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Real-Time Optical Intensity Correlation Using
Photorefractive BSO

Zhao Qi Wang
Abstract

Real-time optical intensity correlation using a photorefractive BSO crystal and a
liquid crystal television is implemented. The underlying physics basis is considered,
some specific techniques to improve the operation are proposed, and several optical
pattern recognition tasks are achieved.

Photorefractive BSO is used as the holographic recording medium in the real-time
intensity correlator. To improve the dynamic holographic recording, a moving grating
technique is adopted. = The nonlinear effects of moving gratings at large fringe
modulation are experimentally investigated, and are compared with numerical
predictions.

Optical bias is adopted to overcome the difficulty of a large drop in the optimum
fringe velocity with moving gratings. The effects of optical bias on the optimum
fringe velocity and on the diffraction efficiency are studied.

To overcome the inherent drawback of low discrimination of intensity correlation in
optical pattern recognition, real-time edge-enhanced intensity correlation is achieved
by means of nonlinear holographic recording in BSO.

Real-time colour object recognition is achieved by using a commercially available
and inexpensive colour liquid crystal television in the intensity correlator. Multi-class
object recognition is achieved with a synthetic discriminant function filter displayed by
the Epson liquid crystal display in the real-time intensity correlator. The phase and
intensity modulation properties of the Epson liquid crystal display are studied.

A further research topic which uses the Epson liquid crystal display to realize a
newly designed spatial filter, the quantized amplitude-compensated matched filter, is
proposed. The performance merits of the filter are investigated by means of computer

simulations.
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Absorption Constant.
Discrimination of Spatial Filter.
Electronic Charge.

Diffusion Electric Field, (K’H(B ) .
e

YRNA .
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Applied Electric Field.

€
rth Fourier Component of Electric Field.

Saturation Electric Field, (el\II{A )

Space-Charge Field.

Permittivity.

Fourier Transform.

Inverse Fourier Transform.

Fresnel Transform.

Phase Shift.

Phase Angle of Space-Charge Field.

Slant Angle of Grating.

Enhancement of Diffraction Efficiency by a Moving Grating.

Phase Conversion Factor of Waves, (Z—TEAEO—S@)

Aycos( )
Recombination Rate.

Linear Electro-Optic Coefficients.

Intensity Coupling Constant of Waves, (M]
Aocos(,)

Diffraction Efficiency of Grating.

Light Efficiency of Spatial Filter.

Light Intensity.

Intensity of Optical Bias.



J Current Density.
J. rth Fourier Component of Current Density.
kg Boltzmann Constant.
K Grating Vector.
K Elongation of Piezo Stack for Unity Voltage.
X Coupling Constant of Waves, (n}LAn )
0
L Linear Operator of Optical System.
A Wavelength of Beam.
Ao Wavelength of Beam in Air.
T Lth Diffracted Angle of Wave.
U, Incident Angle of Wave.
A Fringe Spacing.
m Fringe Modulation, (M)
I +1,
Free Electron Mobility.
n Refractive Index.
n, Ordinary Refractive Index.
n, Extraordinary Refractive Index.
An_ Saturation Value of Refractive Index Modulation.
N, Acceptor Density.
Ny Donor Density.
N§ Ionised Donor Density.
NL. rth Fourier Component of Ionised Donor Density.
n Free Electron Density.
1, Average Free Electron Density, (%)
YRNA
n, rth Fourier Component of Free Electron Density.

Ny, Photoelectron Density Generated by Optical Bias.
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Rotatory Power of Liquid Crystal Cell,

smz[g(um)l’z]
1- L U=2T(An)/A |.
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Position Vector of Wave.
Incident Wave Vector.
Photoionization Cross Section.
Diffracted Wave Vector.

Noise Tolerance of Spatial Filter.

Thickness of Volume Grating.
Intensity Transmission for Parallel Liquid Crystal Cell,

(1 —P,gm)[l—sm2(2w)sin2(-A2—(p)D.

Temperature.
Response Time of Medium.

Maxwell Dielectric Relaxation Parameter, ( € )
eun,

Peak Amplitude of Voltage.
Fringe Velocity.
Optimum Fringe Velocity.

Voltage.
Polarization Direction of Polarizer.
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Chapter 1. Introduction

1.1. Preliminary Remarks

This research concentrates on real-time optical intensity (i.e. incoherent) correlation
techniques using Fresnel transforms.  There are three features of this research:
incoherent illumination, the Fresnel transform, and real-time processing.

1.1.1. Incoherent Systems

During the last three decades coherent optical correlators with Fourier transform
filters have dominated optical pattern recognition because coherent illumination
endows an optical signal with complex (phase and amplitude) content so that a higher
discrimination can be achieved. However, in the real world most objects are either
self-luminous or illuminated with natural light, and usuvally coloured. An incoherent
system is therefore more suitable to real object processing. The incoherent system
also benefits from the absence of coherent noise, which is almost inevitable in a
coherent system and severely affects the processing quality, and has relaxed
requirements on the accuracy of alignment, which is significant in real-time processors.
Furthermore, the incoherent system can tolerate the use of a spatial light modulator
which suffers from phase variations such as the liquid crystal television employed in
this research. In a coherent system, the inhomogeneity of phase variations in the
liquid crystal television leads to a lack of spatial invariance, and phase conjugate
techniques have to be adopted. With the incoherent system, on the other hand, the
inhomogeneity of phase variations in the liquid crystal television has no influence at all.
For these reasons an incoherent system is more convenient for real-time processing.

1.1.2. The Fresnel Transform

In a coherent system, the Fourier transform possesses unique translation invariance
and the positioning problem of the input is therefore avoided. Fourier transform is
also the most powerful means of altering image features. On the other hand, the
Fresnel transform suffers from translation variance and the input has to be positioned
accurately. However, in an incoherent system the translation variance of the Fresnel
transform has no influence at all, and for optical pattern recognition selective alteration



of spatial frequencies is normally not necessary.  Thus Fourier transform filters
become less important in an incoherent correlator. From a sampling point of view, the
Fresnel transform maintains as good an information content as the Fourier transform,
but it offers flexibility of control over the light distribution, which is beneficial to the
dynamic range of the holographic recording materials, to the light efficiency, and most
importantly to the holographic recording with a moving grating developed in this
research. Therefore we have implemented the Fresnel transform in this study.

1.1.3. Real-Time Processing

The essential merits of an optical processor are its two-dimensional processing
ability and high processing speed. However, there are two processes which severely
restrict its actual speed: the transformation of the input signals into optical signals and
the preparation of the spatial filters. Therefore research on real-time performance is a
most attractive topic and of special significance. The real-time performance requires
real-time input and real-time holographic recording devices. = As a holographic
recording material, bismuth silicon oxide (BSO) possesses many attractive properties,
for example fast response, good optical quality, high spatial frequency response, and
low writing and erasing energy. As a type of spatial light modulator, the liquid crystal
television has unique features such as the colour display, low cost, and commercial
availability. In this research a photorefractive BSO crystal is used to record the
Fresnel transform filters and liquid crystal televisions are used as real-time input
devices in the intensity correlator.

1.2. Main Aspects of the Research

This research includes a fundamental investigation of the real-time recording
material and display device, the techniques developed to improve the correlation
performance, and specific applications in optical pattern recognition. The following
are the main aspects:

— the experimental investigation on moving gratings at large fringe modulations,
which is complementary to those previously reported on moving gratings at small
fringe modulation, and to those reported on the numerical results of moving gratings at
large fringe modulation;



— the study of the application of optical bias to the moving gratings, which provides
an effective method to overcome the difficulty in the application of moving gratings;

—— the realization of real-time incoherent edge enhancement and its application to
edge-enhanced intensity correlation;

— the improvement of holographic recording with BSO by means of moving
gratings and its application to real-time intensity correlation;

— the achievement of colour object recognition using a colour liquid crystal
television in an intensity correlator, which could be realized in real-time recording with
photorefractive crystals at a later stage;

— the realization of multi-class optical pattern recognition in a real-time intensity
correlator by using a synthetic discriminant function filter implemented with an Epson
liquid crystal display;

— a new spatial filter design, the quantized amplitude-compensated matched filter,
its performance merits and potential implementation with an Epson liquid crystal
display.

1.3. Outline of the Thesis

Chapter 2 introduces the theory of the linear optical system, by which our topic is
mathematically treated, the properties of the Fourier and the Fresnel transforms, and
the essentials of coherent and incoherent optical systems. Especially the Fresnel
transform and the concept of the intensity impulse response, which are widely used in
the following chapters, are emphasized.

Chapter 3 covers the associated fundamentals of the photorefractive material BSO:
the Kukhtarev differential equations, the photo-induced space-charge field, the linear
electro-optic effect, the refractive index ellipsoid, the Bragg condition, coupled wave
theory, diffraction from a volume phase grating, and energy transfer between writing
beams in steady and transient states.



Chapter 4 deals with the fundamentals of moving gratings at large fringe
modulation. It includes the theory of a moving grating at small fringe modulation, the
numerical analysis of a moving grating at large fringe modulation, and the experimental
results of a moving grating at large fringe modulation: the resonant effect, the
nonlinear dependence of the optimum fringe velocity and the enhancement of the
diffraction efficiency on the fringe modulation, and the dependence of the optimum
fringe velocity on the applied electric field and on the total writing beam intensity.

Chapter 5 describes the experiments and the analysis relating to optical bias,
including the experimental results of the influence of the optical bias on the optimum
fringe velocity, on the absolute diffraction efficiency and on the enhancement of the
diffraction efficiency.

Chapter 6 describes the intensity correlator using a Fresnel transform filter, and
presents the recent developments on real-time intensity correlation, the edge-enhanced
intensity correlation and the intensity correlation improved by a moving grating.

In chapter 7 the properties and applications of liquid crystal televisions as a type of
spatial light modulator are presented. These include the optical properties of the
twisted nematic liquid crystal cell, the synthesis of a multi-wavelength Fresnel
transform filter, the colour object intensity correlation using a colour liquid crystal
television, the phase and the amplitude modulation properties of the Epson liquid
crystal display in various modulation modes, the computation of the intensity synthetic
discriminant function and its realization using the Epson liquid crystal display, and the
experimental results of multi-class object recognition.

The last part of chapter 7 considers further research directions: the realization of
the quantized amplitude-compensated matched filter using the Epson liquid crystal
display working in its amplitude-mostly modulation mode. This part discusses the
performance criteria of spatial filters, different spatial filters, the structure and the
performance merits of the quantized amplitude-compensated matched filter, and a
possible optical correlation system using the quantized amplitude-compensated
matched filter.



Chapter 2. Optical Linear Systems, and the Fourier and
Fresnel Transforms

2.1. Optical Linear Spatially Invariant Systems

The mathematical analysis throughout this thesis is based on the theory of linear
systems. This is because (1) it is virtually impossible to make a complete analysis of a
general system, and a linear system can be treated with normal mathematical analysis
and an exact solution can be obtained; (2) most optical correlation systems are linear in
the system variable (amplitude or intensity), and the linear system treatment in our
optical system results in a quite accurate approximation.

An optical system can be described by the input excitation, system operation, and
the output response. Suppose the input excitations are f;(x,,y,), where i=1, 2, ...

and (xl,yl) is the coordinate system of the input plane, the system operator is L, and
the output responses are g,(X,,y,), where (xz,yz) is the coordinate system of the

output plane. Their relationship can be written as:

8:(X,,¥,) = L[f,(x,,y,)] @2.1)

A specific optical system is the linear optical system2:1-2.3, which satisfies the
principle of superposition:

LD, Cifi(x1,y,)]= X, Cigi (%,,¥2) 2.2)

where C, are arbitrary constants.  The above equation implies that the output
response to a complicated input can be found by first decomposing this input into a
linear combination of elementary functions, finding the response to each elementary
function, and then taking the same linear combination of these elementary responses.
Physically, linearity implies that the behaviour of the optical system is independent of
the magnitude of the input.



Typical elementary functions are the impulse d functions. According to the sifting
property of the o function, any input can be described as:

f(x,y))= _” f(xo’}'o )a(xl — X, Y1~ Yo)dX,dy, (2.3)

where (x,,Y,) is the position of the 6 function in the input plane. The output of the

linear optical system can be obtained by substituting Eq. (2.3) into Eq. (2.1) and using
Eq. (2.2), yielding:

g(xz > Y2) = L[f(Xl » Y1 )]
- (2.4)
= -Uf(xo’ Yo)LIB(X, = X4, ¥, —¥o)ldX,dy,

where L[3(X, —X,, ¥; =Y )] =h(X,, ¥,; X,,¥,) is the impulse response of the system.
Obviously, the impulse response is not only a function of the coordinates of the output
plane but also a function of the position of the impulse in the input plane. If the
impulse response can be simplified as:

h(X,,¥,5 Xg,¥0) =h(X, —X,, ¥, —¥,) (2.5)

i.e. the displacement of the impulse at the input plane only causes a corresponding
displacement of the impulse response at the output plane without any changes in the
functional form, the system is said to be spatially shift invariant.  Substituting Eq.
(2.5) into Eq. (2.4), we have:

2(X,,y,)= fjf(xl,yl)h(xz —X;, ¥, —y)dxdy, (2.6)

which is a two-dimensional convolution operation. Thus the output response for an
optical linear spatially invariant system can be obtained by first calculating the response
of the impulse at the origin of the input plane, and then convoluting it with the input
excitation. Eq. (2.6) has a simple expression:



g(x,,y,) =1(x,y,)) * h(x,y,) 2.7)
where * denotes the convolution operation.

It should be remembered that the physical variables in Eq. (2.7) could be either
complex amplitude or intensity, depending on which variable the optical system is
linear in. We assign the term impulse response to the variable complex amplitude, and
the term intensity impulse response to the variable intensity. Obviously, the intensity
impulse response is the square of the modulus of the impulse response.

2.2. The Fourier Transform and its Properties

The two-dimensional Fourier transform is particularly important in optical
information processing. It is the basis of spectrum analysis, spatial filtering, and the
convolution and correlation operations of optical signals. This section considers the
most useful properties of the Fourier transform, i.e. the translation and correlation
theorems2-1-2:4,

Suppose an object f(x,y) is inserted in the front focal plane of a lens and

illuminated by coherent light as shown in Fig. 2.1. The complex amplitude at the back
focal plane of the lens is given by the Fourier transform:

F(p,q) = F[f(x,y)]
w (2.8
= _[ j f(x, y)exp[—i(px +qy)]dxdy )

with

2na 2np
- . q= 2.9



(x,y) (o.,B)

0007

L A . —

Fig. 2.1. An optical Fourier transform system.

where F(p,q) is the Fourier spectrum, F denotes the Fourier transform, (ct,B) is the
coordinate system in the back focal plane of the lens, A is the illuminating wavelength,
f is the focal length of the transform lens, and (p,q) are the spatial frequency
coordinates. The original object can be obtained from its Fourier spectrum by an
inverse transform. This can be done by a succeeding transform lens with an inverse
coordinate system selection in the back focal plane of the lens. The inverse Fourier
transform is expressed as:

f(x,y) = F*[F(p,q)]
) (2.10)
= [[ F(p,q)exp[i(px+ay)kipdq

where F™' denotes the inverse Fourier transform. The Fourier transform possesses the
property of translation invariance.  Suppose the input object shifts to a position

(xo,yo), Eq. (2.8) gives:

Fli(x-x0.y-3,)] = [ E(x= x5,y =y, Jexp[i(px-+ay)Jdxdy -

= exp[-i(pxo + ay, )]F(P’ q)

i.e. the translation of an object only causes a linear phase shift in the Fourier spectrum
without a change in position.



Another useful property of the Fourier transform is the correlation theorem.
Considers two Fourier transform pairs:

f,(x,y) < F(p,q), and f,(x,y) <> E,(p.q) (2.12)

The inverse Fourier transform of the function F,(p,q)F; (p,q), where the superscript
* denotes the complex conjugate, gives the cross correlation of the original objects:

[[F(p.0)E; (p. @)exp[i(px+ay)]dpdq = [[£,(x',y )5 (x' —x,y' =y) dx' dy’

(2.13)
=f(x,y)®f,(x,y)

where ® denotes correlation operation. The correlation operation yields a sharply
peaked intensity distribution, and therefore it can be used for signal detection.

Fig. 2.2 shows the so called 4-f optical system2-5, which can perform two
dimensional signal correlation. In Fig. 2.2 two transform lenses are arranged in

succession, and a Fourier transform filter having the form of F, (p,q) is inserted at the
back focal plane of the first transform lens. If a signal fl(x,y) is at the front focal
plane of the first transform lens, the cross correlation of f, (x, y) with fz(x,y) will be

formed at the back focal plane of the second transform lens. This correlator possesses
shift invariance because Fourier transforms are used in the optical system.

Fig. 2.2. The 4-f optical system for optical correlation.



2.3. The Fresnel Transform and its Properties

There are some applications of optical pattern recognition in which the translation
invariance of the object could be a drawback. For instance, in machine vision correct
placement of the object can be as important as its identity. In this case a space-variant
optical correlator is required. This can be done by using Fresnel transforms in the
optical correlator26.

Consider the optical system shown in Fig, 2.3 where the output plane is not at the
focal plane but a distance d away from the transform lens. For simplicity, we assume
the input plane is at the front focal plane of the transform lens. The complex light
distribution at the output plane is given by the Fresnel transform:

Fr(p,q) = Fr[f(x, y)]

= ][] Desp {6+ (137 e[ 3x(g )] -
exp{;—’;[(oc ~&)"+(B —n)z]}dxdyd&dn

= F[f(x,y)Z(x,y; d,1)]

(x.y) (c,B)

0 07

— f———d—

Fig. 2.3. An optical Fresnel transform system.

where p and q are as defined in Eq. (2.9) with (c,) as the coordinate system of the

selected Fresnel transform plane, Fr(p,q) is the Fresnel spectrum, Fr denotes the

10



Fresnel transform, (F,,n) is the coordinate system in the lens plane, and Z(x,y;d,f ) is

a quadratic phase function:

Z(x,y; d,f) = exp[?f—(l —%)()f +y? )} (2.15)

Eq. (2.14) shows that the Fresnel transform of a signal can be regarded as the Fourier
transform of the signal modified by a quadratic phase factor. The Fresnel transform
shares the properties of the space and the spatial spectrum. If N samples are sufficient
to represent an object accurately, N samples are also sufficient to sample the signal at
any Fresnel transform plane2-7. From this point of view, a Fresnel transform filter
could perform as well as a Fourier transform filter. However the Fresnel transform

possesses no translation invariance. Suppose the input has a displacement (xo,yo),

Eq. (2.14) yields:

Fr{f(x-%,,y-yo)]= FIf(x- X0,y - ¥5)Z(x,y; d,0)]

= exp[% (1 —%)(xo2 + yoz)] exp[—i( DX, +Q, )] (2.16)

27 d 27 d
Filp———|1-—|x,,q—=—|1-—
'[p kf( f)x"q xf( f)y"]

We can see that the displacement of the object introduces not only a phase shift

exp[—i(px0+qyo)], but also a positional shift [a—(l—%)xo,[}—(l—%)yo] in its

Fresnel spectrum. The larger the deviation of the distance d from the focal length f,
the bigger the displacement of the Fresnel spectrum.

Using the shift variant property of the Fresnel transform, a space variant optical
correlator can be set up. Such a correlator, as shown in Fig. 2.4, can detect not only
the shape, but also the position of an object.

11



Fig. 2.4. An optical correlator using Fresnel transform filter.

