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ABSTRACT
CAA based on the Linearised Euler Equations (LEE) is applied to propagate aerodynamic sound
over an extended distance including ground effects. The LEE are coupled to data from an LES
via an acoustic analogy to follow-up the sound from the source to the extended far field: the
complete chain is illustrated on the sound generated by a cylinder in a M ~ 0.2 and Re ~ 48000
flow. A very good agreement is found in free field between the approach based on the Ffowcs-
Williams & Hawkings (FWH) analogy only and the combined FWH-LEE approach. The ability
of the combined approach to handle complex boundary conditions is illustrated on the same data
set with a rigid and a grassy ground.

NOMENCLATURE
Ak: coefficient associated to k-th pole of the rational approximation of 
c0: sound speed in fluid at rest
ceq: equivalent sound speed taking into account the mean flow velocity V0

: mean drag coefficient

CD
¢: rms-value of drag fluctuations

Cf: friction coefficient
CL

¢: rms-value of lift fluctuations
cp: specific heat
Cp: pressure coefficient
Cṕ: rms value of pressure coefficient
CS: Smagorinsky constant
d       s: surface element
D: cylinder diameter
et: total specific energy
f: frequency
f0: shedding frequency

CD

ω( )Ẑ



2 f0, 2m f0: 1
st and (2m-1)th harmonic (uneven)

3 f0, ((2m + 1) f0): 2
nd and (2mth) harmonic (even)

F: unsteady external force per unit volume in LEE
g = 0: equation of control surface in the FWH analogy
H: Heaviside function
i, j, k, m:integers
L: cylinder length (span) in the computation
Lexp: cylinder length in the experiment
lr: length of recirculation bubble in the near cylinder wake
Li: unsteady loading on the FWH control surface g = 0
M: Mach number

: Mach number in local observer direction

n, ni: exterior normal: vector and i-th component
N: number of poles of Ẑ  (w)
O: origin of coordinate system, located on the cylinder centre at mid-span
p: pressure
p0: unperturbed air pressure
p¢ : acoustic pressure perturbation
p̂(w): Fourier transform of the acoustic pressure p¢ at the ground

: subgrid-scale Prandtl number

q: unsteady mass flow rate source per unit volume in LEE
Q: unsteady mass flux through the FWH control surface g = 0
r, r: local source-to-observer position, vector and modulus
rDq+max : maximum azimuthal grid spacing at the wall in wall units
R: distance from origin to observer (origin located at mid-span centre of cylinder

section)
Re: diameter-based Reynolds number
Sij: local strain rate tensor component
St : Strouhal number (dimensionless frequency)
t, t¢: time
ui, ni : instantaneous velocity component in i-th direction
ux: streamwise instantaneous velocity
u¢

y: velocity fluctuation in cross-stream direction
u¢

z: velocity fluctuation in spanwise (vertical) direction
un, nn: unsteady normal velocity components
v: velocity fluctuation in LEE
n̂n(w): Fourier transform of the acoustic velocity normal to the ground
V: wind speed
V0: incoming uniform flow velocity for cylinder flow, (also vehicle speed on Fig.1)
V0: unperturbed velocity field – also V0= ||V0|| in cylinder flow
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κ
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c
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x, xi: observer position (vector, component) with respect to origin
y, yi : position (vector, i-th component in generic coordinate system) with respect to

origin
(x, y , z):coordinate system for the cylinder: streamwise, cross-stream and spanwise

directions respectively
yref : y-position of the inlet boundary for the long-range computation
Z(t), Ẑ (w): impedance in time and frequency domain respectively
Z∞: limit value of Ẑ (w) as w tends to infinity
D: filter size
Dr+

max: maximum radial grid spacing at the wall in wall units
Dz+

max: maximum spanwise grid spacing at the wall in wall units

d: Dirac function
Dt: time step
q: observer angle in (x, y) mid-span plane with respect to the cylinder centre and

the upstream direction (O,-x)
qS: angular position of separation point on cylinder
k: thermal conductivity
l: wavelength
lk: k-th pole of the rational approximation of Ẑ (w)
m: molecular viscosity
msgs: subgrid-scale viscosity
r: air density
r0: air density in medium at rest
sij: deviator component of the double strain rate tensor: i-th line, j-th column
tij: viscous stress: i-th line, j-th column
tret: retarded time
j: observer angle in (y, z) plane (normal to flow direction) with respect to the

cylinder centre and the cross-stream direction (O, y)
fk: accumulator associated to the k-th pole of the rational approximation of Ẑ (w)
w: angular frequency
…—: (overbar) filtered quantity

