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Résumé

La détection de changements dans une scène est l’un des problèmes les plus complexes en télédé-

tection. Il s’agit de détecter des modifications survenues dans une zone géographique donnée par

comparaison d’images de cette zone acquises à différents instants. La comparaison est facilitée lorsque

les images sont issues du même type de capteur c’est-à-dire correspondent à la même modalité (le

plus souvent optique multi-bandes) et possèdent des résolutions spatiales et spectrales identiques. Les

techniques de détection de changements non supervisées sont, pour la plupart, conçues spécifiquement

pour ce scénario. Il est, dans ce cas, possible de comparer directement les images en calculant la

différence de pixels homologues, c’est-à-dire correspondant au même emplacement au sol. Cependant,

dans certains cas spécifiques tels que les situations d’urgence, les missions ponctuelles, la défense et la

sécurité, il peut s’avérer nécessaire d’exploiter des images de modalités et de résolutions différentes.

Cette hétérogénéité dans les images traitées introduit des problèmes supplémentaires pour la mise en

œuvre de la détection de changements. Ces problèmes ne sont pas traités par la plupart des méthodes

de l’état de l’art. Lorsque la modalité est identique mais les résolutions différentes, il est possible

de se ramener au scénario favorable en appliquant des prétraitements tels que des opérations de ré-

échantillonnage destinées à atteindre les mêmes résolutions spatiales et spectrales. Néanmoins, ces

prétraitements peuvent conduire à une perte d’informations pertinentes pour la détection de change-

ments. En particulier, ils sont appliqués indépendamment sur les deux images et donc ne tiennent pas

compte des relations fortes existant entre les deux images.

L’objectif de cette thèse est de développer des méthodes de détection de changements qui exploitent

au mieux l’information contenue dans une paire d’images observées, sans condition sur leur modal-

ité et leurs résolutions spatiale et spectrale. Les restrictions classiquement imposées dans l’état de

l’art sont levées grâce à une approche utilisant la fusion des deux images observées. La première

stratégie proposée s’applique au cas d’images de modalités identiques mais de résolutions différentes.

Elle se décompose en trois étapes. La première étape consiste à fusionner les deux images observées
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ce qui conduit à une image de la scène à haute résolution portant l’information des changements

éventuels. La deuxième étape réalise la prédiction de deux images non observées possédant des ré-

solutions identiques à celles des images observées par dégradation spatiale et spectrale de l’image

fusionnée. Enfin, la troisième étape consiste en une détection de changements classique entre images

observées et prédites de mêmes résolutions. Une deuxième stratégie modélise les images observées

comme des versions dégradées de deux images non observées caractérisées par des résolutions spec-

trales et spatiales identiques et élevées. Elle met en oeuvre une étape de fusion robuste qui exploite

un a priori de parcimonie des changements observés. Enfin, le principe de la fusion est étendu à

des images de modalités différentes. Dans ce cas où les pixels ne sont pas directement comparables,

car correspondant à des grandeurs physiques différentes, la comparaison est réalisée dans un domaine

transformé. Les deux images sont représentées par des combinaisons linéaires parcimonieuses des élé-

ments de deux dictionnaires couplés, appris à partir des données. La détection de changements est

réalisée à partir de l’estimation d’un code couplé sous condition de parcimonie spatiale de la différence

des codes estimés pour chaque image. L’expérimentation de ces différentes méthodes, conduite sur

des changements simulés de manière réaliste ou sur des changements réels, démontre les avantages des

méthodes développées et plus généralement de l’apport de la fusion pour la détection de changements.

Mots clés: détection de changements, fusion d’image, multimodalité, image optique multibande,

image radar.
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Abstract

Change detection is one of the most challenging issues when analyzing remotely sensed images. It

consists in detecting alterations occurred in a given scene from between images acquired at different

times. Archetypal scenarios for change detection generally compare two images acquired through the

same kind of sensor that means with the same modality and the same spatial/spectral resolutions. In

general, unsupervised change detection techniques are constrained to two multi-band optical images

with the same spatial and spectral resolution. This scenario is suitable for a straight comparison

of homologous pixels such as pixel-wise differencing. However, in some specific cases such as emer-

gency situations, punctual missions, defense and security, the only available images may be of different

modalities and of different resolutions. These dissimilarities introduce additional issues in the context

of operational change detection that are not addressed by most classical methods. In the case of

same modality but different resolutions, state-of-the art methods come down to conventional change

detection methods after preprocessing steps applied independently on the two images, e.g. resampling

operations intended to reach the same spatial and spectral resolutions. Nevertheless, these prepro-

cessing steps may waste relevant information since they do not take into account the strong interplay

existing between the two images.

The purpose of this thesis is to study how to more effectively use the available information to

work with any pair of observed images, in terms of modality and resolution, developing practical

contributions in a change detection context. The main hypothesis for developing change detection

methods, overcoming the weakness of classical methods, is through the fusion of observed images.

In this work we demonstrated that if one knows how to properly fuse two images, it is also known

how to detect changes between them. This strategy is initially addressed through a change detection

framework based on a 3-step procedure: fusion, prediction and detection. Then, the change detection

task, benefiting from a joint forward model of two observed images as degraded versions of two

(unobserved) latent images characterized by the same high spatial and high spectral resolutions, is
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envisioned through a robust fusion task which enforces the differences between the estimated latent

images to be spatially sparse. Finally, the fusion problem is extrapolated to multimodal images. As

the fusion product may not be a real quantity, the process is carried out by modelling both images

as sparse linear combinations of an overcomplete pair of estimated coupled dictionaries. Thus, the

change detection task is envisioned through a dual code estimation which enforces spatial sparsity

in the difference between the estimated codes corresponding to each image. Experiments conducted

in simulated realistically and real changes illustrate the advantages of the developed method, both

qualitatively and quantitatively, proving that the fusion hypothesis is indeed a real and effective way

to deal with change detection.

Keywords: change detection, image fusion, multimodality, multiband optical image, radar image.
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Introduction

Context

I. Remote Sensing

Remote sensing has many definitions depending on the intended application. Usually, it is considered

as the act to acquire information about an object without being in physical contact with it [EV06].

In some more restrictive approaches, remote sensing consists in analyzing the electromagnetic signals

radiated or reflected from various objects at ground level (e.g. land, water, surfaces) from a sensor

installed in a space satellite or in an aircraft [Che07]. The essential meaning behind all those definitions

can be clearly perceived as the gathering of information about the Earth at a distance by analyzing

the radiations in one or more bands of the electromagnetic spectrum [CW11].

The remote sensing information acquisition is usually based on the detection or measurement of

alterations caused by an object or phenomenon in a surrounding field [EV06]. Remote sensing infor-

mation combined with other sources of information, for example, the geographic information system

(GIS) and global positioning system (GPS), produce the concept of geospatial data [CW11]. This

concept expand the scope of classic remote sensing applications to more specialized ones, such as:

mapping of the evolution of payment of state taxes, mapping uranium enrichment sites, optimizing

telecom network capacity, among others.

The remote sensing process can be seen in a twofold scale: macro and micro. The former can be

understood as a panorama of the entire process which can be decomposed into four main elements

placed in series [CW11]: physical objects, sensor data, extracted information and applications. The

physical object category includes the spotted scene elements such as: building, vegetation, water, and

many others. Sensor data includes the different ways, often called modalities, used by the sensors to

record the electromagnetic radiation emitted or reflected by the landscape. The next block, includes

the different ways to highlight important information. The application block refers to the use of the

1



Introduction

remote sensing data in the solution of some practical problem, such as: land-use, mineral exploration,

etc.

Although each particular block is composed of complex interrelated processes which also represent

important fields of study. The micro scale vision of the remote sensing process corresponds to a

multilevel analysis for each macro block. For instance, the sensor data category can be decomposed in

micro scale categories such as: source of energy, propagation through the atmosphere, interaction with

the surface physical objects, retransmission of energy through atmosphere, sensor. The information

extraction block, can be also subdivided into sensing product, data interpretation and data analysis.

I.1. Imagery Modalities

The most common remotely sensed data is image, which can be explained by its high number of

applications. Depending on the scale, macro or micro, imagery can be differentiated, for instance,

by the way the sensor captures the data, the kind of information that is represented and so on. It

is common to classify remote sensing images according to physical quantities describing the observed

scenes, or classically to the modality.

This classification can be performed according to the used portion of the electromagnetic spectrum.

Remote sensing imaging techniques cover the whole electromagnetic spectrum from low-frequencies

to gamma-ray [EV06]. The interpretation of the collected data rely on a prior knowledge of the

interaction between the electromagnetic signal, the Earth surface and the atmosphere. In this sense,

there are three basic models for remote sensing imagery [RJ06; CW11]: i) sensing the reflection of

solar radiation from Earth’s surface; ii) sensing the radiation emitted from the Earth’s surface; and

iii) sensing the reflection, refraction or scatter of an instrumentally generated signal on the Earth’s

surface. The first and the second sensing models are referred to as passive since they are subject to

an external energy source, the Sun and the Earth respectively. This is the case when working with

ultraviolet, visible and near infra-red bands for the first model, and with, thermal infra-red, microwave

emission and gamma-ray for the second one. The third model, on the other hand, is referred to as

active due to the self energy emission and recording. The most common active emissions are radar or

laser illuminations.

The two most common modalities of remote sensing imagery are passive optical and active radar.

According to the Union of Concerned Scientists (UCS) satellite database [Con17], they correspond to

more than 60% of the totality of Earth observation satellites with optical satellites corresponding to

2



Introduction

85% of that number. Naturally, both are the most deeply explored for many remote sensing techniques.

Nevertheless, the remaining ones must not be neglected. Some kind of modalities, such as LiDAR

(Light Detection And Ranging), also present resourceful information for remote sensing applications.

Following these statistics, this section focus on the two most used modalities, optical and radar.

Optical Images

Optical images have been the most studied remote sensing data in all applications. Exploring proper-

ties of short-wavelengths (400 to 2500nm), that means of solar radiation/reflection on Earth’s surface,

optical images are well suited to map land-covers at large scales [Dal+15]. It is worth nothing that,

even if optical sensors measure the radiance of the scene, or the brightness in a given direction toward

the sensor, the optical data is usually presented through the reflectance, the ratio between reflected

and total power energy. The reflectance is a property of the material which is less subjected to vari-

ations due to illumination conditions and atmospheric effects. At different wavelengths, materials

respond differently in terms of reflection and absorption, which offers a mean to classify the land cover

types. Consequently, one strategy to taxonomically classify optical images is how precisely they can

identify land-cover types or how precisely the sensor samples the reflected incoming spectrum. Indeed

multi-band optical sensors use a spectral window with a particular width, often called spectral reso-

lution, to sample part of the incoming light spectrum [Lan02; CW11]. Panchromatic (PAN) images

are characterized by a low spectral resolution, as they sense part of the electromagnetic spectrum

with a single and generally wide spectral window. Conversely, multispectral (MS) and hyperspectral

(HS) images have smaller spectral windows, allowing part of the spectrum to be sensed with higher

precision. Multi-band optical imaging has become a very common modality, boosted by the advent of

new high-performance spectral sensors [CCC09]. There is no specific convention regarding the num-

bers of bands that characterize MS and HS images. Yet, MS images generally consist of a dozen of

spectral bands while HS may have a lot more than a hundred. In complement to spectral resolution

taxonomy, one may describe multi-band images in terms of their spatial resolution measured by the

ground sampling interval (GSI), e.g. the distance, on the ground, between the center of two adjacent

pixels [Dal+15; EV06; CW11]. Informally, it represents the smallest object that can be resolved up

to a specific pixel size. Then, the higher the resolution, the smaller the recognizable details on the

ground: a high resolution (HR) image has smaller GSI and finer details than a low resolution (LR)

one, where only coarse features are observable.
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Each image sensor is designed based on a particular signal-to-noise ratio (SNR). The reflected

incoming light must be of sufficient energy to guarantee a sufficient SNR and thus a proper acquisition.

To increase the energy level of the arriving signal, either the instantaneous field of view (IFOV) or the

spectral window width must be increased. However these solutions are mutually exclusive. In other

words, optical sensors suffer from an intrinsic energy trade-off that limits the possibility of acquiring

images of both high spatial and high spectral resolutions [Pri97; EV06]. This trade-off prevents any

simultaneous decrease of both the GSI and the spectral window width. HS, MS and PAN images are,

in this order, characterized by an increasing spatial resolution and a decreasing spectral resolution.

Independently of sensor modality, noise is an inevitable phenomenon introduced at different stages

during the image acquisition process. Considered as a random process, it can be characterized using the

knowledge of the sensor properties. In optical images, it originates mostly in optics and photodetectors.

Specifically for this modality, two types of noise sources impair the image formation process: the

photon noise and the readout noise [Aia+06b; Deg+15]. The former models the random arrival of

photons and their random absorption by the photodetector. The number of photons arriving at the

photodetector can be modelled as a counting process. It is commonly assumed that it follows a Poisson

distribution. Note that this quantity depends on the signal, so that brighter parts of the image present

less sensitivity to the number of arriving photons than darker ones. Consequently, the Poisson noise

effect can be neglected when the illumination is sufficient. The readout noise, on the other hand, does

not depend on the signal and is present independently of the illumination conditions. It stands for the

variability in the transfer and amplification of the photoelectron signal and it is characterized by an

additive zero mean Gaussian distribution. This model is the most common in passive optical images

[Bio+13].

Radar Images

Radar is the acronym for RAdio Detection And Ranging. Active sensors, such as radar, play a dual

role: broadcast a directed pattern to a portion of the Earth’s surface and receive the backscatters

of that portion [CW11]. In case of radar, microwaves are used to characterize the range, altitude,

direction, or speed of interested targets. Different from passive sensors, such as optical, active sensors

have interesting capabilities of observation and detection under long-distance and any orientation

[Zhu12]. As they produce their own illumination, acquisitions can be performed both day and night

and under any weather conditions. Knowing the characteristics of the emitted broadcast signal, the
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analysis of the received backscatters, in terms of frequency and polarization shifts, allows to extract,

with high precision, the properties of the illuminated surface. These advantages give radar a central

role in military surveillance and Earth observation.

Radar systems have many different designs including the real aperture side-looking airborne radar

(SLAR) and the Synthetic Aperture Radar (SAR). The former is the oldest and the simplest. It

basically consists in a platform (classically airborne or maybe satellite) carrying an antenna array

with the nadir direction beneath. The antenna array is obliquely pointed to the side of the platform

at a right angle to the flight direction acquiring a swath. The latter is the most known form of

radar imagery. Basically it tries to increase the resolution power of real aperture by simulating a

large antenna using signal processing techniques [Amb05] and considering overlapping sampling of

swath acquisitions. As azimuth resolution is inversely proportional to the size of the antenna and

proportional to their elevation, increasing their length increases the resolution [CW11].

Because radar is an active sensor, it is possible to control all the parameters of the emitted signal. For

instance, the choice of the signal wavelength (in C,K,X or L bands) or even of multiple wavelengths

("multispectral radar") directly affects resolution, soil penetration and absorption, sensitivity and

many other aspects [CW11]. Also, the orientation of the electromagnetic field, or polarization modes

(Horizontal, Vertical and their combinations), influence the identification of physical properties on the

ground [Amb05].

Pixels of SAR images may be represented as complex numbers where the modulus and the argument

stand for respectively the amplitude and the phase of the backscattered wave [Tab16]. An additional

information related to the surface reflectivity can be retrieved through the amplitude squared, referred

to as intensity. For optical images, a pixel corresponds to a ground zone, which is often called resolution

cell. Its dimensions and radiometry depend on many parameters of the satellite, the radar and the

surface.

As for optical images, the radar image formation process is inevitably corrupted by noise. The

coherence of signals used to illuminate the scene leads to constructive and destructive interferences in

the image [Pre+15b]. Within the resolution cell, some of these interferences cannot be individually

resolved causing significant changes in the measured intensity [Tab16; CW11]. This phenomenon

is called speckle and has a grainy salt-and-pepper appearance on the image. This behaviour was

modelled in an homogeneous zone, such that the pixel intensity follows an exponential distribution

while the pixel amplitude follows a Rayleigh distribution [Tab16]. In order to attenuate the speckle, a
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process called multi-look SAR images is applied. This process averages either neighbouring pixels on

the same image or samples of the same pixel in different multitemporal acquisitions with the drawback

of resolution decreasing or inaccuracy due to the presence of changes between acquisitions. The multi-

look process consider independent and identically distributed (i.i.d) samples with their number called

number of views. The final multi-look SAR pixel can be modelled as a multiplicative process for

either intensity and amplitude with noise following Gamma distribution with unitary mean value and

Nakagami-Rayleigh distribution, respectively.

II. Change Detection

The last macro block of remote sensing refers to the use of the remote sensing information. This

section is dedicated to expose one of the most important fields of remote sensing, which is change

detection (CD). Initially, a general definition of CD is introduced and a brief historical overview about

the early developments is provided. Then, turning CD to a remote sensing application, it is classified

according to the information paradigm and also according to the target modality. At the end, the

motivations for developing this area and the objectives of this work are given.

II.1. A brief historical overview

The verb to change had as first etymological meaning to "make different" or, lately, "to alter" and

dates to the 12th century. Its derived noun, "change", consequently would represent the act or fact

of changing. But the idea of CD is far more ancient. Biologically, it is present in one of the most

important functions of the human visual system, the perception of motion [Ull79]. Motion detection is

directly related to changes in the visual environment that reach an individual’s eye retina [AS95]. The

act of observing a scene over a time interval can only be interpreted as a moving scene if changes occur.

Consecutively, the baseline for detecting changes, and consequently motion, is intimately connected

to the multitemporality of the scene, which means, the time between acquisitions [AKM93]. Thus,

the importance of the analysis of multitemporal images [Hua+81].

An important aspect, when dealing with visual changes, is that not all perceived changes can be

cast as a relevant change in the observed scene. Changes in the objects of interest result in changes in

reflectance values or local textures that should be distinguished from changes caused by other factors

such as differences in atmospheric conditions, illumination, viewing angles, soil moisture and difference
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of noise of multitemporal acquisitions [Ull79; Hua+81; Lu+04]. However, the available information

about the scene and about the acquisition conditions is sometimes not sufficient to perform this

distinction. CD is, thus, an important challenge.

In the beginning, the efforts for detecting changes were made through manual comparison of su-

perposed images [Lil72]. Going along with the technological progress, the relevance of automatic CD

became strong. The very first evidences about automatic CD in the literature dates from the early

60s, [Ros61; She64], with the first discussion about the need for automatic comparison between digital

images. Particularly, in [Ros61] the basic problem was split into three main tasks: image registra-

tion, CD and localization, and change discrimination. Also, it emphasized the need for geometric

and radiometric corrections in preprocessing phases. [She64] evoked CD in a remote sensing scenario

involving two sets of aerial photographs. This paper also pointed out the need to discard uninterest-

ing changes. [Kaw71] envisioned the possibility of CD over multimodal collections of data sets, for

instance: photographic, infrared and radar, applied to weather prediction and land surveillance. More

particularly, this paper addressed the problem of automatic CD between two aerial photographic data

in a city planning context. In [Lil72] was proposed a technique for CD between single-look radar

images based on normalized cross-correlation as a similarity measure. The evaluation of similarity

measures as differencing operators and correlations in LANDSAT 1 optical multispectral images was

studied in [BM76]. The work in [PR76], one of the pioneers in CD, was based on features extracted

from segmentation onto homogeneous regions. Synthesizing previous works in a concept of multi-

temporal image analysis, [Hua+81] discussed numerous applications closely related to CD such as:

medical surveillance, industrial automation and behavioural studies.

So far, CD techniques were essentially based on the so-called pixel-based approach, that compares

homologous pixels of the two observed images [BB15]. In [Car89], motivated by the ideas and discus-

sions in [Kaw71], was represented a feature-based paradigm for CD. In this new paradigm, instead

of comparing homologous pixels, the comparison is made on features extracted from both images

according to some specific methodology (involving segmentation, pyramids, etc ). The hypothesis

behind this class of techniques states that, in cases where there is no change, homologous features

must remain unaltered. For instance, in [Car89] fractal/multiscale image models were employed to

detect man-made changes in SPOT satellite images.

The largely diffused work, [Sin89], recalls all previous state-of-the-art CD method applied to re-

motely sensed data until that time. It represents one of the first survey on the topic which categorically
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classified CD methods according to the main operation used to compare multitemporal data. After

that, motivated by the development and the better understanding of capabilities and applications of

remote sensing, CD has lived an exponential growth, starting with the seminal works [BS97; NCS98;

JK98; RL98; BP99a; BP99b] which became the basis for development of new strategies for CD in the

21st century.

II.2. Change Detection in a remote sensing context

Ecosystems exhibit permanent variations in different temporal and spatial scales caused by natural,

anthropogenic phenomena, or even the two [Cop+04]. Monitoring spatial variations over a period of

time and thus detecting changes is an important source of knowledge that helps understanding the

transformations taking place on the Earth’s surface [Lu+04].

Recalling the concept of remote sensing, it is quite easy to understand why CD is considered as one

of its most important fields of study. Multitemporality, repeatability, coverage and quality of images

[Sin89] are special attributes that make remotely sensed data suitable for CD. Various examples of its

use can be listed, for instance: land-use and land-cover analysis including forest, vegetation, wetland

and landscape; urban area monitoring; environmental and wide-area surveillance; defense and security

[Car97; Lu+04].

There is not a formal definition of CD in remote sensing context. According to [Sin89], CD can be

considered as the process of identifying differences in the state of an object or phenomenon by observing

it at different times. It involves the ability of quantifying temporal effects using multitemporal datasets.

From an information theory perspective, [BB15], the information in multitemporal data is associated

with the dynamic of the measured variables, which is closely related with the changes occurred between

successive acquisitions. According to [Lu+04], CD compares the spatial representation of two points

in time while controlling the variations that are not of interest. In [Cop+04], CD is related to the

capability of quantifying temporal phenomena from multi-date imagery, that are most commonly

acquired by satellite-based multi-spectral sensors. More generally, as in [Rad+05], CD is defined as

the ability of detecting regions of changes in images of the same scene acquired at different times.

From [BB13], CD in remote sensing context can be viewed as the process leading to the identification

of changes occurred on the Earth’s surface by jointly processing two (or more) images acquired on the

same geographical area at different times.

As [Car97] suggested, the ability of detecting the significant changes in imagery is directly attached
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to the target application. Nevertheless, given the previous definitions, it is possible to capture its

essence. Recalling the introductory papers, [Ros61] and [She64], and the important surveys, [Hua+81;

Sin89; Lu+04], the CD definition which is considered in the rest of this work is:

Change Detection consists in analyzing two or more multitemporal (i.e. multi-date) remote sens-

ing images acquired over the same geographical spot (i.e. same spatial location), in order to spatially

locate the physical alterations that occurred in the observed scene.

Note that, according to the previous definition, CD does not involve change type identification

[Ros61]. Change type identification is an important part of change analysis, which can use as input

the output of CD methods. The two can be understood as complementary. In this sense, it is very

important to correctly define the scope of each one in order to propose CD methods. Thus, a CD

method, in this work, will correspond to any method that has as input, at least, two remotely sensed

observation images and as output a pixel map indicating the spatial location of changes. Besides,

all input images must beforehand be preprocessed in order to represent exactly the same region

independently on the modality and on the resolution [BB15]. CD techniques should not compare two

scenes that are not geographically aligned [Lu+04].

Remote sensing CD methods can be taxonomically divided into different categories: defined by the

modality and the supervision. The next sections define these classifications.

II.3. Classification according to the supervision

Nowadays the terms supervised and unsupervised are well understood especially in the context of

machine learning and artificial intelligence. In particular, depending on the availability of ground

information, CD methods can be classified as either supervised or unsupervised [Sin89; BP02; BB07;

BB13]. According to [BP02], supervised CD methods require a certain amount of ground information

used in the construction of training sets. Unsupervised CD methods, on the other hand, do not require

any prior ground information but work only with the raw images. In [BB15], CD was presented from a

data fusion perspective by classifying CD methods depending if the fusion is at decision or feature level.

Methods belonging to the former are based on multitemporal image classification, which frequently

are tagged as supervised methods. In the latter, methods are generally based on multitemporal image

comparison, which are generally classified as unsupervised.
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Supervised Change Detection

This group gathers methods requiring ground reference information. This information is obtained,

generally, from in situ sampling, from photointerpretations or from prior knowledge about the scene

[BB13]. Most of the methods belonging to this group use supervised or semi-supervised classification

[BB15] such as: artificial neural networks (ANN) [Woo+01], support vector machines (SVM) [NC06;

Che+11] and Bayesian classifier [BP01]. Besides, it is possible to note that supervised CD is subdivided

into three main branches [BB15]: post-classification comparison (PCC) [Sin89; CDP07], supervised

direct multidate classification [Sin89; JL92; Pre+15a; LYZ17] and compound classification [STJ96;

BP01; BS97; BPS99].

PCC-like methods perform CD by comparing classification maps obtained from the independent

classification of each observed image [Sin89]. They require ground information about each observed

image in order to properly produce coherent classification. When classification is performed inde-

pendently on the two images, problems such as geographical misalignments, atmospheric and sensor

differences between scenes can be reduced. Nevertheless, the detection accuracy is extremely depen-

dent on the performance of each individual classification. Indeed, it is comparable to the product

of the accuracies of each individual classification [Sin89]. The better the classification the better the

detection performance.

Supervised direct multidate classification, on the other hand, identify changes from a combined

dataset of all observed images [Sin89]. The dataset combination may have different forms, but in

general it is a single feature vector containing information about the two images. The premise is

that change classes should produce significantly different statistics compared to the no-change class

[MMS07; MMS08; Pre+15a; Pre+15b; LYZ17; Xu+15]. These statistics can be derived in a supervised

[Pre+15a] and unsupervised way [LYZ17]. Thus, multitemporal data that was treated separately in

PCC-like methods can be jointly processed which requires that the detailed benefits of individual

processing of PCC methods be carefully analyzed. Nevertheless, the accuracy of the method is not

strongly dependent to the classification performance. Besides, some additional constraints about the

training set must be evaluated. Training set must be composed of training pixels related to the same

points on the ground at the two times. Also, the proportion of pixels for each change class must be

similar in order to avoid misclassification [BB15]. This requirements on the training set may restraint

the use of such methods in real applications.
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The third class of supervised CD methods are the compound classification-like techniques. The gen-

eral idea is to maximize the posterior joint probability of classes for each pixel on the image, therefore,

classify pixels as belonging to change or no-change classes. This kind of techniques uses conditional

probabilities obtained under different assumptions and from different estimations. Additionally, as

in a Bayesian estimation framework, prior information about the classes can be used allowing better

separation between classes. Some of the most employed prior information are related to spatial as-

sumptions, for instance, Markov random fields (MRF) [BP99b]. Compared to the previous methods,

it exploits temporal correlation between datasets by handling the problem jointly. It allows also some

flexibilities in terms of dataset construction. For instance, in some techniques, training pixels are not

required to belong to the same area on the ground [BPS99; BB15].

Supervised methods have important advantages. They are more appropriate to handle multimodal

observed images than unsupervised methods [Pre15]. Moreover, supervised methods usually perform

better than unsupervised ones [BB15]. Indeed the required ground information help to better fit the

model used to describe changes. Nevertheless, collecting reference data has an associate cost in terms

of time and effort, specially when the method requires a lot of information about a large number of

images [BB13]. This fact may play against such methods in real applications which impose a small

latency time. Indeed, the overall complexity of these methods are higher compared to unsupervised

ones. Besides, they are extremely dependent on the training set. Classifiers trained on narrow training

sets have better detection performance but with the cost of reduction on scalability. Thus, considering

that the number of potential temporal acquisitions on a given area can be high, supervised methods

are becoming less appealing from the application point of view.

Unsupervised Change Detection

Unsupervised CD does not rely neither on a human intervention nor on the availability of ground truth

information [BB13]. Most of CD techniques belong to this group, because the ground information is

rarely available and because of the common need for automatic CD in many applications.

[Sin89] points out that almost all unsupervised CD methods use a simple 2-step methodology: (i)

data transformation (optional) and (ii) change location techniques. The first step does not involve

preprocessing steps as geographical alignment, but rather transform the input data into another space

in which a change location technique is applied. In [BM03; BB15], the output of the first step is

referred to as the change index. The idea, therefore, is that a data transformation technique over both
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observed images produces a change index. From a data fusion perspective, the change index can be

seen as the result of a fusion process at a feature level. The second step, then, process the change

index by classifying it as belonging to the change/no-change class. Note that, this step, differently

from supervised CD, does not require any ground information.

The summary presented in [Sin89] classifies the first step according to the main mathematical

tools used to perform change index extraction. In [Lu+04], these tools are grouped into two main

classes: algebraic tools and transformations. The algebraic tools are basically defined by a specific

mathematical operation on the data. Univariate differencing [Sin89; Rad+05; BB15; Du+12], ra-

tioning [Sin89; Li+15], vegetation index differencing [Sin89; Lu+04], image regression [Sin89; DYK07;

Cha+10], change vector analysis [JK98; BB07; BMB12; Dal+08], similarity measures [Alb+07a; Ing03;

Tou+09; Fal+13] are example of the most commonly adopted algebraic tools. Such algorithms are

relatively simple and straightforward, nevertheless they are vulnerable to unbalanced data (differ-

ences in SNR, radiometric values, etc ). On the other hand, transformation methods apply a data

transformation which may reduce data redundancy by emphasizing different information in the de-

rived components [Lu+04]. Principal component analysis [Sin89; Rad+05; BB15; Du12], Chi-square

[DAd+04; RL98; Lu+04] and correlation analysis [NCS98; Nie07; Nie11; MGC11], multiscale trans-

form [Del11; Bou+15; LAT15], are example of common transformations used for CD that are robust

to SNR variations. The negative point of these methods is that, usually, the change information is

very difficult to interpret and to label in the transform domain.

The second step described in [Sin89] consists in identifying changes from the available change index.

The most common procedure is the decision thresholding operation [Sin89; Rad+05]. The thresholding

operator classifies pixels into change and no change classes. Classically it is done through a manual

trial-error-procedure [Sin89]. Nevertheless, some strategies can be used in order to better separate

classes by considering important aspects of desired change images. For instance, spatial priors [BP99b;

BM03], minimization of the false alarm rate [Tou+09; Cha+10; Nie07], optimal thresholding [RL98],

classification through maximum likelihood test [BP99a; BP01; Con+03; Cha+07], etc.

One important requirement of unsupervised CD is that it may need preprocessing steps in order to

avoid misclassification due to unbalanced data [BB15]. Most of algebraic methods lack of robustness

with respect to unbalanced data. This kind of preprocessing includes radiometric corrections [Nie+10;

Rad+05; YL00], geometric corrections [IG04; Rad+05] and denoising [Del11]. In comparison to

supervised CD methods, they can be significantly fast and very suitable for real-time applications.
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Nevertheless, the overall detection accuracy can be significantly lower. Today, one of the goals of

unsupervised CD techniques is to reach supervised change detection performance without the need

for ground information.

II.4. Classification according to imagery modality

The second classification of CD methods involves the modality of the observed images. As remote

sensing gathers many different types of imagery modalities, each one representing the scene from a

specific point of view, specialized methods were developed for each one by exploiting its physical

information. Since the different modalities have very different statistical properties, a general CD

method which is capable to accurately handle all modalities is hard to envision. Consequently, most

of CD methods consider one modality as a target scenario. When resolutions are the same, homol-

ogous pixels are absolutely comparable. Therefore, spatial information represented by that pixel is

consistent with the homologous pixel in the other image, contributing to the precision of detection.

Nevertheless, in some important situations like punctual missions, natural disasters and defense and

security, when the availability of data and the time are strong constraints, CD methods may have to

handle multimodal observations with different resolutions. Therefore, CD techniques that can handle

multimodal observations are needed.

Same Modality

In this class, CD is performed according to the modality. Each modality has its own characteristics

that can be explored for CD and also, maybe, its disadvantages. Among all remote sensing imagery

modalities, this section is dedicated to the two most common ones, optical and radar imagery, following

the same previous strategy.

Optical imagery change detection Optical images represent the most common remote sensing

imagery modality. Therefore there exist a large number of CD methods specifically designed for optical

images [BB15]. Some aspects contributes to that situation. First, the human visual system is based on

the optical visible electromagnetic spectrum. Visual inspection, which was the first CD method, allows

straightforward validation of these methods. Besides, the simplicity of the assumed noise statistics

operated in favour of this modality.

One of the most important premises in CD, specially for optical images, is that changes in land-cover
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must results in significant changes on radiance values [Sin89]. Otherwise, noise, sun angle differences

and other optical effects may be classified as changes. To spatially locate significant physical alterations

of objects is the main role of CD. For optical images, the most common CD techniques employs a pixel-

wise differencing operator in order to locate abrupt changes in radiance [Sin89; Rad+05; BB15]. This

operator is a univariate differencing for panchromatic images or multivariate for multiband optical

images. In the latter, in order to gather all pixel change information, the spectral change vector

(SCV) can be constructed by stacking the differencing for all pairs of homologous bands between

bi-temporal multiband optical images. The justification for the use of differencing is related to the

assumed additive Gaussian nature of optical image noise as in Section I.1, for both single variate

and multivariate cases. It’s worth noting that the additive nature of the noise, the symmetry of its

distribution and the pixel independence can be assumed when a sufficient number of photons arrive

on the photodetector. Applying such operators produces a differencing image in which values close

to zero tend to represent no-change regions while the strong ones (in absolute value) may represent

changes. This assumption is widely used by many unsupervised methods, for instance change vector

analysis (CVA) [JK98; BB07] and multivariate alteration detection (MAD) [NCS98; Nie07], and for

supervised ones, where the feature vector correspond to the differencing image, for instance [BS97].

