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Abstract

We introduce an altered version of the four circulant construction over group rings

for self-dual codes. We consider this construction over the binary field, the rings

F2 + uF2 and F4 + uF4; using groups of order 4 and 8. Through these constructions

and their extensions, we find binary self-dual codes of lengths 16, 32, 48, 64 and 68,

many of which are extremal. In particular, we find forty new extremal binary self-dual

codes of length 68, including twelve new codes with γ = 5 in W68,2, which is the first

instance of such a γ value in the literature.

Key Words: Group rings; self-dual codes; codes over rings; extremal codes; four circu-

lant constructions.

∗Corresponding Author

1



1 Introduction

Self-dual codes are one of the most well-known families of codes and as such have received

an extensive interest in the coding theory community. The connection of self-dual codes to

such combinatorial objects as designs and association schemes as well as their connection

to lattices, invariant theory, cryptography have made them the focus of many researchers.

The classification of extremal binary self-dual codes, and the discovery of extremal binary

self-dual codes with new weight enumerators are active areas of research on self-dual codes.

There have been some well known construction methods for self-dual codes. The so-

called pure double circulant or simply double circulant construction was first introduced in

the 1960’s ([4, 24]). It is a classical technique for producing self-dual codes and it considers

generator matrices of the form (In|A) where A is a circulant matrix satisfying AAT =

−In. This method has been used extensively to construct self-dual codes since its inception

([17, 18, 19]). In [16], this method was extended to consider matrices A that arise from

group rings. Group rings have been used in the literature to construct self-dual codes from

different angles. In [1], an ideal of the group algebra F2S4 was used to construct the well-

known binary extended Golay code where S4 is the symmetric group on 4 elements. In [21],

an isomorphism between a group ring and a certain subring of the n× n matrices over the

ring was established. This isomorphism was used to produce self-dual codes in [22, 28]. In

[27], McLoughlin found that the [48, 24, 12] Type II code is a dihedral code.

Recently, in [9], the idea of using group ring elements to construct codes was extended

to any group G and consequently, G-codes were defined as codes that are ideals in the group

ring RG, where R is a finite Frobenius ring. In [16], a connection between certain group

ring elements called unitary units and self-dual codes was established and the connection

was used to produce many self-dual codes.

The double circulant matrix construction is one of the few well-known constructions

that use the idea of circulant matrices to reduce the search field. The bordered double cir-

culant construction is a variant while, the so-called four-circulant construction is a different

variation of the same idea, which was first introduced in [2]: Let G be the matrix[
I2n

A B

−BT AT

]
where A and B are circulant matrices. Then the code generated by G over Fp is self-dual

if and only if AAT +BBT = −In. Note that when the alphabet is a ring of characteristic 2,

then the matrix and the conditions can be written in an alternative form, where the negative

signs disappear.

In this work, we will consider constructing self dual codes from the following variation

of the four-circulant matrix. Consider the matrix
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[
I2n

A B

BT AT

]
where both A and B are matrices that arise from group rings. Depending on the groups,

the matrices will usually not be circulant matrices, which is a variation from the usual four-

circulant construction. Under this construction, we establish the link between units/non-

units in the group ring and corresponding self-dual codes. Using this connection for some

particular examples of groups over the field F2 and the rings F2 + uF2 and F4 + uF4 we are

able to construct many extremal binary self-dual codes of different lengths. In particular

we construct forty new binary extremal self-dual codes of length 68. Of these forty, twelve

have parameters γ = 5 in W68,2. These are the first examples of codes with such a γ value

in the literature.

The rest of the work is organized as follows. In section 2, we give the necessary back-

ground on codes, the alphabets we use and the group rings. In section 3, we give the con-

structions and the theoretical results about the group ring elements that lead to self-dual

codes. In sections 4 and 5, we apply the construction methods to produce the numerical

results, using MAGMA ([25]). The paper ends with concluding remarks and possible further

research directions.