: (overtilde) Favre-filtered quantity (density weighted filter)
: Fourier transform

…(m): value at discretised time mDt
[…]ret: quantity in brackets is evaluated at retarded time tret

ACRONYMS
BC: Boundary Condition LES: Large-Eddy Simulation

CAA: Computational AeroAcoustics PSD: Power Spectral Density

CFD: Computational Fluid Dynamics RANS: Reynolds Averaged Navier Stokes (equations)

FWH: Ffowcs Williams Hawkings (analogy) SISM: Shear-Improved Smagorinsky Model

HST: High Speed Train TDBC: Time Domain Boundary Condition

LEE: Linearised Euler Equations 1D, 2D, 3D: one-, two-, three- dimensional

...
...



1. INTRODUCTION
Background
Many aeroacoustic sources are located on or near the ground when they cause the
strongest annoyance to neighbourhoods. This is clearly the case for high-speed ground
transportation (e.g. High Speed Trains (HST) or planes at take off, landing and taxiing)
where sources such as pantographs, bogies, wipers, airframe singularities or jet-engines
radiate aerodynamic noise near the ground. In such applications the ground can
generally not be approximated by a rigid plane since it is neither flat (see Figure 1) nor
hard. The presence of ballast, grass etc. requires taking into account absorption and
phase shift via an impedance model.

In classical approaches, propagation is computed in the frequency domain, typically
with Boundary Element Methods and as a result, both impedance and ground geometry
are easily modelled but air inhomogeneity and ambient flow conditions are difficult to
include into these models. Therefore time-domain approaches appear to be more
appropriate. In particular, when it comes to far field prediction with time-domain
Computational AeroAcoustic (CAA) codes, the Linearised Euler Equations (LEE)
based codes have shown to be an efficient tool if the ground impedance is suitably
modelled. Such impedance models are available in the litterature (e.g. Miki [1], Hamet
and Bérengier [2]). Long range propagation predictions using LEE codes have been
tested for academic sources in complex environments (non plane ground topography) in
two- and three-dimensional domains: Cotté et al. [3] tested various ground impedances
whereas Dragna et al. [4]-[6] took into account meteorological effects by introducing a
vertical sound speed or wind speed gradient. More recently, their LEE code has been
used to study the acoustic radiation of sources in motion above an impedance plane [7].
Although most examples in the railway applications are limited to an observer distance
of 25 m (as certification points are 7.5 m and 25 m off-the train), the long-range
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Figure 1: Sound propagation nearby a railway track.



propagation tool developed by these authors reaches about 500 m for a 1 kHz source on
desktop computers. The reason for this moderate cost is that only the propagation of
given sound waves is addressed but not the generation of the sound waves by the flow,
and as a result the mesh size is based on the wavelength rather than on the length scale
of the flow eddies. A similar tool has also been applied to very long-range and non-
linear propagation of infrasound in the atmosphere by Marsden et al.[8]. Thus the LEE
code is flexible and may be applied to many complex situations that make it particularly
appealing for near ground propagation.

However, since the surroundings of the aerodynamic sources cannot be included in
the CAA domain, the aeroacoustic sound generation has to be addressed by a separate
tool. This could ideally be a high-order LES or hybrid RANS-LES computation that
accurately resolves the unsteady flow and the acoustic waves up to the outer boundaries
of a CFD domain surrounding the source region. In real life applications, the turbulent
flow region is much larger than the source region due to the fact the vehicle dimensions
are typically one or two orders of magnitude larger than the noisy components (e.g.
pantograph for a train, landing gear or flap edges for a plane). Therefore an unsteady
computation of the whole turbulent flow domain is not conceivable in such a case.

