
data set contained no errors. All fragment lengths were 
accurate and all the expected fragments were present. The 
perfect data set is shown in Appendix A. The number of 
acceptable maps for PPIL, PPI and PAACT using all evalua­
tions together are shown in figure 7.13 and the change in 
the average map score is shown in figure 7.14. Although 
the number of acceptable maps at the end of 100 trials was 
low for each of the genes, the fitness of the population, 
as indicated by the map score, improved most noticeably 
for PAACT followed by PPI then PPIL.

4 HGA results using data set 3 - AT/ACE

The AT/ACE data set, shown in appendix A, was used with 
HGAv3. The number of acceptable maps for AT and ACE using 
all evaluations together are shown in figure 7.15 and the 
change in the average map score is shown in figure 7.16. 
The number of acceptable maps at the end of the 100 trials 
was low but the map score had improved substantially over
the course of the run.



Figure 7.13 The number of acceptable maps for PPI,PPIL,PAACT using evaluations 1,2 
and 3, HGAv3. (Steady-State-Without-Duplicate-Templates technique used replacing 2 
maps at each trial; operators applied 30% each; and population size =  100.)

Number of trials

Figure 7.14 The change in average map score for PPIL, PPI and PAACT using 
evaluations 1,2 and 3, HGAv3. (Steady-State-Without-Duplicate-Templates technique 
used replacing 2 maps at each trial; operators applied 30%  each; and population size =  
100.)
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Figure 7.15 The change in map score for AT using evaluations 1,2 and 3, HGAv3. 
(Steady-State-Without-Duplicate-Templates strategy used, replacing 2 maps at each trial; 
operators applied 30%  each; and population size =  100.)

Figure 7.16 The change in map score for ACE using evaluations 1,2 and 3, HGAv3. 
(Steady-State-Without-Duplicate-Templates strategy used, replacing 2 maps at each trial; 
operators applied 30% each; and population size =  100.)
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5 Discussion of results

Various modifications were made to the parameter settings 
in the HGA to optimise performance. The effect of changing 
the population size, the number of trials, the operator 
settings and the reproduction technique on performance was 
investigated. The effect of using different combinations 
of evaluations in the evaluation mechanism was examined. 
The HGA was applied to three different data sets: the 
PIL/PI/AACT data set as contained in Sefton et al(1990); 
the perfect PIL/PI/AACT data (the data calculated by the 
author that should have been observed given the revised 
published map)? and the AT/ACE data as contained in Sefton 
et al(1990). Four main versions of the HGA were used 
(HGAvl, HGAv2, HGAv3, HGAv4) for the experiments reported 
here (each version is summarised in appendix H).

The effect of the different evaluations on the number of 
acceptable maps for AACT was examined, using HGAvl. A 
steady state reproduction technique replacing two maps at 
each trial was used. As can be seen from figure 7.1, using 
evaluation 1 alone, after fifty trials, 80% of all the 
maps in the population would be considered acceptable 
based on this evaluation alone. This was as expected 
because evaluation 1 was a broad evaluation as illustrated 
in chapter 5, table 5.2. Using the figures for AACT in 
chapter 5 table 5.2, it was calculated that approximately 
19% of all the maps possible for AACT would be considered 
acceptable based on evaluation 1 alone. Using evaluations 
1 and 2 together resulted in fewer maps being considered 
as acceptable maps at the end of the run. Evaluation 3 
resulted in 40% of the population being considered as



acceptable maps and evaluation 2 resulted in 28% of the 
population being considered as acceptable maps. Applying 
evaluations 1 and 3 together gave a similiar result to 
applying evaluation 3 alone. This is what would be expect­
ed because a map which was acceptable according to evalua­
tion 3 must be acceptable according to evaluation 1. 
(Evaluation 1 measured how well the single digest data 
fitted and evaluation 3 took account of this also.) Apply­
ing all evaluations together gave a similiar result to 
applying evaluations 2 and 3 together. The change in 
average map score showed that the fitness of the popula­
tion improved by 64.5% for AACT, 49.9% for PIL and 70.6% 
for PI over the 50 trials. The average number of accept­
able maps using all three evaluations over the 50 trials 
was low (AACT(1.25), PIL(1.65%) and PI(2.7%)). The number 
of maps in the population was set to 100 to ensure that 
there was a good mix of map options in the initial popula­
tion. (Both AACT and PIL had four map options each and PI 
eight.)

The effect of modifying the reproduction technique on the 
number of acceptable maps and the map score was examined. 
Generational Replacement with Elitism (GRE) was used in 
several experiments and in the runs reported in Walker et 
al(1994) and the results of varying the population size on 
the number of acceptable maps and map score for AACT was 
investigated. Although the number of acceptable maps in 
the population appeared high compared to the results found 
using a Steady-State(SS) strategy for AACT(between approx­
imately 35% to 56% of acceptable maps compared to approxi­
mately 1% acceptable maps) the effect of duplicate maps 
was not taken into account. It was postulated that if



duplicate maps were disallowed, the diversity in the 
population would be increased and that this would improve 
the performance of the HGA. Disallowing duplicates did 
result in a significant increase in the number of unigue 
acceptable maps for AACT and PI as reported in section 
2.2. (It was not possible to determine whether or not the 
increase for PIL was significant using the method de­
scribed in chapter 6 section 11 as a simple transformation 
of the results into a straight line could not be found.)

The number of trials conducted was originally set to 50 as 
this had seemed adequate to allow the population to con­
verge when using evaluation 1. To allow comparisons be­
tween the results of different experiments it was main­
tained initially at 50. Generally, GA practice suggests 
that a GA should be allowed to run ideally until the 
population converges or alternatively for a set period of 
time. For these reasons, it seemed appropriate to increase 
the number of trials. When the number of trials was ex­
tended to 100 (using HGAv2), the number of acceptable 
maps generated by the HGA using each evaluation separately 
and all together increased as can be seen in figure 7.3 
for PIL and 7.4 for PI and the map score improved signifi­
cantly as shown in figure 7.6. The rate of increase of the 
map score was slowest when all three evaluations were 
applied together.

The number of acceptable maps for PIL and PI (figures 7.3 
and 7.4) using evaluation 3 alone was higher than expected 
as it was not considered possible that the observed data 
could be fitted well into so many different maps. The 
acceptable maps were analysed in more detail and it was 
found that many of them contained a zero interval over the



gene position. Although correct as far as determining the 
intervals was concerned, such a situation gave rise to 
maps which were illegal. A zero interval across a gene 
altered the number of cut sites on either side of the map 
which in turn, altered the fragments that would be expect­
ed. In addition, many maps were found which had the same 
number of cut sites in the same order but differed in 
whether or not the cut sites were partial or complete. It 
appeared that a considerable amount of search effort had 
focused on exploiting similiar maps. It was conjectured 
that an improvement in performance might be gained by 
developing the reproduction technique one step further. In 
addition to disallowing duplicate maps, duplicate tem­
plates would be disallowed too. The SSWD reproduction 
technique became a steady-state-without-duplicate-tem- 
plates (SSWDT) reproduction technique in HGAv3 and evalu­
ation 3 was upgraded to ensure that a zero interval across 
the gene would result in a poor score. The effect of these 
modifications on the number of acceptable maps for PI was 
shown in figure 7.7 and on the map score in figure 7.8. 
The effect of disallowing duplicate maps alone is seen for 
evaluation 1 and evaluation 2 and the combined effect of 
disallowing duplicate maps and a zero interval across the 
gene was seen for evaluation 3. Disallowing duplicate 
templates using evaluation 1 slowed down the rate at which 
the average number of acceptable maps rose but by genera­
tion 70, all the maps scored as acceptable maps using 
HGAv2 and HGAv3. A similiar trend was visible in the 
number of acceptable maps using evaluation 2. There was 
little difference in the map score. There was a marked 
difference in the performance of HGAv2 and HGAv3 using



evaluation 3. From examining the acceptable maps produced 
by HGAv2 and HGAv3, the difference in the number of ac­
ceptable maps was found to be largely due to penalising 
maps with a zero interval across the gene. The average map 
score using HGAv3 was worse at the end of the 100 trials 
than using HGAv2. The effect on the number of acceptable 
maps was guite pronounced - at the end of 100 trials there 
were only twenty-one acceptable maps compared to eighty 
previously.

Using HGAv3, the SSWDT reproduction technique and applying 
all three evaluations together, the effect of adjusting 
the operator settings was examined. Although the alterna­
tive operator settings produced significantly different 
average map scores, there was not a practical difference 
in the number of acceptable maps.

The effect of increasing the number of trials and popula­
tion size on the HGA performance was examined and the 
results are shown for PIL in figures 7.9 and 7.10. The 
best performance (in terms of the average map score) was 
obtained when the population size was decreased to 50. 
Here the average map score at trial 200 was 20% better 
with the smaller population size. Nevertheless, the map 
score had not improved enough to have an impact on the 
number of acceptable maps which remained the same between 
both runs.

To examine the effect that selecting parents according to 
fitness and applying the problem specific operators was 
having on performance, the HGAv3 was modified so that new 
maps were generated at random at each generation. All 
other parameters were kept the same. The results for PI



were shown in figure 7.11. (AACT and PIL displayed a simil- 
iar trend.) The average map score using the parent selec­
tion technique and operators was more than 50% better than 
when a random map replacement technique was used.

An exhaustive search of the search space was conducted for 
the PIL/PI/AACT data set to find out how many "ideal", 
"good" and "adequate" templates were actually present 
using each of the evaluations separately and together. The 
results of this exercise were shown in chapter 5, section 
3. As discussed in section 2.6, the number of acceptable 
templates found by the HGAv3 using all three evaluations 
was low. If the number of ideal templates alone which were 
accumulated over the 20 runs was examined, the HGA ap­
peared to be reasonably successful in finding a high 
proportion of ideal templates from examining only a frac­
tion of the total search space as shown in figure 7.12. 
From examining the acceptable maps found at the end of 
individual runs, it was found that the acceptable maps 
were very close to one another in terms of the steps 
required to transform one acceptable map to another. For 
example, one application of the order swap operator to an 
acceptable map could be sufficient to transform the map 
into another acceptable map. In some runs, no acceptable 
maps at all were generated; however, if an acceptable map 
was generated, it was quite likely that due to the "close­
ness" of other acceptable maps, that more would be gener­
ated, providing the operators were applied to the better 
maps.

The results of running the HGAv3 using perfect data for 
PIL, PI and AACT were shown in figures 7.13 and 7.14. The 
difference in the average map score for the initial popu­



lations was due to differences in the number of fragments 
expected for each gene; however the average map score for 
all three genes settled at around 25 to 30 at the end of 
100 trials. The results of running the HGAv3 with the AT, 
ACE data were shown in figures 7.15 and 7.16. In both 
cases, the average map score was shown to improve substan­
tially over the run, but not enough to have an effect on 
the number of acceptable maps. The average number of 
acceptable maps found at the end of the runs using the 
perfect data was less than five and for the AT/ACE data 
set was less than one. The perfect data set and the 
AT/ACE data set represent a much larger search space than 
the PIL/PI/AACT data set, as illustrated in chapter 2, 
table 2.3. In addition, both AT and ACE have many more map 
options than the PIL/PI/AACT data set to be maintained in 
the population (AT had sixteen options and ACE had eight 
options).

6 Summary

The results of applying the HGA to three different data 
sets were presented. Various modifications to the HGA were 
made to improve performance and the success of the HGA in 
generating acceptable maps was discussed. The best per­
formance was obtained using a Steady-State-Without-Dupli- 
cate-Templates reproduction technique, replacing 2 maps at 
each trial. Evaluations 2 and 3 had to be applied in order 
to obtain correct maps. Varying the operator settings had 
a significant effect on the fitness of the population 
however, this did not have a practical effect on the 
number of acceptable maps. The same parameter settings
used for data set 1 were used for data set 2 and data set



3. Significant improvements in the population fitness were 
achieved, however, the number of acceptable maps generated 
at the end of the runs were low. In terms of computational 
efficiency, it was shown that the HGA was reasonably 
successful in finding a high proportion of the ideal 
templates for data set 1 from examining a small fraction 
of the search space.

The next chapter considers how the acceptable maps found 
for individual genes can be merged together to create a 
complete map.
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CHAPTER 8 - DEVELOPING A MECHANISM FOR MERGING MAPS

1 Introduction

Acceptable single gene maps showing the sequence of re­
striction enzyme(RE) cut sites around a single gene were 
generated by a hybrid genetic algorithm(HGA) from experi­
mental data. The technique for aligning and merging the 
single gene maps together to create a new sequence indi­
cating the sequence of all the genes and RE cut sites is 
described. The results of applying the merge facility are 
presented and discussed. Some suggestions for enhancing 
the basic mechanism are made.

2 The Merge Operation

Essential to merging the single gene maps correctly was 
the occurrence of at least one RE cut site whose position 
was common to the two maps. This cut site was necessary to 
enable maps to be aligned. Determining which cut sites 
were common to both maps relied on the presence of long 
fragments in the data set that contained two or more 
genes. Such fragments could be identified by their length. 
If fragments for different genes, produced by the same RE, 
had the same length, it was likely they were the same 
fragment containing both genes. This is illustrated by 
example in figure 8.1.

Having aligned two maps on a common cut site, the dis­
tances between the cut sites in the individual maps could 
be used to produce a merged map. The merged map would show 
the sequence of the genes and all RE cut sites.
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Figure 8.1 - Common cut sites.

The table of experimental data from Seflon et al(1990) is shown. Where two fragments for 
different genes had the same lengths when cut by the same restriction enzyme, it was likely 
that they were the same fragment, as shown below for M. The cut sites at either end of the 
fragment would be common to both gene maps.
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2.1 Description

Crucial to aligning the single gene maps was the identifi­
cation of the common cut site(s). Possible common cut 
sites could be identified automatically by considering 
fragment lengths. However, it was proposed that it would 
be of benefit to involve the geneticist at this stage. It 
was quick and relatively easy for the geneticist to speci­
fy which of the fragments in a data set were common to two 
or more genes, from examining fragment lengths and by 
visual examination of the DNA bands on the gel columns.

A merge facility was developed (written in Microsoft C, 
running on an IBM compatible PC) which took as input 
single gene maps and the experimental data from which they 
were generated. The geneticist was prompted to name a 
common cut site between the gene maps. The merge facility 
aligned the gene maps on the common cut site and produced 
a merged map that showed the sequence of both genes and 
all the RE cut sites; the distances between them; and the 
length of the map. Extra single gene maps could be merged 
into the multi-gene map as necessary. The multi-gene maps 
were assessed using two of the criteria used by the genet­
icist - map length and number of cut sites. The geneticist 
considered that a good multi-gene map was one which had a 
short length and small number of cut sites: both features 
implied that the gene maps had overlapped. If there was a 
high degree of overlap between two maps, the merged map 
would be short and would contain a minimal number of cut 
sites. These criteria were used to evaluate the merged
maps.



3 Results of Merging

The merge facility was tested using: the perfect gene maps 
- to establish whether or not the perfect multi-gene map 
could be generated; and the revised published gene maps - 
to establish whether or not the revised published multi­
gene map could be generated. The first case tested the 
operation of merge using ideal maps. The second case 
tested merge on less than ideal maps. Merge was then 
applied to merge the acceptable gene maps, generated by 
the HGA, together to produce complete maps.

3.1 Merging the perfect PIL/PI/AACT gene maps

The perfect PI and PIL maps (shown in figure 8.2) were 
merged together using M as the common cut site and the 
exact PIL/PI merged map was obtained. In the merged PIL/PI 
map, the number of cut sites and their distances from one 
another were accurate. The AACT map was added. The com­
plete map (shown in figure 8.2) placed the genes in the 
correct sequence. The merged map was slightly shorter than 
the correct map (677.02 compared to 710 kb); contained one 
extra cut site; and some of the distances between the cut 
sites were inaccurate. However, in general, the sequence 
of cut sites between the merged map and the correct map 
was very similar.

The reason why the merged map differed from the correct 
map was that the merge facility had calculated a shorter 
map for AACT than the correct map. As the map was shorter 
it was considered better than the correct map by the merge 
facility. Both maps are shown in figure 8.2.
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Figure 8.2 - Merging the perfect PIL/PI,AACT maps.
The PIL and PI single gene maps were merged using M as the 
common cut site. Two maps for AACT are shown. The AACT map 
used by the merge facility was the shorter map at length
557.02 kb. Again, M was used as the common cut site and 
the AACT map was merged with the PIL/PI map to create the 
complete merged map at length 677.02 kb. Although the 
merge facility chose the shorter AACT map in preference to 
the correct longer map at 590 kb, the sequence of genes 
and cut sites is still very similiar to the correct 
multi-gene map (shown in chapter 4, figure 4.2.)
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The "better" map was considered to be the shorter one at
557.02 kb long which was chosen over the correct, longer 
one at 590 kb long. In the longer map, the data fitted 
perfectly in contrast to the shorter map which had more 
error.

3.2 Merging the revised published gene maps

The revised published gene maps for PIL/PI/AACT were 
merged using M as the common cut site. Four merged maps 
were obtained and are shown in figure 8.3. (There were 
three common cut sites between PIL and PI - it did not 
appear to make much difference which of these was used to 
align the maps as shown in figure 8.4.)

The merged maps in figure 8.3 were similar to the revised 
published map (shown in chapter 4, figure 4.2), apart from 
the occurrence of some additional cut sites. In most 
cases, when a cut site was separated from an identical 
type of cut site by a distance <10kb long, the cut sites 
should have overlapped. When identical cut sites were 
taken into account, the correct number of cut sites and 
their ordering were obtained. (The intervals between the 
cut sites varied slightly between the maps and was a 
result of the way the merge algorithm processed 
distances.)

The revised published gene maps for AT and ACE were merged 
using M as the common cut site. Apart from being slightly 
longer (791.15 compared to 735 kbp), and containing some 
duplicate cut sites, the merged map and revised published 
maps were very similar.



Figure 8.3 - Merging the revised published PIL,PI,AACT 
maps.
The PIL and PI single gene maps were merged using M as the 
common cut site. The AACT map was merged with the PIL/PI 
map using M as the common cut site to create the complete 
merged map. The four maps produced by the merge facility 
were all very similiar and were very close to the revised 
published map (shown in chapter 4, figure 4.2).
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Figure 8.4 - The effect of merging maps using different 
common cut sites.
There were three common cut sites between PIL and PI - M, 
B and S. It did not appear to make much difference which 
of the three were used. Maps 1 and 2 were merged on M; 
maps 3 and 4 were merged on B; and maps 5 and 6 were 
merged on S.
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Ideal templates generated by the HGA using the data from 
Sefton et al(1990) for PIL, PI and AACT (from one run) 
were merged together using M as the common cut site. 82 
multi-gene maps were produced, ranging in length from 
401.67 to 823.1 kb.

The criterion of shortest length and least cut sites were 
used to identify the best merged maps. There were 8 maps 
that had the least number of cut sites (25) and they are 
shown in figure 8.5 (maps 2-9). Although there were dupli­
cate cut sites present, the majority of maps had the genes 
in the correct sequence. All the maps found were shorter 
than the revised published map. Allowing for duplicate cut 
sites, map 4 reduced to 18 cut sites. This map appeared to 
be better than the revised published map - it was 30% 
shorter and contained 3 less cut sites. However, if the 
fit of all the data in the complete map were considered, 
problems with the AACT fragments were highlighted.

The shortest length map at 401.67 kb had 27 cut sites and 
is shown in figure 8.5 (map 1). This map was interesting 
as the order of the genes was PI/PIL/AACT which disagreed 
with the ordering arrived at by Sefton et al(1990) and 
agreed with the ordering proposed originally by Cox et 
al(1987). Again, problems arose when the fit of all the 
data in the complete map was checked.

3.3 Merging the HGA generated maps for PIL/PI/AACT (Sefton
data)



«

Figure 8.5 - Merging the HGA generated PIL,PI,AACT maps 
(Sefton data).
The ideal templates found for PIL,PI and AACT were merged 
using M as the common cut site. The shortest maps and 
those with the least cut sites are shown. The shortest map 
had the genes in the wrong sequence, but the eight maps 
with the least cut sites had the genes in the correct 
sequence and the sequence of cut sites was similiar to the 
revised published map (shown in chapter 4, figure 4.2).

1 3 4



The ideal templates generated for PIL and PI by the HGA 
using the perfect data were merged together using M as the 
common cut site. Seventy merged maps were produced, the 
shortest of which was 380 kb in length which also had the 
fewest cut sites at 15. All the distances between the cut 
sites were identical to the distances between the cut 
sites in the perfect merged map except for one M cut site. 
This M cut site had been folded inside the map rather than 
being out on a limb on the right-hand side. The correct 
map was 80 kb longer at a total length of 460 kb, with 15 
cut sites. When the merged maps were examined, five the 
same length as the correct map and four (maps 2 to 5) had 
the genes in the correct sequence and the number and 
sequence of cut sites were very close to the correct map.

An attempt was made to merge the PIL/PI maps with the 
ideal templates generated by the HGA for AACT using M as 
the common cut site. The merge facility disallowed the 
merge on the basis that the M cut sites could not be 
considered common to the two maps. This was due to differ­
ences in the length of the M fragments between the AACT 
ideal maps and the PIL/PI merged maps. In the AACT ideal 
maps, although all the data had been fitted, the size of 
the average residual was high which resulted in the dis­
tance between the M digests being outwith the limits 
allowed by the merge facility. This was a problem that 
could be solved by taking into account the size of the 
average residual when generating a score for a map from 
evaluation 3.