2 Preliminaries

In this section, we will define self-dual codes over Frobenius rings of characteristic 2. We

will recall some of the properties of the family of rings called Rk and the ring F4 + uF4.

This section concludes with an introduction to group rings and an established isomorphism

between a group ring and a certain subring of the n× n matrices over a ring.

2.1 Self-Dual codes

Throughout this work, all rings are assumed to be commutative, finite, Frobenius rings with

a multiplicative identity.

A code over a finite commutative ring R is said to be any subset C of Rn. When the

code is a submodule of the ambient space then the code is said to be linear. To the ambient

space, we attach the usual inner-product, specifically [v,w] =
∑
viwi. The orthogonal with

respect to this inner-product is defined as C⊥ = {w | w ∈ Rn, [w,w] = 0,∀v ∈ C}. Since

the ring is Frobenius we have that for all linear codes over R, |C||C⊥| = |R|n. If a code

satisfies C = C⊥ then the code C is said to be self-dual. If C ⊆ C⊥ then the code is said to

be self-orthogonal.

For binary codes, a self-dual code where all weights divisible by 4, is said to be Type II

and the code is said to be Type I otherwise. Let dI(n) and dII(n) be the minimum distance
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of a Type I and Type II binary code of length n, respectively. Then, the bounds on the

minimum distances for self-dual codes are ([29]):

dII(n) ≤ 4
⌊ n

24

⌋
+ 4

and

dI(n) ≤

{
4b n

24
c+ 4 if n 6≡ 22 (mod 24)

4b n
24
c+ 6 if n ≡ 22 (mod 24).

Self-dual codes that meet these bounds are called extremal. In section 4, we will construct

extremal binary self-dual codes. The weight enumerator W (y) of a code is given by W (y) =∑n
i=0Aiy where Ai is the number of codewords of weight i. The possible weight enumerators

for extremal Type I codes of lengths 66 - 100 were determined in [11].

2.2 Rk family of rings

One of the The alphabets that we will use in this work, namely R1 = F2 + uF2 is a special

member of a more general family of rings characteristic 2 (Rk), which were defined in [13]

and [14]. For k ≥ 1, define Rk = F2[u1, u2, . . . , uk]/〈u2i = 0, uiuj = ujui〉 which can also

be defined recursively as Rk = Rk−1[uk]/〈u2k = 0, ukuj = ujuk〉 = Rk−1 + ukRk−1. For any

subset A ⊆ {1, 2, . . . , k} we will fix

uA :=
∏
i∈A

ui

with the convention that u∅ = 1. Then any element of Rk can be represented as∑
A⊆{1,...,k}

cAuA

where cA ∈ F2. An advantage of representing elements with this notation is that we can

easily observe that

uAuB =

{
0 if A ∩B 6= ∅
uA∪B if A ∩B = ∅

.

This leads to (∑
A

cAuA

)(∑
B

dBuB

)
=

∑
A,B⊆{1,...,k},A∩B=∅

cAdBuA∪B.

It is shown in [13] that the ring family Rk is a commutative ring with |Rk| = 2(2k). A

Gray map from Rk to F2k

2 was defined inductively starting with the map on R1: φ1(a+bu1) =

(b, a+ b). We recall that c ∈ Rk, c can be written as c = a+ buk−1, a, b ∈ Rk−1. Then

φk(c) = (φk−1(b), φk−1(a+ b)).
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The map φk is a distance preserving map and the following is shown in [14]. Let C be

a self-dual code over Rk, it is well known that φk(Rk) is a binary self-dual code of length

2kn ([14]). The next result which was introduced in [12] proves to be useful when extending

codes over R1:

Theorem 2.1. ([12]) Let C be a self-dual code over Rk of length n and G = (ri) be a j × n
generator matrix for C, where ri is the i-th row of G, 1 ≤ i ≤ k. Let c be a unit in Rk and

X be a vector in Rn
k with 〈X,X〉 = 1. Let yi = 〈ri, X〉 for 1 ≤ i ≤ k. Then the following

matrix 
1 0 X

y1 cy1 r1
...