In Fig. 2.4 the Fresnel transform filter given by the complex conjugate of Eq. (2.14)
is placed at the filter plane where the Fresnel transform of an input signal is formed by
the first transform lens. If the signal f(x,y) is at the origin of the input plane, the
complex light distribution just behind the Fresnel plane will be given by:

E(p.q) =|Fr(p,q)[’

(2.17)
= |F[f(x,y)Z(X,Y§ d’f)]l2

The second transform lens makes the inverse Fourier transform of E(p,q), yielding the
complex light distribution at the output plane, according to the correlation theorem of
the Fourier transform:

g(x,y) = F'[E(p,q)]

(2.18)
=[f(x,y)Z(x,y; d,))]®[f(x,y)Z(x,y; d,)]

which is the autocorrelation of the signal modified by a quadratic phase angle.

If the signal has a displacement of (xo ,yo), its Fresnel spectrum will have not only a
phase shift but also a position displacement as shown in Eq. (2.16). The light
distribution will not overlap with the filter, and the autocorrelation cannot be obtained
at the output plane. Thus with a Fresnel transform used in an optical correlator, the
autocorrelation can be achieved only when the shape and the position of the input are
both matched to the reference object.

12



The light distribution of the Fresnel spectrum is relatively uniform over a larger
area than its Fourier counterpart. This helps to accommodate the dynamic range of
the holographic recording material and brings about higher light efficiency in the case
of diffused light illumination. It is also helpful in the case of a moving grating, since
the relatively uniform light distribution eliminates the nonlinear effect of the optimum
fringe velocity on the fringe modulation (see chapters 4 and 6).

2.4. Coherent and Incoherent Optical Systems

Consider an optical imaging system which is illuminated by a monochromatic light
source X as shown in Fig 2.5. The basic assumption is that for an incremental light

source dX, which induces a complex light field u(xl,yl) at the input plane, the system
is space invariant and linear in the complex amplitude. This assumption is generally
valid for small amplitude disturbances over a small region of the input plane. If the
complex amplitude transmittance in the input plane is f (x,y), the complex amplitude

distribution at the output plane is determined by the convolution:
g(X,,y,) = ulx, y )f(x,,y,) * h(x,,y,) (2.19)

Em) (x15¥1) (X35¥2)

Fig. 2.5. An optical imaging system.

The output intensity due to dX is the square of the modulus of g(x,,y,), and the total
output intensity produced by the whole light source is then given by:

I(x,,y,) = IJJIF(XI’Y1; X,y h(x, —x,,y, -yp)h'(x, =%/ Yo=Y (2.20)
fix, y)f (x,",y," )dx,dy,dx," dy,' .
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Txy55 %y, ) = [Jueg,y)u' (%, y, ) 2.21)
z

where T'(x,,y,; X,',y,') is the mutual coherence function?-8-29 at the input plane
induced by the light source, which obviously depends on the characteristics of the light
source.

If the incremental light source has intensity I(E,m), the induced complex

disturbances u(x,,yl) and u(xl‘ ,yl') can be written, using spherical wave expressions,

as:
I 2 :
utryp = BT o 1205 (222
1/2 : '
'y = T g 1275 (2.23)

1

where r, andr' are the distances from dX to the points (xl,yl)and (xl',yl'),

respectively. Substituting Eqgs. (2.22) and (2.23) into (2.21) and applying the paraxial
approximation to r, -r;', we have:

I —i2
L0y Xy ) == Hl(é,n)em{ ;rn [&(x, -x,) + 1y, - yl')]}dédn (2.24)
z

where r is the separation between the light source plane and the input plane. Eq.
(2.24) indicates that the mutual coherence function is given by the Fourier transform of
the intensity distribution of the light source.

If I(,m) is a & function, which corresponds to a spatially coherent source, the

integration of Eq. (2.24) will yield:
I'x,y;xhy, ") =K, (2.25)

where K, is a constant. Substituting Eq. (2.25) into Eq. (2.20) we have:

14



" 2
I(Xz,)ﬁ) = U‘Jf(xn}ﬁ)h(xz —X5,Y» _yl)dxldY1| (2.26)

or alternatively:

g(xz’Y2) = J.Jf(xv}’l)h(xz —X1,¥s _Y1)dX1dY1 (2.27)

i.e. the output complex amplitude is the convolution of the input complex amplitude
with the impulse response. The system is linear with respect to complex amplitude.
Eq. (2.27) can be expressed in the spatial frequency domain by a Fourier
transformation:

G(p.q)=F(p,q)H(p.q) (2.28)

where G(p,q), F(p,q) and H(p,q) are the corresponding Fourier spectra of
g(xz,yz), f(xl,yl) and h(xl,yl), respectively.

If 1(€,m) is constant and X is infinitely large, which corresponds to a spatially
incoherent source, the integration of (2.24) will give a 0 function:

CxLyexy, ) =K% -x,y,-v,) (2.29)

where K, is a constant. Substituting Eq. (2.29) into Eq. (2.20) we have:

I(Xz’ Y2) = J_“f(xl: Y1)I2|h(xz "X Yo Y1)|2 dx,dy, (2.30)
where
,h(xz‘xl’)’z‘)ﬁ)r=hi(xz’}’2;xn}'1) (2.31)

15



is the intensity impulse response. Eq. (2.30) indicates that. the output intensity is the
convolution of the input intensity with the intensity impulse response. The system is
linear with respect to intensity. Again Eq. (2.30) can be expressed in the spatial
frequency domain:

1(p.q)=E(p.q)H;(p.q) (2.32)

where I(p,q), E(p,q) and Hi(p,q) are the corresponding Fourier transforms of
2 .
1(x,,y,), lf(xl,y1 )l and h.(x,,y,), respectively.

This thesis deals with intensity correlation. We treat our topic assuming linear
system theory i.e. the output intensity response of the optical system is calculated by
first calculating the intensity impulse response and then convoluting it with the input
intensity excitation.
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Chapter 3. Photorefractive BSO in Holography

The photorefractive crystal bismuth silicon oxide (BSO) has been widely used as a
dynamic holographic medium in real-time coherent optical correlation.3-1, 3.2, novelty
filtering3-3- 34 and incoherent optical correlation3-3. Its attractive features are the fast
response, good optical quality over a large surface area, high spatial frequency
response, and low writing and erasing energy. These make it suitable for real-time
applications. It is well known that when the writing beams are incident on a
photorefractive crystal, a volume refractive index grating is established. This is the
photorefractive effect. The mechanism is as follows: the writing beams produce a
photo-excited charge-carrier distribution which corresponds to the intensity
distribution of the interference pattern; the charge-carriers migrate via drift or
diffusion into dark regions of the crystal, where they are re-trapped; the resultant
space-charge distribution produces a space-charge field; this field modulates the
refractive index of the crystal via the linear electro-optic effect and forms the refractive
index grating. Fig. 3.1 shows the mechanism for the establishment of the refractive

index modulation.
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Fig. 3.1. The establishment of the refractive index
modulation in photorefractive crystals.

3.1. Photo-Induced Space-Charge Field and the Refractive Index
Grating

3.1.1. The Material Equations
The photo-induced space-charge field is the physical quantity responsible for the

refractive index modulation in photorefractive materials. The differential equations
proposed by Kukhtarev et al.3-0 are believed to characterize the space-charge field

accurately:
JE e
—=—(N, —Nj 3.1
ax € ( A D ) ( )
oNp, _Jd
3.2
© 3 ox (32
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N,

” =sINp —ygnNj, (3.3)
J=eunE - kBTua—n- (3.4)
ox

where E is the total electric field made up of the external applied electric field E, and

the created space-charge field E_, e is the electronic charge, N, and N, are the

acceptor and the donor densities, respectively, Nj, is the density of ionised donors, €
is the permittivity of the material, J is the current density, p is the free-electron

mobility, I is the total incident beam intensity, s is the photoionization cross section,
Yr is the recombination rate, n is the free electron distribution, kg is the Boltzmann

constant, T is temperature, t is time, and d is the differential operator. Eqgs. (3.1) to
(3.4) are valid under the conditions: n<<N,, Nj <<N,, there is no thermal
generation, the photovoltaic constant is zero, the spatial variation can be regarded as
only in the x direction and € is independent of x.

3.1.2. Solution for the Space-Charge Field
We consider the holographic recording of two interfering plane waves with
intensities I, andI,.  The intensity distribution of the interference pattern will be

periodic:

I=1,[1+mcos(Kx)] (3.5)

. 2 _ . . .
where I, =1, +1,, K =|K| =Tn’ K is the grating vector, A is the fringe spacing, and

m is the fringe modulation defined as:

m=——>"— where 0<m<1 (3.6)

With this periodic illumination, all physical variables in the differential equations,

Np, 1, J, and E, are expected to vary in the same periodic manner, and they can be
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represented in the form of a complex Fourier series. To a first-order approximation,
which is valid in the case of small fringe modulation3-7, the variables can be written as:

I1=1, +%[Iomexp(in)+cc] (3.7)
N; =N, +%[Nglexp(in)+cc] (3.8)
n=n, +%[nlexp(in) +cc] (3.9)
I=1, +%[Jlexp(in)+cc] (3.10)
E=E, +%[Escexp(in)+cc] 3.11)

where cc denotes complex conjugate, Np,, n,,andJ, are the coefficients of the

fundamental components of the Fourier series, and Ny, n, J,, andE_ are the

coefficients of the first-order components of the Fourier series.

Substituting Egs. (3.7)-(3.11) into Egs. (3.1)-(3.4) a set of differential equations for
the first-order coefficients, which are of interest here, can be obtained. With further
approximations, the cross products of the two first-order coefficients and the second
time derivatives can be neglected, and then the differential equations will contain two
kinds of term, the constant terms and terms with the factor exp(iKx). Compared
separately, a set of temporal differential equations will be constructed. ~The temporal
derivative of the space-charge field takes the form:

dE

¢ —

o
rM(1+ED—+i3)
E

(3.12)
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is the Maxwell dielectric relaxation parameter, E;) =——= is the

where T, =
M eun, e
1
diffusion field, E,, = N4 s the saturation field, E,, = TeNa ,and n, =2 oNo Ty
eK <N,
partial differential equation (3.12) has the typical solution of:
(-E, +iE,) (H%HE_O)
-E, +
E =20 T0) 1y expl- ; ‘; £ (3.13)
1+&+i& IM(1+—D+i—i)
Q EQ L EM M/ |

Eq. (3.13) predicts an oscillatory behaviour of the modulus of the space-charge
field, and a transient peak is expected3-8-3.10,

3.1.3. Time-Independent Solution for the Space-Charge Field

We consider the steady-state as t = eo. In this case Eq. (3.13) yields the following

solution for the space-charge field:

'E, +iE
g = B +iEp) =E, |exp(i®) (3.14)

[H&H&)
EQ EQ

which is a complex function, with @ as the phase angle. The real part of the space-

charge field presents an in-phase sinusoidal refractive index variation with respect to

the sinusoidal light distribution, while the imaginary part represents a 1;— phase-shifted

sinusoidal refractive index variation.
3.1.4. Photo-Induced Refractive Index Modulation

The optical properties of photorefractive materials are described by the refractive
index ellipsoid. The initial BSO crystal (in the absence of an applied electric field) is
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an optically isotropic crystal, and its refractive index ellipsoid is a sphere and is given
in the standard crystallographic coordinate system by:

X y _
— tS5+—= (3.15)

where n, is the refractive index of the crystal. BSO is a paraelectric electro-optic
material. By applying an electric field it becomes birefringent. The photo-induced
space-charge field changes the initial refractive index via the linear electro-optic
(Pockels) effect, and the change in the refractive index ellipsoid is given by3-11-3.13;

1
A(-—?_) =¥ 1, (E.), (3.16)
ij
where (i, J» k) - (x, Y, z), n is the refractive index, and r;; are the linear electro-

optic coefficients. The tensor (—2) is symmetric in the subscripts i and j, therefore it
n° /.
ij

has only six independent components. With the convenient notation of ij, xx =1,
yy =2, zz— 3, yz—> 4, zx = 5 and xy — 6, Eq. (3.16) can be expressed as:

A(iz) =>5(E,), (3.17)

where i=1, 2, ... 6 and j=1, 2, 3. Now Eq. (3.15) is modified as the field-induced

refractive index ellipsoid, which has the general form:
ol a2 | () [ oo F) |
n; n° ), n, n° /, n; n° /,

+2yzA(i2) +22xA(i2) +2xyA(——1§-) =1
n°J, n° Js n° J,

BSO belongs to the crystallographic class 23 point group symmetry, which has

(3.18)

three equal non-zero linear electro-optic coefficients:
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I, =T, =Ty =5 pm/V (3.19)

Therefore the components in Eq. (3.17) have the only non-zero values:

1
A(_z) =14(E..), A(n—lz) =1,(E.),» AG;) =14(E..), (3.20)
4 5 6

n

Substituting Egs. (3.20) into Eq. (3.18), we will obtain a simplified expression for the

refractive index ellipsoid.

x* I:_lz']’*' y’ |ii2:l +2° l:iz]"}' 21, (Esc )x yz+21y (Esc )y zX + 21, (Esc )z xy =1 (3.21)
n

0

By geometric coordinate transformation the ellipsoid of Eq. (3.21) can be rewritten in

its principal-axis coordinate system:

T Y 4y (3.22)

where (X',Y',Z') are the principal-axis based coordinates of the refractive index
ellipsoid. Obviously, the orientations and the magnitudes of the principal axes depend
on the direction of the space-charge field with respect to the crystallographic axes.

If the crystal orientation is selected such that the incident beam is on the (110)

face, and the grating vector and the applied electric field are along [110]
crystallographic direction, the sixth term in Eq. (3.21) will vanish [(ESc )z = O]. In this

case the principal axes of the refractive index ellipsoid determined by Eq. (3.22) are
shown in Fig. 3.2. This arrangement presents maximum refractive index modulation,
and the refractive index modulation along the grating direction is given by3-14 3.15

An=nr,E_ (3.23)
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Fig. 3.2. The crystal geometry for maximum diffraction
efficiency. X', Y', Z': the principal axes of the
refractive index ellipsoid.

If the crystal orientation is selected such that the incident beams are on the (110)
face, and the grating vector and applied electric field are along [001] crystallographic

direction, the fourth and the fifth terms in Eq. (3.21) will vanish [(Esc)x = (Esc)y = 0].

In this case the principal axes of the refractive index ellipsoid are shown in Fig. 3.3.
This arrangement results in the strongest beam-coupling, and the refractive index

modulation along the grating direction is given by:

1

An =—2-ngr4lE (3.24)

sc
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Fig. 3.3. The crystal geometry for maximum energy
transfer. X', Y',Z': are the principal axes
of the refractive index ellipsoid.

3.2. Diffraction from Volume Refractive Index Gratings
3.2.1. Bragg Diffraction from a Volume Grating

A plane grating can be regarded as a set of periodically spaced transparent slits in
an opaque screen. When a plane wave encounters these slits, it is scattered into
different directions. Diffraction maxima occur when the scattered components from
these slits are in-phase, which allows a constructive addition of these components.
Fig. 3.4 shows the geometry for diffraction from a plane grating. Suppose the grating
spacing is A, the refractive index everywhere is n,, the wavelength of the incident
wave is A, in air, and the incident angle and diffracted angle of the plane wave are 9,,
and ¥, respectively. The in-phase scattering takes place when the addition of the
optical path lengths AB and AC is a whole number of wavelengths, which yields:

LA,
n,A

Sin(9,)+Sin(9, )

(3.25)
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Fig. 3.4 Diffraction from a plane grating.

where L is a integer. Eq. (3.25) shows that the incident angle has no specific
restriction, and for a certain incident angle, a set of diffraction maxima with different

angles can exist.
For a volume grating, Eq. (3.25) must still be valid. In addition, we must consider

the scattering from all points along the same fringe. Fig. 3.5 shows this in a slanted
grating with a slant angle ¢. The in-phase addition of the scattered components from

a single fringe occurs when the optical path lengths EF and HG in Fig. 3.5 are equal.
This yields a condition:
cos(9, — &) =cos(V, +¢) (3.26)

which additionally restricts the diffraction angles to:

9, =-9, or B, =0,+20 (3.27)
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Fig. 3.5 Diffraction from a volume grating.

For the condition of ¥; =—10, , the solution to Eq. (3.25) is L =0, and only zero-
order diffraction is allowed. For the condition of ¢, =0, +2¢ Eq. (3.25) yields:

LA,

3.28
™ (3.28)

28in (9, +0) =

This implies that other diffraction orders can exist at certain specific incident angles,
namely the "Bragg" angles. With light incident at the Lth Bragg angle, up to two
waves are permitted. These are the zeroth and Lth diffraction orders. With other
incident angles, the wave travels through the grating without diffraction. The first
diffraction order is allowed when light is incident at the first Bragg angle:

2Sin(9, +¢) = Ay (3.29)

n,A

which is the Bragg condition and the incident light is said to be "Bragg-matched" to
the grating.
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3.2.2. Diffraction Efficiency for a Transmission Grating

Using coupled wave theory, Kogelnik3-16 has analyzed the diffraction efficiency of
volume gratings in the Bragg regime. In this thesis a slantless transmission grating
formed in BSO and readout at the Bragg angle are employed. Therefore we consider
here the diffraction efficiency of a slantless transmission grating under the Bragg

condition.

Suppose the refractive index variation of a fixed grating is described by:

n=n, +%[exp(—if(-f) +cc] (3.30)

where T is the position vector. The incident wave a; and the diffracted wave a, can

be described by:

(3.31)
(3.32)

-
N—

a, = R(z)exp(—ip-T

)
~—

a, = S(z)exp(-iG-T

where R(z) and S(z) are the complex amplitudes, and p and G are the wave vectors.

The coherent sum must satisfy the scalar wave equation:
V*(a, +a,)+k*(a, +a,) =0 (3.33)

where k is the propagation constant related to relative dielectric constant and the
conductivity of the medium. Substituting Egs. (3.31) and (3.32) into Eq. (3.33) we
can obtain the coupled wave equations. Under the conditions of Bragg matching and
assuming a slowly varying approximation for the complex amplitudes, the coupled

wave equations take the form:

cos(ﬁ0)§+ﬂk =-ixS (3.34)
dz 2

cos(9,) 8+ &5 = xR (3.35)
dz 2
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where o is the average intensity absorption coefficient, and

_ wAn

= 3.36
X x (3.36)

is the coupling constant. The coupled equations (3.34) and (3.35) have the typical

solution:
R(z) =R, exp(y,z) +R, exp(¥,z) (3.37)
S(z) =S, exp(y,z)+ S, exp(y,z) (3.38)
where

o .
Yi2 =~ v (3.39)

2cos(®,) ~ cos(9,)

Adopting the following boundary conditions:

R(0)=R,+R, =1 (3.40)
S(0)=S,+S, =0 (3.41)
ds(o

—% =7,S, +7,5, (3.42)

in Eq. (3.38) we can obtain the diffracted wave at the output of the volume grating:

' —-oT |. wAnT
S(T) =i exp[ > Cos(ﬁo)]sm[ kocos(ﬁo)}

_ —igAnT ex —oT
Aocos(0,) P 2cos(9,)

(3.43)

where T is the thickness of the volume grating. The last expression in Eq. (3.43) is
valid for small fringe modulations. Considering a volume grating formed in BSO with
the crystal orientation set for maximum refractive index modulation (Fig. 3.2), the

30



complex amplitude of the diffracted wave can be obtained by substituting Eq. (3.23)
into Eq. (3.43), yielding:

-imn’y,, TE -oT
S(T) = e la e 3.44
(T Aocos(,) exP[Zcos(ﬁo)] (.44

We can see that if the space-charge field has no additional phase shift, the diffracted

wave will be —lzt- phase shifted with respect to the incident beam. The diffraction

efficiency of the transmission volume grating is then given by:

_ |S(T)|2 7tno’Y‘u
—IR(0)|2 A cos(® | S°| cos(® ) (5.43)

It can be seen that the diffraction efficiency is proportional to the square of the
modulus of the space-charge field. As the space-charge field is proportional to the
fringe modulation [see Eq. (3.14)], the diffraction efficiency is proportional to the

square of the fringe modulation.
3.3. Energy Transfer Between Writing Beams in the Steady State

Consider two waves propagating in a photorefractive material in which they create

a periodic refractive index modulation, a phase grating. Each wave is then diffracted

by the grating and, for an unshifted grating, the diffracted wave has a —% phase shift
with respect to the original wave. If the grating is g phase shifted, there will be an

additional ig phase shift with respect to the diffracted waves. Thus an in phase

superposition of waves occurs in one propagation direction, and an anti phase

superposition of waves occurs in another propagation direction.