Outline of the present contribution
This is why we propose a three-step approach in the present study as sketched on
Figure 2. The first step is the simulation of the source, the second is the propagation
from the source to an intermediate distance, which would typically correspond to
the limit of the turbulent flow around the vehicle in a practical situation and the third
is the propagation into the far field in a medium at rest with or without ground
effects. Since the distance from the source to the intermediate region between step
2 and step 3 is larger than the dominant wavelength and not very large compared to
the train height, it corresponds to an acoustic far field and a geometric near field
condition: therefore it will be referred to hereafter as “near-far-field”. For the first
step, an existing LES database [9] describing a low Mach number flow past a

Figure 2: Sketch of the three-step approach.
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circular cylinder is chosen as source flow field, the step 2 propagation is achieved
using the Ffowcs Williams Hawkings (FWH) analogy in a free field at rest, whereas
the step 3 propagation is predicted with the aforementioned LEE code. The flow
past a cylinder is particularly relevant since pantographs are assemblies of bars that
are variously oriented with respect to the surrounding flow. Although the
pantograph elements are in general not circular but rather elliptic cylinders and
despite the fact that the junctions between pantograph elements (e.g. the pantograph
“knee”) are major noise contributors, the mechanisms of sound generation are
physically similar to those involved in the circular cylinder flow. Moreover, the flow
past a circular cylinder is well documented in the literature [10]-[19], which
provides useful validation data for the simulation. Therefore it was considered as a
representative test case in the present study. The main novelty with respect to prior
work is the coupling between the FWH near-far-field output and the LEE input, as
well as the application of the LEE code to non-academic sources. The long-term
objective of this work is to provide a method where step 1 source models written in
the time domain such as stochastic source models may replace the expensive LES
used in the present article. Such models might be tested and tuned by comparison
with the LES based computations shown hereafter.

In section 2, the LES approach as well as the database obtained for the cylinder case
are described. The experimental validation against results from various references is
shown and discussed in section 3. An example of the sound computations using the
FWH analogy is also shown. In section 4, the long-range propagation code (step 3) is
described whereas the coupling with the FWH output from step 2 is discussed in section
5, where results of the full approach are also shown.

2. THE LES DATABASE
Test case and flow configuration
The test case is a M ~ 0.2 flow past a circular cylinder whose diameter D is 10 mm
and length (span) is 90 mm. The flow is initially laminar but due to the diameter
based Reynolds number (Re ~ 84 000), the transition to turbulence of the shear
layers detaching from the cylinder sides happens immediately after separation. As
a result, the vortex shedding of the cylinder that occurs at a preferred frequency f0
corresponding to a Strouhal number St ~ 0.2, is strongly perturbed by the turbulent
fluctuations and the spectra are characterised by broad peaks around the shedding
frequency and its harmonics. This situation is described as subcritical [10], the
critical point being the transition to turbulence of the cylinder boundary layers
upstream of the separation point.

The purpose of the test case is to provide some reference data to assess and
verify the coupling between the FWH sound computations and the long-range
LEE code. Additionally to the validation against data from the literature, the
LES data have been compared to dedicated flow and sound measurements.
These were obtained in an anechoic wind tunnel on a 30D = 300 mm length
(span) cylinder that was located in the potential core of a rectangular jet and
mounted between two wooden plates [20].



LES computations
A LES simulation has been carried out and validated against the experimental data as
discussed in [9]. The code is a finite-volume solver named Turb’Flow. It solves the
filtered unsteady compressible Navier-Stokes equations:  

where , and Sij is the strain rate tensor.

These equations predict the evolution of the largest turbulent eddies in the time
domain, whereas the small scales at grid level remain unpredicted. The energy transfer
between the large and the unresolved subgrid scales is modelled by a so-called subgrid
scale model (SGS) as a diffusive process via the subgrid scale viscosity msgs and the 

subgrid scale Prandtl number . In the classical Samgorinsky model, msgs is 

added to the molecular viscosity as a function of the   strain rate tensor Sij, the filtered
density r-, the filter size D and a model constant, the Smagorinsky constant CS:

In this model, the strain rate is directly computed from the instantaneous flow, leading
to overestimates of the transfer in wall regions. In the present study, the Shear Improved
Smagorinsky Model (SISM) developed by Lévêque et al.[21] is used. It is developed
from the analysis of the turbulence budget and accounts explicitly for the influence of
the mean shear ·SÒ:

·SÒ is obtained by using an appropriate (Kalman) time filter for the running averaging
process that remains local in space and time. It is one of the most recent time filters to
be found in the literature in this context [22], [23], [24] and will not further be discussed
here.
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Cylinder flow computation
The LES was carried out for a V0 = 70 m.s–1 uniform flow past a D = 10 mm diameter
and L = 9D = 90 mm long circular cylinder. The domain is also cylindrical with the
same axis as the actual cylinder. It extends radially over 20D . The mesh is refined in
the wake of the cylinder in order to properly model the near wake. It is made of 9 M
points. Near the walls the mesh size reduces to a few wall units in the radial, azimuthal
and spanwise directions respectively:

This corresponds to a well-resolved mesh according to criteria that apply to this type of
simulations.

