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 
Abstract—A rigorous model for automatic modulation 

classification (AMC) in cognitive radio (CR) systems is proposed 

in this paper. This is achieved by exploiting the Kalman filter 

(KF) integrated with an adaptive interacting multiple model 

(IMM) for resilient estimation of the channel state information 

(CSI). A novel approach is proposed, in adding up the square-

root singular values (SRSV) of the decomposed channel using the 

singular value decompositions (SVD) algorithm. This new 

scheme, termed Frobenius eigenmode transmission (FET), is 

chiefly intended to maintain the total power of all individual 

effective eigenmodes, as opposed to keeping only the dominant 

one. The analysis is applied over multiple-input multiple-output 

(MIMO) antennas in combination with a Rayleigh fading channel 

using a quasi likelihood ratio test (QLRT) algorithm for AMC. 

The expectation-maximization (EM) is employed for recursive 

computation of the underlying estimation and classification 

algorithms. Novel simulations demonstrate the advantages of the 

combined IMM-KF structure when compared to the perfectly 

known channel and maximum likelihood estimate (MLE), in 

terms of achieving the targeted optimal performance with the 

desirable benefit of less computational complexity loads.  

 
Index Terms—Automatic modulation classification, Kalman 

filter, interacting multiple model, channel estimation. 

 

I. INTRODUCTION 

HE desire to embed intelligent features, such as cognitive 

radio (CR), in emerging communication systems has 

recently received much attention. This is mainly attributed to 

the mechanisms that CRs possess to adapt to their changing 

surrounds [1]. The prime intention of CRs is to promote the 

awareness of efficient and sustainable spectrum utilization 

[17]. Unlicensed secondary users (SUs) featuring the 

intelligent strategies of CR systems are able to 

opportunistically share the unoccupied spectrum bands with 

licensed primary users (PUs) in order to achieve better spectral 

efficiency. This, of course, should occur without harming the 
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activities of PUs, and SUs should vacate particular spectrum 

bands upon PUs’ request without any untoward delay or 

disturbance. Specifically, CR systems not only need to 

perform spectrum sensing (SS) in the interested frequency 

bands but also need to interrogate the sensed signals to obtain 

additional information, such as the modulation scheme, in 

order to design improved dynamic spectrum access (DSA) 

strategies [18, 19].   

 As an intermediate stage between signal detection and 

demodulation, automatic modulation classification (AMC), 

sometimes referred to as automatic modulation recognition 

(AMR), plays a significant role in such adaptive aspects, 

whether of civilian or military nature. AMC mainly aspires to 

identify the modulation type of a noisy signal from a possible 

set of known patterns [2, 3]. Such a task should be flawlessly 

achieved irrespective of transmission constraints, such as large 

variations of signal-to-noise ratio (SNR) and severe fading. 

The consistency between AMC and DSA, in addition to 

adaptive coded modulation (ACM) techniques in general 

wireless communication systems, and particularly in CRs, is 

regularly reasserted. This is happening while most developers 

and operators are investigating emerging mobility scenarios, 

such as fifth-generation (5G) applications and spectrum 

opportunities under inconsistent channels [1, 17-19]. 

 Two main categories of AMC techniques are prominent in 

survey literature [4, 5]: likelihood-based (LB); and feature-

based (FB). The LB is considered optimal in the Bayesian 

sense if the channel state information (CSI) is known to the 

receiver, and also to the transmitter in the case of cooperative 

environment. The FB is built on a specific signal feature and is 

alleged to be less costly. In either method, if the work 

environment lacks coordination between the transmitter and 

the receiver, which is the case considered in this paper, then 

the whole process is conducted blindly. Generally, blind AMC 

systems are chiefly concerned with the automatic recognition 

of the modulation scheme of the received signals with limited 

or no prior knowledge, and hence are foreseen to radically 

improve the performance of the CR systems. 

A number of recent studies in the context of LB and FB 

categories can be identified in the literature and a few samples 

of studies are considered here [20-26]. An LB algorithm for 

automatically identifying different quadrature amplitude 

modulation (QAM) and phase-shift keying (PSK) modulation 

schemes was given in [20]. The proposed algorithm 

maximizes a log-likelihood function (LLF) based on the 

known probability distribution associated with the phase or 

amplitude of the received signals for the most suitable 

modulation candidates. Their approach is blind as it does not 
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need prior knowledge of the carrier frequency or the baud rate. 

An LB algorithm was also used in the AMC system for 

constellation identification of orthogonal frequency division 

multiplexing (OFDM) signal with index modulation, as an 

indicator of active subcarriers, in [21]. Two scenarios were 

proposed, known CSI and unknown CSI, with the latter 

conducted blindly by default. A rather different hybrid AMC 

approach that constitutes a combination of both the LB and FB 

schemes was proposed in [22], motivated by the claimed fact 

that the moments of the received signal are easy to compute 

and can provide a simple way for signal detection. The FB 

scheme in [22] was based on the high-order moments (HOMs) 

and high-order cumulants (HOCs). A useful complexity 

analysis and simulation comparisons with other state-of-the-

art machine learning classifiers, such as genetic-programing 

based K-nearest neighbor (GP-KNN), linear support vector 

machine (LSVM) and Kolmogorov-Smirnov (KS) were 

provided [22]. 

Some notable studies on FB are selected for discussion [23-

26] in the following, but several others also exist. The graph, 

constructed from the Fourier transform of the second and 

fourth powers of the received signal, as a discrimination 

feature was exploited for classification in [23]. This FB 

classifier was claimed to have no dependence on the CSI or 

SNR estimation, nor did it need timing or frequency offset 

corrections. An end-to-end convolution neural network (CNN) 

based AMC (CNN-AMC), which automatically extracts 

features from the long symbol-rate observation sequence along 

with the estimated SNR was proposed in [24]. Such a 

classifier was thought of as a competent track to the FB, and 

the complexity of which alongside the conventional LB was 

presented. Another blind AMC method, based on the 

combination of elementary and cyclic cumulants, was 

proposed in [25]. The elementary cumulant was used to decide 

whether the constellations are from real, circular, or 

rectangular class, which was referred to as macro classifier. 

While, on the other hand, the cyclic cumulant was used to 

classify modulation within a subclass, which was referred to 

as micro classifier. A modulation-constrained clustering with 

unknown channel matrix and noise variance for multiple-input 

multiple-output (MIMO) systems was addressed in [26]. The 

AMC task was altered into a number of clustering problems, 

by projecting the sliced received signals into clusters, one for 

each modulation pattern. The final outcome was then decided 

by using the ML criterion applied to each intrinsic cluster.  

Concluding from the above, the demand for accurate 

channel modelling and estimation has been noticeably 

emphasized. The finite state Markov chain (FSMC) has 

recently gained much attention in the modelling of wireless 

channels [1, 6, 7, 11]. Such channels are broadly categorized 

as a type of jump Markov linear systems (JMLSs), whose 

parameters evolve according to the realization of an FSMC 

model. A recent study, considering an LB classifier and 

featuring the Baum-Welch (BW) procedure for forward-

backward computation of fading variable using the hidden 

Markov model (HMM) can be identified in [27]. From another 

perspective, the interacting multiple model (IMM) has been 

commonly adopted to cope with the dynamic changes of 

various aerospace, navigation and signal processing systems 

[6, 7]. The IMM algorithm is widely involved in determining 

various processes, the underlying parameters of which evolve 

in the premises of FSMC and HMM approximations.  