...
...

yk cyk rk

 ,

generates a self-dual code C ′ over Rk of length n+ 2.

2.3 The ring F4 + uF4

Let F4 = F2 (ω) be the quadratic field extension of F2, where ω2 + ω + 1 = 0. The ring

F4 + uF4 is defined via u2 = 0. Note that F4 + uF4 can be viewed as an extension of

R1 = F2 +uF2 and so we can describe any element of F4 +uF4 in the form ωa+ ω̄b uniquely,

where a, b ∈ F2 + uF2.

A linear code C of length n over F4 + uF4 is an (F4 + uF4)-submodule of (F4 + uF4)
n.

In [15] and [7] the following Gray maps were introduced;

ψF4 : (F4)
n → (F2)

2n ϕF2+uF2 : (F2 + uF2)
n → F2n

2

aω + bω 7→ (a, b) , a, b ∈ Fn2 a+ bu 7→ (b, a+ b) , a, b ∈ Fn2 .

Those were generalized to the following maps in [26];

ψF4+uF4 : (F4 + uF4)
n → (F2 + uF2)

2n ϕF4+uF4 : (F4 + uF4)
n → F2n

4

aω + bω 7→ (a, b) , a, b ∈ (F2 + uF2)
n a+ bu 7→ (b, a+ b) , a, b ∈ Fn4

These maps preserve orthogonality in the corresponding alphabets. The binary images

ϕF2+uF2 ◦ ψF4+uF4 (C) and ψF4 ◦ ϕF4+uF4 (C) are equivalent. The Lee weight of an element is

defined to be the Hamming weight of its binary image.

Let C be a self-orthogonal code over F4 +uF4. It is shown in ([26]) that ψF4+uF4 (C) and

ϕF4+uF4 (C) are also self-orthogonal. It is also shown that if C is a Type I (resp. Type II)

code over F4 + uF4 if and only if ϕF4+uF4 (C) is a Type I (resp. Type II) F4-code, if and

only if ψF4+uF4 (C) is a Type I (resp. Type II) F2 + uF2-code. Additionally, they prove that

the minimum Lee weight of C is the same as the minimum Lee weight of ψF4+uF4 (C) and

ϕF4+uF4 (C).
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To shorten the notation when using in the tables in subsequent sections, we use the

ordered basis {uω, ω, u, 1} to express the elements of F4+uF4 in hexadecimals. For instance,

1 + uω corresponds to 1001, which is represented by the hexadecimal 9, while 1 + ω + uω

corresponds to 1101, which is represented by D.

2.4 Certain Matrices and Group Rings

Before we introduce group rings, we need to define a circulant matrix and a block circulant.

For further details on circulant matrices see [6]. Note that circ(a1, a2, . . . , an) means the

circulant matrix whose first row is (a1, a2, . . . , an) and CIRC(A1, A2, . . . , An) represents a

block circulant matrix whose first row of block matrices are A1, A2, . . . , An.

Let G be a finite group or order n, then the group ring RG consists of
∑n

i=1 αigi, αi ∈ R,

gi ∈ G. Addition in the group ring is done by coordinate addition, namely
n∑
i=1

αigi +
n∑
i=1

βigi =
n∑
i=1

(αi + βi)gi.

The product of two elements in a group ring is given by(
n∑
i=1

αigi

)(
n∑
j=1

βjgj

)
=
∑
i,j

αiβjgigj.

It follows that the coefficient of gi in the product is
∑

gigj=gk
αiβj.

The following construction of a matrix was first given by Hurley in [21]. Let R be a finite

commutative Frobenius ring of characteristic 2 and let G = {g1, g2, . . . , gn} be a group of

order n. Let v = αg1g1 + αg2g2 + · · ·+ αgngn ∈ RG. Define the matrix σ(v) ∈ Mn(R) to be

σ(v) = (αg−1
i gj

) where i, j ∈ {1, 2, · · · , n}.

