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Abstract—In satellite communications, the non-linear distor-
tions introduced by the amplifier in the payload have to be
overcome. When advanced mitigation techniques are considered
at the receiver side, the current channel model is often based
on Volterra series derived from an approximation of the non
linear transfer function of the on-board amplifier. This nonlinear
model is conditioning the performance at the receiver side.
In this paper, a new non-linear model is proposed, leading to
improved receiver performances. The polynomial approximation
is improved considering both the usual model truncation to the
3rd order and the signal fluctuation at the input of the amplifier.
First, the impact of the polynomial order of the AM/AM and
AM/PM curve approximation is studied. Then, a non-linear
model is derived based on a piecewise polynomial approximation
of the amplifier response. Based on this refined nonlinear model,
significant detection performance improvements are shown for
both Nyquist and Faster-than-Nyquist rates.

I. INTRODUCTION

The new standard DVB-S2X [1] offers an improved achiev-

able spectral efficiency of around 15% in satellite transmis-

sions. Two major innovations lead to this capacity increase: the

roll-off factor reduction (0.1, 0.05) and the use of higher Am-

plitude and Phase Shift Keying (APSK) modulation orders (64-

APSK, 128-APSK and 256-APSK). However, the lower roll-

off and the higher modulation order reduce the transmission

robustness against non-linear. The current strategy consists of

linearized amplifiers paired with Least-Mean-Square (LMS)

equalizers [2]. As a consequence, the achievable transmission

performance does not achieve the full potential of the standard.

The non-linear channel modelization with Volterra series

was first proposed by Benedetto et al. in [3]. This mod-

elization leads to the well-known Volterra model based on

kernels used for advanced detection techniques. The upper-

bound performance of those mitigation techniques is given

by Maximum-A-Posteriori (MAP) detection schemes based

on BCJR algorithms [13]. The MAP detector can be based

on a Forney type [14] or a Ungerboeck type [15] receivers

(including their numerous reduced states/complexity versions).

For complexity reduction, different other receiver structures

can be implemented such as Colavolpe’s factor graph (FG)

based detector [4] or an iterative Minimum Mean-Square Error

(MMSE) derived for non-linear channels [5].

The given previous mitigation techniques are currently

based on a truncated Volterra model of 3rd or 5th order.

However, the impact of the polynomial approximation has not

be widely discussed in previous studies whereas its impact

will be shown significant for detection. Whatever the detection

scheme is among MAP, FG or MMSE, the Volterra model can

be improved by only approaching a part of the response of the

amplifier instead of the whole response.

When implementing advanced receivers in non-linear chan-

nel, Faster-than-Nyquist (FTN) can be considered without

complexity increase in the transmission chain. First inves-

tigated by Mazo [6], FTN signaling leads to an increased

capacity in both linear channel [7]-[8] and non-linear channel

[9]. The inherent Inter-Symbol Interference (ISI) in FTN

transmission distorted by non-linear amplification requires

however an accurate Volterra modelization. The channel model

improvement proposed in this paper is indeed more significant

when the Nyquist criterion is not met.

The paper is organized as follows. Section II briefly depicts

the current satellite transmission channel. Both Nyquist and

FTN signaling are considered and the related Volterra model

for satellite non-linear channel is given. In section III, we

investigate on the impact of the truncation of the Volterra

kernels order considering different polynomial orders. Then, a

piecewise amplifier response approximation is investigated in

order to improve the non-linear channel modelization. Finally,

the impact on the performances of different advanced detection

methods is presented in section IV. A brief conclusion is given

in section V.

II. SATELLITE TRANSMISSION CHANNEL

In this section, the satellite transmission chain is detailed,

from the transmitter to the receiver side, including the satellite

payload (see Figure 1).