Suppose two waves a, and a, are described as:
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(3.46)
(3.47)

L ]
—

a, =R(z)exp(-ip-T
a, =S(z)exp(—iG T

L]
N

where R(z) =|R(z)[exp[-ip,(z)] and S(z) =(S(z)[exp[-ip,(z)] where @,(z) and @, (z)
are the phase angles of the complex amplitude. The interference of these waves forms
a dynamic refractive index grating. If the dynamic grating is @ phase shifted with
respect to the interference pattern, the refractive index modulation will be described as:

n=n, +%{exp(—i(l))R(z)S'(z) exp[—i(ﬁ —-0)- f] +cc} (3.48)

where Ang is the saturation value of the photo-induced refractive index modulation.

The coupled wave equations in (3.34) and (3.35) should now be modified, by taking
the phase shift into account, to3:17-3.20;

R« 2mAn, RS'S

cos( ¥, ) —+—R =—iexp(—iD 3.49

( o) a4z 2 iexp(-i®) N 1, (3.49)

cos(9) 92 + &5 = _jexp (i) 2720 SR R (3.50)
dz 2 Ao I,

The two waves are coupled in both the intensity and the phase according to the grating
phase shift angle. By differentiating S and R, substituting them into Egs. (3.49) and
(3.50), separating the real and the imaginary parts, we obtain the differential equations
for coupled intensities (the real parts) and coupled phases (the imaginary parts). The

coupled intensity equations have the form:

e o plels (3.51)
dz  cos(,) I +1

s, @& ooptels (3.52)
dz  cos(®,) I +1

where
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e 4mAng sin(D)

3.53
Aycos(9,) (3:53)
is the intensity coupling constant. The solution of Eq. (3.52) is given by:

I (0)+1(0) o

I =1,(0 R S e r- 3.54

(2)=15(0) 1 (0)+15(0)exp(Tz) *P cos(,) z (5:54)
If I,(0) << I (0), Eq. (3.54) can be simplified as:

o
I(z) = L(0)expd| T ———F— |z (3.55)
cos(9,)

The signal wave is amplified with an exponential gain proportional to the intensity

coupling constant I".

The energy transfer between writing beams in a dynamic holographic recording
depends on the phase shift between the interference pattern and the grating formed.
The "drift" mechanism of charge-carrier migration (under an applied electric field)
gives rise to a very small phase shift when the drift length is much smaller than the
grating spacing, for which stationary energy transfer is almost forbidden.  The
"diffusion" mechanism of charge-carrier migration (without an applied electric field)

yields a g phase shift grating for which stationary energy transfer occurs. However

the index modulation by diffusion is low in the high spatial frequency domain (fringe
spacings less than 0.5 pm3-21. 3.22) and so the intensity coupling constant " is small.

Effective energy transfer can be achieved with a photorefractive crystal in the drift
recording mode, which has higher index modulation at high spatial frequency, and

using the moving grating technique, which yields an additional g phase shift between

the grating and the interference patterns (see chapter 4).
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3.4. Transient Energy Transfer Between Writing Beams

Although stationary energy transfer is almost forbidden in a grating formed by the
drift mechanism of charge-carrier migration, transient energy transfer during the
grating recording could occur. This effect is a consequence of the non stationary
phase mismatch between the recorded grating and the interference fringes when the

two writing beams are of different intensities3-23-3-27,

Let us consider the coupled phase equation deduced from Egs. (3.49) and (3.50),
which has the form:

do_ Te=ls (3.56)
dz I +1g

where @(z) = ¢,(z)—¢,(z) is the phase difference between the interacting waves and
v is the phase conversion factor given by:

_ 2mAngcos(D)

Aocos(D,) G:37)

. . . . T
It is clear from above equations that when the refractive index grating has a By phase

shift with respect to the interference fringes, I' is finite and vy is zero. In this case

g(£= 0, but stationary energy transfer occurs. On the other hand, when the index

dz
grating is in phase with the interference fringes, 7y is finite and I" is zero. In this case

. . d . . .
there is no stationary energy transfer, but f# 0 provided that the intensities of the
z

writing beams are different, which causes transient energy transfer.

Fig. 3.6 demonstrates the evolution of a dynamic grating during holographic
recording, and the following is a qualitative analysis of transient energy transfer. The
dashed lines denote bright fringes while the solid lines denote the surfaces of equal
phase of the dynamic grating. (a), (b), and (c) represent the initial state, transient
state and steady state, respectively.
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Fig. 3.6. The variation of the dynamic grating
during holographic recording.

Suppose two writing beams are incident on the medium with same incident angle
¥,. At t=0 there is no grating, and the surfaces of equal phase in the interference

pattern lie along the normal to the surface of the nonlinear media i.e. %2 =0 [Fig. 3.6
z

99
z
phase in the interference pattern are inclined relative to their original positions. The

(@)]. In the stationary case — # 0, according to Eq. (3.56), and the surfaces of equal

equal phase contours of the refractive index grating are coincident with the inclined
interference fringes because there is zero phase shift between them in the charge-
carrier drifting mode of recording [Fig. 3.6 (c)]. Assume that the recording medium
has a finite time response and that the response time is T. During 0<t < T, the time
mismatch between the writing and the diffraction processes leads to a spatial mismatch
between the interference pattern and the recorded refractive index grating [Fig. 3.6
(b)]. Thus transient energy transfer occurs. When t >> T the refractive index grating
succeeds in catching up with the inclined stationary interference distribution and the
transient energy transfer ceases. It is clear that the following conditions should be
satisfied for transient energy transfer: first, the recording medium has a finite response
time; second, the intensities of the writing beams are different at the surface of

incidence.
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The analytical expression for transient energy transfer is given by3.23 3.28;

Ii(z)—Ii(O)=i(tzA)z[I_(O)-—I+(O)]I+(O)I_(0)exp(_?t][i-+exp(:Tt-)—1:| (3.58)

where A is determined by the ensemble of characteristic parameters of the medium
that defines the photorefraction process. It can be seen that the non stationary
increment (decrement) of the light intensity is proportional to the square of the
thickness z and the response time of the medium <.
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Chapter 4. Properties of Moving Gratings in BSO at Large
Fringe Modulations

4.1. Introduction

The phenomenon of energy transfer in BSO is useful for signal amplification in
two-wave mixing and four-wave mixing, and has been widely investigated in the last
decade3-18, 4.1-4.5  In particular, Refregier et al.3-7 have solved the differential
equations and presented an expression for the space-charge field with a moving grating
in the case of small fringe modulations. But in the case of holographic recording for
correlation purposes, the fringe modulation is usually large and the small modulation
theory should be modified.

For the large fringe modulation case, Au and Solymar*6, 4.7, and Vachss and
Hesselink#-8 have presented numerical solutions of the differential equations by taking
the higher order harmonic components of the space-charge field into account.
Recently Brost4? has provided a more detailed numerical study of this topic. Their
analysis predicts unexpected behaviour at large fringe modulations in the form of non-
linearities.

This chapter presents the experimental results made with moving gratings in BSO
at large fringe modulations, which are then compared with the numerical results. The
highly nonlinear dependence of the optimum fringe velocity and the enhancement of
the diffraction efficiency on the fringe modulation is experimentally verified.  This
work is complementary to that previously reported on experimental measurements at
small fringe modulations, and to the numerical results for large fringe modulations.

4.2 Theory of a Moving Grating at Small Fringe Modulation

In the case of a moving grating, the variables in Kukhtarev's differential equations
should have the same form, to a first order approximation, as in Egs.(3.7)-(3.11) but

replacing " exp(in ) “by" exp[iK(x - vt)] "ie.
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=1, +%{Iomexp[iK(x ~vt)] +cc) (4.1)

N7, =Ng, +%{Nglexp[iK(x - Vt)]+ cc} 4.2)

n=n, +%{nlexp[iK(x —vt)]+cc} (4.3)
1 .

J=1J, +5{J 1exp[lK(x - vt)] + cc} 4.4)

E=E, +%{Escexp[iK(x—vt)]+cc} 4.5)

where v is the fringe velocity. Substituting the Eqs. (4.1)-(4.5) into the Kukhtarev
equations, a set of differential equations for the first-order coefficients can be obtained.
With the same approximation as in section 3.1.2, the differential equations will contain

constant terms and terms with factor exp[iK(x - vt)]. Comparing them separately and

considering the space-charge field at steady state only i.e. aat” =0, we will obtain the

expression3-7:

-m(E, +iE
By KV’CM(1+EJ+{1+E—D+KV’CM &}
Eq E,, E, E,,

where all parameters are as described in Eq. (3.12). When diffusion is negligible (with
E, =0), Eq. (4.6) can be simplified, and the modulus of the space-charge field can be

expressed as:

4.7)

[E.|=
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It is obvious from Eq. (4.7) that there is an optimum fringe velocity v, which
makes the modulus of the space-charge field a maximum. v, can be obtained by
differentiating Eq. (4.7) with respect to v. With the condition Eq >>E, (E,, is
typically less than 2 % of E, in BSO), we have:

v = _EMEO
* " Kry, (B3, +E2)

(4.8)

Substituting Eq. (4.8) into Eq. (4.7) we can obtain the modulus of the space-charge
field with a moving grating at optimum fringe velocity. According to Eq. (3.45) the
diffraction efficiency 1 of a phase grating is proportional to the square of the modulus

of the space-charge field. We define the enhancement of the diffraction efficiency, G,
as the ratio of the diffraction efficiency when the grating moves with the optimum
fringe velocity to that when the grating is stationary. Itis given by:

2
_ nat optimum velocity IESC at optimum velocity
G= =

nat zero velocity IESC lat zero velocity
42
E}E}

EX(E2+E,E,,) +E}E?

0 0 Q™M M™Q

(4.9)

E, and E,; are proportional to the fringe spacing [see Eq. (3.12)]. By differentiating
Eq. (4.9) with respect to E,, we can obtain the relationship between E ,E, and E,,

for the maximum enhancement of the diffraction efficiency. = With the further
assumption that E, >> E,,, this relationship can be expressed as:

E; =EEy (4.10)

which corresponds to an optimum fringe spacing:

1

3
A, =£‘E1(£“_) 4.11)
N, \evg
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Eqgs. (4.8), (4.9) and (4.11) present the theoretical expressions for the optimum
fringe velocity, the enhancement of the diffraction efficiency and the optimum fringe
spacing of the moving grating, respectively. These inferences are valid under the
condition of small fringe modulation. We will see, by experimental investigation, that
Eq. (4.11) still gives a quite accurate result for the optimum fringe spacing at large
fringe modulation, however, Egs. (4.8) and (4.9) do not. The optimum fringe velocity
and the enhancement of the diffraction efficiency exhibit strong modulation
dependence at large fringe modulations. Therefore a further analysis is required.

4.3 Numerical Results for a Moving Grating at Large Fringe
Modulations

At small fringe modulations the higher Fourier harmonics of the variables in
Kukhtarev's differential equations are assumed to be much smaller than the first-order
components and can be neglected. At large fringe modulation, the higher harmonics
may be very strong and must be taken into account. In this case the intensity
distribution of the interference pattern in Eq. (4.1) remains unchanged, but Egs. (4.2)-
(4.5) should be rewritten as:

N5 =N, +%§{N3exp[irK(x —vt)]+cc} 4.12)
n=n, +%r§:}{n,exp[irK(x —vt)]+cc} (4.13)
I=1, +%il {7,exp[irK (x - vt)]+cc} (4.14)
E=E, +%i{E,exp[irK(x —vt)]+cc} (4.15)

r=1

where Ny, n,J andE, are the rth Fourier components of these variables.
Obviously, with the above expressions there is no analytic solution to the differential
equations, but Au and Solymar#-6. 4.7 have provided numerical results. The computed
data of the normalized space-charge field divided by the fringe modulation (E_ /m) are
plotted in reference 4.6, where the space-charge field is expressed by w,. Fig. 4.1

shows this figure.
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Fig. 4.1. The variations of E¢./m (w{/m in the figure) with
fringe modulation m and frequency detuning y
in the complex plane (ref. 4.6).

From this figure we can draw some conclusions which are of interest here:

1. The m = 0.01 curve is practically indistinguishable from those for small fringe
modulation, and the m = 0.1 curve is close to the m = 0.01 curve i.e. as the fringe

modulation increases from m=0.01 tom=0.1, the maximum (Esc/m) decreases

slowly. The m=0.3, 0.6 and 0.9 curves show large deviations from the m = 0.01
curve, and the larger the m value is, the bigger the rate of the deviation, i.e. as the

modulation increases further, the maximum (Esc /m) decreases rapidly. As a
consequence, the square power dependence of the diffraction efficiency on the fringe

modulation is no longer valid. On the other hand, (E_ /m) is approximately constant

in the case of a stationary grating. Therefore the variations of the maximum (Esc /m)

value with the fringe modulation indicate that the enhancement of the diffraction
efficiency is nonlinearly dependent on the fringe modulation.
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2. As the fringe modulation increases from m = 0.01, the curves become flatter and
flatter, and the peak value of (E./m) shifts to the right. This indicates that as the

fringe modulation increases the optimum fringe velocity (implied by the parameter y)
increases. When the fringe modulation reaches 0.6 the curve becomes complicated,
implying a more complicated behaviour for the optimum fringe velocity.

Brost49 has provided a more detailed numerical study for the large fringe
modulation case. Figs. 4.2, 4.3 and 4.4 show the numerical results for the modulus of
the space-charge field versus the relative fringe velocity obtained by Brost. The
relative fringe velocity is defined as the ratio of the fringe velocity to the optimum

v . .
), V. here refers in particular to the
v

fringe velocity at small fringe modulation [

opt

case of small fringes modulation. These figures correspond to fringe modulations 0.2,
0.6 and 0.9, respectively. The grating recording condition is assumed such that the
applied electric field is 5kV/cm and the grating spacing is 20pm.

We can see that the curve for m=0.2 (Fig. 4.2) has a single peak at the relative
fringe velocity 1.03, which shows that as the fringe modulation increases the optimum
fringe velocity increases as well. The characteristics of this curve are very similar to
that at small fringe modulation, showing peak enhancement of the space-charge field at

V=V .
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Fig. 4.2. The space-charge field versus the fringe
velocity at m = 0.2 (ref. 4.9).

The curve for m=0.6 (Fig. 4.3) is more complicated. There are now two peaks

Y _1.38, and another is

opt

for the space-charge field. One is at higher fringe velocity,

at lower fringe velocity, Y ~0.2. The higher velocity peak can be regarded as a

Opt
shift of the peak from the curve m=0.2 as expected. The lower velocity peak,
however, has little relation to the curve m=0.2, and is apparently a characteristic of

large fringe modulations.
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Fig. 4.3. The space-charge field versus the fringe
velocity at m = 0.6 (ref. 4.9).

The m=0.9 curve (Fig. 4.4) also has two peaks for the space-charge field, being at

\%

=1.5 and 0.05, respectively. They can be regarded as a high velocity shift and a

Vopt

low velocity shift with respect to the peaks in the m=0.6 curve. However the peak
at high fringe velocity becomes less distinct, implying that the peak associated with
small fringe modulations deteriorates at large modulations.
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Fig. 4.4. The space-charge field versus the fringe
velocity at m = 0.9 (ref. 4.9).

From these Figures we can also calculate the enhancement of the diffraction
efficiency for different fringe modulations, and make a comparison.  They are
G=4.51, 1.37 and 1.23 for the fringe modulations of 0.2, 0.6, and 0.9, respectively.
We can see that as the fringe modulation increases the enhancement of the diffraction
efficiency decreases rapidly exhibiting nonlinear characteristics.
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4.4. Experiments

4.4.1 Experimental Configuration

d DO Aimer ]
A/2 A/2
- | PBS
11 Miror _
D2
To Oscllioscope

Fig. 4.5 The experimental system for simultaneously measuring
the diffraction efficiency and the energy transfer of the
dynamic grating recorded in a BSO crystal.

The experimental system is shown in Fig. 4.5. The BSO crystal had dimensions
10x8x2 mm® The orientation of the crystal with respect to the applied electric
field and the writing beams was arranged as in Fig. 3.2 to obtain the maximum
diffraction efficiency. The argon ion laser was operated at A = 514.5 nm, expanded
and collimated to 15 mm in diameter. The polarizing beam splitter (PBS) was used to
divide the argon laser beam into two beams, whose ratio can be adjusted by rotating

A . o S
the first By plate. By rotating the second % plate the polarization directions of the

beams are kept parallel. A piezomirror was used to obtain a frequency detuning of the
reference beam. The He-Ne laser was used as a reading beam. Detector D1
measured the transmitted intensity of one of the writing beams which corresponds to
the imaginary part of the space-charge field, while D2 measured the diffracted intensity
of the reading beam which corresponds to the modulus of the space-charge field.
Both signals were sent to a digital oscilloscope to simultaneously monitor the
variations in the components of the space-charge field.
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4.4.2 Resonant Effect of a Moving Grating

Fig. 4.6 shows the resonant enhancement of the space-charge field by a moving
grating. The grating recording conditions are A =10 pm (we will see later that this is
near to the optimum fringe spacing), E,=6.25kV/cm, I,=5 mW/cm?, and
m =0.94. The upper trace shows the transmitted argon beam, while the bottom trace
shows the diffracted He-Ne beam. The time base is set to be 1s/division, and the

traces correspond to a single scanning period.

Fig. 4.6 (a) is the case without a moving grating. It is clear that the traces
fluctuate randomly. It is found that this fluctuation is almost inevitable even if in a
quiet environment. Fig. 4.6 (b) is the case with a moving grating at optimum fringe
velocity.  The transmitted Ar* beam decreases and reaches its minimum value
(maximum energy loss) while the diffracted He-Ne beam increases and reaches its
maximum value. It can be seen that the trace of the diffracted beam in (b) is much
higher than that in (a), indicating that enhancement of the diffraction efficiency is
achieved by a moving grating. It also can be seen that the trace of the diffracted beam
in (b) is much more stable, showing that moving the grating has the effect of
suppressing random fluctuations.
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(a) without moving grating

(b) with moving grating at optimum fringe velocity

Fig. 4.6. Temporal responses of the transmitted Ar+ beam
(the upper trace) and the diffracted He-Ne beam

(the bottom trace) with a time scale of 1 s/division.
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(a) without moving grating

Fig. 4.7. Temporal responses of the diffracted He-Ne
beam with a time scale of 500 ms/division.
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To show the resonant enhancement in the diffracted light more clearly, Fig. 4.7
presents the traces of the diffracted signal with a faster time base of the oscilloscope
(500ms/division). (a) is the case without a moving grating and (b) is the case with a

moving grating.

The effect of suppressing random fluctuations by moving the grating could be
explained as follows: Any environmental fluctuations will affect a dynamic grating
and cause a transient energy transfer, resulting in unstable grating diffraction. With

the grating moving at the optimum fringe velocity, a g— phase shift between the grating

and the interference pattern is achieved. Whilst it brings about the highest stationary
energy transfer due to the intensity coupling constant I" in Egs.(3.51) and (3.52)
becoming a maximum, the transient energy transfer is suppressed due to the phase
conversion factor ¥ in Eq. (3.56) becoming zero. Thus a moving grating has the
effect of enhancing the diffraction efficiency as well as eliminating the influence of
environmental fluctuations.