We note that the elements g−11 , g−12 , . . . , g−1n are the elements of the group G in a given

order. We will now describe σ(v) for the group ring RG where G = C4n. Let

G = 〈x |x4n = 1〉 ∼= C4n. If v =
2n−1∑
i=0

αi+j+1(αi+1x
2i + αi+2n+1x

2i+1) ∈ RC4n, then

σ(v) =

(
A B

B′ A

)
where A = circ(α1, . . . , α2n), B = circ(α2n+1, . . . , α4n), B′ = circ(α4n, α2n+1, . . . , α4n−1) and

αi ∈ R.

3 The Construction

Let v ∈ RG where R is a finite commutative Frobenius ring of characteristic 2 and G is a

finite group of order 4n. Define the following matrix:

6



M (σ) =

 I8n

σ (v)

(
A1 A2

A′2 A1

)
(
A1 A2

A′2 A1

)T

σ (v)T


Let Cσ be a code that is generated by the matrix M(σ). Then, the code Cσ has length 16n.

We will now provide conditions when the above construction produces self-dual codes. We

also provide a connection (when using this construction) between self-dual codes and units

and non-units in a group ring.

Theorem 3.1. Let R be a finite commutative Frobenius ring of characteristic 2 and let G

be a finite group of order 4n. If I + σ(v)σ(v)T +
(
A1 A2

A′2 A1

)(
A1 A2

A′2 A1

)T
= 0 and σ(v) commutes

with
(
A1 A2

A′2 A1

)
then Cσ is a self-dual code of length 16n.

Proof. Clearly, Cσ has free rank 8n as the left hand side of the generator matrix is

the 8n by 8n identity matrix. Now,

M(σ)M(σ)T =

I + σ(v)σ(v)T +
(
A1 A2

A′2 A1

)(
A1 A2

A′2 A1

)T
σ(v)

(
A1 A2

A′2 A1

)
+
(
A1 A2

A′2 A1

)
σ(v)(

A1 A2

A′2 A1

)T
σ(v)T + σ(v)T

(
A1 A2

A′2 A1

)T
I +

(
A1 A2

A′2 A1

)T (
A1 A2

A′2 A1

)
+ σ(v)Tσ(v)


=

I + σ(vv∗) +
(
A1AT

1 +A2AT
2 A1(A′T2 +A2AT

1

A′2A
T
1 +A1AT

2 A′2(A
′T
2 +A1AT

1

)
σ(v)

(
A1 A2

A′2 A1

)
+
(
A1 A2

A′2 A1

)
σ(v)(

A1 A2

A′2 A1

)T
σ(v)T + σ(v)T

(
A1 A2

A′2 A1

)T
I +

(
AT

1 A1+(A′T2 A′2 A
T
1 A2+(A′T2 A1

AT
2 A1+AT

1 A
′
2 AT

2 A2+AT
1 A1

)
+ σ(v∗v)

 .

If I + σ(v)σ(v)T +
(
A1 A2

A′2 A1

)(
A1 A2

A′2 A1

)T
= 0 and σ(v) commutes with

(
A1 A2

A′2 A1

)
then Cσ is

self-orthogonal and so Cσ is self-dual.

Corollary 3.2. Let R be a finite commutative Frobenius ring of characteristic 2, and let G

be a finite group of order 4n. Let Cσ be self-dual. If A1A
T
1 +A2A

T
2 = 0, A1(A

′
2)
T +A2A

T
1 = 0

and A′2(A
′
2)
T + A1A

T
1 = 0, then v ∈ RG is a unitary unit.

