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Monte Carlo analysis of methods for extracting

risk-neutral densities with a�ne jump di↵usions

Abstract

This paper compares several widely-used and recently-developed methods to extract

risk-neutral densities (RND) from option prices in terms of estimation accuracy. It

shows that positive convolution approximation method consistently yields the most

accurate RND estimates, and is insensitive to the discreteness of option prices. RND

methods are less likely to produce accurate RND estimates when the underlying process

incorporates jumps and when estimations are performed on sparse data, especially for

short time-to-maturities, though sensitivity to the discreteness of the data di↵ers across

di↵erent methods.
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1. Introduction

This paper compares the performance of various estimation methods to extract risk-

neutral densities (RND) from option prices. Since the true RND is latent, a pseudo-price

based methodology is used to evaluate the performance of the RND methods in terms of es-

timation accuracy and consistency. The pseudo-based method begins with an assumed a�ne

jump di↵usion model and a set of estimated model parameters, the hypothetical a�ne jump

di↵usion model is then used to generate artificial option data by using the model parameters;

the ’true’ RND is obtained analytically from the model according to the result of Breeden

and Litzenberger (1978), whereas the RND estimate is extracted by RND methods from the

artificial option data. The performance of the RND methods is then tested by comparing the

’true’ RND and the RND estimate through a goodness-of-fit test. The procedure is repeated

for 1000 times in order to provide the distributional information about the test statistic,

which answers the question of how likely these RND methods produce statistically accurate

estimates in practice. The procedure is repeated for artificial option data with di↵erent

maturities.

The study di↵ers from prior research on the comparison of RND methods in several as-

pects of the methodology. Firstly, the assumed hypothetical underlying process for price and

volatility takes both price and volatility jumps into consideration, making the comparison

more realistic than prior comparison studies do, though no-jump and single-jump models

are also employed for comparison purposes. Most prior studies on the comparison of RND

methods assume either a single parametric form of the RND or a stochastic process of the

underlying asset price and volatility. For example, Söderlind (2000) start with an assumed

parametric form of the RND, and employ a Monte Carlo simulation to fit option prices

based on the assumed error distribution; Bu and Hadri (2007); Santos and Guerra (2015)

start with the Heston model. Furthermore, in the case of assuming stochastic processes for

the underlying asset price and volatility, prior studies assume stochastic volatility processes

that account for either no jumps or only price jumps (Lai, 2014; Santos and Guerra, 2015),
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and no prior studies have employed the double-jump model for the comparison of RND

methods. It should be noted that the inclusion of both price and volatility jumps in the

hypothetical underlying asset process is consistent with the findings in equity price dynam-

ics and option pricing literature. For example, Broadie, Chernov, and Johannes (2007) find

strong evidence of the presence of both price and volatility jumps in time series of equity

prices, and both jumps are important components for option pricing. Secondly, we adopt

a noise perturbation procedure proposed by Bondarenko (2003a) which is consistent with

the options exchange’s regulation on maximum bid-ask di↵erentials to simulate the market

frictions such as the bid-ask spread; whereas prior studies do not consider the regulation

on maximum bid-ask di↵erentials when adding noises to the simulated option prices: for

example, Lai (2014) sets the price noise to be a proportional white noise to the simulated

option prices; Bliss and Panigirtzoglou (2002); Santos and Guerra (2015) add an uniformly

distributed random noise whose size is between minus half and half of the option price tick

size.

Eight RND methods compared in this study consist of both parametric and nonpara-

metric, widely-used and recently developed methods, spanning a wide range of categories of

methods. These methods include: mixture of two lognormals (LN2) (Ritchey, 1990), hermite

polynomial with Gram-Charlier expansion (HPGC) (Jondeau and Rockinger, 2001), gener-

alized beta distribution of the second kind (GB2) (Bookstaber and MacDonald, 1987), gen-

eralized extreme value distribution (GEV) (Markose and Alentorn, 2011), curve-fitting with

quadratic polynomial (QP) (Shimko, 1993), curve-fitting with cubic smoothing spline (CS)

(Bliss and Panigirtzoglou, 2004), positive convolution approximation (PCA) (Bondarenko,

2000, 2003a) and spectral recovery method (SRM) (Monnier, 2013).

The evaluation of estimation methods for RNDs is important for both market partici-

pants and policymakers, since RNDs embedded in option prices have important financial and

economic applications. Risk preferences of market agents embedded in RNDs play impor-

tant roles in the modelling and determination of insurance policies, pension plans and tax
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regulations. Higher moments of RNDs contain predictive content about stock returns and

returns of option portfolios (Bali and Murray, 2013). Policymakers use RND estimates to

access the credibility of monetary policy (Bahra, 2007; Olijslagers, Petersen, de Vette, and

van Wijnbergen, 2018), gauge market sentiment and access market beliefs about economic

and political events (e.g. Birru and Figlewski, 2012). Option traders over-the-counter rely

on RND estimates to price exotic options. In addition, RNDs are also used to test mar-

ket rationality (Bondarenko, 2003b), access bankruptcy probabilities of financial institutions

(Taylor, Tzeng, and Widdicks, 2014), measure risk premiums (Ivanova and Gutiérrez, 2014)

and study volatility pricing kernels (Völkert, 2015).

We find that, firstly, PCA consistently yields the most accurate RND estimates and is

insensitive to the discreteness of option prices, whereas the LN2 method performs the worst.

HPGC is the best performer among parametric methods; both HPGC, GB2 and GEV in

the parametric domain outperforms the QP in the nonparametric domain. Secondly, RND

methods are less likely to produce accurate RND estimates when the underlying process in-

corporates jumps, especially for short time-to-maturities. Thirdly, the discreteness of option

prices negatively a↵ects most RND methods, especially for the short time-to-maturities and

when the generating process incorporates double jumps, though sensitivity to the discrete-

ness of the data di↵ers across di↵erent methods. Lastly, double-jump models outperform

models with no jumps or single-jump models, reinforcing the finding in the equity price

dynamics and option pricing literature that both price and volatility jumps are important

components for option pricing.

The rest of the paper is organized as follows: Section 2 reviews the RND methods in the

literature and briefly introduces and discusses the methods compared in the paper. Section

3 presents the a�ne jump di↵usion models and the model-derived RND functions. Section

4 presents the data. The methodologies for the analysis of RND methods are presented in

Section 5. Section 6 presents the results. Section 7 concludes the paper.
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2. Literature Review

2.1. RND Methods

Numerous methods to extract RNDs from option prices have been developed (See, Jack-

werth, 1999, 2004; Figlewski, 2018, for a review). There are mainly two strands of methods:

parametric and nonparametric methods. On the one hand, parametric methods fit the RND

to a parametric form of selected densities; they often estimate the parameters by minimizing

the sum of pricing errors. Nonparametric methods, on the other hand, directly estimate the

RND from linear/nonlinear segments or by pointwise fitting. Compared to parametric meth-

ods which assume a functional form of distributions, nonparametric methods are data-driven

and more flexible.

There are three major categories within parametric methods: the Mixture methods, the

Expansion methods, and the Generalized distribution methods. Mixture methods use the

weighted averages of several simple distributions to add flexibility to the estimated probabil-

ity distribution. A typical example is the mixture of two lognormal distributions (Ritchey,

1990). The problem with the mixture methods is data overfitting which leads to estimated

densities with erratic spikes. Expansion methods use a simple standard distribution as the

base distribution, and adds correction terms to the base distribution via extra functions such

as the confluent hypergeometric functions (Abadir and Rockinger, 2003); Hermite polyno-

mials (Xiu, 2014); the Gram-Charlier expansion (Jondeau and Rockinger, 2001). A common

problem with the expansion methods is that the estimated distribution are not guaranteed

to always be positive and integrates to 1. Generalized distribution methods often use a flex-

ible distribution or a family of distributions; these distributions are more flexible than the

standard Gaussian distributions, and allow skewness and kurtosis to vary, thereby having the

ability to describe leptokurtic properties of the distribution of financial data. Examples of

generalized distributions include Beta function of the second kind (Bookstaber and MacDon-

ald, 1987); Burr-type distributions (Sherrick, Irwin, and Forster, 1996); and the Generalized
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extreme value distribution (Markose and Alentorn, 2011).

There are roughly three major categories within the nonparametric domain: the Kernel

method, the Maximum entropy method, and the curve-fitting method. The kernel method

usually fits a function to option prices or implied volatility curve; these functions are assumed

to pass by all the data points with a kernel measuring the likelihood of the function passing

by the data points; the bandwidth of the kernel controls the smoothness of the estimated

densities; the choice of the kernel is often the standard normal distribution. Specific kernel

methods include the Kernel regression (Aı̈t-Sahalia and Lo, 1998); the Kernel convolution

(Bondarenko, 2000, 2003a); and nonparametric least squares (Hardle and Yatchew, 2002). A

typical problem with the kernel methods is that they are unable to fit a smooth function to

option data with strike price exhibiting gaps. The maximum entropy method estimates the

risk-neutral density by maximizing the cross-entropy of logarithmic ratios of the posterior

risk-neutral density to a prior density; the method requires the least amount of information

about the prior density; the choice of the prior density is often the lognormal distribution.