Multiband optical images, i.e. multispectral or hyperspectral images, appear as interesting infor-

mation sources for CD. The investigation of the electromagnetic response in different wavelengthes

allow the development of very precise techniques. The first techniques trying to use multiple band in-

formation are based on the vegetation indexes [Sin89; Lu+04]. These indexes are computed from near

infra-red and visible red bands. By expanding the analysis through all bands, most of CD techniques

in hyperspectral images are based on unmixing [Bio+12; TDT16; Cav+17; Cru+18]. The purpose of

unmixing is to obtain, for each pixel, its pure components and their proportions. CD based on unmix-

ing of HS images performs far better than CD based on differencing PAN or MS images. [Liu+15b;

Liu+15c] describe techniques based on multitemporal unmixing. In [EIP16] sparse-unmixing with

additional spectral library information is applied in order to attain sub-pixel CD. Nevertheless, tra-

ditional unsupervised CD methods derived for optical images with a fewer number of bands can still

provide some interesting results. In [Liu+12; Liu+14] the CVA technique is adapted to sequentially

detect multiple changes in hyperspectral images. Additionally to unmixing, some subspace techniques

are also proposed in order to reduce the amount of data in hyperspectral images while keeping the

important information, for instance: principal component analysis [Liu+15a], orthogonal subspace
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projection [WDZ13] among others. Naturally, some advanced methods try to mathematically model

the properties of the observed surface. Nevertheless, due to the large variability of materials and mod-

els, these methods are not scalable to many problems and are generally time-consuming [Lu+04]. This

is the case, for example, when quantifying damages in urban areas after natural disasters [FD15a].

CD from Very High Resolution (VHR) optical images is also a real challenge. The idea is very

similar to the previous case. By increasing spatial resolution, the amount of information increases.

This can be very helpful in order to analyse small spatial details. Nevertheless, all undesired effects of

optical images are amplified. Some techniques try to attenuate these effects by adding extra steps such

as predictions. For instance, [BMB12] proposes a multi-level framework to perform CD from VHR

optical images. [Dal+08; Fal+13] used morphological filters to reduce the number of false alarms due

to miscalibrations in urban areas. In [Xu+15], multiscale analysis is applied in order to take into

account finer details while keeping the rough estimation of changes.

Although the mentioned strong points and the broad range of applications, CD from optical images

suffers form some limitations. Optical images come from passive sensors, therefore, they highly depend

on the natural illumination conditions. Differences in weather conditions make CD difficult, especially

in the case of high resolution images. Therefore, a careful calibration of the observations is required

in order to guarantee accurate detection. Note that, in case of unsupervised CD, this calibration is

rarely possible. Moreover, when working with multiband optical images, some bands may not provide

any relevant information or even may be inaccurately sensed leading to false detection. In such a case,

these bands must be identified and discarded.

Radar imagery change detection During the technological development of remote sensing, radar

appeared as a key tool for target detection. Radar imagery is based on the detection of changes in

phase and/or energy of the returning pulse compared to the reference one (the standard emission

pulse). Although radar imagery corresponds to the second most common remote sensing imagery

modality, CD from radar images is a very challenging task. In opposition to optical images, which

have intrinsic characteristics that contributes in the development of relatively simple methods, the

nature of the radar images is a difficult obstacle to overcome, particularly the data-dependency and

the multiplicative behaviour of the noise, as addressed in Section I.1. For instance, in a same image,

brighter portions of the image present more fluctuations than darker parts. When dealing with multi-

date images, the scenario is even worst. In a same homologous region, there are strong differences
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in the amplitude of fluctuations. This does not allow, even from visual inspection, straightforward

detection of changes. Nevertheless, radar imagery has also strong advantages compared to optical

imagery, specially for defence applications and emergency situations.

For this modality, the differencing operator is no longer appropriate because of the multiplicative

noise [BB15]. By applying a differencing operation, the level of change pixels in brighter regions would

be higher than in darker ones. This is explained by the data-dependency of the noise. An overcoming

strategy is to consider ratio operator [Sin89; Rad+05]. Changes in SAR images are generally associated

with increasing and decreasing of the backscattering [BB15] and can be modelled as a single change

class. Using the rationing operator, CD is more balanced between brighter or shadower regions. A

similar strategy can be obtained by considering a log-transformation on the data. In this case, the noise

becomes additive and therefore differencing operators can be employed. Nevertheless, the asymmetry

of the noise probability distribution may restrain the efficiency of this method.

In order to reduce the influence of the strong fluctuations of radar images on the overall performance

in detection, alternatively to pixel-wise techniques, some methods use a patch-similarity measure in

order to compute a change index. Several measures were used [Pre+15a]. For instance, entropy,

mutual information [Cha07], correlation coefficient, Kullback Leibler divergence [Ing03], because they

can be also adapted to other modalities (e.g optical images). These methods assume that patches

present homogeneous information. The validity of this assumption, therefore, is extremely dependent

on the patch size. The smaller the patch, the more likely it is homogeneous. However, the high

variance of the similarity information estimation from a reduced number of pixels increases the risk

of false alarm. On the other hand, large patches tend to be more heterogeneous, therefore, the result

tends to reduce the probability of detection.

Multiscale transforms compose another group of techniques present in the radar CD literature

[BB15]. They include wavelet decomposition, local similarity measures computed on varying windows

size, etc. The multiresolution analysis represents a good approach to evaluate changes from VHR.

Multimodal Change Detection

Multimodality is an important subject that draws the attention of the remote sensing community

nowadays. Due to the increasing number of new satellites and of new policies for data distribution,

more multitemporal data becomes available [BB15]. This diversity enriches the remote sensing process.

On the other hand, it introduces new challenges in the exploration and exploitation of images with
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different kind of information [Dal+15; Dal+14]. Therefore, more attention has been devoted to appli-

cations that can handle more than one image at a time, notably, data fusion and CD. Multimodal CD

presents an additional complexity compared to data fusion as contextual information is not necessarily

the same. However, its applicability is of extreme importance. In some specific scenarios, for instance

after natural disasters, images compatible with previously acquired ones may not be available in an

acceptable timeframe. Emergency situations thus require fast, flexible and accurate methods able to

handle images acquired by sensors of different kinds [Ing02; Alb+07a; MMS07; Pre+15a; Pre+15c;

Pre+15b]. However, facing data heterogeneity is a challenging task and must be carefully handled.

Multimodal CD can be divided into two main categories: images of the same modality with different

resolutions and images of different modalities.

Favourable Scenario According to [Lu+04], temporal, spatial, spectral and radiometric resolutions

have a significant contribution in the success of a remote sensing CD project. Most techniques assume

that the multi-date images have been acquired by sensors of the same type [BB15] with similar

acquisition characteristics in terms of, e.g., angle-of-view, resolutions or noise model [CNS04; IG04].

This configuration, or scenario, is the most favourable one for CD. Indeed, it allows to compare two

(or more) pixels representing the same location (homologous) with the same amount of information

(resolutions) with the same physical properties (modality). Scenarios involving images with different

resolutions and/or of different modalities are not deeply explored in the literature.

State-of-the-art The literature about multimodal CD is very limited, even if it has always figured

out as an important topic. The work [Kaw71] started by describing the potential of CD over a

multi-modal collection of datasets, for instance: photographic, infrared and radar, applied to weather

prediction and land surveillance. In [Lu+04], various methods that try to detect changes in images

from different sources of data are grouped as Geographical Information System (GIS)-based methods.

For instance, [STJ96] proposed a supervised classification of multisource satellite images using Markov

random fields. The work [BPS99] uses compound classification to detect changes in multisource

data. The method uses artificial neural networks to estimate the posterior probability of classes.

Moreover, in [Ing02] the performance of several similarity measures in multisensor data is studied. In

[Alb+07a; Alb+07b], the same study is applied in a CD context. A preprocessing technique, based

on conditional copula, that contributes to better couple multisensor images, is proposed in [MMS07;
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MMS08]. Besides, [BLB10; BMD11] presented two ways to assess building damages using a pair of

VHR optical-radar images by geometrically modeling building in both modalities. In [Cha+10], an

estimate logistic regression parameters is used to define a measure of similarity in order to detect

changes between remote sensing images and database information. The work [Pre+15a] presented a

supervised method to infer changes from a distance to a learned manifold. This manifold is learned

from coupled physical features estimated from pairs of patches extracted from unchanged regions

on both images. Change coupled manifold values are supposed to be distant from the unchanged

ones, characterizing the detection method. Although some of these methods present high detection

performance they are in general restrained by the application. Some methods are only applied to

building damage assessment presenting high level of modeling, but with lower flexibility to other

scenarios [BLB10; BMD11; Cha+10]. Other ones estimate some metrics from unchanged trained

samples, which reduces the application in a totally unsupervised approach [BPS99; Pre+15a; MMS08].

CD techniques for optical and radar images generally rely on the assumption of data acquired by

similar sensors. Consequently, in the case of a common modality but different resolutions, suboptimal

strategies have been considered to make these techniques applicable [NCS98; Alb+07a]. In particular,

interpolation and resampling are classically used to obtain a pair of images with the same spatial

and spectral resolutions [Alb+07a; Alb+07b]. However, such a compromise solution may remain

suboptimal since it considers each image individually without fully exploiting their joint characteristics

and their complementarity. Besides, the approach presented in [Kla+13] also provides a suboptimal

solution since it preprocesses each observed image independently with resampling operations bringing

both to the same (lower) spectral and spatial resolutions. Thus, this worst-case strategy leads to a

considerable waste of spatial and spectral information.

Recently, some unsupervised multimodal CD methods based on coupled dictionary learning ap-

proaches were addressed by [Gon+16; LYZ17]. In [Gon+16], the coupled dictionary learning is associ-

ated to independent sparse codes and CD is obtained form the reconstruction error of image patches.

Following the same principle, [LYZ17] used a semi-supervised method to handle multispectral images

based on joint dictionary learning. A parallel can be made between the independent sparse code

estimation and the independent resampling preprocessing strategy. In both cases, the solution is not

jointly estimated even though both observed images share a considerable amount of contextual and

sometimes physical information. Besides, in the multimodal case, the works do not explicitly take

care of images with different resolutions which reduces dramatically their applicability.
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Objectives

This general panorama of CD in remote sensing raised some essential questions about the new trends

and challenges in this domain, especially: How to compare images with different resolutions? How

to handle multimodality? How to reach the accuracy and flexibility characterizing supervised CD

with unsupervised methods? How to simultaneously tackle all of these points in a same methodology?

Many previous works tried to respond to, at least, one of these points [Pre15; Hoc11; Anj16; Bit11;

Cha07]. Nevertheless, they fail in their generalization, either by focusing on a specific situation, or

by considering only a restricted subset of scenarios. Also, the problem of working with images at

different resolutions was never fully addressed. Only suboptimal preprocessing strategies were used in

order to make input images comparable. Although, it is a very common situation that occurs in many

practical scenarios as the specifications of different remote sensing imaging sources are not related, in

general.

This thesis aims at providing better answers to these questions: the problem of unsupervised CD

between remotely sensed images with different resolutions and possibly from different modalities is

addressed. We consider a generalization of the CD problem to handle images with different resolutions.

The proposed methods straightforwardly apply to images of the same resolutions. The starting point

strategy is based on image fusion [Lon+15; WDT15b]. As previously mentioned, the amount of

available multimodal data is growing exponentially. It is very common nowadays to find worldwide

authorities freely offering multitemporal airborne and satellite data [Jet17; Uni17; Eur17b; Eur17a].

Image fusion and CD are the most common remote sensing applications that must deal with more

than one image. In image fusion, two or more images are combined to produce a single image that

evidences the information contained in the two input images. For instance, in the remote sensing

branch of pansharpening, a fusion involving HR-PAN and LR-MS optical images aims at producing a

high resolution image (HR-MS) by combining spatial and spectral details at different resolutions. This

technique can be further generalized to hyperspectral images [Lon+15]. The basic assumptions in this

field of study are that all images are acquired over the same scene (geographical location), as for CD,

but contrarily to CD, with a minimum time delay between acquisitions. Thus, image fusion and CD

are related by some aspects. Nevertheless, image fusion considers that no change occurs in the scene

between acquisitions, otherwise the fusion product is not consistent with the information present on

the scene. The longer the time delay between successive acquisitions the more susceptible the changes.
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This is the exact point in which CD and fusion differ. In [BB15], CD was revisited in a data fusion

perspective, but it only addresses the favourable scenario for CD as previously discussed. However the

fusion of images at different resolutions is a very well studied topic in the literature [Lon+15; WDT14a;

Dal+15]. Scenarios involving images at different resolutions, but the same modalities, can be seen

as generalizations of pansharpening methods. Besides, the fusion problem can also be formulated

in a multimodality point of view. It is true that, in some situations, the final fusion product may

not represent a real quantity. It is the case when fusing optical and radar images to combine both

modalities [Dal+15]. This can be overcome by considering a representation of the fused data that

differs form the fused image, [Dal+15; Pou+11; Pou10]. Based on these fusion results, we are going

to develop, particularly flexible, CD methods.

The work presented in this manuscript has been carried out within the Signal and Communications

group of the Institut de Recherche en Informatique de Toulouse, where several doctoral works have

been previously conducted on image fusion and change detection in many of different contexts [Wei15;

Pre+15a; Cha07; Pou10]. This thesis has been funded by the Coordenação de Aperfeiçoamento de

Ensino Superior (CAPES), Brazil, in the program Doutorado Pleno no Exterior (DPE).

Structure of the manuscript

Chapter 1 introduces the fusion paradigm to deal with any multiband optical images character-

ized by possible dissimilar spatial and spectral resolutions. Typical considered scenarios include CD

between panchromatic, multispectral and hyperspectral images. The available observation images are

jointly modelled based on a forward observation model, describing the spectral and spatial degrada-

tions produced by the sensor over a latent input image. The proposed CD solution strategy consists of

3-steps: i) inferring a high spatial and spectral resolution image by fusion of the two observed images,

ii) predicting two images with respectively the same spatial and spectral resolutions as the observed

images by degradation of the fused one and iii) implementing a decision rule to each pair of observed

and predicted images characterized by the same spatial and spectral resolutions to identify changes.

Fusion and detection steps are tailored by the end-user. To quantitatively assess the performance of

the method, an experimental protocol is specifically designed, relying on synthetic yet physically plau-

sible change rules applied to real images. The accuracy of the proposed framework is finally illustrated

on real images.
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Chapter 2 introduces a method that more effectively uses the available information to detect

changes between any two multi-band optical images disregarding their spatial and spectral resolu-

tion disparities, by modelling the two observed images as spatially and spectrally degraded versions of

two (unobserved) latent images characterized by the same high spatial and high spectral resolutions.

Covering the same scene, the latent images are expected to be globally similar except for possible

changes in spatially sparse locations. Thus, the CD task is envisioned through a robust fusion task

which enforces the differences between the estimated latent images to be spatially sparse. It is shown

that this robust fusion can be formulated as an inverse problem which is iteratively solved using an

alternate minimization strategy. The proposed framework is implemented for an exhaustive list of ap-

plicative scenarios and applied to real multi-band optical images. A comparison with state-of-the-art

CD methods evidences the accuracy of the proposed robust fusion-based strategy.

Chapter 3 addresses the problem of unsupervisedly detecting changes between two multimodal

observed images. Sensor dissimilarities introduce additional issues in the context of operational CD

that are not addressed by most classical methods. This chapter proposes a novel way to effectively

use the available information by sparsely decomposing the two observed images on a pair of coupled

overcomplete dictionaries estimated from each observed image. As they cover the same geographi-

cal location, codes are expected to be globally similar except for possible changes in sparse spatial

locations. Thus, the CD task is envisioned through a dual code estimation which enforces spatial

sparsity in the difference between the estimated codes corresponding to each image. This problem is

formulated as an inverse problem which is iteratively solved using an efficient proximal alternating

minimization algorithm accounting for nonsmooth and nonconvex functions. The proposed method

is applied to real multimodal images with simulated realistic and real changes. A comparison with

state-of-the-art CD methods evidences the accuracy of the proposed strategy.

Main contributions

Chapter 1 The main contribution of this chapter lies in the introduction of the fusion paradigm

to handle images of the same modality, but with different resolutions, covering all practical scenarios.

Besides, the second contribution is an unsupervised CD framework based on 3-steps (fusion, prediction

and detection) that was proposed to deal with this new problem formulation. Both fusion and detection
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steps can be tailored by the end-user, increasing the framework applicability to better fit practical

scenarios. The final contribution is the development of a simulation protocol, inspired from the fusion

performance assessment protocol of [WRM97], to simulate realistic changes onto a pair of observed

images. This protocol is based on unmixing techniques of a reference hyperspectral image that allows

to generate changes, even with subpixel precision, from a known ground-truth change map.

Chapter 2 The main contributions to this chapter lies in the modelling of the CD between any two

multiband optical images in a robust-fusion based approach. The differences between the two latent

images, related to the two observed images, are assumed to be spatially sparse, implicitly locating

the changes at a high resolution scale. The technique was based on the definition of two high spatial

and spectral resolution latent images related to the observed images via a double physically-inspired

forward model. Inferring these two latent images was formulated as an inverse problem which was

solved within a 2-step iterative scheme. Depending on the considered scenario, these 2 steps can

be interpreted as ubiquitous signal and image processing problems (namely spatial super-resolution,

spectral deblurring, denoising or multi-band image fusion) for which closed-form solutions or efficient

algorithms had been recently proposed in the literature.

Chapter 3 The main contributions of this chapter lies in the multimodal coupled dictionary mod-

elling as solution to the unsupervised multimodal CD problem. The proposed modelling was based

on the estimation of a coupled dictionary and sparse codes which give a common representation for

homologous patches, extracted from the two observed images. The differences between estimated

codes was assumed to be spatially sparse, implicitly locating the changes. Inferring these differences,

as well as noise free images, was formulated as an inverse problem which was solved with the proximal

alternate minimization iterative scheme, because of nonconvexity. Contrary to the methods already

proposed in the literature, scaling problems due to differences in resolutions are solved by estimating a

scaling matrix relating coupled atoms. Results shows that the method outperforms all state-of-the-art

comparative methods in multimodal scenarios while presenting similar results as methods requiring

prior scenario modelling.
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Chapter 1.

Fusion-based approach

This chapter has been adapted from the papers [Fer+17b; FDC18; Fer+18b].
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1.1. Introduction

This chapter addresses the problem of unsupervised CD from multi-band optical images with different

spatial and spectral resolutions. More precisely, it focused on the problem of CD between two optical

images acquired over the same scene at different time instants, one with low spatial and high spectral

resolutions (referred to as the LR image) and one with high spatial and low spectral resolutions

(referred to as the HR image). Typical applicative situations considered in this work differ by the HR
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and LR images to be compared: PAN and MS, PAN and HS, or MS and HS. The proposed approach

consists in first fusing the two observed images. If no change between the two observed images occurs,

the fused product would be a high spatial and high spectral resolution image of the observed scene, as

in any conventional fusion problem. Conversely, in the CD context addressed here, the majority of the

fused image pixels correspond to the truly observed scene while the few remaining ones, corresponding

to locations impacted by the changes, are likely to suffer from spatial and spectral aberrations due to

the inconsistency of the information between the two multi-date images. The considered fusion process

explicitly relies on a physically-based sensing model which exploits the characteristics of the two

sensors, following the frameworks in [WRM97; Lon+15]. Then, these characteristics are subsequently

resorted to obtain, by degradation of the fusion result, two so-called predicted images with the same

resolutions as the observed images, i.e., one with low spatial resolution and high spectral resolution

and one with high spatial resolution and low spectral resolution. In the absence of change, the two

pairs of predicted and observed images should coincide, apart from residual fusion errors/inacurracies.

Conversely, any change between the two observed images is expected to produce spatial and/or spectral

alterations in the fusion result, which will be passed on the predicted images. Each predicted image

can be thus compared to the corresponding observed image of same resolution to identify possible

changes. Since for each pair, the images to be compared are of the same resolution, classical CD

techniques dedicated to multi-band images can be considered [Rad+05; BB15]. The final result is

composed of two CD maps with two different spatial resolutions.

It is worth noting that the fusion and prediction steps will inevitably lead to smoother changes than

the ones that effectively occurred in the scene between the two observation times. Consequently, the

changes between the fused and predicted images are weaker than the ones that would be observed

between images acquired before and after the changes at the same (high) spectral and spatial resolu-

tions. However, the applicative context considered in this work implies that the spatial and/or spectral

resolutions of the two images differ. In this case of interest, the comparison between the two images

becomes a problem in itself. The main purpose of the proposed framework is to provide a solution to

this non-trivial problem. The experimental results reported in the last section demonstrate that the

proposed fusion framework offers substantial performance improvements with respect to the existing

naive methods. Moreover, visual inspection in case of real images and comparison with ground truth

when available show that the smoothing introduced by the fusion step does not prevent from high CD

performance.
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The chapter is organized as follows. Section 1.2 presents a forward model underlying the observed

multi-band optical images. This model is used in Section 1.3 to formulate the problem of CD between

two images with different spatial and spectral resolutions. Section 1.4 introduces the main contribution

of this chapter, i.e., the proposed CD framework, and describes its three main steps. To quantitatively

assess the performance of the proposed framework, a new experimental protocol is introduced in

Section 1.5. This protocol, inspired by the well-known Wald’s protocol [WRM97], allows to generate

synthetic, yet realistic, pairs of images affected by physically-motivated changes. Moreover, it ensures

the availability of a ground truth essential to derive objective figures-of-merit for detection performance

assessment. In Section 1.6, the experimental results obtained thanks to this protocol as well as on real

multidate LANDSAT 8 images demonstrate the efficiency of the proposed CD framework. Section 1.7

concludes this chapter.

1.2. Forward model

1.2.1. Generic single forward model

Let us consider that the image formation process inherent to all digital remote sensing imagery modal-

ities, as mentioned on Section I.1, is modelled as a sequence of operations, denoted T [·], applied to

the original scene and leading to an output image. The output image of a particular sensor is re-

ferred to as the observed image and denoted Y ∈ Rmλ×m consisting in m voxels yi ∈ Rmλ stacked

in lexicographic order. The voxel dimension mλ may represent different quantities depending on the

modality of the data. For instance, the number of spectral bands in the case of multiband optical

images [WDT15b] or even the number of polarizations modes in POLarimetric Synthetic Aperture

Radar images (POLSAR). This output image provides a limited representation of the original scene

with properties imposed by the image signal processor (ISP) characterizing the sensor. The origi-

nal scene cannot be exactly represented because of its continuous nature, but it can be conveniently

approximated by an (i.e. unknown) latent image X ∈ Rnλ×n related to the observed image following

Y = T [X]. (1.1)

The intrinsic sequence of transformations T [·] of the sensor over the latent image X is often called

degradation process. There are many ways to represent it. It can be broken down into different
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transformations or considered as a whole [Pre+15a]. For instance, in contexts related to optical

images, it usually consists of spectral or spatial degradations [WDT15b] and additive intrinsic noise,

while for SAR images it often reduces to the intrinsic noise corruption produced by the sensor’s

physical instrument [Tab16].

1.2.2. Multi-band optical forward model

Since the focus of this chapter is on multi-band optical images, the chosen intrinsic transformation

model will take into account spectral and spatial degradations as well as the noise corruption model.

Accordingly, the original scene can be conveniently represented by an latent (unknown) image of higher

spatial and spectral resolutions, X, where n ≥ m and nλ ≥ mλ are the numbers of pixels and spectral

bands, respectively, related to the observed image. On the one hand, spatial degradations comprehend

the spatial characteristics of the sensor such as sampling scheme and optical transfer function. On the

other hand, spectral degradations refer to the wavelength sensitivity and the spectral sampling. This

chapter considers degradations as a sequence of linear operations leading to the following approximate

forward model [WDT14a; YYI12; Sim+15]

Y ≈ TD[X] (1.2)

where TD[·] represents the set of degradations acting on the latent image without considering any

mismodeling effect or noise corruption. In general, for multi-band optical images, these degradations

can be written as:

Y ≈ LXR. (1.3)

In (1.3), the left-multiplying matrix L ∈ Rmλ×nλ degrades the latent image by combination of some

spectral bands for each pixel while the right-multiplying matrix R ∈ Rn×m degrades the latent image

by linear combination of pixels within the same spectral band. The former degradation corresponds to

a spectral resolution reduction with respect to the latent image X as in [YYI12; Sim+15; WDT15b]. In

practice, this degradation models an intrinsic characteristic of the sensor, namely the spectral response

function (SRF). It can be either learned by cross-calibration or known a priori [Sim+15; YMI13]. Con-

versely, the spatial degradation matrix R models the combination of different transformations which

are specific of the sensor architecture and take into account external factors including warp, blurring,

translation and decimation [YMI13; WDT15b]. In this work, since geometrical transformations such
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as warp and translations can be corrected using image co-registration techniques in pre-processing

steps, only a spatially invariant blurring, corresponding to the point spreading function (PSF), and a

decimation (i.e., subsampling) will be considered. The PSF can be modeled by a symmetric convo-

lution kernel associated with a sparse symmetric Toeplitz matrix B ∈ Rn×n which operates a cyclic

convolution on each individual band [Wei+15b]. The decimation operation, denoted by the n × m

matrix S, corresponds to a uniform downsampling operator of factor d = dr × dc with m = n/d ones

on the block diagonal and zeros elsewhere, such that ST S = Im [WDT15b]. The corresponding oper-

ator ST represents an upsampling transformation by zero-interpolation from m to n. To summarize,

the overall spatial degradation process corresponds to the matrix composition R = BS ∈ Rn×m. It

is worth noting that, as the two degradations act in different dimensions, spectral and spatial, the

transformation TD[·] can be further split as TD[·] = TR[TL[·]] = TL[TR[·]].

The approximating symbol ≈ in (1.3) stands for mismodeling effects or acquisition noise, which,

for multi-band optical images, is generally additive and Gaussian [BB15; EV06; Lon+15; WDT15b].

Thus, the full generic degradation model can be written assembling all transformations as

Y = TN [TD[X]] (1.4)

with the full transformation T [·] = TN [TD[·]] or more specifically as

Y = LXR + N. (1.5)

The additive noise matrix N in (1.5) is assumed to be distributed according to the following matrix

normal distribution

N ∼MNmλ,m(0mλ×m, Λ, Π) (1.6)

where the probability density function p(X|Me, Σr, Σr) of a matrix normal distributionMNr,c(Me, Σr, Σc)

is given by [GN99]

p (X|Me, Σr, Σr) =
exp

(

−1
2 tr

[

Σ−1
c (X−Me)T Σ−1

r (X−Me)
])

(2π)rc/2 |Σc|
r/2 |Σr|

c/2
(1.7)

with Me ∈ Rr×c representing the mean matrix, Σr ∈ Rr×r the row covariance matrix and Σc ∈ Rc×c

the column covariance matrix.
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The row covariance matrix Λ carries information regarding the between-band spectral correlation.

Following [WDT15b], in what follows, this covariance matrix Λ will be assumed to be diagonal, which

implies that the noise is independent from one band to the other and characterized by a specific

variance in each band. Conversely, the column covariance matrix Π models the noise correlation

w.r.t. the pixel locations. Following widespread hypothesis, this matrix is assumed to be identity,

Π = Im, which means that noise is spatially independent. In real applications, both matrices Λ and

Π can be estimated by prior calibrations [YMI13].

1.3. Problem Formulation

Let us consider two co-registered multi-band optical images Y1 ∈ Rmλ1
×m1 and Y2 ∈ Rmλ2

×m2

acquired by two sensors S1 and S2 at times t1 and t2, respectively. It is not assumed any specific

information about the ordering of time acquisitions: either t2 < t1 or t2 > t1. These images are

represented as matrices in which every line corresponds to the measurements in a given spectral band

and every column corresponds to the measurements at a given pixel location. The problem addressed

in this chapter consists in detecting significant changes between these two multi-band optical images.

This is a challenging task mainly due to the possible spatial and/or spectral resolution dissimilarity

(i.e., mλ1 6= mλ2 and/or m1 6= m2), which prevents any use of simple yet efficient differencing operation

[Sin89; BB15].

As discussed in Section 1.2, for multi-band optical images the image formation process is modelled

as a sequence of transformations of the original scene into an output image. More precisely, following

the widely admitted forward model described in Section 1.2.2 and adopting consistent notations, the

observed images Y1 and Y2 can be related to two latent images X1 ∈ Rnλ×n and X2 ∈ Rnλ×n with

the same spatial and spectral resolutions

Y1 = T1 [X1] = L1X1R1 + N1

Y2 = T2 [X2] = L2X2R2 + N2

(1.8)

where T1 [·] = TN1 [TD1 [·]] (resp. T2 [·] = TN2 [TD2 [·]]) stand for the intrinsic transformation model

for sensor S1 (resp. S2) acting on the (unknown) latent image X1 (resp. X2). Note that (1.8)

represent a specific double instance of the model (1.5). Degradation matrices modelling each sensor,

Lj ∈ R
mλj

×nλ , Rj ∈ Rn×mj and Nj ∈ R
mλj

×mj (j = 1, 2), as exposed in Section 1.2.2, can be a
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priori known or estimated. This extra flexibility allows to assume that the two unobserved images

Xj ∈ Rnλ×n (j = 1, 2) share the same spatial and spectral characteristics, generally higher than those

of the observed images:

nλ ≥ max {mλ1 , mλ2} and/or n ≥ max {m1, m2} . (1.9)

and, if they were available, they could be resorted as inputs of classical CD techniques operating on

images of same resolutions.

When the two images Y1 and Y2 have been acquired at the same time, i.e., t1 = t2, no change is

expected and the latent images X1 and X2 should represent exactly the same scene, i.e., X1 = X2 , X.

In such a particular context, recovering an estimate X̂ of the high spatial and spectral resolution latent

image X from the two degraded images Y1 and Y2 can be cast as a fusion problem, for which efficient

methods have been recently proposed [Wei+15b; Lon+15; WDT15b; WDT15a]. Thus, in the case of

a perfect fusion process, the no-change hypothesis H0 can be formulated as

H0 :











Y1 = Ŷ1

Y2 = Ŷ2

(1.10)

where

Ŷ1 , TD1

[

X̂
]

Ŷ2 , TD2

[

X̂
]

(1.11)

are the two predicted images from the estimated latent image X̂.

When there exists a time interval between acquisitions, i.e. when t1 6= t2, a change may occur

meanwhile. In this case, no common latent image X can be defined since X1 6= X2. However, since

X1 and X2 represent the same area of interest, they are expected to keep a certain level of similarity.

Thus, the fusion process does not lead to a common latent image, but to a pseudo-latent image X̂

from the observed image pair Y1 and Y2, which consists of the best joint approximation of latent

images X1 and X2. Moreover, since X̂ 6= X1 and X̂ 6= X2, the forward model (1.8) does not hold to

relate the pseudo-latent image X̂ to the observations Y1 and Y2. More precisely, when changes have

31



Chapter 1. Fusion-based approach

occurred between the two time instants t1 and t2, the change hypothesis H1 can be stated as

H1 :











Y1 6= Ŷ1

Y2 6= Ŷ2.
(1.12)

Both inequalities in (1.12) should be understood in a pixel-wise sense since any change occurring

between t1 and t2 is expected to affect some spatial locations in the images. As a consequence, both

diagnosis in (1.10) and (1.12) naturally induce pixel-wise rules to decide between the no-change and

change hypothesis H0 and H1. This chapter specifically proposes to derive a CD framework able to

operate on the two observed images Y1 and Y2. This framework implicitly relies on the forward model

(1.8) and the degradation operators TD1 [·] and TD2 [·] introduced to relate the latent and observed

images. The following section discusses possible forward models derived from real applicative scenarios

that can be adopted for this framework.

1.3.1. Applicative scenarios

The general model presented in (1.8) can be adjusted to handle all scenarios derived from two multi-

band optical images. These scenarios differ by the corresponding spatial and spectral degradations

relating the pair of observed images {Y1, Y2} and the pair of latent images {X1, X2}. Table 1.1

summarizes the 10 distinct scenarios (denoted S1 to S10) according to the degradations operated on

the two latent images X1 and X2. The specificities of these scenarios are also discussed in what

follows.

S1 is devoted to a pair of observed images sharing the same spatial and spectral resolutions. In this

case, CD can be conducted by pixel-wise comparisons, as classically addressed in the literature,

e.g., by [Sin89] and [BB15].

S2 consists in conducting CD between two images with the same spatial resolution but different

spectral resolutions, considered by [NCS98] and [Nie07].

S3 consists in conducting CD between two images with the same spectral resolution but different

spatial resolutions.
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Forward model ♯1 Forward model ♯2

CommentsSpectral Spatial Spectral Spatial

degradation degradation degradation degradation

S1 − − − −
Conventional CD framework –

Y1 and Y2 of same spatial and spectral resolutions

S2 L1 − − −
Y1 of lower spectral resolution

Y1 and Y2 of same spatial resolutions

S3 − R1 − −
Y1 of lower spatial resolution

Y1 and Y2 of same spectral resolutions

S4 − R1 L2 − Y1 and Y2 of complementary resolutions

S5 L1 R1 − − Y1 of low spatial and spectral resolutions

S6 − R1 − R2
Generalization of S3 with non-integer

relative spatial downsampling factor

S7 L1 R1 − R2
Generalization of S4 with non-integer

relative spatial downsampling factor

S8 L1 − L2 −
Generalization of S2 with some

non-overlapping spectral bands

S9 L1 R1 L2 −
Generalization of S4 with some

non-overlapping spectral bands

S10 L1 R1 L2 R2

Generalization of S4 with some non-overlapping

spectral bands and non-integer relative

spatial downsampling factor

Table 1.1.: Overviews of the spectral and spatial degradations w.r.t. experimental scenarios. The
symbol − stands for “no degradation”.

S4 relies on two complementary images: the first image with high spectral and low spatial resolutions,

the second image with low spectral and high spatial resolutions. When the two observed images

have been acquired at the same time instants (t1 = t2), this scenario corresponds to the multi-

band image fusion task considered in numerous works, e.g., by [WDT15b], [YYI12] and [Sim+15].

S5 represents an even less favorable instance of S2 and S3 where one image is of high spatial and

spectral resolutions while the other is of low spatial and spectral resolutions.

S6 generalizes S3. As for S3, both observed images have the same spectral resolutions and different

spatial resolutions. However, contrary to S3, the relative downsampling factor between images

is non-integer, which precludes the use of a unique spatial degradation matrix R = BS. As a

consequence, the latent images X1 and X2 are characterized by a common spatial resolution

which is higher than those of both observed images. The choice of this virtual downsampling

factor is based on the greatest common divisor between spatial resolutions.
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S7 generalizes S4 with a non-integer relative downsampling factor (as for S6).

S8 generalizes S2 where the two observed images share the same spatial resolution but have distinct

spectral resolutions. However, contrary to S2, this difference in spectral resolutions cannot be

expressed using a unique spectral degradation matrix. This may happen when the two spectral

ranges of observed images contain non-overlapping bands.

S9 generalizes S4, but the difference in spectral resolutions cannot be expressed using a single degra-

dation matrix (as for S8).