The Kalman filter (KF), on the other hand, is generally 

considered as one of the best optimum estimation algorithms 

that can be applied to a variety of vibrant systems [6, 10]. In 

this paper, we propose to employ the robust IMM geared to a 

bank of KFs for the purpose of CSI estimate adaptation and, 

thereby, render the AMC performance more efficient in CR 

systems. That is in the sense that several individual KFs can 

be constructed to mimic different fading effects, which are 

anticipated to evolve similarly to the FSMC or the HMM 

processes. The IMM algorithm then statistically combines the 

KFs’ outputs as per the weighing factor assigned to each KF 

branch based on how accurately each copes with the presumed 

dynamic range of fading variants.  

To the best of our knowledge, this paper, for the first time, 

proposes integrating IMM with the KF structures to adaptively 

track and follow the CSI and fading attributes. Amending the 

combined IMM-KF structure for adaptive CSI estimation and 

aiming at the consolidation of AMC systems is proposed in 

this paper, which has not been addressed elsewhere in the 

literature. Simulations are conducted with reference to the 

classical maximal likelihood (ML) channel estimators [2, 3]. 

The results validate the performance and efficiency of the 

integrated IMM-KF structure in the AMC paradigm. 

A. Contributions 

The demand for reliable AMC strategies in the design of 

CR systems has become increasingly pressing with the advent 

of new communication technologies. With this in mind, this 

paper aims to design a consistent and seamless AMC model 

with acceptable computational budget. The most notable 

contributions are as follows:  

 Employing the SVD, equipped with the MRC, to 

perform the MIMO eigenchannel decomposition for 

space reduction and to render tractable CSI estimation. 

 Developing a new approach of adding up the effective 

eigenemode transmission parameters instead of relying 

on individual ones and hence maintaining the power of 

all. 

 Featuring a novel AMC approach based on the combined 

IMM-KF structure for resilient CSI estimation to 

enhance the LB classifier performance.  

 Applying the IMM-KF output to the EM algorithm and 

performing the iterative computation of overlapped 

cycles concerned with the CSI estimation and signal 

detection.  

 Assessing the underlying complexity and computational 

requirements of the AMC based on IMM-KF, which 

advantageously reveals that it has less overheads 

compared to the classical ML for CSI estimation. 

B. Mathematical Notations 

In this work: boldface uppercase letters denote matrices; 

non-boldface uppercase letters denote scalars; boldface 
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lowercase letters denote vectors; and non-boldface lowercase 

letters denote scalar variables. The operators (. )∗, (. )T, (. )† 

and ‖. ‖2 denote conjugate, transpose, Hermitian (conjugate 

transpose) and Frobenius norm, respectively. The operator ∀ 

means for all elements that belong to, or ∈, a certain space. 

The minimization is 𝑚𝑖𝑛⁡(. ), maximization is 𝑚𝑎𝑥⁡(. ), the 

summation is 𝑠𝑢𝑚(. ), while 𝑑𝑖𝑎𝑔[. , . , . ] represents the 

diagonal entries of a matrix. 𝔼(. ) is the statistical expectation, 

Pr(. ) is the probability, ln(. ) is the natural logarithmic, and 

e𝑥𝑝(. ) is the exponential function.  

C. Outline 

The remainder of this paper is organized as follows. Section 

II introduces the system modelling; Section III presents the 

space reduction techniques; Section IV discusses the basics of 

modulation classifications; Section V discusses the channel 

modeling and KF estimation; Section VI addresses the FSMC 

channel modeling and IMM adaptation, Section VII presents 

the joint channel estimation and data detection; Section VIII is 

concerned with the expectation-maximization; Section IX 

elaborates on the complexity analysis, and Section X is 

devoted to the numerical results and is followed by the 

concluding remarks. 

II. SYSTEM MODELING 

Consider a linearly modulated signal transmitted through a 

time-variant fading channel of Rayleigh characteristics using a 

𝑁𝑡 × 𝑁𝑟 ⁡MIMO system. The received baseband signal in this 

case is denoted by [2-5]  

𝑦𝑖(𝑘) =∑[ℎ𝑖,𝑗(𝑘)𝑥𝑗,𝑚(𝑘) + 𝑛𝑖(𝑘)],⁡⁡⁡∀𝑘 ∈ 𝐾

𝑁𝑡

𝑗=1

 (1) 

where 𝑦𝑖(𝑘) is the 𝐾-length complex-valued sequence 

received on antenna 𝑖, ℎ𝑖,𝑗 is the channel parameters, 𝑥𝑗,𝑚(𝑘) 

is the transmitted signal on antenna 𝑗 and associated with the 

constellation set mapping,⁡𝒞𝑚⁡as the⁡𝑚th
 modulation and m = 

1,…M, which can be of any priori known type, and 𝑛𝑖(𝑘) is 

the additive white Gaussian noise (AWGN) of zero mean and 

variance 𝜎𝑛𝑖
2 . The symbols {𝑥𝑗,𝑚(𝑘)}𝑚=1

𝑀
are assumed uniform 

and independent over 𝒞𝑚 space with zero mean and variance 

one. Revising (1) in matrix form yields 

𝒀(𝑘) = 𝑯(𝑘)𝑿(𝑘) + 𝑵(𝑘),⁡⁡⁡∀𝑘 ∈ 𝐾 (2) 

where 𝑯 is the 𝑁𝑡 × 𝑁𝑟  channel matrix and the coefficients of 

which are assumed to be statistically independent Gaussian 

distributed complex circular random variables of zero mean 

and unknown variance, which is to be estimated. The AWGN 

vector⁡𝑵 is given by 𝒞𝒩~(0, 𝜎𝑛
2𝑰) and 𝑰 is an identity matrix.  

III. SPACE REDUCTION 

Modeling simplification using space reduction techniques is 

highly desirable, especially for online streaming applications 

such as the AMC systems. Aiming at an effective and 

straightforward CSI estimate, two powerful yet essentially 

equivalent simplification strategies can be applied. The first 

strategy is called eigenmode transmission (ET), while the 

second is beamforming (BF); both are prevalent in the 

literature [8, 9]. While the singular value decomposition 

(SVD) can be applied to both strategies, BF is more related to 

maximum-ratio combining (MRC) at the transmitter, often 

called (MRT). Both strategies, however, separate the MIMO 

channel into 𝑅 = 𝑚𝑖𝑛⁡{𝑁𝑡 , 𝑁𝑟} virtually separated parallel 

channels [12-14] with a gain of 𝑔𝑟=√𝜆𝑟, which is the square 

root of the 𝑟th
 eigenvalue, 𝜆𝑟 of 𝑯𝑯† or 𝑯†𝑯.  

