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a b s t r a c t

A computationally-efficient method based on Kalman filtering is introduced to capture “on the fly” the low-

frequency (or very large-scale) patterns of a turbulent flow in a large-eddy simulation (LES). This method may

be viewed as an adaptive exponential smoothing in time with a varying cut-off frequency that adjusts itself

automatically to the local rate of turbulence of the simulated flow. It formulates as a recursive algorithm,

which requires only few arithmetic operations per time step and has very low memory usage. In practice,

this smoothing algorithm is used in LES to evaluate the low-frequency component of the rate of strain, and

implement a shear-improved variant of the Smagrosinky’s subgrid-scale viscosity. Such approach is primar-

ily devoted to the simulation of turbulent flows that develop large-scale unsteadiness associated with strong

shear variations. As a severe test case, the flow past a circular cylinder at Reynolds number ReD = 4.7 × 104

(in the subcritical turbulent regime) is examined in details. Aerodynamic and aeroacoustic features including

spectral analysis of the velocity and the far-field pressure are found in good agreement with various experi-

mental data. The Kalman filter suitably captures the pulsating behavior of the flow and provides meaningful

information about the large-scale dynamics. Finally, the robustness of the method is assessed by varying the

parameters entering in the calibration of the Kalman filter.
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. Motivations

The numerical simulation of turbulent flows in geometries of en-

ineering interest can be accomplished with various levels of approx-

mation, yielding a more or less detailed representation of the flow.

he so-called direct simulation, in which the equations of motion are

iscretized and solved directly, is obviously the most straightforward

pproach. If the mesh is sufficiently fine to resolve even the small-

st eddies, and if the numerical scheme limits dispersion and dissi-

ation errors, this method yields an accurate time-dependent repre-

entation of the flow [1]. Unfortunately, its applicability is limited to

imple geometries at relatively low Reynolds numbers. The reason is

wofold. First, the drawback of using highly accurate schemes is un-

voidably a lack of flexibility to handle complex geometries and gen-

ral boundary conditions. Second, the resolution of turbulent fluid

otions at high Reynolds numbers requires a prohibitive number of

rid points, especially in near-wall regions where thin vortical struc-

ures develop [2]. Therefore, in practical situations, the direct ap-

roach is often abandoned in favor of approximate, but numerically

ractable, computations.
∗ Corresponding author. Tel.: +33 4 72 18 61 68.

E-mail address: emmanuel.leveque@ec-lyon.fr (E. Lévêque).
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In a large-eddy simulation, usually referred to as LES in the litera-

ure, the grid resolution is deliberately reduced so that only the large-

cale motions of the fluid are captured numerically. This is physically

ustifiable since the large-sized eddies contain most of the kinetic en-

rgy of the flow, and their strengths make them the efficient carriers

f mass, momentum, heat, etc. On the contrary, small-sized eddies

re mainly responsible for dissipation and contribute little to trans-

ort and mixing. The large-scale dynamics is solution of the original

ow equations, e.g. the Navier–Stokes equations, supplemented by an

nknown term accounting for the stress exerted by the unresolved

ubgrid-scale motions on the simulated flow. A common thread is to

ssume that this stress is essentially responsible for a diffusive trans-

ort of fluid momentum at grid scale, which in turn calls for the mod-

ling of a subgrid-scale viscosity [3]. This viscosity depends on space

nd time, and is related to the (subgrid-scale) turbulent dynamics.

In the context of engineering flows, which may experience strong

nsteady events such as boundary-layer separation, vortex shedding

r disturbances induced by a moving body, e.g. a turbine blade, the

odeling of the subgrid-scale viscosity is recognized to be a diffi-

ult problem. Strong unsteadiness generally occurs at low frequen-

ies in comparison with turbulent fluctuations in the bulk and is of-

en associated with large amplitudes of the rate of strain (or shear).

n this respect, a refinement of the Smagorinsky’s model [4] has been

http://dx.doi.org/10.1016/j.compfluid.2015.12.006
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proposed recently. Namely, the so-called shear-improved Smagorin-

sky’s model (SISM) [5] accounts explicitly for the mean part (in

the sense of statistical average) of the rate of strain to correct the

Smagorinsky’s viscosity. The resulting viscosity expresses as

νsgs(x, t) = (Cs�(x))2(|S(x, t)| − S(x, t)), (1)

where Cs = 0.18 is the standard Smagorinsky constant [6], �(x) is the

local grid spacing (at position x) and
∣∣S(x, t)

∣∣ is the norm of the re-

solved rate-of-strain tensor:
∣∣S∣∣ =

√
2

∑
i j Si jSi j . In the notation, the

overline recalls that the flow quantity is discretized at a grid reso-

lution that may be coarse compared to the size of the smallest tur-

bulent eddies. In Eq. (1), the correcting term to the Smagorinsky’s

viscosity is S(x, t) = |̃Sx, t)|, where the tilde refers typically to a low-

pass filtering (as discussed below). Interestingly, the SISM does not

call for any adjustable parameter besides Cs = 0.18, which is fixed for

all flows. There is no need for an ad-hoc damping function nor any

kind of dynamic adjustment in near-wall regions [7]. The simplicity

and manageability of the original Smagorinsky’s model are therefore

preserved.

The theoretical basis of the SISM was put forward on account

of numerical and experimental studies on shear effects in non-

homogeneous turbulence [9].

In the context of subgrid-scale modeling, it shares obvious simi-

larities with the model originally introduced by Schumann in 1975,

which relies on a two-part eddy-viscosity accounting for the in-

terplay between the nonlinear energy cascade present in isotropic

turbulence and mean-shear effects associated with anisotropy [10].

However, the SISM clearly differs from Schumann’s proposal. This

later requires an empirical prescription for the “inhomogeneous

eddy-viscosity”, whereas the subgrid-scale viscosity is explicit in the

SISM and arises naturally from the scale-by-scale energy budget es-

tablished from the Navier–Stokes equations [5]. Another important

point is that the SISM cannot be obtained by just simplifying Schu-

mann’s formulation. Let us note that variants of Schumann’s model

have also been proposed by Moin and Kim in 1982 [11] and followed

by Horuiti in 1987 [12], and one can add the anisotropic version in-

troduced by Sullivan et al. in 1994 [13].