They are developed with di↵erent specifications of the prior probability distribution (see e.g.

Rockinger and Jondeau, 2002). The curve-fitting method estimates the risk-neutral density

by fitting a function of the implied volatilities, and proceeding with the lines of Breeden

and Litzenberger (1978); most curve-fitting practice uses fitting criteria such as minimizing

the sum of pricing errors or the squared di↵erences in implied volatilities. Examples include

splines (Andersen and Wagener, 2002); Polynomial (Shimko, 1993; Rosenberg and Engle,

2002); and smoothing pointwise implied volatilities (Jackwerth, 2000). Besides, in a de-

parture to the three aforementioned categories within the nonparametric methods domain,

and in association of this study, Monnier (2013) proposes a method based on the spectral

decomposition.

In addition to parametric and nonparametric methods, there are some other methods

proposed. Structural models such as the Heston model assume a specific form of the un-

derlying process for price and volatility; the risk-neutral density is estimated numerically by
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taking the second derivative of the call price function. Implied trees are a discretization of

a single-dimensional di↵usion process where volatility is a function of time; the risk-neutral

probabilities are obtained numerically for the terminal stock prices (Derman and Kani, 1994).

Moreover, Eriksson, Ghysels, and Wang (2009) propose a method based on the empirical

risk-neutral moments; Garcia, Lewis, Pastorello, and Renault (2011) propose a method based

on moments of integrated volatility; Ross (2015) propose a method that separates objective

and risk-neutral densities directly from option prices.

2.2. Methods Compared

The RND methods compared in this paper are summarized in Table 1. Each of the

methods belong to a particular category of the RND methods; RND methods are selected

according to the following criteria: (1) widely-used methods (2) recently-developed methods;

(3) methods that are of less computational complexity. Below is a brief introduction to each

of the methods.

[Insert Table 1 around here]

The mixture of two lognormal distributions (LN2) method of Ritchey (1990) estimates the

RND by a weighted combination of two lognormal distributions. The mixture of lognormal

densities imply that the method assumes option prices are a mixture of Black-Scholes prices.

Hermite Polynomial with Gram-Charlier Expansion (HPGC) method of Jondeau and

Rockinger (2001) is based on the Gram-Charlier expansion. The method relies on the Her-

mite polynomial approximation of Abken, Madan, and Ramamurtie (1996) with additional

constraints added to the third and forth moments of estimated RND. The advantage of this

method over other methods using the Hermite polynomial is that the additional constraints

ensure the positivity of the density estimates.

The generalized beta distribution of the second kind (GB2) of Bookstaber and MacDonald

(1987) is applied to the estimation of RND by Anagnou, Bedendo, Hodges, and Tompkins
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(2002); Taylor (2005); Liu, Shackleton, Taylor, and Xu (2007). The method assumes the

RND to be in a parametric form of GB2. The GB2 distribution is a generalized distribution

which nests some common types of distributions such as the lognormal, Burr type, Weibull

and exponential distributions. Therefore, the shape of the estimated RND is more flexible

than that estimated from the LN2.

Markose and Alentorn (2011) proposes a method by assuming the parametric form of

the risk-neutral distribution to be the Generalized extreme value distribution (GEV), and

develops the closed-form solutions for European call and put option prices for the GEV-based

risk-neutral distribution function; the parameters of the GEV distribution are estimated by

minimizing the option pricing errors. The GEV method has the advantage over the LN2

method that the shape of RND estimates obtained from the GEV method is more flexible,

and GEV provides with the ability to fit long-tailedness of the distribution of financial prices

whereas LN2 doesn’t have the capacity.

The basic idea of the quadratic polynomial (QP) method of Shimko (1993) is to use the

Black-Scholes formula to transform option prices into the implied volatility space, and then fit

a quadratic polynomial to back out the entire implied volatility curve, the RND can then be

obtained analytically. However, it is suggested that the implied volatility smile may exhibit

di↵erent levels of curvature depending on the market conditions (e.g. Rubinstein, 1994); and

if the implied volatility smile exhibits pronounced skew, then the quadratic function is likely

not suitable for fitting the implied volatility simile (Aparicio and Hodges, 1998), and could

lead to negative risk-neutral probabilities.

Bliss and Panigirtzoglou (2004) proposes to fit a vega-weighted cubic smoothing spline

to the implied volatility in the delta space, with a smoothing parameter which controls the

trade-o↵ between the goodness-of-fit and the smoothness of the fitted RND. Vega weighting

has the advantage of placing more weights on the near-the-money options, which is consistent

with the high liquidity of such options. And smoothing implied volatilities in the delta space

allows a greater flexibility in the shape of the estimated RND especially near the center of
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the distribution (Malz, 1997).

The basic idea of the positive convolution approximation (PCA) method of Bondarenko

(2000, 2003a) is to select an optimal density that best fits the observed option prices from a

set of candidate densities. Specifically, Bondarenko (2000, 2003a) approximate the RND by

the weights of a linear combination of normal densities with the linear combination being

fitted to a cross section of put option prices. The advantage of the PCA method is that

it minimizes the possible overfitting. And it is suggested in the literature that the good

performance of kernel methods is attributed to their ability to discount the e↵ect of outliers

in the noisy data (Lai, 2014).

The basic idea of the spectral recovery method (SRM) of Monnier (2013) is to find

the smoothest RND that satisfies no-arbitrage and bid-ask constraints from a set of valid

equivalent RNDs implied by bid and ask quotes of put options. The SRM views the RND

estimation as an inverse problem. It first defines a framework of restricted put and call

operators that admit a singualr value decomposition, and the framework subsequently allows

one to adopt a quadratic programming method to extract the smoothest RND whose put

prices satisfy the bid-ask constriants.The advantage of the SRM method is that it gives the

entire left tail of the RND, given the fact that the market exhibits strong negative skewness

(fat left tails).

3. Model

The model used as the basis of our simulation is the general a�ne jump di↵usion model of

Du�e, Pan, and Singleton (2000). It is a parsimonious model which embeds five a�ne jump

di↵usion models: (i) a stochastic volatility model with no jumps (SV); (ii) a stochastic volatil-

ity model with price jumps only (SVJ-Y); (iii) a stochastic volatility model with volatility

jumps only (SVJ-V); (iv) a stochastic volatility model with simultaneous but uncorrelated

price and volatility jumps (SVJ-Y-V); (v) a stochastic volatility model with simultaneous
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and correlated price and volatility jumps (SVJJ).

3.1. Model Specification

Suppose that S is the price process of a security that pays dividends at a constant

proportional rate ⇣̄, and Y = ln(S). The state process is X = (Y, V )T , where V is the

variance process with a long term variance equal to v̄. Under the risk-neutral measure Q,

d

0

B@
Yt

Vt

1

CA =

0

B@
r � ⇣̄ � �̄µ̄� 1

2Vt

v(v̄ � Vt)

1

CA dt+
p
Vt

0

B@
1 0

⇢̄�v

p
1� ⇢̄2�v

1

CA dW
Q
t + dZt (1)

where r is the interest rate, WQ is a standard Brownian motion under Q in R2. Z is a

pure jump process in R2 with a constant mean jump-arrival rate �̄ whose bivariate jump-size

distribution has the transform ✓ through which a flexible range of distributions of jumps

can be explored. The risk-neutral restriction is satisfied if and only if the risk-neutral drift

µ̄ = ✓(1, 0)�1. v is the mean-revertion rate of the variance process, �v denotes the volatility

of the variance process, ⇢̄ is the correlation between the two standard Brownian motions.

The bivariate jump transform function ✓ is defined by:

✓(c1, c2) = �̄
�1(�y✓y(c1) + �

v
✓
v(c2) + �

c
✓
c(c1, c2)) (2)

where �̄ = �
y + �

v + �
c, with

✓
y(c) = exp

✓
µyc+

1

2
�
2
yc

2

◆
(3)

✓
v(c) =

1

1� µvc
(4)

✓
c(c1, c2) =

exp

✓
µc,yc1 +

1
2�

2
c,yc

2
1

◆

1� µc,vc2 � ⇢Jµc,vc1
. (5)

Corresponding to Equations (3) to (5), respectively, three types of jumps are incorporated
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in the above transform function:

(1) jumps in price Y , with arrival intensity �y, and the jump size is normally distributed

with mean µy and variance �2
y .