The 𝑁𝑟 × 𝑁𝑡  channel matrix 𝑯, with rank 𝑅 = 𝑚𝑖𝑛⁡(𝑁𝑡 , 𝑁𝑟) 

has an SVD representation given by 𝑯 = 𝑼𝜮𝑽†, where 𝑼 and 

𝑽 are 𝑁𝑟 × 𝑅 left and 𝑁𝑡 × 𝑅 right matrices to satisfy 𝑼𝑼† =

𝑽𝑽† = 𝑰𝑅, 𝜮 = 𝑑𝑖𝑎𝑔[σ1, σ2, … , σ𝑅] with σ𝑖 ≥ 0 and σ𝑖 ≥
σ𝑖+1, where σ𝑖  is the 𝑖th

 singular-value of the channel. The 

columns of 𝑽 and 𝑼 are also known as the left input and right 

output singular vectors, respectively. Now, 𝑯𝑯† is a 𝑁𝑟 × 𝑁𝑟 

semi-definite Hermitian matrix. Let the eigen decomposition 

of 𝑯𝑯† be 𝑸𝝀𝑸† where 𝑸 is an 𝑁𝑟 × 𝑁𝑟 matrix satisfying 

𝑸†𝑸 = 𝑸𝑸† = 𝑰𝑁𝑟 and 𝝀 = 𝑑𝑖𝑎𝑔[𝜆1, 𝜆2, … , 𝜆𝑅]  with random 

variable eigenvalues 𝜆𝑖 ≥ 0, sorted in a descending order 

𝜆𝑖 ≥ 𝜆𝑖+1 and have Chi-square distribution and 2𝑁𝑡𝑁𝑟 degrees 

of freedom [14]. Then, 𝜆𝑖 = σ𝑖
2 for 𝑖 ∈ {1, 2, … , 𝑅} and 𝜆𝑖 = 0 

for 𝑖 ∈ {𝑅 + 1, 𝑅 + ⁡2, … , 𝑁𝑟}.  

After applying any of the transmission strategies and with 

the support of spatial-temporal matched filtering (STMF) to 

maximize the energy of displaced signals, (1) and (2) can be 

reduced to the following expression of total received signal  

𝑦(𝑘) = ∑[√𝜆𝑟𝑥𝑟,𝑚(𝑘) + 𝑛𝑟(𝑘)],⁡⁡⁡∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀

𝑅

𝑟=1

 (3) 

where the noise statistical characteristics remain intact after all 

mathematical manipulations and the received signal elements 

are hence decoupled and can be processed separately, since 

they are independent and identically distributed (iid) statistical 

processes. Further simplification can also be proposed here by 

having an effective channel parameter expressed by summing 

the diagonal entries ℏ = 𝑠𝑢𝑚. 𝑑𝑖𝑎𝑔[√𝜆𝑟], i.e., summing up 

the square-root of singular values (SRSV), to alter (3) as 

follows 

𝑦(𝑘) = ℏ(𝑘)𝑥𝑚(𝑘) + 𝑛(𝑘),⁡⁡⁡∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀 (4) 

where the above also assumes the signal is identical on all 

channel paths and the noise is uncorrelated and not adding up.  

 It is worth noting that the BF refers to signals being 

transmitted using the principal eigenmode of a channel [12, 

13]. This is exactly what is meant to be for the ET strategy as 

a MIMO channel is decoupled into separate and non-

interfering ETs. The ET and BF are mainly motivated owing 

to the treatment of different eigenmodes as scalar channels 

and, thereby, maintain lesser complexity, which is credited to 

the SVD involvement. For both strategies to perform 

optimally, the provision of full CSI knowledge is a necessity; 

otherwise, blind or partial CSI knowledge may yield 

suboptimal performance, which is also acceptable. In either 

way, the employment of ET or BF can push for higher peaks 
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in the adaptive transmission rates and channel capacities and 

full diversity can be also reached under certain conditions [12, 

13]. As this paper is favorably inclined towards the ET 

strategy, a blind CSI estimation on the receiver side is 

considered without any back return to the transmitter. This is 

the normal situation in vast non-cooperative wireless 

communication systems; otherwise there will be no need for 

the AMC if both the transmitter and the receiver are originally 

cooperative.  

 Other interesting subspace reduction forms aligned with the 

task of signal identification can also be found in the literature. 

For example, the quadrature left decomposition (QLD) and the 

quadrature right decomposition (QRD) techniques were 

discussed in [15, 16]. Both studies suggested further space 

reduction by using the WRD, or WLD, approach, where W, R, 

and L stand for matrices’ names used in the analysis therein, 

which can be attended by swapping particular layers in the 

punctured structures. The complexity overheads were 

evaluated and major savings were claimed while achieving 

near optimum classification performances.  

 Inspired by the above, the substantiation of the new 

paradigm proposed in this paper becomes quite apparent. The 

proposed approach here departs from other roadmaps 

suggested elsewhere in the sense that it is not concerned with 

the factorization of the channel covariance matrix. The core 

idea of the proposed paradigm is mainly centered on the 

eigenvalues of the decomposed channel and, instead of being 

treated individually, they are summed to generate a new single 

parameter. This parameter symbolizes the variant effects of a 

block-fading channel that is readily available to streamline the 

IMM-KF estimation algorithm. Such an approach is believed 

to be unique, with no evidence that it has been experimented 

elsewhere previously.  

 The new concept of total effective SRSV, which is 

mathematically equivalent to the Frobenius norm, is dubbed 

Frobenius ET (FET) in this paper. The simplified diagram of 

the proposed eigen-based adaptive IMM-KF for CSI 

estimation is portrayed in Fig. 1 below. 

 
Fig. 1.  Simplified diagram of the proposed adaptive CSI estimator.  

IV. MODULATION CLASSIFICATION 

This section is centered on the LB analysis, which is 

intrinsic to the premise of Bayes system. The eventual ML 

classifier is realized by conducting a multiple hypothesis test 

(MHT), whereby ⁡ℋ𝑚 is arbitrarily assigned to the 𝑚th
 

modulation type out of 𝑀⁡ potentials. The MHT is a composite 

methodical problem with strong links to the joint and 

conditional probability density functions (PDFs) of unknown 

parameters [2-5]. The PDF below is for the system in (4)  

𝑝(𝒚|𝒙, 𝚯) =∏ ∑
1

𝑀

1

√2𝜋𝜎𝑛
𝑒𝑥𝑝 (−

|𝑦𝑘 − ℏ𝑘𝑥𝑚,𝑘|
2

2𝜎𝑛
2

)

𝑀

𝑚=1

𝐾

𝑘=1

 (5) 

where ⁡𝒚 is the vector for all received samples ∀𝑘 ∈ 𝐾,𝚯 =
⁡[ℏ⁡⁡𝜎𝑛]

𝑇 is the vector of unknown parameters and the time 

index is changed for simplicity to down-script. Optimum or 

semi-optimum solutions to the composite MHT task can be 

attempted by appraising the unknown parameters as random 

variables (RVs). Four different ML application scenarios can 

consequently be distinguished, namely: the average likelihood 

ratio test (ALRT); generalized likelihood ratio test (GLRT); 

hybrid likelihood ratio test (HLRT); and quasi likelihood ratio 

test (QLRT) [2-5]. Probing into the ALRT reveals the 

likelihood of 𝒚 under ℋ𝑚 is attained by averaging the PDF 

over unknown signal constellations and nuisance parameters  

Λ𝑚
ALRT(𝒚) = 𝔼𝒙𝔼𝚯[𝑝(𝐲|𝒙, 𝚯)] (6) 

where ⁡𝔼𝑥[. ] and ⁡𝔼𝚯[. ] are the expectations operators. The 

above ALRT algorithm assumes the statistical characteristics 

of unknown RVs are either exactly defined or fitted to the 

best, which is a vastly tedious task in reality. It is therefore 

practically not feasible in most CR applications, especially 

under large constellation size, due to its highly nonlinear 

complexity and computational burdens. The ALRT merely 

signifies the upper-bound (UB) limit for other algorithms.  