Including anisotropy effects in the SGS modeling has been ad-

ressed in many different ways. The SISM relies on a decomposition

f the resolved flow into a statistically-averaged part and a fluctuat-

ng part. An alternative decomposition into a large-scale and a small-

cale component has been extensively explored. This refers for in-

tance to the variational multi-scale (VMS) method, which originates

ith the works of Temam on multi-level methods [14] and has been

eveloped by Hughes et al. [15] and many others thereafter (see [16]

for a review). This decomposition arises from the motivation to build

an eddy-viscosity on either the small-scale or the large-scale part

of the velocity field, and make it act on the small-scale part of the

resolved motions only. One can also mention the filtered structure-

function model introduced by Ducros et al. [17] that consists of re-

moving the large-scale fluctuations of the velocity field before com-

puting its second-order structure function.

An important requirement of the SISM is to evaluate the mean

component of the rate of strain (in the sense of ensemble average) as

the simulation progresses. In practice, ensemble average may be ap-

proximated by space average over directions of homogeneity, when-

ever it is possible, e.g. in a plane-channel flow. When it is not, time

average may be used instead if the flow is statistically time-invariant.

However, many engineering flows do not allow such approximations

and an alternative estimation must be found, which is the issue ad-

dressed in the present work. Our proposal is to assume that the

mean flow may be approximated by the low-frequency component of

the velocity field, including a possible (quasi-)deterministic unsteadi-

ness, and that the turbulent component adds itself to this “unsteady”

mean (see [8] for more details). An original method based on Kalman
ltering in the time domain is investigated. Importantly, this filter

orrects its cut-off frequency automatically according to the local tur-

ulent rate of the flow. It is therefore well-adapted to strongly inho-

ogeneous and unsteady flows. This method is fully local in space

nd applies independently at each grid point. It is thus convenient to

reat complex-geometry flows, possibly integrated on unstructured

rids. The physical fundamentals of this method have already been

resented in a companion paper [8], the focus is here on computa-

ional and validation aspects, including a spectral analysis.

. Kalman filtering adapted to turbulent flows

.1. Exponential smoothing as baseline method

A simple way to extract the low-frequency component of a digital

ignal is to apply a weighted moving average (in time) to this signal.

n the context of computational fluid dynamics, this moving average

hould be applied at each grid point and every time step, making the

ost of this operation highly selective. The simplest solution is cer-

ainly to consider an exponentially-weighted moving average, or ex-

onential smoothing [18,19]. See [20–22] for existing applications of

xponential smoothing in the context of LES. The main advantage of

he exponential smoothing is that it can be formulated in a very con-

enient recursive manner:

(n+1) = (1 − α) · ũ
(n) + α · u(n+1)

, (2)

here ũ
(n)

denotes the smoothed velocity (at time n) whereas ū(n)

s the instantaneous velocity. The smoothing factor 0 < α < 1 con-

rols the weights of the past observations in the average (a higher

discounts older observations faster). The exponential smoothing is

ormally equivalent to a first-order low-pass filter with a cut-off fre-

uency fc related to the smoothing factor by

� 2π fc�t√
3

≈ 3.628 fc · �t, (3)

here �t is the time step of the velocity signal (see [8] for a proof).

In the exponential smoothing, the key point is to update at each

ime step the smoothed quantity (here the velocity) by taking into

ccount the new data point. It is computationally efficient since it re-

uires only the storage of the (previous) smoothed quantity. Also, the

nitialization of the algorithm is very simple: ũ
(0) = u

(0)
. In the con-

ext of complex turbulent flows, an obvious limitation of this method

s to select a unique physically-relevant cut-off frequency for the

hole flow. In practice, the smoothing factor is expected to vary in

pace and time according to the large-scale inhomogeneity and un-

teadiness of the flow. In the following, it is shown that this limitation

an be alleviated by considering an adaptive exponential smoothing,

n which the smoothing factor α(x, t) adjusts itself automatically ac-

ording to the local turbulent rate of the velocity field. This proce-

ure is made possible by means of an adaptive Kalman filter. Inte-

rating Kalman filtering in the SISM therefore allows us to extend the

cope of this sudgrid-scale model to the LES of inhomogeneous and

nsteady turbulent flows.

.2. Adaptive exponential smoothing based on Kalman filtering

A Kalman filter estimates the state of a dynamical system, here

he low-frequency component of the velocity field, from a series of

observations. Kalman filtering is a major topic in control theory in

engineering science and is known to be rather efficient [23,24]. As for

the exponential smoothing, an important feature of a Kalman filter

is its formulation as a recursive estimator. The updated state is com-

puted from the previous state and the current observation only. In

our case, the update is made according to Eq. (2) but with a smooth-

ing factor (noted K) that is now inferred dynamically from the lo-

cal fluctuation of the signal. This inference is performed on the basis



Table 1

The algorithm of our adaptive Kalman filter for turbulent flows. In the jargon of signal

processing, P is the error covariance and K is the optimal Kalman gain. Notice that K

is formally equivalent to an adaptive smoothing factor according to Eq. (2): K(x, t) �

α(x, t). Init is the initialization step. The algorithm is recursive and organizes in three

steps: Predict, Update and Adapt. In the Adapt step, ε = 0.1 (recommended value) is

an arbitrary small parameter.

Init: ũ
(0) = u

(0)

σδu
(0) = σδũ

with σδũ
given by Eq. (5)

P(0) = σ 2
δu

(0)

Predict: ũ
(n+1) = ũ

(n)

P(n+1) = P(n) + σ 2

δũ
with σδũ

given by Eq. (5)

Update: K(n+1) = P(n+1)/(P(n+1) + σ 2
δu

(n)
)

ũ
(n+1) = (1 − K(n+1) ) · ũ

(n+1) + K(n+1) · u
(n+1)

P(n+1) = P(n+1) · (1 − K(n+1) )

Adapt: σ 2
δu

(n+1) = max(u∗ · ||ũ(n+1) − u
(n+1)||, ε · u∗2)
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f a simple state-space representation of the velocity signal, as now

xplained.