3.4 Merging the HGA generated maps for PIL/PI/AACT (per­
fect data).



Figure 8.6 - Merging the HGA generated PIL/PI maps (per­
fect data).
The ideal templates for PIL and PI were merged together 
using M as the common cut site. Four of the five maps that 
had the same length as the correct map (460 kb), had a 
similiar sequence as shown.
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3.5 Merging the HGA generated AT/ACE gene maps

Acceptable templates generated by the HGA for ACE and AT 
were merged together using M as the common cut site. Six 
maps were produced and are shown in figure 8.7. They 
varied in length from 740 to 766 kb and had around the 
same number of cut sites. There were more cut sites con­
tained in the AT/ACE maps than the PIL,PI,AACT maps and 
the merge operation resulted in many duplicate cut sites. 
These factors complicated comparisons with the correct 
map.

4 Discussion

The merge facility was considered to be a basic means of 
merging gene maps together. The operation of the merge 
facility was tested using as input the perfect maps for 
PIL,PI,AACT and the revised published maps for 
PIL,PI,AACT. Although there were some duplicate cut sites, 
in both cases, the sequence of genes and REs compared 
favourably with the multi-gene maps. The occurence of 
duplicate cut sites could be overcome by enhancing the 
basic facility. When identical cut sites <10kb from each 
other were allowed to overlap, the complete PIL,PI,AACT 
revised published map was obtained with the correct order 
and number of cut sites apart from one extra M cut site 
which was 16kb from another M site. It did not appear to 
make any difference which of the common cut sites the maps 
were merged on.
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Figure 8.7 - Merging the HGA generated AT/ACE maps.
The acceptable AT and ACE maps were merged together using 
M as the common cut site. The merged maps with the short­
est length and least cut sites are shown. These maps 
varied in length from 740 - 766 kb which was similiar to 
the revised published map at length 735 kb.
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When the ideal templates produced by the HGA (generated 
using the Sefton et al(1990) data) were merged, the best 
map in terms of the shortest, was one which had the genes 
ordered as PI,PIL,AACT which was the ordering found by Cox 
et al(1987) and disagreed with Sefton et al(1990). In 
terms of the least number of cut sites, there were several 
maps which had 25 cut sites. When the overlapping of 
identical cut sites <10kb was allowed, a merged map was 
obtained which was approximately 30% smaller with 3 less 
cut sites than the revised published map; however analy­
sing the map in more detail highlighted problems with the 
AACT fragments expected.

Even when merging small numbers of gene maps together, the 
quantity of options generated by the merge facility was 
excessive. The number of merged maps produced could be 
limited by incorporating a look-ahead mechanism. For 
example, if two cut sites were the same type and were 
within 9kb of each other, they could be overlapped. In 
general, the geneticist would not expect to be able to 
measure fragments < 10 kb and in all the merged maps 
generated, all cut sites of length < lOkb should have 
overlapped. This would have resulted in fewer duplicate 
cut sites.

The success of the merge operation relied on the quality 
of the single gene maps produced by the HGA. In the case 
of PIL,PI and AACT (using both the Sefton data and the 
perfect data), the HGA generated "ideal" templates. For AT 
and ACE, only "adequate" templates were generated and it 
was considered that the uncertainty in the single gene 
maps was compounded when the maps were merged. Various 
ways of increasing the quality ofgthe maps generated by



the HGA were proposed in chapter 7.

The method used to evaluate the multi-gene maps was based 
on the geneticist's heuristic of looking for the shortest 
map with the fewest cut sites. This was perhaps a useful 
rough guide, but was found to be insufficient as the sole 
means of assessing merged maps. Contrary to the heuristic 
described above, in several cases longer maps were found 
to be better than shorter maps. The heuristic suggested 
that a high degree of overlap between two maps was expect­
ed. In the PIL/PI/AACT map, there was a large number of 
common cut sites to PIL and PI because the genes were so 
close to one another. 75.00% of PI cut sites were shared 
by PIL and 83.33% of PIL cut sites were shared by PI. When 
the number of common cut sites with AACT was examined, it 
was found to be very small. Only 27.27% of AACT cut sites 
were shared by PIL and PI. In the AT/ACE data set, AT 
shared 45.00% of cut sites with ACE, and ACE shared 75.00% 
of cut sites with AT. The merge facility would benefit 
from an enhanced mechanism for assessing multi-gene maps. 
The mechanism developed for single gene maps could be 
extended to evaluate whole maps. There would be several 
other ways the merge facility could be enhanced - instead 
of aligning gene maps on a common cut site, maps could be 
aligned on whole fragments or on a set of common fragments 
as specified by the user.

5 Summary

A mechanism for merging the seguence of cut sites for 
individual genes together to create a new sequence con­
taining more than one gene was developed. Single gene maps



were aligned on a common cut site, as specified by the 
geneticist. In spite of being a basic facility, merge did 
have some success in generating multi-gene maps whose 
sequences were similar to sequences of the correct maps. 
Possible enhancements to the basic mechanism were suggest­
ed.

3. 4 , 2.



CHAPTER 9 DISCUSSION
1 Introduction

Automating map assembly involved three main activities - 
developing an objective system for evaluating gene maps; 
developing a hybrid genetic algorithm(HGA) to generate 
potential gene maps from experimental data; and developing 
a facility for merging single gene maps to create multi­
gene maps. Each activity has been presented and discussed 
separately in the individual chapters. Here, the general 
approach to automation is discussed. The success of the 
techniques and the implications for similiar types of 
problems are considered.

2 General strategy

The two main requirements for automating map assembly 
were: some means of objectively assessing maps; and some 
means of generating potential maps from experimental data. 
It was shown in chapter 2 that the number of possible 
multi-gene maps that could be generated for a set of data 
was very large. The strategy for tackling map assembly 
consisted of generating maps for individual genes, in an 
attempt to reduce the complexity of the problem. However, 
even the number of single gene maps that could be generat­
ed for a set of data was very large. A hybrid genetic 
algorithm(HGA) was used to generate acceptable single gene 
maps. A basic facility was developed to merge the single 
gene maps together.



3 Map evaluation mechanism

One of the key components to the success of automating map 
assembly was devising a way of assessing the quality of 
potential maps objectively. Assembling maps manually was 
time-consuming and complicated. It relied on the geneti­
cist's judgement of the data and several solutions could 
appear feasible. Using knowledge elicitation techniques 
and a questionnaire, three means of assessing maps were 
developed. Common to any exercise involving the scoring of 
subjective judgement was the potential for introducing 
errors. The steps taken to minimise the effect of error on 
the design of the questionnaire and in the analysis of 
results were discussed in chapter 4. Developing the evalu­
ation system was successful in highlighting critical 
problems with published maps that lead to the geneticist's 
revision of those maps. Maps were awarded a score by each 
evaluation and the total score of a map was used to clas­
sify the map as "ideal", "good", "adequate" or "unaccept­
able". Maps in any of the first three categories were all 
considered acceptable. The first means of evaluating a map 
was based on how well the single digest data fitted into a 
map. This was a very broad evaluation and although many 
maps could score as acceptable based on this evaluation 
alone, the maps were not correct as there were problems 
with the fit of the double digest data. The second evalua­
tion was developed which awarded a map a score based on 
the type and yield of double digests. When applied along 
with the first evaluation, the number of acceptable maps 
was reduced, however, there were still problems with how 
the lengths of the double digests fitted into these maps. 
The third evaluation was developed to take account of how



well all the observed single and double digest fragments 
fitted. Generally, all three evaluations were applied to 
identify optimal maps.

Given a set of data, a formula for calculating the number 
of maps possible was derived in chapter 2. The number of 
possibilities depended on the number of genes, restriction 
enzymes and fragments used in the experiment. It was shown 
that even in the single gene case, the number of maps 
possible was worse than an exponential function of the 
input.

To test the specificity of the evaluation mechanism, all 
maps possible for the PIL,PI and AACT genes from the 
Sefton et al(1990) data were enumerated. There were many 
acceptable maps for each gene. The use of templates re­
duced the number of ideal maps to several for each gene (a 
decrease from 112 to 8 for AACT; 208 to 11 for PI; and 96 
to 7 for PIL) . The ideal templates for a gene were quite 
distinct from one another in terms of the map options 
comprising the templates. Templates with different options 
were far apart from one another. Shorter templates than 
the revised published templates were found for each of the 
genes. Although these appeared to be better maps than the 
revised published maps, problems arose when the single 
gene maps were merged.

4 Techniques to generate potential maps

Rather than generating multi-gene maps from the complete 
set of data, single gene maps were created from a subset 
of the data. This strategy was chosen as it represented an 
approach the genticist applied to the problem.



Various methods could have been chosen to generate single 
gene maps. The decision was made to use a form of genetic 
algorithm (GA) because GAs have been reported to perform 
well on combinatorial optimisation problems. The result of 
incorporating problem specific knowledge into GAs has lead 
to the development of very effective search algorithms 
(Davis(1991a)) which have been applied to various combina­
torial seguencing problems (eg Oliver et al(1987), Whitley 
et al(1989) (1991), Syswerda(1991)).

Having generated single gene maps, a mechanism was de­
veloped to merge the maps together to produce multi-gene 
maps.

4.1 The hybrid genetic algorithm

One of the challenges with modifying the traditional 
genetic algorithm(GA) was that the theory used to describe 
the operation of the algorithm no longer held. Although it 
is unclear what part of the schema theorem could be ap­
plied to HGAs, Whitley(1993) argued that this should not 
prevent various forms of GAs being developed. Existing 
theory could provide guiding principles but experimenta­
tion has been leading the way in this area of research.

In addition to varying the standard parameters, such as 
population size, number of trials, operator probabilities 
etc, other features of the HGA were modified in an attempt 
to obtain optimum performance. Deriving optimum settings 
for HGAs is a very time-consuming and laborious task. For 
these reasons, settings were varied until satisfactory 
results were obtained. The results were discussed in 
detail in chapter 7 and are summarised here.



With each of the three data sets used, the average map 
score at the end of a run had improved substantially from 
the initial population (using HGA version 3, all three 
evaluations applied). The improvement was most dramatic 
for the gene maps that had the larger search spaces. The 
average map score in the initial population for AT was 300 
which reduced to 20 by the end of 100 generations. The 
improvement in average map score could be attributed to 
the use of the parent selection technique and the problem 
specific operators. This was determined by comparison with 
replacing maps at random. The maps in the final population 
were much fitter but were not fit enough to have much of a 
practical impact on the number of acceptable maps.

The impact of varying the number of trials and the popula­
tion size depended on the evaluations used. Populations 
evaluated using evaluation 1 alone were quicker to con­
verge than populations using all three evaluations. Gener­
ally, the size of the population was kept high (at 100) to 
ensure that there was a good mix of map options.

Although varying the operator rates made a significant 
difference to the average map score, it did not have much 
practical effect on the number of acceptable maps.

In general, the best performance was achieved using HGAv3; 
a Steady-State-Without-Duplicate-Templates reproduction 
technique, replacing two maps at each trial? and applying 
at least evaluations 2 and 3 to identify correct maps.

4.2 The merge facility

The merge facility took as input the best maps generated 
by the HGA for single genes. Thessingle gene maps were



aligned on a common cut site as specified by the geneti­
cist, and using the distance information from both maps, a 
new sequence of cut sites and genes was produced that 
represented the complete map. The merge results were 
discussed in chapter 8 and are summarised here.

The merge facility was successful in generating the se­
quence of cut sites and genes for multi-gene maps. Al­
though in general duplicate cut sites were produced, the 
sequence of genes and cut sites for PIL,PI and AACT were 
very similiar to the sequence in the revised published 
map. The success of the merge facility in producing 
correct multi-gene sequences relied on the quality of the 
single gene maps. If the merge facility was enhanced, it 
is more likely that acceptable maps of poorer quality 
(such as those found for AT and ACE) could be merged to 
produce reasonable multi-gene maps. A more detailed 
mechanism for assessing multi-gene maps would improve the 
effectiveness of the merge facility.

5 Success of the overall approach

The success of the overall approach was measured in terms 
of: the time required to generate a complete map automati­
cally compared to the time taken by the geneticist; and 
the correctness of the sequence of genes and cut sites in 
the complete map.

Using the first criterion, automation was successful as it 
was considerably quicker producing maps automatically 
rather than manually. The time taken to generate a com­
plete map depended on the number of genes, restriction 
enzymes and fragments produced. Using the data for the



PIL,PI and AACT genes from Sefton et al(1990), it took 
approximately an hour to perform one experiment (20 runs) 
on a 486 computer running at 66MHz. Merging ideal maps for 
the three genes took approximately two hours on a 286 
computer. Depending on the data, assembling a map manually 
could take the geneticist several days.

Using the second criterion, it was possible to generate 
multi-gene maps that were very close to the correct maps 
for two of the three data sets. It was more difficult to 
generate correct maps for AT/ACE partly because the maps 
being merged were only "adequate" maps and because of the 
occurence of duplicate cut sites.

6 Summary

The overall approach for automating map assembly and the 
success of the techniques developed were discussed.



CHAPTER 10 SUMMARY
Determing the sequence of genes and restriction enzyme cut 
sites from experimental data is a process known as map 
assembly. It is a difficult problem due to the amount of 
error in the data. There are many sequences possible and 
several may be feasible. No means of objectively assessing 
competing maps has been available; the process has relied 
solely on the judgement and expertise of the geneticist 
which has lead to incorrect maps being published. Various 
computer applications have been reported for map assembly, 
however, they either tackle related problems or a re­
stricted instance of the problem.

This thesis has investigated and developed suitable arti­
ficial intelligence techniques to automate the process.

A system for objectively assessing single gene maps was 
devised. Critical problems in maps published by Sefton et 
al(1990) were highlighted that lead to the geneticist's 
revision of the maps.

Optimal single gene maps for different data sets were 
generated using a hybrid genetic algorithm(HGA) tailored 
specifically for the map assembly problem. The HGA incor­
porated the objective system to evaluate maps and was 
successful in generating feasible maps much quicker than 
if assembled manually. A facility was developed to merge 
the best maps generated for the individual genes together 
to create a complete map containing several genes. Depend­
ing on the quality of maps, the merge facility could 
produce very similiar maps to the maps assembled manually 
by the geneticist.



CHAPTER 11 - CONCLUSIONS

1 Introduction
In spite of the widespread and successful application of 
computers to problem solving, there still exist several 
classes of problems that cannot be solved by automatic 
means. The aim of this thesis was to develop suitable 
artificial intelligence (AI) techniques to tackle diffi­
cult problems. General purpose AI techniques were devised, 
implemented and evaluated in the context of a real-world 
problem from the biological domain. The particular problem 
was chosen as it exhibited many of the characteristics 
associated with difficult problems ; it was a highly 
constrained combinatorial optimisation problem that relied 
on expert judgement and had to deal with incomplete and 
conflicting data.

The conclusions outline the general techniques that were 
developed by the thesis; the wide range of problems to 
which they could be applied; the outcome of their applica­
tion in a particular problem domain; and suggestions for 
future work.

2 General Techniques

Three general AI techniques were developed. The techniques 
and the types of problems to which they could be applied 
are summarised in the following sections.

* A modified genetic algorithm search technique

A new search technique was developed based on a genetic 
algorithm (GA) approach to handle a highly constrained,



combinatorial optimisation problem. The GA developed in 
this thesis used a natural representation and operators 
were devised which were based on the expert's approach to 
solving the problem. Other applications of genetic algo­
rithms to sequencing problems have used various penalty or 
repair mechanisms where either the fitness function pena­
lised illegal solutions or repair mechanisms were used to 
correct illegal solutions. Here, specialised operators 
coupled with the chosen representation disallowed the 
generation of illegal solutions and provided a mechanism 
for handling a highly constrained problem. The method of 
constructing a GA based search technique and the decisions 
involved in that process are applicable to other combina­
torial problems; especially highly constrained problems.

Crucial to the success of any GA is the choice of fitness 
function. The thesis has shown how a GA approach could be 
applied to a problem which relied on subjective judgement. 
By using the second method developed in this thesis 
(described below), an objective measure of a subjective 
process was devised. The objective measure formed the 
basis of a composite fitness function which was incorpo­
rated into the GA.

* A method for encapsulating expert judgement

A method was developed to generate an objective measure of 
a subjective, judgemental process. The method consisted of 
the four stages: Knowledge Elicitation; Analysis; Quanti­
fication; and Application, as described in chapter 4.

There are many problem solving activities from different



disciplines that rely on expert appraisal to evaluate 
between competing solutions. Typically, expert judgement 
is subjective as it draws upon past experience coupled 
with the use of expert knowledge to evaluate any particu­
lar problem instance. In order to tackle problems by 
computer that depend on such subjective evaluation, some 
means of identifying, capturing and quantifying character­
istics of good solutions and of dealing with uncertainty 
present in the data is essential. The method devised in 
this thesis can be applied to similar types of problem to 
generate an objective measure of a subjective process. 
Once generated, the objective measure can be used (where 
applicable) by any search technique to evaluate potential 
solutions. Here, the objective measure was incorporated 
into a GA based search technique.

* A problem solving strategy

A strategy for tackling highly-constrained, real-world, 
combinatorial optimisation problems was developed based on 
an assessment of the problem characteristics and of the 
problem solving process. An approach was employed which 
involved decomposing the problem into smaller units to 
reduce the overall problem complexity, solving the sub­
units and merging them together to create a complete 
solution. The search space of the problem was shown to be 
very large and even when decomposed into sub-units, the 
size of the search space for a restricted problem instance 
was shown to be an exponential function of the input. The 
problem solving strategy devised was based on using a 
modified GA as a heuristic search technique to generate 
sub-units and a merge facility to generate complete maps.



The same process for devising a suitable problem-solving 
strategy could be applied to other real-world problems. 
Typically, automating real-world problems is often compli­
cated as the problem characteristics are such that no 
single technique is appropriate. In practice, a range of 
techniques would be considered and various trade-offs tend 
to be made to arrive at a suitable problem solving strate­
gy .
3 Application

The application of the general methods developed in this 
thesis to a real-world problem has illustrated how a 
difficult activity that previously relied on expert judge­
ment and inaccurate data could be automated.

By applying the modified genetic algorithm as a heuristic 
search technique to this highly constrained optimisation 
problem, optimal solutions were generated directly from 
error-prone data by sampling only a small number of alter­
natives. The system provided a quick (couple of hours 
rather than several days) automatic alternative to solving 
the problem manually. The use of GA features (genetic 
operators and creating new maps from better than average 
old maps) resulted in fitter populations of maps than in 
the absence of those features (no operators and creating 
new maps at random.)

By applying the method for encapsulating expert judgement 
an objective measure for evaluating potential solutions 
was produced. The objective measure was applied to pub­
lished problem solutions generated by the expert and it 
was successful in highlighting critical errors in the



expert's solution. The expert subsequently revised the 
published solution to remove the errors.

The overall task of generating a multi-gene map was broken 
down into the simpler, yet still difficult and combinato­
rial problem of generating single gene maps first then 
merging them together to produce a complete map. In so 
doing, two distinct but potentially related ordering 
problems have been attacked. The approach overcame many of 
the limitations of previous attempts at applying computing 
techniques to the problem. Bearing in mind the difficul­
ties of the expert in solving the problem manually, that 
the automated system developed could produce reasonable 
maps at all, was a major result.

4 Future Work

The general methods developed in the thesis could be 
applied and evaluated in different application domains and 
the methods themselves could be revised and extended in a 
variety of ways, taking into account recent work in the 
field.

The method developed by the thesis for representing expert 
judgement was based on the expert rating a given set of 
problem situations through the use of a questionnaire. The 
problem situations were devised to assess how the expert 
handled uncertainty in the data. There are various tech­
niques that can be used to augment knowledge representa­
tion with statistical measures that describe levels of 
evidence and belief. Alternative techniques for quantify­
ing expert judgement could be evaluated and, if promising,



could be used to enhance the method described here.

Ways of extending the modified GA to incorporate local 
search techniques could be investigated. The results of 
applying the modified GA suggested that if some form of 
local search had been employed at the end of a run, a 
greater number of acceptable maps could have been generat­
ed from the final population of maps. Moscato and 
Norman(1992) refer to evolutionary algorithms in which 
local search plays a significant role as "memetic algo­
rithms". Recent empirical results from Radcliffe and 
Surry(1994a)(1994b) using the Travelling Salesman Problem 
support the view that incorporating local search in GAs 
leads to superior performance.

Appropriate methods for expanding the modified GA tech­
nique to handle multi-modal optimisation could be as­
sessed. In the particular application, several optimal 
solutions were possible for a data set and the best re­
sults were obtained from multiple runs. Goldberg and 
Richardson(1987) found that simple GAs converged to a 
single peak when dealing with multi-modal functions, even 
though there may have been multiple peaks of equal quali­
ty. Deb and Goldberg(1989) investigated modifications to 
the simple GA to implement a form of sharing analagous to 
that observed in nature, where stable subpopulations of 
organisms surrounding separate niches are formed by forc­
ing similiar individuals to share the available resources. 
Beasley, Bull and Martin(1993) describe a new technique 
called "sequential niche" for multi-modal function optimi­
sation where once an optimum is found, the evaluation 
function is modified to eliminate the solution to prevent



the same optimum from being re-discovered. In doing so, 
subsequent runs incorporate the knowledge discovered in 
previous runs. Spears(1994) has also proposed an algorithm 
that implements the ideas of sharing and restrictive 
mating.