From another perspective, the GLRT algorithm is taken as 

being equivalent to ALRT, providing that the ML estimate 

(MLE) of nuisance parameters is used and, therefore, the 

performance of which is unavoidably inferior. Applying the 

GLRT algorithm under nested constellations is also considered 

awkward [4]. While on the other hand, the averaging is 

conducted over the unknown symbols only in the HLRT and 

QLRT algorithms, and eventually the suitable estimate 𝚯̂ 

replaces 𝚯 as follows 

Λ𝑚
(Q)HLRT

(𝒚) = ⁡⁡𝔼𝒙[𝑝(𝒚, 𝚯̂|𝒙)] (7) 

The MLE for the sought parameters is at the heart of HLRT, 

while the QLRT may use other estimation tools. The non-data 

aided (NDA) provision suggests that both algorithms can be 

realized blindly or semi-blindly. 

Recall that the natural logarithm is monotonically 

increasing and Λ𝑚 is positive-definite, the log-likelihood ratio 

(LLR) defined as ℒ𝑚 = ℒ(𝒚/ℋ𝑚) = ⁡𝑙𝑛⁡(Λ𝑚) is proved useful 

to simplify the MC decision making. The decision criterion for 

binary HT (BHT) problem is hence constructed as the ratio 

between two observations ⁡ℋ𝑚 and ℋ𝑚′ with prior 

probabilities 𝑃𝑚 ⁡ and 𝑃𝑚′, respectively, as given below 

𝑙𝑛
ℒ(𝐲/ℋ𝑚)

ℒ(𝐲/ℋ𝑚′)
= ℒ𝑚 − ℒ𝑚′ 𝑙𝑛⁡

𝑃𝑚
𝑃𝑚′

<ℋ
𝑚′

>ℋ𝑚
 (8) 

The rightmost term in (8) is the threshold; its value equals 0 

for equally likely modulation types, i.e., ⁡𝑃𝑚 =⁡𝑃𝑚′. This 
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BHT can be uniformly generalized overall applicable ⁡𝑀 

hypotheses space to yield the following detection rule  

𝒞̂𝑚 = 𝑎𝑟𝑔𝑚∈{1,2,…,𝑀}𝑚𝑎𝑥(ℒ𝑚) (9) 

The main task of MC is to maximize the LLR functions 

comprised in MHTs and decide the best modulation candidate 

with as fewer errors as possible. The classifier performance 

can be quantified in terms of the individual probability of 

correct classification 𝑃𝐶𝐶 , which is the probability under 

hypothesis ℋ𝑚 given that modulation 𝑚 is the accurate 

modulation 

𝑃𝐶𝐶 = Pr(correct|ℋ𝑚) = Pr[ℒ𝑚 > ℒ𝑚′],⁡⁡⁡∀𝑚 ≠ 𝑚′ (10) 

The overall average probability of correct classification is not 

a favorable performance indicator since the individual 

probabilities cannot be assessed separately [3]. 

V. CHANNEL MODELING AND KF ESTIMATION 

Efficient CSI estimation is crucial to the performance of 

higher-order modulations; KFs are very attractive in such 

domains [6, 10]. An accurate approximation for the channel 

modeling needs is to be investigated first before embarking on 

the development of KF algorithms. The following 1
st
-order 

autoregressive (Gauss-Markov) AR(1) model can embrace 

most of the channel dynamics and lead to effective tracking 

ℏ(𝑘 + 1) = ℏ(𝑘) + 𝑤(𝑘) (11) 

where ⁡𝑤(. ) is the state AWGN denoted by 𝒞𝒩~(0, 𝜎𝑤
2). The 

Jakes-Clarke (JC) channel model is commonly adopted as one 

of the best statistical models for inferring the random fading 

effects [6, 10, 11]. It can be easily approximated by using the 

AR(1) model as described in (11) above, and in this case ℏ 

represents a zero-mean complex random process with 

autocorrelation function 𝔼{ℏ(𝑘)ℏ∗(𝑘 − 𝑚} = 𝜎ℎ
2𝐽0(2𝜋𝑓𝐷𝜏/

𝑓𝑠), where 𝐽0(. ) is the zero-order Bessel function, 𝑓𝐷 is the 

maximum Doppler frequency, 𝜏 is the time delay, and 𝑓𝑠 is the 

sampling frequency [6, 10, 11]. 

The channel state and observation models given in (11) and 

(4), respectively, are essential to construct the recursive scalar 

KF algorithms. The definitions of the following terms are due 

[7, 8]; ℏ̂𝑘|𝑘−1 and ℏ̂𝑘|𝑘 for the state prediction and estimate at 

step 𝑘, and 𝑃𝑘|𝑘−1 ≜ 𝔼 {(ℏ𝑘|𝑘 − ℏ̂𝑘|𝑘−1)
2
} and 𝑃𝑘|𝑘 ≜

𝔼 {(ℏ𝑘|𝑘 − ℏ̂𝑘|𝑘)
2
} for the prediction and estimation errors’ 

covariances, respectively. The predictions for the system 

model described in (11) can be obtained as below 

{
ℏ̂𝑘|𝑘−1 = ℏ̂𝑘−1|𝑘−1

𝑃𝑘|𝑘−1 = 𝑃𝑘−1|𝑘−1 + 𝜎𝑤
2  (12) 

and the state estimate can be recursively updated as follows 

{

ℏ̂𝑘|𝑘 = ℏ̂𝑘|𝑘−1 + 𝐺𝑘𝑧𝑘

𝐺𝑘 ≜ 𝑃𝑘|𝑘−1𝑥̂𝑙,𝑘−1
T 𝑆𝑘

−1

𝑃𝑘|𝑘 = (1 − 𝐺𝑘)𝑃𝑘|𝑘−1

 (13) 

where ⁡𝐺𝑘 is the KF gain at step 𝑘, the residual sequence  

𝑧𝑘 = (𝑦𝑘 − 𝑥̂𝑙,𝑘−1ℏ̂𝑘|𝑘−1) is of covariance 

⁡𝑆𝑘 = 𝑥̂𝑙,𝑘−1𝑃𝑘−1|𝑘−1𝑥̂𝑙,𝑘−1
T + 𝜎𝑤

2 ⁡, and 𝑥̂𝑙,𝑘−1 is a priori 

classified symbol whereas superscript T denotes transpose. 

VI. FSMC AND IMM ADAPTATION 

The information-theoretic approach of popular 1
st
-order 

FSMC is a good approximation of random channel variations 

and agrees with the JC model. A single transition probability 

in the FSMC model 𝜋ℏ1→ℏ2,𝑘 represents the prior probability 

of a channel transiting from state ℏ𝑖 to state ℏ𝑗 at a particular 

step 𝑘 as given below [1] 

𝜋𝑘
𝑖,𝑗
= 𝜋ℏ𝑖→ℏ𝑗,𝑘 = Pr{ℏ𝑗,𝑘|ℏ𝑖,𝑘−1} (14) 

The current channel is hence only associated with the previous 

state, and statistically independent of all past and future states, 

i.e.,⁡𝜋𝑘
𝑖,𝑗
= 0⁡ for |𝑖 − 𝑗| > 1. The transition probability 𝝅𝑘 

matrix can be formed with entries as denoted in (14) for self 

and immediate neighboring cells accordingly.  