The problem may be formulated quite simply as

ũ
(n+1) = ũ

(n) + δũ
(n+1)

u(n+1) = ũ
(n+1) + δu(n+1)

(4)

In this form, the smoothed velocity ũ evolves with some con-

rol increment δũ, and the second measurement equation expresses

he deviation of the instantaneous velocity from the estimated low-

requency component: δu = u − ũ. As a first approximation, these

wo increments are considered as random Gaussian processes with

ero mean. Furthermore, one may fairly assume that the evolution

f the smoothed velocity is very slow compared to the evolution of

he instantaneous velocity, so that no deterministic evolution is pre-

cribed at first for ũ, i.e. ũ
(n+1) = ũ

(n)
a priori. However, ũ

(n)
is al-

owed to evolve (slowly) if one observes that the instantaneous value

eparts significantly from the smoothed signal. The Kalman filter en-

ers a correction stage to determine δũ
(n+1)

. To do so, the variance

f δũ
(n+1)

is considered as fixed for the whole flow, whereas the

ariance of δū(n+1) is re-evaluated at each grid point as the simu-

ation progresses. This assumption is specific to our modeling since

oth variances should be considered as constant in the standard the-

ry of Kalman filter. Here, the physical idea is to assume that the

nstantaneous velocity is allowed to depart more or less from its

ow-frequency component depending on the local turbulence rate,

hereas the range of variation of the low-frequency component is

rescribed as a characteristic of the flow (see below). This feature is

ssential to track possible instabilities in the flow.

More specifically, the standard deviation of δũ is kept constant

hroughout the iterations with

δũ
= 2π f ∗�t√

3
u∗, (5)

here the frequency f∗ and velocity u∗ represent characteristic val-

es of the flow. This specific choice for σ
δũ

stems from the property

hat, in a steady regime, our Kalman filter should behave as an expo-

ential smoothing with α = σ
δũ

/σδu [8]. By assuming that σδū � u∗,
his leads to α � 2π f ∗�t/

√
3 which is fully consistent with Eq. (3) by

dentifying f∗ with the cut-off frequency fc.

.3. Implementation and setting of the Kalman filter

The theory of Kalman filter applied to our modeling leads to the

lgorithm sketched in Table 1. In practice, this algorithm is applied to

he velocity vector at each grid point. The low-frequency part of the

ate of strain is obtained by deriving spatially the smoothed velocity,

ince derivation and smoothing are linear operations that commute.
The Adapt step is a key point of our algorithm. In order to make

he Kalman filter adaptive, an estimate of the variance of δū is

equired at each time step. For this purpose, we introduce the esti-

ator

2
δu

(n+1) = max

(
u∗ · ||ũ(n+1) − u(n+1)||, ε · u∗2

)
(6)

n which ε is an arbitrary small parameter.

The first term within the maximum is ad-hoc and is devised to

ield a physically-sound estimation of the velocity variance: u∗ is

xed while ‖ ũ
(n+1) − u

(n+1) ‖ takes into account the observed (in-

tantaneous) fluctuation. The second term is a lower bound that

revents σ 2
δū

from decreasing to zero. Otherwise, if σ 2
δū

(n) ≈ 0 then

(n+1) ≈ 1 and ũ
(n+1) ≈ u

(n+1)
. At the next time step, σ 2

δū

(n+1) ≈ 0

nd so on. The filtered signal then sticks to the instantaneous signal

or all the subsequent time steps. In order to avoid this pitfall, the

alue ε · u∗2 acts as a small but non-zero lower bound for σ 2
δū

. A rec-

mmended value for ε is 0.1 according to [8]. This bound is reached

n regions where the flow is laminar, and permits to efficiently track

he onset of turbulence. When fluctuations grow, the estimated ob-

ervation variance σ 2
δū

(n)
increases and K(n+1) decreases, etc. The sen-

itivity to the value of the parameter ε will be examined in the test

ase.

The memory usage of our Kalman algorithm remains very low

ince it only requires the storage of the error covariance, P(n), the

ariance, σ 2(n)
δū , and the value of the filtered signal, ũ

(n)
, at each grid

oint. The number of operations remains relatively small as well. Im-

ortantly, the calibration of the Kalman filter requires to specify the

alues of u∗ and f∗ in Eqs. (5) and (6). In practice, a fine tuning of u∗

nd f∗ should not be necessary because the Kalman filter is expected

o self-adjust, and thus, characteristic values are sufficient. Neverthe-

ess, the sensitivity to the value of f∗ will be addressed in the test case.

The values u∗ and f∗ are typically obtained from the characteris-

ic values entering in the Reynolds number or other flow numbers,

.g. the Strouhal number. For instance, for a turbulent plane-channel

ow: Reτ = uτ · h/ν, where uτ is the wall-friction velocity, h is the

alf-width of the channel and ν is the kinematic viscosity of the fluid.

relevant choice is therefore u∗ = uτ and f ∗ = uτ /h. Likewise, rele-

ant values for u∗ and f∗ will be proposed for the flow past a cylinder

n the following section.

. Flow past a circular cylinder in the subcritical turbulent

egime

.1. Numerical solver

Our computations have been carried out with the Turb’Flow

olver [25], which is primarily devoted to compressible aerodynamics

n the domain of turbomachinery flows. Spatial discretization uses fi-

ite volumes on multiblock structured grids. The estimation of the in-

iscid fluxes relies on a four-point centered interpolation with fourth-

rder artificial viscosity (coefficient is equal to 0.01 [26]), whereas

iffusive fluxes are computed with a two-point centered scheme. The

ime marching is carried out by a five-step Runge–Kutta scheme. De-

ails about the flow equations and the solver are reported in [25]. In

he present study, the subgrid-scale viscosity follows the prescrip-

ion of the shear-improved Smagorinsky model (Eq. (1)) with the low-

requency component of the rate of strain being estimated by means

f the adaptive Kalman filter described in Section 2.

.2. Flow configuration

The flow past a cylinder is considered in the subcritical regime

here shear-layer transition occurs just downstream of the separa-

ion points [27]. The complexity of the flow arises from the oscil-

ation of the separation points along the cylinder sides, related to



Fig. 1. Left: sketch of the Cartesian coordinate system (x, y, z) and the cylindrical coordinate system (r, θ , z). Right: close-up view of the mesh around the cylinder. For clarity, every

other point is displayed in each direction.