S10 generalizes S4, but the difference in spatial resolutions cannot be expressed using a unique spatial

degradation matrix (as for S6) and the difference in spectral resolutions cannot be expressed

using a single spectral degradation matrix (as for S8).

Although the problem formulation comprehends all discussed scenarios, aiming for a more fluid and

pedagogic reading, scenario S4 is taken as an example to derive the solution for the aforementioned CD

problem. This choice was motivated by the fact that S4 represents the classical scenario of multi-band

image fusion in which Y1 and Y2 have complementary resolutions m1 6= m2 and mλ1 6= mλ2 . Thus,

as the time order is not fixed, the observed image Y1 is assumed to represent the high spatial and low

spectral resolution image (referred to as the HR image), while the observed image Y2 represents the

low spatial and high spectral resolution image (referred to as the LR image), denoted YHR ∈ Rmλ×n

and YLR ∈ Rnλ×m, respectively. Besides, three instances of S4, corresponding to three pairs of HR and

LR images, can be considered: HR-PAN and LR-MS, HR-PAN and LR-HS, or HR-MS and LR-HS.

Furthermore, the degradation model for S4 derived from the general degradation model (1.8) using

the degradation specifications of Table 1.1 and the definition of the HR-HS (or eventually HR-MS)

pseudo-latent image X ∈ Rnλ×n can be written as

YHR = THR[X] = LX + NHR,

YLR = TLR[X] = XBS + NLR.

(1.13)

Note that in (1.13), L1 = L and R2 = R = BS, because degradations, TDHR
[·] and TDLR

[·], are

exclusive and complementary for each observed image, fully characterizing them. Also, noise matrices

NHR and NLR are defined accordingly to (1.6). Capitalizing on this forward model, the proposed

3-step CD framework is described in the following section.
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1.4. Proposed 3-step framework

This section describes the proposed CD framework to deal with all applicative scenarios detailed in

Section 1.3.1 which mainly consists of the following 3 steps, sketched in Fig. 1.1(a):

1. fusion: estimating the pseudo-latent image X̂ from Y1 and Y2,

2. prediction: reconstructing the two images Ŷ1 and Ŷ2 from X̂,

3. decision: deriving change maps D̂1 and D̂2 associated with the respective pairs of observed and

predicted images, namely,

Υ1 =
{

Y1, Ŷ1

}

and Υ2 =
{

Y2, Ŷ2

}

.

Considering the particular configuration of S4, the decision step derives HR and LR change maps

D̂HR and D̂LR associated with the respective pairs of observed and predicted HR and LR images,

namely, ΥHR and ΥLR. Besides, for this particular scenario, an alternate LR (aLR) change map,

denoted D̂aLR, can be also computed by spatially degrading the HR change map D̂HR with respect to

the spatial operator TDLR
[·]. A D̂aLR pixel then leads to a change decision if at least one of its D̂HR

parent pixels led to the same decision. The proposed CD framework for S4 is sketched in Fig. 1.1(b).

One should highlight the fact that this later decision step only requires to implement CD techniques

within two pairs of optical images Υ1 and Υ2 (resp. ΥHR and ΥLR for S4) of same spatial and spectral

resolutions, thus overcoming the initial issue raised by analysing observed images Y1 and Y2 (resp.

YHR and YLR) with possible dissimilar resolutions.

To establish the rationale underlying this whole framework, one may refer to the two main properties

required by any fusion procedure: consistency and synthesis [Lon+15]. The former one requires the

reversibility of the fusion process: the original images (resp. HR and LR for S4) can be obtained

by proper degradations of the high resolution fused (resp. HR-HS) image. The latter requires that

the high resolution fused image must be as similar as possible to the image of the same scene that

would be obtained by sensor of the same resolution. Similarly, the generic framework proposed by

[WRM97] for fusion image quality assessment can also be properly stated by assigning the consistency

and synthesis properties a greater scope.

Moreover, it is also worth noting that the proposed 3-step CD framework has been explicitly mo-

tivated by the specific context of detecting changes between multi-band optical images. However, it
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ŶLR

Change Detection Change Detection

HR Change Map

D̂HR

LR Change Map

D̂LR

Prediction
Spatial Degradation

aLR Change Map

D̂aLR

(b)

Figure 1.1.: Change detection framework: (a) general and (b) for S4

may be applicable for any other applicative context, provided that the two following assumptions hold:

i) firstly, a latent image can be estimated from the two observed images and ii) secondly, the latent

and predicted images can be related through known transformations.

Particular instances of the 3 steps composing the proposed CD framework are proposed in the

following paragraphs. The first two ones, i.e., fusion and prediction, explicitly rely on the forward
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model adopted in Section 1.3. Standard CD techniques able to operate on image pairs of same spatial

and spectral resolutions are finally recalled. However, the main contribution of this chapter lies in

the whole framework. As a consequence each step of this framework can be easily tailored by the

end-user, provided the two assumptions stated above are ensured.

1.4.1. Fusion

The forward observation model (1.8) has been exploited in many applications involving optical multi-

band images, specially those related to image restoration such as fusion and super-resolution [YMI13;

Wei+15a]. Whether the objective is to fuse multi-band images from different spatial and spectral

resolutions or to increase the resolution of a single one, it consists in compensating the energy trade-

off of optical multi-band sensors to get a higher spatial and spectral resolution image compared to the

observed image set. One popular approach to conduct fusion consists in solving an inverse problem,

formulated through the observation model. In the specific context of HS pansharpening (i.e., fusing

PAN and HS images) comprised into S4, such an approach has proven to provide the most reliable

fused product, with a reasonable computational complexity [Lon+15]. For these reasons, this is the

strategy followed in this chapter and it is briefly sketched in what follows. Nevertheless, the same

approach can be used as well for multispectral pansharpening (i.e., fusing PAN and MS images). Note

that the fusion technique described in what follows is considered here for its genericity and thus can

be easily replaced by any more competitive technique by the end-user. Other state-of-the-art HS

pansharpening techniques are additionally described in Appendix A.2.

Because of the additive nature and the statistical properties of the noise NHR and NLR, both

observed images YHR and YLR are assumed to be distributed according to matrix normal distributions

YHR|X ∼MNmλ,n(LX, ΛHR, In)

YLR|X ∼MNnλ,m(XBS, ΛLR, Im).
(1.14)

Since the noise can be reasonably assumed sensor-dependent, the observed images can be assumed

statistically independent. Consequently the joint likelihood function of the statistical independent

observed data can be written

p(YHR, YLR|X) = p(YHR|X)p(YLR|X) (1.15)
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and the negative log-likelihood, defined up to an additive constant, is

− log p(Ψ|X) =
1
2

∥

∥

∥

∥

Λ
− 1

2
HR (YHR − LX)

∥

∥

∥

∥

2

F
+

1
2

∥
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∥

Λ
− 1

2
LR (YLR −XBS)

∥

∥

∥

∥

2

F
(1.16)

where Ψ = {YHR, YLR} denotes the set of observed images and ‖·‖2F stands for the Frobenius norm.

Computing the maximum likelihood estimator X̂ML of X from the observed image set Ψ consists in

minimizing (1.16). The aforementioned derivation intends to solve a linear inverse problem which can

have a unique solution depending on the properties of the matrices B, S and L defining the forward

model (1.13). When the resulting of this inverse problem is ill-posed or ill-conditioned, complementary

regularization is needed to promote a relevant and reliable solution. To overcome this issue, additional

prior information can be included, setting the estimation problem into the Bayesian formalism [II08].

Following a maximum a posteriori (MAP) estimation, recovering the estimated pseudo-latent image

X̂ from the linear model (1.13) consists in minimizing the negative log-posterior

X̂ ∈ argmin
X∈Rmλ×n

{

1
2

∥

∥

∥

∥

Λ
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F
+
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∥

Λ
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LR (YLR −XBS)
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∥

2

F
+ λφ(X)

}

(1.17)

where φ(·) defines an appropriate regularizer derived from the prior distribution assigned to X and λ is

a parameter that tunes the relative importance of the regularization and data terms. Computing the

MAP estimator (1.17) is expected to provide the best approximation X̂ with the minimum distance

to the latent images X1 and X2 simultaneously. This optimization problem is challenging because of

the high dimensionality of the data X. Nevertheless, [WDT15b] have proved that its solution can be

efficiently computed for various relevant regularization terms φ(X). In this work, a Gaussian prior is

considered, since it provides an interesting trade-off between accuracy and computational complexity,

as reported in [Lon+15].

1.4.2. Prediction

The prediction step relies on the general forward model (1.8) (resp. (1.13) for S4) proposed in Sec-

tion 1.3. As suggested by (1.11), it merely consists in applying the respective degradations intrinsic

for each sensor, TD1 [·] and TD2 [·] (resp. TDHR
[·] and TDLR

[·]), to the estimated pseudo-latent image
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X̂, leading to

ŶHR = TDHR

[

X̂
]

= LX̂

ŶLR = TDLR

[

X̂
]

= X̂BS.

(1.18)

1.4.3. Decision

This section presents the third and last step of the proposed CD framework, which consists in im-

plementing decision rules to identify possible changes between the images composing the two pairs

ΥHR =
{

YHR, ŶHR

}

and ΥLR =
{

YLR, ŶLR

}

. As noticed in Section 1.3, these CD techniques op-

erate on observed Y△R and predicted Ŷ△R images of same spatial and spectral resolutions, with

△ ∈ {H, L}, as in [RL98; JK98; DAd+04; Rad+05]. Unless specifically tailored by the end-user, these

techniques can be a priori employed whatever the number of spectral bands. As a consequence, Y△R

and Ŷ△R could refer to either PAN, MS or HS images and the two resulting CD maps are either of

HR, either of LR, associated with the pairs ΥHR and ΥLR, respectively. To lighten the notations,

without loss of generality, in what follows, the pairs Y△R and Ŷ△R will be denoted Yti ∈ Rℓ×η and

Ytj ∈ Rℓ×η, which can be set as

•
{

Yti , Ytj
}

= ΥLR to derive the estimated CD binary map D̂LR at LR,

•
{

Yti , Ytj
}

= ΥHR to derive the estimated CD binary map D̂HR at HR and its spatially degraded

aLR counterpart D̂aLR.

With a view to generality, the numbers of bands and pixels are denoted ℓ and η, respectively. The

spectral dimension ℓ depends on the considered image sets ΥHR or ΥLR, i.e., ℓ = mλ and ℓ = nλ for

HR and LR images, respectively (note, in particular, that ℓ = mλ = 1 when the set of HR images are

PAN images). Similarly, the spatial resolution of the CD binary map generically denoted as D̂ ∈ Rη

depends on the considered set of images ΥHR or ΥLR, i.e., η = n and η = m for HR and LR images,

respectively.

As stated before, the main contribution of this chapter lies in the proposed 3-step CD framework

able to deal with optical images of different spatial and spectral resolutions. Thus it does not aim

at selecting the most powerful technique for each step of this framework. As a consequence, in what

follows, three particular yet well-admitted and efficient CD techniques operating on images of same

spatial and spectral resolutions are discussed. Obviously, any other concurrent CD technique can be

alternatively considered.
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Change vector analysis (CVA)

When considering multi-band optical images that have been atmospherically pre-calibrated and that

represent exactly the same geographical region without strong perceptive distortions, one may consider

that, for a pixel at spatial location p,

Yti(p) ∼ N (µti , Σti)

Ytj (p) ∼ N (µtj , Σtj )
(1.19)

where µ
ti ∈ Rℓ and µ

tj ∈ Rℓ correspond to the pixel spectral mean and Σti ∈ Rℓ×ℓ and Σtj ∈ Rℓ×ℓ are

the spectral covariance matrices (here they were obtained using the maximum likelihood estimator)

[BB07]. A comparison of the pixels Yti(p) and Ytj (p) can be naturally conducted by deriving the

spectral change vector (SCV) magnitude VCVA(p). According to a generalized formulation, it is

defined by the squared Mahalanobis distance between the two pixels [RL98; Lu+04], which can be

computed from the pixel-wise spectral difference operator ∆Y(p) = Yti(p)−Ytj (p), i.e.,

VCVA(p) = ‖∆Y(p)‖2
Σ−1 = ∆Y(p)T Σ−1∆Y(p) (1.20)

where Σ = Σti + Σtj . For a given threshold τ , the pixel-wise statistical test can be formulated as

VCVA(p)
H1

≷
H0

τ (1.21)

and the final CD map, denoted D̂CVA ∈ {0, 1}η can be pixel-wise derived as

D̂CVA(p) =















1 if VCVA(p) ≥ τ (H1)

0 otherwise (H0).
(1.22)

For a pixel which has not been affected by a change (hypothesis H0), the spectral difference operator

is expected to be statistically described by ∆Y(p) ∼ N (0, Σ). As a consequence, the threshold τ can

be related to the probability of false alarm (PFA) of the test

PFA = P

[

VCVA(p) > τ

∣

∣

∣

∣

H0

]

(1.23)
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or equivalently,

τ = F−1
χ2

ℓ

(1− PFA) (1.24)

where F−1
χ2

ℓ

(·) is the inverse cumulative distribution function of the χ2
ℓ distribution. Note that jointly

considering the magnitude and angle of the SCV may provide additional relevant information and,

thus may allow changes to be better detected and classified (see for instance [BB07]).

Spatially regularized change vector analysis

Since CVA in its simplest form, as presented in Section 1.4.3, is a pixel-wise procedure, it significantly

suffers from low robustness with respect to noise. To overcome this limitation, spatial information can

be exploited by considering the neighborhood of a pixel to compute the final distance criterion, which

is expected to make the change map spatially smoother. Indeed, changed pixels are generally gathered

together into regions or clusters, which means that there is a high probability to observe changes in the

neighborhood of an identified changed pixel [Rad+05]. Let ΩL
p denote the set of indexes of neighboring

spatial locations of a given pixel p defined by a surrounding regular window of size L centered on p.

The spatially smoothed energy map VsCVA of the spectral difference operator can be derived from its

pixel-wise counterpart VCVA defined by (1.20) as

VsCVA(p) =
1
|ΩL

p |

∑

k∈ΩL
p

ω(k)VCVA(k) (1.25)

where the weights ω(k) ∈ R, k ∈
{

1, . . . , |ΩL
p |
}

, implicitly define a spatial smoothing filter. In this

work, they have been chosen as ω(k) = 1, ∀k. Then, a decision rule similar to (1.22) can be followed

to derive the final CD map D̂sCVA. Note that the choice of window size L is based on the strong

hypothesis of the window homogeneity. This choice thus may depend upon the kind of observed

scenes.

Iteratively-reweighted multivariate alteration detection (IR-MAD)

The multivariate alteration detection (MAD) technique introduced in [NCS98] has been shown to be

a robust CD technique due its suitability for analyzing multi-band image pair {Y1, Y2} with possible

different intensity levels. Similarly to the CVA and sCVA methods, it exploits an image differencing
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operator while better concentrating information related to changes into auxiliary variables. More

precisely, the MAD variate is defined as ∆Ỹ(p) = Ỹti(p)− Ỹtj (p) with

Ỹt1(p) = UYti(p)

Ỹt2(p) = WYtj (p)
(1.26)

where U = [uℓ, uℓ−1, . . . , u1]T is a ℓ×ℓ-matrix composed of the ℓ×1-vectors uk identified by canonical

correlation analysis and W = [wℓ, wℓ−1, . . . , w1]T is defined similarly. As in Equation (1.20), the

MAD-based change energy map can then be derived as

VMAD(p) = ‖∆Ỹ(p)‖2
Λ

−1

where Λ is the diagonal covariance matrix of the MAD variates. Finally, the MAD CD map D̂MAD can

be pixel-wisely computed using a decision rule similar to (1.22) with a threshold τ related to the PFA

by (1.24). In this work, the iteratively re-weighted version of MAD (IR-MAD) has been considered to

better separate the change pixels from the no-change pixels [Nie07].

1.5. An experimental protocol for performance assessment

1.5.1. General overview

Assessing the performance of CD algorithms requires image pairs with particular characteristics, which

makes them rarely freely available. Indeed, CD algorithms require images acquired at two different

dates, presenting changes, representing exactly the same geographical region without strong perceptive

distortions, which have been radiometrically pre-corrected and, for the problems addressed in this

chapter, coming from different optical sensors. Moreover, to properly and statistically assess the

performance of the proposed CD framework, these image pairs need to be accompanied by a ground-

truth information in the form of a validated CD mask.

To overcome this issue, this section proposes a modified version of the simulation protocol introduced

in [WRM97] which was initially proposed to assess the performance of image fusion algorithms. This

protocol relies on a unique reference HS image Xref , also considered as HR. It avoids the need of co-

registered and geometrically corrected images by generating a pair of synthetic but realistic observed

images from this reference image and by including changes within a semantic description of this HR-HS
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Figure 1.2.: Simulation protocol: two HR-HS latent images X1 (before changes) and X2 (after changes)
are generated from the reference image. In temporal configuration 1 (black), the observed HR image
YHR is a spectrally degraded version of X1 while the observed LR image YLR is a spatially degraded
version of X2. In temporal configuration 2 (grey dashed lines), the degraded images are generated
from reciprocal HR-HS images.
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image. Here, this description is derived by spectral unmixing [Bio+13]. Even though the ideal protocol

is capable to produce all applicative scenarios described on Section 1.3.1, this section summarizes the

full proposed protocol for S4 as follows:

Unmixing the reference image Given a reference image Xref ∈ Rnλ×n, conduct linear unmixing

to extract K endmember signatures M1 ∈ Rnλ×K and the associated abundance matrix A1 ∈ RK×n

such that Xref ≈M1A1.

Generating the before-change HR-HS image Define the HR-HS image X1 before change as

X1 = M1A1. (1.27)

Generating HR and LR change masks Define a reference HR change mask DHR by selecting

particular regions (i.e., pixels) in the latent image X1 where changes occur. The corresponding LR

change mask DLR is computed according to the spatial degradations relating the two modalities. Both

change masks will be considered as the ground truth and will be compared to the estimated CD HR

map D̂HR and LR maps D̂LR and D̂aLR, respectively, to evaluate the performance of the CD.

Implementing change rules According to this reference HR change mask, realistic change rules

are implemented on the reference abundances A1 associated with pixels affected by changes. The

abundance matrix after the changes can be written A2 = ϑA (A1, DHR) where ϑA (·, DHR) stands for

an abundance change-inducing function associated with the HR change mask DHR. Several change

rules applied to the before-change abundance matrix will be discussed in Section 1.5.3. Note that

these rules may also require the use of additional endmembers that are not initially present in the

latent image X1. Thus, with similar notations, the endmember matrix after changes can be denoted

as M2 = ϑM (M1, DHR).

Generating the after-change HR-HS image Define the HR-HS latent image X2 after changes

by linear mixing such that

X2 = M2A2. (1.28)

Generating the observed HR image Generate a simulated observed HR image YHR by applying

the spectral degradation TDHR
[·] either to the before-change HR-HS latent image X1, either to the
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after-change HR-HS latent image X2. The observed HR image can be subsequently corrupted by noise

according to (1.13).

Generating the observed LR image Conversely, generate a simulated observed LR image YLR

by applying the spatial degradation TDLR
[·] either to the after-change HR-HS latent image X2, or to

the before-change HR-HS latent image X1. The observed LR image can be subsequently corrupted

by noise according to (1.13).

The full protocol is schematically illustrated in Fig. 1.2. Complementary information on how these

steps have been implemented in this work is provided in the following paragraphs.

1.5.2. Reference image

The HR-HS reference image used in the simulation protocol is a HS image of the Pavia University in

Italy acquired by the reflective optics system imaging spectrometer (ROSIS) sensor with 610 × 340

pixels. The number of spectral bands in this image is 103 with a spectral coverage ranging from 0.43

to 0.86 µm and a spatial resolution of 1.3 meter per pixel. A pre-correction has been conducted to

smooth the atmospheric effects due to vapor water absorption by removing corresponding spectral

bands. Then the final HR-HS reference image is of size 610× 330× 93.

1.5.3. Generating the HR-HS latent images: unmixing, change mask and change

rules

To produce the HR-HS latent image X1 before change, the reference image Xref has been linearly

unmixed, which provides the endmember matrix M1 ∈ Rnλ×K and the matrix of abundances A1 ∈

RK×n where K is the number of endmembers. This number K can be obtained by investigating the

dimension of the signal subspace, for instance by conducting principal component analysis [Bio+13].

In this work, the linear unmixing has been conducted by coupling the vertex component analysis

(VCA) [ND05] as an endmember extraction algorithm and the fully constrained least squares (FCLS)

algorithm [Hei01] to obtain M1 and A1, respectively.

Given the HR-HS latent image X1 = M1A1, the HR change mask DHR has been produced by

selecting spatial regions in the HR-HS image affected by changes. This selection can be made randomly

or by using prior knowledge on the scene. In this work, manual selection is performed.
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Then, the change rules applied to the abundance matrix A1 to obtain the changed abundance matrix

A2 are chosen such that they satisfy the standard positivity and sum-to-one constraints

Nonnegativity ak,2(p) ≥ 0,∀p ∈ {1, . . . , n} ,∀k ∈ {1, . . . , K}

Sum-to-one
K
∑

k=1

ak,2(p) = 1,∀p ∈ {1, . . . , n}
(1.29)

More precisely, three distinct change rules have been considered

• Zero abundance: find the most present endmember in the selected region, set all corresponding

abundances to zero and rescale abundances associated with remaining endmembers in order

to fulfill (1.29). This change can be interpreted as a total disappearance of the most present

endmember.

• Same abundance: choose a pixel abundance vector at random spatial location, set all abundance

vectors inside the region affected by changes to the chosen one. This change consists in filling

the change region by the same spectral signature.

• Block Abundance: randomly select a region with the same spatial shape as the region affected

by changes and replace original region abundances by the abundances of the second one. This

produce a “copy-paste” pattern.

Note that other change rules on the abundance matrix A1 could have been investigated; in particular

some of them could require to include additional endmembers in the initial endmember matrix M1.

The updated abundance A2 and endmember M2 matrices allow to define the after-change HR-HS

latent image X2 as

X2 = M2A2.

Fig. 1.3 shows an example of X2 using the three different change rules for one single selected region.

1.5.4. Generating the observed images: spectral and spatial degradations

To produce spectrally degraded versions YHR of the HR-HS latent image Xj (j = 1 or j = 2), two

particular spectral responses have been used to assess the performance of the proposed algorithm

when analyzing a HR-PAN or a 4-band HR-MS image. The former has been obtained by uniformly
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(a) (b) (c)

Figure 1.3.: Example of after-change HR-HS latent images X2 generated by each proposed change
rule: (a) zero-abundance, (b) same abundance and (c) block abundance.

averaging the first 43 bands of the HR-HS pixel spectra. The later has been obtained by filtering the

HR-HS latent image Xj by a 4-band LANDSAT-like spectral response.

To generate a spatially degraded image, the HR-HS latent image Xj (j = 2 or j = 1) has been

blurred by a 5×5 Gaussian kernel filter and down-sampled equally in vertical and horizontal directions

with a factor d = 5. This spatial degradation operator implicitly relates the generated HR change

mask DHR to its LR counterpart DLR. Each LR pixel contains d× d HR pixels. As DHR is a binary

mask, after the spatial degradation, if at least one of its HR parent pixels is considered as a change

pixel then a pixel in DLR is also considered as a change pixel.

To illustrate the impact of these spectral and spatial degradations, Fig. 1.4 shows the corresponding

HR-PAN (a) and HR-MS (b) images resulting from spectral degradations and a LR-HS image resulting

from spatial degradation (c).

Note that, as mentioned in Section 1.3, the modality-time order can be arbitrary fixed, and without

loss of generality, one may state either t1 ≤ t2 or t2 ≤ t1. Thus, there are 2 distinct temporal

configurations to generate the pair of observed HR and LR images:

• Configuration 1: generating the spectrally degraded observed image YHR from the before-change

HR-HS latent image X1 and the spatially degraded observed image YLR from the after-change

HR-HS latent image X2,

• Configuration 2: generating the spatially degraded observed image YLR from the before-change
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(a) (b) (c)

Figure 1.4.: Degraded versions of the before-change HR-HS latent image X1: (a) spectrally degraded
HR-PAN image, (b) spectrally degraded HR-MS image and (c) spatially degraded LR-HS image.

HR-HS latent image X1 and the spectrally degraded observed image YHR from the after-change

HR-HS latent image X2.

1.6. Experimental results

This section assesses the performance of the proposed fusion-based CD framework. The considered

figures-of-merit and compared methods are discussed in Section 1.6.1 and 1.6.2, respectively. Then,

Section 1.6.3 reports qualitative and quantitative results for three distinguished situations of scenario

S4 associated with the experimental protocol introduced in Section 1.5. Situation 1 considers the CD

problem between a pair of HR-MS and LR-HS images. Situation 2 focuses on the CD problem between

a pair of HR-PAN and LR-HS images. Situation 3 considers a pair of HR-PAN and LR-MS images.

Finally, additional illustrative results obtained on a pair of real HR-PAN and LR-MS images (akin to

Situation 3) are presented in Section 1.6.4.

1.6.1. Performance criteria

The CD framework introduced in Section 1.3 has been evaluated following the simulation protocol

described in the previous paragraph. As detailed in Section 1.3, one HR CD map D̂HR and two LR

CD maps D̂LR and D̂aLR are produced from the CD framework described in Fig. 1.1. These HR

and LR CD maps are respectively compared to the actual HR DHR and LR DLR masks to derive the

48



Chapter 1. Fusion-based approach

empirical probabilities of false alarm PFA and detection PD that are represented through empirical

receiver operating characteristics (ROC) curves, i.e., PD = f(PFA). These ROC curves have been

averaged over the 450 available pairs of observed images to mitigate the influence of the change

region, the influence of the temporal configuration and the influence of the change rule.

Moreover, in order to provide quantitative figures-of-merit, two metrics derived from these ROC

curves have been considered: i) the area under the curve (AUC), which is expected to be close to 1 for

a good testing rule and ii) a normalized distance between the no-detection point (defined by PF A = 1

and PD = 0) and the intersect of the ROC curve with the diagonal line PFA = 1− PD, which should

be close to 1 for a good testing rule.

Finally, the ability of detecting the minimum spectral resolution change has been evaluated as a

function of the probability of false alarm. More precisely, let denote Ω the set of pixel locations

actually affected by the changes in the pair of high spatial and spectral resolution images X1 and X2.

Since, in the simulation protocol detailed in Section 1.5, the ground truth for the pair {X1, X2} is

assumed to be available through the change binary mask D at low or high spatial resolutions, i.e.,

Ω = {p|D(p) = 1}, the actual minimum spectral change (MSC) can be computed as

MSC , min
p∈Ω

SAD(p) (1.30)

where SAD(p) stands for the spectral angle distance between the two corresponding pixels X1(p) and

X2(p) at location p

SAD(p) = acos

(

〈X1(p), X2(p)〉
‖X1(p)‖2 ‖X2(p)‖2

)

. (1.31)

The proposed 3-step CD framework provides estimated CD binary masks of the changes D̂ at high or

low spatial resolution with corresponding estimated sets Ω̂ of pixel locations identified as affected by

the changes. Thus the detected minimum spectral change (associated with true positive detections)

can be computed as

M̂SC , min
p∈Ω∩Ω̂

SAD(p) (1.32)

where SAD(p) is computed following (1.31). Finally the ability of a given CD technique to detect

small change can be monitored by computing the deviation from the actual MSC

∆MSC ,
∥

∥

∥MSC− M̂SC
∥

∥

∥

2

2
. (1.33)
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which is expected to be zero for a perfect detector. These MSC deviations have been computed as

functions of the probability of false alarm.

1.6.2. Compared methods

While implementing the proposed CD framework, the fusion step in Section 1.4.1 has been conducted

following the method with Gaussian regularization, proposed in [Wei+15a] because of its accuracy and

computational efficiency. The corresponding regularization parameter has been chosen as λ = 0.0001

by cross-validation. Regarding the detection step, when considering a pair of multi-band images (i.e.,

MS or HS), the 4 CD techniques detailed in Section 1.4.1 (i.e., CVA, sCVA, MAD and IR-MAD) have

been considered. Conversely, when one of the observed image is PAN, only CVA and sCVA have been

considered since MAD and IR-MAD require multi-band images.

In the absence of state-of-the-art CD techniques able to handle images with distinct spatial and

spectral resolutions, the proposed CD framework has been compared to the crude approach that first

consists in spatially (respectively spectrally) degrading the observed HR (respectively LR) image.

The classical CD techniques described in Section 1.4.3 can then be applied to the resulting pair of LR

images since they share the same, unfortunately low, spatial and spectral resolutions. The final result

is a so-called worst-case LR CD mask denoted as D̂WC in the following.

1.6.3. Results

This paragraph provides the results associated with Situation 1 (i.e., HR-MS and LR-HS images),

Situation 2 (i.e., HR-PAN and LR-HS images) and Situation 3 (i.e., HR-PAN and LR-HS images).

For each situation, according to the protocol described in Section 1.5, 75 regions have been randomly

selected in the before-change HR-HS latent image X1 as those affected by changes. For each region,

one of the three proposed change rules (zero-abundance, same abundance or block abundance) has

been applied to build the after-change HR-HS latent image X2. The observed HR and LR images are

generated according to one of the two temporal configurations discussed at the end of Section 1.5.4.

This leads to a total of 450 simulated pairs of HR and LR images corresponding to 3 sets of 150 pairs

generated following each of the 3 distinct change rules described in paragraph 1.5.3. To evaluate the

robustness of the proposed method against noise, both observed images for each simulated pair have

been corrupted with a zero mean Gaussian noise leading to a signal-to-noise ratio SNR= 30dB.
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Situation 1: Change detection between HR-MS and LR-HS images

The first simulation situation considers a set of HR-MS and LR-HS images. The ROC curves are

plotted in Fig. 1.5 with corresponding performance metrics reported in Table 1.2. These results

show that, for the majority of the implemented CD techniques (CVA, sCVA, MAD or IR-MAD),

the proposed framework generally offers high precision. In particular, the aLR change map D̂aLR

subsequently computed from the estimated HR change map D̂HR provides better results than those

obtained in the worst-case and those obtained on the estimated LR change map D̂LR directly. This can

be explained by the intrinsic quality of the estimated HR change map D̂HR, which roughly provides

similar detection performance as the aLR change map D̂aLR with the great advantage to be available

at a finer spatial resolution. Besides, all methods have their own advantages and disadvantages.

The worst case method is based on systematic spectral and spatial degradations of the two images.

These operations are performed through local weighted averaging thus leading not only to resolution

reduction but also to noise reduction. Moreover, this method does not introduce estimation errors.

Finally, the images, at the input of the change detector, are smoother than the original ones and the

detection rate obtained with sCVA are relatively high. Nevertheless, the method detects changes with

the minimum spatial and spectral resolutions of the two observed images. On the contrary, the other

considered methods may introduce estimation errors since, in particular, the predicted image has been

smoothed by the fusion and the prediction steps. Thus the final comparison between the observed and

predicted images is slightly skewed due to the differences of noise levels between them. On the other

hand, these methods detect changes with higher spectral and spatial resolutions than the worst case

scenario. The HR change detection allows for a more accurate exploration of the spatial domain. This

results in higher detection rates when the associated CD method does not take into account spatial

neighbourhood. This is the case for CVA, MAD and IR-MAD methods when they are not spatially

regularized. To ease the reading of this chapter, complementary results and the associated comments

attesting the spatial precision of the estimated change maps are deferred to Appendix A.1.1.
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Table 1.2.: Situation 1 (SNR= 30dB): detection performance in terms of AUC and normalized dis-
tance.

D̂HR D̂LR D̂aLR D̂WC

CVA
AUC 0.981039 0.867478 0.992242 0.941408

Dist. 0.951995 0.789379 0.979298 0.887789

sCVA(3)
AUC 0.994539 0.99104 0.995402 0.995497

Dist. 0.982398 0.967797 0.983498 0.978398

sCVA(5)
AUC 0.992761 0.989886 0.993074 0.996224

Dist. 0.980798 0.962896 0.980998 0.982598

sCVA(7)
AUC 0.990103 0.978382 0.993065 0.995861

Dist. 0.973397 0.936794 0.980298 0.983098

MAD
AUC 0.974411 0.912307 0.989774 0.929109

Dist. 0.934893 0.848785 0.962896 0.872587

IR-MAD
AUC 0.977063 0.914570 0.992062 0.940537

Dist. 0.941594 0.851385 0.976498 0.886089
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Figure 1.5.: Situation 1 (SNR= 30dB): ROC curves computed from (a) CVA, (b) sCVA(7), (c) MAD
and (d) IRMAD.

To evaluate the ability of detecting weak spectral changes, the average deviation ∆MSC from the

minimum spectral change computed over all the 450 pairs of images is depicted in Fig. 1.6. Observing

the four ∆MSC curves, it is possible to conclude that for all CD techniques both HR and aLR

techniques provide lower ∆MSC for smaller PFA values than the worst-case method. Once again

it is attested the better accuracy performance of the proposed framework against the usually used

worst-case method.
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Figure 1.6.: Situation 1: ∆MSC as a function of the probability of false alarm computed from (a) CVA
, (b) sCVA(7), (c) MAD and (d) IRMAD.

Situation 2: Change detection between HR-PAN and LR-HS images

In the second situation, the same procedure as Situation 1 has been considered while replacing the

observed HR-MS image by an HR-PAN image. The ROC curves are depicted in Fig. 1.7 with

corresponding metrics in Table 1.3. As for Situation 1, the comparison of these curves show that the

HR CD map also leads to a high spatial accuracy, since it is sharper than the LR maps. In particular,

when considering CVA, it provides a significantly more powerful test than the crude approach that

consists in degrading both observed HR-PAN and LR-HS images to reach the same spatial and spectral

resolutions. Complementary results and comments related to the spatial precision of estimated change

maps are deferred to Appendix A.1.2 to ease the reading of this chapter.
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Table 1.3.: Situation 2 (SNR= 30dB): detection performance in terms of AUC and normalized dis-
tance.

D̂HR D̂LR D̂aLR D̂WC

CVA
AUC 0.931047 0.819679 0.977362 0.89517

Dist. 0.883488 0.737274 0.952995 0.833783

sCVA(3)
AUC 0.994627 0.990474 0.995458 0.995545

Dist. 0.982198 0.966697 0.983298 0.978398

sCVA(5)
AUC 0.992861 0.98917 0.993024 0.996278

Dist. 0.980898 0.961396 0.981598 0.982298

sCVA(7)
AUC 0.990192 0.977146 0.992978 0.995843

Dist. 0.973397 0.934893 0.980598 0.983098
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Figure 1.7.: Situation 2 (SNR= 30dB): ROC curves computed from (a) CVA, (b) sCVA(3), (c)
sCVA(5) and (d) sCVA(7).