 Building on the above, a scalar KF can be arbitrated for a 

span of discrete channel states and hence facilitate the IMM 

algorithms appropriately. For a 𝒥-bank of KFs, these 

algorithms comprise the following core processing steps [7]. 

1) Interact: Action conditional and predicted probabilities 

𝜇𝑘−1|𝑘−1
𝑖|𝑗

=
𝜋𝑘
𝑖,𝑗
𝜇𝑘−1|𝑘−1
𝑖

𝜇𝑘|𝑘−1
𝑗

; 𝜇𝑘−1|𝑘−1
𝑖 = ∑𝜋𝑘

𝑖,𝑗
𝜇𝑘−1|𝑘−1
𝑗

𝒥

𝑗=1

 (15) 

And then mix the state estimates and covariance 

ℏ̅𝑘−1|𝑘−1
𝑖 =∑𝜇𝑘−1|𝑘−1

𝑖|𝑗
ℏ̂𝑘−1|𝑘−1
𝑖

𝒥

𝑗=1

 

(16) 
𝑃̅𝑘−1|𝑘−1
𝑖 =∑𝜇𝑘−1|𝑘−1

𝑖|𝑗
[𝑃𝑘−1|𝑘−1

𝑗

𝒥

𝑗=1

+⁡(ℏ̅𝑘−1|𝑘−1
𝑖 − ℏ̂𝑘−1|𝑘−1

𝑗
)
2

] 

2) Filter: Individual KF performs its usual filtering tasks. 

3) Update: Update each KF probability as per residual error  

∆𝑘
𝑖 =

𝑒𝑥𝑝 (−(1/2)(𝑧𝑘
𝑖 )

2
(𝑆𝑘

𝑖 )
−1
)

√|2𝜋𝑆𝑘
𝑖 |

 

(17) 

𝜇𝑘|𝑘
𝑖 =

𝜇𝑘|𝑘−1
𝑖 ∆𝑘

𝑖

∑ 𝜇𝑘|𝑘−1
𝑗

∆𝑘
𝑗𝒥

𝑗=1

 

4) Combine: Weight the state estimate and its covariance  

ℏ̂𝑘|𝑘 = ∑𝜇𝑘|𝑘
𝑖 ℏ̂𝑘|𝑘

𝑖

𝒥

𝑖=1

 

(18) 

𝑃𝑘|𝑘 = ∑𝜇𝑘|𝑘
𝑖 [𝑃𝑘|𝑘

𝑖 +⁡(ℏ̂𝑘|𝑘 − ℏ̂𝑘|𝑘
𝑖 )

2
]

𝒥

𝑖=1

 

The estimated channel and noise attributes are eventually 

enabled in (5) and the ensuing MC algorithms. This can be 

explicitly put in the form of Euclidean distance metric, which 

is measured between the observed data and all ideal symbols 

in each candidate modulation, and selecting the shortest one 
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This apparently turns out to be a typical integer least-squares 

(LS) or minimum variance (MV) detection problem. 

VII. JOINT CHANNEL ESTIMATION AND DATA DETECTION 

 Capitalizing on the above, it has become apparent for the 

requirement to promote a joint link between the AMC and CSI 

estimation strategies. In the strict sense of an AMC 

framework, the awareness of such joint channel estimation and 

data detection, dubbed here (JCEDD), is well established. The 

unknown CSI parameters that are accurately and seamlessly 

estimated would decisively contribute towards the successful 

operation of the AMC systems. Given such estimations are 

mostly encountered in uncertain environments, the AMC 

empowered by CSI estimate should be sufficiently intelligent 

to operate under adverse and complex situations, while the 

structure needs to be less bulky in order to afford real-time 

processing as practically feasible. Therefore, this section aims 

to shed more light into the JCEDD approach along with 

supplementary options, which have been proved to be useful 

for the AMC and CSI estimation integrated performance. 

 Research on the JCEDD approach in the framework of blind 

AMC applications is extensive, and only a few notable studies 

are mentioned herein [10, 28-34]. The interest in JCEDD 

techniques is not new and growth is expected to continue, not 

only with AMC applications, but also with other pinnacle 

functions of CR systems like the SS and ACM.  

 An overview of the JCEDD blind techniques can be 

obtained from [28]. Generally, blind techniques can be 

branched into two main streams, either deterministic or 

statistical, depending on how the input signal is modelled [28]. 

If the modelling assumes the input is a random variable with 

predefined statistics, the corresponding blind technique is to 

be statistical. On the other hand, if the modelling does not 

have any a priori description of the input random variable, or 

the statistics of which are available but are not exploited, and 

does not have a statistical description, the corresponding blind 

technique algorithm is called deterministic. 

 The JCEDD can be applied to any kind of unknown 

parameters of interest, which evolve around the core 

parameter represented by the alphabet symbols. Moreover, the 

JCEDD algorithm can be approached via iteratively 

exchanging information between the CSI estimator and the 

signal detector, noting that the detection and classification 

words can be used interchangeably in the literature and also in 

this work. The information exchange process is decomposed 

into two optimization loops, the outer and the inner. The outer 

loop is a global optimization algorithm, which searches for an 

optimal CSI estimate, while the inner loop is an ML algorithm 

that identifies the transmitted symbols [28-33]. These loops 

are interweaved, and sometimes called the upper level and the 

lower level, in tandem.   

 In [28], the repeated weighted boosting search algorithm 

was used for CSI estimate at the outer loop, which searches 

the MIMO channel space by evolving a population of MIMO 

channel matrices. While at the inner loop, the optimized 

hierarchy reduced search algorithm aided detector, which is an 

advanced extension of the complex sphere decoder, was used 

[28]. The signal identification by classifying both the 

modulation type and the STBC scheme in MIMO systems was 

considered as a joint classification problem in [32]. The 

JCEDD was also extended to MIMO-OFDM systems in the 

framework of sparse Bayesian learning techniques in [10]. It 

was also applied to the unknown co-scheduled user’s 

modulation constellation size as part of the MU-MIMO 

detector in [33]. The per-survivor processing of best 

optimization path using the VA algorithm as an effective 

trellis search engine in the context of JCEDD was elaborated 

in [29, 30]. The KF algorithm for CSI estimation was 

employed in [10, 34], whereas the GA procedure was 

implemented in [30]. 

 On the side of design tools necessary for the JCEDD 

algorithm, the first step usually begins by tailoring a 

minimization cost function, which should be suitably assigned 

to reflect on all the parameters of concern. Considering the 

MIMO configuration, this can be done by applying the MLE 

on the transmitted symbols 𝑿𝒊 and the channel matrix 𝑯 and 

then maximizing the joint conditional PDF over 𝑿 and 𝑯 

together. Alternatively, this can be achieved by minimizing 

the following joint cost function [28-34] 

ℱ(𝑿,̌ 𝑯̌) = ⁡⁡∑‖𝒀 − 𝑯𝑿‖2
𝐾

𝑘=1

 (20) 

where all the constants have been ignored as they will cancel 

each other while calculating LRTs. Namely, the joint ML for 

channel and data estimation is obtained as below [28-34] 

(𝑿̂, 𝑯̂) = 𝑎𝑟𝑔{𝑚𝑖𝑛𝑿̌,𝑯̌[ℱ(𝑿,̌ 𝑯̌)]} (21) 

As can be seen from (21), the search for the optimal joint ML 

result is over the entire discrete space of all the possible 

transmitted alphabets and the MIMO channel matrix, which is 

computationally prohibitive in reality. Therefore, the 

complexity of such an optimization process needs to be 

reduced to tractable levels. This can be done if each single 

search cycle is decomposed into two iterative loops: firstly, 

over all the possible data symbols; and then over all the 

channel matrix entries. This can be formed as below [30, 31] 

(𝑿̂, 𝑯̂) = 𝑎𝑟𝑔 {𝑚𝑖𝑛𝑯̌{𝑚𝑖𝑛𝑿̌[ℱ(𝑿,̌ 𝑯̌)]}} (22) 

Such interlaced loops are repeated over the complete space of 

all data and channel entries in effect, and until a breakdown of 

the most suitable per-survivor paths are obtained with minimal 

errors as possible [29, 30]. The efficient implementation of the 

above iteration tool is explored in the next section. 