(2) jumps in variance V , with arrival intensity �v, and the jump size is exponentially dis-

tributed with mean µv.

(3) simultaneous correlated jumps in both price and variance, with arrival intensity �c. The

jump size of the variance, zv, is exponentially distributed with mean µc,v. Given zv, the jump

size of the price is normally distributed with mean (µc,y + ⇢Jzv) and variance �2
c,y, where ⇢J

is the correlation between the price jump size and the variance jump size.

By imposing certain parameter restrictions on the model, five di↵erent types of stochastic

volatility models are selected:

(1) SV model: Stochastic volatility model without jumps, obtained by letting �̄ = 0.

(2) SVJ-Y model: Stochastic volatility model with price jumps only, obtained by letting

�
y
> 0, and �v = �

c = 0.

(3) SVJ-V model: Stochastic volatility model with variance jumps only, obtained by

letting �v > 0, and �y = �
c = 0. This is a special case where variance jumps have no impact

on the price dynamics.

(4) SVJ-Y-V model: Stochastic volatility model with simultaneous but uncorrelated

price and variance jumps, obtained by letting �y = �
v
> 0, and �c = 0.

(5) SVJJ model: Stochastic volatility model with simultaneous and correlated price and

variance jumps, obtained by letting �c > 0, and �y = �
v = 0.

3.2. Pricing

Under the transform, the price of a European call option is given by (Du�e et al., 2000)

C(K, ⌧) = G1,�1(� lnK;Yt, Vt, ⌧)�KG0,�1(� lnK;Yt, Vt, ⌧) (6)
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where
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where Im(·) denotes the imaginary part of a complex number. The transform  of log-price

state variable YT takes the form of  (u, Yt, Vt, t, T ) = exp(↵̄(⌧, u) + uYt + �̄(⌧, u)Vt). By
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cation of bivariate jump transform function ✓.

Based on the specification of the bivariate jump transform ✓ given by Equation (2)-(5),

we have the following specification for the integral of ✓:
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3.3. Closed-Form RND Function

Breeden and Litzenberger (1978) show that, given a continumm of call option prices

C(K, ⌧) with strike price K and time-to-maturity ⌧ , and if call option prices satisfy the

non-arbitrage conditions, then there exists a risk-neutral probability, the relations between

the call option price and the risk-neutral probability’s cumulative distribution function (cdf)

F
⇤ and risk-neutral density function f

⇤ evaluated at the termianl price ST are given by

@C(K,⌧)
@K

��
K=ST

= e
�r⌧ (F ⇤(K)� 1) and @2C(K,⌧)

@K2

��
K=ST

= e
�r⌧

f
⇤(K).

Analogous to the Black-Scholes formula, and by applying the relation between the call

option price function (Equation (6)) and the risk-neutral distribution, the following is ob-

tained

@C(K, ⌧)

@K

��
K=ST

= e
�r⌧ (F ⇤ � 1) = �G0,�1(� lnST ;Yt, Vt, ⌧)

Rearranging the above equation, we obtain the cumulative distribution function evaluated

at K = ST

F
⇤(ST ) = 1� e

r⌧
G0,�1(� lnST ;Yt, Vt, ⌧) (7)

F
⇤ represents the probability of ST < K under the risk-neutral measure Q. The model-

derived risk-neutral density is therefore obtained by the first-order derivative of F ⇤ with

respect to K evaluated at ST :

f
⇤(ST ) =

@F
⇤

@K

��
K=ST

=
e
r⌧

⇡ST

Z 1

0

Im
⇥
 (�i⌫, Yt, Vt, t, T )e

i⌫ lnST ⇥ i
⇤
d⌫ (8)

4. Data

The data for model calibration and option price fitting are end-of-month options written

on 1/100 Dow Jones Industrial Average index (Ticker symbol: ’DJX’) over the period from

March 2007 to February 2009, and are obtained from the Chicago Board Options Exchange
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(CBOE). Several filters are applied to construct the option data sample:

(1) Firstly, options with zero bid quotes are excluded;

(2) Options with less than 7-day time to maturity are excluded since these options are

generally illiquid and are a↵ected by market microstructure factors.

(3) In-the-money (ITM) options are excluded. This is due to that ITM options are

typically overpriced, and less liquid than at-the-money (ATM) and OTM options.

(4) Options that violate basic no-arbitrage conditions are excluded.

In addition to the option filters, robust forward prices are used; details are referred to

(Lu, 2019, Appendix). On each trading day, out-of-money (OTM) options including both

call and put options with three target time-to-maturities (3 weeks, 3 months and 6 months)

are selected from the cleaned option data sample.1

Daily constant maturity treasury (CMT) rates are used as risk-free rates and are obtained

from the Board of Governors of the Federal Reserve System. Various maturities, ranging

from one-month to thirty-year rates, are available. Interest rates with intermedia maturities

are linearly interpolated, and interest rates with maturities that are beyond available ranges

are estimated by a natural cubic spline extrapolation.

Mid bid-ask prices are used as option prices to eliminate the bounce e↵ect (Bakshi, Cao,

and Chen, 2000), and the spread e↵ect (Figlewski, 1997). Option’s time to maturity is

calculated by the number of calendar days remaining to maturity less one (Dumas, Fleming,

and Whaley, 1998) for AM-expiration options.

1
Following the convention for time calculation, time to maturities are expressed in calendar days. 3 weeks,

3 months, and 6 months correspond to 21, 91 and 182 calendar days, respectively.
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5. Analysis of RND Methods

5.1. Fitting Market Prices of Options

The performance analysed in this section measures how well each model and estimation

method fits the market option prices. The true option data are used for the analysis of the

fitting performance of market prices of options.

The procedure of fitting option prices is as follows. On the one hand, for all the five

stochastic volatility models and four estimation methods (LN2, HPGC, GEV, PCA), the

parameters are estimated by minimizing the sum of squared pricing errors (SSE) between

the option’s market price Ct(Ki) and the fitted option price Ĉt(Ki) for the ith strike price

Ki at time t

min{SSE(t)} = min

⇢ NX

i=1

�
Ct(Ki)� Ĉt(Ki)

�2
�

(9)

On the other hand, the objective function of the GB2 method includes not only the sum

of squared pricing errors, but also the martingale condition which ensures that the mean of

the RND equal the forward price. With regard to the CS method, the objective function

contains two parts: the first part is the vega-weighted squared distance between estimated

and observed implied volatilities in the delta space which controls the goodness-of-fit, and the

second part is the integrated squared second derivative of the implied volatility which controls

the smoothness of the RND, multiplied by a parameter controlling the tradeo↵ between

the two parts, and similar to Bliss and Panigirtzoglou (2004), the smoothing parameter

is set to 0.99. Subject to the QP method, the implied volatility curve is first fitted to a

quadratic polynomial function of the strike price, the fitted option prices are then obtained

by plugging the fitted implied volatility curve into the Black-Scholes formula. For the SRM

method, by minimizing the RND smoothness function with respect to no-arbitrage and bid-

ask constraints, option prices are obtained by a singular value decomposition. The SSE(t)

for QP and SRM is then obtained by using Equation (9).

The fitting performance is measured in terms of the root mean square error (RMSE) with
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the following specification

RMSE(t) =

r
SSE(t)

N

The RMSE represents the average pricing error in U.S. cents per option. For each of the

three target time-to-maturities (3 weeks, 3 months and 6 months), each a�ne jump di↵usion

model and each estimation method, the RMSE is taken over the period from March 2007 to

February 2009.

To quantify and visualise the the fitting error across di↵erent moneyness levels, we define

the fitting bias of an option as the deviation of the fitted price with respect to the market

price of the option

Fitting Bias = Market Price� Fitted Price

Since moneyness levels vary from day to day, the pricing biases for di↵erent moneyness

levels on each trading day are obtained by fitting a cubic spline to the pricing bias as a

function of moneyness for each model, each estimation method and each time-to-maturity.

5.2. Monte Carlo Simulation

To compare the performance of eight estimation methods presented in Table 1, a Monte

Carlo simulation is carried out. The procedure of the Monte Carlo analysis is as follows:

Firstly, generating a set of artificial option data by simulating the paths of a�ne jump-

di↵usion models; Secondly, extracting RNDs from the artificial option data by RND methods

in Table 1, and obtaining the true RNDs via the a�ne jump-di↵usion models analytically by

using Equation (7) and (8); Thirdly, RND estimates are then compared to the true RNDs

by a goodness-of-fit test.