The nature of the representation and the interaction of 
operators with the representation are key elements in 
determining the performance of modified GAs. The choice of 
representation and operators for the modified GA were 
heavily influenced by the highly constrained nature of the 
problem. The approach advocated by Davis(1991) of hybri­
dising a GA with domain-specific knowledge to generate 
operators for real-world problems was followed. Alterna­
tive representations and operators could be investigated 
based on Radcliffe's "Design Principles" (Radcliffe 
(1991a, 1991b, 1993) in the context of the forma analysis 
framework. Analysing the role of the operators developed 
using the key criteria of "Respect" and "Assortment" could 
highlight ways in which these operators could be improved 
with the chosen representation. Radcliffe(1994a) has 
identified several characteristics of representations and 
has presented empirical evidence of a useful performance 
predictor (fitness variance of formae) for evolutionary 
algorithms.

There are various refinements that could be made to con­
solidate the application of the methods described in the 
thesis and these are outlined.

There are a number of ways the objective mechanism could



be enhanced to improve performance in the particular 
applications area. Implementation aspects of evaluation 1 
and evaluation 3 could be reviewed as it was possible, in 
some circumstances, that good individuals were overlooked. 
The scoring system on which the objective mechanism was 
calibrated was based on the response of one group of 
experts to the questionnaire. The questionnaire could be 
extended and a wider sample of experts could be used to 
complete the responses to make the scoring system more 
robust.

The objective evaluation mechanism developed for the 
problem represented the encapsulation of the expert's 
criteria for assessing maps. Although incorporated into 
the modified GA, the mechanism could also operate in a 
stand-alone capacity and could easily be incorporated into 
other tools and be used to independently validate existing 
and proposed maps.

The merge facility was basic and there are several areas 
that offer scope for improvement. More effective ways of 
combining single gene maps could be investigated, possibly 
by incorporating some "look-ahead" mechanism to reduce the 
amount of duplication between maps which should increase 
the accuracy of the maps. Various enhancements could be 
made to the way complete maps were evaluated by the merge 
facility. Utilising the faster processing capability of a 
workstation, it is possible that potential gene maps could 
be generated and viewed by the expert in real-time. Opti­
mal maps could be displayed graphically and the results of 
alternative ways of merging maps could be assessed and 
compared.

X5 ~7



Appendix A - The three sets of data from which maps were generated from.

B M S F

PIL PI AACT PIL PI AACT PIL PI AACT PIL PI AACT

250 250 355 

225 225 275 

(65) 230

350 350 350  

260 260 80 

(180)

255 255 70 165 (190) (195) 

(1 0 )(1 3 5 ) (175) 

80 135 

65 

10

B/M B/S B/F M/S

PIL PI AACT PIL PI AACT PIL PI AAC3 PIL PI AACT

250 250 230  

225 225 105 

130 130 

(65)

125 125 70 

(65)

165 (190) 135 

(10) 50 105 

10

255 255 70 

(180) 30

M /F S/F

PIL PI AACT PIL PI AACT

85 80 135 

(10) 65 85 

10

70 (130) 30 

(10) 80 

65 

10

The experimental data for the PIL,PI AACT genes taken from Sefton et al (1990).

Four restriction enzymes were used B,M ,S,F and were applied on their own and in 
combinations. Each number in the table represents a fragment of DNA that contains the 
gene shown. Fragments in brackets indicate suspect fragments.
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B M S F

AT ACE AT ACE AT ACE AT ACE

260 225 600 600 465 (125) 285 285

65 115 535 535 425 75 260 260

355 355 310 170 200

310 310 275 130 170

85 145

60 125

10

B/M B/S B /F M/S

AT ACE AT ACE AT ACE AT ACE

260 225 260 (125) (170) 125 465 (125)

100 150 140 75 65 100 425 75

65 100 65 (40) 50 (310) 30

20 275

10 235

M /F S/F

AT ACE AT ACE

(285) (285) (170) 70

260 260 130 35

(170) 200 85

130 170 60

85 145 10

60 120

10

The experimental data for AT,ACE.

Four restriction enzymes were used B,M ,S,F and were applied on their own and in 
combinations. Each number in the table represents a fragment of DNA that contains the 
gene shown. Fragments in brackets indicate suspect fragments.
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6 M S F
PIL PI AACT PIL PI AACT PIL PI AAC1 PIL PI A A C
250 250 460 
225 225 380 

355 
335 
275 
230

340 340 340 
260 260 80

255 255 70 165 125 135 
80 
65 
10

B/M B/S B/F M/S
PIL PI AACT PIL PI AACT PIL PI AACT PIL PI AACT
250 250 460 
225 225 380 
130 130 355 

335 
330 
275 
250 
230 
210 
205 
105 
80

125 125 70 165 45 135 
10 105

255 255 70 
30

M/F S/F
PIL PI AAC1 PIL PI AACT
165 125 135 
85 80 80 

65 
10

80 125 30 
80 
65 
10

The perfect data calculated by the author that would be expected from the map for the PIL, 
PI, AACT genes contained in Sefton et al (1990). All fragments are present and their 
lengths are accurate.

Four restriction enzymes were used B,M ,S,F and were applied on their own and in 
combinations. Each number in the table represents a fragment of DNA that contains the 
gene shown.
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The three maps for the PIL/PI/AACT genes were the Sefton 
map, the author's map and the Billingsley map. The data 
expected from each map was calculated and compared with 
the data observed. Discrepencies between the expected(EXP) 
and observed(OBS) data are highlighted with an asterisk 
and a letter and their meaning is described in the foot­
notes .

Appendix B - Analysis of the discrepencies in three maps
for the PIL/PI/AACT genes.

SEFTON MAP
GENE PIL PI AACT

RE EXP. OBS. EXP. OBS. EXP. OBS.

B 225*a
250 250

225*g
250 250

230*1 
260 275*m
355 355

M 260 260 
340 350*b

260 260 
340 350*h

80 80 
340 350*n

S 255 255 255 255 70 70

F 165 165 10 10 
65 65 
80 80

135 135

B/M 130 130
225*c
250*d

130 130
225*i 
250* j

80 —*0 
115 105*p 
210 230*q

B/S 125 125 125 125 70 70

B/F 165 165 10 10 
45 50*k

115 105*r
135 135

S/M 255 255 255 255 30 30 
70*s

M/F 85 85 
165 165*e

10 10 
65 65 
80 80

80 85*t
135 135

S/F 80 70*f 10 10 
65 65 
80 80

30 30



SEFTON MAP - footnotes.
PIL GENE
a) B - No 225 fragment is expected if the B site to the 
RHS of PIL is cutting completely.
The fragment has been fitted on the map with the LHS being 
cut by M, crossing the complete B cut site and the other 
end being cut by a partial b site.
The longer B fragment expected, given the partial nature 
of the cut site, is not observed.
b) M - The expected fragment (340) is 2.8% smaller than 
the observed fragment (350).
c) B/M - No 225 fragment is expected if the B site to the 
RHS of PIL is cutting completely.
Two longer B/M fragments would be expected, given the 
partial nature of the b and m cut sites, they are not 
observed.
d) B/M - No 250 fragment is expected if the M site to the 
LHS of PIL is cutting completely.
e) M/F - The fragment observed (165) is likely to be the F 
single digest fragment as it is the same length, however, 
for it to be fitted where it is, the M cut site must be 
cutting partially.
f) S/F - The expected fragment (80) is 14.2% larger than 
the observed fragment (70).
PI GENE
g) B - No 225 fragment is expected if the B site to the 
RHS of PI is cutting completely.
The fragment has been fitted on the map with the LHS being 
cut by M, crossing the complete B cut site and the other 
end being cut by a partial b site.
The longer B fragment expected, given the partial nature 
of the cut site, is not observed.
h) M - The expected fragment (340) is 2.8% smaller than 
the observed fragment (350).
i) B/M - No 225 fragment is expected if the B site to the 
RHS of PI is cutting completely.
Two longer B/M fragments would be expected, given the 
partial nature of the b and m cut sites, they are not 
observed.
j) B/M - No 250 fragment is expected if the M site to the 
LHS of PIL is cutting completely.
k) B/F - The expected fragment (45) is 10% smaller than 
the observed fragment (50).



AACT GENE
l) B - The one expected fragment is considered to repre­
sent both the 230 and 275 fragments.
The expected fragment (260) is 13% larger than the ob­
served fragment (230).
m) B - The one expected fragment is considered to repre­
sent both the 230 and 275 fragments.
The expected fragment (260) is 5.5% smaller than the 
observed fragment (275).
n) M - The expected fragment (340) is 2.8% smaller than 
the observed fragment (350).
o) B/M - A fragment is expected (80) but not observed.
p) B/M - The expected fragment (115) is 9.5% larger than 
the observed fragment (105).
g) B/M - The expected fragment (210) is 8.6% smaller than 
the observed fragment (230).
r) B/F - The expected fragment (115) is 9.5% larger than 
the observed fragment (105).
s) S/M - The observed fragment (70) is not expected given 
that the M cut site on the RHS of AACT is cutting com­
pletely. It has been fitted over this complete cut site.
t) M/F - The expected fragment (80) is 5.8% smaller than 
the observed fragment (85).



PROPOSED MAP

GENE PIL PI AACT
RE EXP. OBS. EXP. OBS. EXP. OBS.

B 225 225 
250 250

225 225 
250 250

230 230 
275 275 
355 355

M 260 260 
350 350

260 260 
350 350

90 80* j
350 350

S 255 255 215 255*f 70 70

F 165 165 10 10 
65 65 
80 80

135 135

B/M 130 130
225*a
250*b

130 130
225*q
250*h

90 105*k 
350 230*1

B/S 125 125 125 125 70 70

B/F 165 165 10 10 
50 50

100 105*m
135 135

S/M 255 255 215 255*i 30 30 
70 70

M/F 80 85*c 
165 165*d

10 10 
65 65 
80 80

90 85*n 
135*o

S/F 75 70*e 10 10 
65 65 
80 80

30 30



PROPOSED MAP Footnotes.

PIL GENE
No. Problem Description
a) B/M - If the M cut site to the left of PIL is cutting 
completely, you would not expect to get a 225 fragment.
b) B/M - If the M cut site to the left of PIL is cutting 
completely, you would not expect to get a 250 fragment.
c) M/F - The expected fragment (80) is 5.8% smaller than 
the observed fragment (85).
d) M/F - The fragment observed (165) is likely to be the F 
single digest fragment as it is the same length, however, 
for it to be fitted where it is, the M cut site must be 
cutting partially.
e) S/F - The expected fragment (75) is 7.1% larger than 
the observed fragment (70).
PI GENE
f) S - The expected fragment (215) is 15.7% smaller than 
the observed fragment (255).
g) B/M - If the M cut site to the left of PIL is cutting 
completely, you would not expect a 225 fragment.
h) B/M - If the M cut site to the left of PIL is cutting 
completely, you would not expect a 250 fragment.
i) S/M - The expected fragment (215) is 15.7% smaller than 
the observed fragment (255).
AACT GENE
j) M - The expected fragment (90) is 12.5% larger than the 
observed fragment (80).
k) B/M - The expected fragment (90) is 14.2% smaller than 
the observed fragment (105).
l) B/M - The expected fragment (220) is 4.3% smaller than 
the observed fragment (230).
m) B/F - The expected fragment (100) is 4.7% smaller than 
the observed fragment (105).
n) M/F - The expected fragment (90) is 5.8% larger than 
the observed fragment (85).
o) M/F - The M cut site to the RHS of AACT appears to be 
cutting completely in the single digest results yet the 
135 fragment observed is only expected if it is cutting 
partially.



BILLINGSLEY MAP

GENE PIL PI AACT
RE EXP. OBS. EXP. OBS. EXP. OBS.

B 255 280*a 255 280*i 115 115
365 N.D*b 365 370* j 240 250*q
395 *c 395 385*k 370 370
465 *d 465 495*1 510 610*r
510 *e 510 610*m 735 710*s
735 *f 735 710*n

F 175 165*g 9.5 9.5 100 105*t
175 165*0 175 180*u

M 340 530
900 1030

1300 1300

B/F 175 165*h 9.5 9.5 70 70
175 165*p 100 *v

175 *w

NOTE : Only the results for B, F and M are shown to enable 
comparison with the Sefton map and the proposed map.
The Billingsley map was drawn to scale from the map shown 
in Billingsley et al(1993). The cut sites which were 
cutting partially were located on the map, then the ex­
pected fragments were calculated and drawn underneath the 
map. Differences between the lengths of the expected 
fragments and the observed fragments were noted. The 
position of the M cut sites were not indicated on the 
Billingsley map therefore the expected lengths could not 
be calculated.
BILLINGSLEY MAP - Footnotes.
PIL GENE
No. Problem Description
a) B - The expected fragment (255) is 8.9% smaller than 
the observed fragment (280).
b) B - 
(N.D.).

A fragment of 365 is expected but not observed

c) B - 
(N.D.).

A fragment of 395 is expected but not observed

d) B - 
(N.D.).

A fragment of 465 is expected but not observed

e) B - 
(N.D.).

A fragment of 510 is expected but not observed

f) B - A fragment of 735 is expected
3T6 6

but not observed



(N.D.).
g) F - The expected fragment (175) is 6% larger than the 
observed fragment (165).
h) B/F - The expected fragment (175) is 6% larger than the 
observed fragment (165).
PI GENE
i) B - The expected fragment (255) is 8.9% smaller than 
the observed fragment (280).
j) B - The expected fragment (365) is 1.3% smaller than 
the observed fragment (370).
k) B - The expected fragment (395) is 2.5% larger than the 
observed fragment (385).
l) B - The expected fragment (465) is 6% smaller than the 
observed fragment (495).
m) B - The expected fragment (510) is 16.3% smaller than 
the observed fragment (610).
n) B - The expected fragment (735) is 2.8% larger than the 
observed fragment (710).
o) F - The expected fragment (175) is 6% larger than the 
observed fragment (165).
p) B/F - The expected fragment (175) is 6% larger than the 
observed fragment (165).
AACT GENE
q) B - The expected fragment (240) is 4% smaller than the 
observed fragment.
r) B - The expected fragment (510) is 16.3% smaller than 
the observed fragment (610).
s) B - The expected fragment (735) is 2.8% larger than the 
observed fragment (710).
t) F - The expected fragment (100) is 5% smaller than the 
observed fragment (105).
u) F - The expected fragment (175) is 2.7% smaller than 
the observed fragment (180).
v) w) B/F - Given the nature of the b and f cut sites to 
the LHS of AACT, 2 longer fragments of length 100 and 175 
would be expected but are not observed.

1 6 * 7



Appendix C - Completed questionnaire
COMPLETED QUESTIONNAIRE

PROBLEM RATINGS - there were 5 ratings which ranged in a 
scale of increasing severity from rating "none" to 
"critical".
1. None
2. Minor problem
3. Significant problem
4. Serious problem
5. Critical problem
Each of the problems described below have been rated by the 
external advisors, Povey(P) and Bickmore(B) as shown.
SECTION 1 ~ FRAGMENT LENGTHS P B
Errors are present in the observed lengths 
of the fragments due to experimental limitations.
The allowable error (determined previously which 
represents the "no problem" situation) was 
up to 10% on fragments < 1000kbps and up to 
20% on fragments > 1000kbps.
1. In order to fit a fragment > 500 kbps,
the observed length must be out by 15% ? ........2 1
2. In order to fit a fragment 200 - 500 kbps,
the observed length must be out by 15% ? ........3 1
3. In order to fit a fragment < 200 kbps,
the observed length must be out by 15% ? ........4 2
4. In order to fit a fragment < 1000kbps,
the observed length must be out by 20% ? ........4 2
5. In order to fit a fragment > 1000kbps,
the observed length must be out by 30% ? ........2 2
6. In order to fit a fragment > 1000kbps,
the observed length must be out by 40% ? ........4 3
SECTION 2 - NATURE OF CUT SITES
The objective of this section is to determine 
the importance of the nature and number of cut 
sites relative to the fragments observed.
7. A particular cut site on a map is shown 
as partial, yet the longer fragment which
would be expected, is not observed? ..............2 2 8
8. A single digest fragment is fitted into
a map with the ends being cut by different REs ? ..5 1



9. From the single digest results, a cut site P B
is considered to be cutting completely, however, 
the proposed map has a double digest fragment 
fitted across the cut site ? .....................2 3
10. You are trying to fit a fragment into a map 
which you have almost completed. The fragment 
length (taking into account the allowable error) 
does not fit in with the cut sites shown on
the map.
10a) Add a new cut site and fit the fragment
even though you do not observe the other
fragments which would be expected as a result
of an additional cut site ? ...................... 4 4
10b) Consider the fragment to be the same 
fragment as an existing longer or shorter fragment 
which has already been fitted ? ..................4 2
11. Two fragments are obtained in the single digest 
results, and the same two fragments are obtained in 
the double digest results. You are trying to fit 
both fragments into a map which you have almost 
completed. Only one fragment fits in with the cut 
sites shown on the map. If you add a new cut site, 
you do not observe the other double digest fragments 
which would be expected.
11a) Add a new cut site ? ......................3-4 2
lib) Consider the two fragments to be the same 
fragment ? ..................................... 4 3
12. From the proposed map, you would expect
fragments that you did not observe from the 
experiment ? .................................. 2-4 2-3
13. You observe fragments from the experiment 
that would not be expected from the proposed
map ? ......................................... 4-5 3
14. What kind of problem would you consider 
it to be if the smallest fragment detected 
from your experiments for a particular 
gene (single or double digest), was not 
the smallest fragment fitting across the
gene given a proposed map ?....................3 3
SECTION 3 - WEAK FRAGMENTS
15. Given the number and position
of the cut sites on the proposed map, none
of the weak fragments fit without having to
add extra cut sites ? ..........................3 3
16. In order to fit a weak fragment, an additional 
cut site is added. You do not observe the extra 
fragments you would expect having added an extra
cut site ? ..................................... 3 3

1 6  9



17. The "no problem" situation for P B
weak fragments is when what percentage
fit into the proposed map (weak fragments being
those fragments expected from a proposed
map but no observed) ?....................... 100% 100
18. What percentage of weak fragments 
fitting into the proposed map would you
consider to be a minor problem ?.............. 80% 75
19. What percentage of weak fragments 
fitting into the proposed map would you
consider to be a significant problem ?......... 0% 0
20. In order to fit a weak fragment, an 
additional cut site is added. You don't 
observe the extra fragments you would
expect having added the extra cut site ?......3 3
21. If you saw the same length of weak 
fragments in both the single and double 
digests, would you be more confident that 
the bands on the gel represented actual 
fragments than if the weak fragments only 
appeared in either the single or the double
digest ?......................................Y N

SECTION 4 - LENGTH OF SINGLE DIGEST FRAGMENTS 
WITH RESPECT TO EACH OTHER
22. Given a proposed map, you are looking at 
the single digest data. One single digest 
fragment is nested within another single 
digest fragment. (Povey's answers do not include the 
10% allowable variation.)

eg M S gene S M

S 100
M 50

a) On the same gels, the length of the nested 
fragment is greater than the outer fragment
by 50% ?......................................5 5
b) On the same gels, the length of the nested 
fragment is greater than the outer fragment
by 25% ?......................................4 4
c) On the same gels, the length of the nested 
fragment is greater than the outer fragment
by 10% ?......................................2 3
d) On different gels, the length of the nested 
fragment is greater than the outer fragment 
by 50% ?..................................... 5 3



p Be) On different gels, the length of the nested
fragment is greater than the outer fragment 
by 25% ?...................................... 4 2
f) On different gels, the length of the nested 
fragment is greater than the outer fragment
by 10% ?......................................2 1
SECTION 5 - FIT OF DOUBLE DIGEST FRAGMENTS
Looking through the observed double digest 
data, fragments can be classed as either 
single digest fragments (not altered in 
the double digest) or new fragments. A 
similiar exercise can be carried out looking 
at the proposed map, and the expected double 
digest data.
23. There are differences in the number of 
double digest fragments you have observed 
and the number you would expect. There are 
also differences in the types of fragments 
(single digest/new) between those observed and 
those expected.
23a) You observe 10 double digests, from the
proposed map, you would expect 15 double 
digests ? ..................................2-3
23b) You observe 15 double digests, from the 
proposed map, you would expect 10 double 
digests ? ..................................4-5
24. Out of the type of double digest fragments EXPECTED from 
the map, what % would have to be observed for there to be -
a) no problem ?................................. 70% -
b) significant problem ?........................ 60%
c) critical problem ?.......................... 50%
What percentage of the type of double digest fragments OBSERVED 
would have to be expected for there to be -
d) no problem ?................................. 95%
e) significant problem ?......................... 90%
f) critical problem ?.......................... <90%



SECTION 6 - MAP ASSESSMENT
The objective of this section is to determine 
how the problems identified could be related 
to one another to allow an overall assessment 
of a map to be made. I would like to categorise 
a map in one of the following ways depending on 
the number of minor, significant, serious and 
major problems present.