On the domain sides that limit the cylinder length, a periodicity condition is applied
whereas Non Reflective Boundary Conditions are applied on the other boundaries.
Since the LES is not the purpose of the present study, the validation of the unsteady
flow that is discussed in chapter 3 of Cahuzac’s PhD Thesis [9], will not be further
discussed here. On Figure 4 a typical snapshot of the instantaneous flow is shown along
with a view of the mesh in the vicinity of the cylinder. The coordinate system (O,x,y,z)
for this configuration as well as the angles j and q are illustrated on Figure 3.

From source to near-far-field
The sound field is computed in the acoustic far field, that is, a few wavelengths away
from the source (R > l). In the case of the cylinder, the distance (R ~ 1.85 m) is also in
the geometric far field that is, R > D and R > L. As will be discussed in section 5 and
was already mentioned in the introduction, for a train application the distance R will be
chosen near the limit of the airflow surrounding the train, which will correspond to an
acoustic far field but a geometrical near field with regard to the train height. The reason
is that the long-range computation has to start where ground effects might play a role,
not too far from the tracks.

max max maxθΔ ≈ Δ ≈ Δ ≈+ + +r r z1; 20; 25

ϕ

θ

V0

Cylinder

y

zy

x OO

Figure 3: Coordinates of cylinder flow configuration



This “near-far-field” computation is carried out by feeding the unsteady pressure field on
the cylinder wall into the Ffowcs Williams and Hawkings (FWH) analogy discussed herein.
The FWH analogy is an exact integral formulation of the momentum equation [25] based on
a convolution of the flow equations by the free field Green’s function in a homogeneous
medium that is either at rest or in uniform motion. This exact equation provides an
expression of the pressure that approximates the actual sound pressure, provided some
assumptions are made: in particular the flow effects onto propagation are assumed to be
negligible. A computer-friendly version has been developed by Brentner and Farrassat [26]
for both material and arbitrary control surfaces. Moreover, if the volume sources due to the
direct radiation of flow eddies can be neglected (which is the case at low Mach numbers),
the FWH formulation can be restricted to two surface integrals. Let the surfaces be defined
by a map g(x, t) = 0, whose outer normals are denoted by n. The surface integrals write:

The integrands are evaluated at the retarded time:

In these equations, the term:
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denotes the i-th component of the unsteady surface momentum loading by the local
fluctuating gage pressure (p - p0), the viscous stresses and the normal momentum flux
rui(un-nn). The unsteady mass flux is:

where ui,ni are the flow and surface velocity components respectively. This formulation
is valid for an arbitrary control surface. When the surface is a hard wall, the normal
velocity vanishes. If additionally, viscous stresses are neglected and the solid surface is
not accelerated with respect to the steady flow, only the unsteady pressure term remains,
which considerably simplifies the algebra. The expression of the loading term is
rearranged to appear as a time derivative at the emission time:

In the present study, this form of the Ffowcs Williams and Hawkings analogy is applied
to the unsteady surface pressure field that is directly predicted by the LES.

3. RESULTS
The results for the flow computation past a cylinder are summarised hereafter where they
are compared to various experimental data from the literature that are obtained in the same
flow regime.

Global parameters
First global aerodynamic parameters are considered, the mean and the root mean square
(rms) drag coefficients, the rms lift coefficient, the mean separation angle qS (q = 0°
corresponds to the upstream stagnation point), the mean length of the recirculation
bubble and the Strouhal number of the shedding frequency. 

The values are listed in Table 1 for the present computation along with the
corresponding range of values found in the literature. It can be seen that most LES
results lie within the range of their experimental values, some being slightly out of the
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Table 1: Lift and drag coefficients, shedding frequency, separation angle and
recirculation bubble length of the present LES and of various experiments.