Proof. If Cσ is self-dual, clearly σ(vv∗) = I+
(
A1 A2

A′2 A1

)(
A1 A2

A′2 A1

)T
. If A1A

T
1 +A2A

T
2 = 0,

A1(A
′
2)
T + A2A

T
1 = 0 and A′2(A

′
2)
T + A1A

T
1 = 0, then σ(vv∗) = I. Therefore vv∗ = 1 and v

is unitary unit.

Corollary 3.3. Let R be a finite commutative Frobenius ring of characteristic 2, and let G

be a finite group of order 4n. Let Cσ be self-dual. If A1A
T
1 +A2A

T
2 = I, A1(A

′
2)
T +A2A

T
1 = 0

and A′2(A
′
2)
T + A1A

T
1 = I, then v ∈ RG is a non-unit.
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Proof. If Cσ is self-dual, clearly σ(vv∗) = I+
(
A1 A2

A′2 A1

)(
A1 A2

A′2 A1

)T
. If A1A

T
1 +A2A

T
2 = I,

A1(A
′
2)
T +A2A

T
1 = 0 and A′2(A

′
2)
T +A1A

T
1 = I, then σ(vv∗) = 0. Now, vv∗ is a non-unit by

Corollary 3 in [21]. Therefore, v ∈ RG is a non-unit.

4 Extremal binary self-dual codes from the construc-

tions

In this section, we will present the results obtained using the construction described in

section 3, to construct self-dual codes for certain groups of order 4 and 8. We finish with

constructing new extremal self-dual codes of length 68.

4.1 Construction coming from C4

Here we present the results for the above construction using the group C4. We construct

self-dual codes of length 64 by considering this construction over F4 + uF4. Note that

(α1, . . . , α4n) represents the first row of the image of σ(v) (for a given group ring RG) and

(a1, . . . , a4n) represents the first row of the matrix
(
A1 A2

A′2 A1

)
.

We recall that the possible weight enumerators for a self-dual Type I [64, 32, 12]-code is

given in [5, 11] as:

W64,1 = 1 + (1312 + 16β) y12 + (22016− 64β) y14 + · · · , 14 ≤ β ≤ 284,

W64,2 = 1 + (1312 + 16β) y12 + (23040− 64β) y14 + · · · , 0 ≤ β ≤ 277.

With the most updated information, the existence of codes is known for β =14, 18, 22, 25,

29, 32, 35, 36, 39, 44, 46, 53, 59, 60, 64 and 74 in W64,1 and for β =0, 1, 2, 4, 5, 6, 8, 9, 10,

12, 13, 14, 16, . . . , 25, 28, 19, 30, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 48, 50, 51, 52, 56,

58, 64, 72, 80, 88, 96, 104, 108, 112, 114, 118, 120 and 184 in W64,2.

We apply the construction C4 over the ring F4 +uF4 to generate self-dual codes of length

16, whose Gray images are extremal binary self-dual codes of length 64. The codes in the

following table all have weight enumerators in W64,2.
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Table 1: Extremal binary self-dual codes of length 64 from self-dual codes over F4 + uF4 of

length 16 via C4

Ci (α1, . . . , α4) (a1, . . . , a4) |Aut(C)| β Ci (α1, . . . , α4) (a1, . . . , a4) |Aut(C)| β
1 (0, 1, A, 9) (2, 4, 3, 4) 24 0 2 (0, 9, 4, F ) (2, 4, 2, 5) 25 0