5.2.1. Artificial Option Data and Simulation Procedure

The artificial option data are generated through the Monte Carlo simulation by the a�ne

jump di↵usion models: the SV, SVJ-Y, SVJ-V, SVJ-Y-V, and SVJJ models.
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In order to generate artificial option data, the above five stochastic volatility models are

calibrated to the option data sample. The reason for model calibration is to get meaningful

parameter estimates in the context of financial markets, and to simulate market conditions

as close as possible. Fitted model parameters for the data-generating process are reported in

Table 2. The average one-month constant maturity treasury (CMT) rates during the sample

period are used as the risk-free rate rf .

[Insert Table 2 around here]

Taking the SV model and the LN2 method as an example, the Monte Carlo analysis is

performed as follows. By using the fitted SV model parameter estimates, two-year artificial

index levels and its corresponding instantaneous variance levels are generated.2 The DJIA

index and instantaneous variance levels at the end of the two-year period are taken as the

current index price St and the current instantaneous variance level Vt. Replacing the initial

index level S0 with St, the initial instantaneous variance level V0 with Vt, and keeping the

rest of model parameter estimates unchanged, a set of prices of call options with strike price

ranging from 0.8⇥ St to 1.2⇥ St at 0.01 point ($1) interval (�K = $1)3 with 3-week time-

to-maturity is generated by the SV model using Equation (6). Price noises are added to

the generated call option prices in order to simulate market frictions such as the bid-ask

spread. The RND estimate is extracted from noised call option prices subject to the LN2

method. The true RND is obtained by using Equation (8) with the SV model parameters.

This procedure is repeated 1000 times to obtain 1000 sets of call option prices; subsequently

1000 RND estimates subject to the LN2 method and 1000 true RNDs are obtained. Each

RND estimate is then compared to its corresponding true RND by a goodness-of-fit test in

order to quantify the estimation performance of the LN2 method.

2
Exact simulation technique of Broadie and Kaya (2006) is applied to the simulation of paths of a�ne

jump di↵usion models.
3
This simulates the DJX options market where strike prices are set to bracket the index level in minimum

increments of 1 point ($100). In other words, the strike prices of DJX options are at 0.01 point ($1) interval.

Details refer to the DJX options product specifications on the CBOE website.
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The above simulation is repeated for each of the estimation methods in Table 1, each a�ne

jump di↵usion model (SV, SVJ-Y, SVJ-V, SVJ-Y-V, SVJJ), and each time to maturity (3

weeks, 3 months, and 6 months). Note that for each round of simulation, RNDs estimated

by the estimation methods are extracted from the same set of model-generated artificial

option data. In other words, each model generates 1000 sets of artificial option data for

each time-to-maturity. Therefore, there are 15 panels of 1000 sets of artificial option data

generated in total.

5.2.2. Noise Specification

To simulate the market frictions under realistic conditions, this paper adopts the method

introduced by Bondarenko (2003a) to simulate the bid-ask spread and add noises to the

generated artificial option data. The basic idea of the method is to set the bid-ask spread

for options at each strike price depending on the price of the option, the size of the bid-ask

spread is kept consistent with the exchange rules on the maximum bid-ask di↵erentials. The

price noise is then drawn uniformly on the interval from minus half to half of the size of the

simulated bid-ask spread.

Assume a trader observes bid and ask quotes (qbK , q
a
K) for call options with strike price K.

The trader uses the mid-point quote C(K) = 0.5(qbK + q
a
K) as the approximated call option

price. The price noise "K for call option struck at K is assumed to be uniformly distributed

on the interval [�0.5sk, 0.5sK ], where the bid-ask spread sK = q
a
K � q

b
K . The bid-ask spread

sK is proportional to the maximum bid-ask di↵erentials allowed by the exchange trading

rule. The CBOE rule on maximum bid-ask di↵erentials changes over the years. The rule

used here follows that in Bondarenko (2003a). The rule states that the maximum bid-ask

di↵erentials are: 1
4 for options with bid quote q

b below $2, 3
8 for bid quotes between $2 and

$5, 1
2 for bid quotes $5 and %10, 3

4 for bid quotes between $10 and %20, and 1 for bid quotes

above $20. According to this rule, the function for maximum bid-ask di↵erentials M(q) can
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be constructed in the following way:

M(0) =
1

8
,M(2) =

1

4
,M(5) =

3

8
,M(10) =

1

2
,M(20) =

3

4
,M(q) = 1, q � 50

M(q) is linearly interpolated for quotes q 2 [0, 50]. In practice, since out-of-money (OTM)

options are more liquid than in-the-money (ITM) options, OTM options are more accurate

than ITM options. Consequently, the trader uses the put-call parity to convert ITM call

option prices to OTM put option prices. Therefore, the simulated bid-ask spread is the

minimum of the spreads for call C(K) and put P (K) = C(K)� S +K:

sK = c⇥min(M(C(K)),M(C(K)� S +K))

where c is a constant which controls the level of noise, ranging from 0 to 1. In this paper,

c is set equal to 1, meaning that the simulated bid-ask spread equal the maximum bid-ask

di↵erentials allowed by the exchange regulation.4 Figure 1 shows an example of the OTM

option prices, and simulated bid-ask spreads and price noises. This method is consistent with

the empirical findings in the market bid-ask spread. For example, Dumas et al. (1998) find

that the behaviour of bid-ask spread is consistent with the maximum bid-ask di↵erentials

allowed by the CBOE for S&P 500 index options from 1988 to 1993.

[Insert Figure 1 around here]

The advantage of this method is that the absolute (relative) noise is smaller (larger)

for far-from-the-money options, and simulated option prices are ensured to be nonnegative

(Bondarenko, 2003a).

4
Bondarenko (2003a) reports that di↵erent values of constant c have negligible impact on the evaluation

of performance of methods for option-implied densities.
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5.2.3. Goodness-of-Fit Test

To illustrate the simulation, two examples are given. Firstly, RNDs of the a�ne jump-

di↵usion models are depicted in Figure 2; these RNDs are generated by a�ne jump-di↵usion

models by plugging the parameter estimates presented in Table 2 into Equation (8). Secondly,

RND estimates from a single round of Monte Carlo simulation are depicted in Figure 3;

the true RND (solid line) is generated by the SV model with parameter estimates from

Table 2 and the simulated underlying index level St = 101.22, instantaneous variance level

Vt = 0.0107, and strike price K 2 [80, 121]; the estimated RNDs (dashed lines) are extracted

by eight estimation methods from the same set of artificial option data generated by the

SV model perturbed by the noise perturbation process. Figure 2 shows that models with

(either price or volatility or both) jumps produce fatter left tails than those produced by the

model without jumps (SV model); the SVJJ model produces the fattest left tail. RNDs of

the SVJ-V and SVJJ models are more leptokurtic than the RND produced by the SV model;

none of the RNDs generated seem to be near a normal distribution. Figure 3 shows that for

most methods, the estimated RNDs di↵er from the true RND the most in the tail areas of

the RND, this is consistent with observations in Jackwerth (1999); Lai (2014). However, it

is di�cult to decide which method produces the RND estimate with the most precision from

either reading the figures or computing error statistics, since the level of dispersion di↵ers at

di↵erent strike ranges. Therefore, it requires a statistical test to quantify the performance

of each method in terms of precision of density estimates.

[Insert Figure 2 around here]

[Insert Figure 3 around here]

The Kolmogorov-Smirnov two-sample test is employed to compare the estimation perfor-

mance of the RND methods. The advantage of the Kolmogorov-Smirnov test is its consis-

tency (Kendall and Stuart, 1979; Jackwerth, 2004). The test is a nonparametric method for

evaluating density estimates. It tests whether two sample distributions come from the same
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distribution function. Assuming two samples drawn from cumulative distribution functions

F1 and F2, and these samples have empirical distribution functions F̂1 and F̂2, the null hy-

pothesis of the Kolmogorov-Smirnov two-sample test is then H0 : F1 = F2. The test statistic

of the test is the maximum di↵erence between the two empirical cumulative distribution

functions. Analogously, we are testing whether the estimated risk-neutral cumulative distri-

bution function F̂
⇤ is the same as model-derived true risk-neutral cumulative distribution

function F
⇤:

H0 : F̂
⇤(ST ) = F

⇤(ST ) (10)

The true F
⇤ is computed by using Equation (7); and the estimated F̂

⇤ can be computed

either analytically or numerically depending on the estimation method used.

5.2.4. Sensitivity to the Discreteness of Option Prices

Table 3 reports the average number of option strikes per cross section in the artificial

options data generated by di↵erent a�ne jump di↵usions. At 0.01 point ($1) interval, the

average number of option strikes per cross section ranges from 47 to 54. However, this

average number of option strikes per cross section is higher than the actual market data

reported in the literature. For example, Liu et al. (2007) reports that average number of

option strikes of FTSE 100 index options is 37 per month from 1993 to 2003. For stock

options, the number of option strikes per cross section can sometimes be under 15 or less.