LES Experimental results
C—D 1.20 [1.0 – 1.35]

CD́ 0.048 [0.05 – 0.16]
CĹ 0.511 [0.4 – 0.8]
St 0.2 [0.18 – 0.2]
qs 86° [83 - 84]
lr 1.21D 1.25 D
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Figure 5: Mean and rms pressure coefficients, mean friction coefficient. present
computation; symbols: results from [11], [12], [13], [15], [17], [18] and [19].

range (by a few per cent): the separation angle and the recirculation length that are
physically linked to each other. 

Pressure distributions and velocity profiles
On Figure 5, the pressure coefficient Cp and its rms value Cp

¢, as well as the friction
coefficient Cf are plotted along the circumference of the cylinder for the present
computation. They are compared to the corresponding mid-span quantities from several
references [11], [12], [13], [15], [17], [18] and [19]. 



The mean pressure coefficient is remarkably well predicted given the dispersion of the
experimental data. The inflection point of the pressure coefficient at about 80-90°
characterises the release of the adverse pressure gradient due to the flow separation, which
is also well predicted as shown in Table 1. This quantity is important for the sound prediction
as it is directly linked to the shedding frequency. For the rms pressure coefficient, the
computation also compares favourably to the experimental data if one considers the
experimental dispersion. This is important for the sound prediction issue, as the rms value
is representative of the cylinder surface pressure fluctuations. For the friction coefficient, the
computation does not fit extraordinarily well to the measured data.

The mean and rms velocity profiles (the mean modulus and its rms value) are plotted at
two flow cross-sections on Figure 6, one at the cylinder side slightly downstream of the
centre (x/D = 0.1) and the other downstream of the cylinder in its near wake, 1.3 diameters
from the cylinder wall (x/D =1.8). The results are compared to experimental data as reported
by Cahuzac [9]. At x/D = 0.1 the agreement is excellent. In the near wake (x/D =1.8), the
wake width is very well predicted but the computation underestimates the wake depth
and overestimates the wake turbulence. Since the measurements are carried out in the
near wake where the instantaneous flow direction might be reverse intermittently, it is
likely that the hot-wire fails to provide an accurate average of the fluctuations and that
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Figure 6: Velocity profiles aside the cylinder and in the near wake: present
computation; symbols: Hot wire results from [9].



the actual wake is not as deep as suggested by the hot wire data. Therefore it is difficult
to conclude about the numerical accuracy in this region.

Nevertheless, despite this discrepancy, the overall agreement between the LES mean
flow data and experimental results from the literature is very good and gives some
confidence in the numerical results.

Unsteady flow
The spectrum of the velocity fluctuations in the upper shear layer (y/D = 0.6) of the near
wake (x/D = 1.8) is plotted on Figure 7. In this region the main shedding frequency (f0)
and its even harmonics (2m + 1) f0 are stronger than in the centre of the wake where the
influence from both shear layers is felt. This is confirmed by the results shown here: the
second harmonic (3f0) can be seen on the LES spectrum. However the peaks due to the
vortex shedding are overestimated by the LES (or underestimated by the hotwire),
which is consistent with the conclusions drawn about Figure 6 (bottom right plot). The
broadband part of the experimental spectrum is remarkably well predicted up to the first
harmonic (2f0). Beyond this frequency, the experimental spectrum decays faster than the
LES one. It should be noted that the high frequency part of the LES spectrum tends to
a -5/3 power slope, which gives some consistency to the numerical result although the
turbulence is still highly dominated by the large intermittent vortices at this location.

Near-far field
The FWH analogy is applied to the LES dataset for a receiver located almost normal to
the flow at R = 1.85 m from the cylinder centre (q = 94°, that is 4° into the downstream
direction). In order to compare the numerical results with the microphone
measurements that were obtained from a much longer cylinder (Lexp = 30D), the former
are extrapolated with a correction proposed by Kato [27]: the correction to be added to
the Power Spectral Density (PSD) of the simulation reads: 10 log (Lexp/L), L being the
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Figure 7: Velocity spectrum in the upper shear layer (y/D = 0.6) of the near wake 
(x/D = 1.8): present computation; Hot wire results from [9].



length of the cylinder in the simulation. Shear layer refraction is negligible for this
receiver position. The spectra are shown on Figure 8.