3 (2, 1, 2, 1) (0, 6, 9, 4) 26 0 4 (0, 1, A, 9) (8, 6, B, 6) 24 4

5 (A, 9, A, 9) (0, 6, B, 6) 25 4 6 (0, 2, 0, 6) (8, 7, 1, B) 24 8

7 (0, 8, 0, 4) (8, 7, 9, B) 25 8 8 (0, 1, 2, 9) (8, 6, 9, 6) 24 12

9 (0, 9, 0, 9) (8, 6, B,C) 25 12 10 (0, 2, A, 6) (8, 5, 1, B) 24 16

11 (A, 9, A, 9) (2, 4, 3, E) 25 16 12 (0, 9, 2, 1) (A, 6, 1, 6) 24 20

13 (2, 9, 2, 9) (A, 4, 9, E) 25 20 14 (0, 1, 0, 9) (A, 6, 9, 4) 24 24

15 (2, 9, 2, 9) (1, C, 9, F ) 25 24 16 (0, 9, 8, 9) (2, 6, 1, 6) 24 28

17 (0, 6, 9, E) (4, 7, C,D) 25 28 18 (2, 9, 4, 7) (9, 4, 3, F ) 24 32

19 (A, 9, 8, 9) (2, 4, 9, E) 25 32 20 (0, 9, A, 9) (0, 6, 1, 4) 24 36

21 (0, 9, 0, 9) (A, 4, 9, E) 25 36 22 (0, 8, 2, 4) (8, 7, 1, 3) 25 40

23 (2, 4, 9, 4) (6, 5, 6, 5) 25 44 24 (A, 1, 6, 5) (0, 4, 0, 7) 24 · 3 48

25 (8, 1, 8, 1) (0, 6, 9, 4) 25 48 26 (A, 1, A, 1) (A, 1, A, 1) 25 52

4.2 Construction coming from C8

Here we present the results for the above construction using G = C8. We construct self-

dual codes of length 64 by considering this construction over F2 + uF2. Again, (α1, . . . , α4n)

represents the first row of the image of σ(v) (for a given group ring RG) and (a1, . . . , a4n)

represents the first row of the matrix
(
A1 A2

A′2 A1

)
. We replace 3 with u+ 1 to save space.

Table 2: Type I Extremal binary self-dual codes of length 64 from self-dual codes over

F2 + uF2 of length 32 via C8.

Di (α1, . . . , α8) (a1, . . . , a8) |Aut(C)| W64,2 Di (α1, . . . , α8) (a1, . . . , a8) |Aut(C)| W64,2

1 (u, u, 0, 1, 0, 1, u, 3) (u, u, 1, 1, u, u, 3, 1) 25 0 2 (u, 0, 0, u, u, u, 1, 3) (u, u, 1, 1, u, 1, 1, 3) 25 16

3 (u, u, u, 0, u, u, 1, 3) (u, 0, 1, 3, u, 1, 1, 3) 26 16 4 (0, 0, 0, u, 0, 0, 1, 3) (u, 0, 1, 3, u, 1, 1, 3) 27 16

5 (u, 0, u, u, u, 0, 1, 1) (u, 0, 1, 3, 0, 1, 1, 3) 25 32 6 (0, 0, 0, u, u, 0, 1, 1) (u, 0, 1, 3, 0, 1, 3, 3) 25 48

7 (u, 0, u, u, 0, 0, 1, 3) (u, 0, 1, 3, u, 1, 3, 3) 27 80

5 New Codes of length 68

In this section, we construct forty new extremal self-dual codes of length 68 by extending

certain previously constructed codes of length 64 (using Theorem 2.1) from Tables 1 & 2.

In particular we construct the first examples of codes with γ = 5 in W68,2.
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5.1 New Codes of length 68 from (F4 + uF4)C4

The possible weight enumerator of an extremal binary self-dual [68, 34, 12]-code is in one of

the following forms by [11, 3, 20, 10]:

W68,1 = 1 + (442 + 4β) y12 + (10864− 8β) y14 + · · · , 104 ≤ β ≤ 1358,

W68,2 = 1 + (442 + 4β) y12 + (14960− 8β − 256γ) y14 + · · ·

where 0 ≤ γ ≤ 9. Recently, Yankov et al. constructed the first examples of codes with a

weight enumerator for γ = 7 in W68,2 ( [30] ). In [10] and [8], more unknown W68,2 codes

were constructed. Together with these, the existence of the codes in W68,2 is known for;