Using the same strategy, reported in Situation 1, to characterize the deviation from the minimum

spectral change, Fig. 1.8 represents the average ∆MSC for Situation 2.
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Figure 1.8.: Situation 2: ∆MSC as a function of the probability of false alarm computed from (a) CVA
, (b) sCVA(3), (c) sCVA(5) and (d) sCVA(7).

Situation 3: Change detection between HR-PAN and LR-MS images

In the third situation, the same procedure as Situation 2 has been considered while replacing the

observed LR-HS image by a LR-MS image. This situation is the most common for optical multi-band

change detection since MS optical images are more readily available than HS optical images. The

ROC curves are depicted in Fig. 1.9 with corresponding metrics in Table 1.4. As for Situation 1,

the comparison of these curves show that the HR CD map also leads to a high spatial accuracy when

resorting to CVA, since it is sharper than the LR maps. When resorting to the spatially regularized

counterpart of CVA, the worst-case method and the proposed aLR-based detection provide similar

results, at a price of being both at a low spatial resolution. Additionally, complementary results and

associated comments attesting the spatial precision of the estimated change maps are deferred to

Appendix A.1.3 to ease the reading of this chapter.
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Table 1.4.: Situation 3 (SNR= 30dB): detection performance in terms of AUC and normalized dis-
tance.

D̂HR D̂LR D̂aLR D̂WC

CVA
AUC 0.94522 0.711167 0.984833 0.911311

Dist. 0.915992 0.647865 0.972997 0.864686

sCVA(3)
AUC 0.962478 0.926186 0.980694 0.989641

Dist. 0.931093 0.856986 0.957696 0.977098

sCVA(5)
AUC 0.976484 0.950405 0.980059 0.994151

Dist. 0.954695 0.891689 0.957396 0.978398

sCVA(7)
AUC 0.98491 0.960965 0.988116 0.993732

Dist. 0.970097 0.909691 0.972697 0.972797
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Figure 1.9.: Situation 3 (SNR= 30dB): ROC curves computed from (a) CVA, (b) sCVA(3), (c)
sCVA(5) and (d) sCVA(7).

Using the same strategy, reported in Situation 1 and 2, to characterize the deviation from the min-

imum spectral change, Fig. 1.10 represents the average ∆MSC for Situation 3.
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Figure 1.10.: Situation 3: ∆MSC as a function of the probability of false alarm computed from (a)
CVA , (b) sCVA(3), (c) sCVA(5) and (d) sCVA(7).

Additional results and associated comments attesting the flexibility of the proposed CD framework to

the choices of fusion and decision steps are deferred to Appendix A.2 and Appendix A.3, respectively.

1.6.4. Application to real multidate LANDSAT 8 images

Finally, to illustrate the reliability of the proposed CD framework, a pair of real LR-MS and HR-

PAN images acquired at different dates (thus complying with Situation 3 considered above) has been

analyzed. These images YLR and YHR have been acquired by LANDSAT 8 over the Lake Tahoe

region (CA, USA) on April 15th and September 22th, 2015, respectively. The LR-MS image YLR

is of size 175 × 180 characterized by a spatial resolution of 30m. According to the spectral response

of the LANDSAT 8 sensor [Uni17], the HR-PAN image YHR is of size 350 × 360 with a spatial

resolution of 15m and has a spectral range from 0.5µm to 0.68µm covering 3 bands of the LR-

MS image. Fig. 1.11(a)–(b) shows the two multidate LR-MS and HR-PAN images that have been
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manually geographically aligned. The resulting CD binary masks recovered by the proposed fusion-

based approach and the worst-case approach both performing CVA CD are depicted in Fig. 1.11(c)–(e).

For this pair of images, the ground truth information (i.e., in term of a binary map of actual changes)

is not available. However, a visual inspection reveals that all methods succeed in recovering the most

significant changes between the two images, namely, the pixels corresponding to the lake drought.

Nevertheless, the proposed fusion approach at HR have the huge advantage of providing CD binary

masks at HR, which helps to detect finer details than the worst-case method, as illustrated by the

zoomed regions in Fig. 1.11(f)–(j).

(a) YLR (b) YHR (c) D̂HR (d) D̂aLR (e) D̂WC

(f) zoomed YLR (g) zoomed YHR (h) zoomed D̂HR (i) zoomed D̂aLR (j) zoomed D̂WC

Figure 1.11.: Real scenario (LR-MS and HR-PAN): (a) LR-MS observed image YLR, (b) HR-PAN
observed image YHR, (c) change mask D̂HR, (d) change mask D̂aLR, (e) change mask D̂WC estimated
by the worst-case approach. From (f) to (j): zoomed versions of the regions delineated in red in
(a)–(e).

1.7. Conclusions

This chapter introduced an unsupervised change detection framework for handling any pair of multi-

band optical images with different spatial and spectral resolutions. The framework was based on a

3-step procedure. The first step performed the fusion of the two different spatial/spectral resolution

multi-band optical images to recover a pseudo-latent image of high spatial and spectral resolutions.

From this fused image, the second step generated a pair of predicted images with the same resolutions

59



Chapter 1. Fusion-based approach

as the observed multi-band images. Finally, standard CD techniques were applied to each pair of

observed and predicted images with same spatial and spectral resolutions. The relevance of the pro-

posed framework was assessed thanks to an experimental protocol. These experiments demonstrated

the accuracy of the recovered high-resolution change map.

This first chapter proposed a approach for CD, based on fusion, in the case of images with same

modality but with different resolutions. The main advantage of the proposed 3-step procedure (fusion,

prediction, detection) is to be applicable provided that a physically-based direct model can be derived

to relate the observed images with a pseudo-latent image. The next chapters include different strategies

to handle images with different resolutions and generalize the proposed framework to deal with images

of different modalities.

Main contributions The main contribution of this chapter lies in the introduction of the fusion

paradigm to handle images of the same modality, but with different resolutions, covering all practical

scenarios. Besides, the second contribution is an unsupervised CD framework based on 3-steps (fusion,

prediction and detection) that was proposed to deal with this new problem formulation. Both fusion

and detection steps can be tailored by the end-user, easing the framework applicability to practical

scenarios. The final contribution is the development of a simulation protocol, inspired from the fusion

performance assessment protocol of [WRM97], to simulate realistic changes onto a pair of observed

images. This protocol is based on unmixing techniques of a reference hyperspectral image that allows

to generate changes, even with subpixel precision, from a known ground-truth change map. In this

chapter one fusion method was applied in experiments. Additional results and associated comments

attesting the flexibility of the proposed CD framework to the choices of fusion and decision steps are

deferred to Appendix A.2 and Appendix A.3, respectively.
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This chapter has been adapted from the papers [Fer+17d; FDC18; Fer+17c; Fer+17a].
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2.1. Introduction

Most of the CD classical methods do not support differences in resolutions. To make existing con-

ventional CD methods usable in these cases, one strategy consists in individually and independently,
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spatially and/or spectrally, resampling the images to reach the same spatial and spectral resolutions.

In Chapter 1 it was referred to as the worst-case (WC) method. Although this WC technique allows

off-the-shelf CD techniques to be used directly, it remains suboptimal since i) resampling operations

independently applied to each image do not take into account their joint characteristics and thus cru-

cial information may be missed and ii) these spatial and spectral operations are generally from a higher

to a lower resolution, which results in a significant loss of information. To overcome these limitations,

in Chapter 1 a CD approach was specifically designed to deal with multi-band images with different

spatial and spectral resolution. This approach rely on the inference of a latent (i.e., unobserved) image

which results from the fusion of the two observed images. The fusion of remote sensing images has

motivated a lot of research works in the literature [KC13a; KC13b; Son+14; Gha16; Li+17]. Within

a CD context, the underlying assumption is that most of pixels of the fused image, which are sup-

posed not to have been changed in between acquisitions, produce consistent information while the

few remaining ones, locating in the change regions, produce aberrant information. More precisely,

the method proposed in Chapter 1 is based on a 3-step procedure (namely fusion, prediction and

detection) which, instead of independently preprocessing each observed image, recovers a latent high

spatial and spectral resolution image containing changed and unchanged regions by fusing observed

images. Then, it predicts pseudo-observed images by artificially degrading this estimated latent image

using forward models underlying the actually observed images. The result is two pairs, each composed

of a predicted image and an observed image with the same spatial and spectral resolutions. Then,

any classical multi-band CD method can be finally applied to estimate two change images, that can

be thresholded to build the change maps. Albeit significantly improving detection performance when

compared to crude methods relying on independent preprocessing, the 3-step sequential formulation

appears to be non-optimal for the following twofold reasons: i) any inaccuracies in the fusion step

are propagated throughout the subsequent degradation and detection steps, ii) relevant information

regarding the change may be lost during the prediction steps, since it consists in spatially or spectrally

degrading the latent images to estimate the pseudo-observed images. Thus, significant improvements

in terms of change detection performance may be expected provided one is able to overcome both

limitations.

In this chapter, capitalizing on the general forward model proposed in Chapter 1, it is shown

that the CD task can be formulated in a general robust-fusion form, a particular instance of the

multi-band image fusion problem, for all multi-band optical image scenarios involving two observed
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images. However, contrary to the 3-step procedure, the proposed approach jointly estimates a couple

of distinct latent images corresponding to the two acquisition times as well as the change image.

Since the two latent images of high spatial and spectral resolutions are supposed to represent the

same scene, they are expected to share a high level of similarity or, equivalently, to differ only in

a few spatial locations. Thus, akin to numerous robust factorizing models such as robust principal

component analysis [Can+11] and robust nonnegative matrix factorization [FD15b], the two observed

images are jointly approximated by a standard linear decomposition model complemented with an

outlier term corresponding to the change image. This so-called robust fusion of multi-band images is

formulated as an inverse problem where, in particular, the outlier term is characterized by a spatial

sparsity-inducing regularization. The resulting objective function, regardless the scenario proposed,

is solved through the use of an alternate minimization algorithm. Remarkably, optimizing w.r.t. the

latent image always relies on a closed-form solution, which ensures the convergence of the alternate

minimization procedure. The change map can be finally generated from the recovered change image.

The chapter is organized as follows. Section 2.2 formulates the CD problem for multi-band optical

images. Section 2.3 presents the solution for the formulated problem based on robust fusion while

Section 2.4 explore in more details the particularities for each possible scenario. Section 2.5 present

simulations to asses the performance of the proposed method. Experimental CD examples are con-

sidered in Section 2.6 for each possible scenario described in Section 2.4. Section 2.7 concludes the

chapter.

2.2. Problem formulation

2.2.1. Problem statement

Recalling the definitions presented on Section 1.2, let us assume the same forward model presented

in (1.8) relating two co-registered multi-band optical images Y1 ∈ Rmλ1
×m1 and Y2 ∈ Rmλ2

×m2

acquired by two sensors S1 and S2 at times t1 and t2, respectively, with two latent images X1 ∈ Rnλ×n

and X2 ∈ Rnλ×n with the same spatial and spectral resolutions. As before, it is not assumed any

specific information about time ordering of acquisitions. The problem addressed in this chapter,

similarly to Chapter 1, consists in detecting significant changes between these two multi-band optical

images. Thereby, provided these two latent images can be efficiently inferred, any classical differencing

technique can be subsequently implemented on them to detect changes, notably at a high resolution.
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More specifically, it would consist in evaluating a change image denoted ∆X = [∆x1, . . . , ∆xn] ∈

Rnλ×n that would gather information related to any change between the two observed images

∆X = X2 −X1 (2.1)

where ∆xp ∈ Rnλ denotes the spectral change vector in the pth pixel (p = 1, . . . , n). It is worth noting

that, under the assumptions (1.9), these changes can be identified at a high spatial and spectral

resolutions. Finally this change image can be further exploited by conducting a pixel-wise change

vector analysis (CVA) which exhibits the polar coordinates (i.e., magnitude and direction) of the

spectral change vectors [JK98]. Then, to spatially locate the changes, a natural approach consists in

monitoring the information contained in the magnitude part of this representation, summarized by

the spectral change energy image [Sin89; BB07; BMB12]

e = [e1, . . . , en] ∈ Rn (2.2)

with

ep = ‖∆xp‖2 , p = 1, . . . , n. (2.3)

When the CD problem in the pth pixel is formulated as the binary hypothesis testing







H0,p : no change occurs in the pth pixel

H1,p : a change occurs in the pth pixel
(2.4)

a pixel-wise statistical test can be written by thresholding the change energy image pixels

ep

H1,p

≷
H0,p

τ. (2.5)

The final binary CD map denoted D = [d1, . . . , dn] ∈ {0, 1}n can be derived as

dp =







1 if ep ≥ τ (H1,p)

0 otherwise (H0,p).
(2.6)

As a consequence, to solve the multi-band image CD problem, the key issue lies in the joint estimation

of the pair of HR latent images {X1, X2} from the joint forward model (1.8) or, equivalently, the joint
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estimation of one latent image and the difference image, i.e., {X1, ∆X}. Finally, the next paragraph

introduces the CD-driven optimization problem to be solved.

2.2.2. Optimization problem

Linear forward models similar to (1.8) have been extensively investigated in the image processing

literature for various applications as presented in Chapter 1. For instance, when a unique LR image

(e.g., MS or HS) YLR has been observed at time tj , recovering the HR latent image Xtj from the direct

model can be cast as a superresolution problem [Zha+16]. Besides, when a complementary HR image

YHR of lower spectral resolution (i.e., PAN or MS) has been simultaneously acquired at time ti = tj ,

the two corresponding latent images are expected to represent exactly the same scene, i.e., ∆X = 0

or, equivalently, Xti = Xtj = X where the time index can be omitted. In such scenario, estimating the

common HR latent image X from the two observed images YHR and YLR is a multi-band image fusion

problem addressed in [HEW04; EH05; WDT15b; Sim+15; Wei15]. This problem is often formulated

as an inverse problem, which is generally ill-posed or, at least, ill-conditioned. To overcome this issue,

a classical approach consists in penalizing the data fitting terms derived from the linear model (1.5)

and the noise statistics (1.6) with additional regularizing terms exploiting any prior information on

the latent image. Various penalizations have been considered in the literature, including Tikhonov

regularizations expressed in the image domain [WDT15b] or in a transformed (e.g., gradient) domain

[Tai+10; Sun+11], dictionary- or patch-based regularizations [Yan+10; Wei+15b], total variation (TV)

[Sim+15; HD05] or regularizations based on sparse wavelet representations [JJC04; Bio06].

This chapter proposes to follow a similar route by addressing, in a first step, the CD problem as

a linear inverse problem derived from (1.8). However, the CD problem addressed here differs from

the computational imaging problems discussed above by the fact that two distinct latent images

X1 and X2 need to be inferred, which makes the inverse problem highly ill-posed. However, this

particular application of CD yields a natural reparametrization where relevant prior knowledge can

be conveniently exploited. More precisely, since the two latent images are related to the same scene

observed at two time instants, they are expected to share a high level of similarity, i.e., the change

image ∆X is expected to be spatially sparse. Thus, instead of jointly estimating the pair {X1, X2}

of latent images, we take benefit from this crucial information to rewrite the joint observation model

(1.8) as a function of {X1, ∆X}. Consequently, because of the additive nature and the statistical

properties of the noise N1 and N2 presented on Section 1.2, both observed images Y1 and Y2 can be
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assumed matrix normally distributed

Y1|X1 ∼ MNmλ1
,m1 (L1X1R1, Λ1, Im1)

Y2|X1, ∆X ∼ MNmλ2
,m2 (L2 (X1 + ∆X) R2, Λ2, Im2) .

(2.7)

Besides, since the two observations are acquired by different modality sensors, the noise, which is

sensor-dependent, can be assumed statistically independent. Thus, Y2|X1, ∆X and Y1|X1 are also

statistically independent and the joint likelihood function p(Y2, Y1|X1, ∆X) can be written as a simple

product of the conditional distributions p(Y2|X1, ∆X) and p(Y1|X1).

Following a Bayesian approach, prior information can be introduced to regularize the underlying

estimation problem [II08]. Bayesian estimators can be derived from the joint posterior distribution

p(X1, ∆X|Y2, Y1) ∝ p(Y2, Y1|X1, ∆X)p(X1)p(∆X) (2.8)

where p(X1) and p(∆X) correspond to the prior distributions associated with the latent and change

images, respectively, assumed to be a priori independent. Under a maximum a posteriori (MAP)

paradigm, the joint MAP estimator
{

X̂1,MAP, ∆X̂MAP

}

can be derived by minimizing the negative

log-posterior, leading to the following minimization problem

{

X̂1,MAP, ∆X̂MAP

}

∈ argmin
X1,∆X

J (X1, ∆X) (2.9)

with

J (X1, ∆X) =
1
2

∥

∥

∥

∥

Λ
− 1

2
2 (Y2 − L2 (X1 + ∆X) R2)

∥

∥

∥

∥

2

F

+
1
2

∥

∥

∥

∥

Λ
− 1

2
1 (Y1 − L1X1R1)

∥

∥

∥

∥

2

F

+ λφ1 (X1) + γφ2 (∆X) .

(2.10)

where ‖·‖F denotes the Frobenius norm. The regularizing functions φ1(·) and φ2(·) can be related to

the negative log-prior distributions of the latent and change images, respectively, and the parameters

λ and γ tune the amount of corresponding penalizations in the overall objective function J (X1, ∆X).

These functions should be carefully designed to exploit any prior knowledge regarding the parameters

of interest. As discussed in Section 2.3.1, numerous regularizations can be advocated for the latent

image X1. Here, to maintain computational efficiency while providing accurate results [Lon+15], a
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Tikhonov regularization proposed by [WDT15b] has been adopted

φ1 (X1) =
∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
(2.11)

where X̄1 refers to a crude estimate of X1, e.g., resulting from a naive spatial interpolation of the

observed LR image Y1. Additionally, a subspace-based representation can also be adopted to enforce

X1 to live in a previously identified subspace, as advocated in [WDT14a] and [Sim+15].

Conversely and more critically, a specific attention should be paid to the regularizing function

φ2(·). This function should reflect the fact that most of the pixels are expected to remain unchanged

in X1 and X2, i.e., most of the columns of the change image ∆X are expected to be null vectors.

This noticeable property can be easily translated by promoting the sparsity of the spectral change

energy image e defined by (2.2). As a consequence, the regularizing function φ2(·) is chosen as the

sparsity-inducing ℓ1-norm of the change energy image e or, equivalently, as the ℓ2,1-norm of the change

image

φ2 (∆X) = ‖∆X‖2,1 =
n
∑

p=1

‖∆xp‖2 . (2.12)

This regularization is a specific instance of the non-overlapping group-lasso penalization [Bac11] which

has been considered in various applications to promote structured sparsity [Cot+05; Din+06; LJY09;

WNF09; Nie+10; LLL11; FD15b]. The next section describes the general iterative algorithm scheme

which solves the minimization problem (2.9).

2.3. Robust multi-band image fusion algorithm: generic formulation

Computing the joint MAP estimator of the latent image X1 at time t1 and of the change image ∆X

can be achieved by solving the minimization problem in (2.9). However, no closed-form solution can be

derived for this problem for all the scenarios of interest. Thus this section introduces a minimization

algorithm which iteratively converges to this solution. This alternating minimization (AM) algorithm,

summarized in Algo. 1, consists in iteratively minimizing the objective function (2.10) w.r.t. X1 and

∆X, within so-called fusion and correction discussed below.
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Algorithm 1: Algorithm for robust multi-band image fusion
Input: Y1, Y2, L1, L2, R1, R2, Λ1, Λ2.
Set ∆X1

begin
for k = 1, . . . , K do

// Fusion step

X(k+1)
1 = arg minX1

J (X1, ∆X(k))
// Correction step

∆X(k+1) = arg min∆X J (X(k+1)
1 , ∆X)

X̂1,MAP , X(K+1)
1 and ∆X̂MAP , ∆X̂(K+1)

Result: X̂1,MAP, ∆X̂MAP

2.3.1. Fusion step

As mentioned above, the forward model (1.8) relying on the pair {X1, X2} of latent images can be

rewritten as a function of {X1, ∆X}, i.e.,

Y1 = L1X1R1 + N1 (2.13a)

Y2 = L2 (X1 + ∆X) R2 + N2. (2.13b)

Given the change image ∆X and the image Y1 observed at time t1, a corrected image denoted Ỹ2,

that would be acquired by the sensor S2 at time t1, can be defined as

Ỹ2 = Y2 − L2∆XR2. (2.14)

With this notation, the forward model (2.13) can be easily rewritten, leading to

Y1 = L1X1R1 + N1 (2.15a)

Ỹ2 = L2X1R2 + N2. (2.15b)

Thus, the fusion step, at iteration k, consists in minimizing (2.10) w.r.t. X1, i.e.,

X̂(k+1)
1 = argmin

X1

J1 (X1) , J
(

X1, ∆X(k)
)
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with

J1 (X1) =
1
2

∥

∥

∥

∥

Λ
− 1

2
2

(

Ỹ(k)
2 − L2X1R2

)

∥

∥

∥

∥

2

F
+

1
2

∥

∥

∥

∥

Λ
− 1

2
1 (Y1 − L1X1R1)

∥

∥

∥

∥

2

F
+ λ

∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
. (2.16)

The double forward model (2.15), as well as the optimization problem (2.16), underly the estimation

of an image X1 from an observed image Y1 and a pseudo-observed image Ỹ2. Various instances of

this pixel-level fusion problem have been widely considered in the literature [KC13b; Son+14; Gha16;

Li+17]. For instance, [Yan+10] and [Zha+16] have addressed the problem of single mono-band image

superresolution from a single observed image Y1, i.e., with L1 = Imλ1
and mλ1 = nλ = 1. The problem

of fusing several degraded mono-band images to recover a common high resolution latent image has

been considered by [EF97]. Similarly, the model (2.15) generalizes the conventional observational

model widely adopted by the remote sensing community to conduct multi-band image fusion [HEW04;

EH05; ZDS09; YYI12; KC13b; Sim+15; WDT15b; WDT14a]. Within this specific scenario, a high

spatial and high spectral resolution latent image X1 is estimated from two observed images, one of low

spatial and high spectral resolutions (i.e., L1 = Imλ1
) and the other of high spatial and low spectral

resolutions (i.e., R2 = In2).

In this context, the CD task considered in this chapter can be cast as a so-called robust fusion

problem since the multi-band image fusion model (2.15) implicitly depends on the (unknown) change

image ∆X. More precisely, since the two latent images X1 and X2 are related to the same scene

observed at two time instants, they are expected to share a high level of similarity, i.e., the change image

∆X is expected to be spatially sparse. Thus, this additional unknown change image ∆X to be inferred

can be considered as an outlier term, akin to those encountered in several robust factorizing models

such as robust principal component analysis (RPCA) [Can+11] and robust nonnegative factorization

[FD15b]. Here, we propose an approach able to work on the generic model (2.13) to handle all practical

scenarios of CD as presented on Section 1.3.1. These different scenarios are discussed more deeply in

the next subsection.
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2.3.2. Correction step

Following the same strategy adopted on Section 1.4.2, given the current state X1 of the latent image,

the predicted image that would be observed by the sensor S2 at time t1 can be defined as

Y̌(k)
2 = L2X(k)

1 R2. (2.17)

Similarly to (2.1), the predicted change image can thus be defined as

∆Y̌2 = Y2 − Y̌2. (2.18)

Then, the correction step in Algo. 1 consists in solving

∆X̂(k+1) = argmin
∆X

J2 (∆X) , J
(

X(k)
1 , ∆X

)

(2.19)

with

J2 (∆X) =
∥

∥

∥

∥

Λ
− 1

2
2

(

∆Y̌(k)
2 − L2∆XR2

)

∥

∥

∥

∥

2

F
+ γ ‖∆X‖2,1 . (2.20)

This correction can be interpreted as a joint spatial and spectral deblurring of the predicted change

image ∆Y̌(k)
2 . Note that this ill-posed inverse problem is regularized through an ℓ2,1-norm penalization,

which promotes the spatial sparsity of the change image ∆X.

It is worth noting that the difficulty of conducting the two steps of the AM algorithm detailed

above is highly related to the spatial and/or spectral degradations operated on the two latent images,

according to applicative scenarios which are detailed in the next section. Interestingly, the following

section will also show that these steps generally reduce to ubiquitous (multi-band) image processing

tasks, namely denoising, spectral deblurring or spatial super-resolution from a single or several images,

for which efficient and reliable strategies have been already proposed in the literature.

2.4. Algorithmic implementations for applicative scenarios

The general model presented in (2.13) and the AM algorithm proposed in Section 2.3 can be im-

plemented to handle all scenarios derived from two multi-band optical images which was previously

presented on Section 1.3.1 and summarized on Table 1.1. The following paragraphs instantiate the
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AM algorithm for each scenario. These specific instantiations will relate the fusion and correction

steps with ubiquitous image processing tasks that can be performed efficiently thanks to recent con-

tributions proposed in the image processing literature. Table 2.1 summarizes these implementations

w.r.t. the discussed scenarios.

Fusion Step Correction Step

Algorithm Operation Algorithm Operation

S1 Least squares Denoising ℓ2,1-prox. mapping Denoising

S2 Least squares Spectral deblurring ℓ2,1-prox. mapping Denoising

S3 [Zha+16] Spatial super-resolution ℓ2,1-prox. mapping Denoising

S4 [WDT15b] Multi-band image fusion Forward-backward Spectral deblurring

S5

A
D

M
M Least squares Spectral deblurring

ℓ2,1-prox. mapping Denoising
[Zha+16] Spatial super-resolution

S6

A
D

M
M [Zha+16] Spatial super-resolution

A
D

M
M [Zha+16] Spatial super-resolution

[Zha+16] Spatial super-resolution ℓ2,1-prox. mapping Denoising

S7

A
D

M
M [WDT15b] Multi-band image fusion

A
D

M
M [Zha+16] Spatial super-resolution

[Zha+16] Spatial super-resolution ℓ2,1-prox. mapping Denoising

S8 Least squares Spectral deblurring Forward-backward Spectral deblurring

S9

A
D

M
M Least squares Spectral deblurring

Forward-backward Spectral deblurring
[Zha+16] Multi-band image fusion

S10

A
D

M
M [WDT15b] Multi-band image fusion

A
D

M
M ℓ2,1-prox. mapping Denoising

[Zha+16] Spatial super-resolution [Zha+16] Spatial super-resolution

Least squares Spectral deblurring Least squares Spectral deblurring

Table 2.1.: Overview of the steps of the AM algorithm w.r.t. applicative scenarios.

2.4.1. Scenario S1

Considering the degradation matrices specified in Table 1.1 for this scenario, the forward model (2.13)

can be rewritten as

Y1 = X1 + N1 (2.21a)

Y2 = (X1 + ∆X) + N2 (2.21b)
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As expected, for this scenario, the observed, latent and change images share the same spatial and

spectral resolutions. The resulting objective function, initially in (2.10), is simplified as

JS1 (X1, ∆X) =
1
2

∥

∥

∥

∥

Λ
− 1

2
2 (Y2 − (X1 + ∆X))

∥

∥

∥

∥

2

F

+
1
2

∥

∥

∥

∥

Λ
− 1

2
1 (Y1 −X1)

∥

∥

∥

∥

2

F

+ λ
∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
+ γ ‖∆X‖2,1 .

(2.22)

The two steps of the AM algorithm are detailed below.

Fusion: optimization w.r.t. X1

At the kth iteration of the AM algorithm, let assume that the current value of the change image is

denoted by ∆X(k). As suggested in Section 2.3.1, a corrected image Ỹ(k)
2 that would be observed at

time t1 by the sensor S2 given the image Y2 observed at time t2 and the change image ∆X(k) can be

introduced as

Ỹ(k)
2 = Y2 −∆X(k). (2.23)

Updating the latent image X1 consists in minimizing, w.r.t. X1, the partial function

JS1,1 (X1) , JS1

(

X1, ∆X(k)
)

=
∥

∥

∥

∥

Λ
− 1

2
1 (Y1 −X1)

∥

∥

∥

∥

2

F

+
∥

∥

∥

∥

Λ
− 1

2
2

(

Ỹ(k)
2 −X1

)

∥

∥

∥

∥

2

F
+ λ

∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
.

(2.24)

This formulation shows that recovering X1 in Scenario S1 reduces to a denoising problem from an

observed image Y1 and a pseudo-observed image Ỹ(k)
2 . Observing that all terms in the objective

function (2.24) are differentiable, a closed-form solution of this ℓ2-penalized least-square problem can

be easily and efficiently computed.

Correction: optimization w.r.t. ∆X

Following the AM strategy, let Y̌(k)
2 denote the predicted image that would be observed by the sensor

S2 at time t1 given the current state of the latent image X(k)
1 . Since the two sensors share the same
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spatial and spectral characteristics, one has

Y̌(k)
2 = X(k)

1 . (2.25)

Similarly to (2.1), the predicted change image can thus be defined as

∆Y̌(k)
2 = Y2 − Y̌(k)

2 . (2.26)

The objective function (2.22) w.r.t. ∆X is then rewritten by combining (2.25) and (2.26) with (2.22),

leading to

JS1,2(∆X) , JS1(X(k)
1 , ∆X)

=
∥

∥

∥

∥

Λ
− 1

2
2

(

∆Y̌(k)
2 −∆X

)

∥

∥

∥

∥

2

F
+ γ ‖∆X‖2,1 .

(2.27)

Again, since the observed, latent and change images share the same spatial and spectral resolutions,

this correction step reduces to a denoising task of the predicted change image ∆Y̌(k)
2 . With the

particular CD-driven choice of φ2 (·) in (2.12), minimizing JS1,2(∆X) is an ℓ2,1-penalized least square

problem. Minimizing (2.27) also defines the proximal operator associated with the ℓ2,1-norm as

proxη
g(U) = arg min

Z

(

γ ‖Z‖2,1 +
η

2
‖Z−U‖2F

)

(2.28)

for some η > 0. The function g(U) = γ ‖∆X‖2,1 can be split as
∑n

p=1 gp(up) with, for each column,

gp(·) = γ ‖·‖2. Based on the separability property of proximal operators [PB+14], the operator (2.28)

can be decomposed and computed for each pixel location p (p = 1, . . . , n) as

[

proxη
g(U)

]

p
= proxη

gp
(up) (2.29)

where the notations [·]p stands for the pth column. Thus, only the proximal operator associated with

the Euclidean distance induced by the ℓ2-norm is necessary. The Moreau decomposition [PB+14]

up = proxη
g (up) + η−1proxη−1

g∗

p
(ηup) (2.30)

establishes a relationship between the proximal operators of the function gp(·) and its conjugate g∗
p(·).

When the function g(·) is a general norm, its conjugate corresponds to the indicator function into the
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ball B defined by its dual norm [WNF09; PB+14], leading to

proxηg(up) = up − η−1PB (ηup) (2.31)

where PB(·) denotes the projection. When g(·) is defined by (2.12), since the ℓ2-norm is self-dual, this

projection is

PB (up) =

{ γup

‖up‖2
if ‖up‖2 > γ

up otherwise.
(2.32)

Consequently, replacing (2.32) in (2.31), the proximal operator associated with the function gp(·) in

(2.29) is

proxη
gp

(up) =

{
(

1− γ
η‖up‖2

)

up if ‖up‖2 > γ
η

0 otherwise.
(2.33)

The solution achieved in (2.33) is called a group-soft thresholding operator that can be column-wisely

applied to the predicted change image ∆Y̌(k)
2 . Note that, this simple solution considers that the noise

level is the same for each band. In order to use different noise levels in each band, as discussed on

Section 1.2.2, a slightly different formulation of this operator is derived in [Kow09].

2.4.2. Scenario S2

In this scenario, the two observed images are of same spatial resolution (as for scenario S1) but with

different optical spectral information, which preclude a simple comparison between pixels. For this

scenario, the joint forward observation model derived from (2.13) can be written as

Y1 = L1X1 + N1, (2.34a)

Y2 = (X1 + ∆X) + N2, (2.34b)

which results in the objective function

JS2 (X1, ∆X) =
1
2

∥

∥

∥

∥

Λ
− 1

2
2 (Y2 − (X1 + ∆X))

∥

∥

∥

∥

2

F

+
1
2

∥

∥

∥

∥

Λ
− 1

2
1 (Y1 − L1X1)

∥

∥

∥

∥

2

F

+ λ
∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
+ γ ‖∆X‖2,1 .

(2.35)

Within an AM algorithmic scheme, the two sub-problems of interest are detailed below.
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Fusion: optimization w.r.t. X1

The same strategy as for scenario S1 in paragraph 2.4.1 is adopted. As model (2.34b) is the the same

as model (2.21b), the corrected image Ỹ(k)
2 is defined following (2.23). Then, updating the latent

image X1 consists in minimizing the partial objective function

JS2,1 (X1) , JS2

(

X1, ∆X(k)
)

=
∥

∥

∥

∥

Λ
− 1

2
1 (Y1 − L1X1)

∥

∥

∥

∥

2

F

+
∥

∥

∥

∥

Λ
− 1

2
2

(

Ỹ(k)
2 −X1

)

∥

∥

∥

∥

2

F
+ λ

∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
.

(2.36)

This problem can be interpreted as a spectral deblurring of the observed image Y1 where the corrected

image Ỹ(k)
2 plays the role of prior information. Observing that all terms in the objective function

(2.36) are differentiable and knowing that the size of matrix L1 does not induce strong computational

complexities, minimizing this function can be easily conducted by computing the standard least square

solution.

Correction: optimization w.r.t. ∆X

As both models (2.34b) and (2.21b) are the same, optimizing w.r.t ∆X can be conducted following

the procedure detailed in paragraph 2.4.1 (i.e., denoising of the predicted change image).

2.4.3. Scenario S3

In this scenario, the two observed images share the same spectral resolution but differ by their spatial

resolutions. These spatial resolutions are related by an integer relative downsampling factor, which

allows a unique spatial degradation matrix R1 to be used1. The joint forward observation model

derived from (2.13) using the specific degradation matrices presented in Table 1.1 can be written as

Y1 = X1R1 + N1. (2.37a)

Y2 = (X1 + ∆X) + N2. (2.37b)

1The case of observed images with non-integer relative spatial downsampling factor is discussed in scenario S6.
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with the objective function

JS3 (X1, ∆X) =
1
2

∥

∥

∥

∥

Λ
− 1

2
2 (Y2 − (X1 + ∆X))

∥

∥

∥

∥

2

F

+
1
2

∥

∥

∥

∥

Λ
− 1

2
1 (Y1 −X1R1)

∥

∥

∥

∥

2

F

+ λ
∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
+ γ ‖∆X‖2,1 .