Fig. 2. Instantaneous iso-surface of density, colored by non-dimensional axial velocity ux/U∞ .
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the vortex shedding in interaction with background wake turbulence.

From the viewpoint of LES, this flow is recognized as a challenging

test case [28,29]. It is here used to test the efficiency of our smooth-

ing algorithm and the capability of the shear-improved Smagorinsky

model to handle complex unsteady flows. Another advantage is the

large body of available experimental results at comparable Reynolds

numbers that allow us to test in detail the accuracy of our numeri-

cal simulations. The robustness of the method will also be examined

by varying the parameters entering in the calibration of the Kalman

procedure.

The numerical configuration is a circular cylinder (of axis z) with

diameter D = 0.01 m and span length 9D, which is placed in an

undisturbed air-flow at velocity U∞ = 70 m.s−1 along the x-direction

(under standard conditions of temperature and pressure). In this
configuration, the Reynolds number is Re = 4.7 × 104 based on the

iameter. Vortices are shed from each side of the cylinder at a

trouhal number St = fs · D/U∞ ≈ 0.2 corresponding to the vortex-

hedding frequency fs ≈ 1400 Hz. The calibration of the Kalman filter

equires characteristic values associated with the largest scales of the

ow: u∗ and f∗. In our case, the largest scales are associated with the

ortex shedding and a natural choice is therefore u∗ = U∞ and f ∗ = fs

Run-A). In order to estimate the sensitivity to the value of f∗, a second

imulation will be performed with the overestimated value f ∗ = 2 fs

Run-B). Finally, a third simulation (Run-C) will be considered with

= 0.2 in Eq. (6) instead of the recommended value ε = 0.1 [8]. Run-

should be considered as our reference simulation, whereas Run-

and Run-C are expected to be less favourable configurations. The

ensitivity to the grid resolution (which fulfills usual standards for



Table 2

Characteristic numbers of the flow for Run-A, Run-B and Run-C in comparison with various experimental data at simi-

lar Reynolds numbers. Run-A is the reference simulation with the calibration parameters u∗ = U∞, f ∗ = fs and ε = 0.1,

whereas f ∗ = 2 fs in Run-B and ε = 0.2 in Run-C (other parameters are unchanged).

LES at ReD = 4.7 × 104 experimental data found in the literature

1.196 ± 0.002 (Run-A) 1.35 at Re = 4.3 · 104 [30]

CD: mean drag coefficient 1.216 ± 0.006 (Run-B) [1.0, 1.35] at Re = 4.8 · 104 [32]

1.191 ± 0.010 (Run-C) [1.0, 1.3] at Re = 4.8 · 104 [33]

[1.1, 1.3] at 104 < Re < 105 [34]

0.036 ± 0.001 (Run-A) 0.16 at Re = 4.3 · 104 [30]

C′
D: rms drag coefficient 0.048 ± 0.003 (Run-B) [0.08, 0.1] at Re = 4.8 · 104 [35]

0.057 ± 0.003 (Run-C) [0.05, 0.1] at 104 < Re < 105 [34]

0.48 ± 0.01 (Run-A) [0.45, 0.55] at Re = 4.3 · 104 [30]

C′
L: rms lift coefficient 0.52 ± 0.02 (Run-B) [0.4, 0.8] at Re = 4.8 · 104 [35]

0.45 ± 0.03 (Run-C) [0.6, 0.82] at 104 < Re < 105 [34]

0.20 (Run-A) [0.18, 0.2] at Re = 4.8 · 104 [32]

St: Strouhal number 0.20 (Run-B) [0.185, 0.195] at Re = 6.1 · 104 [36]

0.20 (Run-C)

86.8° (Run-A)

θ s: mean separation angle 86.7° (Run-B) 83° at 4.0 104 < Re < 4.5 104 [34]

85.4° (Run-C)

−1.27 (Run-A) [−1.38, −1.22] at Re = 4.6 · 104 [38]

Cp base: mean base pressure coefficient −1.30 (Run-B)

Cp base ≡ Cp(θ = 180◦) −1.25 (Run-C)

1.24 (Run-A) 1.25 at Re = 4.7·104 [40]

�c/D: mean recirculation-bubble length 1.19 (Run-B)

normalized by the diameter of the cylinder 1.26 (Run-C)

−0.28 (Run-A)

urevmax
/U∞: maximum of mean reverse velocity −0.26 (Run-B)

normalized by the inlet velocity −0.28 (Run-C)

Fig. 3. Mean friction coefficient around the cylinder. LES at Re = 4.7 · 104 (Run-A: solid

line, Run-B: dashed line, Run-C: dotted line) are compared with experimental data (�:

Re = 105[33]).
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Fig. 4. Mean pressure coefficient around the cylinder. LES at Re = 4.7 · 104 (Run-A:

solid line, Run-B: dashed line, Run-C: dotted line) are compared with experimental

data (©: Re = 4.6 · 104 [38], �: Re = 105 [33], �: Re = 1.3 · 105 [30]).
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all-resolved LES) is not examined here since the filtering procedure

perates in the time domain only, and is thus not directly affected by

he spatial resolution.

The aspect ratio L/D has a strong impact on the physics of this flow,

s reported in [30]. In particular, L/D > 2.5 is required to observe

regular vortex-shedding, however, for L/D < 4 the mean drag and

uctuating lift are anomalously increased. Therefore, in the present

imulations, L/D = 9 and periodicity is imposed in the spanwise di-

ection. The computational domain extends over 20D in the radial di-

ection. The coordinate system and a view of the grid are presented

n Fig. 1. The whole grid is composed of about 9 · 106 points. The

esolution is consistent with standard practices for (wall-resolved)

ES of engineering flows [3]. Behind the separation line (in the
urbulent region) the wall grid density in wall units is �r+
max � 1

with a radial growth ratio of 1.2), r+�θ+
max � 15 and �z+

max � 22.

he non-dimensionnal time step is �t+ = �t · U∞/D = 4.2 × 10−4,

dapted to explicit discretization. For each run, about 1340 flow in-

tants have been recorded in the established turbulent regime to en-

ure a good convergence of the statistics; the whole trace corresponds

o 67 vortex-shedding periods. In the following text 〈.〉 denotes the

ost-processed time average.