Therefore, the performance of RND methods when performing estimations on a sparse data

with a low number of option strikes is also examined.

[Insert Table 3 around here]

The procedure is as follows. From the generated artificial options data where option

strike prices are at 0.01 point ($1) interval, option contracts are selected on a sparser strike

price grid, and the new strike price grid is at 0.05 points ($5). After the selection, the
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average number of option strikes per cross section at 0.05 points reduces to approximately

11 (Table 3), and is as low as 3 option strikes per cross section. RND methods are then used

to back out the entire RND, and the estimated RND is compared to the true RND by the

goodness-of-fit test.

6. Results

6.1. Fitting Bias Across Time to Maturity

Table 4 presents the fitting performance in terms of the average RMSE across the sample

period for OTM calls, OTM puts and all OTM options, respectively. Panel A shows that

SVJ-Y-V and SVJJ provide the best fitting performance for 3-week and 3-month time-to-

maturities, whereas they do not have the best overall fitting performance for options with

6-month time-to-maturity, however, they do provide best fittings for OTM put options. The

SV model has the worst fitting performance in all instances. The results are consistent

with the equity price dynamics and option pricing literature (e.g. Broadie et al., 2007), and

reinforce that both price and volatility jumps are important pricing components, and have

to be taken into account. Panel B shows that: CS provides the best fitting performance

whereas HPGC performs the worst. The performance of PCA is very close to CS for the

shortest maturity, however, the performance of PCA becomes worser than CS for longer

maturities. GB2 performs worse than GEV which belongs to the same method category.

GEV and QP have roughly the same fitting performance, and they outperform SRM. LN2

is the second to last in terms of fitting option prices. Besides, two clear patterns that can

be observed from Panel B are, despite of the estimation methods and time-to-maturity: (1)

the fitting errors increase with the time-to-maturity; (2) the fitting errors for OTM calls are

larger than those for OTM puts.

[Insert Table 4 around here]
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6.2. Fitting Bias across Moneyness

The average of the cubic splines over the sample period are depicted in Figure 4. Fitting

biases are shown only for moneyness levels ranging from 0.8 to 1.14.5

[Insert Figure 4 around here]

Figure 4 shows that among stochastic volatility models, there are trivial di↵erences in

the fitting performance for near-the-money options for all three time-to-maturities, while

relatively large di↵erences occur for away-from-the-money options. For example, for 3-week

(21-day) time-to maturity, di↵erences are observed for OTM call options with moneyness

larger than 1.07, SVJJ and SVJ-V have smaller fitting biases compared to other models.

For 3-month (91-day) time-to-maturity, di↵erences occur mainly for OTM put options, and

the SV model performs relatively poorer than other models. For 6-month (182-day) time-to-

maturity, fitting di↵erences are observable for both far-from-the-money OTM call and put

options.

Concerning fitting bias of the estimation methods, SRM performs the worst while the LN2

yields the best fitting performance for OTM call options for the shortest time-to-maturity.

Moving to 3-month time-to-maturity, it is observed that while there are no large di↵erences

among methods except for the HPGC; the HPGC provides the worst fitting performance for

options with moneyness smaller than approximately 1.12, and yields the best the performance

for options with moneyness larger than 1.12. The magnitudes of di↵erences in fitting bias

are much larger for the longest time-to-maturity; HPGC is ranked the last in terms of fitting

bias for away-from-the-money options, while the SRM seems to outperform other methods

for options with moneyness levels up to 1.13.

5
The moneyness range is selected according to the average moneyness levels across the sample period.

There are very few data points outside the selected moneyness range to obtain meaningful average pricing

biases. Moneyness is defined as K/S.
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6.3. Estimation Performance of RND Methods

Table 5 presents the mean and the standard deviation of p-values of the Kolmogorov-

Smirnov test; the standard deviation of p-values is computed from a set of 1000 RND esti-

mates; the rejection rate is the percentage of density estimates rejected at 5% significance

level, and is calculated by dividing the number of p-values smaller than 0.05 by the total

number of p-values (which is 1000). From Table 5, two patterns are identified: Firstly, the

rejection rate is higher for RND estimates at the shortest time-to-maturity (3 weeks) than

those at longer time-to-maturities, regardless of models and estimation methods; the only

exception is the HPGC and GEV under the SV model, and HPGC under the SVJ-V model,

where the rejection rate increases with the time-to-maturity; for all three nonparametric

methods this pattern hold without exception. Secondly, the rejection rate increases as the

underlying process becomes complicated (the inclusion of price and volatility jumps).

[Insert Table 5 around here]

Concerning the rejection rate, the largest dispersion in the estimation performance oc-

curs at the shortest time-to-maturity (3 weeks): among four parametric methods, the HPGC

method is the best performer while LN2 performs the worst, especially under the SVJJ pro-

cess; GEV performs well but its performance dramaticaly worsens when correlated price and

volatility jumps are introduced into the underlying process; GB2’s performance is identical

to GEV, but is better under the SVJJ process. Among four nonparametric methods, PCA

provides the most accurate RND estimates, while QP performs the worst under most models

except the SVJ-V model. When they are compared together, PCA has the best performance

and consistency, this is confirmed by its lowest variation (measured by standard deviation)

in p-values. Note that the performance of CS is close to that of PCA with only a few

exceptions such as under the SV and SVJ-V processes, but CS o↵ers a lower average and

a higher standard deviation of the p-value than PCA. LN2 is ranked the last; parametric

methods HPGC, GB2 and GEV consistently outperforms nonparametric QP, and they also

23



outperforms nonparametric SRM except for the SVJJ process. Moving to longer time-to-

maturities (3 and 6 months), the di↵erences in the estimation performance diminishes. For

most methods, the rejection rate is low and near zero. Note that except for the HPGC whose

performance worsens with the increasing time-to-maturity, the performance of other meth-

ods remain almost unchanged for 91 and 182 days time-to-maturities. It should be noted

that, despite the underlying process, while the rejection rate for SRM is around 2 to 4%, its

average p-value stands at a high level between 0.94 to 0.98, implying that the rejection rate

is largely attributed to a small number of outliers, the interquartile range of the p-values for

SRM is expected to be narrow.

Figures 5-9 visualize the distribution of these p-values; they show the box plot of Kolmogorov-

Smirnov p-values; the red line in each box represents the median p-value; each box covers

the interquartile range of the Kolmogorov-Smirnov p-values, the upper and lower edges of

the box correspond to the 25th and 75th percentiles of the p-value sample; the whiskers are

marked at 1.5 times the interquartile range; outliers are plotted individually by using red

”+” symbols. These figures reinforce our observations from the rejection rate.

[Insert Figure 5 around here]

[Insert Figure 6 around here]

[Insert Figure 7 around here]

[Insert Figure 8 around here]

[Insert Figure 9 around here]

6.4. Results of Sensitivity to the Discreteness of Option Prices

Table 6 reports both the magnitude and direction of the change in the Kolmogorov-

Smirnov p-value when the option strikes become sparser (�K changes from $1 to $5).

Changes in the average p-value (�p̄) is calculated as: p̄�K=5 � p̄�K=1, and changes in the

rejection rate (�Rejection) is calculated as: Rejection�K=5 � Rejection�K=1. A negative
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�p̄ or a positive �Rejection indicates a worse performance, and a positive �p̄ or a negative

�Rejection indicates a better performance, when performing estimations on sparser options

data with fewer number of options. For most methods except the LN2, QP and CS, a sparse

strike price grid and a low number of strikes per cross section lower the average Kolmogorov-

Smirnov p-values, whereas the average p-value for LN2 increases as data become sparse;

both directions of change in the average p-value are possible for QP and CS. Concerning

the impact on the rejection rate, PCA is the most insensitive to the discreteness of option

prices, while sparseness has the largest impact on the LN2. Note that when the underlying

asset price incorporates double jumps, a sparse data would lower the performance of almost

all the RND methods examined, especially for the shortest maturity, and the magnitude is

relative large, except for the LN2 whose performance changes adversely. For GEV and QP,

both directions of change in the performance is possible.

[Insert Table 6 around here]

In the supplementary data, Table 7 reports the performance of RND methods when

performing estimations on options data with strike price at 0.05 points interval and an

average of 11 option strikes per cross section. Figures 10-14 present the boxplots of the

Kolmogorov-Smirnov p-value. The relative performance of RND methods doesn’t change

compared to the case of a denser strike price grid.