4.4.3 Dependence of the Optimum Fringe Velocity on the Fringe Modulation

The velocity of the moving grating caused by the scanning piezomirror is
determined by the relationship:

3 2xU,,Acos(9,)

" (4.16)

\Y

where U, is the peak amplitude of the sawtooth voltage applied to the piezomirror, K
is the elongation of the stack of the piezo for unity voltage, 3, is the incident angle of

the beam to the piezomirror and t is the scanning period of the sawtooth voltage.

In our investigation, the actual optimum fringe velocity will be compared with the
theoretical calculations. For this purpose, we assume that the optimum fringe velocity

at m = 0.1 is close to that at small fringe modulation, which can be calculated with Eq.
(4.8), and choose the constants in the theoretical formulas, s, N,, N, W, Y and € to

be those given in reference 4.6, i.e. s=2x10~° m*J", N, =10® m®, N, =10® m?,

£=56¢,, L=0.3x107° m*V'sec”, and y =1.6 x10™"" msec”.
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Fig 4.8 shows the dependence of the optimum fringe velocity on the fringe
modulation.  The adopted grating recording conditions are E; =6.25 kV/cm,

I, =25mW/cm?, and A =20 pm.
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Fig. 4.8. The experimental results of the optimum fringe
velocity versus the fringe modulation.

At small fringe modulation (m=0.1), the optimum fringe velocity was
experimentally measured to be 290 * 10 pm/s. According to Eq. (4.8), it should be
262 um/s. Considering that the material parameters vary slightly with different
specimens, this difference is probably not significant.

At large fringe modulations, we can see that as the fringe modulation increases the
optimum fringe velocity increases as well. At a fringe modulation of m =0.2, the
optimum fringe velocity is 1.03 times that at m = 0.1 i.e. small fringe modulation. At
a fringe modulation of m = 0.6, the optimum fringe velocity is 1.39 times. At a fringe
modulation of m=0.9 there are two fringe velocities which yield peaks in the
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diffraction efficiency. One is at a higher velocity, 1.5 times the m=0.1 figure;
another is at a much lower velocity, 0.055 in relative units. These are compared with
the numerical results in Figs. 4.2-4.4, and they are presented in table 4.1. It can be
seen that they are in good agreement except for the lower velocity peak in Fig. 4.3 (0.2
in relative units). This peak was not observed in our experiments.

Table 4.1. Numerical and experimental results of fringe
velocity at peaks of space-charge field.

VIVopPpeak 1 VINopPpeok 2
m Num. Bxp. Num. Exp.
0.2 1.03 1.03 — —
0.6 1.38 1.39 0.2 —
09 1.5 1.6 0.05 0.055

Key: Num. denotes numerical results, Exp. denotes
experimental results.

We are also interested in the situation with a fringe modulation of m=1.
Experiments show that the optimum fringe velocity is very low and well determined to
be only 0.045 in relative units. The optimum fringe velocity drops abruptly from a
high to a low value as the fringe modulation approaches unity. Thus a sudden drop in
the optimum fringe velocity appears.

The variation of the optimum fringe velocity with the fringe modulation in Fig. 4.8
can be summarized as follows: as the fringe modulation increases, the optimum fringe
velocity increases as well; then a sub-optimum fringe velocity (yielding another peak
of the diffraction efficiency) appears at a low fringe velocity; as the fringe modulation
increases further, the optimum and sub-optimum fringe velocities increase and
decrease, respectively; as the fringe modulation approaches unity the peak of the
diffraction efficiency at high velocities disappears, and a sudden drop in the optimum
fringe velocity occurs.
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4.4.4 Nonlinear Enhancement of The Diffraction Efficiency

Fig. 4.9 shows the enhancement of the diffraction efficiency by a moving grating, as
a function of the ratio of intensities of the writing beams. The adopted grating
recording conditions are I, =5mW/cm?, and E,=6.25kV/cm. Three curves
correspond to fringe spacings of 30 pm, 20 m and 10 wm respectively. According to
Eq. (4.11), the optimum fringe spacing should be A=9.46 um. Therefore we
expected that A =10 pm would yield the highest enhancement.
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Fig. 4.9. The experimental results of the enhancement
of the diffraction efficiency at optimum fringe
velocity versus the beam ratio.

We can see from Fig. 4.9 that when the beam ratio is 1, corresponding to a fringe
modulation of 1, a 1.6, 2.1 and 2.5 times enhancement of the diffraction efficiency for
different fringe spacings is achieved. As the beam ratio increases the enhancement of
the diffraction efficiency increases rapidly at the initial stage, and then it increases
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smoothly. This phenomenon is qualitatively predicted by Au and Solymar's numerical
results.

In comparison with Brost's numerical results, choosing the A =20 pm
experimental curve for coincidence with the numerical results, we can see that when
the beam ratio is 2.5, corresponding to a fringe modulation of 0.9, the enhancement of
the diffraction efficiency is 2.2, which is higher than that given in Fig. 4.4. When the
beam ratio is 9, corresponding to a fringe modulation of 0.6, the enhancement of the
diffraction efficiency is 3.4, which is also higher than that given in Fig. 4.3. When the
beam ratio is 98, corresponding to a fringe modulation of 0.2, the enhancement of the
diffraction efficiency is 4.0, which is comparable with that given in Fig. 4.2. Table 4.2
presents this comparison.

Table 4.2. Comparison in the enhancement
of the diffraction efficiency G.

m 0.2 0.6 0.9
e Num, 451 1.37 1.23
Bxp. 40 34 22

Key: Num. denotes numerical results, Exp.
denotes experimental results.

Fig. 4.9 also shows that the enhancement of the diffraction efficiency varies with
the grating spacing. The A = 10 um curve gives the highest enhancement of the
diffraction efficiency, as expected. In fact, by measuring the enhancement of the
diffraction efficiency we found the optimum fringe spacing to be about 9.4 um, in
good agreement with Eq. (4.11).

4.4.5 The Influence on the Absolute Diffraction Efficiency

Fig. 4.10 shows the variation of the absolute diffraction efficiency with the fringe
modulation. The "Normal" curve is obtained with a stationary grating. We can see
that the diffraction efficiency varies approximately as the square of the fringe
modulation, which gives a higher quality reconstruction of the recorded image. The
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"M.G." curve is obtained with moving grating at optimum fringe velocity. It seems to
be approximately linear within the fringe modulation range 0.3 to 0.9.
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Fig. 4.10. The experimental results of the diffraction efficiency
versus the fringe modulation with (M.G.) and without
(Normal) moving grating.

Because the intensity distribution of an image on the holographic plane is not
uniform and the diffraction efficiency does not vary as the square of the fringe
modulation with a moving grating, we can only obtain a reconstructed image which is
somewhat distorted from the original image. The distortion becomes more serious in
the case of Fourier transform holography, because the Fourier power spectrum of most
images varies severely with spatial frequency, and the difference could be several

orders in intensity.
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4.4.6 The Dependence of the Optimum Fringe Velocity on the Applied Field

From small fringe modulation theory, the optimum fringe velocity is inversely
proportional to the applied electric field when E, >>E,, [see Eq. (4.8)]. Fig. 4.11

presents the experimental curve of the optimum velocity versus the inverse applied
electric field at large fringe modulation.  The adopted recording conditions are

A =20 um, I, =5mW/cm?, and m =0.94. The formula of the curve is given by:

T /
- //
10 — /c
_ /
/
- /
] £
—~ /
) . /
E g -
4 /
R y,
P _
5 1 4
S /
D 1 /
> g5 _ /,/
E R
=
E 1 /
a y 4
(@) i /
4 — /‘/
i /
. //
- /
2 lTlﬁillll—rlllll'Il—ﬁl
1 2 3 4 5

(Electric Field)™" (cm/10 kV)

Fig. 4.11. The experimental results of the optimum fringe
velocity versus the applied electric field.

Vo, =—1.33+2.58 (—El—) @.17)

0
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where v,

is in L m/s unit and the inverse electric field Ei isin cm/10 kV unit. We

can see that the linear relationship between the optimum fringe velocity and the inverse
applied electric field is still valid at large fringe modulations.
the optimum fringe velocity is very low in this curve, because the fringe modulation is

very high.

It is not surprising that

4.4.7 The Dependence of the Optimum Fringe Velocity on the Writing Beam
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Fig. 4.12. The experimental results of the optimum fringe
velocity versus the total beam intensity.

Substituting the expression for t,, in Eq. (3.12) into Eq. (4.8) we can see that the

optimum fringe velocity is proportional to the total incident beam intensity at small
Fig. 4.12 presents the experimental curve of the optimum fringe

fringe modulation.

velocity versus the writing beam intensity at large fringe modulation.
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conditions are A =20 um, E, =6.25 kV/cm and m=0.94. The formula of the

curve is given by:
Vo =0.358+0.464 1 4.17)

where v, is again in pm/s unit and the total writing beam intensity I is in mW/cm?

unit. The linear relationship between the optimum fringe velocity and the total writing
beam intensity would appear to be still valid at large fringe modulations.

4.5 Conclusions

From the above experimental results, we can draw a number of conclusions
concerning moving gratings at large fringe modulations:

1. The resonance effect of moving gratings in BSO has the effect of suppressing the
random fluctuations of the diffracted beam caused by the transient energy transfer
between writing beams. This could be explained by the phase conversion factor y

. T . .
becoming zero. When a P} phase shift between the interference pattern and the

dynamic grating takes place, ¥ has zero value and the transient energy transfer ceases.

2. The optimum fringe velocity not only depends on the applied voltage, fringe
spacing and total incident light intensity, which is predicted by small fringe modulation
theory, but also depends on the fringe modulation itself. As the fringe modulation
increases the optimum fringe velocity increases as well, and then a second peak
appears at low fringe velocity. As the fringe modulation increases further the first
peak deteriorates and the second peak shifts towards lower fringe velocity.

3. For a particular applied voltage, the enhancement of the diffraction efficiency is
fringe-spacing dependent. There is an optimum fringe spacing at which the maximum
enhancement can be obtained. The optimum fringe spacing is predicted by the small
fringe modulation theory.

4. The enhancement of the diffraction efficiency is also fringe modulation dependent.
This causes the reconstructed image to be "distorted". To create a relatively uniform
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fringe modulation so as to achieve a less "distorted" reconstruction, Fresnel transforms
are preferable in the case of holography with a moving grating.

5. The linear dependence of the optimum fringe velocity on the inverse applied
electric field and on the total writing beam intensity based on small fringe modulation
theory is still valid at large fringe modulations.
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Chapter 5. The Effects of Optical Bias on Moving
Gratings in BSO at Large Fringe modulation

We have seen that holographic recording in BSO can be enhanced by the moving
grating technique. However, the dependence of the optimum fringe velocity on the
fringe modulation limits its applications. In fact, we can normally only use a fixed
fringe velocity which would be suitable only for a certain range of fringe modulations.
The difficulty occurs at fringe modulations close to unity where the optimum fringe
velocity decreases two orders of magnitude with respect to that at smaller fringe
modulations. With the scanning velocity appropriate to smaller fringe modulations,
the diffraction efficiency of the gratings with fringe modulations close to unity drops
rapidly. There are two strategies to solve this problem: 1. adjusting the recording
beam ratios to avoid fringe modulations close to unity; 2. applying optical bias, e.g.
additional uniform white-light illumination, to reduce the actual fringe modulations.

Optical bias has been used to enhance the transient formation of gratings in BSO3-1,
and found applications in novelty filtering3-4 and intensity correlation3-2. It has been
demonstrated that the optical bias has two effects on the transient grating formation:
1. the additional light intensity reduces the fringe modulation, and so reduces the
diffraction efficiency at steady state; 2. as the diffraction efficiency at steady state
decreases, the ratio of the transient peak to the steady value increases, i.e. transient
enhancement is achieved. Correspondingly, we expect that while optical bias
overcomes the difficulty of the sudden decrease in the optimum fringe velocity when
the fringe modulation is close to unity, it will enhance the diffraction efficiency with a

moving grating compared to that with a stationary grating.

In this chapter we presents several experimental results concerning applying optical
bias to moving gratings. It is not only a development of the moving grating technique
in the way of offering effective control over the optimum fringe velocity, but also
reveals a further insight into the fundamental nature of the grating formation in

photorefractive materials.
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5.1. Analysis

With white-light illumination, the variables of light intensity I and the resulting
photoelectron density n in Eqgs. (4.1) and (4.3), which are valid at small fringe
modulations, should contain a term corresponding to the optical bias, and should be
expressed as:

I=1,, +I, +%{Iomexp[iK(x —vt)]+ cc) 5.1

n=ng, +n, + % {mexp[iK (x—vt)] +cc} (5.2)

where I, is the intensity of optical bias and n,, is the number of the photoelectrons

generated by optical bias. It is clear that other variables, N, J and E in Egs. (4.2),
(4.4) and (4.5) are not affected by optical bias, and the expressions would remain
unchanged.

Substituting Egs. (4.2), (4.4), (4.5) (5.1) and (5.2) into Kukhtarev's differential
equations and considering the stationary case only, we will obtain a solution for the
space-charge field as:

E.|= m'E, : (5.3)
E, P
(KV‘CM'———O] +(1+KV’CM' 0)
EQ M
12
2
ml= (IIIZ) = (5.4)
I, +1, (1+k)
T 1 e"YRI\IA TM (55)

M eI, +1, )N, (1+K)

where k=1, /1, , and m= 2(1112)1/2 /I0 as defined in Eq. (3.6). For convenience we

define the fringe modulation as the parameter m. Obviously the parameter m' is the



actual fringe modulation, and k is regarded as the intensity of the optical bias in
“relative units". Correspondingly, the optimum fringe velocity should be rewritten as:

v = _EMEO
™ Ky (Ey+Ej)
_ —(1+K)E\E,
Krt,,(E% +E2)

(5.6)

which contains the optical bias term in the way of a factor (1+k). This can be
regarded as the influence of the total intensity of the writing beams on the optimum
fringe velocity as described in Eq. (4.8).

Substituting Eq.(5.6) into Eq.(5.3) we can obtain an expression for the
enhancement of the diffraction efficiency to be obtained with a moving grating:

42
G — natopﬁmumve]ocity — EO EQ2 (5.7)
natzemvelocity Eg(Eg + EQEM) + ELE%
which contains no reference to any terms derived from the optical bias. Obviously,
Egs.(5.6) and (5.7) are only valid at small fringe modulation.

For large fringe modulations, as we mentioned in chapter 4, higher harmonics of
the variables should be considered and only numerical results can be obtained. The
influence of the optical bias at large fringe modulations is thus referred to section 4.3,
where the fringe modulation plays a significant role on the optimum fringe velocity and

on the enhancement of the diffraction efficiency.
5.2. Experimental Configuration

The experimental set-up is shown in Fig. 5.1, which is the same as Fig. 4.5 except
for a white-light (W.L.) source being used. The recording conditions of the grating

for the following measurements are: E;=6.25 kV/cm, I, =25 mW/cm? and
A =20 pm.
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Fig. 5.1 The experimental system used for investigating the
effects of optical bias on moving gratings.

Light intensity is usually measured with a power meter. In this experiment,
however, such a measurement is invalid. There are two matters which should be
taken into account: first, the result of the white-light illamination is the creation of
additional photoelectrons, second the white-light source is a multi-spectrum source
but the crystal response is spectrum dependent. Therefore we calibrate the white-light
intensity by means of the measurement of the photocurrent induced, and scale it in
units relative to the photocurrent induced by the writing laser beams, i.e. the white-
light intensity is quoted in "relative units". More details about the scaling of the
white-light intensity and the measurement of the resulting photocurrent are mentioned

in reference 5.3.
5.3. Experimental Results

The experiments concentrated on the following aspects: the influence of the optical
bias on the optimum fringe velocity, on the absolute diffraction efficiency, and on the
enhancement of the diffraction efficiency.
5.3.1. The Influence of Optical Bias on the Optimum Fringe Velocity

The main purpose of the optical bias is to overcome the difficulty of the sudden

drop in the optimum fringe velocity. Fig. 5.2 presents the experimental results of the
optimum fringe velocity versus the white-light intensity. Two curves correspond to
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the fringe modulation m=0.9 and m=1, respectively. @ We chose m=0.9 and
m =1, because the sudden drop in the optimum fringe velocity occurs around those
values.
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Fig. 5.2. The experimental results of the optimum fringe
velocity versus the white-light intensity.

We can see from Fig. 5.2 that for the m=0.9 curve the optimum fringe velocity
jumps to a high value (459pum/s) when the white-light intensity increases to 40 % in
relative units, and for the m=1 curve it jumps to a high value when the white-light
intensity increases to 56 % in relative units. This implies that adopting white-light
illumination as a bias with an intensity of 56 % in relative units, we will be able to
eliminate the sudden drop in the optimum fringe velocity.

Fig. 5.3 presents the experimental results for the optimum fringe velocity versus the

fringe modulation with ("With W.L." curve) and without ("No W.L." curve) white-
light illumination. The white-light intensity is set to be 56 % in relative units.
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Fig. 5.3. The experimental resuits of the optimum fringe
velocity versus the fringe modulation.

It can be seen from Fig. 5.3 that there is a sudden drop in the optimum fringe
velocity at m=0.9 in the case where there is no white-light illumination. This is the
nonlinear effect of a moving grating at large fringe modulation. Due to the drop in the
optimum fringe velocity, we cannot adopt a fixed fringe velocity to satisfactorily
enhance the diffraction efficiency of gratings with different fringe modulations. In the
case with white-light illumination, the sudden drop in the optimum fringe velocity is
greatly reduced. This is because the optical bias reduces the actual fringe modulation
faccording to Eq. (5.4), the actual fringe modulation for m =1 point is about 0.64 with
optical bias]. Therefore an average fringe velocity of 440pum/s in this case, can be
used to satisfactorily enhance the diffraction efficiency of all gratings of different

spatial periods.
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5.3.2. The Influence of Optical Bias on The Absolute Diffraction Efficiency

We expect that as the white-light intensity increases the absolute diffraction
efficiency decreases monotonically for both a moving grating and a stationary grating
because the actual fringe modulation, which determines the diffraction efficiency in
both cases, is reduced by the optical bias. However, there is something unexpected in
our experiments. Fig. 5.4 presents the experimental results of the absolute diffraction
efficiency versus white-light intensity. "Normal" denotes a stationary grating, while
"M.G." denotes a moving grating. The fringe modulation is chosen to be 0.7. We
will see that there is no obvious difference in the variation behaviours of the curves

with different fringe modulations.
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Fig. 5.4. The experimental results of the diffraction
efficiency versus the white-light intensity.
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We can see that with a stationary grating, the diffraction efficiency drops
monotonically and rapidly as the white-light intensity increases. The situation is more
complicated with a moving grating. In lower optical bias range, as the white-light
intensity increases the diffraction efficiency increases as well, until it reaches its peak
value at a white-light intensity of 40 % in relative units. This is not expected by
consideration of its influence on the actual fringe modulation.  This phenomenon
implies that with suitable optical bias and moving gratings the signal-to-noise ratio can
be further improved. In the higher optical bias range, as the white-light intensity
increases the diffraction efficiency decreases monotonically. However the decrease is
much less than that with a stationary grating. For instance when the white-light
intensity is 200 % in relative units, the diffraction efficiency drops 67 % compared to
that without white-light illumination in the case of stationary grating, while it only
drops 24 % in the case of a moving grating.

To see whether the characteristics of the curve in Fig. 5.4 are more general, Fig.
5.5 presents the experimental results of the absolute diffraction efficiency versus the
white-light intensity with a moving grating for different fringe modulations. Four
curves represent the fringe modulation of 0.3, 0.5, 0.7 and 0.9, respectively.
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Fig. 5.5. The experimental results of the diffraction
efficiency versus the white light intensity
for different fringe modulations.