Fig. 1: Satellite transmission chain

A. Transmitter side

At the transmitter side, uncoded data bits uk are encoded

with regard to the DVB-S2X standardized coding rates using a

Low-Density-Parity-Check (LDPC) encoder, leading to coded

bits ck. After interleaving, those bits are mapped onto complex

symbols ak belonging to one of the constellation specified by

the DVB-S2X standard [1]. The complex symbols are sent to

a Square-Root Raised Cosine (SRRC) filter h(t) with roll-off

factor α. The occupied bandwidth B by the transmission is

B = (1 + α)Rs where Rs = 1/Ts is the symbol rate and Ts

the symbol period. In the following, we consider an occupied

bandwidth B = 40MHz and a roll-off factor α = 0.1 leading

to a Nyquist symbol rate Rs = 36MBauds.

Since both Nyquist and FTN signaling are considered, we

define the compression factor τ ∈]0, 1]. At the transmission

side, the Nyquist criterion is met for τ = 1, ensuring no Inter-

Symbol Interference (ISI). Finally, the transmitted signal xe(t)
is given by:

xe(t) =
∑
k

akh(t− kτT ) (1)

where T = 1
τRs

is the period of the SRRC filter (inverse of

the usual Nyquist rate). Finally, this signal reaches the satellite

segment.

B. The satellite payload and the Volterra model

The block ”SATELLITE CHANNEL” in Figure 1 is detailed

in this subsection (see Figure 2).

Fig. 2: Satellite payload

In this paper, a transparent satellite is considered. The

payload consists of an Input MUltipleXer (IMUX) filter hI(t),
a High Power Amplifier (HPA) and an Output MUltipleXer

(OMUX) filter hO(t). The received signal xe(t) is first splitted

in different sub-bands by the IMUX filter. Then, the different

sub-bands are amplified by the HPA. This amplifier can be

linearized or non-linearized. In order to fully benefit from a

Volterra model, we consider a non-linearized amplifier (see

Figure 4). Finally, the sub-bands are re-combined by the

OMUX filter and sent to the downlink.

In [3], the amplifier response in modulus and phase is ap-

proached with a polynomial decomposition in Volterra series.

Considering the properties of the signal in the payload, only

odd terms are kept since the even harmonics are rejected by

the filters. Then, the signal at the output of the HPA denoted

by xO(t) can be written as a polynomial function of the input

signal xI(t):

xO(t) =

k=N−1

2∑
k=0

γ2k+1xI(t)
2k+1 (2)

where N denotes the polynomial order of the decompo-

sition, xI(t) is the signal at the output of the IMUX filter:

xI(t) = xe ∗ hI(t). The complex polynomial coefficients

γ2k+1 model both the modulus and the phase distortions due

to the amplifier. In classical Volterra model with no truncation,

N = +∞. The signal at the output of the HPA is filtered by

the OMUX filter, resulting in y(t) = xO ∗hO(t) which is sent

on the downlink.

C. Receiver side

On the downlink, an additive white Gaussian noise n(t)
with a power spectral density σn = 2N0 is added to the signal

y(t). At the receiver side, a Partial Matched Filter (PMF) is

implemented, only matching the shaping filter h(t) without

consideration for the satellite channel, hr(t) = h∗(−t). The

resulting received signal r(t) after filtering is given by:

r(t) = y ∗ hr(t) + n ∗ hr(t) (3)

This signal is sampled at the symbol rate τRs, leading to

the well-known Volterra model truncated to the 3rd order (see

[5]):

rk =
∑
l

ak−lK
(1)
l +

∑
m,n,p

ak−mak−na
∗

k−pK
(3)
m,n,p+nk,τ (4)

where K
(1)
l and K

(3)
m,n,p respectively denote the 1st and 3rd

order Volterra kernels deduced from the polynomial approxi-

mation. When τ 6= 1, the resulting filtered and sampled noise

nk,τ = n ∗ hr(kτTs) is correlated.

Finally, in order to recover the data, an iterative detection

is implemented. The turbo-equalization scheme is given in

Figure 3.

Fig. 3: Turbo-detection scheme

Following the turbo principle, all Log-Likelihood Ratios

(LLR) exchanged during the iterative process are extrinsic

quantities. The considered ”ADVANCED DETECTION” is

based on the model in (4) and can be based on MAP, MMSE

or FG detection. The different parameters of the detection



schemes are discussed in section IV when observing the

detection behaviour.

