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Abstract— We developed an application that makes indoor 
modelling accessible by utilizing consumer grade technology in 
the form of Apple’s ARKit and a smartphone to assist with 
serious games level design. We compared our system to that of 
a tape measure and a system based on an infra-red depth sensor 
and application. We evaluated the accuracy and efficiency of 
each system over four different measuring tasks of increasing 
complexity. Our results suggest that our application is more 
accurate than the depth sensor system and as accurate and more 
time efficient as the tape measure over several tasks. 
Participants also showed a preference to our LevelEd AR 
application over the depth sensor system regarding usability. 
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I. INTRODUCTION 
When developing serious games, designers often create 

virtual worlds from scratch that facilitate the user and the 
intended experience. However, we believe a serious game 
virtual world, which employs a personal space or addresses 
prior user knowledge, will benefit from being based on a real-
world location rather than imagination. Serious games such as 
a virtual reality (VR) wheelchair driving simulator [1], virtual 
evacuation training [2] and virtual fire safety training [3] 
would all benefit from allowing users to train in particular 
environments in which these events or users utilise. In all these 
cases, rigorous spacing and accurate depiction of distances 
and gaps play a very important role in the simulators’ 
efficiency and usability. There is also a potential benefit for 
entertainment and serious games applications that support 
passive haptics and substitutional reality [4].  

To enable the complex task of indoor modeling a 
multitude of techniques are currently available. Static and 
mobile laser scanners are used to create complex point cloud 
virtual models which are commonly used in construction [5]. 
Mapping systems that utilize infra-red (IR) depth sensors [6] 
to model an indoor space are beginning to be used by interior 
designers and builders. Manual capture of measurements with 
a tape measure on a floor plan are often used for do-it-yourself 
(DIY) projects. These techniques, whilst effective can be time 
consuming and are not always accessible, due to cost and 
technical ability required for use. The resulting model/data 
produced is often not suitable for use in a serious game 
without significant adjustments. 

This paper describes an augmented reality (AR) 
smartphone application called LevelEd AR built using 
Apple’s ARKit. This application allows users to capture a 
model of a real-world location that is suitable for use in a game 
engine, such as Unity to aid serious games level design. This 
paper contributes an evaluation of accuracy and usability of 

our system compared to alternative low cost options as well as 
an example workflow for the system (Fig. 1). 

II. RELATED WORK 
To our knowledge, there are no academic works currently 

utilizing or evaluating Apple’s ARKit augmented reality 
framework as part of an indoor modelling system. Similar 
commercial systems now exist [7], but these focus mainly on 
the floor plan and not size and placement of objects within the 
space. There are, however, several academic works utilizing 
ARKit to develop systems in other domains [8][9]. Fusco and 
Coughlan [8] utilized ARKit to develop an indoor localization 
system for users with visual impairments. Whilst Dilek and 
Erol [9] produced an educational system for generating 
position-time graphs in real-time. Our work will contribute 
further to the results of these papers on the accuracy, usability 
and issues of ARKit and will benefit future systems.  

The work on non-ARKit indoor modelling techniques is 
numerous. Systems built around laser scanning and 
photogrammetry have existed for many years. These systems 
have been used for building information modelling (BIM) 
[10]. This work has resulted in industrial laser scanning 
systems now commonly used in construction to create point 
cloud models of a site or indoor space [6]. However, these 
point cloud models are not suitable for use in serious games 
due to their complexity, lack of polygonal mesh data and 
inclusion of every object in that space present at the time of 
the scan. Turner and Zakhor [11], developed a system that 
initially generates 2D floor plans from complex point cloud 
data and then extrudes a simplified 3D model from the floor 
plan. This system is mostly effective at developing indoor 
models that are more suitable for serious game virtual 
environments than raw 3D point cloud data. However, it still 
requires the initial collection of 3D point cloud data from laser 
scanners, which are costly; and the system focuses only on 
recreating walls and not furniture or objects within the space. 
Some researchers have also explored systems that utilize 
infrared (IR) depth sensors to model indoor spaces in real- 
time. Kalantari and Nechifor [6], developed a custom 
application that utilises Occipital’s Structure Sensor attached 
to an iPad to model indoor spaces in real-time by scanning the 
area with an iPad. However, this often produced models that 
suffered from walls collapsing inwards when multiple walls 
were mapped. The system also requires additional or specific 
hardware to work that can be complex for users to learn and 
costly. LayoutNet [12] solves this problem by reconstructing 
a room layout in 3D based on a single RGB panoramic image 
using a convolutional neural network (CNN). The system is 
reasonably effective for standard  shaped rooms but struggles  
with irregular rooms and only maps the wall. 