The main peak and its broadening about the shedding frequency are well captured.
The high frequency tail of the spectrum is also well predicted. The low frequency part
(<500 Hz) is not represented since the physical time covered by the simulation is too
short to give accurate results in the low frequency range, and its experimental
counterpart is dominated by installation effects (jet noise etc.). Beside the fact that the
first harmonic frequency (2f0) due to the fluctuating drag is not captured by the
computations, the agreement is very good over the whole frequency range.

All these results show that the LES for the cylinder contains high quality data even
though some results are not perfect. Therefore it will be used hereafter to validate the
coupling with the long-range LEE (step 3). Before this final step, the LEE code will be
described in the next section.

4. LONG RANGE LEE COMPUTATIONS
The long-range propagation tool uses finite-difference time-domain methods to solve
the Linearised Euler Equations (LEE). The solver has been developed by Cotté [28] and
Dragna [5]. It enables to account for most of the physical phenomena that play a role
on outdoor sound propagation.
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Figure 8: Sound spectra at R = 1.85 m and q = 94°. present computation; black
symbols: microphone measurement from [9].



• It accounts for ground effects through a time-domain impedance boundary
condition.

• The ground topography is also modelled.
• Meteorological effects can also be included. Wind speed and temperature

profiles are readily taken into account without the effective sound speed
approximation.

For these reasons, time-domain simulations are better suited than FWH-type
aeroacoustic analogies since they don’t require appropriate Green functions that exist
only for simple cases.

This propagation tool has been applied in the European Program Acoutrain [29] to
provide reference values for a variety of basic test cases in order to validate a global
source-to-far field tool. The LEE and the boundary conditions used in the solver are
briefly summarised hereafter.

Linearised Euler Equations (LEE)
The Linearised Euler Equations are obtained by linearising the fluid mechanics
equations around mean flow values. Denoting the mean flow velocity by V0 and the
mean air density by r0, the acoustic pressure p and velocity v are governed by:

In the above equations, the terms q and F correspond to mass sources and to external
forces. These equations are valid up to the order |V0|

2/c0
2. The Linearised Euler

Equations are solved using high-order finite-difference time domain techniques
developed in the aeroacoustics team in Ecole Centrale de Lyon [30], [31], [32]. To
account for the topography, curvilinear coordinates are used. However, in the present
context of validation, we will focus only on propagation above a flat ground and most
examples will be in free space in order to allow straightforward comparisons with the
free space integral formulation.

Boundary conditions (BC)
Non-reflective boundary conditions
At the outer boundaries, the radiation conditions proposed by Tam & Dong [33] are
used. They are based on an asymptotic expansion of the LEE. Unlike the well-spread
approach of perfectly matched layers, these boundary conditions require the
approximate position of the source region as input data. In the free-field cylinder
computations, the position of the source region is set to the centre of the cylinder. In the
case of a ground surface, an image source region exists, and its position is symmetric to
that of the source region relative to the ground surface. In that case, the origin for the
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computation of the boundary conditions is set at the ground surface between the source
region and the image source region.

Time domain impedance boundary conditions
The reflection on the ground surface has to be taken into account to have realistic
estimates of sound pressure levels in outdoor sound propagation studies. However, some
difficulties are encountered when translating the impedance boundary condition into the
time-domain.

As known from textbooks or recalled in [34], the impedance boundary condition for
a locally-reacting ground surface writes in the frequency-domain as p̂ (w) + Ẑ (w)n̂n(w) = 0,
where w is the angular frequency, Ẑ (w) is the surface impedance, p̂ (w) and n̂n(w) are
the Fourier transforms of the pressure and the acoustic velocity normal to the ground.
The normal is pointing out of the ground into the domain. In the time domain, the
impedance boundary condition reads:

where Z(t) is the inverse Fourier transform of the surface impedance. Ẑ (w) is classically
given in the literature only for positive frequencies. In order to define Z(t), Ẑ (w) must
be extended to the entire complex plane [35]. Moreover, not all surface impedance
models are physically admissible. Three necessary conditions are proposed in [35]: (i)
Z (t) must be causal, (ii) Z (t) must be real, and (iii) Re[Ẑ (w)] > 0 for w > 0 because the
ground absorbs energy. These conditions have been checked for some popular
impedance models in the outdoor sound propagation community in [36].