III. POLYNOMIAL APPROXIMATION IMPROVEMENT

A. Polynomial approximation

In (2) we defined the polynomial approximation order N .

In this section we address the issue of the value of N to

be selected considering a Volterra based model truncated to

the 3rd order. We focus on the normalized AM/AM curve of

the conventional HPA. First, we compute an approximation

of the AM/AM response for different polynomial orders,

N = 3, N = 5 and N = 7. The resulting coefficients

are [γ
(3)
1 , γ

(3)
3 ] for N = 3, [γ

(5)
1 , γ

(5)
3 , γ

(5)
5 ] for N = 5

and finally [γ
(7)
1 , γ

(7)
3 , γ

(7)
5 , γ

(7)
7 ] for N = 7. The polynomial

approximation with no truncation are given in Figure 4.

Fig. 4: AM/AM curve and associated approximations for different
polynomial orders and no truncation

As expected, increasing the polynomial order improves the

approximation.

Since the Volterra model is truncated to the 3rd order,

the polynomial order relevance should be studied with a

truncated polynomial of order 3. We consider a polynomial

approximation of degree ν truncated to degree 3.

xO(t) = γ
(ν)
1 xI(t)

1 + γ
(ν)
3 xI(t)

3 (5)

We give the AM/AM curve approximation considering the

truncation to the 3rd order for ν = 3, ν = 5 and ν = 7 (see

Figure 5).

The behaviour of the approximation can be analyzed as

follows:

• When considering the linear part of the AM/AM re-

sponse, the higher order polynomial approximation is

still the most relevant even with the truncation. This

phenomenon is due to the preponderance of the low

orders when the amplitude is low.

Fig. 5: AM/AM curve and associated approximations for different
polynomial orders and truncation to the 3rd order

• When approaching the saturation point, the predominance

of the lower orders is no longer true and the higher poly-

nomial approximation orders diverge from the AM/AM

curve. When operating the amplifier in the saturation

regime, the 3rd order polynomial approximation is more

relevant since no truncation is mandatory in order to

compute a 3rd order Volterra model.

The observations in this section lead to the conclusion

that both a high order truncated polynomial (ν = 7) and a

low order polynomial (ν = 3) are not satisfying in order

to model correctly the non-linear distortions introduced by

the amplifier. In the following section we propose a new

method improving the channel model relevance by computing

polynomials on sub-ranges of the amplifier transfer function

instead of the whole range, leading to a piecewise polynomial

approximation.

B. Partial approximation

When the approximation is based on a 3rd order polynomial,

fitting the whole AM/AM curve leads to poor performance (see

Figure 5). The HPA operating point corresponds to the signal

mean power. Because of the complex envelop fluctuations,

instantaneous signal power lies on both sides of the targeted

operation point.

First, we investigate the statistical properties of the signal at

the amplifier input. Let us consider the following parameters:

a roll-off factor α = 0.1 for the shaping filter h(t) and an

up-sampling factor of 10 for the computer simulations. The

considered modulations are [8PSK, τ = 1.0], [8PSK, τ =
0.75] and [16APSK, τ = 1.0].

In Figure 6, we plot the histogram of the amplitude of the

signals xI(t) (320000 samples) generated with the different

modulations and compression factors.

We observe that the statistical distribution of [8PSK, τ =
1.0] is close to a Gaussian distribution. The 90th percentile

is 1.20, we can then consider that 90% of our signal will be



Fig. 6: Histogram of the signal amplitude |xI(t)|

amplified between AM = 0 and AM = 1.2 × AMin, where

AMin is the amplifier operating point. The distributions of

[8PSK, τ = 0.75] and [16APSK, τ = 1.0] are different.

Their 90th percentile are respectively 1.35 and 1.50. The

whole AM/AM curve approximation is then not required. By

identifying the signal amplitude histograms, we can focus on

a partial approximation of the amplifier response.