MAP CATEGORIES
Very Good Map 
Good Map 
Acceptable Map 
Unacceptable Map

P B
25. How many minor problems would you consider make
a significant problem ? ..................... 3 >3
26. How many significant problems would you consider
make a serious problem ? .................... 3 >2
27. How many serious problems would you consider make
a critical problem ? ........................ 2 >1
The size of the map must be taken into account.
28. What do you consider are the most important variables 
which represent map size -
a) number of probes used ?..................... N Y
b) total number of single and double digest

fragments ? ................................Y N
c) length of DNA being mapped ?................ N Y
In terms of the variables identified above,
29. Define a small map?............... < lOfrags 10-20

- 2-3probes
100-200kbps

30. Define a medium map ?............10-20frags 25-50
3-6probes 

500-1000kbps
31. Define a large map ?................>20 >50

lOprobes
>1000kbps

How many problems of the various types would 
be allowed for a -

32. Very good SMALL MAP ?............... None
33. Good SMALL MAP ?............. 1 Minor

None 
1 Minor



P B
34. Acceptable SMALL MAP ?...........2 Minor

or 1 Signif
1 Minor 
1 Signif

35. Unacceptable SMALL MAP ?........Any Serious
or Critical

1 Minor 
1 Signif 
1 Serious

36. Very good MEDIUM MAP ?................None 1-2 Minor
37. Good MEDIUM MAP ?.............. 1-2 Minor 1 Minor

1 Signif
38. Acceptable MEDIUM MAP ?..........3-4 Minor

or 1 Signif
1-2 Minor 
1-2 Signif

39. Unacceptable MEDIUM MAP ?.......Any Serious
or Critical

2 Minor 
1 Signif 
1 Serious

40. Very good LARGE MAP ?...............None 1-2 Minor
41. Good LARGE MAP ?.............1-3 Minor 1-2 Minor 

1 Signif
42. Acceptable LARGE MAP ?...........4+ Minor

or 1 Signif
2 Minor 
1-2 Signif

43. Unacceptable LARGE MAP ?........Any Serious
or Critical

2 Minor 
2 Signif
1 Serious
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Appendix D - Scoring the Sefton, Proposed and Billingsley 
Maps
Three maps for the PIL/PI/AACT genes, the Sefton map, 
Proposed map and Billingsley map were scored using the 
questionnaire results. The number of the problem is repre­
sented by a letter which correspond to the description of 
the problem shown in Appendix B. The rating applied to the 
problem is shown (eg MINOR, CRITICAL etc) and in brackets 
after the rating is the reference to the questionnaire 
number.

AACT
1) SERIOUS(lib) 
MINOR-SIGNIFICANT(2)

PIL
a) MINOR(9) g)

CRITICAL(8)
MINOR (7)

b) ALLOWABLE ERROR

c) MINOR (9)
MINOR (7)
MINOR (7)

d) MINOR (9)
e) MINOR(9)
f) SIG.- SERIOUS (2)

TOTAL 
7 minor
1 sig.- serious 
1 critical

SEFTON MAP
PI

MINOR(9)
CRITICAL(8)
MINOR(2)
h) ALLOWABLE ERROR

i) MINOR (9)
MINOR (2)
MINOR (2)

j) MINOR (2)
k) ALLOWABLE ERROR

6 minor 
1 critical

m) SERIOUS (lib) 
ALLOWABLE ERROR
n) ALLOWABLE ERROR

o) MINOR (7)
p) ALLOWABLE ERROR
q) ALLOWABLE ERROR
r) ALLOWABLE ERROR
s) MINOR (9)
t) ALLOWABLE ERROR

2 minor
1 minor - sig.
2 serious



PROPOSED MAP

PIL PI AACT
a) MINOR (9) f) SIG. (2) j) SIG.-SERIOUS (3)
b) MINOR (9) g) MINOR (9) k) SIG.-SERIOUS (3)
c) ALLOWABLE ERROR h) MINOR (9) 1) ALLOWABLE ERROR
d) MINOR (9) i) SIG. (2) m) ALLOWABLE ERROR
e) ALLOWABLE ERROR n) ALLOWABLE ERROR

o) MINOR (9)
TOTAL
3 minor 2 minor 1 minor

2 sig. 2 sig.-serious

BILLINGSLEY MAP
PIL PI AACT

a) ALLOWABLE ERROR i) ALLOWABLE ERROR g) ALLOWABLE ERROR
b) MINOR-SER. (12) j) ALLOWABLE ERROR r) MINOR-SER.(1,4)
c) MINOR-SER.(12) k) ALLOWABLE ERROR s) ALLOWABLE ERROR
d) MINOR-SER.(12) 1) ALLOWABLE ERROR t) ALLOWABLE ERROR
e) MINOR-SER.(12) m) MINOR-SER.(1,4) u) ALLOWABLE ERROR
f) MINOR-SER.(12) n) ALLOWABLE ERROR v) MINOR (7)
g) ALLOWABLE ERROR o) ALLOWABLE ERROR w) MINOR (7)
h) ALLOWABLE ERROR p) ALLOWABLE ERROR
TOTAL
5 minor - serious 1 minor - serious 2 minor

1 minor-serious



The individual published and revised maps for each of the 
PIL/PI/AACT genes are shown below. The published maps for 
PIL and PI were considered to contain critical problems 
because a partial B cut site was shown outwith a complete 
B cut site.

Appendix E - The revised Sefton map

PIL
published B F M S * F B b S

m
revised B b F m S * F B  — S

m
Compared to the published map, the revised PIL map has an 
extra B cut site on the left hand side rather than on the 
right hand side. 2 M sites have been changed from com­
plete to partial.
PI

published B M S F * f B f F b S
m

M

revised B b m S F * f B f f - S
m

m

Compared to the published map, the revised map has 
extra B cut site and both M complete cut sites and one 
the F complete cut site have been changed to partial 
sites.)
AACT
published M B F b m S * F S 

M
B

revised m - F b m S * F S b 
m

b B

Compared to the published map, there are 2 additional 
partial B cut sites, 2 M complete cut sites have been 
changed to partial and a complete B cut site has been 
removed. The changes have been highlighted.
Complete map
The complete revised map, taking account of the changes 
detailed above, is shown below. Three extra cut sites were 
added (1 B site to the left of the PIL gene and 2 B sites 
to the right of the AACT gene) and three cut sites were 
changed from being complete to partial cut sites (m site 
to the right of AACT, f site at map position 105, m site 
to the left of PIL).

m F
BbFmS*PIL*F*PI*fBffFbSS*AACT*mSbbB



With the revised Sefton map, the expected data and the ob­
served data were calculated. Discrepancies were highlight­
ed and were rated using the questionnaire. The results are 
summarised here. All gene maps would be considered accept­
able .

PIL PI AACT
REVISED
SEFTON MAP 1 minor 2 minor 5 minor

1 significant
SCORE = 4-adequate 2-good 5-adequate



Analysis of the discrepencies in the Revised Sefton map
for PIL/PI/AACT.

GENE PIL PI AACT
RE EXP. OBS. EXP. OBS. EXP. OBS.

B 225 225 225 225 230 230
250 250 250 250 275 275

355 355
355+ - *d

M 260 260 260 260 80 80
340 350*b 340 350*h 340 350*n
340+ - *u 340+ — *v 340+ -*a

S 255 255 255 255 70 70

F 165 165 10 10 135 135
65 65
80 80
80+ - *w

B/M 130 130 130 130 80 -*o
225 225 225 225 105 105
250 250 250 250 230 230

275 -*b
355 —*c
355+ -*e

B/S 125 125 125 125 70 70

B/F 165 165 10 10 105 105
45 50*k 135 135

S/M 255 255 255 255 30 30
80 70*f

M/F 85 85 10 10 80 85*t
165 165 65 65 135 135

80 80
80+ - *x

S/F 80 70*f 10 10 30 30
65 65
80 80
80+ - *y



REVISED SEFTON MAP - Footnotes.
PIL GENE
(An extra b cut site has been added to the LHS of PIL and 
the M site to the LHS of PIL has been changed to partial.)
b) M - The expected fragment (340) is 2.8% ALLOWABLE 
smaller than the observed fragment (350). ERROR
f) S/F - The expected fragment (80) is 14.2% SIG.-SERIOUS 
larger than the observed fragment (70). (2)
u) M - If the M site to the LHS of PIL is partial,MINOR
would expect a longer M fragment. (7)
TOTAL = 1 minor

1 sig. - serious
PI GENE
h) M - The expected fragment (340) is 2.8% ALLOWABLE 
smaller than the observed fragment (350). ERROR
k) B/F - The expected fragment (45) is 10% ALLOWABLE ERROR 

smaller than the observed fragment (50).
v) M - If the M site to the LHS of PIL is partial, MINOR
would expect a longer M fragment. (7)
w) F - A longer F fragment would be expected. MINOR (7)
x) M/F 
Y) S/F
TOTAL = 2 minor 
AACT GENE
n) M - The expected fragment (340) is 2.8% ALLOWABLE 
smaller than the observed fragment (350). ERROR
t) M/F - The expected fragment (80) is 5.8% ALLOWABLE 
smaller than the observed fragment (85). ERROR
b) B/M - Would expect 6 fragments - only 3 3 MINOR (7)
c) observed.
e)
d) B - Would expect more fragments. 1 MINOR (7)
f) S/M - The expected fragment (80) is 14.3% larger

than the observed fragment (70). MINOR-SIG (2)
TOTAL = 4 minor, 1 minor - sig.



Examples of how the three evaluations would be applied to 
maps are given.
1. EVALUATION 1
Examples are given of how evaluation 1 would be applied to 
three different maps generated from the observed data for 
gene P. 3 restriction enzymes were used, B, M and S and 
the data observed for each of the single digests is shown 
below.

Appendix F - Examples of applying evaluations 1, 2 and 3.

Restriction enyzme P fragment length
B 200

100
M 50
S 300

Evaluate map S B b M * M B S  using evaluation 1.
To evaluate gene map S B b M * M B S ,  the single digests 
expected from the map are calculated and the observed 
fragment lengths are assigned to them as described below.

map S B b M * M B S
cut site position 1 2 3 4  5 6 7

The observed BB200 fragment length is assigned to the 
expected BB(2,6) fragment. The observed BB100 fragment 
length is assigned to the expected bB(3,6) fragment. The 
observed MM50 fragment length is assigned to the expected 
MM(4,5). The observed SS300 fragment length is assigned to 
the expected SS(1,7) fragment.
The single digest fragments are checked to see if they are 
nested within other single digest fragments as shown.
MM(4,5) 50 fragment is nested within 

bB(3,6) 100 
BB(2,6) 200
SS(1,7) 300 - no problem.

bB(3,6) 100 fragment is nested within 
BB(2,6) 200
SS(1,7) 300 - no problem.

BB(2,6) 200 fragment is 
SS(1,7) 300

nested within 
- no problem.

The observed single digest data fits into the proposed map 
so the map score is unaltered.



gene map M B b S * S B M
position 1 2 3 4  5 6 7

SS(4,5) 300 fragment is nested within bB(3,6) 100 - penalty
BB(2,6) 200 - penalty 
MM(1,7) 50 - penalty

bB(3,6) 100 fragment is nested within BB(2,6) 200
MM(1,7) 50 - penalty

BB(2,6) 200 fragment is nested within MM(1,7) 50 - penalty
The score is increased by 5 points, one for each penalty.

Evaluate map M B b S * S B M  using evaluation 1.

Evaluate map SBbM*SBM using evaluation 1.
gene map S B b M * S B M

position 1 2 3 4  5 6 7
bB(3,6) 100 fragment is nested within BB(2,6) - no problem.
There is only 1 fragment which is nested within another. 
Note that all the other single digest fragments are stag­
gered in the map. In such cases, a map in which the frag­
ments are staggered (ie. where no single digests nest 
within one another) is considered a "no problem" map.



2. EVALUATION 2
Gene PI has had 4 restriction enzymes applied, B, M, S and 
F and the data observed for each of the single digests is 
shown below. The double digest data observed for PI is 
shown in chapter 1, table 1.1.
Restriction PI fragment length
Enzyme
B 250

225
M 350

260
S 255
F 80

65
10

Step 1 - Classify each double digest fragment observed 
for PI in chapter 1, table 1.1 as either a new double 
digest fragment or as a single digest fragment, and calcu­
late the ordering of the cut sites.

obs type of ordering of
length fragment cut sites

BM 250 B single digest B * B
225 B single digest B * b or b * :
130 new fragment B * M or M * !

BS 125 new fragment B * S or S * B
BF 50 new fragment B * F or F * B

10 F single digest f * f
MS 255 S single digest S * S
MF 80 F single digest F * F

65 F single digest f * F or F * f
10 F single digest f * f

SF 80 F single digest F * F
65 F single digest f * F or F * f
10 F single digest f * f



Step 2 - Calculate the ordering of the double digests 
expected from the map B M b S m F f  * f B S M F . Compare 
with the ordering of cut sites of observed data calculated 
in step 1.
A = double digest 
B = number of observed fragments 
C = classification of the observed fragments 
D = number of fragments expected 
E = orderings of fragments expected
F = difference in number between the number of fragments 
observed and expected
G = difference in the orderings of the observed and ex­
pected fragments

A B C D E F G

BM 3 130(new) 3 m*B(new) 0 0
225 (B sd) b*B(B sd) 0
250(B sd) M*B(new) 1

BS 1 125(new) 1 S*B(new) 0 0

BF 2 10(F sd) 4 f*f(F sd) 2 0
50(new) f*B(new) 0

F*B(new) 1
F*f(F sd) 1

MS 1 255(S sd) 2 S*S(S sd) 1 0
m*S(new) 1

MF 3 80(F sd) 4 F*M(new) 1 1
65(F sd) f*M(new) 1
10(F sd) f*f(F sd) 0

F*f(F sd) 0

SF 3 80(F sd) 4 F*f(F sd) 1 0
65(F sd) f*S(new) 1
10(F sd) f*f(F sd) 0

F*S(new) 1

13 18(some may be lost) 5
(or appear as weak)
(fragments)

Given the suggested map, out of the 18 double digest frag­
ments that would be expected, 5 are not observed from the 
data and 8 of the expected fragments orderings do not 
match up with those observed.

8



Step 3 - Allocate a score for the map based,

3a) on the % of the type of double digest fragments ob­
served which are expected -

SCORE
95%+ - no problem = 0
91 - 94% - minor problem = 1
90% - significant problem = 3

- serious problem = 9
<90% - critical problem = 18

There were 13 double digests observed and 10 were expected 
from the map being considered. The % of the type of double 
digest fragments observed which are expected is 10/13 = 
76.92% score = 18.

3b) on the % of the type of double digest fragments ex-
pected which are observed -

SCORE
70%+ - no problem = 0
61 - 69% - minor problem = 1
60% - significant problem = 3
51-59% - serious problem = 9
<50% - critical problem = 18

Out of the 18 fragments expected, 10 of these were ob­
served. The % of the type of double digest fragments 
expected which are observed is 10/18 = 55.55% score = 9.
Map score based on evaluation 2 = 18 + 9 27.



3. EVALUATION 3
The aim of evaluation 3 was to calculate the size of the 
intervals between the cut sites in a single gene map.
Each of the fragment lengths was represented as an equa­
tion with the unknown intervals on the left hand side of 
the equation and the corresponding fragment length on the 
right hand side of the equation. The equations were en­
tered into an (n,m) matrix aa[n,m], where n=number of 
equations and m=number of unknown intervals. The corre­
sponding fragment lengths 1, were represented as a vector 
of size n. The problem was regarded as that of solving n 
simultaneous equation to produce the lengths of the m 
unknowns.
Three situations were possible depending on the number of 
simultaneous equations and the number of unknown intervals 
in the matrix.
If there were the same number of equations as there were 
unknown intervals, the matrix was a square matrix and the 
equations in the matrix could be solved. Gaussian elimina­
tion with partial pivoting was used to solve the equa­
tions. The solutions represented the least squares best 
fit for the intervals in the map. As the solutions were 
computed solutions rather than exact solutions, a series 
of corresponding residual vectors were generated that 
indicated the amount of error associated with each solu­
tion.
If there were more equations than there were unknown 
intervals (n > m), the matrix was over-prescribed. In such 
situations, an attempt was made to produce a square matrix 
by pre-multiplying the matrix on the left by the transpose 
of the matrix aa[n,m]. The vector l[n] was multiplied by 
the transpose of matrix aa[n,m]. In practical cases, pre­
multiplying the matrix by its transpose normally resulted 
in a non-singular matrix. The equations were then solved 
using Gaussian elimination with partial pivoting. The 
solutions represented the least squares best fit to the 
equations. Arnold(1990) provides a more detailed treatment 
of the subject.
If there were fewer equations than unknown intervals, the 
matrix was under-prescribed. In such cases, the data was 
not considered to fit well into the single gene map and 
the map was allocated a poor score.

Example
An example of how evaluation 3 was applied to a single 
gene map is described using the experimental data for PI 
shown in appendix A.

1. Represent the unknown intervals and corresponding 
fragment lengths as a series of simultaneous equations.
The positions of the cut sites and gene were numbered as 
were the intervals between the cut sites in the map, as 
illustrated overleaf.



position 0 1  2 3 4 5 6 7 8 9 10 11 12
map B b m S F * f B f f S m m
interval 0 1  2 3 4 5 6 7 8 9 10

1.1 The equations for the single digests were inserted 
into matrix aa[n,i], where n=no. of equations (also the 
no. of fragment lengths) and m=no. of unknown intervals. 
The fragment lengths (solutions) for each of the equations 
were inserted into a vector l[n]. For example, in the 
first equation shown below, the intervals 0 to 5 inclusive 
had to add up to equal length 250.

interval (m) DD no.of poss
0 1 2 3 4 5 6 7 8 9 10 posn

no. of length
eqn (n) (1)
aa[ 0 ]= 1 1 1 1 1 1 0 0 0 0 0 250 BB 0, 7 1
aa[ 1]= 0 1 1 1 1 1 0 0 0 0 0 225 bB 1, 7 1
aa[ 2 ]= 0 0 1 1 1 1 1 1 1 1 0 260 mm 2,11 1
aa[ 3 ]= 0 0 1 1 1 1 1 1 1 1 1 350 mm 2,12 1
aa[ 4 ]= 0 0 0 1 1 1 1 1 1 0 0 255 SS 3,10 1
aa[ 5 ]= 0 0 0 0 1 0 0 0 0 0 0 10 Ff 4, 6 1
aa[ 6 ]= 0 0 0 0 1 1 1 0 0 0 0 65 Ff 4, 8 1
aa[ 7 ]= 0 0 0 0 1 1 1 1 0 0 0 80 Ff 4, 9 1
1.2 The equations for the double digests were inserted 
into matrix aa[n,m]. The solutions for each of the equa­
tions were inserted into vector l[n].
This process could be problematic for double digests as 
there was no one to one relationship between the number of 
fragments observed and the number of fragments expected. 
There could be more or less fragments expected than ob­
served. If 2 fragments were observed, but 4 were expected 
(it could be argued that this was a normal state of af­
fairs as you often do not see all the fragments you would 
expect), how would you decide which of the 4 fragments 
were the 2 fragments you observed ? The only fragment 
whose position you could be reasonably confident about was 
the smallest fragment, which must lie across the gene.
For each double digest, the expected fragments were clas­
sed as single digest fragments or as new double digest 
fragments. A double digest could be classed as a single 
digest if both end cut sites were the same and the frag­
ment occupied the same position and had the same length as 
the single digest fragment. If the fragment was classed as 
a new double digest, a check was made to see if the length 
of the observed new double digest could be assigned to the 
expected fragments. If the length of the observed double 
digest was greater than the length of any single digest, 
then an expected double digest which was smaller than the 
single digest was not feasible. (The position of the ex­
pected double digest gave an indication of its size in 
relation to the known size and position of a single di­
gest. )



interval (m) DD no.of poss
0 1 2 3 4 5 6 7 8 9 10 posn

no. of length
eqn (n ) (1)
aa[ 8]= 0 0 1 1 1 1 0 0 0 0 0 130 mB 2, 7 1
aa[ 9 ] = 0 1 1 1 1 1 0 0 0 0 0 225 bB 1/ 7 1
aa[10]= 1 1 1 1 1 1 0 0 0 0 0 250 BB 0, 7 1
aa[11]= 0 0 0 1 1 1 0 0 0 0 0 125 SB 3, 7 1
aa[12 ] = 0 0 0 0 1 0 0 0 0 0 0 10 Ff 4, 6 1
aa[13 ] = 0 0 0 0 1 1 0 0 0 0 0 50 FB 4, 7 1
aa[14 ] = 0 0 0 1 1 1 1 1 1 0 0 255 SS 3,10 1
aa[15 ] = 0 0 0 0 1 0 0 0 0 0 0 10 Ff 4, 6 1
aa[16 ] = 0 0 0 0 1 1 1 0 0 0 0 65 Ff 4, 8 1
aa[17]= 0 0 0 0 1 1 1 1 0 0 0 80 Ff 4, 9 1
aa[18] = 0 0 0 0 1 0 0 0 0 0 0 10 Ff 4, 6 1
aa[19]= 0 0 0 0 1 1 1 0 0 0 0 65 Ff 4, 8 1
aa[20]= 0 0 0 0 1 1 1 1 0 0 0 80 Ff 4, 9 1
2. In this; typical example1 / there were more equat
there were unknown variables (n > m) and the matrix was 
over-prescribed. To produce a square matrix, the matrix 
was pre-multiplied on the left by the transpose of matrix 
aa[n,m]. The vector l[n] was multiplied by the transpose 
of matrix aa[n,m].
3. The equations in the square matrix were solved to 
determine the size of the unknown intervals in the map, 
using Gaussian elimination with partial pivoting.
The coefficient with the largest absolute value in the 
first column was chosen as the first pivot. That equation 
became the pivot equation. Multiples of the pivot equation 
were added to all other equations to eliminate the un­
known. Working through the columns in succession to elimi­
nate the unknowns in natural order, the process was re­
peated for each unknown. The final system was solved by 
back substitution.
The solutions represented the least squares best fit for 
the intervals in the map and were :-
m[0] 25.00
m[l] 95.00
m[ 2 ] 5.00
m[3] 75.00
m[ 4 ] 10.00
m[5] 40.00
m[6] 15.00
m[ 7 ] 15.00
m[8] 100.00
m[9] 0.00
m[ 10 ] : 90.00
Map length (sum of solutions) = 470.000000
Associated with each computed solution was a residual 
which indicated the amount of error associated with each 
computed solution. The residual information is currently 
unused by evaluation 3. (In the example above, the residu­
als were all 0.)