. Results and analysis

In order to give an overview of the flow structure, an instanta-

eous iso-surface of density, colored by the non-dimensional axial



Fig. 5. Root-mean-squared pressure coefficient around the cylinder. LES at Re = 4.7 ·
104 (Run-A: solid line, Run-B: dashed line, Run-C: dotted line) are compared with ex-

perimental data (�: Re = 6.1 · 104 [36]; �: Re = 6.1 · 104 [39]).
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velocity ux/U∞, is displayed in Fig. 2. Three large vortices are ob-

served in the wake, shed from the cylinder during the previous it-

erations, with alternate senses of rotation. These vortices are affected

by turbulence and distorted in the spanwise direction. Axial vortices

are also observed between successive shed vortices. Upstream, in

the shear layers separating from the sides of the cylinder, smaller

spanwise vortices are observed. According to [31], they may be gen-

rated by the nascent shear-layer instability in the early transition

rocess.
Fig. 6. Time-averaged velocity field from LES (reference simulation: Run-A). Top: Normalize

grey square on the horizontal axis indicates the downstream end of the recirculation bubble:
.1. Aerodynamical characteristics

The different characteristic numbers of the flow obtained from

ur simulations are gathered together in Table 2 and compared with

arious experimental data at comparable Reynolds numbers. For the

orce coefficients: CD, CD
′ and CL

′, an estimate of the uncertainty of

the statistical convergence is provided. It is evaluated as the standard

deviation of the coefficient when calculated on subsets of the whole

sample. These subsets are obtained by masking 17 vortex-shedding

periods from the total sample (67 periods) and by sliding the mask.

The overall comparison is very satisfactory and all estimated val-

ues lie within, or are close to, the ranges of experimental results. Note

that the different Reynolds numbers and aspect ratios contribute to

the dispersion of the reported experimental data. Except for the fluc-

tuating drag coefficient, CD
′, one gets that the results obtained with

a different reference frequency f∗ (Run-B) or a different parameter

(Run-C) remain very close to the results obtained in the reference

simulation (Run-A). The differences between the simulations are of

the same order as the uncertainties on the statistical convergence.

This underlines a good robustness of our numerical method. How-

ever, large discrepancies are reported on CD
′ between the three sim-

ulations, in terms of percentage or by comparison with the uncertain-

ties on the convergence. But, one can mention that this coefficient is

very small (a few percents of the mean drag) and is probably also

more sensitive to computational errors.

The pressure distribution around the cylinder is strongly influ-

enced by the vortex shedding so that wall-pressure spectra are domi-

nated by a peak at the vortex-shedding frequency (except near θ = 0◦

nd θ = 180◦). The Strouhal number is calculated from this peak fre-

uency measured on one side of the cylinder (θ = 90◦). It is found

in very good agreement with the experimental data (see Table 2). In

Fig. 3, the angular distribution of the mean friction coefficient is given
d axial velocity 〈ux〉/U∞ . Bottom: Two-dimensional streamlines of the mean flow. The

〈ux〉 = 0 for x = �c and y = 0; �c is the wake-closure length.



Fig. 7. Profiles of the streamwise velocity along the y-axis (transverse direction) at position x = 0 on one side of the cylinder. Left: mean velocity. Right: root-mean-squared velocity

fluctuations. —: LES at Re = 4.7 × 104 (Run-A: solid line, Run-B: dashed line, Run-C: dotted line); × : experimental data at Re = 4.7 × 104 [41].

Fig. 8. Profiles of the streamwise velocity along the y-axis (transverse direction) at position x = 1.7D in the cylinder wake. Left: mean velocity. Right: root-mean-squared velocity

fluctuations. —: LES at Re = 4.7 × 104 (Run-A: solid line, Run-B: dashed line, Run-C: dotted line); × : experimental data at Re = 4.7 × 104 [41].

Fig. 9. Power spectra of the streamwise velocity uxy (as measured by a hot-wire anemometer) at x/D = 1.7 and y/D = 0 (Left) and y/D = 0.6 (Right). Spectra from simulations

Run-A: solid line, Run-B: dashed line, Run-C: dotted line. Experimental spectra are indicated by crosses. The characteristic scalings: f −1 (sheared turbulence) and f −5/3 (isotropic

turbulence) are shown for indication.



Fig. 10. Far-field power spectrum of the pressure (in Pa2
.Hz−1) represented in decibels

with reference pressure 2 · 10−5 Pa, at position x/D = 15.5 and y/D = 185. Spectra from

simulations Run-A: solid line, Run-B: dashed line, Run-C: dotted line. Experimental

spectrum is indicated by crosses.
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by Cf ≡ (〈τw〉/ρU2∞)
√

Re, where τw is the shear stress around the

cylinder. It agrees well with the experimental data for the three sim-

ulations. In Table 2, the mean separation angle is given by Cf = 0. For

the reference simulation (Run-A), the computed value is θs = 86.8◦

close to the experimental value θ s ≈ 83° reported in [34] within the

range 4.0 · 104 ≤ Re ≤ 4.5 · 104. The over-estimate of θ s is typically of

the order of the angular resolution �θ ≈ 2° in the separation zone.

Interestingly, no notable discrepancy is observed for θ s between the

three simulations, although the parameter ε is expected to play an

important role in capturing the onset of turbulence (near the separa-

tion point). This indicates that ε = 0.1 is certainly the good order of

magnitude [8].

In Fig. 4, the angular distribution of the mean pressure coeffi-

cient is given by Cp ≡ (〈p〉 − p∞)/ 1
2 ρU2∞ where p∞ is the ambient

pressure imposed at the outflow. The prediction is again satisfactory
Fig. 11. x-component of the dimensionless velocity ux/U∞ , on a cutting plane normal to the

at the same instant. Results from Run-A. The unit vectors of the coordinate system (x/D, y/D)
ithout clear discrepancy between the three runs. The distribution

f the fluctuating pressure coefficient C′
p ≡ prms/

1
2 ρU2∞ is plotted in

ig. 5. This quantity is particularly sensitive to the turbulent wake

ynamics. In the reference simulation (Run-A), it is remarkably well

aptured, with a maximum located near the separation angle [37].

he results of Run-A and Run-C are almost indistinguishable, which

eans that varying the parameter ε does not affect significantly the

omputation of wake dynamics. A slight discrepancy (of the order

f 10%) is observed around the maximum when over-estimating the

haracteristic frequency f∗ (Run-B). Indeed, over-estimating f∗ is ex-

pected to result in an under-estimate of the subgrid-scale viscosity,

since this latter is typically proportional to the difference between

the instantaneous and the filtered shear. Turbulent fluctuations, and

consequently C′
p, are therefore increased.