VIII. EXPECTATION-MAXIMIZATION  

The statistical optimization expression, whether described 

in (21) or equivalently in (22), is in general difficult because it 

is nonconvex in the premise of an ML function. The 

expectation-maximization (EM) algorithm can be applied to 

𝑚𝑖𝑛‖𝒚 − ℏ𝒙𝑚‖
2 𝑚𝑖𝑛‖𝒚 − ℏ𝒙𝑚′‖2,⁡⁡⁡∀𝑚,𝑚′ ∈ 𝑀>ℋ

𝑚′

<ℋ𝑚
 (19) 
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transform the complicated optimization to a sequence of 

quadratic optimizations [10, 28, 34]. Not only can the EM be 

found in non-cooperative work conditions, but it can also be 

very useful under cooperative circumstances [35]. The main 

intention of developing the EM algorithm is to render the 

MLE of the unknown CSI parameters more tractable. 

The EM algorithm comprises two steps, namely: the 

expectation step (E-step); and the maximization step (M-step). 

In the E-step, the expectation of the LLF of the complete data 

given the observed data is evaluated. While in the M-step, new 

estimates of the unknowns are obtained by maximizing the 

expectation computed in the E-step. The EM algorithm 

possesses the property of monotonically increasing at each 

step to produce the expected maximum of LFs when it 

converges.  

Keeping the above in mind, the EM algorithm can now be 

explicably sought. Like the case of IMM-KF, let the only 

unknown scalar parameter be ⁡Θ = ⁡ℏ, then the MLE of which 

is denoted as follows [ 28, 34, 35] 

ℏ̂ML = 𝑎𝑟𝑔𝑚𝑎𝑥ℏ{𝑙𝑛(𝑝(𝒚|ℏ))} 

= 𝑎𝑟𝑔𝑚𝑎𝑥ℏ {𝑙𝑛 [∑ 𝑙𝑛(𝑝(𝒚|𝒙, ℏ)𝑝(𝒙))

𝒙

]} 

(23) 

From (23), it is apparent that there is no closed-form solution 

for ℏ̂ML⁡since 𝑝(𝒚|ℏ)⁡is of a mixed Gaussian distribution 

nature. A common circumvent to this issue is the expectation-

maximization (EM) algorithm to iteratively compute the MLE 

by using two data sets. The first data set is incomplete and 

comprises the observations ⁡𝒚, while the second is complete 

and represented by ⁡𝒛 = [𝒚T𝒙T]T, which is the observations 

and unknown or missing modulation symbols.  

The E-step is thereby attended as below [10, 35] 

𝒬(𝑥, ℏ̂𝑀𝐿
𝑖−1) = 𝔼𝒛 {𝑙𝑛 (𝑝(𝒛|ℏ|𝒚, ℏ̂𝑀𝐿

𝑖−1))} 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= 𝔼𝒙 {𝑝(𝒙|𝒚, ℏ̂𝑀𝐿
𝑖−1) 𝑙𝑛 (𝑝(𝒛|ℏ̂𝑀𝐿

𝑖−1))} 

(24) 

where ⁡𝑝(𝒙|𝒚, ℏ̂𝑀𝐿
𝑖−1)⁡is the a posteriori probability of the 

modulation symbol vector 𝒙⁡ conditioned on 𝒚⁡ and ℏ̂𝑀𝐿
𝑖−1, and 

𝑖⁡ here denotes the 𝑖th
 iteration of estimation and classification. 

 The parameter ℏ̂𝑀𝐿
𝑖  maximizes ⁡𝒬 in the M-step as follows 

[10, 35] 

ℏ̂𝑀𝐿
𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥ℏ{𝒬(𝑥, ℏ̂𝑀𝐿

𝑖−1)} (25) 

The M-step (25) signifies the most surviving path essential for 

the MLE algorithm, while it is directly realized by the IMM-

KF. The E-step (24) forms the basis to maximize (6) and (7) or 

minimize (19) and relates to both the IMM-KF and MLE. Fig. 

2 shows a block diagram of the proposed AMC system based 

on the IMM-KF adaptive channel estimation.  

As can be seen from Fig. 2, there is one loop involved in the 

search algorithm performed over all incoming data samples 

and constellation candidates. Upon discovering a constellation 

match, the next cycle of channel estimate is thereby directly 

calculated using the encoded sequence. On the other hand, the 

MLE algorithm constitutes another loop in addition to the 

above mentioned one, which is related to the search of best 

channel estimate as per optimized convex function. Evidently, 

such interlacing loops of exhaustive search for constellation 

index and channel estimate could be permissible for small data 

alphabet size and small data record only. As the data extents 

get larger, the IMM-KF admirably promises for better 

convergence as its reckoning load is half of that of the MLE 

method, as will be seen in the next section. 

 

 
Fig. 2.  Simplified AMC system diagram based on IMM-KF for channel estimate. 

 

IX. COMPLEXITY ANALYSIS 

The computational complexity of the proposed IMM-KF for 

AMC is assessed and compared against the classical MLE 

approach in this section. In addition to the optimum 

performance of IMM-KF algorithm, which will be 

demonstrated in the following simulation exercises, this 

section is intended to emphasize the main feature of IMM-KF 

algorithm of retaining less computational demands compared 

to the MLE. Such complexity reduction is of significant 

importance especially in real-time tactical scenarios where fast 

processing and decisions on the incoming signals need to be 

attended seamlessly. Few studies on the computational 

analysis of AMC systems can be found in the literature, and 

most of which attempt the MLE in the general context of 

optimum LB algorithms under MIMO conditions. The 
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computational analysis of IMM-KF featuring space reduction 

for the purpose of AMC implementation is illustrated for the 

first time in this paper.   

Without loss of generality, the complexity of any ACM 

scheme is proportional with respect to the numbers of code 

sequence and alphabets. Since the code sequence is assumed 

intact here, the complexity will hence be governed by the 

alphabets order only. Further assumptions also need to be 

considered while facilitating the computational 

approximations. Firstly, the computations are performed over 

one data sample; secondly, the eigenvectors are uncorrelated 

and without inter-modal interference; and thirdly, the channel 

statistics do not vary. 

The computational complexity usually involves the overall 

operation of mathematical addition, subtraction, multiplication 

and division procedures. The computational complexity loads 

of the essential operations 𝒪(. ) for both the IMM-KF and 

MLE in comparison with other schemes [5, 16] can be easily 

deduced as shown in Table I below. 