7. Conclusion

This paper compares several estimation methods for extracting risk-neutral densities

(RND) from option prices via a pseudo-price based Monte Carlo simulation. It is motivated

by the paucity of research in the comparison of widely-used and recently-developed methods

for extracting RNDs from option prices. Methods compared in the paper are: mixture of

two lognormals (LN2) of Ritchey (1990), hermite polynomial with Gram-Charlier expan-

sion (HPGC) of Jondeau and Rockinger (2001), generalized beta distribution of the second
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kind (GB2) of Bookstaber and MacDonald (1987), generalized extreme value distribution

(GEV) of Markose and Alentorn (2011), curve-fitting with quadratic polynomial (QP) of

Shimko (1993), curve-fitting with cubic smoothing spline (CS) of Bliss and Panigirtzoglou

(2004), positive convolution approximation (PCA) of Bondarenko (2000, 2003a) and spectral

recovery method (SRM) of Monnier (2013).

It is shown that the kernel method of PCA consistently yields the most accurate RND

estimates and is insensitive to the discreteness of option prices, whereas the LN2 method

performs the worst. HPGC is the best performer among parametric methods; both HPGC,

GB2 and GEV in the parametric domain outperforms the QP in the nonparametric domain.

While the SRM has a higher rejection rate than HPGC, GB2 and GEV, SRM has a higher

mean Kolmogorov-Smirnov p-value and its interquartile range is narrower than those for

HPGC, GB2 and GEV, implying that the higher rejection rate of SRM may be attributed

to minor outliers. Besides, RND methods are less likely to produce accurate RND estimates

when the underlying process incorporates jumps and when data are sparse, especially for

short time-to-maturities, though sensitivity to the discreteness of the data di↵ers across

di↵erent methods; In addition, through the comparison of the fitting performance of a�ne

jump di↵usion models, we show that models with both price and volatility jumps outperform

others, reinforcing the findings in the equity price dynamics and option pricing literature that

both price and volatility jumps are important components for option pricing.

Our research has important implications, particularly, for decision-makers at business

firms and policymakers at central banks, since risk-neutral densities are important indica-

tors for market sentiment and expectations, and they are useful in the pricing of complex

derivatives. It is suggested that the shape of risk-neutral densities vary over time, it may

be insu�cient to assume a single parametric form of the distribution. Our results suggest

that nonparametric methods such as PCA are capable of providing the most accurate yet

consistent RND estimates.
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Table 1: Methods for Option-Implied Risk-Neutral Distributions

Method Abbreviation Category Author (year)

Mixture of two lognormal distributions LN2 Parametric,
Mixture

Ritchey (1990)

Hermite polynomial with Gram-Charlier ex-
pansion, restrictions imposed on the third
and fourth moments

HPGC Parametric,
Expansion

Jondeau and Rockinger
(2001)

Generalized beta distribution of the second
kind

GB2 Parametric,
Generalized
distribution

Bookstaber and MacDonald
(1987)

Generalized extreme value distribution GEV Parametric,
Generalized
distribution

Markose and Alentorn
(2011)

Quadratic polynomial applied to implied
volatilities

QP Nonparametric,
Curve fitting

Shimko (1993)

Cubic smoothing spline with Vega weighting
applied to implied volatilities

CS Nonparametric,
Curve fitting

Bliss and Panigirtzoglou
(2004)

Convolution of positive kernel PCA Nonparametric,
Kernel

Bondarenko (2000, 2003a)

Spectral recovery SRM Nonparametric,
Spectral analysis

Monnier (2013)

Notes: The table reports the estimation methods for extracting risk-
neutral densities from option prices in comparison, including the descrip-
tion, model name and author(s) of the methods.



Table 2: Fitted Parameter Values for General A�ne Jump-Di↵usions

Model SV SVJ-Y SVJ-V SVJ-Y-V SVJJ

S0 123.55 123.55 123.55 123.55 123.55

rf 0.0233 0.0233 0.0233 0.0233 0.0233

q 0 0 0 0 0

V0 0.0495 0.0405 0.0545 0.0414 0.0326

v 1.3749 4.7841 5.7032 4.8678 3.8492

�v 0.9000 0.4463 0.8616 0.4966 0.3829

⇢̄ -0.3998 -0.8046 -0.6507 -0.7685 -0.8707

v̄ 0.0693 0.0220 0.0259 0.0236 0.0092

µy -0.1492 - -0.1526 -

�y 0.4316 - 0.4475 -

�
y 0.1686 - 0.1528 -

µv 0.8999 -0.0094 -

�
v 0.2244 0.1528 -

µc,y -0.0227

�c,y 0.1473

µc,v 0.0248

⇢J -0.8951

�
c 0.9452

Notes: The table reports the parameter estimates for SV, SVJ-Y, SVJ-V, SVJ-
Y-V and SVJJ models from end-of-month options over the period from March
2007 and February 2009.



Table 3: Average Number of Option Strikes Per Cross Section

Discreteness Generating Process

SV SVJ-Y SVJ-V SVJ-Y-V SVJJ

0.01 point (�K = $1) 53.47 46.85 52.51 52.63 48.68

0.05 points (�K = $5) 11.89 10.57 11.71 11.73 10.93

Notes: The tables reports the average number of options per cross section in the artificial options data. The discreteness
of option prices is measured by the interval between two consecutive strike price points (�K) in US dollar.



Table 4: Fitting Performance

⌧ = 21 ⌧ = 91 ⌧ = 182

Call Put All Call Put All Call Put All

Panel A:

SV 8.60 8.26 8.42 5.75 6.59 6.41 6.84 7.77 7.32

SVJ-Y 3.93 3.00 3.37 4.76 3.97 4.27 6.07 6.80 6.41

SVJ-V 7.06 6.38 6.66 5.69 5.30 5.48 6.80 6.88 6.75

SVJ-Y-V 3.62 2.77 3.10 4.95 3.72 4.22 7.38 6.66 6.91

SVJJ 3.99 2.92 3.34 4.67 3.47 3.94 7.41 6.71 6.96

Panel B:

LN2 7.79 6.36 7.01 10.68 5.74 8.03 15.03 9.65 12.22

HPGC 16.20 11.89 13.48 35.68 31.97 33.22 49.29 51.58 49.85

GB2 6.82 5.44 5.95 7.00 6.38 6.76 9.06 8.26 8.75

GEV 4.31 3.44 3.80 5.70 4.91 5.32 8.73 7.13 8.04

QP 4.86 3.10 3.85 5.91 4.51 5.23 8.63 7.75 8.30

CS 3.23 2.24 2.63 2.47 1.92 2.13 2.82 2.46 2.60

PCA 3.29 2.33 2.72 6.16 3.39 4.63 9.51 5.92 7.73

SRM 6.34 4.27 5.23 8.44 4.40 6.37 13.80 4.84 10.32

Notes: The table reports the fitting performance of a�ne jump di↵usion models
and RND methods in terms of the average RMSE across the sample period for
OTM calls, OTM puts and all OTM options, respectively. Fitting performance is
measured by average root mean squared error for out-of-money call and put option
prices in US cents.



Table 5: Summary Statistics of p-values of the Kolmogorov-Smirnov Test (�K = $1)

⌧ = 21 ⌧ = 91 ⌧ = 182
Average
p-value

Standard
Deviation

Rejection
of H0 (%)

Average
p-value

Standard
Deviation

Rejection
of H0 (%)

Average
p-value

Standard
Deviation

Rejection
of H0 (%)

SV process

LN2 0.09 0.18 68.1 0.52 0.21 0.2 0.97 0.04 0.0
HPGC 0.98 0.08 0.1 0.84 0.27 1.9 0.75 0.31 4.9
GB2 0.78 0.31 2.0 0.99 0.05 0.1 0.99 0.06 0.1
GEV 0.96 0.11 0.2 0.96 0.10 0.0 0.83 0.33 4.2
QP 0.62 0.37 8.8 0.99 0.02 0.0 1.00 0.00 0.0
CS 0.99 0.03 0.0 0.98 0.09 0.2 0.93 0.19 1.2
PCA 1.00 0.00 0.0 1.00 0.00 0.0 1.00 0.00 0.0
SRM 0.95 0.21 4.4 0.98 0.15 2.1 0.97 0.17 2.8

SVJ-Y process

LN2 0.03 0.06 82.1 0.41 0.18 0.0 0.93 0.07 0.0
HPGC 1.00 0.01 0.0 0.94 0.11 0.0 0.83 0.11 0.0
GB2 0.96 0.10 0.0 0.98 0.05 0.0 1.00 0.00 0.0
GEV 0.97 0.10 0.0 0.88 0.24 0.5 0.98 0.04 0.0
QP 0.45 0.27 4.3 0.85 0.16 0.0 1.00 0.01 0.0
CS 1.00 0.01 0.0 0.99 0.02 0.0 0.98 0.07 0.0
PCA 1.00 0.00 0.0 1.00 0.00 0.0 1.00 0.00 0.0
SRM 0.98 0.12 1.5 0.99 0.11 1.3 0.98 0.13 1.8