Let us consider a polynomial approximation of order ν = 3
of a sub-range of the AM/AM response of the amplifier. For

this example, we focus on the Gaussian fitting of the signal

[8PSK, τ = 1.0]. We consider two different zones in order to

illustrate our method. First, a zone called ”zone 2” centered

on AMin = 0.60, bounded between AMmin = 0.40 and

AMmax = 0.80. A second zone called ”zone 1” centered

on AMin = 1.00, bounded between AMmin = 0.80 and

AMmax = 1.20. The two different zones address an ampli-

fication in both the linear part (”zone 2”) and the saturation

part (”zone 1”).

In Table I, we give the polynomial coefficients associated

to the approximation of the whole curve and to the two partial

approximations.

TABLE I: 3rdorder polynomial coefficients for AM/AM response
approximation on partial zones.

Poly. app. zone Poly. coeff.

Whole AM/AM response γ
(3)
1 = 1.09 + 0.712j

AMmin = 0 to AMmax = 1.94 γ
(3)
3 = 0.279 + 0.0808j

Zone 2 γ
(z2)
1 = 1.96 + 0.543j

AMmin = 0.40 to AMmax = 0.80 γ
(z2)
3 = −1.579 + 0.299j

Zone 1 γ
(z1)
1 = 1.29 + 0.789j

AMmin = 0.80 to AMmax = 1.20 γ
(z1)
3 = −0.532− 0.123j

The resulting polynomial approximations in the different

zones are given in Figure 7.

Approximation based on a piecewise polynomial approx-

imation is far more efficient than the usual approximation.

However, observing the different signal histograms in Figure

6 leads to the conclusion that the whole signal is not amplified

in a limited part of the AM/AM curve. We now plot the

Fig. 7: AM/AM curve and associated 3rd order polynomial approx-
imations on partial operational ranges

polynomial approximations with the coefficients sets from

Table I on the whole amplifier operational range in Figure

8.

Fig. 8: AM/AM curve and associated 3rd order polynomial approx-
imations on the whole operational range

• The usual polynomial approximation with coefficients

[γ
(3)
1 , γ

(3)
3 ] does not diverge substantially from the

AM/AM response on the whole operational range of

the amplifier. As a balance, this approximation does not

fit with precision the real model, which should lead to

decreased performance of the detection in the following

section.

• The polynomial approximation of the linear part of the

operational range (”zone 2”) results in the coefficients

[γ
(z2)
1 , γ

(z2)
3 ]. Figure 8 shows-off that in the linear regime

of the amplifier, this partial model is far more efficient

than the usual one. The drawback is that the signal

properties have to be accurately defined in order not

to operate the amplifier outside the relevant part of



the approximation. We can indeed observe that strong

divergence occur when we move away from the operating

point Ain = 0.60.

• Finally, the polynomial approximation of the non-linear

part of the operational range (”zone 1”) results in the

coefficients [γ
(z1)
1 , γ

(z1)
3 ]. This partial model offers an im-

proved AM/AM approximation in the saturation regime

compared to both the usual and ”zone 2” approximated

models. Moreover, this model is better than the usual one

in the linear part of the operational range of the amplifier.

In the same manner as for ”zone 2”, the drawback is that

operating the amplifier with an increased Ain leads to

a divergent model. By contrast with ”zone 2”, it is less

likely that the operation point selected by the satellite

operator is higher than Ain = 1.0.

In this section, we have proposed improved polynomial

approximations of the AM/AM response of the amplifier in

order to increase the Volterra model accuracy. In the following

section, we investigate the impact of such an improvement on

the Volterra kernels behaviour and the detection performance.

IV. IMPACT ON THE VOLTERRA MODEL AND THE

DETECTION PERFORMANCE

First, we address the channel modelization issue by observ-

ing the Volterra kernels behaviour when both usual and partial

approximations are considered. Then, the potential resulting

detection improvement is investigated through both the MAP

and the MMSE detection based on the Volterra model.