 
Figure 1.  LevelEd AR workflow from LevelEd AR to Unity game engine. (a): Users selects a room to model (b): User is mapping the dividing wall; the 

shape, scale and location will be captured. (c): User has completed the mapping of the shape, size and location of the table. (d): The data has been downloaded 
and the model generated in Unity.  (e): A users has used the model as a guide to develop a 3D virtual environment for a serious game with correct scale.

Based on our review of the literature an indoor modelling 
system that is suitable for serious games level design has not 
been developed or investigated. Such a system should: 
produce a simplified mesh model that can be used directly in 
a serious game virtual environment or as a guide during 
development; model both walls and objects within the space, 
accurately placed with respect to their location, where 
necessary, including irregular rooms; give the user the choice 
as to what parts of a space are modelled or not modelled; be 
accessible to users without the requirement of additional 
costly and complex hardware. We have addressed these issues 
with the development of our LevelEd AR indoor modelling 
application which is described in the next section. 

III. SYSTEM OVERVIEW 
One of the aims for LevelEd AR was to ensure it is widely 

accessible by making use of readily available consumer 
technology. LevelEd AR was built using Unity 2017.1, and 
Apple’s ARKit 1.0 was selected for this project due to the 
wide availability of existing compatible devices. As of July 
2017, there were an estimated 380 million ARKit compatible 
smartphone devices. This is expected to grow to 850 million 
by 2020 [13]. There is also potential to port the application to 
Google’s ARCore for Android devices to further improve 
availability.  

With LevelEd AR, users can model the scale, location and 
general shape of walls and objects in a real-world location 
using an AR view. Users can model walls by placing AR 
markers at intersections of walls within a room to map out the 
base of the walls (Fig. 1b). Users can also model 3D objects 
by placing markers to surround the object (Fig. 1c). This can 
be an object of any number of sides but in the experiment, it 
was set to four to aid usability for new users. Once the base 
markers are in place for a wall or object, the user can raise up 
a second set of markers and connecting edges for the height of 
the wall/object. This results in a wireframe model of the 
mapped objects. 

LevelEd AR makes use of several key ARKit functions, 
such as the ability to detect horizontal planes and key points 
of interest. The system works by casting a ray into the scene 
from the centre of the screen (filled with the AR camera view). 
A marker object tracks the raycast hit location and can then be 
anchored in place with a tap of the screen. The marker 
locations are used to create data in the form of wall objects (a 
series of planes) or 3D objects (of any number of sides). The 
data is serialized to a file and then uploaded to a webserver 
once complete. In Unity, the data can be downloaded and a 
model of the environment generated (Fig. 1d) from the data to 
be used as part of the level design process as a guide or in 
some cases such as walls, used in the final version of the 
level/virtual environment (Fig. 1e). 

IV. EXPERIMENT METHODOLOGY 
To evaluate the accuracy and usability of LevelEd AR, 

participants were asked to complete four separate measuring 
tasks with the time taken to complete each task also recorded. 
These tasks were as follows: Task 1: Measuring a single wall 
– the length and height were captured. Task 2: Measuring a 
small cupboard with open space around all sides – the length, 
depth and height of the small cupboard were captured. Task 
3: Measuring a large cupboard against a wall – the length, 
depth and height of the large cupboard were captured. Task 
4: Measuring four consecutive walls and a small filing cabinet 
– measurements recorded were the length and height of each 
wall (Task 4.1), the length, depth and height of the small filing 
cabinet (Task 4.2) and the distance of the cabinet from the first 
wall (Task 4.3). 

Participants completed the measurement of the four tasks 
using three different measuring instruments. These 
instruments were selected based on their similarity in cost and 
accessibility to the proposed system. The instruments were: 
Measuring tape and paper: users manually measured the 
tasks using a tape measure and recorded the measurements on 
a sheet of paper provided. Room Capture application and 
Structure Sensor: users used an iPad Pro 10.5'' with a 
Structure Sensor attachment along with the Occipital Room 
Capture software to scan the task locations and then gather the 
specified measurements. LevelEd AR application: users 
used an iPhone 7 Plus and the LevelEd AR application to 
model the tasks in AR. Participants utilized all three 
measuring instruments to complete all four measuring tasks. 
A randomized crossover design was used for both the order of 
measuring instruments utilized and the order of measuring 
tasks completed. 

The experiment was completed by 18 participants 
recruited from students and academic/support staff from 
across the university. They consisted of 3 females and 15 
males ranging from 18-59 years of age. 27.8% were between 
the ages of 50-59, 5.6% between the ages of 40-49, 22.2%  
between the ages of 30-39 and 44.4% between the ages of 18-
29. Prior experience of AR was mixed with 16.7% having no 
prior experience, 38.9% rating themselves as novices, 27.8% 
rating themselves as intermediate and 16.7% rating 
themselves as advanced. 