We can see that their variations are very similar: as the white-light intensity
increases from zero, the diffraction efficiency increases until it reaches its peak value,
and then as the white-light intensity increases further the diffraction efficiency
decreases monotonically. It is a common characteristic of the four curves that a peak
value appears at a certain non-zero white-light intensity.  This phenomenon may
reveal some further details of the moving grating formation in photorefractive
materials.
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Fig. 5.6 presents the experimental results of the diffraction efficiency versus the
fringe modulation with and without white-light illumination. These curves provide a
general idea of the reconstruction of a recorded object. "Normal", "M.G.", and
"M.G.+W.L." denote the stationary grating, the moving grating, and the moving
grating with white-light illumination, respectively. The white-light intensity is again
chosen to be 56 % in relative units to overcome the sudden drop in the optimum fringe

velocity.
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Fig. 5.6. The experimental results of the diffraction
efficiency versus fringe modulation

The variation of the "Normal" curve approximately obeys the square power law i.e.
the diffraction efficiency is proportional to the square of the fringe modulation when
the fringe modulation is Iess than 0.63-8. The square power law enable us to adopt a
linear holographic recording where the intensity of the diffraction is proportional to the
intensity of the recorded image, and a linear reconstruction could be achieved. The
curve "M.G.+W.L." seems to be a straight line. The linear variation of the diffraction
efficiency as the fringe modulation would be expected to yield a reconstruction of the
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recorded image according to a square root power, which is a distorted reconstruction.
However in some particular applications this feature would be an advantage. For
instance if we want to manifest the amplitude, rather than the intensity, distribution of
an image the reconstruction of the square root power of the recorded image will give
the amplitude distribution of the original image directly.

It can also be seen that the "M.G.+W.L." curve is beyond the "Normal" and the
"M.G." curves for a wide range of the fringe modulation, i.e the highest diffraction
efficiency is achieved by adopting additional white-light illumination to a moving
grating.  This implies that while a suitable optical bias, e.g. 56 % in this case,
eliminates the sudden drop in the optimum fringe velocity, it also further enhances the
diffraction efficiency.

5.3.3. The Influence of Optical Bias on Enhancement of The Diffraction
Efficiency

Fig. 5.4 has shown that the decrease in absolute diffraction efficiency due to white-
light illumination with a moving grating is much smaller than that with a stationary
grating. Therefore the application of optical bias will increase the enhancement of the
diffraction efficiency.  Fig. 5.7 presents the experimental results.  Three curves
correspond to the fringe modulations m =0.8, m =0.6, and m = 0.4, respectively.
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Fig. 5.7. The experimental results of the enhancement of
the diffraction efficiency versus the optical bias.

We can see that as the white-light intensity increases, the enhancement of the
diffraction efficiency increases as well. This can be explained by the nonlinearity of
moving gratings at large fringe modulations: the optical bias decreases the actual
fringe modulation, and the smaller the fringe modulation is, the higher the
enhancement of the diffraction efficiency. In the adopted white-light intensity range
the three curves can be fit by polynomials as:

G=5.07+3.17 x+0.3 x* (5.8)
G=3.04+2.08 x+0.1 x* (5.9)
G=1.89+1.81x+0.1x> (5.10)

for m=0.4, m=0.6 and m=0.8 respectively, where x denotes the white-light
intensity in relative unit. For a comparison, if we choose the white-light intensity to
be 200 % in relative units the enhancements are 5.5, 7.6 and 12.6 for m =0.8,
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m=0.6 and m =0.4, respectively. They are 1.9, 3.0 and 5.1 in the case without a
white-light illumination.

5.4 Conclusions

From the above experimental results we can draw some conclusions about applying
optical bias to a moving grating:

1. With a suitable white-light intensity, the sudden drop in the optimum fringe velocity
at fringe modulations close to unity can be eliminated, which is beneficial to the
holographic reconstruction in the case of gratings with different fringe modulations.

2. The influence of the optical bias on the absolute diffraction efficiency is
complicated: as the white-light intensity increases from zero, the diffraction efficiency
increases as well until it reaches its maximum value at a specific point. In this range,
the diffraction efficiency is higher than that without white-light illumination.  This
cannot be explained by simply considering the influence of actual fringe modulation on
the diffraction efficiency. As the white-light intensity increases further, the diffraction
efficiency decreases. However the decrease is not as serious as compared to the case
of a stationary grating.

3. With a suitable white light illumination, the diffraction efficiency seems linearly
dependent on the fringe modulation which causes a distorted reconstruction.
However, it may find applications for some particular cases.

4. By applying optical bias, we can increase the ratio of the diffraction efficiency with
a moving grating to that with a stationary grating.
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Chapter 6. Development of a Real-Time Intensity
Correlator using BSO

6.1. Introduction

Since Vander Lugt holographically fabricated the matched spatial filter in 196496-1,
coherent optical correlators have dominated optical pattern recognition.  Coherent
correlators deal with a complex signal, where the processing of both phase and
amplitude information is significant in many cases. However, most actual objects are
usually either incoherently illuminated or self-luminous, and an incoherent optical
system is therefore more suitable for actual object inputs.  The incoherent optical
system has the obvious advantage of no coherent noise and so an output of reasonable
quality can be expected. Furthermore, the restrictions on the alignment accuracy of
the incoherent system are relaxed, which is beneficial to a real-time processing system,
perhaps in an industrial context.

An incoherent correlator which uses a Fourier transform filter was first proposed by
Lohmann and Werlich®2,  Then Mu et al. alternatively used a Fresnel transform
filter6-3. From a sampling point of view, a Fresnel transform filter performs as well as
a Fourier transform filter. However, in our case a Fresnel transform is preferable
because it produces a more uniform light distribution which yields a more effective
diffraction area, reduces the demands on the dynamic range of the recording material,
and alleviates the distortion when the moving grating technique is used.  Recent
developments of intensity correlation include rotation invariant correlation6-4> 65, the
use of a laser diode array as an input device®-6 and the use of a BSO as the real-time
holographic recording material3-3.

Although reference 3.5 has presented the results of real-time intensity correlation
using BSO, there are still two problems which need to be considered.  First, the
discrimination is inherently low. For example, if we consider the correlation of a one-
dimensional rectangular function of width "1", in the coherent case the full width at
half maximum intensity of the auto-correlation peak, which is a measure of the
discrimination, is approximately 0.6, whereas it is 1 in the case of intensity correlation.
Fig. 6.1 shows the coherent and the intensity correlation of one-dimensional
rectangular function.
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In Fig. 6.1 the rectangular function is defined as:
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and the triangle function is defined as:
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where "a" is a constant. We can see from Fig. 6.1 that the intensity distribution of the

coherent correlation I is given by:

I, = i?(x) 6.3)

N

and the half maximum intensity points can be deduced to be at x = i(l_T)’ which

has an approximately full width of 0.6. On the other hand, the intensity distribution of
the intensity correlation I, is given by:

I = tri(x) (6.4)

1
and the half maximum intensity points can be deduced to be at x =i5, which has a

full width of 1. 'We can see that the full width of the half maximum intensity of the
coherent auto-correlation peak is 0.6 that of the intensity auto-correlation peak.

Second, the diffracted light fluctuates due to the random energy transfer between
writing beams with a dynamic grating. The instability of the output intensity causes
difficulty in setting the threshold.

This chapter presents further developments on real-time intensity correlators using
BSO relating to the problems mentioned above. Two topics are involved: real-time
edge-enhanced intensity correlation and real-time intensity correlation enhanced by a

moving grating,.
6.2. Basic Intensity Correlator using a Fresnel Transform Filter

Chapter 2 described an optical system performing a Fresnel transform where the
input plane is at the front focal plane of the transform lens and the transform plane is
arbitrarily selected (Fig. 2.3). For a more general case the distances between the input
plane and the transform lens, and between the transform lens and the transform plane
both can be selected arbitrarily. The Fresnel transform of a signal is a mixture of the
properties of the space and frequency distributions of the signal. With a different
selection of the distances between the optical elements, the Fresnel spectrum will be
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totally different. This offers flexibility in controlling the size and the uniformity of the
Fresnel spectrum.

Chapter 2 also described an optical correlator using a Fresnel transform filter where
two transform lenses were used (Fig. 2.4). If a convergent reference beam is used to
record the spatial filter, the optical correlator can be a more compact system with only
a single transform lens. The analysis below is based on the above considerations.

6.2.1. Fabrication of the Fresnel Transform Filter

Fig. 6.2 is the configuration of the holographic recording system used for the
fabrication of the Fresnel transform filter. P1 is the input plane. L2 is the transform
lens whose focal length is f. P2 is the Fresnel plane where a photosensitive plate is
placed to record the filter. A convergent reference beam is focused to the point B in
plane P3. The distances between P1 and L2, between L2 and P2, and between P2 and
P3 are dy, dy, and d respectively.

B.E. B.S.

(] m

Fig. 6.2. The optical system for fabricating a Fresnel
transform filter.

Suppose the input is expressed as f(x,y). With in the Fresnel approximation the

complex light distribution in the plane P2 can be written as:
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o(a.B) = [[ [ £(x, y)exp{-;j—[(&—x)z +(n—y)2]}exp[‘7if-(&2 +n2)]

—oa —o60

CXI{;—;[(Q &) +(B -n)z]}dxdydédn

= IIf(X, Y)CXP[;ZH (i_f—dl)((xz +[32):lexp[7j;; (f _fd2 )(x2 + yz)J

exr{ _}z: (xo+ yB)]dxdy

6.5)

which is a Fourier transform of the input with a quadratic phase factor, where

f; =(df+d,f—d,d,)/f is the effective focal length as compared with f in the
standard Fourier transform [see Eqs. (2.8) and (2.9)], and (£,m) and (ot,B) are the

coordinate systems of L2 and P2, respectively. The convergent reference beam can be

written as:

R(a,B) = exp{i—g[(a— ho)2 + [32]} (6.6)

where h, is the distance between the convergent point B and the origin of plane P3.
The intensity distribution due to the interference between the object and the reference

beams is given by:
2
I(,B) =|O(cx, B) +R(0x, B)| (6.7)
After exposure and development the Fresnel transform filter is fabricated. If the
exposure takes place at the linear region of the T-E curve of the photosensitive
plated7, the amplitude transmittance of the recorded filter will be proportional to the

light intensity distribution, which has three diffraction terms. The term relating to the

correlation output is given by:
t(ce,8) = 0" (e, B)R(c.,B) (6.8)
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6.2.2. Optical Intensity Correlation using a Fresnel Transform Filter

The optical intensity correlator using a Fresnel transform filter is shown in Fig. 6.3
where a rotating diffuser D is used to transform the coherent laser beam into time-
averaged spatially incoherent. L is the transform lens. P1, P2 and P3 are the input
plane, filter plane and output plane, respectively. We assume that the focal length of
L, and the distances between P1 and L, between L and P2, and between P2 and P3 are
f, dy, dy, and d, respectively, as in the recording system, to ensure that the Fresnel
spectrum of the input has the same scale as the fabricated filter.

D
PN L FTF
B.E. Camera
He-Ne H O ” D_
P1 P2 P3
® | d, } d |
Monitor

Fig. 6.3. The optical intensity correlator using a Fresnel
transform filter.

To calculate the impulse response of the optical system we suppose an input
impulse 8(x—x,, y—y,) being at PI. The complex light distribution at P2 induced

by the input impulse is given by the Fresnel integration:
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E(a,B) = j}exp{;—c’fl[(a—xo)z+(n—yo)2]}exp[‘7i;“(&2+n2)]

ex i—n[(a—§)2+(ﬁ—n)z]}d&dn

Ad,
1 f—d i f—-d
-l (Yo 48 S5 o)
_‘2
XF{ }\,lfc: (xoa + YOB)J

(6.9)

This light field is then modified by the function of Eq. (6.8), and the complex light
distribution in P3, which is the impulse response, is given by:

h(x',¥'s xo.50) = [[ Ecs ﬁ)t(a,ﬁ)eXp{%[(x' o) +(y' —B)z]}dadB (6.10)

where (x',y') is the coordinate system of P3. Substituting Egs. (6.5), (6.6), (6.8) and
(6.9) into Eq. (6.10), and completing the integration, we get the impulse response of
the optical system as:

h(x',y'; x,5) =C(x',¥'; x,y)f " (x +ax' —ah,,y +ay') (6.11)
where a=f,;/d is a scale factor, and C(x',y’; X,y) is a complex constant. The

intensity impulse response is given by the square of the modulus of the impulse
response, yielding:

hy(x',y's x,y) =|f(x+ax —ah,,y +ay')| (6.12)
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Suppose an optical signal with intensity distribution |f' (x, y)l2 is at P1, the output

intensity at P3, according to the optical linear system theory, is given by the

integration:

1¢y) = [l oo y)[fe e+ ax -ahg,y+ay) axdy (6.13)

which is the intensity correlation of the input signal with the reference signal.

The Fresnel transform possesses no shift invariance (see chapter 2). A shift in the
input signal causes not only an additional phase factor but also a displacement in its
Fresnel spectrum. Thus with coherent illumination, the Fresnel spectrum of a shifted
input cannot overlap with the filter area, and the output pattern is therefore input
position dependent. With spatially incoherent illumination, the situation is different.
In this case the light distribution of a shifted input at the filter plane still covers the
filter, therefore the position of the input signal has no influence in the output pattern
except for a corresponding displacement.

6.3 Real-Time Intensity Correlator using BSO

The real-time intensity correlator using BSO is shown in Fig. 6.4. In the writing
part, the collimated argon-ion laser beam is split into two beams; one beam is used to
illuminate a transparency, input 1, and the other acts as the reference beam. L1 forms
the Fresnel transform of input 1 onto the crystal. The focal length of L1 is f, and the
distances between input 1 and L1, and between L1 and the crystal are d, and d,’,

respectively. In the reading part, a He-Ne laser is used to illuminate the rotating
diffuser D by which an incoherent light source is obtained. Input 2 is the reference
object, and L2 is the transform lens. The focal length of L.2 is f', and the distances
between input 2 and L2, and between L2 and the crystal are d, and d, ', respectively.
The reconstructed image is detected via a video camera positioned at the back focal
plane of the transform lens L3. The focal length of L3 is f". An interference filter IF
and a polaroid P were used to suppress the background noise.
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Fig. 6.4 The experimental configuration of the real-time
intensity correlator using a BSO crystal.

Again suppose that input 1 is expressed as f(x,y), the complex light distribution at
the crystal plane can be expressed, referring to Eq. (6.5), as:

mmm=HHKWa%kﬁ f;%yw+wﬂ

iﬂl f - dg| )( 2 2 ] [ —iZTE ]
ex x*+y?) lexp (xau+yB) |dxdy
{7\'5141.‘6“ ( f ) 7\’514fcﬂ'

where f =(dgf+dg' f—dgdg')/f, (x,v), (€,m) and (o, B) are the coordinate systems

(6.14)

of the planes of input 1, the lens L1 and the crystal, respectively, and A, is the
wavelength of the writing argon laser. The reference beam is a plane wave and can be
described by:

R(c,B) = Roexp(“}:z“ ocsinﬂ(,] (6.15)

514
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where O, is the external angle that the reference beam makes with the normal to the

crystal plane. Assuming that the object and reference beams are of parallel
polarization, the intensity pattern in the crystal plane will be given by:

1(er,B) =|O(ct, B) + R0, B)° (6.16)

This light distribution forms a space-charge field which is proportional to the
inhomogeneous light illumination [see Eq. (3.14) where the space-charge field E_ is

proportional to the fringe modulation]. Considering only the term that is associated
with the correlation output of the system, the space-charge field can be expressed as:

E,. (0, B) e O(c, B)R (et B) (6.17)
The photo-induced space-charge field modulates the refractive index of the crystal via
the linear electro-optic effect. The change in the refractive index is given by [see Eq.
(3.23)]:

An(o,B) =njr, E_ (o, B) (6.18)

which yields a phase modulation:

271

o(c,B) = A TAn(a,B) (6.19)

633

where A, is the wavelength of the readout He-Ne laser, and T is the thickness of the

crystal. The amplitude transmittance of the crystal is then given by:

t(ct,B) = exp[ip(ct,B)]

(6.20)
~1+iy0(a, B)R" (01, B)

27

where y = Tn)r, is a constant. The final expression in Eq. (6.20) is valid for

633

small phase modulation, which is true for the hologram recorded in BSO.
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To calculate the intensity impulse response of the optical system, we suppose that
an impulse S(X—xo,y—yo) is at the plane of input 2. The induced complex light

distribution at the crystal plane, referring to Eq (6.9), can be expressed as:

e G CRUTI I P O G

7\' 633 fcff ' f K 633 feff '

exp{ —i2n (XOOC + YOB)II

)
}\’633 feft'

(6.21)

where f..'=(d f'+d_'f' —d,d,‘)/f '. To ensure that the Fresnel transforms are formed
at the crystal at the appropriate scales, d,, d,' and f' were all chosen to accommodate

the change in wavelength, i.e.

)14 Oy po o4y (6.22)

rT633 5 T 633 £ 633

This light field is filtered by the recorded hologram, and the complex light distribution
at the output plane (x',y') will be given by the Fourier transform:

—i27r

h(x',y'%0¥,) = [[ B(o, Bt (01,B) exp[;,L

(ox' +By')jldad[3 (6.23)

633fll
The conjugate transmission function, t*(c,B), is encountered by this beam because it is
counter-propagating to the writing beams. Substituting Eqgs. (6.20) and (6.21) into

Eq. (6.23) and performing the integration we can obtain the impulse response of the

system as:
h(x',y':%,,¥,) = C(X',¥'5X,, ¥, )f " (x, +ax' +£ ¢sind,, y, +ay') (6.24)

where a=f_'/f" is the scale factor. We can see that the scale of the impulse

response can be changed by choosing different values of d_, d.', f' and f". If they
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are chosen such that f.;'=f"", unity magnification can be obtained. ~With a further

assumption that f'' = %f , the impulse response function can be simplified as:

h(x',y'3%0,¥0) = C(X', ' 5%, Yo ) (%o + X' +fsin 0y, y, +') (6.25)

The intensity impulse response function is then given by:
hy(x',y' 5%, y) =[f(x+X +fsin O,y +y')[ (6.26)

If an optical signal with an intensity distribution of |f’ (x, y)l2 is input 2, the intensity

distribution at the output plane will be given by the integration:

I(x',y') = fﬂf‘ (x, y)|2|f(x +x' +fsin ¥,y + y')]zdxdy (6.27)

which is recognized as the intensity correlation.
6.4 Real-Time Edge-Enhanced Intensity Correlation with BSO

To improve the discrimination of the intensity correlator, the edge-enhancement
technique can be adopted. Especially in a correlator using BSO, the edge-
enhancement can be performed in real-time by nonlinear holographic recordings.
Coherent edge enhancement using BSO has been previously reported by Huignard and
Herriau68, By reversing the conventional object-to-reference beam ratio (O/R)
during holographic recording (i.e. making the object beam intensity much greater than
the reference beam intensity), an edge-enhanced image was obtained. This
phenomenon has been analysed by Feinberg6-%. Connors et al. have applied coherent
edge enhancement to optical correlation using four-wave mixing architecture in
photorefractive materials3-2.  The results of references 3.2, 6.8 and 6.9 can be
extended to an incoherent system. By reversing the object-to-reference beam ratio,
the real-time edge-enhancement operation as well as the intensity correlation itself can
be achieved using BSO.
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6.4.1. Incoherent Edge-Enhancement using a BSO

Suppose that input 1 in Fig. 6.4 is expressed as f(x,y). The interference pattern
between the Fresnel transform of f(x,y) and the uniform reference beam will generate a
periodic array of refractive index grating planes within the volume of the crystal. The
modulation depth of this volume grating, which directly determines the diffracted beam
intensity, is described by [see Eq. (3.6)]:

__ 2|0 B[R B)
|0, B)[" +|R(e, B)[

m(a, B) (6.28)

where O(a.,) and R(o,B) are the object (Fresnel spectrum) and the reference beams

at the crystal plane, respectively.