A. Kernels behaviour

We consider the different 3rd order polynomial approxi-

mations given in Table I. As explained in [4], the kernels

resulting from coefficients [γ1, γ3] are computed as follows

for a sampling instant t0:

K
(1)
l = γ1HI ∗HO(t0 − lTs) (6)

and

K(3)
m,n,p =

3

4
γ3

∫ +∞

−∞

HO(τ)HI(t0 −mTs − τ)

HI(t0 − nTs − τ)H∗

I (t0 − pTs − τ)dτ

(7)

where HI(t) = h ∗ hI(t) and HO(t) = hO ∗ hr(t).
Relations (6) and (7) highlight the impact of the polynomial

coefficients on the Volterra based model. The kernels distribu-

tion is the same for both the usual and the improved model,

only the kernels magnitudes differ.

TABLE II: MSE

IBO (dB) Transmission config. MSE (usual) MSE (improved)

0dB [8PSK, τ = 1.0] 0.033 0.0046

0dB [8PSK, τ = 0.75] 0.034 0.0094

0dB [16APSK, τ = 1.0] 0.037 0.014

2dB [8PSK, τ = 1.0] 0.019 0.0029

2dB [8PSK, τ = 0.75] 0.027 0.0060

2dB [16APSK, τ = 1.0] 0.028 0.0086

In order to characterize the interest of the proposed im-

proved model, we first compute a Mean-Square Error (MSE)

between the transmitted signal in the transmission chain (see

Figure 1) and its discrete domain equivalent obtained by

convolution (see (4)) based on both the usual and the improved

model. This model relevance is addressed for different back-

offs for both the Nyquist and FTN signaling. We consider

shaping and matched filters with α = 0.1. The considered

memory for a 8-PSK (respectively a 16APSK) is L = 5
(respectively L = 4) for the discrete models in order to have

a trellis with 85−1 states (respectively 164−1states).

The following observations have to be highlighted observing

Table II:

• The Mean-Square Error (MSE) resulting from the pro-

posed partial approximation is lower than the MSE fol-

lowing the usual approximation. Whatever the modula-

tion and the compression factor, the non-linear channel

modelization is improved by a factor 2 to a factor 10.

• For a similar uncoded achievable spectral efficiency

(4bit.s−1/Hz), the 8PSK FTN signaling with a com-

pression factor τ = 0.75 offers an improved transmission

modelization compared to the 16APSK transmission at

the Nyquist rate. We confirm the interest of compressed

lower modulation orders with comparison to higher mod-

ulation orders at the Nyquist rate [10] in a non-linear

channel.

Considering the channel truncation issue due to the mod-

ulation order and the number of states in the trellis, FTN

signaling indeed can improve the current satellite capacity.

In the following, we investigate the impact of the proposed

improved Volterra model on the detection behaviour.

B. Detection improvement

1) EXIT charts for performance measurement: In this pa-

per, the asymptotic performance for the different advanced

detection schemes is based on EXIT charts computations

[11]. By using the area theorem (area under the obtained

EXIT curve), the achievable coding rate of the transmission is

evaluated for targeted Signal-to-Noise Ratio (SNR) and Input

Back-Off (IBO). Even if the area theorem is only proved for

the binary erasure channel, it provides good approximation

for other types of channels. Finally, the achievable spectral

efficiency can be deduced from those EXIT charts, as a

function of the SNR [12]. This method is suited to both the

MAP and the MMSE detections investigated in the following

of this section. The validity of this method will be supported

by Bit Error Rate (BER) computations.

2) MAP detection: The advanced receiver optimization is

not addressed in this paper, we only investigate the detection

improvement resulting from the proposed partial polynomial

approximation. By this way, we consider a BCJR [13] type

Maximum-A-Posteriori (MAP) detection based on a trellis.

The trellis branch metric from state s to state s′ denoted by

φ(s, s′) is Forney type [14], based on the Volterra modelization

of the non-linear channel:



φ(s, s′) ∝ |rk − (
∑
l

ak−lK
(1)
l

+
∑
m,n,p

ak−mak−na
∗

k−pK
(3)
m,n,p)|

2 + 2N0lnP (ak)
(8)

with l ∈ [−1,+3] and (m,n, p) ∈ [−1,+3]3. It results

in a model with 5 kernels of 1st order and 53 = 125
kernels of 3rd order. Thanks to the EXIT method described in

the previous subsection, we compute the achievable spectral

efficiency (ASE) of both [8PSK, τ = 1.0] configuration and

[8PSK, τ = 0.75] configuration. As a reminder, the truncated

channel length for 8PSK modulation is L = 5, resulting in

a trellis with 84 states. In Figure 9, we give the ASE of

the two configurations with both the usual and the improved

polynomial approximation with zero back-off (IBO=0dB).