(2.38)

Fusion: optimization w.r.t. X1

The same strategy as for previous scenarios is adopted here. As model (2.37b) is the same as model

(2.21b), the corrected image Ỹ(k)
2 is defined following (2.23). Then, updating the latent image consists

in minimizing, w.r.t. X1, the partial function

JS3,1 (X1) , JS3

(

X1, ∆X(k)
)

=
∥

∥

∥

∥

Λ
− 1

2
1 (Y1 −X1R1)

∥

∥

∥

∥

2

F

+
∥

∥

∥

∥

Λ
− 1

2
2

(

Ỹ(k)
2 −X1

)

∥

∥

∥

∥

2

F
+ λ

∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
.

(2.39)

This fusion task can be interpreted as a set of nλ super-resolution problems associated with each

band of the observed image Y1, where the corrected image Ỹ(k)
2 acts here as a prior information.

Because of the size of R1, the computational complexity of methods, requiring matrix inversions such

as the least-square solutions previously adopted in scenarios S1 and S2, may be prohibitive for large

observation images. Nevertheless, benefiting from the structure of the PSF, low complexity closed-

form expressions of these nλ solutions are given by [Zha+16] which allow the use of larger observation

images.

Correction: optimization w.r.t. ∆X

As the model (2.37b) is the same as model (2.21b) of scenarios S1 and S2, optimizing w.r.t. ∆X

can be conducted following the procedure detailed in paragraph 2.4.1 (i.e., denoising of the predicted

change image).
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2.4.4. Scenario S4

Scenario S4, as exposed on Chapter 1, stands for the case where each observed image is fully defined

by the degradation imposed by the respective acquisition sensor. The joint forward model, adapted

from the problem (1.13), considered here is

Y1 = X1R1 + N1. (2.40a)

Y2 = L2 (X1 + ∆X) + N2. (2.40b)

The two observed images have complementary information since Y1 and Y2 are of high spectral and

spatial resolutions, respectively. The resulting objective function writes

JS4 (X1, ∆X) =
1
2

∥

∥

∥

∥

Λ
− 1

2
2 (Y2 − L2 (X1 + ∆X))

∥

∥

∥

∥

2

F

+
1
2

∥

∥

∥

∥

Λ
− 1

2
1 (Y1 −X1R1)

∥

∥

∥

∥

2

F

+ λ
∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
+ γ ‖∆X‖2,1 .

(2.41)

When these images have been acquired at the same time instant, the change image is ∆X = 0 and

this configuration boils down to a multiband image fusion problem addressed by [WDT15b]. Thus,

minimizing (2.41) can be conducted following the AM strategy as detailed bellow.

Fusion: optimization w.r.t. X1

The same strategy as for scenario S1 in paragraph 2.4.1 is adopted. As suggested in Section 2.3.1, a

corrected image Ỹ(k)
2 , that would be observed at time t1 by the sensor S2 given the image Y2 observed

at time t2 and the change image ∆X(k), can be introduced as

Ỹ(k)
2 = Y2 − L2∆X(k). (2.42)

Updating the latent image X1 consists in minimizing, w.r.t. X1, the partial function

JS4,1 (X1) , JS4

(

X1, ∆X(k)
)

=
∥

∥

∥

∥

Λ
− 1

2
1 (Y1 −X1R1)

∥

∥

∥

∥

2

F

+
∥

∥

∥

∥

Λ
− 1

2
2

(

Ỹ(k)
2 − L2X1

)

∥

∥

∥

∥

2

F
+ λ

∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
.

(2.43)
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This formulation shows that recovering X1 in Scenario S4 defines a standard multi-band image fusion

problem for the LR observed image Y1 and the corrected HR image Ỹ(k)
2 . This sub-problem has

received considerable attention in the recent image processing and remote sensing literature [Sim+15;

Lon+15; WDT14b]. The two difficulties arising from this formulation lies in the high dimension of the

optimization problem and in the fact that the sub-sampling operator S1 prevents any fast resolution

in the frequency domain by diagonalization of the spatial degradation matrix R1 = B1S1. However,

with the particular choice (2.11) of the regularization function φ1(·) adopted in this chapter, a closed-

form solution can still be derived and efficiently implemented. It consists in solving a matrix Sylvester

equation [WDT15b] of the form

C1Xtj + Xtj C2 = C3 (2.44)

where the matrices C1, C2 and C3 depend on the quantities involved in the problem, i.e., the vir-

tual and observed images, the degradation operators, the noise covariance matrices and the spatially

interpolated image defined in (2.11) (see [WDT15b] for more details). Note that when a more com-

plex regularization function φ1(·) is considered (e.g., TV or sparse representation over a dictionary),

iterative algorithmic strategies can be adopted to approximate the minimizer of JS4,1 (X1).

Correction: optimization w.r.t. ∆X

Following the same strategy as in Section 2.4.1, let introduce the predicted HR image

Y̌(k)
2 = L2X(k)

1 (2.45)

that would be observed by the HR sensor S2 at time t1 given the current state of the latent image X(k)
1

and the spectral response L2. Similarly to (2.1), the predicted HR change image can thus be defined

as

∆Y̌(k)
2 = Y2 − Y̌(k)

2 . (2.46)

The objective function (2.41) w.r.t. ∆X is then rewritten by combining (2.45) and (2.46) with (2.41),

leading to

JS4,2(∆X) , JS4(X(k)
1 , ∆X) =

∥

∥

∥

∥

Λ
− 1

2
2

(

∆Y̌(k)
2 − L2∆X

)

∥

∥

∥

∥

2

F
+ γ ‖∆X‖2,1 . (2.47)
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With the specific CD-driven choice of φ2 (·) in (2.12), minimizing JS4,2(∆X) is an ℓ2,1-penalized least

square problem. It is characterized by the sum of a convex and differentiable data fitting term with

β-Lipschitz continuous gradient ∇f(·)

f (∆X) ,
∥

∥

∥

∥

Λ
− 1

2
2

(

∆Y̌(k)
2 − L2∆X

)

∥

∥

∥

∥

2

F
(2.48)

and a convex but non-smooth penalization

g (∆X) , γφ2 (∆X) = γ ‖∆X‖2,1 . (2.49)

Various algorithms have been proposed to solve such convex optimization problems including forward-

backward splitting [CW05], Douglas-Rachford splitting [CP07] and alternating direction method of

multipliers [Boy10; PB+14]. Since the proximal operator related to g (·) can be efficiently computed,

as shown in Section 2.4.1, it is proposed to resort to an iterative forward-backward algorithm which

has shown to provide the fastest yet reliable results. This algorithmic scheme is summarized in Algo.

2. It relies on a forward step which consists in conducting a gradient descent using the data-fitting

function f (·) in (2.48), and a backward step relying on the proximal mapping associated with the

penalizing function g (·) in (2.49). Since the HR observed image has only a few spectral bands (e.g.,

Algorithm 2: Correction step: forward-backward algorithm

Input: ∆Xk, ∆Y̌(k)
2 , Λ2, L2, {ηk}

K
k=1.

Set V1 , ∆Xk

begin
for k = 1, . . . , K do

// forward step

Uk+1 = Vk − ηk∇f
(

Vk
)

// backward step

Vk+1 = proxηk
g

(

Uk+1
)

∆Xk+1 , Vk+1

Result: ∆Xk+1

mλ2 ∼ 10), the spectral degradation matrix L ∈ Rmλ2
×nλ is a fat (and generally full-row rank) matrix.

Thus, the corresponding gradient operator ∇f (·) defining the forward step can be easily and efficiently

computed. To conclude this scenario, the correction procedure can be interpreted as a gradient descent

step for spectral deblurring of the HR change image from the HR predicted change image (forward
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step), followed by a soft-thresholding of the resulting HR change image to promote spatial sparsity

(backward step).

2.4.5. Scenario S5

Under this scenario, the observed image Y2 is of higher spatial and spectral resolutions than the

observed image Y1. Within a conventional fusion context, one would probably discard Y1 since it

would not bring additional information to the one provided by Y2. Conversely, within a CD context,

both observed images are of interest and can be exploited. More precisely, here, the joint forward

observation model derived from (2.13) is specifically written

Y1 = L1X1R1 + N1, (2.50a)

Y2 = (X1 + ∆X) + N2, (2.50b)

with the resulting objective function

JS5 (X1, ∆X) =
1
2

∥

∥

∥

∥

Λ
− 1

2
2 (Y2 − (X1 + ∆X))

∥

∥

∥

∥

2

F

+
1
2

∥

∥

∥

∥

Λ
− 1

2
1 (Y1 − L1X1R1)

∥

∥

∥

∥

2

F

+ λ
∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
+ γ ‖∆X‖2,1 .

(2.51)

Its minimization relies on the two steps detailed below.

Fusion: optimization w.r.t. X1

The same strategy as for previous scenarios is adopted here. After defining the corrected image Ỹ(k)
2

by (2.23), updating the latent image X1 consists in minimizing

JS5,1 (X1) , JS5

(

X1, ∆X(k)
)

=
∥

∥

∥

∥

Λ
− 1

2
1 (Y1 − L1X1R1)

∥

∥

∥

∥

2

F

+
∥

∥

∥

∥

Λ
− 1

2
2

(

Ỹ(k)
2 −X1

)

∥

∥

∥

∥

2

F
+ λ

∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
.

(2.52)

Minimizing (2.52) can be interpreted as a simultaneous spatial super-resolution and spectral deblur-

ring of the multiband image Y1, with prior information brought by Ỹ(k)
2 . This minimization is a much

80



Chapter 2. Robust fusion-based approach

more challenging task than the fusion steps encountered for scenarios S1–S4. Indeed, the simultane-

ous spatial and spectral degradations applied to X1 prevents a closed-form solution to be efficiently

computed. Thus, one proposes to resort to an iterative algorithm, namely the alternating direction

method of multipliers (ADMM). It consists in introducing the splitting variable U ∈ Rmλ1
×n = L1X1.

The resulting scaled augmented Lagrangian for the problem is expressed as

Lµ(X1, U, V) =
∥

∥

∥

∥

Λ
− 1

2
1 (Y1 −UR1)

∥

∥

∥

∥

2

F
+
∥

∥

∥

∥

Λ
− 1

2
2

(

Ỹ(k)
2 −X1

)

∥

∥

∥

∥

2

F
+

λ
∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
+

µ

2
‖L1X1 −U + V‖2F .

(2.53)

The ADMM iteratively minimizes Lµ w.r.t. U and X1 and updates the dual variable V as presented on

Algo. 3. By comparing the partial objective function (2.52) and its augmented counterpart (2.53), it

clearly appears that the splitting strategy allows the spectral and spatial degradations to be decoupled.

Thus, each of these steps can be easily conducted. More precisely, optimizing w.r.t. U consists in

conducting a super-resolution step achieved as for scenario S3 by resorting to the algorithm proposed

by [Zha+16]. Conversely, optimizing w.r.t. X1 consists in solving a least-square problem whose

closed-form solution can be computed (akin to scenario S2).

Algorithm 3: Fusion step: ADMM algorithm

Input: Y1,Ỹ(k)
2 ,R1,L2, Λ1, Λ2, X̄1, λ, µ.

begin
k ← 0
U(k) ← Y1

V(k) ← 0mλ1
×n

while stopping criterion not satisfied do
// primal variable step

X(k+1)
1 = arg min

X1

Lµ(X1, U(k), V(k))

// splitting variable step

U(k+1) = arg min
U

Lµ(X(k+1)
1 , U, V(k))

// dual variable step

V(k+1) = V(k) + X(k+1)
1 −U(k+1)

k ← k + 1

Result: Xk+1
1
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Correction: optimization w.r.t. ∆X

Again, as the forward model (2.50b) is the same as (2.21b) of Scenario S1, optimizing w.r.t. ∆X

can be conducted following the procedure detailed in paragraph 2.4.1 (i.e., denoising of the predicted

change image).

2.4.6. Scenario S6

As for scenario S3, scenario S6 considers two observed images of same spectral resolutions but with

distinct spatial resolutions. However, contrary to scenario S3, this difference in spatial resolutions

cannot be expressed thanks to a unique spatial degradation matrix R1 due to a non-integer relative

downsampling factor. Thus the forward model is written

Y1 = X1R1 + N1 (2.54a)

Y2 = (X1 + ∆X) R2 + N2 (2.54b)

with the following objective function

JS6 (X1, ∆X) =
1
2

∥

∥

∥

∥

Λ
− 1

2
2 (Y2 − (X1 + ∆X) R2)

∥

∥

∥

∥

2

F
+

1
2

∥

∥

∥

∥

Λ
− 1

2
1 (Y1 −X1R1)

∥

∥

∥

∥

2

F

+ λ
∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
+ γ ‖∆X‖2,1 .

(2.55)

In (2.54), both latent images are supposed to suffer from spatial degradations. Thus, choosing which

spatial degradation affects the change image ∆X results in a particular spatial resolution for this

change map. To derive a change map at a high spatial resolution, the spatial degradation applied to

∆X should be chosen as the one with the lowest virtual downsampling factor. The minimization of

(2.55) according to the AM strategy is addressed in the following paragraphs.

Fusion: optimization w.r.t. X1

For this scenario, the corrected image in (2.14) is defined as

Ỹ(k)
2 = Y2 −∆X(k)R2. (2.56)
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Then, updating the latent image X1 consists in minimizing, w.r.t. X1, the partial function

JS6,1 (X1) , JS6

(

X1, ∆X(k)
)

=
∥

∥

∥

∥

Λ
− 1

2
1 (Y1 −X1R1)

∥

∥

∥

∥

2

F

+
∥

∥

∥

∥

Λ
− 1

2
2

(

Ỹ(k)
2 −X1R2

)

∥

∥

∥

∥

2

F
+ λ

∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
.

(2.57)

As for scenario S3, minimizing (2.57) can be interpreted as recovering a spatially super-resolved image

X1 from the observed image Y1 and the corrected image Ỹ(k)
2 . However, contrary to scenario S3, here,

Ỹ(k)
2 rather defines an additional data-fitting term instead of a prior information [EF97]. Moreover,

this sub-problem cannot be solved directly since no closed-form solution can be efficiently derived,

mainly due to the simultaneous presence of the two spatial degradation operators. Thus, as for

scenario S5, one resorts to the ADMM scheme by introducing the splitting variable U ∈ Rnλ×n = X1.

The resulting scaled augmented Lagrangian can be written as

Lµ(X1, U, V) =
∥

∥

∥

∥

Λ
− 1

2
1 (Y1 −UR1)

∥

∥

∥

∥

2

F

+
∥

∥

∥

∥

Λ
− 1

2
2

(

Ỹ(k)
2 −X1R2

)

∥

∥

∥

∥

2

F
+ λ

∥

∥

∥X1 − X̄1

∥

∥

∥

2

F

+
µ

2
‖X1 −U + V‖2F .

(2.58)

Using the same structure of Algo. 3, but with scaled augmented Lagrangian given by (2.58), it is

worth noting that both minimizations w.r.t. U and X1 can be conducted band-by-band following the

strategy proposed by [Zha+16], which provides closed-form solutions of the underlying single-image

super-resolution problems and also ensures the convergence of the AM algorithm.

Correction: optimization w.r.t. ∆X

For this scenario, a predicted image that would be observed by the sensor S2 at time t1 can be defined

as

Y̌(k)
2 = X(k)

1 R2 (2.59)

with the resulting predicted change image

∆Y̌(k)
2 = Y2 − Y̌(k)

2 . (2.60)
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The objective function (2.10) w.r.t. ∆X is then rewritten by combining (2.59) and (2.60) with (2.10),

leading to

JS6,2(∆X) , JS6(X(k)
1 , ∆X)

=
∥

∥

∥

∥

Λ
− 1

2
2

(

∆Y̌(k)
2 −∆XR2

)

∥

∥

∥

∥

2

F
+ γ ‖∆X‖2,1 .

(2.61)

The minimization of (2.61) can be interpreted as a super-resolution problem. Nevertheless, due to the

non-smooth penalization term, there is no close-form solution for that problem. In this case, even if a

forward-backward algorithm (as Algo. 2) could be used to iteratively minimize this objective function,

the size of the spatial degradation matrix R2 suggests to resort to an ADMM. By introducing the

splitting variable W ∈ Rnλ×n = ∆X, the resulting scaled augmented Lagrangian for the problem is

expressed as

Lµ(∆X, W, V) =
∥

∥

∥

∥

Λ
− 1

2
2

(

∆Y̌(k)
2 −∆XR2

)

∥

∥

∥

∥

2

F
+ λ ‖W‖2,1 +

µ

2
‖∆X−W + V‖2F . (2.62)

Following the same structure of Algo. 3, closed-form expressions of the minimizers of (2.62) w.r.t. ∆X

and W can be derived, following the technique proposed by [Zha+16] and a group soft-thresholding

operation (2.33), respectively.

2.4.7. Scenario S7

Scenario S7 generalizes scenario S4 with the specific case of a non-integer relative spatial downsampling

factor, which precludes the use of a unique spatial degradation matrix. The resulting joint observation

model is

Y1 = L1X1R1 + N1. (2.63a)

Y2 = (X1 + ∆X) R2 + N2 (2.63b)

which leads to the following objective function

JS7 (X1, ∆X) =
1
2
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∥

∥

∥

Λ
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2
2 (Y2 − (X1 + ∆X) R2)

∥
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∥
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F

+
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∥
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∥
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∥

2

F
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∥
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∥X1 − X̄1

∥

∥

∥

2

F
+ γ ‖∆X‖2,1 .

(2.64)
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The choice of assuming that the image acquired by the sensor S2 does not suffers from spectral

degradation is motivated by an easier and more accurate estimation of the change image ∆X by

avoiding additional spectral deblurring steps. The two sub-problems underlying the AM algorithm

are detailed below.

Fusion: optimization w.r.t. X1

By defining the corrected image as for Scenario S6, i.e., Ỹ(k)
2 = Y2 −∆X(k)R2, updating the latent

image X1 consists in minimizing the partial function

JS7,1 (X1) , JS7

(

X1, ∆X(k)
)

=
∥

∥

∥

∥

Λ
− 1

2
1 (Y1 − L1X1R1)
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∥

∥

∥

2

F

+
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∥

∥
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2
2

(
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)

∥

∥

∥

∥

2

F
+ λ

∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
.

(2.65)

Unfortunately, it is not possible to derive a closed-form solution of the minimizer (2.65). As for

Scenarios S5 and S6, capitalizing on the convexity of the objective function, an ADMM strategy is

followed. By defining the splitting variable U ∈ Rmλ1
×n = L1X1. The scaled augmented Lagrangian

can be written

Lµ(X1, U, V) =
∥

∥

∥

∥

Λ
− 1

2
1 (Y1 −UR1)

∥

∥

∥

∥

2

F

+
∥

∥

∥

∥

Λ
− 1

2
2

(

Ỹ(k)
2 −X1R2

)

∥

∥

∥

∥

2

F
+ λ

∥

∥

∥X1 − X̄1

∥

∥

∥

2

F

+
µ

2
‖L1X1 −U + V‖2F .

(2.66)

The iterative minimizations of (2.66) w.r.t. both U and X1 can be conducted efficiently using the

same structure as Algo. 3. More precisely, optimizing w.r.t. U consists in solving a set of super-

resolution problems whose closed-form solutions are given band-by-band by [Zha+16]. Regarding the

minimization w.r.t. X1, it consists in solving a ℓ2-penalized multi-band image fusion problem, whose

closed-form solution is given by [WDT15b].

Correction: optimization w.r.t. ∆X

Since the observation model (2.63b) related to ∆X is the same as the one of Scenario S6 (see (2.54b)),

optimizing w.r.t. ∆X can be achieved thanks to ADMM, as described in paragraph 2.4.6 (spatial
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super-resolution of the predicted change image).

2.4.8. Scenario S8

This scenario is similar to the Scenario S2 described in paragraph 2.4.2. It relies on two images of same

spatial resolution but of distinct spectral resolution. However, contrary to Scenario S2, this difference

in spectral resolutions cannot be expressed with a unique spectral degradation matrix, e.g., due to

respective spectral ranges with non-overlapping bands. In this case the joint forward observation

model is

Y1 = L1X1 + N1. (2.67a)

Y2 = L2 (X1 + ∆X) + N2. (2.67b)

with the resulting objective function

JS8 (X1, ∆X) =
1
2
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∥

∥

∥

∥

2

F

+
1
2

∥

∥

∥

∥

Λ
− 1

2
1 (Y1 − L1X1)

∥

∥

∥

∥

2

F

+ λ
∥

∥

∥X1 − X̄1

∥

∥

∥

2

F
+ γ ‖∆X‖2,1 .

(2.68)

The choice of which degradation matrix applies to the change image ∆X is driven by considering the

matrix with larger number of bands, which results in a change image of higher spectral resolution.

The associated sub-problems are described in what follows.

Fusion: optimization w.r.t. X1

Similarly to Scenario S4, by defining the corrected image as Ỹ(k)
2 = Y2−L2∆X(t), updating the latent

image X1 consists in minimizing

JS8,1 (X1) , JS8

(

X1, ∆X(k)
)

=
∥

∥

∥

∥
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2
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∥

2

F
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∥
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∥

∥

∥

2

F
.

(2.69)
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Minimizing (2.69) formulates a joint spectral deblurring problem from an observed image Y1 and a

pseudo-observed image Ỹ(k)
2 . Thanks to its quadratic form and the size of matrices L1 and L2, this

problem can be efficiently solved by a least-square solution.

Correction: optimization w.r.t. ∆X

As the forward model (2.67b) is the same as (2.40b) of Scenario S4, optimizing w.r.t. ∆X can

be conducted following the procedure detailed in paragraph 2.4.4 (i.e., a spectral deblurring of the

predicted change image, which can be achieved using a forward-backward algorithm as presented by

Algo. 2).

2.4.9. Scenario S9

This scenario generalizes scenario S4, but with relative spectral responses involving non-overlapping

bands. The joint forward observation model is then

Y1 = L1X1R1 + N1. (2.70a)

Y2 = L2 (X1 + ∆X) + N2. (2.70b)

which yields the objective function

JS9 (X1, ∆X) =
1
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+ λ
∥
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F
+ γ ‖∆X‖2,1 .

(2.71)

Note that the estimated latent and change images are defined at the highest spatial resolution while

benefiting from the spectral resolutions of both observed images. The choice of assuming that the

image acquired by sensor S2 does not suffer from spatial degradation has been motivated by an easier

and accurate estimation of the change image ∆X by avoiding additional spatial super-resolution steps.

The resulting sub-problems involved in the AM algorithm are detailed below.
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Fusion: optimization w.r.t. X1

As for scenarios S4 and S8, the corrected image Ỹ(k)
2 can be defined as Ỹ(k)

2 = Y2 − L2∆X(k). Thus,

updating the latent image X1 consists in minimizing

JS9,1 (X1) , JS9

(

X1, ∆X(k)
)
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∥

∥
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(2.72)

Minimizing (2.72) is challenging mainly due to the simultaneous presence of spatial and spectral

degradation matrices R1 and L2 with an additional spatial degradation L1. Therefore, there is no

closed-form solution for this problem, which can be eventually solved thanks to ADMM. By introducing

the splitting variable U ∈ Rmλ×m1 = X1R1. The resulting scaled augmented Lagrangian is

Lµ(X1, U, V) =
∥

∥

∥

∥
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2
‖X1R1 −U + V‖2F .

(2.73)

The iterative minimization of (2.73) w.r.t. both X1 and U can be conducted efficiently using the

same structure as Algo. 3. Closed-form expression of the minimizers of (2.73) w.r.t. X1 and U can

be derived, following [WDT15b] and a least-square formulation, respectively.

Correction: optimization w.r.t. ∆X

As both models (2.70b) and (2.67b) are the same, optimizing w.r.t. ∆X can be achieved following the

strategy detailed in paragraph 2.4.8, i.e., by spectrally deblurring a predicted change image ∆Y̌(k)
2

thanks to the forward-backward algorithm presented in Algo. 2.

2.4.10. Scenario S10

This scenario generalizes all the previous scenarios with the particular difficulties of non-overlapping

bands in the spectral responses and non-integer relative spatial downsampling factor of the respective

spatial degradations. The joint forward observation model is given by (2.13), which results in the
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objective function JS10 in (2.10). Again, as for scenarios S7 and S9, the choice of the spatial and

spectral degradations applied to the change image ∆X should be motivated by reaching the highest

spatial and spectral resolutions of this change image. The optimization sub-problems are finally

discussed below.

Fusion: optimization w.r.t. X1

For this scenario, the corrected image Ỹ(k)
2 is given by (2.14), leading to an updating rule of the

X1 consists in minimizing (2.16). This minimization cannot be conducted in a straightforward man-

ner, since it requires to conduct a spectral deblurring and a spatial super-resolution simultaneously.

However, the optimal solution can be reached by resorting to a ADMM with two splitting variables

U1 = L1X1 ∈ Rmλ1
×n and U2 = X1R2 ∈ Rnλ×m2 . The resulting scaled augmented Lagrangian for

the problem is expressed as

Lµ(X1, U1, U2, V1, V2) =
∥

∥
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2
F .

(2.74)

Note that the solution to (2.74) can be obtained using a similar structure as Algo. 3, but adding one

extra splitting variable and its respective dual variable. Closed-form expressions of the minimizers

of (2.74) w.r.t. X1, U1 and U2 can be derived as proposed by [WDT15b], [Zha+16] and following a

least-square formulation, respectively.

Correction: optimization w.r.t. ∆X

For this scenario, given the current state X(k)
1 of the latent image, the predicted image that would be

observed by the sensor S2 at time t1 can be defined as in (2.17) leading to the predicted change image

(2.18). Then, the correction step consists in minimizing the objective function JS10,1(∆X) in (2.20).

It consists in conducting a spectral deblurring and spatial super-resolution jointly. This problem has

no closed-form solution. Therefore, the objective function is iteratively minimized using an ADMM

with two splitting variables W1 ∈ Rmλ1
×n = L1∆X and W2 ∈ Rnλ×n = ∆X. The resulting scaled
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augmented Lagrangian for the problem is expressed as

Lµ(∆X, W1, W2, V1, V2) =
∥

∥

∥

∥

Λ
− 1

2
2

(

∆Y̌(k)
2 −W1R2

)

∥
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2
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2
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2
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2
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2
F .

(2.75)

Closed-form expression of the minimizers of (2.75) w.r.t. ∆X, W1 and W2 can be derived, following

a least-square formulation, the computation proposed by [Zha+16] and a group soft-thresholding,

respectively in a similar structure as the one adopted in paragraph 2.4.10.

2.5. Results on simulated images

2.5.1. Simulation framework

Real datasets for assessing performance of CD algorithms are rarely available as previously discussed

in Chapter 1. To alleviate this issue, the simulation framework presented on Section 1.5, inspired by

the well-known Wald’s evaluation protocol dedicated to pansharpening algorithms [WRM97], allows

to assess the performance of CD algorithms when dealing with optical images of different spatial and

spectral resolutions. This framework only requires a single HR-HS reference image Xref and generates

a pair of latent HR-HS images X1 and X2 resulting from an unmixing-mixing process. This process

allows synthetic yet realistic changes to be incorporated within one of these latent images. A pre-

defined binary reference HR change mask DHR ∈ Rn locates the pixels affected by these changes and

can be further used to assess the performance of the CD algorithms. This procedure allows various

physically-inspired changes to be considered, e.g., by tuning the relative abundance of each endmember

or replacing one of them by another.

This protocol was described in details in Section 1.5, as well as its experimental set-ups. Keeping

in mind that all scenarios can be addressed by this protocol, but to maintain consistency in results

comparing to the strategy of Chapter 1, this section addresses only Scenario S4. Also, most of the

settings of the protocol remain the same as:

• The reference image, used in the simulation experiments reported in this section, is a 610×330×

115 HS image of the Pavia University described in more details in Section 1.5.2.

90



Chapter 2. Robust fusion-based approach

• The changes are generated using the same procedure as the one adopted on Section 1.5.3, from a

previously selected change mask DHR and change-inducing functions ϑt· : RR×n × Rn → RR×n.

• The observed images are generated, for Scenario S4, under 3 distinct situations involving 3 pairs

of images of different spatial and spectral resolutions, namely,

Situation 1 considers HR-MS and LR-HS images.

Situation 2 considers HR-PAN and LR-HS images,

Situation 3 considers HR-PAN and LR-MS images,

The degradations are described in more details in Section 1.5.4.

2.5.2. Compared methods and figures-of-merit

The proposed robust fusion-based CD technique has been compared to four methods able to deal with

optical images of different spatial and spectral resolutions. The first one is the fusion-based approach

that has been proposed in Chapter 1. Contrary to the model (2.40) proposed in this chapter, it consists

in recovering a common latent image by fusing the two observed images and then predicting an HR

(PAN or MS) image ŶF
HR from the underlying forward model. An HR change image ∆YF

HR has been

then computed as in (2.1) from the pair of HR observed and predicted images
{

YHR, ŶF
HR

}

. Finally,

a CVA similar to the decision rule detailed in Section 2.2.1 has been conducted on ∆YF
HR to produce

an estimated HR change mask denoted D̂F.

The second method aims at producing an HR predicted image by successive spatial superresolution

and spectral degradation. More precisely, an HR latent image is first recovered by conducting a band-

wise spatial superresolution of the observed LR YLR following the fast method in [Zha+16]. Then

this latent image is spectrally degraded according to produce an HR predicted image ŶSD
HR. Similarly

to the previous fusion-based method, CVA has been finally conducted on the pair
{

YHR, ŶSD
HR

}

to

produce an HR change mask denoted D̂SD. The third CD method applies the same procedure with a

reverse order of spatial superresolution and spectral degradation, and produces an HR change mask

denoted D̂DS from the pair of HR images
{

YHR, ŶDS
HR

}

. The fourth CD method, referred to as the

worst-case (WC), was detailed in Section 1.6.2 and produce a LR change mask named D̂WC.

The CD performance of these four methods, as well as the performance of the proposed robust fusion-

based method whose HR change mask is denoted D̂RF, have been visually assessed from empirical

receiver operating characteristics (ROC) as presented on Section 1.6.1.
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2.5.3. Results

Situation 1 (HR-MS and LR-HS)

The ROC curves displayed in Fig. 2.1 with corresponding metrics in Table 2.2 (first two rows)

correspond to the CD results obtained from a pair of HR-MS and LR-HS observed images. Clearly,

the proposed robust fusion-based CD technique outperforms the four other CD techniques. More

importantly, it provides almost perfect detections even for very low PFA, i.e., for very low energy

changes. Note that the CD mask DWC estimated by the worst-case method is defined at a LR.
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Figure 2.1.: Situation 1 (HR-MS and LR-HS): ROC curves.

Table 2.2.: Situations 1 , 2 & 3: quantitative detection performance (AUC and distance).

D̂RF D̂F D̂WC D̂DS D̂SD

Situation 1
AUC 0.997469 0.981039 0.941408 0.843685 0.847518

Dist. 0.990299 0.951995 0.887789 0.766677 0.771277

Situation 2
AUC 0.997418 0.931047 0.89517 0.790859 0.785019

Dist. 0.990299 0.883488 0.833783 0.718072 0.712771

Situation 3
AUC 0.994929 0.94522 0.911311 0.786255 0.779522

Dist. 0.991699 0.915992 0.864686 0.713471 0.706871

Situation 2 (HR-PAN and LR-HS)

Applying the same procedure as for Situation 1 but now considering an HR-PAN observed image

instead of the HR-MS observed image leads to very similar overall performance. The ROC plot is

displayed in Fig. 2.2 with corresponding metrics in Table 2.2 (3rd and 4th rows). As in Situation
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1, comparing curves in Fig. 2.2 shows that the proposed method offers a higher precision even when

analysing a lower spectral resolution HR observed image.
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Figure 2.2.: Situation 2 (HR-PAN and LR-HS): ROC curves.

Situation 3 (HR-PAN and LR-MS)

Following the same strategy, as for Situation 2 but now considering an LR-MS observed image instead

of the LR-HS observed image, the results lead to very similar overall performance. The ROC plot is

displayed in Fig. 2.3 with corresponding metrics in Table 2.2 (last two rows). As in Situation 1 and

2, comparing curves in Fig. 2.3 shows that the proposed method still offers outstanding detection

accuracy.

0 0.2 0.4 0.6 0.8 1

PFA

0

0.2

0.4

0.6

0.8

1

P
D

Figure 2.3.: Situation 3 (HR-PAN and LR-MS): ROC curves.

Similarly to Chapter 1, additional results comparing the abilities of detecting changes of decreasing

size for the proposed method, for the fusion-based method and for the worst-case method are deferred
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to Appendix B.1.

2.6. Results on real images

2.6.1. Reference images

The performance of the proposed algorithmic framework is using real multi-band optical data on each

specific scenario discussed in paragraph 2.4. Observed images, from 4 largely studied open access

multi-band sensors, have been chosen, namely Landsat-8 from [Uni17], Sentinel-2 from [Eur17b],

Earth observing-1 Advanced Land Imager (EO-1 ALI) [Nat17] and Airborne Visible Infrared Imaging

Spectrometer (AVIRIS) from [Jet17]. These images have been acquired over the same geographical

location, i.e., the Mud Lake region in Lake Tahoe, CA, USA between June 8th, 2011 and October

29th, 2016. Unfortunately, no ground truth information is available for the chosen image pairs, as

experienced in numerous experimental situations [BMB12]. However, this region is characterized by

interesting natural meteorological changes, e.g., drought of the Mud Lake, snow falls and vegetation

growth, occurring along the seasons which help to visually infer the major changes between two

dates and to assess the relevance of the detected changes. All considered images have been manually

geographically and geometrically aligned to fulfil the requirements imposed by the considered CD

set-up.

In addition to the data provided by these sensors, complementary images have been synthetically

generated by considering so-called virtual sensors derived from the real ones. The specifications of these

virtual sensors, summarized in Figure 2.4, are chosen such that all applicative scenarios previously

discussed can be diversely represented. They are met by selecting a subset of the initial spectral bands

or by artificially degrading the spatial resolution of the real sensors.