 

TABLE I 

COMPUTATIONAL COMPLEXITY FOR COMPLETE EM CYCLE 

Item Load Comments 

IMM-KF 𝒪(𝑀)   FET space reduction 

MLE 𝒪(2𝑀)   FET space reduction 

[5] 𝒪(2𝑁𝑡𝑁𝑟𝑀
𝑁𝑡)  MIMO without space reduction 

[16] 𝒪(2𝑀𝑁𝑡)  MIMO with WRD/WLD space reduction 

 

Recall that the subspace is reduced by combining the MRC 

and SVD algorithms, the classifiers’ complexity can be easily 

assessed as it is dropped from 𝒪(𝑁𝑡𝑁𝑟𝑀
𝑁𝑡) [5] and 𝒪(𝑀𝑁𝑡) 

[16] to 𝒪(𝑀) for each step in the EM algorithm. The optimal 

MLE requires 𝒪(𝑀) for each iteration in (24) and (25), while 

the proposed IMM-KF needs one iteration in (24) only and its 

estimate can be readily inserted into (25) without extra 

burdens. Such a complexity reduction result remains the same 

whether dealing with single or multiple antennas, as per the 

guidance provided in this paper. The figures of 𝒪(𝑁𝑡𝑁𝑟𝑀
𝑁𝑡)  

and 𝒪(𝑀𝑁𝑡) in reality can grow overly unfeasible for larger 

constellations and antennas’ aggregates, while the IMM-KF 

and MLE overheads are fixed and thereby converge easily. 

The IMM-KF even has half the computational requirements 

compared to the MLE and, hence, can be advocated for better 

economical JCEDD enactment in the real-time AMC systems. 

The superiority of the proposed scalar IMM-KF algorithm 

using the FET approach for space reduction is tangible; 

otherwise, the vector computation of KF [10], and hence the 

resulting IMM, would be tediously high. 

 

X. SIMULATION RESULTS AND DISCUSSION 

The performance corroboration of the proposed adaptive 

IMM-KF estimator is presented using simulation exercises in 

this section. The innovative paradigm of FET subspace 

reduction is incorporated in the signal model of 3×3 MIMO 

configuration. The signaling is evoked by a BPSK sequence of 

129 samples length and unity power sent in the direction of a 

Rayleigh channel. The channel is assumed with plausible flat 

fading over certain block samples. An AWGN is also incurred 

in these channels and the SNR is 10 dB. In each simulation 

scenario, the 129 samples are divided into three block 

segments; the length of each is 43 samples, to manifest fixed 

fading. The segmented channel fading magnitudes along with 

their corresponding SRSVs are given in Table II. The three 

segments of the first channel exhibit severe, medium and mild 

fading behaviors, respectively, while the second channel is 

assumed to have the opposite behavior. These arbitrary fading 

attributes are plotted in Fig. 3 and Fig. 4, respectively. 

 

TABLE II 

   SCENARIO OF (3 × 3 ) MIMO CHANNEL PARAMTERS. 

Item MIMO 

𝐻 blocks [0.9⁡⁡0.9⁡𝑗0.9; ⁡0.9⁡⁡𝑗0.9⁡0.9; ⁡𝑗0.9, 0.9, 0.9] 
[0.5⁡⁡0.5⁡𝑗0.5; ⁡0.5⁡⁡𝑗0.5⁡0.5; ⁡𝑗0.5⁡0.5⁡0.5] 
[0.1⁡⁡0.1⁡𝑗0.1; ⁡0.1⁡⁡𝑗0.1⁡0.1; ⁡𝑗0.1⁡0.1⁡0.1] 

√𝜆 SRSV [2⁡⁡1.27⁡1.27] 
[1.11⁡⁡0.7⁡0.7] 
[0.22⁡⁡0.14⁡0.14] 

FET 4.54 

2.51 

0.5 

 

 
Fig. 3.  SRSVs of block-fading Rayleigh channel in AWGN.  

 

From Fig. 3, it is quite evident that each single path of 

decomposed channels carries important components of the 

overall transmission power and hence it is better to be 

summed rather than being treated individually or merely use 

the dominant maximum eigenmode for transmission only, 

which is the case of ET. This is the main concept underlining 

the meaningful postulation of the new paradigm of FET 

proposed here. Such an approach consequently keeps as much 

channel power as possible and maintains an efficient track of 

its varying conditions, instead of being aborted and vanished 

to nowhere. The power components of different channel paths 

have a direct impact on the transmitted signal power and 

hence it is more advisable to be all consolidated and exploited.        
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Let us now assess the adaptive CSI estimation of IMM-KF 

and compare it to a single KF and to the other two 

conventional estimators, namely; the least-square estimator 

(LSE) and the minimum mean-square estimator (MMSE). 

These classical estimators are equivalent to the MLE and 

maximum a-posteriori estimator (MAPE) under uncorrelated 

Gaussian noise impairments. The initialization of KF and 

IMM-KF are assigned values as shown in Table III, while the 

other estimators do not need such an initialization process. As 

shown in the table, a 3-KF bank is employed to facilitate the 

IMM algorithm with initial probabilities of 0.1, 0.8 and 0.1 for 

each individual filter, while the transitional probabilities of 

0.8, 0.1 and 0.1 represent the local, neighbor and remote 

FSMC states, respectively. Each KF has a single 𝜎𝑤
2  value, 

such as 0.01, 0.1 and 1, to correspond to mild, moderate and 

severe channel conditions, respectively.  

 

TABLE III 

   INITIALIZATION OF KF AND IMM-KF ALGORITHMS. 

Item Parameters Initialisation Notes 

KF ℎ̂0|0 > 0, 𝑃1|0 ≥ 1 

𝜎𝑛
2 = 0.01, 𝜎𝑤

2 = 0.1 

Same for each KF in the IMM 

except process noise 

IMM-

KF 

𝜎𝑤1
2 = 0.1, 𝜎𝑤2

2 = 1, 𝜎𝑤3
2 = 5 

𝜇0|0
𝑖 = [0.8⁡0.1⁡0.1], ∀𝑖 ∈ [1, 2, 3] 

𝜋0
𝑖,𝑗
= [

08 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

],∀𝑖, 𝑗 ∈ [1, 2, 3] 

Individual process strengths 

Modal probabilities 

 

Transitional probabilities 

 

 
Fig. 4.  Estimation of SRSVs over block-fading Rayleigh channel in AWGN.  

 

 The estimators are separately allocated through the given 

channels and the simulation outcomes are compiled in Fig. 4 

for the (3 × 3 ) MIMO transmission scenario. The figure 

shows that all estimators maintain a good track of the 

channels’ SRSV variations; yet some perform better than 

others. The KF and IMM-KF clearly outperform the LSE and 

MMSE and the IMM-KF is preferred, especially during the 

channels’ deep fading parts. The IMM-KF is also superior 

through the channels’ transitions between states, which is 

inherited from the FSMC’s natural behavior. The main driver 

behind the IMM-KF’s robust adaptation performance is 

centered on the attractive switching competence of the IMM 

structure itself. If the channel has mild fading, the KF with the 

lowest state noise power σ𝑤1
2 = 0.1 is assigned the highest 

weight in the output of probability combining. As the fade 

moderates, the state noise power σ𝑤2
2 = 1 is allocated the next 

highest weight than other KFs in the IMM bank. The deep 

fading effect is treated with the highest state noise power 

σ𝑤3
2 = 5 and the output of combining probability receives the 

highest weight accordingly. The first encounter is similar to 

the situation of having a lone KF with action virtually 

reminiscent of a low-pass filter (LPF). This LPF reduces the 

channels’ harsh fluctuations and smooths out the output as 

revealed in the two plots.  