The flow downstream of the cylinder is examined herein. The

ean velocity in the plane perpendicular to the cylinder is plotted

n Fig. 6. The mean recirculation zone (or bubble) can be seen on the

treamline plot and is characterized by the wake-closure length, �c,

here the centerline mean axial velocity vanishes: 〈ux(�c, 0)〉 = 0.

he reference simulation (Run-A) yields �c ≈ 1.24D, which is very

lose to the experimental value 1.25D at the same Reynolds num-

ber [40]. The estimation obtained in Run-C, �c ≈ 1.26D, is also very

lose to the experimental value, whereas the discrepancy obtained in

un-B is much larger: �c ≈ 1.19D. This is consistent with our previous

bservations, namely that the sensitivity to the reference frequency f∗

ppears to be higher than to the parameter ε, however, the sensitivity

emains relatively low for these two quantities.

.2. Flow statistics in the wake

In Figs. 7 and 8, comparisons with hot-wire velocity profiles [41]

re plotted at two positions: (i) aside the cylinder, shortly down-

tream of the separation point (x = 0) and (ii) in the near wake

ownstream of the recirculation bubble (x/D = 1.7). The mean and

uctuating velocity components are those directly measured by the

ot-wire anemometer and evaluated accordingly from the LES data.

amely, the hot-wire yields an estimation of the norm of the velocity

n the plane perpendicular to the cylinder axis: uxy ≡
√

u2
x + u2

y . The

ean and root-mean-squared velocity profiles at x = 0 match rea-

onably well the experimental results. In the near wake (at x = 1.7D)
cylinder axis. Left: instantaneous field. Right: filtered field (by adaptive Kalman filter)

are shown.



Fig. 12. Instantaneous isocontours of the Strouhal number based on the cut-off frequency of the Kalman filter: StK(x, t) = fKalman(x, t) · D/U∞ on a plane normal to the cylinder

axis, at the same position and time as in Fig. 11. Results from Run-A. The unit vectors of the coordinate system (x/D, y/D) are shown.
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he overall agreement is quite good, although a discrepancy is found

or both the mean velocity and velocity fluctuations. This region, in

he near wake downstream of the recirculation bubble, is particularly

ensitive. Indeed, it is affected by the wake closure length and un-

ergoes violent turbulent events. In this regard, the prediction here

chieved is encouraging. Moreover, it should be pointed out that hot-

ire measurement might also be biased (downstream of the mean

ecirculation bubble) by backflow events. Indeed, whenever ux < 0,

he hot wire is in the own wake of the probe and underestimates uxy.

or this reason, standard single hot-wire is not expected to provide

precise measurement of the velocity in the near wake [30]. This is-

ue has been tackled by Cantwell and Coles [32] by rotating X-array

ot-wire probes through the measurement domain, however, such

dvanced measurement technique has not been considered here. Fi-

ally, let us mention that there is no notable discrepancy between the

hree runs.

.3. Spectral analysis

In order to assess the quality of our LES, it is important to investi-

ate the unsteady part of the fluctuating fields as well. Since the flow

s subject to both a quasi-periodic vortex shedding and broadband

urbulence, a deeper insight into statistics is provided by a spectral

nalysis. In this subsection various spectra are examined, namely, ve-

ocity spectra in the cylinder near wake and a far-field pressure spec-

rum.

Fig. 9 displays the power spectra of the streamwise velocity uxy

btained both experimentally and numerically at x/D = 1.7 and two

ertical positions y = 0 and y/D = 0.6, i.e. on the centerline and in

he shear layer of the near wake, respectively. The general features of

he spectra are in line with the standard aerodynamical description of
ubcritical von-Karman streets [34]. In the near wake, experimental

elocity signals fluctuate almost sinusoidally at the vortex-shedding

requency fs ≈ 1400 Hz. Deviations from the purely periodic signal

re evidenced by the broadband part of the spectrum, including the

pectral broadening of the tonal components. The numerical results

ollow the same trends, although the signals are characterized by a

icher harmonic content (second and third harmonics).

The peak at the fundamental frequency (at fs) is absent in the sim-

lated spectra on the centerline, while it is visible in the experimental

pectrum. Vortices are shed alternatively and similarly on each side

f the cylinder. The fluctuations induced by this alternate shedding

erge equally on the centerline (by mirror-symmetry) so that the re-

ulting streamwise velocity exhibits a characteristic frequency that

s twice the frequency of the vortex shedding, i.e. 2fs. This feature is

ell-captured in the simulations, but the peak observed at fs in the

xperimental spectrum is obviously an artefact. A plausible explana-

ion is that the hot-wire position was not exactly on the centerline but

lightly above or below it. In that situation, the recorded fluctuations

re always dominated by the vortex shedding on the same side of the

ylinder as the hot-wire. This is observed for the spectra in the shear

ayer at y/D = 0.6 with a main peak at fs. In both positions y = 0 and

/D = 0.6, the levels of broadband spectra agree very well between

xperimental and numerical data up to about 3 kHz. Above 3 kHz,

he numerical simulations over-predict the measurements. The cause

f this high-frequency mismatch remains unclear, even if the exper-

mental acquisition chain is preferably questioned (see a comment

ater). Finally, the dependence on frequency of the spectra is plotted

gainst the characteristic scaling laws f −5/3 for isotropic turbulence,

nd f −1 for sheared turbulence [42]. As expected, the numerical spec-

ra are found closer to the scaling law f −5/3 on the centerline, where

urbulence is expected to be more isotropic, whereas the scaling law



Fig. 13. Upper half: Isocontours of the local turbulence rate defined as Tu ≡
√

(u′2 + v′2 + w′2)/3/U∞ . Lower half: Isocontours of the time-averaged Strouhal number based on the

Kalman cut-off frequency: 〈StK〉. The grey square indicates the end of the mean-recirculation bubble (location of the wake closure). Results from Run-A. The unit vectors of the

coordinate system (x/D, y/D) are shown.
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f −1 is more suitable in the shear layer. The three simulations Run-A,

B, C yield undistinguishable results.