A test list of maps was compiled using three different 
sets of data. In each case, when coincident cut sites were 
present in a map, both sequences were given. Eg. if the 
cut sites "B" and "S" were coincident in a map, two se­
quences would be used - the map with sequence "BM" and the 
map with sequence "MB". The sequence number was indicated 
at the end of the map.
1. Maps generated using the "perfect" data for 
PIL/PI/AACT. The complete revised published map was taken 
containing all three genes and the "perfect" gene maps 
were deduced. The "perfect" data expected from the maps 
was calculated and is shown in Appendix A. The "perfect" 
maps were identified with a preceeding "P".
PPIL1 = B b F m S  * F B S m m 
PPIL2 = B b F m S * F B m S m
PPI1 = B b m S F * f B f f F S m m  
PPI2 = B b m S F * f B f f F m S m
PAACT1 = m B F b m S *  F m S b b B  
PAACT2 = m B F b m S * m F S b b B
2. Maps generated using the PIL/PI/AACT data taken from 
Sefton et al(1990), shown in chapter 1, table 1.1. The 
maps comprised -
a) The revised published gene maps. As the published PIL 
and PI gene maps contained a "critical" problem (in the 
number and nature of B cut sites), the published maps were 
revised by the Sefton group. The revised published maps 
represented the maps that the geneticist considered were 
the optimal maps for the data. These maps were identified 
as "PUBR" maps.
b) The proposed gene maps. These were the gene maps assem­
bled manually by the author using the same data as Sefton. 
These were identified as "PROP" maps.
PIL-PUBR1 = B b F m S  * F B S m m 
PIL-PUBR2 = B b F m S * F B m S M  
PIL-PROP = B b F M S * F B S m M  3

Appendix G - Test list of maps

PI-PUBR1 = B b m S F * f B f f S m m
PI-PUBR2 = B b m S F * f B f f m S m
PI-PR0P1 = B b M S F * f B f F m S M
PI-PR0P2 = B b M S F * f B f F S m M
AACT-PUBR1 = m F b m S * F m S b b B
AACT-PUBR2 = m F b m S * m F S b b B
AACT-PR0P1 = M B S m F * S M b F b B
AACT-PR0P2 = M B S F m * S M b F b B
3. Maps generated using the AT/ACE data from Sefton et 
al(1990). The maps for each gene were extracted from the 
published maps. The maps were found to contain certain 
problems in the number of cut sites used to generate the 
single digests. Two minor amendments were made to the 
maps. Nevertheless, it was considered that the maps shown 
represented near-optimal maps.

x a a



ATI = S B s m b f * f B f  f f f s S f m F m m M  
AT2 = S B s m b f * f B f f f f s S m f F m m M
ACE1 = M F f f B S * f m b F S m B m M
ACE2 = M F f f B S * m f b F S m B m M
ACE3 = M F f f B S * f m b F m S B m M
ACE4 = M F f f B S * m f b F m S B m M

a. a  9



Appendix H - D e s c r iption of Hybrid Genetic A l g o r i t h m
versions 0 - 3
The original version of the Hybrid Genetic Algorithm (HGA) 
is described below. The changes made in the three updates 
are highlighted.
HGA VERSION 0 (HGAvO) 
Population size : 20 - 100 
No. of trials : 0 - 500
Operators

Operator rates
Reproduction
technique

Initial
Population
Evaluation
Function

order swap 
side swap
fixed (100%)
generational replacement 
generational replacement with elitism 
steady state
generated at random - 
possibility of duplicates

evaluation 1, evaluation 2
HGA VERSION 1 (HGAvl) - the case swap operator was includ­
ed and the operator rates were changed to become variable. 
10% variation in fragment lengths was allowed when evalu­
ating on the fit of the single digest data in evaluation
1. Evaluation 2 was modified to adjust the threshold 
values for the number of double digests expected and 
observed. Evaluation 3 was introduced.
HGA VERSION 2 (HGAv2) - the initial population was checked 
to ensure that all maps were different. The "steady-state" 
reproduction technique was modified to become "steady- 
state without duplicates".
HGA VERSION 3 (HGAv3) - the "steady-state without dupli­
cates" technique was modified to become "steady-state 
without duplicate templates". Evaluation 3 was modified to 
penalise maps which contained zero intervals over the 
probe.



Appendix I - Glossary of Biological Terms

Autoradiography - A technique used to highlight the 
presence of a radioactively labelled substance, eg a gene 
probe.

Base - A chemical component of DNA. One of four different 
types namely, Adenine(A), Guanine(G), Cytosine(C) and 
Thymine(T).

Base Pair - The association of two bases, one from each 
strand of DNA in a chromosome (as illustrated in figure
2.1). Adenine(A) always pairs with Thymine(T) and Cyto- 
sine(C) always pairs with Guanine(G).

Chromosome - Each cell in the human body (apart from the 
sex cells) contains 46 chromosomes organised into 23 
pairs. Chromosomes are made from DNA and contain the
100,000 or so genes estimated to be present for the human.

Cloned DNA - A portion of DNA that has been reproduced 
artificially (or "cloned") in the laboratory. Normally 
this would represent a very small fraction of the total 
DNA of a cell.

Complete cut site - A specific site/position on the DNA 
that is always cut by the restriction enzyme.

DNA (Deoxyribonucleic acid) - A chemical consisting of two 
strands loosely joined together as illustrated in Figure
2.1. DNA is made up from four different bases namely 
Adenine(A), Thymine(T), Cytosine(C) and Guanine(G). Each 
set of three (triplet) bases represents the genetic code 
for one amino acid. (Amino acids are the primary building 
blocks for proteins).

19 1



Double digest fragment - A fragment of DNA that has 
been produced using two restriction enzymes. One or other 
of the restriction enzymes has cut at each end of the 
fragment.

Expected data - Given either a single gene map or a 
multi-gene map with the distances between the cut sites 
shown, the number and lengths of the fragments containing 
a particular gene can be calculated. As this data is the 
data derived from a map, it is referred to as the "expect­
ed data". Due to experimental limitations, the data ex­
pected from a map contains errors and differs from the 
data observed experimentally.

Gel electrophoresis - A technique used to separate frag­
ments of DNA according to their weight. The DNA fragments 
are placed on a column of gel and an electric current is 
applied. The fragments move down the gel at a speed in­
versely proportional to their weight. The size of the DNA 
fragments in terms of number of bases can be calculated 
using a calibrated column of gel.

Gene - A specific sequence of DNA bases that carries the 
information for making a particular protein or for a 
particular function. Genes always occur at the same posi­
tion on a chromosome and lie in a linear order (or se­
quence). The length of genes varies. It has been estimated 
that there are 100,000 genes in the human.

Gene probe - A sequence of bases, radioactively labelled, 
which will bind to a particular gene. Gene probes are used 
to highlight the gene of interest.

Kilobase pairs (Kb) - The unit ^f measurement for DNA



fragment length. 1 Kb = 1000 base pairs.

Map assembly - The process of determining the number and 
sequence (or order) of genes and restriction enzyme cut 
sites along the DNA from the observed data.

Methylated site - Refers to the chemical state of the DNA 
bases. If the bases comprising the recognition site of a 
restriction enzyme are methylated, the restriction enzyme 
is blocked from cutting the DNA at that recognition site. 
(The opposite of unmethylated site.)

Multi-gene map - A diagram of a section of DNA showing the 
sequence (or order) of more than one gene and the number, 
sequence and position of restriction enzyme cut sites. 
(Multi-gene maps were produced by this thesis by merging 
two single gene maps together.)

Observed data - The data obtained by the geneticist from 
conducting single and double digest experiments. (Also 
referred to as Experimental Data.)

Optimal map - An optimal map generated by the Hybrid 
Genetic Algorithm is one which achieves the best score (0) 
as allocated by the evaluation function.

Overlapping fragments - Two fragments overlap when they 
share an identical sequence of bases. For example, all 
fragments that contain a particular gene must overlap each 
other at the position of the gene.

Partial cut site - A specific site/position on the DNA 
that is cut in some cases by a restriction enzyme and not
cut in others.



Partial digest fragment - A fragment of DNA produced by 
the presence of a partial cut site.

Recognition site - The sequence of bases that a restric­
tion enzyme recognises on the DNA. The length of a recog­
nition site varies. Different restriction enzymes recog­
nise different sequences.

Restriction enzyme - Substance that cleaves the DNA when 
it recognises a specific sequence of bases (or recognition 
site). There are many different types of restriction 
enzyme that recognise different sequences of bases.

Single digest fragment - A fragment of DNA that has been 
produced using a single restriction enzyme. Each end of 
the fragment has been cut at either end by the restriction 
enzyme.

Single gene map - A diagram of a section of DNA showing 
the number, sequence (or order) and position of restric­
tion enzyme cut sites around one gene. (Single gene maps 
were produced by this thesis using a Hybrid Genetic Algo­
rithm. )

Southern blotting - A technique used to transfer DNA 
fragments from the gels used in Gel Electrophoresis to a 
nitrocellulose filter to allow the DNA fragments to be 
manipulated.

Template - A sequence of restriction enzyme cut sites 
around a gene, ignoring the "nature" of the cut sites ie 
whether or not the cut sites are complete or partial.

Total DNA - All the DNA (comprising the 23 pairs of chro­



mosomes found in all but the sex cells) contained in a 
cell. A sample of total DNA used in the single and double 
digest experiments contains the total DNA from many cells.

Unmethylated site - Refers to the chemical state of the 
DNA bases. If the bases comprising the recognition site of 
a restriction enzyme are unmethylated on the DNA, the re­
striction enzyme can cut the DNA. (The opposite of methy­
lated site.)

Weak fragment - A possible fragment of DNA that appears as 
a faint band on the gel columns. It may be a proper frag­
ment but it may also be due to either smudging on the gel 
or to the probe attaching to a related gene. Weak frag­
ments tend not to be used by the geneticist when assem­
bling a map.
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GENIE: A Genetic Algorithm Application to handle Noisy Data in
the Biological Domain.
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ABSTRACT

Genetic Algorithms (GAs) have generated much interest in recent 
years in areas as diverse as machine learning, machine vision, 
function optimisation and NP-hard problems.
This paper describes the application of a genetic algorithm to a 
problem in the biological domain. A computer support tool, 
"GENIE", is being developed to assist geneticists with a problem 
in their field - the building of restriction "maps" from the 
results of partial digest experiments. Building restriction maps 
is a time-consuming and lengthy activity which is based on noisy 
data and relies on human judgement. The search space of feasible 
solutions is very large. It is proposed that this problem solving 
exercise would benefit from the application of artificial intel­
ligence techniques.
The procedure for building restriction enzyme maps is introduced 
in section 1. There are several aspects of map assembly which 
make it an interesting problem to study and these are outlined in 
section 2. The way in which the problem is being tackled, through 
the development of a computer support tool and by incorporating 
artificial intelligence techniques into the tool, is discussed in 
section 3. The paper is summarised in section 4.and section 5 
highlights future developments.

1. MAP BUILDING PROCEDURES
Geneticists worldwide are attempting to identify and isolate 
genes and to generate a "map" for the human showing the position 
and function of each gene on each chromosome (known as genetic 
mapping).
A current technique which has had a significant impact on genetic 
mapping is the use of restriction enzymes (REs). REs are used to 
cut up chromosomes into fragments. There is a wide range of these 
enzymes which have different properties and will cut at particu­
lar sites on the chromosomes. By observing the fragments produced 
and using already known genetic markers, geneticists can produce 
restriction maps for chromosomes showing the sites where the 
enzymes cut and the position of known markers. Using this tech­
nique allows regions of DNA to be characterised.
An example of a RE map is shown in figure 1.1 and the data from 
which it was generated is shown in table 1.1 (Sefton (1990)). The 
numbers in table 1.1 represent the lengths of the DNA fragments. 
Each fragment contains a genetic marker and has been cut at 
either end by the RE shown.



When one RE is used, the fragments obtained are called "single 
digests" and each end of the fragment has been cut by that RE. 
When two REs are used, the fragments obtained are called "double 
digests". Here, each end of the fragment has been cut by one or 
other of the REs.
RE cut sites are said to be either "complete" or "partial". A 
complete cut site is a site on the DNA which is always cut by the 
RE. A partial cut site is a site which is cut on some pieces of 
DNA, and left intact on others. The occurence of partial cut 
sites leads to the presence of long fragments. Determining the 
position of the genetic markers in relation to one another relies 
on the presence of such fragments. Long fragments are likely to 
contain two or more markers if the markers are adjacent.
When all fragments (single and double digests), present in table
1.1 are combined, taking into account the error present in the 
fragment lengths, the choice of RE cutting in the double digests 
and the nature of the cut sites, a RE map is generated which fits 
the data best. The map reveals the ordering of the genetic mark­
ers, the cut sites of the restriction enzymes, and whether or not 
the cut sites are partial or complete. The map assembled using 
the data in table 1.1 is shown in figure 1.1. The distance apart 
of the markers can be calculated.

Figure 1.1 - RE Map assembled from the data in table 1.1 (not to 
scale) showing the ordering of the RE cut sites and gentic mark­
ers .

PIL PI AACT

B SF M S SF sf B sf
s

SF SF b m S
SF
M S B

DNA

NOTES
1. PIL, PI, AACT - genetic markers
2. B, SF, M, S - REs
3. REs shown in capital letters represent complete cut sites, 
lower case indicates partial cut sites.



Table 1.1 - Table Containing Experimental Data (Sefton (1990)).

NOTES
1. PIL, PI, AACT - genetic markers
2. B, SF, M, S - REs
3. Fragments contained in brackets indicate "weak" fragments.

PIL
B
PI AACT

M
PIL PI AACT

S
PIL PI AACT PIL

SF
PI AACT

250 250 355 350 350 350 255 255 70 165 [190] [195]
225 225 275 260 260 80 [10] [135] [175]

[65] 230 [180] 80 135
65
10

B+M B+S
PIL PI AACT PIL PI AACT
250 250 230 125 125 70
225 225 105 [65]
130 130

[65]

B+SF M+S
PIL PI AACT PIL PI AACT
165 [190] 135 255 255 70
[10] 50 105 [180] 30

10

M+SF S+SF
PIL PI AACT PIL PI AACT
85 80 135 [130] 30

65 85 70 80
[10] 10 (10) 65

10



2. MAP BUILDING CHARACTERISTICS
There are several aspects of map building which make it an inter­
esting activity to study.

1. Maps do not fit perfectly.
The data used to build a map is noisy, due to experimental limi­
tations, therefore no map ever fits perfectly. "Weak" fragments 
are sometimes obtained. These tend to be ignored when a map is 
assembled, but should in theory fit into the solution. A "good" 
map solution is one in which the data, including the weak frag­
ments, fits well.
At present, there is a lack of criteria by which the correctness 
of maps can be assessed. Work is in progress to identify and 
establish appropriate criteria and these will enable the quality 
of existing maps to be evaluated and the quality of potential 
maps to be predicted.

2. Fragments overlap.
All fragments obtained for a particular marker must overlap the 
region of the marker. Many orderings of fragments are possible 
and it is difficult to determine where the cut sites are.

3. Numerous solutions are possible.
Due to the overlapping nature of the fragments and the error in 
the fragment lengths, many map solutions can be generated from 
the same data.

3. SOLVING THE PROBLEMS
The problem solving activity of RE map assembly is being tackled 
in two phases.
A computer support tool is being developed the aim of which is to 
make map building easier. Currently, maps are assembled by hand 
using pencil and paper. Developing the tool is the first step in 
automating the process.
Due to the characteristics of the map building process described 
in section 2, it is a relevant activity to study from an artifi­
cial intelligence point of view and various search techniques are 
being examined and assessed for their suitability for implementa­
tion in the tool. Subsequently, the tool will be used as a test 
vehicle to implement promising techniques and automate map assem­
bly.
Map assembly is a sequencing problem which requires search to 
find a solution from a large problem space. There are many types 
of search techniques described in the literature (Korf 1988) . GAs 
have been applied to computationally complex sequencing problems 
such as the travelling salesman's problem (Goldberg (1985), 
Grefenstette (1985)) and job shop scheduling (Davis (1985), 
(Syswerda (1991)) to see if they offer advantages over tradition­



al search techniques.
Due to the characteristics of map assembly, it is proposed to 
investigate the suitability of using a GA as a search technique. 
Properties of genetic algorithms are being examined and the way 
in which these could be exploited for this particular application 
are being considered. The broader implications arising as a 
result of this work on the performance and limitations of genetic 
algorithms will be determined.

4. SUMMARY
This paper has outlined the problem solving activity of map 
building and has described the approach that is being taken to 
automate the process via the incorporation of artificial intelli­
gence techniques.

5. FUTURE DEVELOPMENTS
It is likely that in order to apply artificial intelligence 
techniques such as GAs to map assembly, the techniques them­
selves will need to be developed in some novel way. The maps 
assembled by the advanced tool will be evaluated both by geneti­
cists and by comparison with existing validated maps which will 
enable the success of the techniques in generating "best fit" 
maps to be determined. As a result, new insight will be gained 
into these techniques and it is believed these will be applicable 
to a broader spectrum of problems.
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ABSTRACT
This paper describes the cur­
rent development and implemen­
tation of a form of genetic 
algorithm (GA) suitable for 
tackling a complex sequencing 
problem in the biological 
domain - the building of re­
striction "maps" from the 
results of partial digest 
experiments. Building restric­
tion maps is a time-consuming 
and lengthy activity which 
relies on human judgement of 
inexact data.
The paper is organised into the 
following sections. The proce­
dure for building restriction 
enzyme maps is described in 
section 2. There are several 
aspects of map assembly which 
make it a relevant problem to 
study from a GA point of view 
and these are outlined in sec­
tion 3. The GENIE project is an 
ongoing project and the way in 
which the problem is being 
tackled by developing a GA and 
the implementation issues are 
discussed in section 4. Prelim­
inary results are shown in sec­
tion 5, the paper is summarised 
in section 6 and section 7 
highlights future developments.
1. INTRODUCTION
GAs are search procedures based

on the mechanics and analogy of 
natural selection. They were 
introduced by Holland(1975) -
for an introduction to the 
subject refer to Goldberg(1989). 
Map assembly is an example of a 
difficult sequencing problem 
which requires some form of 
search to find a good solution 
from a large problem space of 
feasible solutions. Traditional 
GAs are not effective for se­
quencing problems as illegal 
solutions can be generated.
Two of the goals of the GENIE 
project are to develop some form 
of GA which can successfully 
tackle sequencing problems and 
to incorporate an evaluation 
function based on human assess­
ment of subjective and error 
prone data. In order to meet 
these goals, the traditional GA 
has been modified in several 
ways to produce a hybrid GA.
The concept of a hybrid GA has 
been suggested by a number of 
authors(Bethke(1981); Bosworth 
(1972); Goldberg(1983 ) ; Davis
(1991)). A hybrid GA is a GA 
which incorporates problem 
specific information or various 
search techniques. Research 
conducted in this area has shown 
a hybrid GA approach to be 
promising for combinatorial 
optimisation problems such as 
the Travelling Salesman Problem 
(Goldberg(1985), Grefenstette 
(1985), Oliver(1987), Whitley 
(1989,1991)) and scheduling 
probiems (Davi s(19 8 5), Syswerda
(1991)).
In the GENIE project, a hybrid 
GA approach is being applied to 
find a good solution to the map 
assembly problem.
2. MAP BUILDING PROCEDURES
Geneticists worldwide are



attempting to identify and 
isolate genes and to generate a 
"map" showing the position and 
function of each gene on the 
human DNA .
A current technique which has 
had a significant impact on 
genetic mapping is the use of 
restriction enzymes (REs). REs 
are used to cut up DNA into 
fragments. There is a wide range 
of these enzymes which have 
different properties and will 
cut at particular sites. By 
observing the fragments produced 
and using already known probes 
(genetic markers), geneticists 
can produce restriction maps 
showing the sites where the 
enzymes cut and the position of 
known probes. Using this tech­
nique allows regions of DNA to 
be characterised.
An example of a RE map is shown 
in figure 2.1 and the data from 
which it was generated is shown 
in table 2.1 (Sefton (1990)). 
The numbers in table 2.1 repre­
sent the lengths of the DNA 
fragments. Each fragment con­
tains a probe and has been cut 
at either end by the RE shown.
When one RE is used, the frag­
ments obtained are called 
"single digests" and each end of 
the fragment has been cut by 
that RE. When two REs are used, 
the fragments obtained are 
called "double digests". Here, 
each end of the fragment has 
been cut by one or other of the 
REs.
RE cut sites are said to be 
either "complete" or "partial". 
A complete cut site is a site on 
the DNA which is always cut by 
the RE. A partial cut site is a 
site which is cut on some pieces 
of DNA, and left intact on 
others. The occurence of par­

tial cut sites leads to the 
presence of long fragments. 
Determining the position of the 
probes in relation to one anoth­
er relies on the presence of 
such fragments. Long fragments 
are likely to contain two or 
more probes if the probes are 
adjacent.
When all fragments present in 
table 2.1 are combined, taking 
into account the error present 
in the lengths, the choice of 
RE cutting in the double di­
gests and the nature of the cut 
sites, a RE map is generated 
which fits the data best. The 
map reveals the ordering of the 
probes, the cut sites of the 
restriction enzymes, and wheth­
er or not the cut sites are 
partial or complete. The map 
assembled using the data in 
table 2.1 is shown in figure
2.1.
3. MAP BUILDING CHARACTERISTICS
Map building is essentially an 
ordering problem - the map is 
linear and after the number and 
types of cut sites have been 
determined, they must then be 
placed in the correct sequence. 
There are several aspects of 
map building which make it a 
difficult activity.
3.1 Maps do not fit perfectly.
No map ever fits perfectly as 
there are errors present in the 
amount and quality of the data 
used to build a map, due to 
experimental limitations."Weak" 
fragments are sometimes ob­
tained. Most weak fragments 
should fit into a map but as 
some are due to error, they 
tend to be ignored when a map 
is assembled but should in 
theory fit into the solution. A



Figure 2.1 - RE Map assembled from the data in table 2.1
(not to scale) showing the ordering of the RE cut sites and probes.