Moreover, the transitional probabilities of 0.8 and 0.1 

represent the percentage of time a state spends for about 80% 

in its current positions and makes a transition to adjacent cells, 

whether forward or backward, with 10% likelihood occurrence 

of each.  However, the modal and transitional probabilities 

change with respect to the innovation behavior of each KF 

branch as the time elapses. The perspectives of such IMM-KF 

switching probabilities to cope with the various jumping fades 

are clearly distinguished in Fig. 5.       

     

 
Fig. 5.  Modal probabilities of 3-bank KFs over block-fading channel.  

 

The remaining simulation exercises are conducted to assess 

the AMC performance using the proposed IMM-KF and 

compared to that of MLE and perfectly known channel (KC). 

The same initialization settings are used again for the IMM-

KF structure, but now rather different combinations of 

antennas are used. A challenging 3-tuple set of nesting 

constellations {BPSK, 8-PSK, 16-PSK} is generated using the 

celebrated procedure. The results of 10
3
 Monte Carlo runs 

over an uncorrelated slow-fading Rayleigh channel and ⁡1 × 1 

and 2 × 2 antennas are shown in Figs. 6 and 7, respectively. 

The results illustrate the probability of correct classification 

𝑃𝐶𝐶  calculated for the IMM-KF, MLE and KC, where the 

latter serves as an upper performance bound. Table IV shows 

their correct classification rates at 0 dB. 
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TABLE IV 

CORRECT CLASSIFICATION RATES AT 0 dB. 

 1 × 1 antennas 2 × 2 antennas 

 KC MLE IMM-KF KC MLE IMM-KF 

BPSK 0.99 0.99 0.99 1 1 1 

8-PSK 0.85 0.85 0.85 0.98 0.98 0.98 

16-PSK 0.57 0.57 0.57 0.75 0.75 0.75 

 

The same simulation scenarios are repeated using another 3-

tuple set of different constellations, namely {QPSK, 16-QAM, 

64-QAM}, which is tailored to realistic common systems. The 

ensuing 𝑃𝐶𝐶  trends are depicted in Figs. 8 and 9, for ⁡1 × 1 and 

2 × 2 antennas, respectively, and the values of which 

calculated at 0 dB are given in Table V below.   

 

TABLE V 

CORRECT CLASSIFICATION RATES AT 0 dB. 

 1 × 1 antennas 2 × 2 antennas 

 KC MLE IMM-KF KC MLE IMM-KF 

QPSK 0.75 0.75 0.75 0.99 0.99 0.99 

16-QAM 0.27 0.27 0.27 0.67 0.67 0.67 

64-QAM 0.04 0.04 0.04 0.30 0.30 0.30 

 

 
Fig. 6.  𝑃𝐶𝐶⁡ using ⁡1 × 1 antennas.  

 
Fig. 7.  𝑃𝐶𝐶⁡ using ⁡2 × 2 antennas.  

 

The results show that the proposed IMM-KF performs 

similarly to the optimal MLE and both coincide with the KC 

irrespective of antennas employed. The increased SNR yields 

for a gradual dominance of the signal covariance matrix and to 

spread its eigenvalues, which enhances the signal detection 

accordingly. All methods are also effective in combating the 

nesting effect to a certain limit, whereas the trends of correct 

classification are clearly shifting down for larger 

constellations’ sizes. A classifier to attain correct decisions 

hence becomes more difficult with the severity of lesser 

spaces between constellations’ points. Such a demand is very 

evident in the cases of 16-PSK, 16-QAM and 64-QAM as the 

spaces between adjacent constellation points becomes more 

crowded and the detection hence becomes very tasking. For 

the same 𝑀-ary, the QAM suffers from magnitude and phase 

variants that are even harder to identify.  

 

 
Fig. 8.  𝑃𝐶𝐶⁡ using ⁡1 × 1 antennas.  

 
Fig. 9.  𝑃𝐶𝐶⁡ using ⁡2 × 2 antennas.  

 

To show more appreciation for the superiority of 

complexity saving accredited to the proposed FET for space 

reduction in comparison with other methods, the next exercise 

is aimed to accentuate this major advantage. Due to the 

massive number of resulting operations while increasing the 

antennas and alphabets spaces, only a limited number of these 

parameters are considered in the simulation. The trends 
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depicted in Fig. 10, which are based on the entries of Table I, 

demonstrate the computational figures using constellation 

sizes of 2, 4, and 8 and for few transmit antennas 1, 2, and 3, 

respectively. From Fig. 10 it is clear as the numbers of 

constellation size and transmit antennas increase, the 

computational demands increase drastically. For a practical 

MLE-AMC system employing 64-ary alphabet and 4-MIMO 

antennas, the computational cost is well anticipated to be in 

the range of 268.43×10
6
 operations without space reduction 

and 16.77×10
6 

operations with WRD or WLD space 

reduction. Such computations increase intensely for massive 

MIMO and large constellations and become more unbearable 

in reality, and hence the proposed FET approach provides an 

attractive alternative choice to produce radical computational 

savings. One last note concerning Fig. 10 is that the IMM-KF 

and MLE schemes employing FET perform similarly 

regardless of the number of antennas. Their computations 

remain very minimal compared to other channel 

decompositions aiming at space reduction, and hence one 

more exercise would be beneficial to reveal the full situation 

as will be exposed below.  

 

 
Fig. 10.  Number of operations versus constellation size for different antennas.  

  

 
Fig. 11.  Number of operations in IMM-KF and MLE, regardless of antennas.  

Now, in order to make a distinct differentiation between the 

IMM-KF and MLE operations using the FET procedure, 

another exercise is performed and the results of which are 

depicted in Fig. 11. Based on the entries of Table I, the 

computational loads for both IMM-KF and MLE featuring 

FET have a linear relationship with respect to the constellation 

size. The effectiveness of applying the IMM-KF is very 

apparent compared to the MLE as it retains only half of the 

computations required to implement the JCEDD for one 

complete EM cycle. Reducing the dimensionality by 

facilitating the FET approach and getting further gain in 

lowering the computational cost is chiefly accredited to the 

IMM-KF. Such breakthrough constitutes a corner stone in the 

design of many mission-critical and tactical systems in reality.       

   

XI. CONCLUSIONS 

An efficient AMC paradigm featuring the IMM-KF mixture 

to elicit a robust and reliable CSI estimate is proposed in this 

paper. The adaptive IMM-KF estimation is based on 

decomposing the CSI parameters into a small number of 

parallel components, by applying the well-known SVD 

methodology, and then adding up their dominant ETs, which 

is newly called Frobenius ET (FET) in this paper. This 

accordingly will maintain the total power of all ETs instead of 

the waste resulting from relying on individual ETs only. The 

estimate is applied over Rayleigh MIMO channel and directly 

admitted to the EM recursion to invoke the Q(HLRT) for 

AMC core framework. Further to the viable performance, the 

overall IMM-KF computation is significantly less demanding 

compared to the optimal MLE especially with large 

constellation sizes. The IMM-KF only needs one search loop 

to find the best constellation candidate and is hence more 

economical than the MLE, which requires two extensive loops 

to fulfil the EM complete cycle. 
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