Since small errors in the simulation of unsteady flows are likely

to result in large discrepancies in the acoustic far-field prediction,

this latter is also a good tool to assess the quality of unsteady flow

computations. It allows us to continue the spectral analysis, be-

yond the flaws of the hot-wire measurement in the near-wake re-

gion. The far field pressure is computed from LES using the Ffowcs-

illiams and Hawkings acoustic analogy [43]. The present solver,

called Turb’AcAn, uses the advanced time approach of Casalino [44]

nd has been validated on test cases presented in [44]. Integration

s performed on the cylinder surface, thus neglecting the quadrupole

ources, given the low Mach number considered here (∼0.2). The far

eld spectra at x/D = 15.5 and y/D = 185 are compared to in-house

easurements [41] in Fig. 10. The numerical spectra have been cor-

rected to correspond to the experimental span length (30D) by sup-

posing proportionality of the power spectral density, i.e. neglecting

correlation for spanwise separations larger than the computational

extent. In the experiment, for frequencies below 490 Hz, the cylinder

noise does not overpower the background noise, as shown in [41].

Consequently, the spectrum is masked in this region, since the ex-

perimental levels are mostly related to background noise. Concern-

ing the simulations, the relatively short time series (67 periods) yield

a weaker statistical convergence, which produces wiggles in the spec-

tra.

The general shape of the numerical spectra agrees with the ex-

periment. It is dominated by a very broad peak (more than an octave

wide) centered at the shedding frequency. The present result con-

firms that the shedding frequency is well captured by the simula-

tions. The second and third harmonics can be identified on the exper-

imental spectrum, but only the third harmonic seems to stand out in
 s
he simulations. However, the wiggles make the harmonics identifi-

ation difficult. A particular attention is paid to the broadening of the

undamental peak, associated with turbulence developing in the near

ake. It is quite well reproduced by the simulations. Finally, there is

good agreement of the spectrum slopes at high frequencies. This

ends to confirm that the discrepancy with the hot-wire results was

measurement artefact. Overall, the agreement between the experi-

ental and numerical spectra in the far field is very satisfactory, for

oth the fundamental peak and the broadband components.

. Behavior of the Kalman filter

The behavior of the Kalman filter is now examined. In particular,

t is important to verify a posteriori that the cut-off frequency of the

alman filter suitably adapts itself to the local dynamics to extract

he large-scale patterns of the flow. In Fig. 11, the left and right im-

ges show respectively the x-component of the velocity field without

nd with the smoothing procedure. In the left image, the wake under-

oes strong oscillations due to the vortex shedding combined with a

ariety of turbulent scales. In comparison, the filtered velocity field

represented in the right image) mainly captures the vortex shedding

nd the turbulent activity has been mostly smoothed out. In the fol-

owing, a more detailed analysis of the adaptivity of the Kalman filter

s presented.

.1. Cut-off frequency of the Kalman filter

As mentioned in Section 2, the optimal gain of our Kalman fil-

er may be interpreted as an adaptive smoothing factor. According

o Eq. (3), by analogy with the exponential smoothing, it may be as-

ociated formally with a characteristic cut-off frequency f (x, t)
Kalman



Fig. 14. Comparison of the time-averaged cut-off Strouhal number 〈StK〉, between Run-A (top), Run-B (middle) and Run-C (bottom). The unit vectors of the coordinate system (x/D,

y/D) are shown.
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uch that

(x, t) ≈ 3.628 fKalman(x, t) · �t (7)

Fig. 12 displays an instantaneous snapshot of the Strouhal num-

er based on the cut-off frequency of the Kalman filter: StK(x, t) ≡
fKalman(x, t) · D/U∞ at the same position and time as in Fig. 11, for

un-A. This Strouhal number can be viewed as the normalized cut-

ff frequency of our Kalman filter. This (normalized) frequency is ob-

iously influenced by the underlying flow dynamics as pointed out

y the similarities with Fig. 11. This is better evidenced in Fig. 13,

here the time-averaged value 〈StK〉 is compared with the local tur-

ulence rate of the flow, Tu, for Run-A. The turbulence rate is de-

ned as Tu ≡
√

1/3 · (u′2 + v′2 + w′2)/U∞, where u′, v′ and w′ are

he root-mean-squared components of the velocity fluctuations. The

socontours of the two fields look very similar, which indicates that

in average) the Kalman cut-off frequency is truly sensitive to the

ocal level of fluctuations of the velocity field. This is a strong as-

essment of the adaptiveness of our Kalman filter. As expected, the
normalized) cut-off frequency is maximal (so is the Kalman gain)

n the external flow region where the fluctuations are weak. In this

egion, the smoothing is reduced (in average) and the filter is more

ensitive to the possible onset of turbulent instabilities. This is a cru-

ial feature around the border of the wake, where intermittent fluc-

uations are caused by the oscillations of the wake. In the shear-

ayer-separation zone, where the flow undergoes strong fluctuations

ith typical frequency fs, the (normalized) Kalman frequency suit-

bly adjusts itself to a value slightly above the shedding Strouhal

umber, thus including the (quasi-)deterministic shedding in the

mean flow”. This is physically-sound since the vortex shedding is

xpected to be part of the mean flow (in the sense of ensemble aver-

ge). Interestingly, the minimum value of the mean Kalman cut-off

requency is found very close to the wake-closure location, where

he mean axial velocity is null and the turbulence rate is roughly

aximal. In this region, a lower cut-off frequency enables to ef-

ciently smooth out the turbulent fluctuations. In summary, it is

ound in the reference simulation Run-A that the cut-off frequency



Fig. 15. Time records of the dimensionless axial velocity on the centerline of the wake: x/D = 1.7 and y/D = 0 (Left) and outside of the wake: x/D = 1.7 and y/D = 1.2 (Right), from

Run-A. —: instantaneous signal, − · − · −: filtered signal.
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calculated by our adaptive-Kalman-filter algorithm is physically-

sound and suitably reacts to the dynamical structures of the

flow.