γ = 0, β = 0, 7, 11, 14, 17, 21, 22, 28, 33, 35, 42, 44, . . . , 158,159, 161, 163, 165,

175, 187, 189, 203, 209, 221, 231, 255, 303 or

β ∈ {2m|m = 17, 20, 102, 110, 119, 136, 165 or 80 ≤ m ≤ 99} ;

γ = 1, β = 49,51,53,55, 57, 59, . . . , 160,161,163,165,167,169,171 or

β ∈ {2m|m = 22,24, . . . , 29, 81, . . . , 90, 92, . . . , 96} ;

γ = 2, β = 58,65,69,71,73,75,77,79,81,157,159, 206, 208 or β ∈ {2m|30 ≤ m ≤ 100} or

β ∈ {2m+ 1|41 ≤ m ≤ 77} ;

γ = 3, β = 87,89,95,97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,

131,133, 135,137, 139, 141, 143, 145,147,149,151,153, 155, 159, 161,193 or

β ∈ {2m |m = 41, . . . ,92, 94, 95, 97, 98, 101, 102} ;

γ = 4, β = 129, 139, 141, 143, 145, 149, 157, 161 or

β ∈ {2m |m = 43, 48, 49,50, 51, 52, 54, 55, 56, 58, 60, . . . ,78,79, 80,81,85, 87, 97, 98} ;

γ = 6 with β ∈ {2m|m = 69, 77, 78, 79, 81, 88}
γ = 7 with β ∈ {7m|m = 14, . . . , 39, 42} .

Recall that the previously constructed codes of length 64 (from Table 1) are codes over

F4 + uF4. In order to apply Theorem 2.1, it requires the codes to be over F2 + uF2. Before

considering extensions of these codes, we need to use the Gray map ψF4+uF4
to convert them

to a code over F2 + uF2. The following table details the new extremal self-dual codes of

length 68. For each new code constructed we note the original code of length 64 from Table

1, the unit c ∈ F2 + uF2, the vector X required to apply Theorem 2.1. Again, we replace

u+ 1 with 3 to save space.
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Table 3: Type I Extremal Self-dual codes of length 68 as extensions.

C68,i Ci c X γ β C68,i Ci c X γ β

C68,1 1 1 (u301013311u33uu03030303u31uuuu00) 4 97 C68,2 1 1 (u3u1u01030u33333u0uu1u303u1u11uu) 4 99

C68,3 1 1 (013u00uu330330u3330000uu1u3011u0) 4 101 C68,4 1 3 (303u003131031u3u3100u331113u3u3u) 4 103

C68,5 1 3 (1u1u0u3u3uu1uu003331000u1313uuuu) 4 105 C68,6 1 1 (10u1110001010uu1uu30u11131u3313u) 4 111

C68,7 1 3 (033u13u03303013u31111130u111103u) 4 117 C68,8 1 1 (00301u333u0u1111010331u03u1u303u) 4 121

C68,9 1 1 (u1u0u33u3u0u0113uu03130u33110311) 4 123 C68,10 1 1 (333300u013uu133uu3u1130000113100) 4 125

C68,11 3 3 (u33u3u0u10100u1000u10uu133031111) 3 80 C68,12 4 1 (01uu1313u3003u0u3u1001u1u1u1u330) 3 93

C68,13 12 1 (31u1u3u011u31013u10003uu311u0103) 4 137 C68,14 14 1 (3uu30u333u3u0300uu33u030u0110uu3) 5 164

C68,15 20 3 (3u0311u0uuu30311uu0313u110u13013) 3 167 C68,16 21 1 (130u133uu3u1u1u31001u1101311u13u) 4 170

C68,17 22 3 (u03101u313u3u3100300u111u00u1133) 4 164 C68,18 22 1 (13u01300011301u10300u330310001uu) 4 172

C68,19 22 1 (331u3u333u00310uuuuu01u110u30130) 4 176 C68,20 22 1 (u30uu1331333u3113103uu000101331u) 4 178

C68,21 22 3 (1u1110u03301133330u113330311u01u) 4 180 C68,22 22 1 (33uu3303uu1u1u310u11u31u30uu0uu1) 4 182

C68,23 22 1 (133u33301u01u01u3uu1111001u0u1u3) 4 184

5.2 New Codes of length 68 from R1C8

We now consider extensions of the previously constructed codes of length 64 from Table 2.