In the case of conventional holographic conditions (O/R ~ 1/2) it is clear that in all
regions of the crystal IR(a, [3)|>|O(a, B)l, and so a linear recording of the object is

possible. Under these conditions, the intensity impulse response of the optical system
is given by Eq. (6.26)

In the case of nonlinear recording, on the other hand (i.e. with the reversed object-
to-reference beam ratio, O/R >>1), at the bright and dark regions of the Fresnel

spectrum, |O(oc,[3)| >> [R(oc, [3)] and IO(a, B)l << 'R(OL, B)[, respectively. Thus within
these regions m(ct, ) is very small. It is evident that m(a,B) takes its maximum value
of unity only in the regions where the intensity of the Fresnel spectrum is equal to that
of the reference beam. There is a direct intensity relationship between the Fresnel
spectrum and the input: the high intensity regions of the Fresnel spectrum correspond
directly to the transmissive regions of the input transparency.  Therefore, the
maximum modulation of the grating will occur at the regions corresponding to the
transition between the bright and dark portions of the input object; i.e. at the edges of
the object.  Thus, with nonlinear holographic recording in the BSO crystal, the
intensity impulse response of the optical system should be modified as:

h,(x',y';x,y) =|fed(x' +x +fsinQ,,y' -i-y)l2 (6.29)
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where the subscript "ed" denotes the edge-enhanced signal.

If input 2 is a pinhole at the origin, to simulate a delta function, the output intensity
will be given by the convolution of this delta function with the intensity impulse

response. This yields as the output of the system:

. 2
I(x',y) = (x +fsind,,y)| (6.30)
which is the incoherent edge-enhanced version of the input object.

6.4.2 Intensity Edge-Enhanced Correlation

The principle of the intensity edge-enhanced correlation using nonlinear recording
in BSO differs from that of the previously reported coherent version. In the coherent
correlator the nonlinearly recorded hologram acts as a high-pass spatial filter, ensuring
that only the high-frequency content of the Fourier spectrum of input 2 will contribute
to the output. In the intensity correlator, however, due to the spatially incoherent
readout, this coherent filtering does not take place any more. Therefore, if input 2 is
described by f(x,y), then the output intensity is given by the convolution of

|f' (%, y)|2with the intensity impulse response given in Eq. (6.29), yielding:

I(x',y) = ﬁ]f‘ (%, y)lzlfcd(x' +x+f5in®,,y' +y)| dxdy (6.31)

which is the intensity cross-correlation of the full image of input 2 with the edge-
enhanced version of the image of input 1. In order that the edge-enhanced auto-
correlation is obtained, input 2 must also be the edge-enhanced version of the object.
As input 2 can be treated as the reference signal in the arrangement of Fig. 6.4 (input 1
is the unknown object to be recognized in this case), some pre-processing of input 2
can take place without jeopardising the operation speed of the system. The edge-
enhanced version of input 2 is thus easily obtained by using computer image
processing beforehand. Consequently, the output intensity becomes:
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1(x"y) = JJF (x, )I2C (x +x+fsim\,y" +y)[2dxdy (6.32)

which is the edge-enhanced intensity correlation, as desired.
6.4.3 Experiments and Results

In the experiment, the crystal orientation is as Fig. 3.2, to obtain the maximum
diffraction efficiency. The argon laser was expanded and adjusted to be 5 mW/cm2
at the crystal. The applied electric field across the crystal is 6.25 kV/cm. The angle
0 was adjusted so that the average spatial period of the holographic fringes in the
crystal was 20 pm.  The setting of the fringe spacing at 20 pm is a compromise
between achieving as large a fringe spacing as possible (to maximize the Bragg
acceptance angle) and allowing the zero-order and the diffracted image to be spatially
separated within the confines of the system. The He-Ne laser used in the readout part
was adjusted to be 15 mW.

Fig. 6.5 shows the image to be recognised, which is used as input 1 For
conventional correlation, it is also the reference image and used as input 2

Fig. 6.5. The image to be recognised, which is used as
input 1 and input 2 for conventional intensity
correlation.
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Fig. 6.6 shows the intensity auto-correlation result obtained with the optical system
shown in Fig. 6.4 under the conditions of normal holographic recording (the object-to-
reference beam ratio is about 1:2). It can be seen that the correlation peak is fairly
wide.

41

Fig. 6.6. The intensity correlation result obtained
with conventional holographic recording
in BSO (O/R = 1/2 in average).

In order to obtain edge-enhanced auto-correlation, the reference image should be
edge-enhanced version, and can be generated by computer pre-processing.  Fig. 6.7
shows such an image which is the edge-enhanced version of Fig. 6.5 and is used as
input 2. The unknown image is input L

Fig. 6.7. The computer-generated edge-enhanced image
used as input 2 in the intensity correlator.
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Fig. 6.8 shows the real-time edge-enhanced intensity auto-correlation result when
the object of Fig. 6.5 is fed into the optical system. The object-to-reference beam
ratio is chosen to be about 10:1 for nonlinear holographic recording. It is clear that
the correlation peak is much sharper.

Fig. 6.8. The intensity correlation result obtained
with nonlinear holographic recording in
BSO (O/R = 10/1) in average).

In order that a quantitative comparison can be obtained, 3-D plots of Fig. 6.6 and
Fig. 6.8 were generated and shown in Fig. 6.9 (a) and (b), respectively.  This was
done by detecting the optical correlation pattern with a video camera and then feeding
the signal into an image processing computer where a surface plot of the image is
plotted with normalized values.
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(@) with conventional holographic recording.

(b) with nonlinear holographic recording.

Fig. 6.9. 3-1) plots of the intensity correlation results.

|t was noted that the full width at half maximum intensity of the auto-correlation
peak in Fig. 6.9 (b) is one-fifth of that in Fig. 6.9 (a); i.e. a significant improvement in
the discrimination (see section 7.4.1) of the intensity correlator has been achieved hy
the edge-enhancement operation.
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6.5. Improved Real-Time Intensity Correlation by Moving Gratings
6.5.1 Factors Concerning The Application of a Moving Grating

It has been demonstrated in chapter 4 that the stability and the efficiency of the
diffraction from gratings recorded on BSO can be considerably improved by means of
a moving grating. For actual applications, however, two factors should be taken into
account: first, the enhancement of the diffraction efficiency is fringe modulation
dependent (Fig. 4.9); second, the optimum fringe velocity is also fringe modulation
dependent (Fig. 4.8), and is proportional to the total intensity of the writing beams
(Fig. 4.12).  As the intensity distribution of an input on the holographic plane is
usually not uniform, the fringe modulation and the total intensity of the writing beams
are not uniform as well. These cause problems in the image reconstruction. In fact,
with a fixed fringe velocity, the enhancement of the diffraction efficiency for different
parts (or different spatial frequencies) of the recorded image is different. Thus the
reconstructed image is somewhat distorted. The situation becomes more serious in
Fourier transform holography, for the maximum of the Fourier power spectrum of
most images is the dc peak, and the spectrum drops by several orders of magnitude at
high spatial frequencies. If we choose a fringe velocity suitable for the high spatial
frequency components, the diffraction from the low spatial frequency components will
be suppressed seriously, and vice versa.

There are two strategies to alleviate this situation: first by adopting the Fresnel
transform, and second by using edged objects. The Fresnel spectrum has a relatively
uniform light distribution and can be easily controlled by selecting different Fresnel
planes. The edged object has a less pronounced dc peak and so the large variations in
Fourier power spectrum are avoided. However, with a coherent system, the Fresnel
transform has no space invariant property, which causes object positioning problems.
Also the actual objects are normally not edge-enhanced and the edge enhancement pre-
processing may bring about further problems. Fortunately, with incoherent
illumination the space variance of the Fresnel transform places no restrictions on the
object positioning, and with a photorefractive crystal for dynamic holographic
recording, edge enhancement can be realized by means of nonlinear recording in real-
time. Therefore the moving grating technique is immediately appropriate to
applications in real-time intensity correlation.
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6.5.2. Real-Time Intensity Correlation by Moving Gratings

The configuration is the same as Fig. 6.4, except that a piezomirror is inserted in
the path of the reference beam to obtain frequency detuning. Because of the nonlinear
response to different parts of input 1, when the grating is moving, the intensity impulse
response of the optical correlator given by Eq.(6.26) should be modified to:

hy(x',y' 5%, y) =[f,(x' +x + fsiny, y' +y)[ (6.33)

where the subscript "d" denotes the distorted image. Thus we can only obtain a
cross-correlation in output when the input 2 is the same as the input 1:

I(x',y)= fﬂf(x, y)lzlfd (x' +x +fsin®,,y' +y)|2 dxdy (6.34)

We will see that by using the Fresnel transform and an edged object, there is no
obvious difference between the cross-correlation given by Eq. (6.34) and the auto-

correlation of the object.
6.5.3 Experiments and Results

Although real-time edge-enhanced intensity correlation can be achieved as
demonstrated in section 6.4, in this experiment we use an edged object and adopt
conventional holographic recording for initial demonstrations. The edge-enhanced
object is shown in Fig. 6.7. Fig. 6.10 presents the intensity correlation results, (a) is
obtained with a stationary grating, while (b) is obtained with a moving grating.
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(a) with a stationary grating.

(b) with a moving grating.

Fig. 6.10. The real-time intensity correlation
results with BSO crystal.

We suspect that the background noise in (b) is much lower than that in (a), showing
the enhancement of the diffraction efficiency by a moving grating. To show this more
clearly, Fig. 6.11 presents three-dimensional plots of Fig. 6.10. Again (a) corresponds
to a stationary grating while (b) corresponds to a moving grating.
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(a) Corresponding to stationary grating.

(b) Corresponding to moving grating.

Fig. 6.11. 3-D plots of the intensity correlations
corresponding to Fig. 6.10.

We can see that the height of the background noise in (b) is about one-third that in (a).
The enhanced signal-to-noise ratio in the output is a significant advantage in the case
of noisy environments.  We can also see that there is no obvious difference in the
sharpness of the correlation peak between (a) and (b), although the former
corresponds to the auto-correlation of the object while the latter corresponds to the
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cross-correlation given in Eq. (6.34). This is because the use of the Fresnel transform
filter and the edged object in this experiment alleviates the problems mentioned above.

The improvement in the stability of the peak correlation intensity is significant, in
common with the data shown in Fig. 4.7 where the temporal variations of the
diffracted beam are provided for both with a moving grating and with a stationary
grating.

6.6. Conclusions

We have proposed a purely optical edge-enhanced intensity correlation by nonlinear
holographic recording in BSO. There are alternative edge-enhancement techniques
such as computer pre-processing®!0 and holographic derivative filteringd-11,
However, with a hybrid computer-optical system, the high-speed processing advantage
of the optical processor is restricted by the operating speed of the computer. On the
other hand, with a holographic derivative filter, the light efficiency of the optical
system is quite low due to the use of two sequential optical diffraction elements. By
comparison the proposed technique has the advantages of high speed processing and
high light efficiency. These are of practical significance.

The dynamic holographic recording in BSO can be improved by the moving grating
technique. However the dependence of the enhancement of the diffraction efficiency
on the fringe modulation, and the dependence of the optimum fringe velocity on the
fringe modulation and on the writing beam intensity cause a distorted reconstruction.
To alleviate this effect, a Fresnel transform hologram and edge-enhanced object should
be used. For normal object input, the real-time edge enhancement technique can be
adopted.

The Fresnel transform in the real-time intensity correlator has the advantages of
producing a more effective diffraction area within the BSO, reducing the demands on
the dynamic range of the material, and alleviating the distorted reconstruction by a

moving grating.
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Chapter 7 Applications of a Liquid Crystal Television in a
Real-Time Optical Correlator

For a real-time optical processor the choice of a real-time input device, as well as
the real-time holographic recording medium, is significant. As a type of spatial light
modulator, the liquid crystal television (LCTV) has the advantages of being
commercially available, inexpensive and having a colour display, and has been widely
used in optical data processing’-1, pattern recognition’-2: 7-3, speckle metrology’,
white-light image processing’-5 and optical neural networks’6. As the device keeps
improving in terms of resolution, contrast ratio and surface flatness, it is found to have
more and more applications.

In this chapter we demonstrate that a colour LCTV can be used as a real-time input
device in an intensity correlator to realize colour object recognition, and that the
Epson liquid crystal display can be used to display a computer-generated Synthetic
discriminant function in the real-time intensity correlator to realize multi-class object
recognition. Then we suggest a further research topic: using the Epson liquid crystal
display to implement a new amplitude-only spatial filter, the quantized amplitude-
compensated matched filter’-7, in the 4-f optical system.

7.1 Optical Properties of Twisted Nematic Liquid Crystals

Fig. 7.1 shows the construction of a transmissive type, twisted nematic liquid
crystal cell. It consists of two glass substrates coated on their inner surfaces with the
transparent electrode, and separated by several microns from each other. A nematic
liquid crystal material fills the space between the two substrates. On the inner
surfaces of the substrates, an oriented fine groove structure is formed, which orients
the direction of the liquid crystal molecules (director) on the surfaces. The two
substrates are arranged such that the molecular directors on the surfaces are
perpendicular to each other, which causes a gradual twist in orientation of the liquid
crystal molecules between the substrates. To the outer surfaces of the glass substrates
are attached a linear polarizer and a linear analyzer associated with the incident light
and the emerging light, respectively. For the parallel arrangement, the polarization
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direction of the polarizer is coincident with the molecular director on the incident
surface, and the polarization direction of the analyzer is parallel to that of the polarizer.

| = | Polarizer

J//17) =

::::) Mde
C:JE::)
= 55 5 S LC. Layer
2 S S T
o © o o0
Bectrode
////// *
L --j Analyzer

Fig. 7.1. Twisted nematic liquid crystal cell in
the case without an electric field.

With no voltage applied across the liquid crystal layer, the incident polarized light,
as it transverses the liquid crystal layer, is gradually twisted in its polarization direction
by the liquid crystal molecules. This is the twisted nematic effect. When the light
reaches the back of the cell, its polarization direction is rotated by 90° and becomes
perpendicular to that of the analyzer, and the light is blocked. This is the fully "off"
condition of the liquid crystal cell.

When a voltage is applied across the liquid crystal layer the direction of the
molecules in the layer tends to be oriented along the direction of the applied field, as
shown in Fig. 7.2. The twisted nematic effect of the liquid crystal molecules becomes
weaker, and the polarization direction of the light emerging form the liquid crystal cell
will not be fully perpendicular to that of the analyzer. This is "on" condition of the
liquid crystal cell.
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Fig. 7.2. Twisted nematic liquid crystal cell

in the case with an electric field.

With a non-zero angle between the polarization direction of the polarizer and the
molecular director on the incident surface, a controlled birefringence effect is involved,
giving rise to the term "hybrid field effect’.  The voltage-dependent intensity
transmission of the twisted nematic liquid crystal cell can be expressed, for the parallel
polarizer and analyzer, as7-8:

T, = 1—P,§m)[1—sin2(2\|;)sin2(A—;p)] (7.1)

where y is the angle between the polarization direction of the polarizer and the
molecular director on the incident surface, A is the phase retardation acquired in the
liquid crystal cell, and P{({TN) is the rotatory power associated with the twisted nematic
effect which is given by7-9:

sinzl:g—(l+U2)I/2]
P{™ =1- 7.2
§ 1+U? (7.2)

where
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U =2T(An)/A, (1.3)

A is the wavelength of the incident light, T is the thickness of the liquid crystal cell,
and An is the birefringence. The phase retardation A@ is a function of the applied

voltage V, and can be expressed by7-10:

[0, (V/V,=1)  when (V/V,-1)<<1 y
o (1-B/V)  when (V/V,-1)>>1 (7.4)

where V, is the threshold voltage, oo and B are known functions of the elastic
constants and the dielectric anisotropy of the liquid crystal, and ¢, =2nT(n, —n,)/A

is the maximum phase shift with n, and n, being the ordinary and extraordinary

refractive indexes of the liquid crystal, respectively.
7.2 Colour Image Intensity Correlation with a Colour LCTV

Colour image correlation by optical techniques is an attractive topic since all visible
signals are strictly polychromatic and may not be completely described by the shape
information alone. As a matter of fact, the colour information of a signal may prove
more significant in distinguishing the signal from others. Therefore the extension of
optical correlation from monochromatic to polychromatic signals would further
enhance the capability of optical pattern recognition. The earlier works on colour
image correlation were based on multiplexed volume holograms, and were carried out
by Shi’-11, Case-12, and Ishii and Murata’-13,  Their techniques have two major
drawbacks: low diffraction efficiency due to multi-exposure holography, and colour
cross-talk due to the spatially overlapped subholograms. Then, Yu and Chao7-14
proposed a grating based colour signal correlation. Their correlator possesses no
colour cross talk since the subholograms for three primary colours are spatially
separated. However the use of the diffraction grating reduces the light efficiency.
Afterwards, Mu et al’-15 used a multi-wavelength Fresnel transform filter in an
intensity correlator to realize colour image correlation.  Mu's processor has the
advantages of high light efficiency and no colour cross-talk.
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For real-time colour image processing, a colour spatial light modulator is required.
Most spatial light modulators have only a monochrome display, and so cannot be
applied to a colour image input directly. Recently colour liquid crystal televisions
have been commercially available and have been used in coherent correlators. Yu et
al applied a colour LCTV to the matched filter based correlator’-16 and the joint
transform based correlator’-17 for colour pattern recognition. However the colour
LCTV has a serious drawback, in the coherent optical system, of the lack of space
invariance even after it has been immersed in a liquid gate. This is caused by the
inhomogeneity of the transparent electrodes and of the colour filter in the liquid crystal
display, and by the coupled phase modulation of the liquid crystal molecules. This
difficulty can be overcome by using an optical intensity correlator, where the phase

variation of the LCTV, additive to the input signal, does not play a role. 1In this
section we present such an optical system which uses the colour LCTV in a multi-
wavelength Fresnel-transform-based intensity correlator. It possesses high light
efficiency, no colour cross talk, and space invariant correlation.

7.2.1 Synthesis of a Multi-Wavelength Fresnel Transform Filter

B.S.

f—dy—} d> -t d—-|

Fig. 7.3. The optical system to synthesize the multi-wavelength
Fresnel holographic filters.

The optical system to synthesise the multi-wavelength Fresnel Transform filter is
shown in Fig. 7.3, which is the same as Fig. 6.2, except that three primary colour lasers
(red, green, and blue) are employed for the holographic recordings. A colour object is
placed at the input plane P1, and a photographic plate sensitive to the three primary
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colours is placed at P2. The multi-wavelength Fresnel transform filter is fabricated by
sequential holographic recordings at each wavelength. = With each exposure the
corresponding illuminating laser beam has a suitable tilt angle to ensure that the
Fresnel spectra of the three primary colour signals are spatially separated.  All
parameters are the same as in Fig. 6.2.

Suppose that the colour object is expressed by:

f(x,y) =f£.(x,y)+£,(x,y) +£,(x,y) (7.5)

where the subscript r, g, and b denote the red, green, and blue colours respectively.