PIL PI AACT
B SF M S SF sf B sf SF SF

s
m

SF
M S B

■DNA
NOTES
1. PIL, PI, AACT - probes
2. B, SF, M, S - REs
3. REs shown in capital letters represent complete cut sites, 
lower case indicates partial cut sites.
Table 2.1 - Table containing Experimental Data (Sefton (1990)) 
used to generate the map shown in figure 2.1.

PIL PI AACT
350 350 350 
260 260 80 

[180]

PIL PI AACT 
255 255 70

PIL PI AACT
165 [190] [195]
[10] [135] [175] 

80 135

B
PIL PI AACT
250 250 355
225 225 275

[65] 230

B+M
PIL PI AACT
250 250 230
225 225 105
130 130

[65]
M+S

PIL PI AACT
255 255 70

[180] 30

NOTES 1 2 3

SINGLE DIGEST DATA 
M S

DOUBLE DIGEST DATA 
B+S

PIL PI AACT
125 125 70

[65]

M+SF
PIL PI AACT
85 80 135

65 85
[10] 10

65
10

B+SF
PIL PI AACT
165 [190] 135
[10] 50 105

10

S+SF
PIL PI AACT

[130] 30
70 80
(10) 65

10

1. PIL, PI, AACT - probes
2. B, SF, M, S - REs
3. Fragments contained in brackets indicate "weak" fragments.



"good" map is one in which the 
data, including most of the weak 
fragments, fits well.
There has been a lack of crite­
ria by which the correctness of 
maps can be assessed. As part of 
the GENIE project, appropriate 
criteria have been identified 
and incorporated into an evalu­
ation function. This is dis­
cussed further in section 4.1.3.
3.2 Fragments overlap.
All fragments obtained for a 
particular probe must overlap 
the region of the probe. Many 
orderings of fragments are 
possible and it is difficult to 
determine where the cut sites 
are.
3.3 More than one solution may 
be possible.
Due to the overlapping nature of 
the fragments and the error in 
the fragment lengths, it is 
possible that many feasible map 
solutions may be generated from 
the same data.
4. A GENETIC ALGORITHM APPROACH 
TO SOLVING THE PROBLEM
The traditional GA has been 
modified to handle the map 
assembly problem. The represen­
tation and optimisation tech­
niques employed by the expert 
are used to ensure that the 
domain knowledge embodied in the 
encoding is preserved. The GA 
operators are tailored to apply 
to the new representation and 
include domain-based heuristics, 
and an evaluation function which 
is based on subjective assess­
ment has been developed. Other 
problem specific knowledge has 
guided the development of the 
overall algorithm.

The modifications made to the 
traditional GA may appear to be 
at odds with "pure" GA research, 
as one of the main aims of GA 
research has been to develop an 
algorithm that is robust across 
a variety of problem domains and 
operates without problem specif­
ic information. It is the inten­
tion here to see if the power of 
the traditional GA can be har­
nessed and used as the basis of 
an effective algorithm for a 
real-world complex problem. 
Although the traditional GA is 
robust across a wide range of 
problems, it is unlikely to be 
the best algorithm to use for 
any specific application.
4.1 IMPLEMENTATION ISSUES
A "front-end" menuing system has 
been developed for the GA which 
allows for various features to 
be selected. This has facili­
tated the implementation of the 
modified GA and allowed the 
effect of changing particular 
features to be observed.
There are several areas which 
have been addressed during the 
development of the modified GA 
and these are discussed in the 
following sections.
4.1.1 REPRESENTING THE PROBLEM
Traditional GAs generally repre­
sent chromosomes as binary 
vectors. However, having consid­
ered several options, it was 
decided that in the modified GA, 
the chromosome syntax should be 
changed to reflect the problem 
as shown in figure 2.1.
4.1.2 DEVELOPING A SET OF GENET­
IC OPERATORS
Applying the traditional genetic 
operators to map assembly has 
similiar difficulties with



applying them to other sequenc­
ing problems such as the Travel­
ling Salesman Problem (TSP). In 
the case of the TSP, there are 
constraints placed on the symbol 
string that represents a tour of 
the cities, in that no city can 
appear more than once. The 
traditional recombination opera­
tors rearrange symbols on a 
chromosome independently of each 
other. When solutions are coded 
as sequences and the traditional 
operators applied, cities can 
appear more than once or not at 
all.
When developing operators for 
map assembly, taking into ac­
count previous work (Goldberg 
(1989), Fox and McMahon(1991)) , 
a way of breaking up the chromo­
somes that was natural for the 
problem was sought. The tradi­
tional operators have been 
developed to meet the con­
straints on the chromosomes 
while preserving the motivating 
principles behind these opera­
tors . Crossover provides an 
opportunity for the best at­
tributes of both parent strings 
to be incorporated into the 
offspring. Mutation is a mecha­
nism for introducing necessary 
attributes into an individual 
when those attributes do not 
already exist within the current 
population.
4.1.3 DEVELOPING THE EVALUATION 
FUNCTION
The way in which chromosomes are 
assessed is critical to the 
success of any GA as this has a 
direct influence on the parents 
of the next generation. It is 
essential that an evaluation 
function captures the essence of 
a good or bad map.
Developing such an evaluation 
function for the GA is compli­

cated. It is not easy to arrive 
at a mathematical expression 
which indicates the correctness 
of a map.
Historically, there has been a 
lack of objective criteria by 
which the quality of existing 
maps can be assessed or the 
quality of potential maps can be 
predicted. Such a facility would 
allow geneticists to make an 
objective appraisal of new and 
old maps.
4.1.4 SETTING PARAMETER VALUES
There are several parameters in 
a GA that require to be set to 
appropriate values - population 
size, number of trials, operator 
probabilities and evaluation 
normalisation techniques.
There are established parameter 
settings described in the liter­
ature for GAs using binary 
representation, binary crossover 
and mutation (Schaffer(1989)) . 
Finding good settings for non­
binary representations is not a 
trivial task (Davis(1989)) as 
the techniques available can 
take a great deal of time. 
Davis(1989) has devised a system 
for parameterising operator 
probabilities for GAs that 
differ from the traditional 
type. His technique is being 
used to measure how effective 
each of the operators devised 
are and to obtain appropriate 
settings.
4.1.5 GENERATING THE INITIAL 
POPULATION
Traditional GAs generate the 
initial population at random. 
However, it has been recognised 
(DeJong 1988) that if domain 
specific knowledge is available, 
it can be usefully exploited in 
the GA.



The modified GA will use the 
domain specific information in 
the form of the experimental 
data in order to generate maps.
4.1.6 SELECTING A REPRODUCTION 
TECHNIQUE
Three types of reproduction 
technique are being investigated 
- generational replacement, 
generational replacement with 
elitism and steady-state re­
placement without duplicates. 
(These are reviewed in 
Davis(1991).)
5. RESULTS
5.1 REPRESENTATION
Chromosomes have been represent­
ed as probe maps which denote a 
simplified version of the com­
plete problem. The choice of 
representation exemplifies a 
natural way of splitting up the 
problem as it is a strategy that 
the expert may adopt when build­
ing maps. A chromosome (probe 
map) consists of a number of cut 
sites and the probe, in a par­
ticular order as shown below.
eg B b M m S F *  S M F B
The position of the probe is 
indicated by an asterisk. The 
length of the chromosome depends 
on the amount of probe data.
5.2 GENETIC OPERATORS
Two reproduction operators have 
been developed - "side swap", 
which is a modified type of 
crossover (crossover occuring at 
the position of the probe), and 
"order swap".
Side swap swaps the LHS of one 
parent with the RHS of the other 
parent, as shown in figure
5.2.1.

Order swap, as shown in figure
5.2.2, swaps the order of 2 dif­
ferent REs in the child chromo­
some as long as the swap is 
legal. A complete cut site 
cannot be moved closer to the 
probe than any of the partial 
cut sites. A partial cut site 
cannot be moved further away 
from the probe than its complete 
cut site.
5.3 EVALUATION FUNCTION
An evaluation function has been 
developed which generates a 
value indicating the goodness of 
fit between the proposed probe 
map and the experimental data.
From discussions with geneti­
cists on the features of good 
and bad maps and through the use 
of a detailed questionnaire, the 
important characteristics of 
maps have been identified. A 
marking system has been de­
veloped which provides a means 
for scoring characteristics of 
maps including subjective as­
sessments made by the geneti­
cist. The scoring of the various 
characteristics can be thought 
of as sub-evaluations. Three 
types of sub-evaluations are 
carried out based on the fit of 
the single digest results, the 
fit of the double digest results 
and the fit of the weak frag­
ments. While each sub-evaluation 
is not considered appropriate as 
the sole means of evaluating 
maps, each has a significant 
contribution to make to the 
overall evaluation function.
5.4 INITIAL POPULATION
A "probe map builder" has been 
developed which takes as input 
items of probe data (as shown in 
table 2.1) selected at random



B b M S F *  S F B M  
parent l(pl)

REPRODUCES

B M F S * b M F B S  
parent 2(p2)

\ / \ /
B b M S F * b M F B S  B M F S * S F B M
child 1 (LHS pi + rhs p2) child 2 (LHS p2 + RHS pi)

Figure 5.2.1 - Side Swap

B b M S F * b M F B S  
position 0 1 2 3 4 5 6 7 8 9  10

order swap positions 2 and 4 - > B b F S M * b M F B S

order swap positions 0 and 3 - ILLEGAL - > B b M S F * b M F B S
map unchanged

Figure 5.2.2 - Order Swap
and creates legal probe maps for 
the initial population.
6. SUMMARY
This paper has outlined the 
current development and imple­
mentation of a modified GA for a 
difficult sequencing problem.
7. FUTURE DEVELOPMENTS
The evaluation function de­
veloped will be used to validate 
existing published maps. Once 
all the results from the GENIE 
project are collected, the maps 
generated by the modified GA 
will be assessed both by geneti­
cists and by comparison with 
current validated maps which 
will enable the success of the 
GA to produce "best fit" maps to 
be determined. The performance 
and limitations of the modified 
GA will be analysed and the 
implications of the results for 
other sequencing problems and 
for problems which require a

more complex evaluation function 
will be established.
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ABSTRACT
Currently, geneticists are analysing the structure of the DNA of 
various organisms to determine the location and sequence of 
genes. A technique which has played a major role in this process 
is the use of restriction enzymes and radioactively labelled 
probes to generate maps of the DNA. Building restriction maps 
from the results of probed partial digest experiments is a time- 
consuming and lengthy activity which relies on human judgement of 
inexact data. Map building is an example of a difficult sequenc­
ing problem which requires some form of search to find a good 
solution from a large problem space of feasible solutions. This 
paper describes the development of a hybrid genetic algorithm 
(HGA) suitable for tackling the problem. The results of applying 
the HGA to a set of map data are presented.

1 INTRODUCTION
As part of the Human Genome Programme, geneticists worldwide are 
attempting to identify and isolate genes and to generate a ’‘map" 
showing the position and function of each gene on the human DNA. 
A current technique which has had a significant impact on genetic 
mapping is the use of restriction enzymes (REs) along with Pulsed 
Field Gel Electrophoresis to carry out probed partial digest 
experiments. Maps are generated from the results of these experi­
ments which indicate the sequence and position of genes and 
restriction enyzme cut sites along the DNA. Map building is a 
difficult problem as the data is imperfect allowing many plausi­
ble reconstructions. Distinguishing amongst these relies on the 
geneticist's judgement. Agreement as to which is the best map for 
a set of data is not straightforward as there is no objective 
method for appraising potential maps.
Map building is considered to be an activity which could benefit 
from the application of artificial intelligence techniques. Some 
form of search is required to find a good solution to the prob­
lem. Search techniques which exhaustively search the space of 
possible maps are not feasible due to time constraints. Genetic 
algorithms (Holland 1975) are search procedures based on the 
mechanics and analogy of natural selection. This paper describes 
the current development of a modified form of genetic algorithm 
as a search technique to tackle the map building problem.
Map building is described in section 2 and the characteristics of 
the problem are outlined in section 3. The overall approach for 
tackling the problem is identified in section 4 and the modified



form of genetic algorithm which has been developed is described 
in section 5. The results of applying the technique to map build­
ing are presented in section 6 and discussed in section 7. The 
paper is summarised in section 8.

2 THE MAP BUILDING PROBLEM
Chromosomes contain the instructions for making each cell in the 
body and are made from deoxyribonucleic acid (DNA). Humans have 
46 chromosomes in each cell (apart from the sex cells) organised 
into 23 pairs. A sequence of DNA that carries the information for 
a particular function/protein is called a gene. Genes occupy a 
specific location on a chromosome. Geneticists are working to­
wards producing a map for the human identifying all the genes and 
finding their position on a chromosome.
One of the problems that geneticists face when trying to map the 
position of genes on chromosomes is that there is an enormous 
amount of DNA but only a fraction of the DNA represents genes. In 
order to isolate the region of DNA of interest, substances called 
restriction enzymes (REs) can be used. REs recognise particular 
sites on the DNA and will cut the DNA at that point. There is a 
wide range of REs which have different properties and will cut at 
particular sites. By observing the fragments produced and using 
already known probes (genetic markers), geneticists can produce 
restriction maps showing the sites where the enzymes cut and the 
positions of known probes. Using this technique allows regions of 
DNA to be characterised.
An example of a RE map is shown in figure 2.1 and the data from 
which it was generated is shown in table 2.1 (Sefton (1990)). The 
numbers in table 2.1 represent the lengths of the DNA fragments. 
Each fragment contains a probe and has been cut at either end by 
the RE shown.
When one RE is used, the fragments obtained are called "single 
digests" and each end of the fragment has been cut by that RE. 
When a mixture of two REs is used, the fragments obtained are 
called "double digests". Here, each end of the fragment has been 
cut by one or other of the REs.
RE cut sites are said to be either "complete" or "partial". A 
complete cut site is a site on the DNA which is always cut by the 
RE. A partial cut site is a site which is cut on some pieces of 
DNA and left intact on others. The occurrence of partial cut 
sites leads to the presence of long fragments. Determining the 
position of the probes in relation to one another relies on the 
presence of such fragments. Long fragments are likely to contain 
two or more probes if the probes are adjacent.
When all fragments present in table 2.1 are combined, taking into 
account the uncertainty present in the lengths, the choice of RE 
cutting in the double digests and the nature of the cut sites, a 
RE map is generated which fits the data best. The map reveals the 
ordering of the probes, the cut sites of the restriction enzymes, 
and whether or not the cut sites are partial or complete. The map 
assembled manually by Sefton(1990) using the data in table 2.1 is 
shown in figure 2.1.



Figure 2.1 - RE Map assembled from the data in table 2.1
(not to scale) showing the ordering of the RE cut sites and
probes.

PIL PI AACT
B SF M S SF sf B sf SF SF b

s
m

SF
M S B

•DNA
NOTES
1. PIL, PI, AACT - probes
2. B, SF, M, S - REs
3. REs shown in capital letters represent complete cut sites, 
lower case indicates partial cut sites.
Table 2.1 - Table containing Experimental Data (Sefton (1990)) 
used to generate the map shown in figure 2.1.

SINGLE DIGEST DATA

PIL
B
PI AACT

M
PIL PI AACT

S
PIL PI AACT PIL

SF
PI AACT

250 250 355 350 350 350 255 255 70 165 [190] [195]
225 225 275 260 260 80 [10] [135] [175]

[65] 230 [180] 80 135
65
10

DOUBLE DIGEST DATA
B+M B+S B+SF

PIL PI AACT PIL PI AACT PIL PI AACT
250 250 230 125 125 70 165 [190] 135
225 225 105 [65] [10] 50 105
130 130 10

[65]
M+S M+SF S+SF

PIL PI AACT PIL PI AACT PIL PI AACT
255 255 70 85 80 135 [130] 30

[180] 30 65 85 70 80
[10] 10 [10] 65

10
NOTES
1. PIL, PI, AACT - probes
2. B, SF, M, S - REs
3. Fragments contained in brackets indicate "weak" fragments.



3 MAP BUILDING CHARACTERISTICS
Map building is essentially an ordering problem - the map is 
linear and after the number and types of cut sites have been 
determined, they must then be placed in the correct sequence. 
There are several aspects of map building which make it a diffi­
cult activity.
3.1 Maps do not fit perfectly.
Due to experimental limitations, there are errors present in the 
number of fragments used to build a map and the lengths of the 
fragments. It is possible that there are areas in the pulsed 
field gels which appear to represent fragments. Sometimes it is 
difficult to determine if these are proper fragments or not. When 
there is ambiguity over the existence of a fragment it is re­
ferred to as a "weak fragment". Most weak fragments should fit 
into a map but some are due to error. They are not used to assem­
ble a map but should in theory fit into the solution. A "good" 
map is one in which the data, including most of the weak frag­
ments, fits well.
3.2 No objective means of assessing maps.
There has been a lack of objective criteria by which the correct­
ness of maps can be assessed. As part of the project, an attempt 
has been made to identify appropriate criteria and to incorporate 
these into an evaluation function. This is discussed further in 
section 5.2.3.
3.3 Fragments overlap.
All fragments obtained for a particular probe must overlap the 
region of the probe. Many orderings of fragments are possible and 
it is difficult to determine where the cut sites are.
3.4 More than one solution may be possible.
Due to the overlapping nature of the fragments and the error in 
the fragment lengths, it is possible that many feasible map 
solutions may be generated from the same data. For example, it 
can be shown that there are at least 7.2 x 10el4 permutations of 
the cut sites for the data shown in table 2.1 and this is consid­
ered to be small data set and a conservative estimate.
4 STRATEGY FOR TACKLING THE PROBLEM
As the number of possible maps for a set of data is very large, 
using any search technique which requires all maps to be exhaus­
tively generated is not appropriate.
A two stage approach was taken to tackle the map building prob­
lem. The overall problem of generating the map was decomposed 
into the smaller problem of generating single probe maps. Using 
the example shown in table 2.1, this reduced the number of possi­
ble maps for PIL to 15,840, for PI to 224,640 and for AACT to 
34,560.
In order to arrive at a set of feasible maps for each probe, it



was proposed that a genetic algorithm be developed. Genetic 
algorithms have been used successfully as search techniques 
across a range of problems? particularly combinatoric problems.
Once a number of good maps have been generated for each probe, an 
optimisation algorithm will be developed to merge the separate 
probe maps together to arrive at a complete map.