The time-averaged cut-off Strouhal number 〈StK〉 is compared be-

tween Run-A, Run-B and Run-C in Fig. 14. The spatial variations of

〈StK〉 are qualitatively similar for the three runs. However, the 〈StK〉
values are notably increased in Run-B, for which the reference cut-off

frequency f∗ had been intentionally overestimated by a factor 2 (as

compared to the reference value used in Run-A). As a consequence,

the range of variations of 〈StK〉 in Run-B is roughly doubled in compar-

ison with Run-A: 0.60 < 〈StK〉 < 1.26 in Run-B. The minimum value

of 〈StK〉 (reached in the near wake) is notably higher than the shed-

ding Strouhal number St = 0.2. Therefore, the turbulent fluctuations

in the wake are less-effectively smoothed out, which may explain

why Run-B performs less accurately in Section 4. This is visible on

the most sensitive quantities: Cp′ in Fig. 5 and the mean wake veloc-

ity in Fig. 8. Returning to Fig. 14, the topology of 〈StK〉 along the wake

centerline is also affected by the choice of f∗: The second minimum

observed in Run-A around x/D = 2.5 is shifted downstream in Run-

B. Concerning Run-C, the results are very similar to those obtained

in Run-A except for a decrease of the maximum value of 〈StK〉 in the

unperturbed flow region outside of the wake. This is the expected be-

havior since the increase of ε acts on the clipping in the Adapt phase

in the algorithm (cf. Table 1).

In summary, it is found that our Kalman filter suitably adapts it-

elf to the dynamical structures of the flow and achieve an efficient

ltering of turbulent fluctuations. However, to this end, the reference

ut-off frequency f∗ should be set in reference to the characteristic

unsteadiness of the flow. The overestimate of f∗ in Run-B results in

a less-effective smoothing of the turbulent fluctuations and slightly

deteriorated results. This should be kept in mind for future applica-

tions.

5.2. Phase delay

Fig. 15 presents time traces of the instantaneous and filtered axial

velocities at two locations: on the centerline of the wake (x/D = 1.7

and y/D = 0) and outside of the wake (x/D = 1.7 and y/D = 1.2), for

Run-A. The instantaneous signal on the wake centerline (left plot) is

highly turbulent and the smoothing is very satisfactory. In compari-

son, outside of the wake (right plot), unsteadiness is induced by po-

tential effects associated with the large shed vortices. Therefore, the

signal exhibits only low frequencies. In principle, the instantaneous
nd the smoothed signals should superimpose, but, we observe a

hase delay. This delay is due to the fact that the smoothed signal

s estimated from past iterations and, thus, cannot follow instanta-

eously the ongoing slow evolution of the signal. This is a known

rawback of all recursive filters. This phase delay can be roughly es-

imated as

delay ≈ �t

〈K〉 ≈ 1

3.628〈 fKalman〉
ccording to [45]. For the signal outside of the wake (y/D = 1.2): 〈StK〉

3 · St ≈ 0.6. One gets τ delay · U∞/D ≈ 0.5 in good agreement with

he observations in Fig. 15 (right plot). This analytical estimate of the

elay can be used in relation with Fig. 14, where the time-averaged

cut-off Strouhal number is compared for the three computations.

Run-A and Run-C display similar values of 〈StK〉 and should there-

ore present similar delays, except in the unperturbed region where

he increased value of ε in Run-C is expected to enhance the delay. In

un-B, higher values of 〈StK〉 are obtained, corresponding to reduced

elays. However, as mentioned in the previous section, this reduction

omes at the price of a less effective smoothing and slightly degraded

esults.

In theory, phase delay may be reduced by using a so-called dou-

le exponential smoothing. This latter encompasses a second equa-

ion that accounts explicitly for the trend of the signal. Along the

ine of the present work, developing an adaptive double exponential

moothing by use of Kalman filtering is a priori conceivable. However,

ur simulations indicate that even if phase delay is not satisfactory

rom a signal-processing viewpoint, it does not seem to have a signif-

cant impact on the overall accuracy of the simulation.

. Conclusion

In this work, a Kalman filter adapted to the dynamics of turbulent

ows has been introduced and tested. This algorithm is of general

nterest and efficiently extracts “on the fly” the very-large-scale pat-

erns of a turbulent flow in a numerical simulation. In practice, this

nformation is here profitably used to implement a shear-improved

magorinsky’s subgrid-scale viscosity. The whole methodology aims

t addressing the LES of complex unsteady turbulent flows.

The flow past a circular cylinder at high Reynolds numbers is

ommonly considered as a paradigm of complex flows, involving re-

arkable features such as thin separating shear layers, transition, and

arge-scale vortex motion in the wake [28]. In this regard, it has been
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ecommended by the Advisory Group for Aerospace Research and

evelopment (AGARD) for the validation of LES solvers.1 By treating

his severe test case and by comparing our numerical results with

arious experimental data (in comparable flow configurations), we

ave demonstrated both the efficiency of our adaptive Kalman filter

n its own, and the very good accuracy of the resulting LES. The cut-

ff frequency of the filter is shown to adapt spatially to the instan-

aneous flow field. The dependence of the filtering on the calibration

requency f∗ and the parameter ε has also been evaluated. It appears

hat only f∗ has a direct influence on the filtering levels and should

herefore be chosen with attention. Nevertheless, in the present con-

guration, a doubling of this frequency was shown to have a moder-

te influence on the accuracy of the simulated flow.

Importantly, the whole method is physically-sound. The numer-

cal implementation is efficient in terms of performance and mem-

ry usage and the smoothing algorithm remains fully local in space

s it applies independently at each grid point. It is therefore particu-

arly adapted for parallelization, and convenient for the formulation

f boundary conditions. Nevertheless, further improvements may be

chieved, in particular to reduce the phase delay related to the recur-

ivity of the filter. A solution in terms of double exponential smooth-

ng has already been identified and will be investigated in the near

uture.
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