SVJ-V process

LN2 0.07 0.15 71.5 0.49 0.24 1.1 0.95 0.08 0.0
HPGC 0.95 0.16 0.8 0.84 0.27 3.7 0.70 0.26 4.7
GB2 0.91 0.19 0.1 0.98 0.08 0.4 1.00 0.03 0.0
GEV 0.96 0.12 0.1 0.92 0.19 0.2 0.96 0.07 0.0
QP 0.76 0.23 0.2 0.97 0.07 0.0 1.00 0.02 0.0
CS 0.99 0.06 0.3 0.97 0.15 1.0 0.91 0.22 2.2
PCA 1.00 0.00 0.0 1.00 0.00 0.0 1.00 0.00 0.0
SRM 0.97 0.17 2.8 0.98 0.15 2.3 0.98 0.15 2.1

SVJ-Y-V

process

LN2 0.02 0.04 94.1 0.35 0.13 0.0 0.92 0.06 0.0
HPGC 0.99 0.03 0.0 0.92 0.13 0.0 0.78 0.10 0.0
GB2 0.95 0.11 0.0 0.98 0.04 0.0 1.00 0.00 0.0
GEV 0.95 0.12 0.0 0.87 0.24 1.1 0.97 0.04 0.0
QP 0.39 0.25 6.9 0.83 0.16 0.0 1.00 0.01 0.0
CS 1.00 0.01 0.0 1.00 0.02 0.0 0.97 0.07 0.0
PCA 1.00 0.00 0.0 1.00 0.00 0.0 1.00 0.00 0.0
SRM 0.97 0.17 3.0 0.98 0.14 2.0 0.98 0.14 2.0

SVJJ process

LN2 0.02 0.04 91.4 0.35 0.14 0.2 0.92 0.06 0.0
HPGC 0.75 0.34 2.8 0.66 0.23 0.0 0.65 0.15 0.0
GB2 0.58 0.41 11.4 0.62 0.33 0.0 0.90 0.11 0.0
GEV 0.56 0.43 23.0 0.61 0.33 4.9 0.66 0.26 0.0
QP 0.40 0.32 25.9 0.79 0.18 0.0 0.99 0.02 0.0
CS 0.86 0.24 0.0 1.00 0.00 0.0 0.99 0.02 0.0
PCA 0.93 0.15 0.0 0.94 0.08 0.0 0.99 0.01 0.0
SRM 0.94 0.22 4.7 0.97 0.17 3.1 0.97 0.18 3.2

Notes: The table reports the mean and the standard deviation of p-values of the Kolmogorov-Smirnov test of the estimation
performance of methods for RND. The standard deviation of p-values is computed from a set of 1000 RND estimates; the
rejection rate is the percentage of density estimates rejected at 5% significance level, and is calculated by dividing the number of
p-values smaller than 0.05 by the total number of p-values (which is 1000).



Table 6: Changes in the Kolmogorov-Smirnov p-values

Generating
Processes

LN2 HPGC GB2 GEV QP CS PCA SRM

Panel A: Changes in the Average p-value, �p̄

⌧ = 21
SV 0.00 -0.05 0.01 -0.01 -0.03 -0.06 -0.02 -0.06
SVJ-Y 0.03 -0.01 -0.01 -0.00 0.09 -0.01 -0.00 -0.03
SVJ-V 0.04 -0.02 0.00 0.00 -0.07 -0.03 -0.01 -0.04
SVJ-Y-V 0.03 -0.01 -0.01 0.00 0.10 -0.01 -0.00 -0.02
SVJJ 0.05 -0.00 -0.01 0.01 0.02 -0.11 -0.10 -0.16

⌧ = 91
SV 0.00 0.00 0.00 0.01 -0.01 0.01 -0.00 -0.01
SVJ-Y 0.01 0.00 -0.01 0.09 0.04 0.00 -0.00 -0.01
SVJ-V 0.01 0.00 -0.00 0.03 0.01 0.02 -0.00 -0.00
SVJ-Y-V 0.01 0.00 -0.01 0.10 0.04 0.00 -0.00 -0.00
SVJJ 0.02 -0.01 -0.03 -0.12 0.00 -0.00 -0.01 -0.01

⌧ = 182
SV -0.00 0.00 0.01 0.16 0.00 0.05 -0.00 -0.00
SVJ-Y 0.01 0.00 -0.00 -0.00 0.00 0.02 0.00 -0.00
SVJ-V 0.00 0.00 0.00 -0.00 0.00 0.06 -0.00 -0.00
SVJ-Y-V 0.01 0.00 -0.00 -0.00 0.00 0.02 -0.00 -0.00
SVJJ -0.01 -0.01 -0.00 -0.54 -0.00 0.01 0.00 -0.00

Panel B: Changes in the Rejection Rate (%), �Rejection
⌧ = 21
SV 4.8 0.0 -1.7 -0.2 8.2 0.0 0.0 -0.2
SVJ-Y -4.8 0.0 0.0 0.0 -3.5 0.0 0.0 2.0
SVJ-V -1.9 -0.2 0.0 0.1 0.8 -0.2 0.0 -0.2
SVJ-Y-V -4.9 0.0 0.0 0.0 -6.3 0.0 0.0 0.6
SVJJ -9.0 1.9 3.1 -0.7 2.5 2.7 0.3 0.3

⌧ = 91
SV 0.0 -0.1 -0.1 0.0 0.0 -0.1 0.0 0.0
SVJ-Y 0.4 0.0 0.0 -0.5 0.0 0.0 0.0 0.5
SVJ-V -0.1 0.0 -0.3 -0.1 0.0 -0.8 0.0 0.0
SVJ-Y-V 0.2 0.0 0.0 -1.1 0.0 0.0 0.0 -0.2
SVJJ 0.7 0.0 0.0 4.4 0.0 0.0 0.0 0.0

⌧ = 182
SV 0.0 -0.1 -0.1 -4.1 0.0 -0.8 0.0 0.0
SVJ-Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
SVJ-V 0.0 0.0 0.0 0.1 0.0 -1.7 0.0 0.2
SVJ-Y-V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVJJ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Notes: The table reports both the magnitude and direction of the change in the Kolmogorov-Smirnov p-value when
the option strikes become sparser (�K changes from $1 to $5). Changes in the average p-value (�p̄) is calculated
as: p̄�K=5� p̄�K=1, and changes in the rejection rate (�Rejection) is calculated as: Rejection�K=5�Rejection�K=1.
A negative �p̄ or a positive �Rejection indicates a worse performance, and a positive �p̄ or a negative �Rejection
indicates a better performance, when performing estimations on sparser options data with fewer number of options.



Fig. 1. Simulated Bid-Ask Spread and Price Noise

The figure shows an example of the OTM option prices, and the corresponding simulated bid-ask spreads and price noises.



Fig. 2. RNDs of the A�ne Jump-Di↵usion Models

The figure shows RNDs of the a�ne jump-di↵usion models. These RNDs are generated by a�ne jump-di↵usion models
by plugging the parameter estimates presented in Table 2 into Equation (8).



Fig. 3. RND Estimates of the SV Model

The figure shows RND estimates from a single round of Monte Carlo simulation under
the SV model. True RNDs (solid line) are generated by the SV model with parameter
estimates from Table 2 and simulated underlying index level St = 101.22, instantaneous
variance level Vt = 0.0107, and strike price K 2 [80, 121]; estimated RNDs (dashed lines)
are extracted by eight estimation methods from the same set of artificial option data
generated by the SV model perturbed by the noise perturbation process.



Fig. 4. Pricing Bias Across Moneyness

The figure shows the pricing bias of the a�ne jump di↵usion models and estimation
methods for RND across the moneyness.



Fig. 5. Kolmogorov-Smirnov p-values of the SV process (�K = $1)
The figure shows the box plot of Kolmogorov-Smirnov p-values of the SV model. The red
line in each box represents the median p-value; each box covers the interquartile range
of the Kolmogorov-Smirnov p-values, the upper and lower edges of the box correspond
to the 25th and 75th percentiles of the p-value sample; the whiskers are marked at 1.5
times the interquartile range; outliers are plotted individually by using red ”+” symbols.



Fig. 6. Kolmogorov-Smirnov p-values of the SVJ-Y process (�K = $1)
The figure shows the box plot of Kolmogorov-Smirnov p-values of the SVJ-Y model. The
red line in each box represents the median p-value; each box covers the interquartile range
of the Kolmogorov-Smirnov p-values, the upper and lower edges of the box correspond
to the 25th and 75th percentiles of the p-value sample; the whiskers are marked at 1.5
times the interquartile range; outliers are plotted individually by using red ”+” symbols.