In the present study, a Time Domain Boundary Condition (TDBC) derived by
Reymen et al. [37] on the basis of work done in electromagnetism [38] has been
implemented into the LEE solver. This TDBC has been introduced in the outdoor sound
propagation community by Cotté et al. [39]. It is based on an approximation of the
impedance in the frequency-domain by a rational function:

For this rational function, the causality condition is verified if and only if the real parts
of the poles lk are positive [37]. The absorption condition Re[Ẑ (w)] > 0 for w > 0, must
be verified by each set of coefficients (Ak, lk).

Since the inverse Fourier transform of the impedance defined by the rational
function, that is,

,

must be real valued (see e.g. [35]), the poles lk are real or complex conjugates. For the
sake of simplicity, we only present the TDBC for real poles. However, complex
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conjugate poles can also be taken into account [37]. Various methods are discussed in
[39] to determine the coefficients lk and Ak. Let us denote by p(m) and n n

(m) the values
of pressure and acoustic velocity normal to the ground at the discretized time mDt. By
introducing the expression of the time dependent impedance given by the previous
expression of Z(t) in the convolution integral, a recursive convolution method is used.
Assuming that the normal velocity is constant over a time step, the following relation
between p(m) and n n

(m) is obtained:

where f k
(m) are called the accumulators. They are given by the recursive expression:

Details about the derivation of the last two equations can be found in [37]. These
TDBC’s have been validated on several test cases [5], [6] and have also been extended
to account for non-flat ground surfaces [6].

5. COUPLING FWH WITH LEE
Coupling technique
The sound field computed with the FWH analogy using the free space Green’s function,
from the source to the “near-far-field”, is coupled to the long-range propagation tool
along the inlet boundary of the long-range computational domain. The coupling is
carried out in a region where two assumptions about the waves and the surrounding
medium can be made. The first assumption is that the distance from the source to the
coupling region is long enough to ensure the acoustic far field condition, that is, the
distance is at least about a wavelength or more. As a result the waves can be locally
approximated by plane waves thus providing very simple relations between the inlet
variables (pressure and velocity):

for the two velocity components (y horizontally away from the train, z vertically away from
the ground and j the angle of the current point at the inlet boundary with respect to y).
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The other important assumption is that the coupling region is not too far from the source,
in order for the ground effects not to be significant in the first part of the computation.
Typically, the coupling region could be the limit of the flow region surrounding the train or
the limit of the track surface where the ballast starts to slope down.

Finally, a last technical adjustment had to be made in the LEE computation: the
FWH computation is indeed carried out in a uniform flow. Therefore, in the case of a
stationary source with a stationary observer, it assumes a uniform reverse flow, which is
not the case in the long-range propagation domain. The validation of the coupling
approach is based on a comparison with the direct FWH computation between the
source and the far-field. As a result, a correction has to be applied to the speed of sound
in order to compensate this effect. Note that this comparison is only possible because
the source is located in free space. Since the mean velocity is normal to the LEE domain 

in our applications, the correction simply writes: .

Results for long-range computations of the cylinder radiation
Validation on the Cylinder flow in free space
First, the coupling methodology is applied to a 2-D propagation domain in free field as
sketched in Figure 9. The validation on the LES test case is based on a double approach:
each approach starts from the LES cylinder surface pressure. One considers free field
propagation that is required for both approaches to be valid. In the first approach the
long-range far field is directly computed with FWH at three observer locations (y = 5:
7 and 10 m). In the second approach, the three-step method is applied: the FWH
analogy propagates the sound to the long-range domain inlet, that is the “near-far-field”,
where it is coupled to the long-range LEE computation and then propagated up to the
same observer positions as the direct approach. Since the starting points and the receiver
locations are the same and the FWH algorithm has been validated elsewhere [40], the
comparison of the two approaches evaluates the quality of the coupling.

For the long-range computation, following boundary conditions are applied to the
CAA-domain. As stated above, the acoustic field computed from the FWH analogy is
imposed at the left boundary. At the other boundaries, the radiation boundary condition
of Tam and Dong [33] is applied.

In the FWH computation, the cylinder is moving at constant speed V0 along x-
direction in a medium at rest whose sound speed is c0. A line of receivers is initially
located at x = 0 m, y = 3 m  and from z = - 1.25 m to z = - 1.25 m. It is also moving in
the x-direction at speed V0. This problem is equivalent to a stationary cylinder and

= −c c Veq 0
2

0
2

Non-reflective boundary conditionsz

y
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Figure 9: Sketch of the validation test case.



stationary receivers in a moving medium at speed -V0. In the LEE solver, the sound
propagation is only computed in the plane x = 0 that is normal to V0. In that case, the
sound speed does not correspond to c0, but to the equivalent sound speed 

already mentioned in the previous section.