The following table records newly constructed extremal self-dual codes of length 68. Again,

we note the original code of length 64 from Table 2, the unit c ∈ F2 + uF2, the vector X

required to apply Theorem 2.1. Recall that we replace u+ 1 with 3 to save space.

Table 4: Type I Extremal Self-dual code of length 68 from C8 over R1.

C68,i Di c X γ β C68,i Di c X γ β

C68,24 1 3 (310013u13uu13uu1u1u33103u0u3103u) 0 41 C68,25 1 1 (101u303u0300001u133u13311u3uu000) 0 43

C68,26 7 3 (3u011301uuuuu3130311u00u3u111031) 1 182 C68,27 7 3 (0030000u0011033103300u0uu3133131) 1 194

C68,28 7 1 (30130u00uu1u110011u110u133010u01) 1 196 C68,29 7 1 (3100131u10uu1303uuu101u3310u0311) 1 198

5.3 New self-dual codes of length 68 from Neighboring construc-

tion

Two self-dual binary codes of dimension k are said to be neighbors if their intersection has

dimension k − 1. Let C = C68,14 be the code with weight enumerator for γ = 5, β = 164 in

Table 3 In order to reduce down the search field without loss of generality, we consider the

standard form of the generator matrix of C. Let x ∈ Fn2 − C then D =
〈
〈x〉⊥ ∩ C, x

〉
is a

neighbour of C. The first 34 entries of x are set to be 0, the rest of the vectors are listed in

Table 5. As neighbors of C we obtain eleven new codes with weight enumerator γ = 5 in

W68,2, which are listed in Table 5.
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Table 5: New codes of length 68 with γ = 5 as neighbors of C68,14

N68,i (x35, x36, ..., x68) β N68,i (x35, x36, ..., x68) β

N68,1 (0110101010010100011001010111010100) 158 N68,2 (0111110010000010000110010001100011) 159

N68,3 (0011001010000111011101011100001010) 160 N68,4 (0011001001111011110000100010001011) 161

N68,5 (1111010100111100101010100101011101) 162 N68,6 (1011000110011110001000001011101100) 163

N68,7 (0100000101101010110011100100101011) 165 N68,8 (0011101110110100101101011100101000) 166

N68,9 (0101000000110000100011111101101000) 167 N68,10 (0010100101000010111011010000011111) 168

N68,11 (1000111110001110101001100011101010) 169

6 Conclusion

In this work, we introduced a new construction for constructing self-dual codes using group

rings. We provided certain conditions when this construction produces self-dual codes and

we established a link between units/non-units and self-dual codes. We demonstrated the

relevance of this new construction by constructing many extremal binary self-dual codes,

including new extremal self-dual codes of length 68. All the new codes have an automor-

phism group of order 2. In particular, we were able to construct the following extremal

binary self-dual codes with new weight enumerators in W68,2, including the first instances of

γ = 5 in the literature:

(γ = 0, β = {41, 43}),
(γ = 1, β = {182, 194, 196, 198}),
(γ = 3, β = {80, 93, 167}),
(γ = 4, β = {97, 99, 101, 103, 105, 111, 117, 121, 123, 125, 137, 164, 170, 172, 176,

178, 180, 182, 184}) and

(γ = 5, β = {158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169}).

Because of the computational limitations that the construction method brings, we were

able to consider the groups of order 4 and 8. However, a look at larger groups may lead to

further results with a higher computational power. Another direction of research could be

considering other families of rings.
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