Landsat-8 images

Landsat-8 is the eighth Earth observation satellite series of the US LANDSAT Program [Uni17],

launched on February 11th, 2013 with a 16-days revisiting period. It is equipped with the Operational

Land Imager (OLI) and the Thermal InfraRed Sensor (TIRS). In the conducted experiments, 3 sets

of real images acquired at the dates 10/18/2013, 04/15/2015 and 09/22/2015 have been considered.

For each acquisition, Landsat-8 provides
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Figure 2.4.: Spectral and spatial characteristics of real (green) and virtual (red) sensors.

• one panchromatic image over the spectral range 0.503–0.676µm (band ♯8) at a 15m spatial

resolution (denoted PAN),

• one multispectral image of 8 spectral bands (bands ♯1–♯7 and ♯9) at a 30m resolution (denoted

MS-8).

For experimental purpose, as explained above, these real images are complemented with the following

virtually acquired images

• one multispectral image of 5 spectral bands (bands ♯1–♯4 and ♯7) at a 30m spatial resolution

(denoted MS-5),

• one red-green-blue (RGB) multispectral image of 3 spectral bands (bands ♯2–♯4) at a 30m spatial

resolution (denoted MS-3).

Sentinel-2 images

Sentinel-2 is a series of two identical satellites for Earth observation missions developed by ESA

[Eur17b] as part of the Copernicus Program launched in 2015 and 2017 with a 5-days revisiting period.
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The multi-spectral instrument embedded on each platform is composed of two different sensors for

acquisition in the visible and infrared spectral domains, respectively. The actual dataset used in the

experiments is composed of two images acquired on 04/12/2016 and 10/29/2016 and, for each real

scene, among all available spectral bands, one considers

• one multispectral image of 4 visible/near infrared (VNIR) spectral bands (bands ♯2–♯4 and ♯8)

at a 10m spatial resolution (denoted MS-4)

• one multispectral image of 6 short wave infrared spectral range (SWIR) spectral bands (bands

♯5–♯8a and ♯11–♯12) at a 20m spatial resolution (denotes MS-6)

and one additional virtually image, namely,

• one RGB multispectral image of 3 spectral bands (bands ♯2–♯4) at a 10m spatial resolution

(denoted MS-3).

EO-1 ALI images

Operated by NASA, EO-1 ALI is a Earth observation satellite part of the New Millennium Program

launched in 2000 with a 16-days repeat cycle and decommissioned in 2017 [Nat17]. The main embedded

sensor Advanced Land Imager (ALI) is complemented with the Hyperion spectrometer and the Linear

Etalon Imaging Spectrometer Array (LEISA) for atmospheric correction. The considered dataset

corresponds to 2 acquisition dates, 06/08/2011 and 08/04/2011, for

• one panchromatic image over the spectral range 0.48–0.69µm (band ♯1) at a 10m spatial resolu-

tion (denoted PAN),

• one multispectral image of 9 spectral bands (bands ♯2–♯10) at a 30m resolution (denoted MS-9),

in addition to the virtual acquisition of

• one RGB multispectral image of 3 spectral bands (bands ♯3–♯5) at a 30m spatial resolution

(denoted MS-3).

AVIRIS images

AVIRIS is the second aircraft embedding an image spectrometer developed by Jet Propulsion Labo-

ratory (JPL) for Earth remote sensing [Jet17]. It delivers calibrated images in 224 contiguous 10nm-

width spectral channels ranging from 0.4µm to 2.5µm. Since it is an airborne-dependent system, the
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spatial resolution is not a priori fixed and is designed for each individual acquisition. The dataset

considered in the conducted experiments is composed by two real images acquired on 04/10/2014 and

09/19/2014. For each scene, one considers

• the original hyperspectral image of 224 spectral bands at a 15m spatial resolution (denoted

HS-224)

• one virtual hyperspectral image of 29 spectral bands (corresponding to the RGB domain) at a

15m spatial resolution (denoted HS-29)

2.6.2. Design of the spatial and spectral degradations

The proposed model requires the prior knowledge of spectral and spatial degradation matrices L

and R = BS, respectively. Regarding the spectral degradation matrices required in each simulation

scenario, they can be easily derived from the intrinsic sensor characteristics freely available by averaging

the spectral bands corresponding to the prescribed response. Conversely, the spatial degradation is

not a sensor specification. It depends not only on the considered systems as well as external factors but

also on the targeted resolution of the fused image. This work relies on commonly adopted assumptions

by considering R as a Gaussian blur and by adjusting the downsampling factor in S as an integer

value corresponding to the relative ratio between spatial resolution of the two observed images.

2.6.3. Compared methods

As previously exposed, the proposed robust fusion-based CD framework (referred to as RF) is able to

deal with all combinations of mono- and multi-band optical images of different spatial and spectral

resolutions. However, there is no technique in the literature with such a versatility, i.e., able to address

all these scenarios. For this reason, the technique referred to as the WC method has been used as

a baseline and state-of-the-art CD technique. Recall that it preprocesses the observed images by

spatially and/or spectrally degrading them in order to reach a set of observed images of the same

spectral and spatial resolutions. Then, when handling images of same resolutions, the classical CVA

technique can be easily conducted to build a low spatial resolution change mask denoted D̂WC.

Besides, the fusion approach presented on Chapter 1 has also the ability to work with all scenarios.

It only requires that the fusion step is designed according to the pair of observed images. Then, its

subsequent steps are defined whatever the scenario. Thus, the fusion step of the RF approach can
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be conveniently applied as fusion step for the fusion based approach according to the specificities of

each scenario. The fusion-based approach allows to compute two distinguish change maps with the

same resolution as the observed images using a pre-defined CD technique. The classical CVA is used,

as for the WC method, to compute one change map accounting to highest spatial resolution, which is

denoted D̂F.

Image ♯1 Image ♯2

Sensor
Spatial

resol.

Spectral

resol. Sensor
Spatial

resol.

Spectral

resol.

S1

Landsat-8 15 PAN Landsat-8 15 PAN

Landsat-8 30 MS-3 Landsat-8 30 MS-3

AVIRIS 15 HS-224 AVIRIS 15 HS-224

S2

EO-1 ALI 10 PAN Sentinel-2 10 MS-3

Landsat-8 15 PAN AVIRIS 15 HS-29

S3

Sentinel-2 10 MS-3 EO-1 ALI 30 MS-3

Sentinel-2 10 MS-3 Landsat-8 30 MS-3

S4

Landsat-8 15 PAN Landsat-8 30 MS-3

EO-1 ALI 10 PAN Landsat-8 30 MS-3

Landsat-8 15 PAN EO-1 ALI 30 MS-3

S5

EO-1 ALI 30 MS-3 AVIRIS 15 HS-29

Landsat-8 30 MS-3 AVIRIS 15 HS-29

S6 EO-1 ALI 10 PAN Landsat-8 15 PAN

S7 Sentinel-2 10 MS-3 Landsat-8 15 PAN

S8 Landsat-8 30 MS-8 EO-1 ALI 30 MS-9

S9 Landsat-8 30 MS-5 Sentinel-2 10 MS-4

S10 Sentinel-2 20 MS-6 EO-1 ALI 30 MS-9

Table 2.3.: Pairs of real and/or virtual images, and their spatial and spectral characteristics, used for
each applicative scenario.

2.6.4. Results

The following paragraphs compare the CD performance of the proposed RF method, of the proposed

F method and of the WC approach for each applicative scenario detailed in paragraph 2.4 (see also

Table 1.1). Depending on the considered scenario, pairs of real and/or virtual images described in

paragraph 2.6.1 are selected (and summarized on Table 2.3). Note that several combinations of images

can be made for Scenarios S1–S5.
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Scenario S1

In the first scenario, CD is conducted on a pair of images of same spatial and spectral resolutions,

which corresponds to the most favourable and commonly considered CD framework. Figures 2.5 to 2.7

present the change binary masks recovered by the proposed RF-based method as well as by the F-based

method and the WC method for three pairs of panchromatic, multispectral and hyperspectral images,

respectively. Note that, in this scenario, the WC boils down to conduct CVA directly on the observed

images since they already share the same spatial and spectral resolutions and, thus, do not require to

be degraded before pixel-wise comparison. These change maps show that both CD methods detect

the most significant changes, in particular the draught of the lake. However, for all configurations, the

proposed RF method visually present CD maps with better detection/false alarm rates followed by

the F method when compared with the WC method. This can be explained by the fact that both RF

and F methods denoise the observed image while, in addition, the RF method jointly estimates the

change image ∆X. Conversely, the WC method directly uses the observed images to derive the change

image: the noise may introduce false alarms and misdetections. This is particularly visible in Fig. 2.7

depicting the results obtained from an hyperspectral image, known to be of lower signal-to-noise ratio.

(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.5.: Scenario S1: (a) Landsat-8 15m PAN observed image Y1 acquired on 04/15/2015, (b)
Landsat-8 15m PAN observed image Y2 acquired on 09/22/2015, (c) change mask D̂WC estimated by
the WC approach from a pair of 15m PAN degraded images, (d) change mask D̂F estimated by the
fusion approach from a pair of 15m PAN observed and predicted images and (e) change mask D̂RF

estimated by the proposed approach from a 15m PAN change image ∆X̂. From (f) to (j): zoomed
versions of the regions delineated in red in (a)–(e).
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(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.6.: Scenario S1: (a) Landsat-8 30m MS-3 observed image Y1 acquired on 04/15/2015, (b)
Landsat-8 30m MS-3 observed image Y2 acquired on 09/22/2015, (c) change mask D̂WC estimated by
the WC approach from a pair of 30m MS-3 degraded images, (d) change mask D̂F estimated by the
fusion approach from a pair of 30m MS-3 observed and predicted images and (e) change mask D̂RF

estimated by the proposed approach from a 30m MS-3 change image ∆X̂. From (f) to (j): zoomed
versions of the regions delineated in red in (a)–(e).

(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.7.: Scenario S1: (a) AVIRIS 15m HS-224 observed image Y1 acquired on 04/10/2014, (b)
AVIRIS 15m HS-224 observed image Y2 acquired on 09/19/2014, (c) change mask D̂WC estimated by
the WC approach from a pair of 15m HS-29 degraded images, (d) change mask D̂F estimated by the
fusion approach from a pair of 15m HS-29 observed and predicted images and (e) change mask D̂RF

estimated by the proposed approach from a 30m MS-3 change image ∆X̂. From (f) to (j): zoomed
versions of the regions delineated in red in (a)–(e).
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Scenario S2

This CD scenario deals with observed images of same spatial resolution but different spectral resolu-

tions. Figures 2.8 and 2.9 illustrate two possible situations and show the CD results of the proposed

RF-based and F-based methods compared with the WC method. In this scenario, similarly to scenario

S1, both RF and F estimated change maps have the same spatial resolution as the observed image

pair, which means that there is no loss of spatial resolution. On the other hand, the RF method, as

well as the F method, deliver change maps estimated from ∆X and the predicted pseudo-observed

image, respectively, with the highest spectral resolution of the two observed images. Conversely, the

WC method conducts CVA on a pair of images after spectral degradation to reach the lowest spectral

resolution, which possibly results in loss of significant information. The consequent impact on the

change/no-change decision is the visual reduction of false alarm rate for the RF and F method, even

if all change maps have the same spatial resolution.

(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.8.: Scenario S2: (a) EO-1 ALI 10m PAN observed image Y1 acquired on 06/08/2011, (b)
Sentinel-2 10m MS-3 observed image Y2 acquired on 04/12/2016, (c) change mask D̂WC estimated by
the WC approach from a pair of 10m PAN degraded images, (d) change mask D̂F estimated by the
fusion approach from a pair of 10m MS-3 observed and predicted images and (e) change mask D̂RF

estimated by the proposed approach from a 10m MS-3 change image ∆X̂. From (f) to (j): zoomed
versions of the regions delineated in red in (a)–(e).
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(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.9.: Scenario S2: (a) Landsat-8 15m PAN observed image Y1 acquired on 09/22/2015, (b)
AVIRIS 15m HS-29 observed image Y2 acquired on 04/10/2014, (c) change mask D̂WC estimated by
the WC approach from a pair of 15m PAN degraded images, (d) change mask D̂F estimated by the
fusion approach from a pair of 15m HS-29 observed and predicted images and (e) change mask D̂RF

estimated by the proposed approach from a 15m HS-29 change image ∆X̂. From (f) to (j): zoomed
versions of the regions delineated in red in (a)–(e).

Scenario S3

In scenario S3, corresponding to the reverse situation encountered in scenario S2, observed images

share the same spectral resolution but with different spatial resolution. Figures 2.10 and 2.11 present

the results obtained for two possible real situations. Note that change maps obtained by the RF and

F methods are of higher spatial resolutions than the ones estimated by the WC approach. Thus, this

scenario is the first to illustrate the most important advantages of these two approaches, i.e., the higher

spatial resolutions of the change maps. In scenario S2, the results have shown that the loss of spectral

information inherent to the WC approach leads to an increase of false alarms and misdetections. Here,

the loss of spatial information when conducting the WC approach results in an inaccurate localization

of the changes.
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(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.10.: Scenario S3: (a) Sentinel-2 10m MS-3 observed image Y1 acquired on 10/29/2016, (b)
EO-1 ALI 30m MS-3 observed image Y2 acquired on 08/04/2011, (c) change mask D̂WC estimated by
the WC approach from a pair of 30m MS-3 degraded images, (d) change mask D̂F estimated by the
fusion approach from a pair of 10m MS-3 observed and predicted images and (e) change mask D̂RF

estimated by the proposed approach from a 10m MS-3 change image ∆X̂. From (f) to (j): zoomed
versions of the regions delineated in red in (a)–(e).

(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.11.: Scenario S3: (a) Sentinel-2 10m MS-3 observed image Y1 acquired on 04/12/2016, (b)
Landsat-8 30m MS-3 observed image Y2 acquired on 09/22/2015, (c) change mask D̂WC estimated by
the WC approach from a pair of 30m MS-3 degraded images, (d) change mask D̂F estimated by the
fusion approach from a pair of 10m MS-3 observed and predicted images and (e) change mask D̂RF

estimated by the proposed approach from a 10m MS-3 change image ∆X̂. From (f) to (j): zoomed
versions of the regions delineated in red in (a)–(e).
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Scenario S4

This scenario has been deeply investigated on Section 2.5 in which was conducted a comprehensive

analysis of the performance of the RF-based method. This scenario corresponds to a more difficult CD

investigation than all previous ones since the pair of observed images have not the same spatial neither

spectral resolutions. As a consequence, the conventional WC approach is constrained to compare a

spatially degraded version of one observed image with a spectrally degraded version of the other

observed image. Irredeemably, these degradations result in a loss of spectral information, essential

to assess the presence of change, and a loss of spatial information, required to accurately localize

the possible changes. On the contrary, the proposed RF method is able to derive the change mask

from a change image characterized by the best of the spectral and spatial resolution of the observed

images. The F method, while it estimates the change map with the same spatial resolution as the RF

method, proceeds on a lower spectral resolution image, which end-up by a higher false-alarm/detection

rate than the one obtained with the RF method, however lower than the one obtained with the WC

method. Figures 2.12 to 2.14 depict the CD results obtained for three common configurations and

illustrate the superiority of the RF-based CD method.

(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.12.: Scenario S4: (a) Landsat-8 15m PAN observed image Y1 acquired on 09/22/2015, (b)
Landsat-8 30m MS-3 observed image Y2 acquired on 04/15/2015, (c) change mask D̂WC estimated
by the WC approach from a pair of 30m PAN degraded images, (d) change mask D̂F estimated by
the fusion approach from a pair of 15m PAN observed and predicted images method and (e) change
mask D̂RF estimated by the proposed approach from a 15m MS-3 change image ∆X̂. From (f) to (j):
zoomed versions of the regions delineated in red in (a)–(e).

104



Chapter 2. Robust fusion-based approach

(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.13.: Scenario S4: (a) EO-1 ALI 10m PAN observed image Y1 acquired on 06/08/2011, (b)
Landsat-8 30m MS-3 observed image Y2 acquired on 09/22/2015, (c) change mask D̂WC estimated
by the WC approach from a pair of 30m PAN degraded images, (d) change mask D̂F estimated by
the fusion approach from a pair of 10m PAN observed and predicted images method and (e) change
mask D̂RF estimated by the proposed approach from a 10m MS-3 change image ∆X̂. From (f) to (j):
zoomed versions of the regions delineated in red in (a)–(e).

(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.14.: Scenario S4: (a) Landsat-8 15m PAN observed image Y1 acquired on 09/22/2015, (b)
EO-1 ALI 30m MS-3 observed image Y2 acquired on 06/08/2011, (c) change mask D̂WC estimated
by the WC approach from a pair of 30m PAN degraded images, (d) change mask D̂F estimated by
the fusion approach from a pair of 15m PAN observed and predicted images method and (e) change
mask D̂RF estimated by the proposed approach from a 15m MS-3 change image ∆X̂. From (f) to (j):
zoomed versions of the regions delineated in red in (a)–(e).
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Scenario S5

As in the previous case, this scenario handles images which do not share the same spatial neither

spectral resolutions. However, contrary to scenario S4, this scenario considers one of the two images

of higher spatial and spectral resolution. Again, the WC is expected to be less reliable (in terms

of decision and localization) due to the loss of spectral and spatial information consecutive to the

degradations before conducting CVA. Figures 2.15 and 2.16 present the results obtained from two

possible real configurations. As expected the RF-based CD method provides visually more satisfactory

results. The F-based method provides change maps of same spatial and spectral resolution as the RF-

based method. Nevertheless, as it compares an estimated image with the raw observed image, the

SNR difference between them may increase the false alarm/detection rate compared to the RF-based

method. In particular, as shown in Fig. 2.16, the WC method is unable to accurately localize the

change due to the lake draught from the pair of multispectral and hyperspectral images.

(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.15.: Scenario S5: (a) EO-1 ALI 30m MS-3 observed image Y1 acquired on 08/04/2011, (b)
AVIRIS 15m HS-29 observed image Y2 acquired on 04/10/2014, (c) change mask D̂WC estimated
by the WC approach from a pair of 30m MS-3 degraded images, (d) change mask D̂F estimated by
the fusion approach from a pair of 15m HS-29 observed and predicted images method and (e) change
mask D̂RF estimated by the proposed approach from a 15m HS-29 change image ∆X̂. From (f) to (j):
zoomed versions of the regions delineated in red in (a)–(e).
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(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.16.: Scenario S5: (a) Landsat-8 30m MS-3 observed image Y1 acquired on 04/15/2015, (b)
AVIRIS 15m HS-29 observed image Y2 acquired on 09/19/2014, (c) change mask D̂WC estimated
by the WC approach from a pair of 30m MS-3 degraded images, (d) change mask D̂F estimated by
the fusion approach from a pair of 15m HS-29 observed and predicted images method and (e) change
mask D̂RF estimated by the proposed approach from a 15m HS-29 change image ∆X̂. From (f) to (j):
zoomed versions of the regions delineated in red in (a)–(e).

Scenario S6

This scenario represents a particular instance of scenario S3, i.e., with two observed images of different

spatial resolutions but same spectral resolution. Nevertheless, here, the two spatial resolutions are

related by a non-integer downsampling ratio which precludes the use of a unique spatial degradation

matrix in the RF-based CD method. As detailed in paragraph 2.4.6, super-resolutions are conducted

during the fusion and correction steps of the AM algorithm, which leads to a change image ∆X̂

with a spatial resolution higher than the ones of the two observed images (defined as the greatest

common divisor of the resolutions). For instance, Fig. 2.17 illustrates one possible configuration for

which the observed images Y1 and Y2, depicted in Fig. 2.17(a) and 2.17(b), are of 15m and 10m

spatial resolutions, respectively. Thus the change image ∆X̂ and change mask d̂RF estimated by the

RF method are at a 5m resolution. The F method produces a change map with the highest spatial

resolution of the two observed images, in this case, 10m. Conversely, the WC method provides a

change map at a spatial resolution equal to the least common multiple, which is, in this case, 30m.

The significantly higher spatial resolution of the change map is clear in Fig. 2.17(e).
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(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.17.: Scenario S6: (a) Landsat-8 15m PAN observed image Y1 acquired on 10/18/2013, (b)
EO-1 ALI 10m PAN observed image Y2 acquired on 08/04/2011, (c) change mask D̂WC estimated by
the WC approach from a pair of 30m PAN degraded images, (d) change mask D̂F estimated by the
fusion approach from a pair of 10m PAN observed and predicted images method and (e) change mask
D̂RF estimated by the proposed approach from 5m PAN change image ∆X̂. From (f) to (j): zoomed
versions of the regions delineated in red in (a)–(e).

Scenario S7

This scenario correspond to a more challenging context than scenario S6 since, in addition to the

non-integer relative downsampling factor, the two observed images do not share the same spectral

resolution. As before, the change image ∆X̂ and the binary change mask D̂RF estimated by the RF-

based method are defined at a higher spatial resolution than the observed images. Figure 2.18 presents

one example of this scenario. The F-based method outperforms the WC method because it estimates

a change map with the highest spatial resolution of the pair of observed images. Nevertheless, this

change map is of lower spectral resolution than the one estimated by the RF-based method. This

explains the observed differences on the false alarm/detection rates for the three methods.
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(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.18.: Scenario S7: (a) Sentinel-2 10m MS-3 observed image Y1 acquired on 04/12/2016, (b)
Landsat-8 15m PAN observed image Y2 acquired on 09/22/2015, (c) change mask D̂WC estimated by
the WC approach from a pair of 30m PAN degraded images, (d) change mask D̂F estimated by the
fusion approach from a pair of 10m MS-3 observed and predicted images method and (e) change mask
D̂RF estimated by the proposed approach from 5m MS-3 change image ∆X̂. From (f) to (j): zoomed
versions of the regions delineated in red in (a)–(e).

Scenario S8

Scenario S8 generalizes scenario S2, by considering non-overlapping bands in the two sensor spectral

responses. This configuration requires the simultaneous use of two spectral degradation matrices in the

proposed RF method. Figure 2.19 provides one instance of this scenario. Due to the presence of non-

overlapping bands, before conducting CVA, the WC requires to ignore the spectral bands which are

not commonly shared by the two observed images. Conversely, by fully exploiting the whole available

spectral information, the proposed method combines the overlapped bands and the non-overlapping

bands to estimate a change image ∆X̂ of higher spectral resolution than the two observed images.

This higher amount of information leads to visually more consistent results in Fig. 2.19(e). The

F-based method, on one hand, outperforms the WC method by estimating the change map with the

highest spectral resolution of the observed image pair, in this case 30m MS-9. On the other hand, the

F-based method is not able to exploit the high resolution spectral content as the RF-based method.
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(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.19.: Scenario S8: (a) Landsat-8 30m MS-8 observed image Y1 acquired on 04/15/2015, (b)
EO-1 ALI 30m MS-9 observed image Y2 acquired on 06/08/2011, (c) change mask D̂WC estimated
by the WC approach from a pair of 30m MS-7 degraded images, (d) change mask D̂F estimated by
the fusion approach from a pair of 30m MS-9 observed and predicted images method and (e) change
mask D̂RF estimated by the proposed approach from 30m MS-10 change image ∆X̂. From (f) to (j):
zoomed versions of the regions delineated in red in (a)–(e).

Scenario S9

This scenario corresponds to a modified instance of scenario S4 (images of different spatial and spectral

resolutions) with some non-overlapping bands (as for the previous scenario). The results obtained for

one configuration are depicted in Figure 2.20. In this case, the change image ∆X̂ is characterized by

a spatial resolution equal to the highest spatial resolution of the observed images and with a spectral

resolution higher than the spectral resolution of both observed images. The F-based method produces

a change map with the highest spatial resolution but with lower spectral resolution than the RF-based

method, in this example 10m MS-4. Once again, the results show the accuracy of the proposed RF

method in terms of detection and spatial resolution of the estimated change map.
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(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.20.: Scenario S9: (a) Landsat-8 30m MS-5 observed image Y1 acquired on 09/22/2015, (b)
Sentinel-2 10m MS-4 observed image Y2 acquired on 04/12/2016, (c) change mask D̂WC estimated
by the WC approach from a pair of 30m MS-3 degraded images, (d) change mask D̂F estimated by
the fusion approach from a pair of 10m MS-4 observed and predicted images method and (e) change
mask D̂RF estimated by the proposed approach from a 10m MS-6 change image ∆X̂. From (f) to (j):
zoomed versions of the regions delineated in red in (a)–(e).

Scenario S10

The last scenario combines the difficulties previously encountered: images of different spatial and

spectral resolution, characterized by a non-integer relative downsampling factor and non-overlapping

spectral bands. As for scenarios S6 and S7, the change image ∆X̂ and change mask D̂RF recovered

by the RF-based method is of higher spatial resolution than the two observed images. In addition, as

for scenario S8 and S9, the change image is also defined at a higher spectral resolution. The F-based

method produces the change map D̂F with the highest spatial resolution of the pair of observed images

but with lower spectral resolution than the RF-based method. Conversely, the WC approach derives a

change image of lower spatial and spectral resolutions before conducting CVA. Figure 2.21 depicts the

results obtained by both methods. On this particularly challenging scenario, the proposed approach

demonstrates its superiority in recovering relevant changes and in localizing them accurately.
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(a) Y1 (b) Y2 (c) D̂WC (d) D̂F (e) D̂RF

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂WC (i) zoomed D̂F (j) zoomed D̂RF

Figure 2.21.: Scenario S10: (a) Sentinel-2 20m MS-6 observed image Y1 acquired on 04/12/2016, (b)
EO-1 ALI 30m MS-9 observed image Y2 acquired on 06/08/2011, (c) change mask D̂WC estimated
by the WC approach from a pair of 60m MS-4 degraded images, (d) change mask D̂F estimated by
the fusion approach from a pair of 20m MS-6 observed and predicted images method and (e) change
mask D̂RF estimated by the proposed approach from a 10m MS-11 change image ∆X̂. From (f) to
(j): zoomed versions of the regions delineated in red in (a)–(e).

2.7. Conclusion

This chapter derived a robust fusion framework to perform change detection between optical images

of different spatial and spectral resolutions. The versatility of the proposed approach allowed all

possible real scenarios to be handled efficiently. The technique was based on the definition of two high

spatial and spectral resolution latent images related to the observed images via a double physically-

inspired forward model. The difference between these two latent images was assumed to be spatially

sparse, implicitly locating the changes at a high resolution scale. Inferring these two latent images

was formulated as an inverse problem which was solved within a 2-step iterative scheme. Depending

on the considered scenario, these 2 steps can be interpreted as ubiquitous signal and image processing

problems (namely spatial super-resolution, spectral deblurring, denoising or multi-band image fusion)

for which closed-form solutions or efficient algorithms had been recently proposed in the literature.

Contrary to the methods already proposed in the literature and in the previous chapter, modeling

errors were not anymore propagate in-between steps. Benefiting from the proposed simulation protocol

of Chapter 1, the performance of the proposed technique in terms of detection and precision was
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assessed and compared with the performance of various algorithms. Beside, real images acquired by

four different sensors were used to illustrate the accuracy and the flexibility of the proposed method,

as well as its superiority with respect to the state-of-the-art CD methods.

This second chapter completed the CD task between observed images of different spatial and spectral

resolution by considering a more robust approach than the one proposed in the first chapter. The

next chapter comes to extrapolate the CD from multiband optical configurations to images of different

modalities, notably detecting changes between optical and non-optical data.

Main contributions The main contributions of this chapter lies on the modelling of the CD between

any two multiband optical images in a robust-fusion based approach. Instead of fusing all regions of

the image and estimating a single latent image, the difference between two latent images accounting

to each different input images are assumed to be spatially sparse, implicitly locating the changes at

a high resolution scale. The technique was based on the definition of two high spatial and spectral

resolution latent images related to the observed images via a double physically-inspired forward model.

Inferring these two latent images was formulated as an inverse problem which was solved within a 2-step

iterative scheme. Depending on the considered scenario these 2 steps can be interpreted as ubiquitous

signal and image processing problems (namely spatial super-resolution, spectral deblurring, denoising

or multi-band image fusion) for which closed-form solutions or efficient algorithms had been recently

proposed in the literature.
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Coupled dictionary learning-based

approach

This chapter has been adapted from the paper [Fer+18a].
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3.1. Introduction

The literature about multimodal CD is very limited as exposed on Section II.4. Recently, an unsu-

pervised multimodal CD method based on coupled dictionary learning approach was addressed by

[Gon+16]. In the proposed methodology, the CD is based on the reconstruction error of patches ap-
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proximated thanks to an estimated coupled dictionary and independent sparse codes. Following the

same principle, in [LYZ17] a semi-supervised method was used to handle multispectral image based

on joint dictionary learning. Both methods rely on the rationale that a coupled dictionary estimated

from observed images produces stronger reconstruction errors in change regions than in unchanged

ones. The problem is not solved in the image space, due to the incompatibilities of modalities, but in

a latent coupled space formed by the coupled dictionary atoms. However, both methods exhibit some

crucial issues that may impair their relative performance. First, the underlying optimization problem

is highly nonconvex and the convergence is not guaranteed even using well-tried dictionary learning

methods [AEB06]. Then, the considered CD problem is split into two distinct steps: dictionary learn-

ing and code estimation. Errors between estimations may produce false alarms in the final CD task

even for accurate dictionary estimations. Also, the statistical model of the noise – inherent to each

modality modality/sensor – has not been taken into consideration explicitly, which may dramatically

impact the CD performance [CW11]. Besides, the proposed approaches do not consider overlapping

patches, which may decrease the spatial accuracy of CD. Nevertheless, the central problem is that

these methods do not explicitly handle the problem of differences in resolutions in any sense as ex-

posed on chapters 1 and 2. Differences related to the size of patches and scale of the data may severely

contribute to bias the coupling of the dictionaries and to finally decrease the CD performance.

In this chapter, a coupled dictionary approach is proposed to represent multimodal data. Specifically,

contrary to the aforementioned methods, the problem is fully formulated without splitting the learning

and coding steps. Also, an appropriate statistical model is derived to describe the image from each

specific remote sensing modality. Overlapping patches are also considered. In order to couple images

with different resolutions, additional scaling matrices, inspired by the work in [Sei+14], are jointly

estimated within the whole process. The highly nonconvex considered problem is solved using an

iterative algorithm based on the Proximal Alternating Linearized Minimization (PALM) algorithm

[BST14]. Indeed PALM offers critical point convergence guarantees for some nonconvex nonsmooth

problems. To emphasize the link with previous chapters, the coupling of dictionaries can be understood

as a fusion problem and the fusion result is used to detect changes. Nevertheless, here the fusion process

does not provide a fused image, as in Chapter 1, but a code that represents the two images.

This chapter is organized as follows. Generic and well-known image models are introduced in

Section 3.2. Section 3.3 formulates the CD problem as a coupled dictionary learning instance. Section

3.4 proposes an algorithmic solution to minimize the resulting CD-based objective function. Section
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3.5 reports experimental results obtained on synthetic images, considering three distinct simulation

scenarios. Experiments conducted on real images are presented in Section 3.6. Finally, Section 3.7

concludes the presented chapter.

3.2. Image models

3.2.1. Forward model

The generic forward model discussed on Section 1.2.1 describes the image formation process of any

digital remote sensing imagery modalities. T [·] denotes a sequence of operations applied to the original

scene and leading to the output image Y ∈ Rmλ×m. In Chapter 1 and Chapter 2, this general model

was declined into specific forward models for observed multiband optical images. These models are

formed by the composition of spatial and spectral resolution degradations and mismodeling effects,

acting on latent (i.e unobserved) images. For a generalization to images of different modalities, in

this chapter T [·] takes into account the specific noise produced by the considered sensor. Adopting

the same notation as in (1.4), the transformation is denoted TN [·], where N stands for the noise

characterizing the specific remote sensing modality. Thus, the latent image X ∈ Rnλ×n related to Y

through the transformation TN [·] (i.e. Y = TN [X]) is a noise-free version of the observed image with

the same resolution, which means that mλ = nλ and m = n. Moreover, the row dimension of output

image mλ is no longer restricted to the number of optical spectral bands, but can also refer to the

number of polarization modes in POLSAR images, for instance.

More precisely, the transformation TN [·] underlies the likelihood function p(Y|X) which statistically

models the observed image Y conditionally to the latent image X by taking into account the noise

statistics. These statistical noise models mainly depend on the modality of the sensor and rely on some

classical distributions, e.g., the Gaussian distribution for optical images or the Gamma distribution for

multi-look SAR images. Moreover, as already pointed out in [FBD09; Cru+ed] in different applicative

contexts, for a wide family of distributions, this likelihood function relies on a divergence measure

D(·|·) between the observed and latent images, which finally defines an explicit data-fitting term

through a negative-log transformation

− log p(Y|X) = φ−1D(Y|X) + θ (3.1)
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where φ and θ are parameters characterizing the distributions. In Appendix C.2, the divergence

measures D(·|·) are derived for two of the most common remote sensing modalities of images, namely

optical multiband and SAR images, considered in this work.

3.2.2. Latent image sparse model

Sparse representations have been an ubiquitous and well-admitted tool to model images in various

applicative and task-driven contexts [EFY10; Mai14; Del11; GO08] such as: denoising [MES08a;

MES08b; Mai+09a; Hua+12; Tab16; BCM05; AA02], deblurring [Cou+11; Xia+15], inpainting

[AEB06; HWC14], superresolution [Yan+10; Yan+12; ZEP10; Wan+12], compression [AEB06; CY11],

classification [Mai+08; RNC14; Bah+16], fusion [KHK16; YZ14; Son+14] and many others. Indeed,

natural images are known to be compressible in a transformed domain, i.e., they can be efficiently

represented by a few expansion coefficients acting on basis functions [Mal09]. This finding has mo-

tivated numerous works on image understanding, compression and denoising [OF96; OF97; CDS01].