Note also that in the present case, the LEE computation is carried out in a 2-D
domain. Therefore a correction is applied to account for spherical spreading. If yref and
y denote respectively the y-position of the inlet boundary and that of the receiver relative
to the source, the pressure is multiplied by the correction factor .

Results are shown in Figure 10 as time series: the agreement is almost perfect, except
for a little oscillation at the beginning and the end of the signal. The transient lasts for
about one shedding period and its amplitude is an order of magnitude below the signal.

In order to quantify the qualitative agreement observed on Figure 10, spectra are
computed from these signals and plotted in Figure 11 for two receivers at y = 5 m and 10 m.
The overall agreement is excellent up to 2500 Hz. In particular, the broad peak at the
main shedding frequency is very well reproduced by the long-range computation. Above
this frequency the spectrum obtained from the long-range simulation falls off rapidly.
This is due to the grid size that is too coarse for the higher frequencies. It can also be
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observed that all the spectra are quite wiggly, which is due to the shortness of the
available LES time series.

Thus it can be concluded that the coupling between the long-range computation and the
FWH output works perfectly well. It should be noted that it justifies a posteriori the local
plane wave approximation made at the inlet boundary and validates the velocity correction.

Computations with various ground impedances
In this subsection, we demonstrate the potential of this source-to-far-field prediction
tool, by testing the algorithm for flat grounds with two different ground impedances:
• a rigid ground surface
• a grassy ground surface using Miki’s impedance model [1], with an air flow

resistivity and a layer thickness equal respectively to 140 kPa.s. m–2 and 0.018 m.
The configuration is sketched on Figure 12. The numerical domain is the same as the

one used in the previous subsection. The impedance boundary conditions that are briefly
described in Section 4 are applied to the ground surface.

Snapshots of the acoustic pressure are represented in Figure 13. It can be seen that
compared to free field conditions, the presence of a reflective boundary introduces
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interference patterns. Note also that the acoustic pressure field obtained with a finite-
impedance ground surface is very different to that obtained with a rigid ground.

Figure 14 shows the evolution of the sound pressure level against z at y = 7 m for the
different cases. In free-field condition, the sound pressure level is almost constant, as it
can be expected since the propagation is weakly directive and the distance to the source
does not vary significantly along the vertical line. In the presence of a reflective ground,
the constructive and destructive interference patterns (nodes and antinodes) already



observed in Figure 13, are clearly visible, and their locations depend strongly on the
boundary condition. Note also that the sound pressure level decreases significantly near
the ground surface for a grassy ground.

These computations illustrate but a few possibilities of the LEE code. Other
applications with a non-plane ground topography, including other materials such as
ballast may be considered. For such materials, impedance models in the time domain
have been developed and validated elsewhere for academic sources. Although such
boundary conditions might also be applied here, this hasn’t been done in the present
study since no validation experiments are available so far.

6. CONCLUSIONS
The methodology discussed in the present article allows computing the sound radiated
by an aerodynamic source far away into complex environments with non-flat
topography and sound absorbing surfaces. It is based on a coupling between an acoustic
analogy and a Linearised Euler Equation code. The acoustic analogy propagates the
sound from the source to a region that lies already in the acoustic far field but is still in
the geometric near field of the vehicle. The Linearised Euler Equation code propagates
the sound away at large distances and is able to take into account complex ground
reflexion conditions. The methodology has been successfully validated for the
configuration of a flow past a cylinder in free space, where it could be compared to a
free space Green function based analogy applied to a LES database. The comparison
based on the same flow data showed almost perfect agreement up to the cut-off
frequency of the mesh used for the long-range computation. However the methodology
can also be adapted to any simplified source model that provides time-dependent
aerodynamic fields such as stochastic noise generation models.
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The methodology was finally applied to a half space limited either by a rigid ground
or by a grassy ground. This was done to demonstrate the high potential of the approach
discussed in this article. Other more complex applications might be considered in future
work, given that some validation data were available. Unfortunately, passing-by
measurements of train or aircraft noise (on the runway) do not provide information for
a single source, which makes them not suitable for validation. Therefore dedicated wind
tunnel experiments should be designed.
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