5 GENETIC ALGORITHMS
Genetic Algorithms (GAs) are search procedures inspired by the 
mechanics of natural selection and have been developed to be 
robust over a variety of problem domains. Goldberg(1989) is the 
standard introductory text to GAs. In a GA, a potential solution 
is referred to as a chromosome. A number of chromosomes are 
generated at random to produce what is called an initial popula­
tion. Each chromosome is assigned a score indicating how good it 
is, which is referred to as its fitness. A new population is 
produced by performing operations patterned after genetic opera­
tions such as sexual recombination (crossover) and fitness pro­
portionate reproduction (Darwinian survival of the fittest). The 
more fit chromosomes (the better solutions), reproduce (combine 
together)in an attempt to generate more highly adapted individu­
als (solutions that are better still). This process is repeated 
and each successive population is called a generation. After a 
fixed number of generations (trials), the fittest chromosome 
represents the solution.
The steps in a traditional genetic algorithm are shown in figure
5.1.

1. Generate an initial population
2. Evaluate the population 
repeat

3. Reproduce and generate a new population
4. Evaluate the new population 

until the number of trials is up
Figure 5.1 - A Traditional Genetic Algorithm
In order to apply a genetic algorithm to a particular problem, 
there are 4 issues that must be considered.
1. REPRESENTATION - this is the way in which the problem is be 
"represented" in genetic algorithm notation.
2. GENETIC OPERATORS - during reproduction, operators analogous 
to the biological operators of crossover and mutation are ap­
plied. Traditionally, the crossover operator involves exchanging 
strings at random, combining parts of good individuals in an 
attempt to create a more fit individual. This is illustrated in 
figure 5.2. The mutation operator is applied less frequently and 
plays a secondary role. It involves changing a single value in an 
individual in order to generate some unexpected variation into 
the population and is illustrated in figure 5.3. 3
3. FITNESS FUNCTION - this is the means by which potential solu­
tions can be evaluated and a fitness value can be assigned. In



order to apply a genetic algorithm to a problem, there must be 
some method of measuring the goodness of potential solutions. The 
fitness function must capture what is good about a potential 
solution.
4. PARAMETER SETTINGS - there are various parameters that must be 
set for the genetic algorithm such as population size, frequency 
of application of the genetic operators and number of generations 
to run.
[Individuals are represented in binary notation*] 
parent 1 = 1 1 1 1 1 0 1  parent 2 = 1 0 1 1 0 0 0

Reproduction and crossover between position 4 - 7

I
\ /

child = 1 1 1 1 0 0 0

Figure 5.2 The Crossover Operator in Action

child = 1 1 1 1 0 0 0

I
\ /

mutation of bit position 7

I
\ /

1 1 1 1 0  0 1
Figure 5.3 The Mutation Operator in Action

5.1 HYBRID GENETIC ALGORITHMS
As traditional GAs are not effective for seguencing problems 
(illegal solutions can be generated), it was proposed that a 
modified GA be developed to generate probe maps. The concept of a 
hybrid GA (HGA) has been suggested by a number of 
authors(Bethke(1981) ; Bosworth (1972); Goldberg(1983); Davis
(1991)). An HGA is a GA which incorporates problem specific 
information or various search techniques. Research conducted in 
this area has shown an HGA approach to be promising for combina­
torial optimisation problems such as the Travelling Salesman 
Problem (Goldberg(1985) , Grefenstette (1985), Oliver(1987 ) , 
Whitley (1989,1991)) and scheduling problems (Davis(1985), Sys- 
werda (1991)).



In the HGA developed for the probe maps, the representation and 
optimisation techniques employed by the expert are used to ensure 
that the domain knowledge embodied in the encoding is preserved. 
The HGA operators are tailored to apply to the new representa­
tion and include domain-based heuristics. An evaluation function 
which is based on subjective assessment has also been developed. 
Other problem specific knowledge has guided the development of 
the overall algorithm.
One of the main aims of GA research has been to develop an algo­
rithm that is robust across a variety of problem domains and 
operates without problem specific information. There is a well 
established theory which can account for the success of the 
traditional GA as a search procedure. It is the intention here to 
see if the power of the traditional GA can be harnessed and used 
as the basis of an effective algorithm for a real-world complex 
problem. In modifying the traditional GA, the theoretical founda­
tion is left behind. It has been recognised that experimentation 
is leading the field in this area of research and that the exist­
ing theory can only provide guiding principles (Whitley 1993).
5.2 IMPLEMENTATION ISSUES
A "front-end" menuing system has been developed for the HGA which 
allows for various features to be selected. This has facilitated 
the implementation of the HGA and allowed the effect of changing 
particular features to be observed.
There are several areas which have been addressed during the 
development of the HGA and these are discussed in the following 
sections.
5.2.1 REPRESENTING THE PROBLEM
Traditional GAs generally represent chromosomes as binary vec­
tors. However, having considered several options, it was decided 
that in the HGA, the chromosome syntax should be changed to 
reflect the problem, as shown in figure 2.1.
Chromosomes have been represented as probe maps which consist of 
a number of cut sites and the probe, in a particular order as 
shown below.
eg B b M m S F * S M F B
The position of the probe is indicated by an asterisk. The length of 
the chromosome depends on the amount of probe data.
5.2.2 DEVELOPING A SET OF GENETIC OPERATORS
The difficulties encountered when applying the traditional genet­
ic operators to map assembly are similiar to those found when 
aPPlying them to other sequencing problems such as the Travelling 
Salesman Problem (TSP). In the case of the TSP, there are con­
straints placed on the symbol string that represents a tour of 
the cities, in that no city can appear more than once. The tradi­
tional recombination operators rearrange symbols on a chromosome 
independently of each other. When the traditional operators are 
applied to city sequences, cities can appear more than once or



not at all.
When developing operators for map assembly, taking into account 
previous work (Goldberg (1989), Fox and McMahon(1991)), a way of 
breaking up the chromosomes that was natural for the problem was 
sought. The traditional operators have been modified to meet the 
constraints on the chromosomes while preserving the motivating 
principles behind these operators. Crossover provides an opportu­
nity for the best attributes of both parent strings to be incor­
porated into the offspring. Mutation is a mechanism for introduc­
ing necessary attributes into an individual when those attributes 
do not already exist within the current population.
Two operators have been developed - "side swap", which is a 
modified type of crossover (crossover occuring at the position of 
the probe), and "order swap".
Side swap swaps the LHS of one parent with the RHS of the other 
parent, as shown in figure 5.2.2.1. Order swap, as shown in 
figure 5.2.2.2, is a unary operator which swaps the order of 2 
different REs in the child chromosome as long as the swap is 
legal. A complete cut site cannot be moved closer to the probe 
than any of the partial cut sites. A partial cut site cannot be 
moved further away from the probe than its complete cut site.

B b M S F * S F B M  B M F S * b M F B S  
parent l(pl) parent 2(p2)

REPRODUCES

\ / \ /
B b M S F * b M F B S  

child 1 (LHS pi + RHS p2)
Figure 5.2.2.1 - Side Swap

B M F S * S F B M  
child 2 (LHS p2 + RHS pi)

B b M S F * b M F B S  
position 0 1 2 3 4 5 6 7 8 9  10

order swap positions 2 and 4 - > B b F S M * b M F B S

order swap positions 0 and 3 - ILLEGAL - > B b M S F * b M F B S
map unchanged

Figure 5.2.2.2 - Order Swap
5.2.3 DEVELOPING THE EVALUATION FUNCTION
The way in which chromosomes are assessed is critical to the 
success of any GA as this has a direct influence on the parents 
of the next generation. It is essential that an evaluation func­
tion captures the essence of a good or bad map. Developing such 
an evaluation function for the HGA is complicated. It is not easy 
to arrive at a general expression which indicates the correctness 
of a map.

s



Historically, there has been a lack of objective criteria by 
which the quality of existing maps can be assessed or the quality 
of potential maps can be predicted. Such a facility would allow 
geneticists to make an objective appraisal of new and old maps.
From discussions with geneticists on the features of good and bad 
maps and through the use of a detailed questionnaire, an attempt 
has been made to identify the important characteristics of maps. 
A marking system has been developed which provides a means for 
scoring characteristics of maps including subjective assessments 
made by the geneticist. The scoring of the various characteris­
tics can be thought of as sub-evaluations. Currently two types of 
sub-evaluations are carried out based on the fit of the single 
digest results and the fit of the double digest results. While 
each sub-evaluation is not considered appropriate as the sole 
means of evaluating maps, each has a significant contribution to 
make to the overall evaluation function. The evaluation function 
generates a score indicating the goodness of fit between the 
proposed probe map and the experimental data. A map which gains 
the highest score is called an "ideal map".
5.2.4 SETTING PARAMETER VALUES
There are several parameters in a GA that require to be set to 
appropriate values - population size, number of trials, operator 
probabilities and evaluation normalisation techniques. There are 
established parameter settings described in the literature for 
traditional GAs which use binary representation, binary crossover 
and mutation (Schaffer(1989)). However, finding good settings for 
non-binary representations is not a trivial task (Davis(1989)). 
It is recommended that appropriate settings for non standard GAs 
be derived by experimentation (Syswerda 1991) and this procedure 
is being followed.
5.2.5 GENERATING THE INITIAL POPULATION
Traditional GAs generate the initial population at random. Howev­
er, it has been recognised (DeJong 1988) that if domain specific 
knowledge is available, it can be usefully exploited in the GA. 
The HGA uses the domain specific information in the form of the 
experimental data in order to generate maps. A "probe map build­
er" has been developed which takes as input items of probe data 
(as shown in table 2.1) selected at random and creates legal 
probe maps for the initial population.
5.2.6 SELECTING A REPRODUCTION TECHNIQUE
Three types of reproduction technique are being investigated - 
generational replacement, generational replacement with elitism 
and steady-state replacement without duplicates. (These are 
reviewed in Davis 1991).
6 RESULTS
The data presented in table 2.1 was chosen as a test set as it 
represents a small, manageable number of probes and it is self- 
contained, in that all combinations of double digests were per­
formed. The results of applying the HGA to build an "ideal map" 
for the AACT probe are shown. An ideal map is a map which is



awarded the highest score possible from the evaluation function.
The size of the search space for the probe was calculated and is 
shown below. As the search space was relatively small, it was 
possible to run an exhaustive search to see how many "ideal maps" 
were present in the search space. In order to see how well the 
evalution function was operating, each of the sub-evaluations was 
carried out separately then applied together. Maps were evaluated 
on how well the single digest data fitted, how well the double 
digest data fitted and how well both the single and double digest 
fitted when taken together.
The parameters for the HGA were held constant for each of the runs.

AACT
Total no. of maps possible 34,560
No. of maps generated by
the HGA 20,000
EVALUATING ON THE FIT OF THE SINGLE DIGEST DATA
Total no. of "ideal maps" 4256
possible
No. of "ideal maps" generated 2062
by the HGA
EVALUATING ON THE FIT OF THE DOUBLE DIGEST DATA
Total no. of "ideal maps" 60
possible
No. of "best maps" generated 41
by the HGA
EVALUATING ON THE FIT OF THE SINGLE AND DOUBLE DIGEST DATA
Total no. of "ideal maps" 26
possible
No. of "ideal maps" generated 25
by the HGA 7

7 DISCUSSION
Evaluating on the fit of the single digest data is a very broad 
evaluation in that 12.3% of all AACT maps would be considered 
ideal maps based on this evaluation alone. It is harder for maps 
to score well evaluating on the fit of the double digest data and 
harder still to score well when both evaluations are considered 
together. There are 60 maps which score as ideal maps for AACT, 
evaluating on the fit of the double digest data and 26 maps 
applying both evaluations together. The HGA managed to generate 
25 of the 26 ideal maps. Out of the 26 ideal maps there were 13 
map mirror images and the HGA found all of these. As a search 
technique, the HGA would appear to be functioning well. When the



number of cut sites in the ideal maps was compared with the 
number of cut sites in the published map, a critical error on the 
published map was highlighted in the number and position of Bss 
cut sites. The published map has been revised to correct this 
error. When the 25 ideal maps were analysed in more detail, it 
was found that further information concerning fragment lengths 
must be taken into account to identify optimal maps.
Preliminary results obtained using the PIL and PI probe data 
indicate there are no maps in the search space which can score 
perfectly evaluating on the fit of the double digest data. The 
scoring mechanism implemented appears to have over constrained 
the problem and this is being examined.
The results highlight the areas in which the current evaluation 
function needs to be refined to include more problem specific 
information to allow optimal maps to be identified.
Further experimentation is under way to test the sensitivity of 
the parameter settings in the HGA.
Once acceptable sets of maps can be obtained for the individual 
probe maps, work will commence on the second stage. This will 
involve developing a suitable optimisation algorithm which will 
be used to merge the separate probe maps together.

8 SUMMARY
This paper has outlined the approach that has been taken to apply 
artificial intelligence techniques to the difficult problem of 
DNA map building. The current development and implementation of 
an HGA for generating probe maps is presented and the results 
obtained to date appear promising.
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Abstract- Geneticists are investigating the 
structure of the human DNA and are working 
towards producing a map identifying the loca­
tion of all of the genes on the chromosomes. 
One of the techniques employed to generate 
maps uses restriction enzymes to break up the 
DNA and radioactively labelled probes to mark 
regions of interest. The fragments of DNA 
obtained from such experiments are pieced 
together in what is considered to be the best 
order to create a restriction map. Building 
maps is a time consuming and problematic 
process as many solutions may be feasible and 
evaluating between competing solutions is 
carried out subjectively. This paper describes 
the continuing development of an artificial 
intelligence technique based on a genetic 
algorithm for building restriction maps from 
the results of probed partial digest experi­
ments. An objective system for assessing maps 
is developed which is used by the genetic 
algorithm to search for map solutions which 
fit the experimental fragments well.

1 Introduction

There has been a considerable amount of interest shown in the 
development and application of Artificial Intelligence (AI) 
techniques to biological problems, specifically at the molec­
ular level [1],[2]. This is partly in response to the vast 
amount of data produced by the Human Genome Programme which 
has presented a variety of stimulating new challenges to 
researchers working in the field of AI. The problem of gener­
ating DNA restriction maps from the results of partial digest 
experiments has been studied by several groups eg [3,4,5,6].



Most of the applications reported rely on the use of cloned 
DNA, which reduces the complexity of the problem considera­
bly. The work described here concentrates on the harder 
problem of using total DNA and restriction enzymes (REs) 
along with Pulsed Field Gel Electrophoresis to carry out 
probed partial digest experiments. The problem is more diffi­
cult due to limitations in the experimental process. Error in 
the data allows for many plausible map reconstructions. 
Distinguishing amongst these relies on the geneticist's 
judgement. Agreement as to which is the best map for a set of 
data is not straightforward as there is no objective method 
for appraising potential maps.

Map building is considered to be an activity which could 
benefit from the application of AI techniques. In order to 
generate a map which fits the experimental data well, some 
form of search is required to find a good solution to the 
problem. Search techniques which exhaustively search the 
space of possible maps are not feasible due to time con­
straints. Genetic algorithms (GAs)[7] are search procedures 
based on the mechanics of natural selection. Previous work
[8] describes the preliminary development of a form of GA 
suitable for tackling the map building problem. Recent re­
sults on a constrained version of the problem [9] suggest 
that the approach appears promising. This paper describes the 
continuing development of an objective system for evaluating 
maps and of the incorporation of that system into a modified 
form of genetic algorithm.

The paper is organised into the following sections. Map 
building is described in section 2 and the characteristics of 
the problem are outlined in section 3. The overall approach 
for tackling the problem is identified in section 4. Genetic 
algorithms are introduced in section 5 and the modified form 
of genetic algorithm which has been developed is described in 
section 6. The results of applying the technique to map 
building are presented in section 7 and discussed in section
8. The paper is summarised in section 9.

2 Description Of The Map Building Problem

Geneticists are attempting to identify and isolate genes and 
to generate a "map" showing the position and function of each 
gene on the human DNA. A current technique which has had a 
significant impact on genetic mapping is the use of restric­
tion enzymes (REs) along with Pulsed Field Gel Electrophore­
sis to carry out probed partial digest experiments. Maps are 
generated from the results of these experiments which indi­
cate the sequence and position of genes and RE cut sites 
along the DNA.

Chromosomes contain the instructions for making each 
cell in the body and are made from deoxyribonucleic acid 
(DNA). Humans have 46 chromosomes in each cell (apart from 
the sex cells) organised into 23 pairs. A sequence of DNA 
that carries the information for a particular function/pro- 
tein is called a gene. Genes occupy a specific location on a 
chromosome.



One of the problems that geneticists face when trying to map 
the position of genes on chromosomes is that there is an 
enormous amount of DNA but only a fraction of the DNA repre­
sents genes. In order to isolate the region of DNA of inter­
est, REs can be used. REs recognise particular sites on the 
DNA and will cut the DNA at that point. There is a wide range 
of REs which have different properties and will cut at par­
ticular sites. By observing the fragments produced and using 
already known probes (genetic markers), geneticists can 
produce restriction maps showing the sites where the enzymes 
cut and the positions of known probes. Using this technique 
allows regions of DNA to be characterised.

An example of a RE map is shown in figure 1 and the data 
from which it was generated is shown in table 1 (taken from 
[10]). The numbers in table 1 represent the lengths of the 
DNA fragments. Each fragment contains a probe and has been 
cut at either end by the RE shown.

When one RE is used, the fragments obtained are called 
"single digests" and each end of the fragment has been cut by 
that RE. When a mixture of two REs is used, the fragments 
obtained are called "double digests". Here, each end of the 
fragment has been cut by one or other of the REs.

RE cut sites are said to be either "complete" or "par­
tial". A complete cut site is a site on the DNA which is 
always cut by the RE. A partial cut site is a site which is 
cut on some pieces of DNA and left intact on others. The 
occurrence of partial cut sites leads to the presence of 
long fragments. Determining the position of the probes in 
relation to one another relies on the presence of such frag­
ments. Long fragments are likely to contain two or more 
probes if the probes are adjacent.

When all fragments present in table 1 are combined, 
taking into account the uncertainty present in the lengths, 
the choice of RE cutting in the double digests and the nature 
of the cut sites, a RE map is generated which fits the data 
best. The map reveals the ordering of the probes, the cut 
sites of the REs, and whether or not the cut sites are par­
tial or complete. The map assembled manually by [10] using 
the data in table 1 is shown in figure 1.
Figure 1 - RE Map assembled from the data in table 1 (not to 
scale) showing the ordering of the RE cut sites and probes.

PIL PI
B SF M S SF sf B sf SF SF b

s
m S

AACT 
SF
M S B

■DNA
NOTES
1. PIL, PI, AACT - probes
2. B, SF, M, S - REs
3. REs shown in capital letters represent complete cut sites, 
lower case indicates partial cut sites.



Table 1 - Table containing Experimental Data taken from [10] 
used to generate the map shown in figure 1.

SINGLE DIGEST DATA

B M S SF
PIL PI .AACT PIL PI AACT PIL PI AACT PIL PI AACT
250 250 355 350 350 350 255 255 70 165 [190][195]
225 225 275 260 260 80 [10] [135][175]

[65] 230 [180] 80 135
65
10

DOUBLE DIGEST DATA

B+M B+S B+SF
PIL PI AACT PIL PI AACT PIL PI AACT
250
225
130

250
225
130
[65]

230
105

125 125 70 
[65]

165 [190] 
[10] 50 

10
135
105

M+S M+SF S+SF
PIL PI AACT PIL PI AACT PIL PI AACT
255 255

[180]
70
30

85 80 135 
65 85

[130] 
70 80

30
[10] 10 [10] 65

10
NOTES
1. PIL, PI, AACT - probes
2. B, SF, M, S - RES
3. Fragments contained in brackets indicate "weak" fragments.



3 Characteristics Of Map Building

Map building is an example of a sequencing problem. The map 
is linear and after the number and types of cut sites have 
been determined, they must be placed in the correct order. 
There are several aspects of map building which make it a 
difficult activity.

3.1 Experimental Data Tends To Contain Inaccuracies.
Due to limitations in the experimental process, there are 
errors present in the number of fragments used to build a map 
and the lengths of the fragments. It is possible that there 
are areas in the pulsed field gels which appear to represent 
fragments. Sometimes it is difficult to determine if these 
are proper fragments or not. When there is ambiguity over the 
existence of a fragment it is referred to as a "weak frag­
ment". Most weak fragments should fit into a map but some are 
due to error. They are not used to assemble a map but should 
in theory fit into the solution. A "good" map is one in 
which the data, including most of the weak fragments, fits 
well.

3.2 Map Assessment Is Subjective.
Currently, maps are assessed subjectively by the geneticist. 
Where several possible maps are proposed using the same data 
the geneticist applies their expert knowledge and judgement 
to determine which one is best.

As part of the project, an attempt has been made to 
identify appropriate objective criteria by which maps can be 
assessed. These criteria have been incorporated into an 
evaluation function. This is discussed further in section 
6.1.2.

3.3 DNA Fragments Overlap.
All the DNA fragments obtained for a particular probe must 
overlap the region of the probe. It is possible for the 
fragments to be ordered in many different ways and it is 
difficult to determine the number and position of cut sites.

3.4 More Than One Solution May Be Possible.
Due to the overlapping nature of the fragments and the error 
in the fragment lengths, it is possible that many feasible 
map solutions may be generated from the same data. For exam­
ple, it can be shown that there are at least 2.06 x 10e21 
permutations of the cut sites for the data shown in table 1 
and this is considered to be small data set and a conserva­
tive estimate.