In earlier works, this transformed domain, equivalently defined by the associated basis functions, was

generally fixed in advance in agreement with the expected spatial content of the images. Thus, the ba-

sis functions belonged to pre-determined families with specific representation abilities, such as cosines,

wavelets, contourlets, shearlets, among others [Mal09]. More recently, the seminal contribution by

Aharon et al. proposed a new paradigm by learning an overcomplete dictionary jointly with a sparse

code [AEB06]. This dictionary learning-based approach exploits the key property of self-similarity

characterizing the images to provide an adaptive representation. Indeed, it aims at identifying el-

ementary patches that can be linearly and sparsely combined to approximate the observed image

patches. In this chapter, we propose to resort to this dictionary-based representation to model the

latent image X. More precisely, first, the image is decomposed into patches. Let Ri ∈ Rnλn×k2nλ

denote a binary operation modelling the extraction, from the image, of a patch centred at the i-th

lexicographic pixel such that

pi = RiX. (3.2)

pi ∈ Rk2nλ represents the k × k × nλ patch in its vectorized form. Note that the conjugate of the

patch-extraction operator, denoted RT
i , acts on pi to produce an image in which pi is put back into

the image, centred at the i-th lexicographical pixel and pads the rest of the image with zeros.

Following dictionary-based representation, these patches are assumed to be approximately inde-
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pendently modeled as a sparse combination of atoms belonging to an overcomplete dictionary H ∈

Rk2nλ×nh = [h1, · · · , hnh
]

pi|H, wi ∼ N
(

Hwi, σ2Inh

)

(3.3)

where hj ∈ Rk2nλ represents the j-th atom of the dictionary, wi ∈ Rnh represent the code (coefficients)

of the current patch over the dictionary, Σ = σ2Inh
is the error covariance matrix and nh stands for

the number of atoms composing the dictionary, commonly referred to as dictionary size. Besides,

P ∈ Rk2nλ×np =
[

p1, · · · , pnp

]

corresponds to the patch matrix which stacks all patches extracted

from the latent image and W ∈ Rnh×np =
[

w1, · · · , wnp

]

the code matrix. The i-th column of W

represents the code of the i-th column of P. Note that the number of patches is such that np ≤ n and

patches may overlap. The overcompletness property of the dictionary, occuring when the number of

atoms is greater than the effective dimensionality of the input space, nh ≫ k2nλ, allows for the sparsity

of the representation [OF97]. Note that overcompletness implies redundancy and non-orthogonality

between atoms. This property is not necessary for the decomposition but has been proved to be very

useful in some applications like denoising and compression [AEB06].

Given the image patch matrix P, dictionary learning aims at recovering the set of atoms H and

the associated code matrix W and it is generally tackled through a 2-step procedure. First, inferring

the code matrix W associated with the patch matrix P and the dictionary H can be formulated as a

set of np sparsity-penalized optimization problems. Sparsity of the code vectors wi = [w1i, . . . , wnhi]
T

(i = 1, . . . , np) can be promoted by minimizing its ℓ0-norm. However, since this leads to a non-convex

problem [CDS01], it is generally substituted by the corresponding convex relaxation, i.e., an ℓ1-norm.

Within a probabilistic framework, taking into account the expected non-negativeness of the code, this

choice can be formulated by assigning a single-side (i.e., Laplacian) prior distribution to the code

components, assumed to be a priori independent

wi ∼
nh
∏

j=1

L(wji; λ) (3.4)

where λ is the hyperparameter adjusting the sparsity level over the code.

Conversely, learning the dictionary H given the code W can also be formulated as an optimization

problem. As the number of solutions for the dictionary learning problem can be extremely large,

one common assumption is to constrain the energy of each atom, thereby preventing H to become
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arbitrarily large [Mai+09b]. Moreover, in the particular context considered in this chapter, to promote

the positivity of the reconstructed patches, the atoms are also constrained as well to positive values.

Thus, each atom will be constrained to the set

S ,
{

H ∈ R
k2nλ×nh
+ | ∀j ∈ {1, . . . , nh} ‖hj‖

2
2 = 1

}

. (3.5)

3.2.3. Optimization problem

Adopting a Bayesian probabilistic formulation of the hierarchical image model introduced in Sections

3.2.1 and 3.2.2, the posterior probability of the unknown variables X, H and W can be derived using

the probability chain rule [Gel04]

p(X, H, W|Y) ∝ p(Y|X)p(X|H, W)p(H)p(W) (3.6)

where p(Y|X) is the likelihood function relating the observation data to the latent image through

the direct model (1.1), p(X|H, W) is the dictionary-based prior model of the latent image, p(H) and

p(W) are the (hyper-)prior distributions associated with the dictionary and the sparse code. Under

a maximum a posteriori (MAP) paradigm, the joint MAP estimator
{

X̂MAP, ĤMAP, ŴMAP

}

can be

derived by minimizing the negative log-posterior, leading to the following minimization problem

{

X̂MAP, ĤMAP, ŴMAP

}

∈ arg min
X,H,W

J (X, H, W) (3.7)

with

J (X, H, W) = D(Y|X) +
σ2

2

np
∑

i=1

‖RiX−Hwi‖
2
F + λ ‖W‖1 + ιS(H) (3.8)

where ιS represent the indicator function of the set S,

ιS(z) =











0 if z ∈ S

+∞ elsewhere
(3.9)

and D(·|·) represent the likelihood divergence, or the data-fitting term, according to the image modal-

ity.

This model has been widely advocated in the literature, e.g., for denoising and deblurring images

of various modalities [EA06; Ma+13]. Particularly, in [Ma+13], an additional regularization Ψ (X)
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of the latent image was introduced as the target modalities may present strong fluctuations due to

their inherent image formation process, i.e. Poissonian or multiplicative gamma processes. The final

objective function (3.8) can thus be written as

J (X, H, W) = D(Y|X) +
σ2

2

np
∑

i=1

‖RiX−Hwi‖
2
F + λ ‖W‖1 + ιS(H) + Ψ (X) (3.10)

where, for instance, Ψ (X) can stand for a total-variation (TV) regularization as in [Ma+13].

The next section expands the proposed image models to handle a pair of observed images in the

specific context of CD.

3.3. From change detection to coupled dictionary learning

3.3.1. Problem statement

Let us consider two co-registered observed images Y1 ∈ Rn1nλ1 and Y2 ∈ Rn2nλ2 acquired by two

sensors S1 and S2 at times t1 and t2, respectively. Acquisition time ordering is indifferent, as in

previous chapters. The problem addressed here consists in detecting significant changes between

these two observed images. This is a more challenging task than in previous chapters since, besides

possibly dissimilar resolutions, we consider also possibly different modalities. This prevent from the

use of classical CD algorithms ([Sin89; BB15]) or even of more robust CD algorithms (Chapter 1

and Chapter 2) specialized on same image modality. To alleviate this issue, this chapter proposes to

improve and generalize the CD methods introduced in [Sei+14; Gon+16; LYZ17]. Following the widely

admitted forward model described in Section 3.2.1 and adopting consistent notations, the observed

images Y1 and Y2 can be related to two latent images X1 ∈ Rn1nλ1 and X2 ∈ Rn2nλ2

Y1 = TN1 [X1] (3.11a)

Y2 = TN2 [X2] (3.11b)

where TN1 and TN2 denote two operators related to the noise corruption processes imposed by the

sensors S1 and S2, respectively. Note that (3.11) is a double instance of model (1.1). In particular, the

two latent images X1 and X2 represent exactly the same geographical region provided the observed

images have been beforehand co-registered.
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Both latent images can be represented thanks to a dedicated dictionary-based decomposition, as

stated in Section 3.2.2. More precisely, a pair of homologous patches extracted from each image repre-

sents the same geographical spot. Each patch can be reconstructed from a sparse linear combination

of atoms of an image-dependent dictionary. In absence of changes between the two observed images,

the sparse codes associated with the corresponding latent image are expected to be approximately

the same and the two learned dictionaries are coupled [Yan+10; Yan+12; ZEP10]. This coupling can

be understood as the ability of giving a joint representation for homologous multiple observation in

a latent coupled space [Gon+16]. Akin to the manifold proposed in [Pre+15a], this representation

offers the opportunity to analyze images representing different physical information in a common dual

space. In the case where homologous patches represent the same scene, given perfect estimated cou-

pled dictionaries, both scenes should be exactly reconstructed thanks to the same sparse code. In

other words, the pair of patches is an element of the latent coupled space. Nevertheless, in the case

where the homologous patches pair does not represent the same scene, due to changes in between ac-

quisitions, perfect reconstruction cannot be achieved using the same code, which equivalently means

that the pair of patches does not belong to the coupled space. Using the same code for reconstruction

amounts to estimate the point in the coupled space that best approximate the patch pair. Thereby,

relaxing this constraint in change locations provides an accurate reconstruction of both images while

spatially mapping change locations. In the specific context of CD addressed in this chapter, this

finding suggests to evaluate any change between the two observed, or equivalently latent, images by

comparing the corresponding code, similarly as is Chapter 2:

∆W = W2 −W1 (3.12)

where ∆wi ∈ Rnh denotes the code change vector in the i-th pixel. Then, to spatially locate the

changes, a natural approach consists in monitoring the magnitude part ∆W, summarized by the code

change energy [BMB12]

e =
[

e1, . . . , enp

]

∈ Rnp (3.13)

with

ei = ‖∆wi‖2 , i = 1, . . . , np. (3.14)
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When the CD problem in the i-th pixel is formulated as the binary hypothesis testing











H0,i : no change occurs in the ith pixel

H1,i : a change occurs in the ith pixel
(3.15)

a pixel-wise statistical test can be written by thresholding the code change energy

ei

H1,i

≷
H0,i

τ. (3.16)

The final binary CD map denoted D = [d1, . . . , dn] ∈ {0, 1}n can be derived as

di =











1 if ei ≥ τ (H1,i)

0 otherwise (H0,i).
(3.17)

As a consequence, to solve the multimodal image CD problem, the key issue lies in the joint estimation

of the pair of representation codes {W1, W2} or, equivalently, the joint estimation of one code matrix

and the change code matrix, i.e., {W1, ∆W}, as well as the pair of coupled dictionary {H1, H2} and

consequently the pair of latent images {X1, X2} from the joint forward model (3.11). Finally, the next

paragraph introduces the CD-driven optimization problem to be solved.

3.3.2. Coupled dictionary learning for CD

The single dictionary estimation problem presented on Section 3.2.3 can be generalized to take into

account the modeling presented on Section 3.3.1. Nevertheless, some previous considerations must be

carefully handled in order to guarantee a good coupling of the dictionaries.

As the prior information about the dictionaries constrains each atom into the set S of unitary energy

defined by (3.5), an unbiased estimation of the code change vector would allow a pair of unchanged ho-

mologous patches to be reconstructed with exact the same code, while changed patches would exhibit

differences in their code. Obviously, this can only be achieved if the coupled dictionaries represent

data with the same dynamics and resolutions. However, when analyzing images of different modalities

and/or resolution, this assumption can be not fulfilled. To alleviate this issue, we propose to resort to

the strategy proposed in [Sei+14], by introducing an additional diagonal scaling matrix constrained

to the set C ,
{

S ∈ R
nh×nh
+ | S = diag(s), s � 0

}

. This scaling matrix gathers the code energy dif-

ferences originated from different modalities for each pair of coupled atoms. This is essential to ensure
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that the sparse codes of the two observed images are directly comparable, following (3.12), and then

properly estimated. Therefore, considering a pair of homologous patches, their joint representation

model derived from (3.3) can be written as

p1,i = R1i
X1 ≈ H1Sw1,i

p2,i = R2i
X2 ≈ H2w2,i = H2 (w1,i + ∆wi)

(3.18)

where {p1,i, p2,i} represents the homologous patch pair and S is the diagonal scaling matrix.

Since codes W1 and W2 are now element-wisely comparable, a natural choice to enforce coupling

between them should be the equality W1 = W2 = W. This has been a classical assumption in various

coupled dictionary learning applications [Yan+10; Guo+14; XQC14]. Note the similarity between this

assumption and the one exposed on Section 2.2.2. Indeed, this assumption can be seen in a fusion

perspective. As the fusion product of different modalities may not correspond to a real quantity, one

possible strategy is to consider other representations for the fusion results. Here this representation is

based on coupled dictionaries and a single code representation. Nevertheless, in a CD context, some

spatial positions may not contain the same objects, as exposed in Section 3.3.1, and so a different

strategy must be carried out. This can be possibly achieved by relaxing the equality constraint in

given specific locations. As in Chapter 2, the coupling function must reflect the fact that most of

the patches are expected to remain unchanged in X1 and X2, i.e., most of the columns of the code

change matrix ∆W are expected to be null vectors. This noticeable property can be easily translated

by promoting the sparsity of the code change energy matrix e defined by (3.13). As a consequence,

the corresponding regularizing function is chosen as the sparsity-inducing ℓ1-norm of the code change

energy matrix e or, equivalently, as the ℓ2,1-norm of the code change matrix

φ2 (∆W) = ‖∆W‖2,1 =
np
∑

i=1

‖∆wi‖2 . (3.19)

This regularization is a specific instance of the non-overlapping group-lasso penalization [Bac11] which

has been considered in various applications to promote structured sparsity [Cot+05; LJY09; WNF09;

FD15b].

Then, hierarchical Bayesian model extending the one derived for a single image (3.7) leads to the
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posterior distribution of the parameters of interest

p (X1, X2, H1, H2, S, W1, ∆W|Y1, Y2) ∝

p(Y1|X1)p(Y2|X2)p(X1|H1, S, W1)p(X2|H2, W1, ∆W)p(H1)p(H2)p(S)p(W1)p(∆W). (3.20)

By incorporating all previously defined prior distribution (or, equivalently, regularizations), the joint

MAP estimator Θ̂MAP =
{

X̂1,MAP, X̂2,MAP, Ĥ1,MAP, Ĥ2,MAP, ŜMAP, Ŵ1,MAP, ∆ŴMAP

}

of the quan-

tities of interest can be obtained by minimizing the negative log-posterior, leading to the following

minimization problem

Θ̂MAP ∈ arg min
Θ

J (Θ) (3.21)

with

J (Θ) , J (X1, X2, H1, H2, S, W1, ∆W)

= D(Y1|X1) +
σ2

1

2

np
∑

i=1

‖R1,iX1 −H1Sw1,i‖
2
F + Ψ (X1) + λ ‖W1‖1 + ιS(H1)

+D(Y2|X2) +
σ2

2

2

np
∑

i=1

‖R2,iX2 −H2 (w1,i + ∆wi)‖
2
F + Ψ (X2) + λ ‖W1 + ∆W‖1 + ιS(H2)

+ γ ‖∆W‖2,1 + ιC(S)
(3.22)

The next section describes algorithmic solutions to the minimization problem in (3.21).

3.4. Minimization algorithm

Given the nature of the optimization problem (3.21), which is genuinely nonconvex and nonsmooth,

the adopted minimization strategy relies on the proximal alternating linearized minimization (PALM)

scheme [BST14]. PALM is an iterative, gradient-based algorithm which generalizes the Gauss-Seidel

method. It performs iterative proximal gradient steps with respect to each block of variables from

Θ at a time and ensures convergence to a local critical point Θ∗. It has been successfully applied in

many matrix factorization cases [BST14; Cav+17; TDT16]. Now, the goal is to generalize the single

factorization to coupled factorization. The resulting CD-driven coupled dictionary learning (CDL)

algorithm, whose main steps are described in the following paragraphs, is summarized in Algorithm

4.
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3.4.1. PALM implementation

The PALM algorithm was proposed by [BST14] for solving a broad class of problems involving the

minimization of the sum of finite collections of possibly nonconvex and nonsmooth functions. Par-

ticularly, the target optimization function is composed by a coupling function gathering all blocks of

variables, denoted f(·), and regularization functions for each block, denoted rβ(·), where β stands

for the each block variable. No convexity constraint is assumed for either coupling or regularization

functions. One of the main advantages of the PALM algorithm over classical optimization algorithms

is that each bounded sequence generated by PALM converges to a critical point. The root of the

method can be seen as an alternating minimization approach for the proximal forward-backward al-

gorithm [CW05]. Some assumptions are required in order to solve this problem with all guarantees

of convergence (c.f [BST14, Assumption 1, Assumption 2]). The most restrictive one [BST14, As-

sumption 2(ii)] requires that the partial gradient of the coupling function f(·) is globally Lipschitz

continuous for each block of variable keeping the remaining ones fixed. This is a classical assumption

for proximal gradient methods which guarantee a sufficient descent property.

Therefore, given the objective function to be minimized (3.22) and considering the structure pro-

posed in [BST14] and the Lipschitz property for linear combinations of functions [EEJ04], let us define

the coupling function f(Θ) as:

f (Θ) , f (X1, X2, H1, H2, S, W1, ∆W)

=
σ2

1

2

np
∑

i=1

‖R1,iX1 −H1Sw1,i‖
2
F +

σ2
2

2

np
∑

i=1

‖R2,iX2 −H2 (w1,i + ∆wi)‖
2
F

+ Ψ (X1) + Ψ (X2) + λ ‖W1 + ∆W‖1 .

(3.23)

This coupling function defined accordingly does not fulfil [BST14, Assumption 2(ii)] because some of

its terms are nonsmooth, notably the TV regularizations embedded on Ψ(·) and the sparse coding

assumption for W2, as ℓ1-norm is non-differentiable. Thus, to ensure such a coupling function is in

agreement with the required assumptions, smooth relaxations of Ψ(·) and ‖·‖1 is applied by using the

pseudo-Huber function as in [FG16; Jen+12; Dah+10].

The remaining terms of (3.22) are designated as the regularization functions rβ(·) according to

each optimization block variable. Within the PALM structure, the gradient step associated with the

coupling function is followed by proximal step associated with these regularization functions. As a
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consequence, those functions must be proximal-like where their proximal mappings or projections P

must exist and have closed-form solutions. It is important to keep in mind that, even if the convergence

is guaranteed for all optimization orderings, it must not vary during iterations. Thus, the updating

rules for each optimization variable in Algorithm 4 are defined. More details about the projections

involved in this section are given in Appendix C.1.

Algorithm 4: PALM-CDL
Data: Y1,Y2

Input: W(0)
1 , ∆W(0), H(0)

1 , H(0)
2 , S(0), X(0)

1 , X(0)
2

k ← 0
begin

while stopping criterion not satisfied do
// Code update

W(k+1) ← Update
(

W(k)
)

// cf. (3.24)

∆W(k+1) ← Update
(

∆W(k)
)

// cf. (3.27)

// Dictionary update

H(k+1)
1 ← Update

(

H(k)
1

)

// cf. (3.30)

H(k+1)
2 ← Update

(

H(k)
2

)

// cf. (3.30)

// Scale update

S(k+1) ← Update
(

S(k)
)

// cf. (3.33)

// Latent image update

X(k+1)
1 ← Update

(

X(k)
1

)

// cf. (3.36)

X(k+1)
2 ← Update

(

X(k)
2

)

// cf. (3.36)

k ← k + 1

W1 ←Wk+1
1 ,∆W← ∆Wk+1,

H1 ← Hk+1
1 , H2 ← Hk+1

2 ,
S← Sk+1,
X1 ← Xk+1

1 , X2 ← Xk+1
2

Result: Ŵ1, ∆Ŵ, Ĥ1, Ĥ2, Ŝ, X̂1, X̂2

3.4.2. Optimization with respect to W1

Considering the single block optimization variable W1, and assuming that the remaining variables are

fixed, the PALM updating step can be written

W(k+1)
1 = prox

LW1

λ‖·‖1+≥0



W(k)
1 −

1

L
(k)
W1

∇W1f(Θ)



 (3.24)
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with

∇W1f(Θ) =

σ2
1ST HT

1 (H1SW1 −P1) + σ2
2HT

2 (H2 (W1 + ∆W)−P2) + λ
[W1 + ∆W]i

√

[W1 + ∆W]2i + ǫ2
W1

(3.25)

where [·]i/[·]i should be understood as a element-wise operation and L
(k)
W1

is the associated Lipschitz

constant

L
(k)
W1

= σ2
1

∥

∥

∥ST HT
1 H1S

∥

∥

∥+ σ2
2

∥

∥

∥HT
2 H2

∥

∥

∥+
λ

ǫW1

. (3.26)

with ‖·‖ representing the spectral norm. Note that prox
LW1

λ‖·‖1+≥0(·) can be simply computed by con-

sidering the positive part of the soft-thresholding operator [PB+14].

3.4.3. Optimization with respect to ∆W

Similarly, considering the single block optimization variable ∆W and consistent notations, the PALM

update can be derived as

∆W(k+1) = prox
L

(k)
∆W

‖·‖2,1



∆W(k) −
1

L
(k)
∆W

∇∆Wf(Θ)



 (3.27)

where

∇∆Wf(Θ) = σ2
2HT

2 (H2 (W1 + ∆W)−P2) + λ
[W1 + ∆W]i

√

[W1 + ∆W]2i + ǫ2
W1

(3.28)

and

L
(k)
∆W

= σ2
2

∥

∥

∥HT
2 H2

∥

∥

∥+
λ

ǫW1

(3.29)

The proximal operator prox
L

(k)
∆W

‖·‖2,1
(·) can be simply computed as a group soft-thresholding operator

defined in (2.33), where each group is composed by each column of ∆W.

3.4.4. Optimization with respect to Hα

As before, considering the single block optimization variable Hα with α = {1, 2}, the PALM updating

steps can be written as

H(k+1)
α = PS



H(k)
α −

1

L
(k)
Hα

∇Hαf(Θ)



 (3.30)
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where

∇Hαf(Θ) = σ2
α

(

HαW̄α −Pα

)

W̄T
α (3.31)

and L
(k)
Hα

is the Lipschitz constant

L
(k)
Hα

= σ2
α

∥

∥

∥W̄αW̄T
α

∥

∥

∥ (3.32)

with W̄1 = SW1 and W̄2 = W1 + ∆W. Note that the projection PS can be computed as in

[Mai+09b], keeping only the values greater than zero.

3.4.5. Optimization with respect to S

The updating rule of the scaling matrix S can be written as

S(k+1) = PC

(

S(k) −
1

L
S(k)

∇Sf(Θ)

)

(3.33)

where

∇Sf(Θ) = σ2
1HT

1 (H1SW1 −P1) WT
1 (3.34)

and L
(k)
S

is the Lipschitz constant related to ∇Sf(Θ)

L
(k)
S

= σ2
1

∥

∥

∥HT
1 H1W1WT

1

∥

∥

∥ (3.35)

Projection PC(·) constrains all diagonal elements of S to be nonzero.

3.4.6. Optimization with respect to Xα

Finally, the updates of the latent images Xα (α = {1, 2}) are achieved as follows:

X(k+1)
α = prox

L
(k)
Xα

Dα(Yα|·)



X(k)
α −

1

L
(k)
Xα

∇Xαf(Θ)



 (3.36)

with

∇Xαf(Θ) = σ2
α

np
∑

i=1

RT
α,i (Rα,iXα −Hαw̄α,i)− τα div





[∇Xα]i
√

[∇Xα]2i + ǫ2
Xα



 (3.37)

and

L
(k)
Xα

= σ2
α

∥

∥

∥

∥

∥

np
∑

i=1

RT
α,iRα,i

∥

∥

∥

∥

∥

+
8τα

ǫXα

(3.38)
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where div(·) stand for the discrete divergence [Cha04]. Note that, prox
L

(k)
Xα

Dα(Yα|·)(·) represents the

proximal mapping for divergence measure associated with the likelihood function characterizing the

modality of the observed image Yα. For the most common remote sensing modalities, e.g., optical and

radar, these divergences are well documented and Appendix C.2 presents the corresponding proximal

operators.

3.5. Results on simulated images

3.5.1. Simulation framework

Previous chapters have discussed the difficulties in finding real datasets for assessing performance of

CD algorithms. Indeed, this assessment requires couples of images acquired at two different dates,

geometrically co-registered, presenting changes and covering all possible scenarios considered in this

chapter, coming from multimodal images with possibly different resolutions. In addition, these pairs

should be accompanied by a ground truth (i.e., a binary CD mask locating the actual changes)

to allow quantitative figures-of-merit to be computed. To alleviate this issue, in Chapter 1 was

proposed a CD evaluation protocol dedicated to multi-band images based on a single high spatial

resolution hyperspectral reference image. As this protocol is based on unmixing, which is specific to of

hyperspectral images, it cannot be applied to generate SAR images or a pair of multimodal images. In

order to assess the performance of CD on multimodal images, inspired by the proposed CD framework,

two multimodal reference images acquired at the same date were selected as change-free latent images.

By conducting simple copy-paste of particular regions, similar to the Block Abundance rule presented

on Section 1.5.3, changes can be generated on both images as well as their correspondent ground-truth

maps. This process allows synthetic yet realistic changes to be incorporated within one of these latent

images, w.r.t. a pre-defined binary reference change mask locating the pixels affected by these changes

and further used to assess the performance of the CD algorithms.

Reference images

The reference images Xref
1 and Xref

2 used in this experiment comes from two largely studied open

access satellite sensors, namely Sentinel-1 [Eur17a] and Sentinel-2 [Eur17b] operated by the European

Spatial Agency. These images have been acquired over the same geographical area, i.e., the Mud

Lake region in Lake Tahoe, at the same date on April 12th 2016. To fulfil the requirements imposed

130



Chapter 3. Coupled dictionary learning-based approach

by the considered CD set-up, both have been manually geographically and geometrically aligned.

Sentinel-2 reference is a 540× 525× 3 image with 10m spatial resolution and composed of 3 spectral

bands corresponding to visible RGB (Bands 2 to 4). On the other hand, Sentinel-1 reference image

is a 540 × 525 interferometric wide swath high resolution ground range detected multi-looked SAR

intensity image with spatial resolution of 10m according to 5 looks in the range direction.

Generating the changes

Using the a procedure similar to the one discussed on Section 1.5.3, given the reference images Xref
α

(α ∈ {1, 2}), and a previously generated change mask D ∈ Rnα , a change image Xch
α can be generated

as

Xch
α = ϑ

(

Xref
α , D

)

(3.39)

where the change-inducing functions ϑ : Rnλ×nα × Rnα → Rnλ×nα is defined to simulate realistic

changes in some pixels of the reference images. A set of 10 predefined change masks have been

designed according to a specific copy-paste change rule in Section 1.5.3.

Generating the observed images

The observed images are generated under 3 distinct scenarios involving 3 pairs of images of different

modalities and resolutions, namely,

Scenario 1 considers two optical images,

Scenario 2 considers two SAR images,

Scenario 3 considers SAR and optical images.

Scenarios 1 and 2 are dedicated to images with the same modality. Each test set pair
{

Xref
α1

, Xch
α2

}

is formed by considering (α1, α2) = (α, α) with α = 1 for Scenario 1 and α = 2 for Scenario 2.

Conversely, for Scenario 3 handling multi-sensor images, two test pairs can be formed considering

α1 6= α2, i.e., (α1, α2) ∈ {(1, 2) , (2, 1)}.

3.5.2. Compared methods

As the number of unsupervised multimodal CD methods is small, the proposed technique has been

compared to the unsupervised method proposed by [Gon+16], that is able to deal with multimodal
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images and to the RF-method proposed in Chapter 2 which deals exclusively with multi-band optical

images. Their final change maps are called, respectively, D̂CF and D̂RF which stands for Coupled

dictionary learning Fuzzy (CF) and Robust-Fusion (RF), while the proposed method D̂P is refereed

to PALM-CDL(P). The Fuzzy method is based on a coupled dictionary learning methodology using a

modified K-SVD [AEB06] with an iterative patch selection method aiming to provide only unchanged

patches for the coupled dictionary training phase. Then, the sparse code for each observed image

is estimated separately from each other allowing to compute the cross-image reconstruction errors.

Finally, a local Fuzzy-C-Means is applied to the mean of the cross-image reconstruction errors in order

to separate change and unchanged classes. This method, equivalently to the proposed one, has no

additional assumption about the joint observation model. The Robust-Fusion method, on the other

hand, is based on a more constrained joint observation model, considering that both reconstructed

latent images share the same resolutions and differ only in changed pixels. The chosen set of methods

allow to exploit the accuracy performances according to state-of-the-art methods of different proper-

ties. The figures-of-merits used to assess the CD performance are empirical ROC curves as presented

on Section 1.6.1.

3.5.3. Results

Scenario 1: optical vs. optical

The ROC curves displayed in Fig. 3.1 with corresponding metrics in Table 3.1 (first two rows)

show the CD results obtained from a pair of optical observed images. Clearly, the RF-method has

a comparative advantage of being more specific to handle this scenario than the proposed and the

Fuzzy method. Indeed, the RF-method takes into account additional spectral and spatial degradations

within the degradation model from the available information about the sensors. Nevertheless, even

so, the proposed method achieves very similar performance. More importantly, they provide almost

perfect detections even for very low PFA, i.e., for very low energy changes. The Fuzzy method, on the

other hand, suffers from non detection and false alarm problems, even applying the iterative strategy

with similar parameter selection approach as in [Gon+16]. This happens mostly in low energy change

regions. The iterative selection is not able to distinguish between low energy and unchanged pixels,

which may bias the coupling of dictionaries. Also, the disjoint reconstruction is not very efficient to

deal with low energy changes because coupling is not perfect. In addition, as they work directly with
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the observed images without estimating the latent image, noise can be interpreted as change, thus

increasing the false alarm rate.

0 0.2 0.4 0.6 0.8 1
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0.2
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Figure 3.1.: ROC curve on simulated data for Scenario 1 corresponding to two optical images

Table 3.1.: Scenarios 1 , 2 & 3: quantitative detection performance (AUC and distance).

D̂P D̂CF D̂RF

Scenario 1
AUC 0.9838 0.8520 0.9946

Dist. 0.9677 0.7867 0.9802

Scenario 2
AUC 0.9871 0.9251 0.6819

Dist. 0.9727 0.8587 0.6185

Scenario 3
AUC 0.8755 0.7277 0.7227

Dist. 0.8097 0.6758 0.6604

Scenario 2: SAR vs. SAR

As in the previous case, this dual scenario considers homologous observed SAR images. In this case

the ROC plot is displayed in Fig. 3.2 with corresponding metrics in Table 3.1 (3rd and 4th rows).

Fig. 3.2 shows that the proposed method offers the highest precision among the compared methods

and keeps a close high level of detection accuracy compared to the Scenario 1. The Fuzzy method

presents a better accuracy result compared to optical images. One of the reasons is that the optical

images are generally characterized by richer information, which makes the dictionary coupling more

difficult than for two SAR images. At the end, the RF-method shows a very low detection accuracy

as it is not suited to deal with SAR images.
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Figure 3.2.: ROC curve on simulated data for Scenario 2 corresponding to two SAR images

Scenario 3: optical vs. SAR

This scenario corresponds to a more difficult problem than the previous one. The physical information

extracted in each image cannot be directly related in the observational space, contrary to the previous

scenarios. The ROC plot is displayed in Fig. 3.3 with corresponding metrics in Table 3.1 (last two

rows). As in Scenario 2, Fig. 3.3 shows that the proposed method still offers the highest detection

accuracy, while the other methods present a very poor performance. Regarding the Fuzzy method,

the dictionary and the consecutive sparse code estimation are severely affected by the differences in

resolution and dynamics. Even by tuning the algorithmic parameters in order to increase the weight

of the image of lowest dynamics (or lowest resolution), both dictionaries are not properly coupled. In

order to apply the RF-method in this challenging scenario, a spectral degradation has been artificially

applied to reach both images to the same spectral resolution. This has been achieved by considering

a band-averaging to finally form a panchromatic image. Detection performance is even poorer than

the Fuzzy method because it supposes the same physical information between images. Only strong

changes are detected in this case.
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Figure 3.3.: ROC curve on simulated data for Scenario 3 corresponding to a pair of SAR and optical
images

3.6. Results on real images

Finally, to emphasize the reliability of the proposed CD method, and to illustrate the performance of

the proposed framework on real data under each specific scenario, the dataset is increased with respect

to Section 3.5.1. We introduce in this set a Sentinel-1 SAR image with the same sensing properties

as the one, acquired on October 28th 2016, and two Landsat 8 [Uni17] multispectral 180× 175-pixels

images with 30m spatial resolution and composed of the RGB visible bands (Band 2 to 4), acquired

over the same region on April 15th 2014 and September 22th 2014, respectively. Unfortunately, no

ground-truth information is available for the chosen dates, as experienced in numerous experimen-

tal situations [BMB12]. However, this region is characterized by interesting natural meteorological

changes occurring along the seasons (e.g., drought of the Mud Lake, snow falls and vegetation growth).

This helps to visually infer the major changes between two dates and to assess the relevance of the

detected changes. All considered images have been manually geographically and geometrically aligned

to fulfil the requirements imposed by the considered CD set-up. Each scenario is individually stud-

ied considering the same denominations as in Section 3.5.1 and the same comparative methods as in

Section 3.5.2.

Scenario 1: optical vs. optical

In this scenario, two different situations are going to be explored, namely, observed images with the

same or different resolutions. The first case considers both Landsat 8 images. Figure 3.4 depicts the
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observed images at each date and the change maps estimated by the three compared methods. These

change maps have been generated according to (3.17) where the threshold has been adjusted such

that each method reveals the most important changes, i.e., the drought of the Mud Lake. Notice that,

as expected, the RF-method presents better accuracy in detection since it was specifically designed

to handle such a scenario. Nevertheless, the proposed method exhibits very similar results. It is

important to emphasize that some of their differences are due to patch decomposition of the proposed

method. The Fuzzy method also successfully detect the strongest change, but low energy changes are

not detected. The method also suffers from resolution loss due to the size of the patches. Contrarily

to the proposed method, the Fuzzy method does not take into account the overlapping property of

the patches, which contributes to decrease detection accuracy.

Under the same scenario (i.e. optical vs. optical), an additional pair of observed images is used

to better understand the algorithm behavior when exposed to images of the same modality but with

different resolutions. The observed image pair is composed of the Sentinel-2 image acquired on April

12th 2016 and the Landsat 8 image acquired in September 22th 2015. Notice that both present the

same spectral resolution and different spatial resolutions. Figure 3.5 depicts the observed images

as well as the change maps of all methods. In this experiment, once again it is possible to see the

similarity between the results of the RF-method and the proposed one. Also, it shows the very poor

detection performance of the Fuzzy method. This can be explained by the lack of coupling due to

differences in resolutions.
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(a) Y1 (b) Y2 (c) D̂CF (d) D̂RF (e) D̂P

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂CF (i) zoomed D̂RF (j) zoomed D̂P

Figure 3.4.: Scenario 1 with Landsat-8 observed image pair: (a) Y1 Landsat-8 MS image acquired in
04/15/2015, (b) Y2 Landsat-8 MS image acquired in 09/22/2015, (c) change map D̂CF of the Fuzzy
method, (d) change map D̂RF of the Robust-Fusion method and (e) change map D̂P of the proposed
method. From (f) to (j): zoomed versions of the regions delineated in red in (a)–(e).