V. EXPERIMENT RESULTS 
In our analysis, the measuring techniques used are called 

instruments and denoted with “Tape” for measuring tape and 
paper (which was also used as the ground truth), “LevelEd” 
for our AR application and “Structure” for the Structure  
Sensor and Occipital Room Capture application. The 
significance was tested by employing a two-way repeated 



 
Figure 2. (a): Task 1 – Area measurement of single wall, (b): Task 2 – Volume measurement of small box, (c): Task 3 – Volume measurement of larger box 
against a wall, (d): Task 4.1 – Area measurement of 4 continuous walls, (e): Task 4.2 – Volume measurement of small box, (f): Task 4.3 – Gap measurement 
between Task 4.2 box and starting wall of Task 4.1. 

measures ANOVA for both measurements and time, a method 
supported by the very large effect sizes observed throughout. 
The degrees of freedom were adjusted to the lower bound 
estimate according to the result of the sphericity test. 

A. Measurements 
 The results show that the instruments significantly differ 
from each other in terms of performance overall (F(2,34) = 
73.89, p<.001, η2p = .813). The same effect was observed for 
the tasks in all cases, which suggests the tasks vary 
significantly in complexity (F(1,17) = 4533.90, p<.001, η2p = 
.996). Moreover, with respect to the interaction between 
instruments and tasks, we observed that each instrument 
performs significantly stronger on some of the tasks but 
weakly on others (F(1,17) = 20.14, p<.001, η2p = .542), an 
important result which needs to be investigated further. We 
followed up the significant interaction with six separate one-
way ANOVAs. The results were plotted in order to identify 
and visualize significant trends, which will help characterize 
better the interaction between instrument and task. Hence, 
planned contrasts showed that for Task 1, the Tape value was 
significantly larger than Structure’s measurement 
(F(1,17)=88.47, p<0.001, η2p = 0.839). The lack of 
complexity in this task brought no difference regarding 
traditional point-by-point measurements, however Structure’s 
under reported measurements could be due to collapsing walls 
shortening the distances recorded as previously experienced 
by others [6]. 

 Unlike the first task, the second task showed no difference 
between LevelEd and Structure, however, both were 
significantly separated by the ground truth (F(1,17)=7.06, 
p=0.017, η2p = 0.293; F(1,17)=13.94, p=0.002, η2p = 0.450). 
In this task, the complexity increased, and the LevelEd results 
supported by several large outliers were not significantly 
different to the large variation in the Structure measurements. 
In the next two, more complex tasks (Fig. 2c & 2d), the 
Structure sensor showed a significant loss in accuracy in 
comparison with the other two instruments (Tape: Task 3 - 
F=86.01, p<0.001, η2p =0.835; Task 4.1 - F=212.13,p<0.001, 
η2p =0.926 and LevelEd: Task 3 - F=36.59, p<0.001, η2p = 
0.683;  Task 4.1 - F=37.70, p<0.001, η2p = 0.689). Task 3 
featured a much larger box situated next to a wall, which 
increased the complexity of the task. Task 4 required 
participants to move the iPad more significantly whilst 

completing the task with Structure. This often resulted in walls 
shortening in the scanned model [6], as reported above for 
Task 1. This was not as pronounced with LevelEd. 

Results recorded for Task 4.2, showed the same pattern as 
for Task 2 where the same type of measurement was required 
(Fig. 2e). At this task, both instruments employed failed to 
show differences, providing in the process a loss in accuracy 
and larger variations over Tape. Some of the factors 
responsible for this result were the task’s limited complexity, 
the order completed within Task 4, and subsequent exhaustion 
of the participants. Another aspect for LevelEd with Task 4.2 
is the potential for drift (tracking inaccuracies) to occur, 
increasing over time. Finally, at Task 4.3, as expected the 
Tape measurement was larger than Structure’s (F=85.63, 
p<0.001, η2p =0.834) with LevelEd being no different than the 
ground truth (see Fig. 2f). However, the larger variation in the 
measurements of LevelEd may be explained due to the 
potential for drift to occur more frequently over time with 
markerless AR [8][9].  

B. Time 
Similarly, for the time (measured in seconds), significant 

differences were observed throughout the test between the 
choices of the instrument (F(2,34) = 116.99, p<.001, η2p = 
.873). The same effect was observed for the individual tasks, 
hence their significant difference in complexity was 
preserved.  Moreover, in this case, there were only four tasks 
as the duration of the sub-tasks of Task 4 were summed up 
(F(1,17) = 249.58, p<.001, η2p = .936). We observed that each 
instrument performs significantly different with each 
completed task (F(1,17) = 119.36, p<.001, η2p = .875).  