We consider the subhologram recording process for the red information. Assume that
the tilt angle of the red illuminating beam is ©,. The Fresnel transform of the red

signal f (x,y) is given, similar to Eq. (6.5), by:

0,(o,B) = Hexp(i—‘;rﬂxsinﬁ,)f,(x, y)exp[}:’fiff (f —fd1 )(az +B? )}

ex{ i (ﬂ)(xz +y? )]exp[ ;i?n (xa+ yB)]dxdy

(7.6)

}" r fcff f reff

where A denotes the wavelength of red laser, exp(li—nxsinf},) denotes the tilted

r

illuminating red laser beam. The tilt angle O, determines the location of the Fresnel
spectrum at P2. As a matter of fact, Eq. (7.6) denotes a Fourier transform of a
function with a linear phase shift, and the linear phase shift brings about a positional
displacement in the Fourier spectrum which is also the Fresnel spectrum of the original
signal.

The converging reference beam can be expressed as:

R, (oB) = exp[%[(a ~h,)’ +p? ]} (7.7)

T
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where h, is again the distance between the point B and the origin of P3.

After recording, the desired spatial filter for the red colour information is created.
The transmittance function of the filter associated with the correlation output is given

by:
T,(0.,B) = O; (e, p)R, (o, B) (7.8)

Similarly, the spatial filters for the green and blue information can be recorded with
different tilt angles of the illuminating beams, ¥, and®,.  The corresponding

transmittances T, (o, ) and T, (a, B) are given by:

T,(0.,B) = 0 (., B)R (o, B) (1.9)
T, (c.,B) = Oy (o, B)R,, (e, B) (7.10)

We note that by choosing suitable tilt angles of the illuminating beams, the three
subholograms would be spatially separated and three primary colour filters can be
correspondingly inserted in front of them. Thus high diffraction efficiency can be
obtained and colour cross-talk can be eliminated.

7.2.2. Real-Time Colour Image Intensity Correlator

The real-time optical colour image correlator is shown in Fig. 7.4. A colour CCD
detector views the coloured object and feeds the signal received to the colour LCTV
which is illuminated by three primary colour laser beams. Lens L1 images the colour
image on the LCTV onto a rotating diffuser D. L2 is the transform lens. Three
primary colour filters CF are inserted in front of the three corresponding
subholograms. The output signal is received by a colour CCD detector and displayed
on a colour monitor.
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Fig. 7.4. The real-time colour image intensity correlator.
Suppose that a red input impulse Sr(x—xo,y— yo) is at plane P1. With the same

deduction in section 6.2.2, we can obtain the intensity impulse response which is
similar to Eq. (6.12):

h,(x',y'; x, y)=lfr(x+ax' -aho,y~}-ay')|2 (7.11)
We note that the tilt angle of the illuminating beam, ©,, does not appear in the

intensity impulse response. We conclude that while the tilt angles of the illuminating
beam, ¥, ¥, and O, successfully separate three subholograms with each other, the

tilt angle has no influence on the intensity impulse response.

Similarly the green intensity impulse response h; (x',y'; X,y) and the blue intensity

impulse response h,; (x',y'; X,y) can be written as:

h, (x,y'; x,y)=ifg(x+ax‘-ah(,,y+ay')|2 (7.12)

hy (X35 x,y) =[f, (x+ax’ -ah,y +ay')| (7.13)

For an input colour object with the intensity transmittance:

[yl =18, o+ oy + [ oyl (7.14)
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the output intensity at plane P3 will be given by:

I(x',y)= ﬂ[ (%, y)|2 f (x+ax'—h,,y+ay' )|2 +|f‘g (x, y)l2 (7.15)

l_f:(x +ax'—hg,y +ay’ )|2 +f', (x, y)lzlfb (x+ax' —h,,y+ay' )lz]dxdy

which is the colour image intensity correlation. It can be seen that there are no colour
cross-talk terms in Eq. (7.15). This is because that three primary colour filters
inserted in front of the corresponding subholograms filter out the redundant colour
information.

7.2.3. Experimental Results

In the experiments we chose the bichromatic signal of a red "E" and a green "G"
shown in Fig. 7.5 as the colour image. The extent of the two primary coloured
Fresnel spectra of the colour signal was about 3.0 mm. Their spatial separation was
about 1.0 mm. Agfa Gevaert 8E75 holographic plates and a bleaching process were
employed for the multi-wavelength Fresnel transform filter recordings. A diffraction
efficiency over 30 % was obtained. A Citizen T530 colour LCTV was used as the
real-time input device. The pixel number of the LCTV screen (5.4x 4.2 cm?) was
measured, using a travelling microscope, to be about 220 x160. With the projection
of He-Ne laser light through the TV screen the contrast ratio was measured to be 10:1
(defined as the ratio of the intensities for a fully "on" pixel to a fully "off" pixel of the
input).
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Fig. 7.5. The colour object used for the synthesis of the
multi-wavelength Fresnel transform filter.

Fig. 7.6 shows the auto-correlation result when the same colour image is fed into
the correlator of Fig. 7.4. There is a bright yellow colour spot in the centre. Ifonly a
red "E" or a green "G" is fed into the correlator, a red or green spot will be in the
centre.  Suppose a bichromatic signal of a green "E" and a red "G" is fed into the
colour LCTV, which has same shape but different colour distribution with respect to
the reference bichromatic signal. ~ The red colour filter, which is in front of the
subhologram recorded for "E" in the reference signal, will block the light coming from
the green “E", and the green colour filter, which is in front of the subhologram
recorded for “G" in the reference signal, will block the light coming from the red "G"
Thus we can only get a composite of the cross-correlation of “E" and "G" in red
colour and in green colour yielding a yellow cross-correlation pattern, and no bright
centre spot appears in the output plane at all.  Therefore the real-time correlator
recognizes the colour information as well as the shape information in an object.
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Fig. 7.6. The auto-correlation result of the colour object.
The combination of the red and the green signal
yieldsa bright yellow correlation peak.

For a complicated colour object, the colour of the auto-correlation peak lies on a
specific point of the CIE chromaticity diagram7-18.  The object is distinguished
uniquely by the combined measurements of the intensity and the chromaticity
coordinates of the correlation peak. ~Although in our experiment three primary colour
lasers were used in the correlator, an extended white-light source can be employed.
In this case three narrow band colour filterse-3 should be employed and the rotating
diffuser can be removed. We noted that the shift of the colour image in the LCTV
screen, caused by the displacement of the input object, had no influence on the output
correlation. By comparison, when using a coherent optical processor and an LCTV
the shift usually causes severe problems due to the spatial phase variation of the LCTV
screen, and a phase conjugation technique has to be employed7-19.

In summary, we chose the LCTV as the real-time input device to realize colour
image correlation because it is a colour spatial light modulator and is commercially
available. ~ Considering that most spatial light modulators are only monochrome



devices, the colour LCTV could play an important role in colour signal processing.
However the inhomogeneity in the transparent electrodes, in the liquid crystal
molecular distribution, and in the colour filters incorporated into the liquid crystal
display brings about arbitrary phase variations in the input signal. We overcome this
difficulty by adopting an incoherent optical system. At this stage real-time colour
image holographic recording was not used, but it can be realized by using a white laser
as light source, and a combination of photorefractive crystals, e.g. BSO for green and
blue signals, and BTO for red signal, as the recording media.

7.3. Real-Time Intensity Correlation Using a Synthetic Discriminant
Function Filter

Because of the poor contrast ratio and limited linear modulation range of the
Citizen T530 LCTYV, it was used to display only a binary input object. To meet the
requirements for displaying a more complicated signal, such as a synthetic discriminant
function (SDF), a better liquid crystal display is required. Recently, the Epson liquid
crystal display projector, which has a much better modulation property’-20, has
become commercially available. In this section we further investigate the modulation
properties of the Epson liquid crystal display, and then use it to display the synthetic
discriminant function in the real-time intensity correlator to realize multi-class object
recognition.

7.3.1. Modulation Properties of the Epson Liquid Crystal Display

The Epson liquid crystal display used is active-matrix addressed, with 320x220
pixel elements. The sandwich-like structure, i.e. the polarizer, the liquid crystal cell
and the analyzer, of the original Epson liquid crystal display is arranged such that the
polarization direction of the polarizer is parallel to the molecular director on the
incident surface of the liquid crystal cell, and the analyzer is aligned so that its
polarization direction is parallel to that of the polarizer. This is in fact a coupled
amplitude and phase modulation mode, i.e. amplitude and phase both vary with the
drive signal.

Fig. 7.7 shows the coupled modulation effect. The bright and dark horizontal lines

on the right half of the field of view correspond to pixel values 255 and 0, respectively.
The curved vertical interference fringes on the left half of the field of view were

112



obtained with a Mach-Zehnder interferometer, showing the effect of the coupled phase
and amplitude modulation.

Fig. 7.7. The coupled phase and amplitude modulation
characteristics of the Epson liquid crystal
display in normal operation mode.

For coherent processing this coupled amplitude and phase modulation should be
generally avoided (unless taken into account in the filter design), and so-called phase-
mostly modulation and amplitude-mostly modulation modes have been developed7-21.

It is obvious that by removing the analyser in the original arrangement, the device
performs phase-mostly modulation.  The maximum phase shift between an “on" and
an "off" pixel depends on the setting of the bias voltage (the brightness control).  Fig.
7.8 provides the achievable phase shift of the Epson liquid crystal display versus video
level with the bias voltage setting yielding the maximum phase shift7-20. It can be
seen that the maximum phase shift is about 1.8771.
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Fig. 7.8. Plot of phase shift of the Epson liquid crystal
display versus video level (ref. 7.20).

The arrangement for the amplitude-mostly modulation is as follows: the
polarization direction of the polarizer is perpendicular to the molecular director on the
incident surface of the liquid crystal cell, and the analyzer is aligned parallel to the
polarizer. This in fact displays the image with contrast reversal. Fig. 7.9 shows the
effect of the amplitude-mostly modulation. The bright and dark horizontal lines on
the right half now correspond to pixel values of 0 and 255, respectively. The left half
of Fig. 7.9 was obtained with the Mach-Zehnder interferometer, showing the phase
modulation characteristics. It can be seen that the vertical interference fringes are
only slightly distorted, implying only small phase modulation.
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Fig. 7.9. The modulation characteristics of the Epson
liguid crystal display in amplitude-mostly
modulation mode.

Fig. 7.10 presents the variations of the intensity transmittance as a function of pixel
value when working in the amplitude-mostly modulation mode. ~ Three curves were
obtained with different “brightness” control, B, and "contrast” control, C settings on
the projector front panel.  For our purpose, the best curve is with the settings of
B=5andC =10. It can be seen that the contrast ratio and the linear intensity
modulation range of the device are poorer. For instance, the best curve has a linear
relationship from grey level 45 to grey level 115 (70 grey levels of linear dynamic
range) and the contrast ratio, defined as the ratio of the maximum intensity to the
minimum intensity in the linear range, of 2:1.
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Fig. 7.10. The output intensity of the Epson liquid
crystal display versus pixel value in the
amplitude-mostly modulation mode.

As a comparison, Fig. 7.11 presents the measurements made with the Epson liquid
crystal display operating in its normal mode. The best curve now corresponds to
B=5and C=6.5. The linear range is from grey level 60 to grey level 230 (170 grey
levels of linear dynamic range) and the contrast ratio is 8:1. It is not surprising that
the contrast ratio presented here is much smaller than that presented in reference 7.20.
The definition of the contrast ratio used there is the ratio of the intensity with a fully
"on" drive pixel to that with a fully "off" drive pixel.
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Fig. 7.11. The output intensity of the Epson liquid
crystal display versus pixel value in the
normal operation mode.

It is clear in comparison of Fig. 7.10 with Fig. 7.11 that the amplitude-mostly
modulation mode is achieved at the cost of a deterioration in the contrast ratio and the
linear modulation range of the device.

For incoherent processing, it is only the intensity of the input image that plays a
role, and as such the coupled modulation of amplitude and phase has no significance.
Thus we can take the advantages of the high contrast ratio and large linear intensity
modulation range of the Epson liquid crystal display operating in its normal mode.
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7.3.2. The Synthetic Discriminant Function

The SDF concept was originally introduced by Hester and Casasent in the context
of coherent correlation?-22, and since then a number of papers have been published”?-23-
727 For a class of objects, the coherent SDF is formed from a weighted linear
combination of the complex amplitude distribution of these objects. On the other
hand, the incoherent SDF is formed from a weighted linear combination of the
intensity distribution of these objects. The basic property of the SDF is that it
possesses the same peak response for any input which belongs to the class.

Let L (x,y), L,(X,y), ..., Iy(x,y) denote the intensity distributions of a class of

objects. The SDF is a composite function s(x,y) such that the intensity correlation of
any of these objects with the function has the same value at the origin:

N
s(x,y) = T (x,y) (7.16)

i=1

s(x,y)® L (x,y) =c (7.17)

at origin

where a,, i=1, 2, ..., N, are the appropriate coefficients, and c is a constant. To
calculate this function, we seek a set of orthogonal basis functions which are linear
combinations of the intensity distributions of the objects:

N
@, (x,y) =Zbij1j(x’ y) (7.18)

i=1

D, (X, y)®D,(x,y) (7.19)

_J0 wheni#j
| wheni=j

where b;,i=1, 2, ..., Nandj=1, 2, ..., N are the coefficients which can be

calculated by the Gram-Schmidt expansion approach’-28, The SDF is now expressed
in terms of the basis functions:
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N
s(x,¥) = Y, ¢, @, (x,y) (7.20)
i=1

where c; are the coefficients which can be calculated, considering Eq. (7.19), by:

C; = 8(X, Y) @D, (X, ¥)| s origin (7.21)
Eq. (7.21) yields, using Eqgs. (7.17) and (7.18):
N
¢, = Y, cb;(x,y) (7.22)
j=1

Substituting Eqs. (7.18) and (7.22) into Eq. (7.20), the SDF now can be expressed in
terms of the original objects:

N N N

sxy)=2, D, Y.cbb I (x,y) (7.23)

i=l  j=1 k=l

The computed SDF data are then fed into the Epson liquid crystal display incorporated
in the real-time intensity correlator to produce the optical reference signal.

7.3.3. Experiments
To calculate the SDF of a class of objects, a VAXstation 3200 computer and IDL
image processing software was used. The class of objects comprises five English

letters "A", "C", "E", "R" and "S", as shown in Fig. 7.12. Each image consists of a
256X 256 pixel array.
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Fig. 7.12. A class of objects: five English letters.

By the procedure described in section 7.3.2, the SDF of the original objects was
computed.  Usually there are negative pixel values appearing in the SDF data. To
overcome this difficulty, and to accommodate the linear intensity modulation range of

a spatial light modulator e.g. the liquid crystal display in our case, an appropriate bias
level Lj and a scaling factor L2 were used to modify the computed data:

S(X,y) =L+ Las(xY) (7.24)

where s'(x,y) is the modified SDF data. and L2 depend on the minimum and
maximum pixel values in the original SDF data and the linear dynamic range of the
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spatial light modulator used. ~ When the modified SDF is fed into an intensity
correlator the output intensity at the origin will be:

out (0%0) = L 1j] K (x>y)dxdy + L2JJ Im(x, y)s(x, y)dxdy (7.25)

where lin(x,y) is the intensity distribution in the input object.  The second term in
equation (7.25) satisfies the SDF requirements.  The first term, however, is signal
energy dependent and does not satisfy the SDF requirements.  Fortunately, by
measuring the total input energy, it can be subtracted from the output intensity at the
origin. We should emphasize that the strategy of using an appropriate bias level and a
scaling factor cannot be applied to the coherent correlator. With coherent processing,
the linear physical parameter in equation (7.24) should be the complex amplitude
rather than the intensity, but the detectable physical parameter is only the intensity.
With a coherent optical system, the negative pixel values in the SDF data and the
accommodation of the SDF data to a real spatial light modulator can be overcome by
other techniques, such as incorporating the phase and amplitude cross coupling in the
filter-generation algorithms7-29.

The computed SDF for the five English letters, modified with a bias level and a
scaling factor based on Eq. (7.24), is shown in Fig. 7.13.  Obviously it is a six grey
level image in this demonstration.

Fig. 7.13. The computed synthetic discriminant function.
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The real-time intensity correlator using an Epson liquid crystal display and BSO
crystal is shown in Fig. 7.14. The system is the same as Fig. 6.4 except for the liquid
crystal display and the third half-wave plate were used in the writing portion.  After
passing through the first half-wave plate, the argon laser beam is split into two by the
polarizer cube. One beam passes through the second half-wave plate, which makes
the polarization direction of the beam parallel to the molecular director on the front
surface of the liquid crystal cell. ~The Epson liquid crystal display operates in its
normal operation mode. The SDF data acting as the reference signal are electronically
fed into the liquid crystal display. The third half-wave plate makes the polarization
direction of the beam emerging from the liquid crystal display the same as that of the
second beam. L1 forms the Fresnel transform of the object. The second beam acts
as the reference beam. The object to be recognized is at input 2. The system
parameters are referred to Fig. 6.4.

L BE1

P> 7]

A/2 L A/2

Lev A/2

Camera

Monitor

Fig. 7.14. Experimental configuration for the real-time
intensity correlator using BSO crystal and
Epson liquid crystal display.

The intensity impulse response of the optical system, when the SDF data is fed to
the liquid crystal display, is given by [refer to Eq.(6.26)]:

h,(x',y';x,y)=s" (X' +x+fsind,,y +y) (7.26)
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Therefore when an input lin(x,y) is fed into the system as the input 2, the output
intensity will be given by the intensity correlation of the input with the modified SDF:

LE(Xy") = J1» (x<y)s' (X" +X + fsin®o oy' +y)dxdy (7.27)

Fig. 7.15 presents the results of the intensity correlation obtained with the optical
system of Fig. 7.14 when the input object belongs to the class, (a), (b), (c), (d) and
(e) correspond to the input object of letter A", "C", "E", "R" and "S", respectively.

In these results we are more interested in the two dimensional distributions of the
correlation patterns, which show how the optical correlator operates.

(@) Corresponding to the input of "A”,

(b) Corresponding to the input of "C".
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() Corresponding to the input of "S".

Fig. 7.15. The experimental correlation results
using synthetic discriminant function.

To show how the experiments are expected, Fig. 7.16 presents the computer
simulation results, (a), (b), (c), (d) and (e) correspond to the input object of letter
"A" "C", "E", "R", and "S", respectively. It can be seen that the optical correlation
results are quite satisfactory, in agreement with the computer simulation results.
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(b) Corresponding to the input of "C".
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(d) Corresponding to the input of "R™.

(e) Corresponding to the input of "S".

Fig. 7.16. The computer simulation results using
synthetic discriminant function.

In summary, we have experimentally demonstrated real-time intensity correlation
using an SDF filter.  An Epson liquid crystal display operating in its normal mode was
employed to display the SDF filter. It has been shown that the Epson liquid crystal
display is more appropriate to the incoherent optical system, because the coupled
amplitude and phase modulation in the normal operation mode has no influence in this
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case, and the advantages of high contrast ratio and large linear modulation range in this

operation mode can be realized.

There are two difficulties in displaying an SDF filter with a spatial light modulator:
the negative pixel values in the SDF data and the accommodation to the linear dynamic
range of the spatial light modulator. With a coherent system these difficulties can be
overcome by incorporating the phase and amplitude cross coupling in the filter-
generation algorithms.  With an incoherent system these difficulties can be simply
overcome by using an appropriate bias level and a scaling factor to modify the
computed SDF data.

The shortcoming of the wider correlation peak in the intensity correlator can be
improved by means of non-linear recording in a BSO crystal as described in chapter 6.
In this case, the Epson liquid crystal display should be in the reading part to display an
edge-enhanced SDF filter, and the input object should be in the writing part. The
input object used in this experiment was a transparency. By using a second Epson
liquid crystal display in the optical system, real-time operation could be realised.

7.4. Further Research: The Application of The LCTYV to a
Quantized Amplitude-Compensated Matched Filter.

We have adopted the photorefractive crystal BSO as a real-time recording material
to record an optically addressed spatial filter. However, more effective spatial filters
can be designed with a computer, and an electronically addressed device is required to
record such a spatial filter in real time. = The LCTV meets the requirement of
electronic addressing, and has been used to display a matched spatial filter and a phase-
only filter’-30: 7.31, As further research we suggest the use of the Epson liquid crystal
display operating in the amplitude-mostly modulation mode to realize a new spatial
filter, the quantized amplitude-compensated matched filter.