Fig. 9: ASE of MAP detection for [8PSK, τ = 1.0] and [8PSK,
τ = 0.75] with both the usual and the improved polynomial
approximation - IBO=0dB

The MAP detection is improved for both Nyquist and FTN

signaling when using the partial polynomial approximation

for Volterra modelization of the non-linear channel. However,

this modelization improvement leads to different gains when

considering a Nyquist or FTN transmission. On one hand, for a

targeted ASE in SNR range [3dB−10dB], the Nyquist MAP

detection threshold is improved by about 1dB. In the same

SNR range, the FTN (τ = 0.75) MAP detection threshold is

3dB better when operating the amplifier at the saturation point

(IBO=0dB). When considering higher SNR values (above

10dB), the relevance of the non-linear channel modelization

with the proposed partial approximation results in a gain over

4dB.

When observing the blue curves on Figure 9 (usual models),

FTN signaling for low SNR values based on the usual poly-

nomial approximation is not relevant. The compression factor

indeed increases both the achievable rate and the introduced

ISI, leading to null gain. By contrast, with the improved

modelization, in the SNR range [3dB− 8dB], FTN signaling

results in a capacity increase of 15% to 20%.

Finally, for higher SNR values, FTN signaling with im-

proved model leads to an ASE increase of 30%, which is a

significant improvement for satellite communications.

3) MMSE detection: The MMSE algorithm proposed for

non-linear channel in [5] is investigated in order to propose a

low-complexity receiver. The same Nyquist and FTN config-

urations as for MAP detection analysis are used, i.e. [8PSK,

τ = 1.0] and [8PSK, τ = 0.75]. In this MMSE detection, we

took into account 5 non-causal and 15 causal 1st order kernels

K
(1)
l , l ∈ [−5,+15]. In order to keep a feasible detector, we

can not take into account the resulting 213 kernels of 3rd order.

We only keep the 3rd order kernels satisfying the condition

|K
(3)
m,n,p| > 0.001 × |K

(1)
0 |. The resulting ASE are given in

Figure 10.

Fig. 10: ASE of MMSE detection for [8PSK, τ = 1.0] and [8PSK,
τ = 0.75] with both the usual and the improved polynomial
approximation - IBO=0dB

As for MAP detection, the proposed improved approxi-

mation leads to a detection performance improvement. The

detection behaviour is however different. First, by comparison

with Figure 9, we observe that for the higher SNR values,

the ASE resulting from MMSE detection is below the ASE

offered by the MAP detection. Moreover, when the proposed

improved approximation is not implemented, we observe that

the achievable capacity falls down for higher SNR values. It

is indeed due to the fact that the ISI introduction becomes

predominant on the noise added. Then, the model precision

becomes critical, explaining the different behaviour of the de-

tection with and without improved approximation. Finally, the

MMSE detection with the partial polynomial approximation

is relevant for low SNR values, offering an interesting trade-

off between non-linear distortions mitigation and reduced

complexity.



V. CONCLUSION

In this paper, we proposed a polynomial approximation

improvement for the non-linear modelization of the channel

using a Volterra decomposition. In order to truncate to the

third order the Volterra based model for non-linear channel

equalization, we currently approach the amplifier response by

a polynomial of order 3 or higher.

We proposed a piecewise approximation of the amplifier

response instead of on its whole operational range, the third

order polynomial approximation being followed by a third

order truncation on the Volterra based model. We highlighted

in this paper that this method leads to an improved detection

performance for both Nyquist and faster-than-Nyquist trans-

missions in non-linear channel. Beyond the detection threshold

improvement, for faster-than-Nyquist in non-linear channel,

the achievable spectral efficiency upper bound is improved.
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