(a) Y1 (b) Y2 (c) D̂CF (d) D̂RF (e) D̂P

(f) zoomed Y1 (g) zoomed Y2 (h) zoomed D̂CF (i) zoomed D̂RF (j) zoomed D̂P

Figure 3.5.: Scenario 1 with Sentinel-2 and Landsat-8 observed image pair: (a) Y1 Sentinel-2 MS
image acquired in 04/12/2016, (b) Y2 Landsat-8 MS image acquired in 09/22/2015, (c) change map
D̂CF of the Fuzzy method, (d) change map D̂RF of the Robust-Fusion method and (e) change map D̂P

of the proposed method. From (f) to (j): zoomed versions of the regions delineated in red in (a)–(e).
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Scenario 2: SAR vs. SAR

In this scenario, observed SAR images acquired by the same sensor (Sentinel-1) are used to assess the

performance of the Fuzzy method and the proposed one. The RF-method has not been considered due

to the poor results obtained on synthetic dataset and reported in Section 2.6. Figure 3.6 presents the

observed images at each date and the change maps recovered by the two compared methods. The same

strategy of threshold selection as for Scenario 1 has been adopted to reveal the most important changes.

As expected, the proposed method performs a more accurate detection than the Fuzzy one. Possible

reasons that may explain this difference are i) the fuzzy method is unable to handle overlapping patches

and ii) the Fuzzy method does not exploit appropriate data-fitting terms, in opposite to the proposed

one. Besides, as SAR images present strong fluctuations due to their inherent image formation process,

the additional TV regularization of the proposed method contributes to smooth-out such fluctuations

and better couple the dictionaries.

(a) Y1 (b) Y2 (c) D̂CF (d) D̂P

(e) zoomed Y1 (f) zoomed Y2 (g) zoomed D̂CF (h) zoomed D̂P

Figure 3.6.: Scenario 2 with Sentinel-1 observed image pair: (a) Y1 Sentinel-1 SAR image acquired in
04/12/2016, (b) Y2 Sentinel-1 SAR image acquired in 10/28/2016, (c) change map D̂CF of the Fuzzy
method and (d) change map D̂P of the proposed method. From (e) to (h): zoomed versions of the
regions delineated in red in (a)–(d).

Scenario 3: optical vs. SAR

For this scenario, once again, two different situations are addressed: images with the same spatial

resolution and images with different spatial resolutions. The first one considers Sentinel-2 MS image
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acquired on April 12th 2016 and Sentinel-1 SAR image acquired on October 28th 2016. Figure 3.7

presents the observed images at each data and the change maps derived from the Fuzzy method and

the proposed one. The thresholding strategy is the same as for all previous scenarios. Once more, the

proposed method shows higher detection performance than the Fuzzy one. It is important to emphasize

the similarity between the results achieved in Scenario 3 and Scenario 2 for images acquired at the

same date. Note that this similarity is observed only for the proposed method, which assesses its

robustness to multimodality.

The second observed image pair consists in a Sentinel-1 SAR image acquired in April 12th 2016 and

a Landsat 8 MS image acquired on September 22th 2015. This pair represents the most challenging

situation among all presented images: different modality and different resolutions. Figure 3.8 presents

the observed images at each date and the change maps derived from the Fuzzy method and the

proposed one. In this final test, the proposed method shows higher detection performance than

the Fuzzy one. This scenario concentrates all the difficulties of the previous ones. It evidences the

reliability and flexibility of the proposed method with respect to the Fuzzy one.

(a) Y1 (b) Y2 (c) D̂CF (d) D̂P

(e) zoomed Y1 (f) zoomed Y2 (g) zoomed D̂CF (h) zoomed D̂P

Figure 3.7.: Scenario 3 with Sentinel-2 and Sentinel-1 observed image pair: (a) Y1 Sentinel-2 MS
image acquired in 04/12/2016, (b) Y2 Sentinel-1 SAR image acquired in 10/28/2016, (c) change map
D̂F of the Fuzzy method and (d) change map D̂P of the proposed method. From (e) to (h): zoomed
versions of the regions delineated in red in (a)–(d).
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(a) Y1 (b) Y2 (c) D̂CF (d) D̂P

(e) zoomed Y1 (f) zoomed Y2 (g) zoomed D̂CF (h) zoomed D̂P

Figure 3.8.: Scenario 3 with Sentinel-1 and Landsat-8 observed image pair: (a) Yt1 Sentinel-1 SAR
image acquired in 04/12/2016, (b) Yt2 Landsat-8 MS image acquired in 09/22/2015, (c) change map
D̂F of the Fuzzy method and (d) change map D̂P of the proposed method. From (e) to (h): zoomed
versions of the regions delineated in red in (a)–(d).

3.7. Conclusion

This chapter proposes an unsupervised multimodal change detection technique to handle the most

common remote sensing imagery modalities. The technique was based on the definition of a pair of

latent images related to the observed images through a direct observation model. These latent images

were modelled thanks to a coupled dictionary and sparse codes which provide a common representation

of the homologous patches in the latent image pair. The differences between estimated codes were

assumed to be spatially sparse, implicitly locating the changes. Inferring these representations, as

well as the latent images, was formulated as an inverse problem. This problem was solved using

the proximal alternate minimization iterative scheme suitable in case of nonconvexity. Contrary to

the methods already proposed in the literature, scaling problems due to differences in resolutions

and/or dynamics were solved by introducing a scaling matrix relating coupled atoms. A simulation

protocol allowed the performance of the proposed technique in terms of detection and precision to be

assessed and compared with the performance of various algorithms.A real dataset collecting images

from different multispectral and SAR sensors at the same region was used to assess the reliability of

the proposed method. Results showed that the method outperformed all state-of-the-art comparable
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methods in multimodal scenarios while presenting similar results as methods benefiting from prior

knowledge on the scenario modeling.

Main contributions The main contributions on this chapter lie in the multimodal coupled dic-

tionary modelling as solution to unsupervised multimodal CD problem of the most common remote

sensing imagery modalities. The proposed modelling was based on the estimation of a coupled dictio-

nary and sparse codes which give a common representation for homologous patches, extracted from

the two observed images. The differences between estimated codes was assumed to be spatially sparse,

implicitly locating the changes. Inferring these differences, as well as noise free images, was formulated

as an inverse problem which was solved with the proximal alternate minimization iterative scheme,

because of nonconvexity. Contrary to the methods already proposed in the literature, scaling prob-

lems due to differences in resolutions are solved by estimating a scaling matrix relating coupled atoms.

Results shows that the method outperforms all state-of-the-art comparative methods in multimodal

scenarios while present similar results as methods requiring prior scenario modelling.
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Context

Change detection is one of the most important and challenging applications of remote sensing. Com-

paring several multi-date images acquired through the same kind of sensor is the most common sce-

nario. Conversely, designing robust, flexible and scalable algorithms for change detection becomes

even more challenging when the images have been acquired by two different kinds of sensors. This

situation arises in case of emergency under critical constraints, in punctual missions, or in defense

and security circumstances. Facing the heterogeneity of the data introduces additional issues in the

context of operational change detection that are not addressed in most of the classical methods. Aim-

ing to overcome those limitations and to accurately detect changes with high spatial resolution, this

thesis proposed fusion strategies to more effectively use the available information of a pair of observed

images. Different algorithmic approaches have been considered to efficiently solve the resulting high

dimensional estimation problems, involving multitemporal images of same modality and different res-

olutions and/or multimodal images with possibly different resolutions. The study conducted in this

manuscript allows to draw the following conclusions.

Conclusions

Chapter 1 proposes to use a fusion process to perform unsupervised change detection between any

pair of images of the same modality and different resolutions. This framework relies on the presence of

hybrid (resp.non-hybrid) pixels, corresponding to change (res. no-change) regions. The hybrid pixels

result from the fusion of the multi-band optical images of the same scene acquired before and after a

change. The framework is based on a 3-step procedure. The first step performs the fusion of the two

different spatial/spectral resolution multi-band optical images to build a latent image of high spatial

and spectral resolutions. The aim of the fusion step is to produce the hybrid/non-hybrid pixel map at
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a high resolution. From this fused image, the second step generates a pair of predicted images with the

same resolutions as the observed multi-band images. This prediction step degrades the fused image

using the acquisition model as prior information. Finally, standard CD techniques are applied to

each pair of observed and predicted images with same spatial and spectral resolutions. The relevance

of the proposed framework is assessed thanks to a specifically designed experimental protocol and to

experiments on real images. Results demonstrate the accuracy of the recovered high-resolution change

map.

Chapter 2, motivated by the fusion strategy proposed on Chapter 1, proposes a new change detection

method to deal with any pair of multi-band optical images of different spatial and spectral resolutions

based on a robust fusion premise. The versatility of the proposed approach allows all possible real

scenarios to be handled efficiently. Changes may be thought of as the differences between two unknown

latent images of same (high) spatial and spectral resolutions. These differences are assumed to be

spatially sparse, implicitly locating the changes at a high resolution scale. Based on the degradation

model relating each observed image to its associated latent one, a Bayesian estimation method is

adopted to infer the two latent images and the associated change vector. The estimation problem is

formulated as an inverse problem and solved iteratively within a 2-step alternate minimization scheme.

By fixing alternatively one of the two variables, the algorithm allows the problem to be split into two

distinct sub-problems, the estimation of one latent image and the estimation of the change vector.

The first sub-problem can be seen as an image fusion problem, while the second is regularized taking

into account the spatial sparsity of significant changes. At the end, the second latent image can be

estimated by subtracting the estimated change vector to the the estimated latent image. Depending

on the considered scenario, these 2 steps can be interpreted as ubiquitous image processing problems

(namely spatial super-resolution, spectral deblurring, denoising or multi-band image fusion) for which

closed-form solutions or efficient algorithms had been recently proposed in the literature. Contrary to

the methods already proposed in the literature and in the previous chapter, modeling errors do not

anymore propagate from one step to the other. Benefiting from the simulation protocol developed in

Chapter 1, the performance of the proposed method in terms of detection and accuracy is assessed and

compared with the performance of various algorithms. Beside, real images acquired by four different

sensors are used to illustrate the accuracy and the flexibility of the proposed method, as well as its

superiority with respect to the state-of-the-art change detection methods.

Chapter 3 extends the fusion strategy in an unsupervised change detection context to handle the
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most common remote sensing imagery modalities. As the fusion product of two multimodal images

may not represent a real quantity, the fusion process is shifted to another representation space. This

new representation is achieved by considering that homogeneous pair of image patches, extracted from

the two images and representing the same geographical location, can be described by a linear sparse

combination of atoms belonging to coupled dictionaries. The proposed change detection technique

performs the estimation of the coupled dictionary and the respective sparse codes. Contrary to a

classical image fusion scenario in which both images represent the same scene, in a CD context some

homologous patches represent change regions, which restrains the use of a single code to represent

both images. Nevertheless, as in Chapter 2, the estimated codes can be considered to share same

values for no-change regions such that their differences can be assumed spatially sparse, implicitly

locating the changes. Inferring these variables, as well as noise free (unobserved latent) images is

formulated as an inverse problem which is solved with the proximal alternate minimization iterative

scheme concerning nonconvex functions. Scaling problems due to differences in resolutions are solved

by estimating a scaling matrix relating coupled atoms. Note that this problem is not tackled by the

state-of-the-art methods. A simulation protocol allows the performance of the proposed technique

in terms of detection and accuracy to be assessed and compared with the performance of various

algorithms. A real dataset collecting images of the same region acquired by different sensors is used

to increase reliability of the proposed method. Results shows that the method outperforms all state-

of-the-art comparative methods in multimodal scenarios while presenting similar results as methods

requiring prior scenario modelling.

Perspectives and future work

The present study has raised several research perspectives summarized in the following lines.

Forward Model

Modality transformation

In Chapters 1 and 2, the forward models used to derive the solutions consider that both observed

images come from the same modality, which means that they have the same kind of information, but

with possibly different resolutions. This method is restricted to the same modality because, since the

CD is performed through the latent image space, the fusion result has to be consistent. The main
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restriction to apply these methods to multimodal images is that the fusion product may not represent

a real quantity. Consequently, important fusion properties (consistency and synthesis [Lon+15]) do

not hold. Nevertheless, these methods can be conveniently applied if one knows transformations

between modality spaces. With this information, fusion properties hold, because the fusion and the

comparisons are performed within the same basis and consequently CD is reliable. Although this

transformation was not mathematically derived for the most common modalities, optical and SAR, it

can be learned as in [Pre+15a; Pre+15b].

Other modalities

Chapter 2 presented a CD method based on the estimation of a pair of high resolution latent im-

ages with spatially sparse differences between them. The problem is formulated as a robust fusion

framework, from a joint forward model dedicated to multi-band optical images. Seeking for further

flexibility, this formulation can be expanded to other modalities such as SAR images. To do so, the

first step must be to replace the current data-fitting term, corresponding to the additive Gaussian

noise, to a more appropriate one, as discussed in Appendix C.2. Consequently, following the same

Bayesian formulation, the next step consists in deriving an inverse problem similar to (2.10). Other

adjustments must be considered in order to properly handle the noise statistics of the target modality,

for example, a more adapted prior than the Gaussian prior (2.11). One possible candidate, as in

Chapter 3, is the TV regularization, which is shown to avoid strong fluctuations caused by the speckle

noise.

Real data, misregistration and nonlinear degradation

One of the basic premises for the application of CD methods is that the two images correspond

exactly to the same spatial location. This is very important to avoid false alarm detections. In

the case of synthetic images, such as the ones generated from the simulation protocol proposed in

Section 1.5, there is no registration misalignment. Nevertheless, in the case of real images, additional

registration steps must be taken into considerations. For all real data used in this manuscript, the

registration process was made by manual correspondence followed by the computation of coordinate

transformations without scaling factors (required for keeping the original spatial resolution). This

process becomes even more complicated when registering multimodal images. Other techniques could

be applied in order to guarantee a more automatic and precise result [IG04; KCM14; Bri+16].
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Computational aspects

Chapter 3 presented a CD method based on the estimation of coupled dictionaries and sparse codes.

The proposed estimation inverse problem presents a real challenge, first because of its nonconvexity,

second because of the number of parameters to be tuned and third because of the size of the estimated

variables. The first problem is efficiently solved by the PALM algorithm, which presents convergence

guarantees to a critical point. The second problem can be solved manually or by cross-validation,

considering that some parameters depend on the noise levels of the observed images, the size of the

images, and the application requirements. On the other hand, the third problem limits the use of

the proposed technique for large images. Possible solutions to speed up convergence are: to consider

acceleration strategies in PALM [PS16], to previously estimate the size of the dictionary as in many

matrix factorization problems [FI11] and to use online strategies to speed up the dictionary estimation

[Men+16; Mai+09b].

Application-oriented developments

The main purpose of this thesis is CD. As previously discussed CD does not correspond to change type

identification. The proposed methods are not interested in filtering types of changes, but the noise, to

find the alterations between images. Detected changes due to weather condition, such as the clouds,

are considered as changes. In terms of changes between images, they are correctly classified. Indeed,

classifying the presence of clouds as a change is at least safer than ignoring it or classifying it as no-

change. Nevertheless, in practice, it should not be cast as a real change. Complementary techniques,

adapted to filter this kind of changes, can conveniently be applied afterwards to the output change map.

Change maps with high resolution precision, as provided in all proposed methods, can be a valuable

input to change type identification. Furthermore, CD can also contribute to other applications, for

instance unmixing [Tho17], or can be used to other task as moving estimation [Hua+81].
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Appendix to chapter 1

A.1. Precision

This section provides additional simulation results in terms of spatial precision in detection for each

situation presented on Section 1.6.3.

A.1.1. Situation 1

To visually illustrate the spatial precision of the estimated change maps, Fig. A.1 shows the CD maps

estimated from a pair of observed HR-MS (a) and LR-HS (b) images containing multiple changes with

size varying from 1× 1-pixel to 61× 61-pixels using sCVA(3). The actual HR and LR CD masks are

reported in Fig. A.1(c) and (d), respectively. Figures A.1(e) to (h) show the estimated CD maps

D̂HR, D̂LR, D̂aLR and D̂WC, respectively, for a threshold chosen to get the best cut-off selection of

ROC curve where PFA = 1− PD = PND. These results clearly demonstrate that the HR CD map

D̂HR estimated by the proposed method achieves a better detection rate with a higher precision.
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(a) YHR (b) YLR (c) DHR (d) DLR

(e) D̂HR (f) D̂LR (g) D̂aLR (h) D̂WC

Figure A.1.: Situation 1: (a) observed HR-MS image, (b) observed LR-HS image, (c) actual HR CD
mask DHR, (d) actual LR CD mask DLR, (e) estimated HR CD map with PFA = 0.0507 and PD =
0.9273 D̂HR, (f) estimated LR CD map with PFA = 0.2247 and PD = 0.7592 D̂LR, (g) estimated aLR
CD map with PFA = 0.0486 and PD = 0.9376 D̂aLR and (h) worst-case CD map with PFA = 0.0876
and PD = 0.9017 D̂WC.

A.1.2. Situation 2

Using the same strategy for Situation 1 to visually illustrate the spatial precision of the proposed

method, Fig. A.2 shows the CD maps estimated from a pair of observed HR-PAN (a) and LR-HS (b)

images containing multiple changes with size varying from 1×1-pixel to 61×61-pixels using sCVA(3).

The actual HR and LR CD masks are reported in Fig. A.2(c) and (d), respectively. Figures A.2(e) to

(h) show the estimated CD maps D̂HR, D̂LR, D̂aLR and D̂WC, respectively. Once again, these results

clearly demonstrate that the HR CD map D̂HR estimated by the proposed method achieves a better

detection rate with a higher precision.
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(a) YHR (b) YLR (c) DHR (d) DLR

(e) D̂HR (f) D̂LR (g) D̂aLR (h) D̂WC

Figure A.2.: Situation 2: (a) observed HR-PAN image, (b) observed LR-HS image, (c) actual HR CD
mask DHR, (d) actual LR CD mask DLR, (e) estimated HR CD map with PFA = 0.0507 and PD =
0.9273 D̂HR, (f) estimated LR CD map with PFA = 0.2247 and PD = 0.7592 D̂LR, (g) estimated aLR
CD map with PFA = 0.0486 and PD = 0.9376 D̂aLR and (h) worst-case CD map with PFA = 0.0876
and PD = 0.9017 D̂WC.

A.1.3. Situation 3

Using the same strategy as for Situations 1 and 2 to visually illustrate the spatial precision of the

proposed method, but in a more complex case, Fig. A.3 shows the CD maps estimated from a pair

of observed HR-PAN (a) and LR-MS (b) images containing multiple changes with size varying from

1 × 1-pixel to 61 × 61-pixels using sCVA(3). The actual HR and LR CD masks are reported in Fig.

A.3(c) and (d), respectively. Figures A.3(e) to (h) show the estimated CD maps D̂HR, D̂LR, D̂aLR

and D̂WC, respectively. Once again, these results clearly demonstrate that the HR CD map D̂HR

estimated by the proposed method achieves a better detection rate with a higher precision.
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(a) YHR (b) YLR (c) DHR (d) DLR

(e) D̂HR (f) D̂LR (g) D̂aLR (h) D̂WC

Figure A.3.: Situation 3: (a) observed HR-PAN image, (b) observed LR-MS image, (c) actual HR CD
mask DHR, (d) actual LR CD mask DLR, (e) estimated HR CD map with PFA = 0.0507 and PD =
0.9273 D̂HR, (f) estimated LR CD map with PFA = 0.2247 and PD = 0.7592 D̂LR, (g) estimated aLR
CD map with PFA = 0.0486 and PD = 0.9376 D̂aLR and (h) worst-case CD map with PFA = 0.0876
and PD = 0.9017 D̂WC.
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A.2. Results of the Fusion Step

This section evidences the flexibility of the proposed 3-step framework provided by the choice of the

fusion step. The most powerful state-of-the-art hyperspectral fusion methods within scenario S4. For

that purpose, [YGC17] has proposed a deep comparative study of the state-of-the-art MS and HS

data fusion methods within a data fusion perspective, gathered into 4 main families, namely compo-

nent substitution (CS), multi-resolution analysis (MRA), spectral unmixing and Bayesian techniques.

This section compares the performance of the whole CD framework when the fusion step is conducted

by one algorithm chosen in each of these fusion families, considering a CD perspective instead of a

purely data-fusion one. The main state-of-the-art hyperspectral fusion methods are briefly described

namely: Gram-Schmidt adaptive (GSA), generalized Laplacian pyramid (GLP-HS), coupled nonneg-

ative matrix factorization (CNMF), hyperspectral superresolution (HySure) and fast fusion based on

Sylvester equation (FUSE). All methods have been extensively studied in [YGC17] and showed the

best fusion performance for several datasets. For more information about the implementation of the

aforementioned methods, the interested reader is invited to consult [YGC17].

GSA This CS-based method, proposed by [ABS07] explicitly relies on the spectral response function

(SRF). The computation of the synthetic intensity component, one of the basis for CS methods, is

made by linear regression between the high resolution image and lower resolution bands.

GLP The GLP method, introduced by [Aia+06a] is part of the MRA methods in which spatial

details in each low resolution band are obtained from the high resolution image and its low-pass

versions multiplied by a gain factor. The implementation presented in [YGC17] proposes to adopt a

global gain instead of a locally one and a Gaussian filter as low-pass filtering.

CNMF The CNMF method, proposed by [YYI12], consists in alternately unmixing the two ob-

served images in order to estimate the spectral signatures and the high resolution abundance maps.

This method can be classified into an unmixing subdivision of subspace-based methods. The sensors

characteristics SRF and PSF are incorporated into the initialization of the spectral signatures and the

low resolution abundance maps, which contributes to the convergence towards a better local optimum

of the cost function.

155



Appendix A. Appendix to chapter 1

HySure The HySure method, introduced by [Sim+15], uses total variation regularization into a

subspace-based HS-MS fusion framework. This approach preserves the edges and the smoothness

of homogeneous regions. The fusion task is formulated as a Bayesian inference problem and solved

though convex optimization.

FUSE The FUSE method, proposed by [WDT15b], which was briefly introduced on Section 1.4.1,

is a Bayesian approach for hyperspectral image fusion. It derives the maximum a posteriori estimator

of the fused image via the exact resolution of a Sylvester equation. The prior knowledge of the relative

SRF and of the PSF is required. The proposed method shows high computational performance and

facilitates the addition of prior constraint information.

A.2.1. Experimental results

This section evaluates the performance of each of the CD framework when the fusion step is per-

formed through one of the methods listed in Section A.2. Results are evaluated quantitatively and

qualitatively, through the simulation protocol proposed in Section 1.5.

Quantitative results

The settings and figures-of-merits are the same as the ones described in Section 1.6. Nevertheless,

as the aforementioned fusion methods are exclusively adapted to handle situations containing hyper-

spectral images, results only address Situation 1 and 2. Based on the results reported in 1.6.3, one

chooses to estimate the HR change map (DHR) by conducting CVA in the decision step. Within this

evaluation scenario, the CD framework is expected to perform well if the underlying fusion method

produces an estimated pseudo-latent image spectrally different from the HR image.

Table A.1.: Detection performance (AUC and normalized distance).
D̂GSA D̂GLP D̂CNMF D̂HySure D̂FUSE

Situation 1
AUC 0.728023 0.907081 0.843431 0.967933 0.981039
Dist. 0.675268 0.835084 0.781578 0.912291 0.951995

Situation 2
AUC 0.571118 0.80509 0.625677 0.890669 0.977827
Dist. 0.542754 0.728173 0.582358 0.819382 0.944194

Figure A.4 and Table A.1 present the averaged ROC curves and associated metrics obtained with the

five fusion methods for Situation 1 (HR-MS and LR-HS images) and Situation 2 (HR-PAN and LR-HS

images). For both situations, FUSE and HySure methods provide the best detection performance in
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Figure A.4.: Final ROC curves: (a) Situation 1 and (b) Situation 2.

terms of the evaluation metrics. Note that both techniques require a prior knowledge of SRF and

PSF. Both responses are also used to predict the pseudo-observed images in the second step of the CD

framework. Besides, the ideal fusion method designed for the CD framework should produce consistent

pixel values in no-change regions and aberrations in change regions. Therefore, discrepancies between

the first and the second steps of the CD framework may increase the number of aberrations which would

produce false alarms and consequently reduce the detection performance. More generally, as already

mentioned before, within the adopted evaluation situation, CD performance depends on whether the

pseudo-latent image estimated by the fusion method, and thus the corresponding pseudo-observed

HR and LR images, are spectrally skewed by the changes. The results demonstrate the difference

in the characteristics of the different fusion methods: the fused image produced by GSA is skewed

w.r.t the MS image; CNMF creates something intermediate; fused images produced by GLP, FUSE,

and HySure are skewed w.r.t the HS image. These characteristics play a key role in the presented

CD framework although they were not significant for the conventional image fusion problem where no

change is expected.

Qualitative evaluation

Finally, to compare qualitatively the detection performance of the CD framework according to a given

fusion method, a pair of real LR-HS and HR-MS images acquired at different dates has been analyzed.

These images YLR and YHR have been acquired by AVIRIS and Sentinel 2 sensors over the Lake

Tahoe region (CA, USA) on September 19th 2014 and April 12th, 2016, respectively. The LR-MS

image YLR is of size 180 × 175 × 224 characterized by a ground sampling distance (GSD) of 30m
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[Jet17]. According to the spectral response of the Sentinel 2 sensor [Eur17b], the HR-MS image YHR

is of size 540 × 525 × 3 with a GSD of 10m and has a visible RGB spectral range covering 29 bands

of the LR-HS image. Fig. A.5(a)–(b) shows the LR-HS and HR-MS images that have been manually

geographically aligned. The resulting CD binary masks recovered by the most efficient fusion methods

identified in the previous paragraph, namely HySure and FUSE, combined with the IRMAD pixelwise

CD technique [Nie07], are depicted in Fig. 1.11(c)–(e).

For this pair of images, the ground truth information (i.e., the binary map of actual changes) is

not available. However, a visual inspection reveals that all methods succeed in recovering the most

significant changes between the two images, namely, the pixels corresponding to the lake drought.

Nevertheless, as pointed by the quantitative results, the FUSE method provides the highest detection

rates among the tested methods, mostly by producing less false alarms. Note that, CD binary masks

can be computed at HR, which helps in detecting finer details, as illustrated by the zoomed regions

in Fig. 1.11(e)–(g).

(a) YLR (b) YHR (c) D̂FUSE (d) D̂HySure

(e) zoomed YLR (f) zoomed YHR (g) zoomed D̂FUSE (h) zoomed D̂HySure

Figure A.5.: Real situation (LR-HS and HR-HS): (a) LR-HS observed image YLR, (b) HR-PAN ob-
served image YHR, (c) change mask D̂FUSE estimated by FUSE approach, (d) change mask D̂HySure

estimated by HySure approach. From (e) to (g): zoomed versions of the regions delineated in red in
(a)–(d).
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A.3. Results of the Detection Step

One of the main points of the 3-step CD framework is that each step can be tailored by the end-user.

Section 1.4.3 represented classical CD methods for multiband optical images with the same spatial

and spectral resolutions. However, more robust techniques could be used to model changes helping

to improve the detection rate and also to characterize the type of changes. As presented in Section

1.4.3, the extended version of CVA proposed in [BB07] a good candidate to make these improvements.

As an illustration, it has been implemented into the 3rd step of the proposed framework, in place of

the CVA magnitude-based approaches. For each change rule, 3 distinct maps represented in Fig. A.6

and characterized by 3 distinct spatial area affected by the changes have been considered. Figure A.7

shows the resulting polar CVA plots obtained on 3 pairs of images for each change rule used in the

experiments. These results show that the patterns of the polar CVA plots depend on the change rule

while they do not depend on the change mask (i.e., the localization of these changes). This dependence

allows change and unchanged pixels to be better distinguished, with the possibility of decreasing the

false alarm rate and increasing the detection rate as well as of identifying the type of changes.

(a) (b) (c)

Figure A.6.: Change mask: (a) change mask 1, (b) change mask 2 and (c) change mask 3
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.7.: Polar CVA for "zero abundance" (top), "same abundance" (middle) and "block abundance"
(bottom) change rules: change mask 1 (left), change mask 2 (middle), change mask 3 (right).
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B.1. Precision

This section provides additional simulation results in terms of CD spatial precision for Situation 1

presented on Section 2.5.3. Fig. B.1 compares the ability of detecting changes of decreasing size of

the robust fusion method and of the fusion-based CD method and the worst-case CD method. Figure

B.1(a) and B.1(b) shows a particular example of an observed image pair YHR and YLR containing

multiple changes with size varying from 1× 1-pixel to 61× 61-pixels, with the corresponding change

mask DHR presented in Fig. B.1(c). Figures B.1(d), B.1(e) and B.1(f) present the change masks

D̂RF, D̂F and D̂WC recovered by these three methods. For each technique, the decision threshold τ

required for CVA in (2.6) has been tuned to reach the higher distance value in the corresponding ROC

curves. The first advantage of the robust fusion method is a significant decrease of the number of false

alarms which are due to error propagation when implementing the two other methods. Moreover, these

results prove once again that the robust fusion method achieves a better detection rate with a higher

resolution, even when considering extremely localized change. Remaining false alarms only occur near

edges between change and no-change regions of small size due to the difference of spatial resolutions

and to the width of the blur kernel. Note also that the CD mask estimated by the worst-case method

is of coarse scale since based on the comparison of two LR-MS images.
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(a) YHR (b) YLR (c) DHR

(d) D̂RF (e) D̂F (f) D̂WC

Figure B.1.: CD precision for Situation 1 (HR-MS and LR-HS): (a) HR-MS observed image YHR, (b)
LR-HS observed image YLR, (c) actual change mask DHR, (d) change mask D̂RF estimated by the
robust fusion-based approach, (e) change mask D̂F estimated by the fusion-based approach and (f)
change mask D̂WC estimated by the worst-case approach.
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C.1. Projections involved in the parameter updates

The projections and proximal operators involved on PALM algorithm [BST14] and described in Algo-

rithm 4 are properly defined as:

• The proximal map for W1 accounting for the sum λ ‖·‖1 + ι≥0(·) is explicitly given by:

proxη
λ‖·‖1+≥0 (W1) = max

(

|w1,(ji)| −
λ

η
, 0
)

∀(i, j) (C.1)

• The proximal map for ∆W accounting for the γ ‖·‖2,1 is explicitly given by:

proxη
γ‖·‖2,1

(∆W) =















(

1− γ
η‖∆wi‖2

)

∆wi if ‖∆wi‖2 > γ
η

0 otherwise.
∀(i) (C.2)

• Projecting H onto set S can be computed explicitly based on [Tho17; BST14] which is given by:

PS (H) =
P+(hi)

‖P+(hi)‖
2
2

∀i = 1 · · ·nh (C.3)

with

P+ (hi) = max
(

0, h(j,i)

)

∀j = 1 · · ·n2nλ (C.4)
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• Projecting S onto set C is explicitly given by:

PC (S) =















max
(

0, s(j,i)

)

∀i = j

0 otherwise
(C.5)

C.2. Data-fitting term

The data-fitting term D(·|·) is intimately related to the modality of the target image. This term

defines the negative log-likelihood function relating the observed and latent images. Below, the most

common data fitting terms and their associated proximal mappings are derived, defined as

proxη
D(Y|·) (U) = argmin

X

D(Y|X) +
η

2
‖X−U‖2F . (C.6)

C.2.1. Multiband optical images

Multiband optical images represent the most common modality of remotely sensed images. For this

modality, the noise model may take into account several different noise sources [Deg+15]. Nevertheless,

it is commonly considered as additive Gaussian, up to some considerations in acquisition, for instance

sufficient number of arriving photons. Therefore, the direct model TMO[·] in (1.1) can be expressed as

Y = X + N (C.7)

where the noise matrix N is assumed to be distributed according to a matrix normal distribution given

in (1.6). Consequently, by assuming the noise components are independent and identically distributed

(i.i.d.), as pixelwise independence of the noise is a common assumption while spectral whiteness of

the noise can be ensured by applying a whitening transform as pre-processing, the data-fitting term

associated with multiband optical images is

DMO(Y|X) =
1
2
‖Y−X‖2F . (C.8)

An explicit proximal operator associated with this function can be derived as

proxη
DMO(Y|·) (U) =

Y + ηU
η + 1

(C.9)
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C.2.2. Multi-look intensity synthetic aperture radar images

SAR images correspond to the second most common modality of remote sensing images used in many

applications. One of the main characteristics of such modality is that it allows to measure the scene

in poor weather conditions and also during the night since SAR is an active sensor. Nevertheless, this

configuration yields the speckle phenomenon, resulting from random fluctuations of the reflectivity of

the backscattered signals. Many studies have been conducted to understand and mitigate the speckle

phenomenon. A common approach that helps to decrease the speckle level while increasing the SNR

consists in averaging samples of the same pixel acquired over independent observations. This procedure

is usually referred to as multi-look processing. According to this strategy, the generation model

is considered as a multiplicative perturbation by i.i.d random variables N = [ni, · · · , nN ] following

a common gamma probability density function in intensity images with unit mean E[ni] = 1 and

variance var[ni] = 1
r where r is the number of looks. The direct model TSAR[·] can thus be written as

Y = X⊙N (C.10)

where ⊙ denotes the termwise (i.e., Hadamard) product. By assuming pixel independence, the data-

fitting term for each pixel can be expressed as the sum of Itakura-Saito divergences

DSAR(Y|X) =
N
∑

i=1

(

yi

xi
− log

yi

xi
− 1

)

(C.11)

This function has been widely considered for speckle removing [AA08; WY13] and also music analysis

[FBD09]. Nevertheless, it usually leads to a challenging non-convex problem which admits more than

one global solution. In [SF14], the associated proximal operator is derived by computing the root of a

3rd degree-polynomial equation. An alternative consists in considering an approximation by resorting

to a log-transform of the data, e.g., leading to an I-divergence [WY13; ST10]. Up to a constant, this

divergence can be rewritten equivalently as a Kullback-Leibler divergence which is closely related to

Poisson modeling [FB10]

DSAR(Y|X) =
N
∑

i=1

(xi − yi log xi) . (C.12)
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This data-fitting term leads to an explicit proximal operator for the ith component given by

proxη
DSAR(yi|·)

(ui) =
1
2



ui −
1
η

+

√

(

ui −
1
η

)2

+
4yi

η



 . (C.13)
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