The historical development of spatial filters are mainly in two aspects. The first
aspect is aimed at simplifying the filter structure to accommodate a spatial light
modulator for real-time applications. The main results are the phase-only and binary
phase-only filters7-32-7-36, and the amplitude encoded phase-only filter’37.  The
second aspect is aimed at improving the filter performance such as discrimination.
The main results are the optimal binary phase-only filters7-38, the optimal binary phase
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and amplitude filters7-3%, the ternary phase amplitude filter’-40-7-42, and the amplitude-
compensated matched filter’-43, 7.44,

The amplitude-compensated matched filter yields a discrimination superior to that
of the phase-only filter and the matched spatial filter. However the filter function is a
combination of the Fourier phase spectrum with an approximately inverse Fourier
amplitude spectrum, and cannot be implemented with a single-parameter-modulated
(phase or amplitude) spatial light modulator. The quantized amplitude-compensated
matched filter is designed to overcome this difficulty. Two procedures are involved in
the filter creation: first, translating the phase function of the amplitude-compensated
matched filter into a two-bit amplitude; second, quantizing the amplitude function into
several grey levels. Thus the new spatial filter is amplitude-modulation only with
discrete levels.

7.4.1 Performance Criteria of Spatial Filters

To assess and choose a spatial filter for certain optical pattern recognition tasks,
suitable criteria of filter performance is required. The first criterion is the
discrimination which determines the chance of an error in pattern recognition. Horner
defined the discrimination as the difference between the absolute auto-correlation and
cross-correlation peak intensities. Awwal’45 defined it as the difference between the

normalized auto-correlation and cross-correlation peak intensities:

NPI NPI

A= in autocorrelation in cross - correlation (7 .2 8)

NPI

in autocorrelation

where A denotes the discrimination and NPI denotes the normalized peak intensity.
This definition is more attractive since the normalized peak intensity more effectively
represents the sharpness of the correlation peak.

The second criterion is the light efficiency of the spatial filter which was first
proposed by Horner. He defined it as the ratio of the total energy transferred to
output plane to the energy in the input object. Caulfield’#6 modified the definition by
using only the correlation peak intensity rather than the total energy:
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_ correlation peak intensity (7.29)
" total energy in input

This modification is reasonable because it is the correlation peak intensity, rather than
the total output intensity, that should be detectable. In the noisy circumstances the
light efficiency becomes more critical.

The third criterion is the additive noise tolerance. It is usually assumed that the
input signal is noise-free whereas in practice additive noise is inevitable. If the input
noise reaches a certain level, the correlation peak will be embedded in the noise and
the signal becomes undiscriminated. Therefore an optical correlator has a certain
additive noise tolerance depending on the nature of the spatial filter. We define the
additive noise tolerance, O, as:

__ input noise level (7.30)
signal level

where the input noise level is that value that produces an output noise level which is
less than 75 % of the correlation peak intensity.

7.4.2 Different Types of Spatial Filters
Consider the optical correlator shown in Fig. 2.2. Its performance merits depend

on the spatial filter used. The matched spatial filter takes the form of the complex
conjugate of the Fourier spectrum of a signal:

H,, (p.q) =|F(p,q)|exp[-ip(p,q)] (7.31)

where [F(p,q)| is the Fourier amplitude spectrum and exp[ip(p,q)] is the Fourier

phase spectrum. Because the energy transmission of the filter is proportional to the
power spectrum of the signal, the matched spatial filter possesses highest noise
tolerance. However, its discrimination and light efficiency are poor.

The phase-only filter takes the form of only the phase factor in Eq. (7.31):
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H, (p,q) = exp[-ig(p,q)] (7.32)

Obviously the filter function is simpler and can be realized with a phase-modulated
spatial light modulator. The phase-only filter operates without energy absorption,
therefore it possesses the highest light efficiency. If an object f(x,y) is fed into the
optical correlator, the complex light distribution just behind the filter will be [F(p,q)|

compared with lF(p,q)l2 in the case of a matched spatial filter. Both are a wavefront
which is uniform in phase and varies in amplitude. It is the variation in the amplitude
that causes a broader correlation peak in the output. Because that the variation of a
function is smoother than that of its quadratic, the phase-only filter yields a sharper
correlation peak which is related to a higher discrimination.

A binary phase-only filter is obtained by a sine or a cosine transform of the object.
It takes the form, if using cosine transform:

+1 when cos ,q)+C(p,q)[20
_ { when cos[¢(p,a)+C(p.q)] .

—1 when cos[(p(p,q) +C(p,q)] <0

where C(p,q) is a frequency carrier.  The cosine transform filter introduces a
correlation term and a convolution term in the output. The correlation term is located
at the coordinates corresponding to the phase factor C(p,q), while the convolution
term is located at the coordinates corresponding to C(-p,-q). The discrimination and
the light efficiency of the binary phase-only filter are lower than that of the phase-only
filter, since some phase information is omitted, and an extra diffraction term is
introduced. However, the filter function is further simplified and a binary phase-
modulated spatial light modulator can be accommodated.

The amplitude-encoded phase-only filter takes the form:

1
H,.(p,q) = 5{1+COS[<P(p,q)+C(p,q)]} (7.34)

It is an amplitude-only spatial filter. Compared with phase-only filter, a frequency
carrier and a dc bias are introduced. = The amplitude-encoded phase-only filter

132



produces three diffraction terms at the output: a correlation term at the position
corresponding to C(p,q), a convolution term at the position corresponding to C(-p,-q),
and a dc bias term at the origin. The correlation term has the same contour as that
obtained with the phase-only filter. Therefore it possesses the same discrimination as
the phase-only filter. However the light efficiency shows a big reduction due to two
extra diffraction terms. Obviously, this filter is appropriate to an amplitude-modulated
spatial light modulator.

The amplitude-encoded binary phase-only filter has the form:

H,z(p.q) = %[HHBp(p,q)] (7.35)

The filter only has the amplitude values of 0 and 1. The impulse response of this filter
is the same as that of the binary phase-only filter except for a delta function at the
origin in output plane. Therefore the amplitude encoding procedure deteriorates the
light efficiency alone.  However the filter function is very simple, and a binary
amplitude-modulated spatial light modulator can be used.

The amplitude-compensated matched filter is a type of approximate inverse filter,
which consists of two different filtering functions. It takes the form of a phase-only
filter where the modulus of the Fourier amplitude spectrum is lower than a threshold
value, and takes the form of an inverse filter where the modulus of the Fourier
amplitude spectrum is higher than the threshold value:

H,(p,q) when|F(p,q)|<F,

Hy(p@)={ g (7.36)
———H,(p,q) when IF(P’Q)| 2F,
[F(p.q)|

where F is the threshold value. If an object of f(x,y) is fed into the optical correlator,
the filtered wavefront will be not only uniform in phase but also with reduced
variations in amplitude, which makes the correlation peak much sharper. This type of
filter is inherently energy absorptive, and the total signal energy transferred to the
output plane is much lower than that with any other type of filters. Therefore the
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noise tolerance is poor. However, the correlation performance does not suffer
seriously because the absorption mainly takes place at the region of low spatial
frequency which has less energy contribution to the correlation peak’-47.

7.4.3. A New Quantized Amplitude-Compensated Matched Filter

Applying the concept of the Fourier amplitude compensation into the amplitude-
encoded binary phase-only filter, we might create a new spatial filter, the amplitude-
compensated and amplitude-encoded binary phase-only filter, which has the form:

H yeno (p,q) = H,e(p.q) whean(p,q)| <F, 737
Acep\P>H/) = . .
Fo H pep (P,(I)/ |F(p,q)| otherwise

It takes the form of the amplitude encoded binary phase-only filter when the Fourier
amplitude is less than a threshold value F,, and it has an inverse Fourier amplitude

absorptive factor otherwise. This filter can be realized by an amplitude-modulated
spatial light modulator.

To further simplify the filter function, the inverse Fourier amplitude spectrum can
be quantized into several discrete levels, i.e. the quantized amplitude-compensated
matched filter. In this simulation we adopted four-level quantization:

;

H,:(p.q) when |F(p,q)|<F,
F HAEB(p’q)/FZ when F, <|F(P,Q)l <E

F H,m(p,q)/F, whenF, <|F(p,q)|<F,
0 otherwise

Hoac (p,q) = ﬁ (7.38)

\

where K, E, and F, are the threshold values which were chosen by examining the
histogram of the Fourier amplitude spectrum of the object. Note that H,, (p,q) is an

amplitude filter with the values of O and 1, therefore the quantized amplitude-
compensated matched filter is a four-grey-level amplitude filter.
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We verify the performance merits of the quantized amplitude-compensated matched
filter by means of computer simulations.  Two very similar English letters shown in
Fig. 7.17 were created and used as the objects, each of 48 x 96 pixels. This is because
we adopted a 256 x 256 pixel computation, and the correlation plane is two-fifths of
the output plane.  The restricted object size ensures that the correlation peak can be
separated from the zero order diffraction. The letter "G" was used as the original
object, from which different types of filters were created. The auto-correlation of the
letter "G" and the cross-correlation of the letter "G" with the letter "C" were then
computed, and the performance merits of different type of filters were compared.

Fig. 7.17. The objects used for computer simulation.
Letter "G" was used to form different type
of spatial filters.
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We compared the performance merits among the binary phase-only filter (BPOF),
the amplitude encoded binary phase-only filter (AEBPOF), the amplitude-compensated
matched filter (ACMF), the amplitude-compensated and amplitude-encoded binary
phase-only filter (ACAEBPOF), and the quantized amplitude-compensated matched
filter (QACMF). The threshold values were selected according to the requirements of
discrimination and light efficiency, and by checking the histogram of the Fourier
amplitude spectrum of the object. For the amplitude-compensated matched filter and
the amplitude-compensated and amplitude-encoded binary phase-only filter in this
simulation, the threshold F, is one-thirtieth of the maximum Fourier amplitude

spectrum of the object. The thresholds of F,, F, and F, for the quantized amplitude-

compensated matched filter are one-thirtieth, one-tenth and one-third of the maximum
Fourier amplitude spectrum of the object respectively.

Table 1 shows the simulation results. Column 2 lists the type of the spatial filters.
Column 3-8 list the total output energy (TOE), the absolute peak correlation intensity
(APCI), the normalized peak correlation intensity (NPCI), the light efficiency my, the
discrimination A, and the noise tolerance o, respectively. The total output energy
and the absolute peak correlation intensity were normalized by setting the absolute
peak correlation intensity in row 4 as one. The normalized peak correlation intensity,
which represents the sharpness of the correlation peak, were obtained by dividing the
absolute peak correlation intensity by the total energy in the correlation plane (part of
the output plane) and then scaling it to 0-255 levels.

136



Table 7.1. Computer Simulation Results with Different Spatial Filters

Row Filter TOE APCI NPCI N,4(%) A%) ot
1 BPOF 3369 7.29 1.7 2,06 174 12
2 AEBPOF | 1848 1.82 n.3 052 17.1 12
3 |AcAesPOF| 215 1.14 544 0.32 25.7 10
4 QACMF 162 1.00 61.2 028 25.7 10
5 ACMF 229 11.16 66.4 3.16 26.6 15

Key: BPOF: binary phase-only filter; AEBPOF: amplitude encoded binary
phase-only filter; ACAEBPOF: amplitude-compensated and amplitude-
encoded binary phase-only filter; QACMEF: quantized amplitude-
compensated matched filter; ACMF: amplitude-compensated matched
filter.

The comparison of the performance of the amplitude encoded binary phase-only
filter (row 2) with binary phase-only filter (row 1) shows the effects of the amplitude
encoding procedure of the phase. The total output energy in row 2 drops by 45 %
from that in row 1, while the absolute peak correlation intensity drops by 75 %. This
is caused by the additional zero diffraction as well as the filter absorption. However,
the normalized peak correlation intensity only changes slightly, which indicates that the
sharpness of the correlation peak is preserved. Also the light efficiency drops from
2.06 % t0 0.52 % while the discrimination keeps the same value.

The comparison of the performance of the amplitude-compensated and amplitude-
encoded binary phase-only filter (row 3) with the amplitude encoded binary phase-only
filter (row 2) shows the effects of the amplitude compensation procedure. The
absolute peak correlation intensity in row 3 drops by 37 % from that in row 2.
Considering the loss in the total output energy, which drops by 88 %, the loss in the
absolute peak correlation intensity is not serious. The normalized peak correlation
intensity, on the other hand, increases by 381 %, which is a significant improvement.
Also the discrimination increases from 17.1 % to 25.7 %, while the light efficiency
drops from 0.52 % to 0.32 % and the noise tolerance drops slightly.
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The comparison of the performance of the quantized amplitude-compensated
matched filter (row 4) with the amplitude-compensated and amplitude-encoded binary
phase-only filter (row 3) shows the effects of the amplitude quantization procedure.
We note that the filter performance has no noticeable deterioration.  The light
efficiency only drops from 0.32 % in row 3 to 0.28 % in row 4, and the discrimination
and the noise tolerance maintain the same values.

In a comparison of the quantized amplitude-compensated matched filter (row 4)
with the amplitude-compensated matched filter (row 5), we can see that there is a
bigger drop in the total output energy and the absolute peak correlation intensity from
row 5torow 4. These are caused by the amplitude encoding procedure as well as the
binarization procedure. However the normalized peak correlation intensity drops
slightly. Also, the discrimination is preserved, with the quantized amplitude-
compensated matched filter, but the light efficiency and the noise tolerance deteriorate.
As a remedy to the poor light efficiency, a better output detector with higher
sensitivity should be used.

In summary, the new quantized amplitude-compensated matched filter, is
characterized as discrete-amplitude modulation only, and an amplitude-modulated
spatial light modulator could be used. Compared with the amplitude-compensated
matched filter, which cannot be realized with a single-parameter modulated spatial
light modulator, the discrimination is preserved. Compared with the performance of
the amplitude encoded binary phase-only filter, the improvement in the discrimination
is very attractive. =~ Therefore the quantized amplitude-compensated matched filter
would be a reasonable choice for both good performance merits and real-time
realization.

7.4.4 Application of The Epson Liquid Crystal Display to The Quantized
Amplitude-Compensated Matched Filter

As we have seen in section 7.3 that the Epson liquid crystal display can perform
amplitude-mostly modulation with contrast reversal. Fig. 7.10 presented the intensity
modulation characteristics in this operation mode, which shows that the contrast ratio
is poor in the linear modulation range. However, for the discrete four-level amplitude
modulation, we can always set the pixels which give the maximum and the minimum
outputs of the liquid crystal display as the highest and the lowest transmittances in the
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filtering function, and set the pixels which gives the outputs corresponding to another
two transmittances in the filtering function, without consideration of the linear
modulation range. In this way the Epson liquid crystal display, even if working in the
amplitude-mostly modulation mode, can provide a higher contrast ratio for displaying
the quantized amplitude-compensated matched filter.

Fig. 7.18 shows a possible coherent optical correlator which uses the Epson liquid
crystal display to generate a quantized amplitude-compensated matched filter. It is
essentially the 4-f optical correlation system.

} f f—of } f o —=
B.E.
He-Ne J
/l . Camera
npu L1 LCTV L2
Monltor
Computer '

Fig. 7.18. An optical correlator using Epson liquid crystal
display to generate a quantized amplitude-
compensated matched filter.

In Fig. 7.18, L1 and L2 are the transform lenses. An Epson liquid crystal display is
placed at the back focal plane of L1 acting as a spatial light modulator, and a CCD
detector is placed at the back focal plane of L2 acting as an output receiver. The
computed quantized amplitude-compensated matched filter data are electronically fed
into the Epson liquid crystal display, operating in the amplitude-mostly modulation
mode, resulting in corresponding transmittances. L1 forms the Fourier transform of
the input onto the liquid crystal display, and L2 forms the inverse Fourier transform of
the filtered complex light field onto the CCD detector. The correlation output is then
fed into a monitor where the input object can be recognized by a suitable threshold
setting of the device.
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7.5 Conclusions

We have demonstrated that colour image recognition can be realized by using a
normal colour LCTV as the real-time input device in an intensity correlator. If a
photorefractive crystal or a combination of crystals and a white-light laser are used in
the system, real-time colour image holographic recording can also be realized”-48,

Multi-class object recognition can be achieved by using a synthetic discriminant
function filter displayed on an Epson liquid crystal display in the real-time intensity
correlator.  This is, to our knowledge, the first optical realization of the synthetic
discriminant function. We have shown a specific application of the real-time intensity
correlation using BSO and liquid crystal display. The established optical system has
immediate applications to optical neural networks.

The proposed quantized amplitude-compensated matched filter possesses good
discrimination and can be implemented with an Epson liquid crystal display operating
at its amplitude-mostly modulation mode. This is an interesting research topic in
optical pattern recognition.
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Chapter 8. Conclusions

We have experimentally investigated the nonlinear effects of a moving grating at
large fringe modulations, i.e. the nonlinear dependence of the enhancement of the
diffraction efficiency and the optimum fringe velocity on the fringe modulation. The
experiments provide, in certain circumstances, an insight into the grating formation.

We have applied optical bias to moving gratings to control the holographic
recordings. It has been shown that a suitable optical bias not only relaxes the
influence of the nonlinear dependence of the optimum fringe velocity on the fringe
modulation, but also enhances the diffraction efficiency, which is an unexpected
phenomenon.

To overcome the inherent drawback of poor discrimination in the intensity
correlation, we have realized real-time intensity edge enhancement by nonlinear
holographic recording in BSO and applied this technique to real-time intensity
correlation. The resulting improvement in discrimination is quite encouraging.

The moving grating technique has also been applied to real-time intensity
correlation. It has been shown that the random fluctuations in the diffraction
efficiency caused by transient energy transfer are considerably suppressed, which is
significant for the threshold setting of the correlator, and the signal-to-noise ratio of
the output is enhanced, important in a noisy environment.

We have also achieved colour object recognition by using a commercially available
liquid crystal television as the real-time input device in an intensity correlator. In this
research, real-time holographic recording using the coloured object was not adopted.
However, it can be achieved by using composite photorefractive crystals, e.g. BSO for
the green and blue primary colours and BTO for red, and a white laser in the optical
system.

Multi-class optical pattern recognition has been realized using a synthetic
discriminant function filter implemented with an Epson liquid crystal display in the
real-time intensity correlator. The problems in displaying the synthetic discriminant
function filter, the negative pixel values in the computed data and the accommodation
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to the linear dynamic range of the liquid crystal television, have been solved by
adopting an appropriate bias level and a scaling factor in the computed synthetic
discriminant function data. This is the first realization of a synthetic discriminant
function filter in an optical system. Experimental results are in good agreement with
computer simulations.

We have designed a new type of spatial filter, the quantized amplitude-
compensated matched filter. It is an amplitude-only filter with several discrete grey
levels, and so it accommodates an Epson liquid crystal television operating on the
amplitude-mostly modulation mode. It is also characterized by high discrimination in
optical pattern recognition. Therefore it would be a reasonable choice for both good
performance and real-time realization.

Lastly, we have demonstrated the advantages of the intensity correlator using the
Fresnel transform: these include the absence of coherent noise, relaxed requirements
on the alignment accuracy, and accommodation to spatial light modulators suffering
from significant phase variations. It also plays an important role in an optical system
which uses a laser diode array. As the structure of the laser diode array becomes
more and more practical, it will become very attractive in image processing. The
ideas of the real-time intensity correlator could be applied to optical neural networks,
where the advantages described in this thesis may improve the performance merits of
existing optical neural network systems.
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