Fig. 7. Kolmogorov-Smirnov p-values of the SVJ-V process (�K = $1)
The figure shows the box plot of Kolmogorov-Smirnov p-values of the SVJ-V model. The
red line in each box represents the median p-value; each box covers the interquartile range
of the Kolmogorov-Smirnov p-values, the upper and lower edges of the box correspond
to the 25th and 75th percentiles of the p-value sample; the whiskers are marked at 1.5
times the interquartile range; outliers are plotted individually by using red ”+” symbols.



Fig. 8. Kolmogorov-Smirnov p-values of the SVJ-Y-V process (�K = $1)
The figure shows the box plot of Kolmogorov-Smirnov p-values of the SVJ-Y-V model.
The red line in each box represents the median p-value; each box covers the interquartile
range of the Kolmogorov-Smirnov p-values, the upper and lower edges of the box corre-
spond to the 25th and 75th percentiles of the p-value sample; the whiskers are marked
at 1.5 times the interquartile range; outliers are plotted individually by using red ”+”
symbols.



Fig. 9. Kolmogorov-Smirnov p-values of the SVJJ process (�K = $1)
The figure shows the box plot of Kolmogorov-Smirnov p-values of the SVJJ model. The
red line in each box represents the median p-value; each box covers the interquartile range
of the Kolmogorov-Smirnov p-values, the upper and lower edges of the box correspond
to the 25th and 75th percentiles of the p-value sample; the whiskers are marked at 1.5
times the interquartile range; outliers are plotted individually by using red ”+” symbols.



Supplementary Data

Table 7: Summary Statistics of p-values of the Kolmogorov-Smirnov Test (�K = $5)

⌧ = 21 ⌧ = 91 ⌧ = 182

Average

p-value

Standard

Deviation

Rejection

of H0 (%)

Average

p-value

Standard

Deviation

Rejection

of H0 (%)

Average

p-value

Standard

Deviation

Rejection

of H0 (%)

SV process
LN2 0.09 0.20 72.9 0.52 0.22 0.2 0.97 0.04 0.0

HPGC 0.94 0.14 0.1 0.84 0.27 1.8 0.75 0.31 4.8

GB2 0.79 0.30 0.3 0.99 0.02 0.0 1.00 0.01 0.0

GEV 0.95 0.11 0.0 0.97 0.06 0.0 0.98 0.05 0.1

QP 0.58 0.38 17.0 0.99 0.03 0.0 1.00 0.00 0.0

CS 0.94 0.15 0.0 0.99 0.06 0.1 0.98 0.11 0.4

PCA 0.98 0.07 0.0 1.00 0.00 0.0 1.00 0.00 0.0

SRM 0.89 0.23 4.2 0.97 0.16 2.1 0.97 0.17 2.8

SVJ-Y process
LN2 0.06 0.17 77.3 0.43 0.19 0.4 0.94 0.07 0.0

HPGC 0.99 0.07 0.0 0.94 0.11 0.0 0.84 0.11 0.0

GB2 0.95 0.12 0.0 0.97 0.06 0.0 1.00 0.01 0.0

GEV 0.96 0.12 0.0 0.97 0.06 0.0 0.97 0.05 0.0

QP 0.54 0.27 0.8 0.89 0.13 0.0 1.00 0.01 0.0

CS 0.98 0.06 0.0 1.00 0.00 0.0 1.00 0.02 0.0

PCA 1.00 0.01 0.0 1.00 0.00 0.0 1.00 0.00 0.0

SRM 0.95 0.20 3.5 0.98 0.14 1.8 0.98 0.14 2.1

SVJ-V process
LN2 0.11 0.23 69.6 0.50 0.24 1.0 0.95 0.08 0.0

HPGC 0.93 0.17 0.6 0.84 0.27 3.7 0.70 0.26 4.7

GB2 0.91 0.17 0.1 0.98 0.06 0.1 1.00 0.02 0.0

GEV 0.96 0.11 0.2 0.95 0.10 0.1 0.96 0.08 0.1

QP 0.69 0.28 1.0 0.97 0.06 0.0 1.00 0.02 0.0

CS 0.97 0.10 0.1 0.98 0.10 0.2 0.97 0.13 0.5

PCA 0.99 0.06 0.0 1.00 0.00 0.0 1.00 0.00 0.0

SRM 0.93 0.19 2.6 0.97 0.15 2.3 0.98 0.15 2.3

SVJ-Y-V
process
LN2 0.04 0.16 89.2 0.36 0.15 0.2 0.93 0.06 0.0

HPGC 0.99 0.06 0.0 0.92 0.13 0.0 0.79 0.11 0.0

GB2 0.94 0.13 0.0 0.97 0.05 0.0 1.00 0.01 0.0

GEV 0.95 0.13 0.0 0.96 0.06 0.0 0.97 0.04 0.0

QP 0.49 0.24 0.6 0.87 0.13 0.0 1.00 0.01 0.0

CS 0.99 0.04 0.0 1.00 0.00 0.0 1.00 0.01 0.0

PCA 1.00 0.02 0.0 1.00 0.00 0.0 1.00 0.00 0.0

SRM 0.95 0.20 3.6 0.98 0.14 1.8 0.98 0.14 2.0

SVJJ process
LN2 0.07 0.20 82.4 0.36 0.19 0.9 0.91 0.08 0.0

HPGC 0.74 0.35 4.7 0.65 0.23 0.0 0.64 0.15 0.0

GB2 0.58 0.41 14.5 0.59 0.34 0.0 0.85 0.14 0.0

GEV 0.57 0.43 22.3 0.49 0.39 9.3 0.66 0.26 0.0

QP 0.42 0.35 28.4 0.79 0.21 0.0 0.99 0.02 0.0

CS 0.75 0.34 2.7 1.00 0.02 0.0 1.00 0.00 0.0

PCA 0.83 0.28 0.3 0.93 0.09 0.0 0.99 0.01 0.0

SRM 0.78 0.32 5.0 0.96 0.18 3.1 0.96 0.18 3.3

Notes: The table reports the mean and the standard deviation of p-values of the Kolmogorov-Smirnov test of the estimation

performance of methods for RND. The standard deviation of p-values is computed from a set of 1000 RND estimates; the

rejection rate is the percentage of density estimates rejected at 5% significance level, and is calculated by dividing the number of

p-values smaller than 0.05 by the total number of p-values (which is 1000).



Fig. 10. Kolmogorov-Smirnov p-values of the SV process (�K = $5)
The figure shows the box plot of Kolmogorov-Smirnov p-values of the SV model. The red

line in each box represents the median p-value; each box covers the interquartile range

of the Kolmogorov-Smirnov p-values, the upper and lower edges of the box correspond

to the 25th and 75th percentiles of the p-value sample; the whiskers are marked at 1.5

times the interquartile range; outliers are plotted individually by using red ”+” symbols.



Fig. 11. Kolmogorov-Smirnov p-values of the SVJ-Y process (�K = $5)
The figure shows the box plot of Kolmogorov-Smirnov p-values of the SVJ-Y model. The

red line in each box represents the median p-value; each box covers the interquartile range

of the Kolmogorov-Smirnov p-values, the upper and lower edges of the box correspond

to the 25th and 75th percentiles of the p-value sample; the whiskers are marked at 1.5

times the interquartile range; outliers are plotted individually by using red ”+” symbols.



Fig. 12. Kolmogorov-Smirnov p-values of the SVJ-V process (�K = $5)
The figure shows the box plot of Kolmogorov-Smirnov p-values of the SVJ-V model. The

red line in each box represents the median p-value; each box covers the interquartile range

of the Kolmogorov-Smirnov p-values, the upper and lower edges of the box correspond

to the 25th and 75th percentiles of the p-value sample; the whiskers are marked at 1.5

times the interquartile range; outliers are plotted individually by using red ”+” symbols.



Fig. 13. Kolmogorov-Smirnov p-values of the SVJ-Y-V process (�K = $5)
The figure shows the box plot of Kolmogorov-Smirnov p-values of the SVJ-Y-V model.

The red line in each box represents the median p-value; each box covers the interquartile

range of the Kolmogorov-Smirnov p-values, the upper and lower edges of the box corre-

spond to the 25th and 75th percentiles of the p-value sample; the whiskers are marked

at 1.5 times the interquartile range; outliers are plotted individually by using red ”+”

symbols.



Fig. 14. Kolmogorov-Smirnov p-values of the SVJJ process (�K = $5)
The figure shows the box plot of Kolmogorov-Smirnov p-values of the SVJJ model. The

red line in each box represents the median p-value; each box covers the interquartile range

of the Kolmogorov-Smirnov p-values, the upper and lower edges of the box correspond

to the 25th and 75th percentiles of the p-value sample; the whiskers are marked at 1.5

times the interquartile range; outliers are plotted individually by using red ”+” symbols.
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