4 Strategy For Tackling The Problem

As the number of possible maps for a set of data is very 
large, using any search technique which requires all maps to 
be exhaustively generated is not considered appropriate due 
to the length of time it would take. It was decided that some 
type of heuristic method would be employed which would hope­
fully find a near optimal solution to the problem in a rea­
sonable length of time.

To tackle the map building problem, a two stage approach 
was adopted. The overall problem of generating the map was 
decomposed into the smaller problem of generating single 
probe maps. Using the example shown in table 1, this reduced 
the number of possible maps for PIL to 4,055,040, for PI to 
57,507,840 and for AACT to 8,847,360.

In order to arrive at a set of feasible maps for each 
probe, it was proposed that a genetic algorithm be developed
[3]. Preliminary results on a constrained version of the map 
building problem suggested that the approach appeared promis­
ing [4]. A genetic algorithm is an example of a heuristic 
method which has been used successfully as a search technique 
across a range of problems; particularly combinatoric prob­
lems. Once a number of good maps have been generated for each 
probe, an optimisation algorithm will be developed to merge 
the separate probe maps together to arrive at a complete map.

5 Genetic Algorithms

Genetic algorithms (GAs) were introduced by Holland [7] as 
adaptive procedures based on the mechanics and analogy of 
natural selection. They have generated much interest in 
recent years and their use is being investigated in areas as 
diverse as machine learning, machine vision, function optimi­
sation and NP-hard problems. A GA is a type of search proce­
dure which takes as input several possible solutions to a 
problem and attempts to progressively improve upon them 
through a sequence of changes which mimics the process of 
natural selection. Holland recognised that natural systems 
are more robust than artificial systems and attempted to 
achieve robustness by developing an algorithm which emulated 
natural selection. In natural selection, the individuals 
which are best adapted to their environment tend to have the 
greatest chance of survival and reproduce more, passing on 
their genes to the next population. GAs have been developed 
as search procedures which are population based and proceed 
over a number of generations. The criteria of "survival of 
the fittest" provides evolutionary pressure for populations 
to develop increasingly fit individuals.

In a GA, a potential solution to the problem is repre­
sented as an ordered list of values. A number of potential 
solutions are generated at random to produce what is called 
an initial population. The fitness of the population is 
evaluated by assessing the fitness of each individual (or 
potential solution) in the population.



A new population is produced by performing operations pat­
terned after genetic operations such as sexual recombination 
(crossover) and fitness proportionate reproduction (Darwinian 
survival of the fittest). The more fit individuals (the 
better solutions), reproduce (combine together)in an attempt 
to generate more highly adapted individuals (solutions that 
are better still.) This process is repeated. Each successive 
population is called a generation. After a fixed number of 
generations (trials), the fittest individual represents the 
solution.

The steps in a traditional genetic algorithm are shown 
in figure 2.

Figure 2 - A Traditional Genetic Algorithm

Generate an initial population;
Evaluate the population;

REPEAT
Reproduce and generate a new population; 
Evaluate the new population;

UNTIL (the number of trials is up);

The GA is a "parallel” algorithm in that it transforms a 
population of individual objects into a new population. 
During reproduction, parents are selected to mate, the recom­
bination operators are applied and the children are inserted 
into the new population. Selecting parents to reproduce in 
proportion to fitness ensures that above average parents are 
selected to reproduce more frequently. Various methods for 
selecting parents have been proposed [11,12], one of the most 
commonly used is called "roulette wheel" parent selection 
which involves randomly selecting parents to reproduce using 
a roulette wheel biased in proportion to the parents fitness. 
In a standard GA, a whole new population of individuals are 
created, saving the best one from the previous generation 
(known as Generational Replacement with Elitism). This en­
sures that when the best solution is found it is not lost 
through disruption from crossover or mutation.

There is a well established theory which has been de- 
velped by Holland to explain why GAs work and it is based on 
a binary representation and the notion of a schema. A de­
scription of the Schema Theorem and an introduction to GAs in 
general is contained in [13].



5.1 Implementating A Genetic Algorithm
In order to apply a GA to a particular problem, there are 
various issues that must be addressed such as representa­
tion, generating the initial population, selecting an evalua­
tion function, choice of operators and settings for parameter 
values. These are briefly discussed in the following sec­
tions .
5.1.1 Generating The Initial Population
Some technique must be chosen to generate the intial popula­
tion for the GA. At the simplest level, potential solutions 
can be generated at random however it has been recognised 
that if there is problem specific information available, it 
is beneficial to make use of it [14].
5.1.2 Representing The Problem.
This is the way in which the problem is be "represented" in 
genetic algorithm notation. Traditionally a fixed string 
binary representation is used, however, it has been recog­
nised that the binary string representation is not the most 
suitable for certain types of problems. In some cases, the 
most natural representation involves more complex data struc­
tures and by linearising the data structure into a string 
representation limits the window by which the system observes 
the world.
5.1.3 Choice Of Recombination Operators.
During reproduction, recombination operators analogous to the 
biological operators of crossover and mutation are applied. 
Traditionally, the crossover operator involves exchanging 
strings at random, combining parts of good individuals in an 
attempt to create a more fit individual. This is illustrated 
in figure 3. The role of crossover is to provide an opportu­
nity for the best attributes of both parent strings to be 
incorporated into the offspring. Mutation is a mechanism for 
introducing necessary attributes into an individual when 
those attributes do not already exist within the current 
population. The mutation operator is applied less frequently 
and is considered to play a secondary role. It involves 
changing a single value in an individual in order to generate 
some unexpected variation into the population and is illus­
trated in figure 4.



Figure 3 The Crossover Operator in Action

[Individuals are represented in binary notation.]
parent 1 = 1 1 1 1 1 0 1  parent 2 = 1 0 1 1 0 0 0
position 0 1 2 3 4 5 6  position 0 1 2 3 4 5 6

\ / \ /
Reproduction and crossover between position 4 - 6

\ /
child = 1 1 1 1 0 0 0  

position 0 1 2 3 4 5 6

Figure 4 The Mutation Operator in Action

child = 1 1 1 1 0 0 0  
position 0 1 2 3 4 5 6

l
\ /

mutation of bit position 6

I
\ /

1 1 1 1 0  0 1

5.1.4 Selecting An Appropriate Evaluation Function
The evaluation function in a GA plays the role of the envi­
ronment by rating potential solutions in terms of their 
fitness. In order to apply a GA to a problem, there must be 
some method of measuring the goodness of potential solutions. 
The evaluation function must capture what is good about a 
potential solution. The evaluation function is the one area 
where the traditional GA requires problem specific knowledge. 
For some types of problems, the choice of evaluation function 
is obvious but for other problems it is not as straightfor­
ward. For example, if a GA is to be used to optimise a par­
ticular function, the fitness of a potential solution can be 
assessed by inserting the value into the function and comput­
ing the function.



In a combinatorial optimisation problem such as the Travel­
ling Salesman Problem (TSP), a potential solution represents 
the distance of a tour and the object is to minimise that 
distance. A table can be maintained containing the distance 
between cities. For other problems, such as the conjunctive 
normal form (CNF) - satisfiability problem, the choice of 
evaluation function is not clear. In the CNF-satisfiability 
problem, a logical expression made up of clauses of logical 
variables, is represented in CNF. The problem is to find a 
truth assignment for the variables in the expression so that 
the whole expression evaluates to TRUE. Specific truth as­
signments result in the whole expression evaluating to TRUE 
or FALSE. During the search for the solution to the problem, 
the expression will evaluate to FALSE unless a solution is 
found and it is not possible to discriminate between "good" 
and "bad" solutions. DeJong [15] discusses some of the prob­
lems associated with developing evaluation functions.

5.1.5 Setting Parameter Values
There are several parameters in a GA that require to be set 
to appropriate values such as population size, number of 
trials, operator probabilities and evaluation normalisation 
techniques. There are established parameter settings de­
scribed in the literature for traditional GAs which use 
binary representation, binary crossover and mutation [16].

6 Non-Standard Genetic Algorithms

The traditional GA is one which uses binary representation, 
one-point crossover and mutation, generational replacement 
normally with elitism and some fitness normalisation process. 
The traditional GA has the theoretical underpinnings of the 
Schema Theorem. A central goal in GA research has been to 
develop an algorithm that is robust which can perform well 
across a variety of problem domains with no problem specific 
knowledge. There are many researchers who are still pursuing 
this goal and working with the traditional GA. There has also 
been considerable interest in the application of GAs to 
real-world problems. From an AI perspective, the standard GA 
can be classed as a "weak method" as it makes few assumptions 
about the problem domain and is widely applicable. As a weak 
method, the traditional GA is unlikely to be the best algo­
rithm to use for any particular problem. Various modifica­
tions to the traditional GA have been proposed. Some of these 
have been motivated by a wish to improve the performance of a 
GA for particular problems. Other researchers have been 
interested in developing the GA to handle constraint prob­
lems .



For the problem of generating probe maps, it was proposed 
that a modified GA be developed as the traditional GA is not 
effective for sequencing problems as illegal solutions can be 
generated. The concept of a hybrid GA (HGA) has been suggest­
ed by a number of authors [17,18,19]. Davis's [20] descrip­
tion involves hybridising the GA with the best features of 
alternative techniques for solving a particular problem. The 
representation should reflect a natural way of stating the 
problem and problem specific genetic operators should be 
developed to work with the new representation. Research 
conducted in this area has shown an HGA approach to be prom­
ising for combinatorial optimisation problems such as the TSP 
[21,22,23,24,25] and scheduling problems [26,27].

In the HGA developed for the probe maps, the representa­
tion and optimisation techniques employed by the expert are 
used to ensure that the domain knowledge embodied in the 
encoding is preserved. The HGA operators are tailored to 
apply to the new representation and include domain-based 
heuristics. An evaluation function which is based on subjec­
tive assessment has also been developed. Other problem spe­
cific knowledge has guided the development of the overall 
algorithm. In modifying the traditional GA, the theoretical 
foundation is left behind. It has been recognised that exper­
imentation is leading the field in this area of research and 
that the existing theory can only provide guiding principles 
[28].

The HGA developed to build probe maps is described in 
the following sections.

6.1 Problem Representation
The traditional GA represents chromosomes as fixed length 
binary strings however it is not the most suitable for cer­
tain types of problems. For numerical optimisation problems 
which require a high degree of precision, real number repre­
sentation tends to give solutions with greater accuracy and 
in fewer generations than equivalent implementations using 
binary (eg [20],[29]). Other representations have used char­
acter strings, gray coding, integers and matrices.

Having considered several options, it was decided that 
in the HGA, the chromosome syntax should be changed to re­
flect the problem, as shown in figure 1. Chromosomes have 
been represented as probe maps which consist of a number of 
cut sites and the probe, in a particular order as shown 
below.

eg B b M m S F *  S M F B

The position of the probe is indicated by an asterisk. The 
length of the chromosome depends on the amount of probe data.



The difficulties encountered when applying the traditional 
genetic operators to map assembly are similiar to those found 
when applying them to other sequencing problems such as the 
TSP. In the case of the TSP, there are constraints placed on 
the symbol string that represents a tour of the cities, in 
that no city can appear more than once. The traditional 
recombination operators rearrange symbols on a chromosome 
independently of each other. When the traditional operators 
are applied to city sequences, cities can appear more than 
once or not at all.

When developing operators for map assembly, taking into 
account previous work [13,30], a way of breaking up the 
chromosomes that was natural for the problem was sought. The 
traditional operators have been modified to meet the con­
straints on the chromosomes while preserving the motivating 
principles behind these operators. Crossover provides an 
opportunity for the best attributes of both parent strings to 
be incorporated into the offspring. Mutation is a mechanism 
for introducing necessary attributes into an individual when 
those attributes do not already exist within the current 
population.

Three operators have been developed - "side swap", which 
is a modified type of crossover (crossover occuring at the 
position of the probe), "order swap" and "site swap". Using 
these three operators enables all legal maps in the search 
space to be reached. Side swap swaps the LHS of one parent 
with the RHS of the other parent, as shown in figure 5. Order 
swap, as shown in figure 6, is a unary operator which swaps 
the order of two different REs in the child chromosome as 
long as the swap is legal. A complete cut site cannot be 
moved closer to the probe than any of the partial cut sites. 
A partial cut site cannot be moved further away from the 
probe than its complete cut site. Site swap is a unary opera­
tor which swaps the value of a cut site as shown in figure 7. 
The value of a cut site is whether or not it is a partial cut 
site or a complete cut site. A RE is selected at random from 
the LHS or RHS of the map and the value of the outermost cut 
site for that RE is swapped.

6.1.1 Developing Recombination Operators

Figure 5 - Side Swap

B b M S F * S F B M  
parent l(pl)

B M F S * b M F B S  
parent 2(p2)

REPRODUCES

\ /
B b M S F * b M F B S  

child 1 (LHS pi + RHS p2)
B M F S * S F B M  

child 2 (LHS p2 + RHS pi)

\ /



Figure 6 - Order Swap

B b M S F * b M F B S  
position 0 1 2 3 4 5 6 7 8 9  10

order swap positions 2 and 4 - > B b F S M * b M F B S

order swap posns 0 and 3 - ILLEGAL - > B b M S F * b M F B S
map unchanged

Figure 7 - Site Swap

B b M S F * b M F B S  
position 0 1 2 3 4 5 6 7 8 9  10

site swap RE position 2 - > B b m S F * b M F B S

6.1.2 Developing The Evaluation Function
The way in which potential solutions are assessed is critical 
to the success of any GA as this has a direct influence on 
the parents of the next generation. It is essential that the 
evaluation function captures the essence of a good or bad 
map. Developing such an evaluation function for the map 
building problem is complicated as map evaluation is a highly 
judgemental activity relying on the geneticists intuition and 
expert knowledge. It is not easy to arrive at a general ex­
pression which indicates the correctness of a map. An objec­
tive method of evaluating maps would enable the quality of 
existing maps to be assessed and the quality of potential 
maps to be predicted. Such a facility would allow geneticists 
to make an objective appraisal of new and old maps.

In order to develop a system for assessing maps, four 
main tasks were undertaken. Firstly, a series of discussions 
and informal interviews were held with geneticists in an 
attempt to identify what they regard as the "good” and "bad" 
features of maps and to find out what rules of thumb they use 
for map assembly. After the knowledge elicitation stage 
several published maps and the data from which they were 
generated were analysed to gain insight into the number and 
types of uiscrepencies present in maps. Given the published 
maps, the data expected from them was calculated. The expect­
ed data was compared with the observed experimental data and 
anomalies were highlighted.



Having taken these two approaches to gather information 
regarding map characteristics, some mechanism was required to 
place a score on the characteristics and quantify the proc­
ess. This step was carried out with the aid of a question­
naire. In the questionnaire the geneticicst was asked to rate 
the severity of different kinds of map discrepancies on a 
scale from one (no problem) to five (critical problem). The 
geneticist was then asked to rank maps in terms of the number 
of discrepencies that would be tolerated in 
"ideal" , "good11, "adequate" and "unacceptable" maps. On comple­
tion of this exercise, it was apparent that there were sever­
al criteria by which maps were judged. It was proposed that 
the evaluation of a map should be made up of a series of 
sub-evaluations covering as much of the information contained 
in the questionnaire as possible.

Three types of sub-evaluations have been developed. 
Evaluation 1 assesses a map on how well the expected single 
digest data fits into the proposed map. Evaluation 2 assesses 
a map on how well the expected double digest data fits into 
the proposed map. The third evaluation considers the proposed 
map as a whole and assesses how well the lengths of the 
double digest data fit into the map. While each sub-evalua­
tion is not considered appropriate as the sole means of 
evaluating maps, each has a significant contribution to make 
to the overall evaluation function. The evaluation function 
generates a score indicating the goodness of fit between the 
proposed probe map and the experimental data. A map which 
gains the highest score is called an "ideal" map. "Good" maps 
and "adequate" maps are maps that contain a certain amount of 
error but the error is tolerable given the limitations of the 
experimental process. Ideal, good and adequate maps are all 
maps that the geneticist would wish to consider. Maps classed 
as "unacceptable" contain too many errors and would not be 
considered.

6.1.3 Setting Parameter Values
There are established parameter settings described in the 
literature for traditional GAs [16], however, finding good 
settings for non-binary representations is not a trivial task 
[31]. It is recommended that appropriate settings for non 
standard GAs be derived by experimentation [27].

6.1.4 Generating The Initial Population
The HGA uses the domain specific information in the form of 
the experimental data in order to generate maps. A "probe map 
builder" has been developed which takes as input items of 
probe data (as shown in table 1) selected at random and 
creates legal probe maps for the initial population.



Various reproduction techniques were investigated, the best 
results were obtained using a steady-state replacement with­
out duplicates [32]. Here, solutions generated which are al­
ready present in the population are discarded. This ensures 
that all members of a population are different.

6.1.5 Selecting A Reproduction Technique

7 Results

The HGA was applied to the experimental data contained in 
table 1. (This data was chosen as a test set as it represents 
a small, manageable number of probes and it is self-con­
tained, in that all combinations of double digests were 
performed). The number of "acceptable" maps generated for the 
PI probe is shown in figure 8. (An acceptable map is a map 
which scores as "ideal", "good" or "adequate" using the 
evaluation function.) In order to see how well the evalution 
function was operating, each of the sub-evaluations was 
carried out separately (E1,E2,E3) then applied together 
(E123). Maps were evaluated on how well the single digest 
data fitted, how well the double digest data fitted and how 
well the total data fitted. The average fitness of the popu­
lation over the 100 trials is shown in figure 9 along with 
the average best map score.

The parameters for the HGA were held constant for each 
of the runs. The results shown indicate the average of twenty 
runs.

8 Discussion

Looking at the results for PI shown in figure 8, evaluating 
on the fit of the single digest data (evaluation 1) is a very 
broad evaluation. Almost all of the maps generated after 100 
trials would be considered as acceptable maps based on this 
evaluation alone. It is slightly harder for maps to score 
well using evaluation 2, evaluating on the fit of the double 
digest data. In this case only 90% of the maps generated 
after 100 trials would be considered acceptable. Evaluation 
3, evaluating on the fit of the total data, resulted in a 
further 10% reduction in the number of acceptable maps. In 
all three cases, further information concerning fragment 
lengths was required to be taken into account to identify 
feasible maps. For example, an ideal map according to evalua­
tion 1 may turn out to be an unacceptable map according to 
evaluation 3. Each of the evaluations scores different map 
characteristics and in order to generate feasible maps, all 
three evaluations must be applied together. When all three 
evaluations were applied together the number of acceptable 
maps for the PI probe after 100 trials was approximately 
20% of the total population.
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Figure 8 - Graph showing the number of acceptable maps for PI generated using
evaluations!, 2, 3.

Figure 9 - Graph showing the av. map score and av. best map score for PI using
evaluations 1,2 and 3 together.



The average map score and average best map score shown in 
figure 9 indicate how the fitness of the population improved 
over time. An acceptable map is a map which scored 9 or less. 
An ideal map is a map which scored 0.

The total number of acceptable maps generated over the 
twenty runs was calculated for each of the three probes and 
is shown in table 2.

Table 2 - The total number of acceptable maps generated for 
PIL, PI and AACT using evaluations 1, 2 and 3 together.

Probe

AACT PIL PI

No. of acc. maps 134 143 426

One of the aims of using a HGA based system was to generate a 
small subset of feasible maps. The number of acceptable maps 
found using all three evaluations was still large. When all 
the acceptable maps were analysed, it was found that many 
maps had the same number of cut sites in the same positions 
however the value of the cut site (ie whether it was a com­
plete cut site or a partial cut site) differed. It was 
proposed that maps could be reduced to a template form where 
a map template represented a precise number and ordering of 
cut sites but did not take into account the value of the cut 
sites. By using templates, the number of acceptable maps for 
each of the three probes should be reduced. The concept of 
map templates was introduced into the HGA through the repro­
duction technique. The reproduction technique was modified to 
disallow map templates which were duplicates of current 
templates in the population. The steady-state-without-dupli- 
cates technique became a steady-state-without-duplicate- 
templates(SSWDT) reproduction technique.

When the HGA was run using the SSWDT technique and the 
same parameters as set before, the total number of acceptable 
templates found is shown in table 3. Templates of the best 
maps arrived at by the geneticist were amongst the acceptable 
maps found for the probes. Some of the ideal templates gener­
ated by the HGA appear to represent a better fit of the 
experimental data than the geneticists map and this is being 
investigated.
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Table 3 - The total number of acceptable map templates
(ideal, good and adequate) generated for PIL, PI and AACT
using evaluations 1, 2 and 3 together.

Probe

AACT PIL PI

No. of ideal templates 4 6 5
No. of good templates 11 12 12
No. of adequate templates 41 23 32

Total no. of maps to be considered 56 41 49

The objective evaluation function appears to be functioning 
well in generating groups of acceptable maps for the individ­
ual probes. Work is commencing on the second stage of the 
project which involves developing a suitable optimisation 
algorithm to merge the separate probe maps together.

9 Summary

This paper has described the development of a hybrid GA 
approach to the problem of building DNA maps from the results 
of experimental data. An objective system for scoring maps 
has been devised. Results have been presented which indicate 
that it is successful in discriminating between good and bad 
maps. The objective scoring system has been used by a modi­
fied form of GA to generate a group of acceptable probe maps 
for a particular data set.
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