Following the same pattern, we observed that for the first 
task (Fig. 2g) the time required to perform the measurements 
differed significantly between all three instruments, with the 
Structure instrument being the fastest. Planned contrasts (four 
separate one-way ANOVAs) showed that for Task 1, the time 
participants spent using the Tape instrument was significantly 
larger than using LevelEd (F(1,17)=46.75, p<0.001, η2p = 
0.733) and Structure (F(1,17)=80.23, p<0.001, η2p = 0.825). 
Moreover the time using LevelEd was subsequently higher 
than using the Structure (F(1,17)=40.44, p<0.001, η2p = 
0.704). The results of Task 2 (Fig. 2h) showed that the time 
spent using Structure was significantly lower than both other 



instruments (vs. Tape - F(1,17)=84.41, p<0.001, η2p = 0.832); 
vs. LevelEd - F(1,17)=31.15, p<0.001, η2p = 0.647)). The 
same pattern was observed for Task 3 (Fig. 2i), where using 
the Structure proved to be the most efficient time-wise (vs. 
Tape - F(1,17)=93.36, p<0.001, η2p = 0.846); vs. LevelEd – 
F(1,17)=21.18, p<0.001, η2p = 0.587). The similar time 
between LevelEd and Tape could be due to the boxes being 
sufficiently small enough for the participant to easily capture 
the three measurements required to calculate the volume with 
Tape.  

A similar behaviour to Task 1 was registered for the last 
task, the most time consuming one (Fig. 2j). Planned contrasts 
showed that for Task 4, the time participants spent using the 
Tape instrument was significantly larger than using LevelEd 
(F(1,17)=103.81, p<0.001, η2p = 0.859) and Structure 
(F(1,17)=286.01, p<0.001, η2p = 0.944), Moreover the time 
using Structure was overall lower than all the others (vs. 
LevelEd - F(1,17)=78.78, p<0.001, η2p = 0.823). As the tasks 
increased in complexity, the gap between Tape and the other 
two instruments appears to have increased. 

VI. DISCUSSION 
The results of the experiment show that the LevelEd AR 

application measurements are closer to the Tape measure than 
the Structure sensor and Room Capture application in most 
tasks. For many tasks, especially the ones of increased 
complexity (such as Task 4), our AR application proves to be 
more accurate than the Structure sensor and requires less time 
than the tape measure. This is a major usability and 
accessibility benefit which enables the users to acquire fast 
and reliable geometrical information of their environment 
using consumer technology.  

Participants were asked to complete a System Usability 
Scale (SUS) [14] questionnaire after completing the tasks with 
each instrument. All three instruments met the SUS usability 
threshold of 68, with Structure (70) being the least favoured 
and Tape (76) and LevelEd (74) being closely favoured. This 
is a positive result and suggests that LevelEd is more 
accessible than the Structure system for indoor modelling and 
participants were almost as comfortable using LevelEd as the 
traditional Tape instrument.  

Despite the overall positive accuracy and usability of 
LevelEd, there were some tasks that either demonstrated 
minor inaccuracies (Fig. 2b) or variations (Fig. 2f) with 
measurements. We believe there are several factors that could 
have caused these inaccuracies/variations. One major factor in 
the accuracy of LevelEd AR is the problem of drift. Drift 
occurs when the device loses track of its position in the real 
world and becomes out of sync with the virtual world. This 
can cause measurements to become inaccurate as the system 
may under or over report the distance it has moved since the 
last marker was placed. This was also noted by [8] and [9] and 
our work further confirms this. The fourth task was 
intentionally designed to study the above effect and we believe 
that the longer the amount of time that is spent on a mapping 
task then the larger the potential for drift to impact the 
accuracy, as drift and inaccuracies accumulate over time. This 
is evident in Fig. 2f which shows larger variations in 
measurements for LevelEd. This was the longest and most 
complex task as the box was measured after the four walls 
thereby increasing opportunities for drift. Potential solutions 
to the issue of drift could come from improvements to the 
computer vision algorithm used in ARKit. However, ARKit 

changes are not within our remit and instead improvements 
could be addressed through user experience. We suggest the 
system could warn users when they are moving too fast or 
when drift may have happened, prompting users to try again. 
This is an area that would benefit from further research 
including tasks requiring longer and more complex 
measurements, like mapping a full room to see the full effect 
of drift and potential solutions in action. 

VII. CONCLUSIONS 
In this paper we have presented a prototype application 

that enables users to capture indoor models of real-world 
locations for use in serious games level designs and the 
application meets the requirements we outlined at the end of 
section 2. We intend to explore the use of AR and level design 
further as part of a larger project investigating different level 
design workflows using AR and VR. 
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