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Abstract—In this paper, we present two Data-Aided channel
estimators for Continuous Phase Modulation (CPM) in the
case of transmissions over doubly-selective channels. They both
capitalize on the Basis Expansion Model (BEM), widely used
for OFDM systems and for Single Carrier transmission with
linear modulation. However, in the case of CPM signals, we
need to work on a over-sampled received signal (fractionally-
spaced representation) as the equalization techniques are also
working on the over-sampled received signal. The first one is
a classical Least Squares (LS) estimation of the BEM param-
eters whereas the second channel estimator introduces first a
parametric dependence on the paths delays. Indeed, in the case
where those delays are known (by estimation or by geometrical
consideration as for the aeronautical channel by satellite), the
second LS estimation on the BEM parameters is improved and
less computationally demanding. Simulations results are provided
and show good performance of our parametric LS estimation.

I. INTRODUCTION

CPM signals are commonly known for their good spectral

properties and their constant envelop, which make them robust

to the non-linearities such as the ones introduced by embedded

amplifiers. They are actually considered for a lot of application

such as military communications, 60Ghz communications,

Internet of Things and also aeronautical communications.

To our knowledge, only a few papers deal with CPM trans-

missions over time-varying (TV) channels. Indeed, the optimal

approach for detection would consist of a Maximum A Pos-

teriori (MAP) detection taking into account both channel and

CPM memory. However, this is computationally prohibitive

as the associated time-varying trellis grows exponentially with

the delay spread of the channel and with the CPM memory.

In the case of time-invariant (TIV) channel, a viable strat-

egy is to perform separately channel equalization and CPM

detection. This approach has been considered in several papers

with a Minimum Mean Square Error (MMSE) criterion and a

Frequency-Domain (FD) Equalizer [1]–[4]. Indeed, in the case

of a frequency-selective channel, the frequency channel matrix

is diagonal which can be used to design low-complexity FD

equalizers as for linear modulations. Most of those works have

been done under the hypothesis of perfect synchronization

and perfect channel knowledge. To our knowledge, only a

few papers deal with TIV channel estimation for CPM. [2]

presents simulation results with channel estimation errors

but no channel estimator. [5] presents a Least Squares (LS)

channel estimation in the time-domain, based on the polyphase

representation of the received signal. It also exploits the a

priori positioning in order to develop a parametric model on

the delays of the paths and so to enhance the performance

of the channel estimation. In [4] and [6], the authors perform

a FD channel estimation with interpolation (using B-spline

functions). [7] performs frequency-domain channel estimation

with superimposed pilots. Those Frequency-Domain channel

estimators exploit the diagonal structure of the channel matrix

in the Frequency-Domain to perform Channel Estimation,

which is not the case anymore for TV channels.

In case of TV channels, [8] develops a time-domain MMSE

equalizer based on the well-known Basis Expansion Model

(BEM) [9]. It also supposes that the channel is perfectly known

at the receiver and it seems that the study of TV channel

estimation is not widely addressed for Continuous Phase Mod-

ulation. However, for linear modulation and for OFDM, BEM-

based channel estimation has been well studied using different

BEMs [10]–[15] and so we propose in this paper to adapt some

of those methods for block-based CPM transmissions over TV

channels and to evaluate their performance.

In this paper, we will investigate TV channel estimation

for CPM signals based on a Basis Expansion Model. We will

see that a Least Squares estimation can be performed on the

received signal using a fractionally-spaced representation and

also that it can be improved by using a priori on the delays

of the paths (as in the case of aeronautical communication

by satellite). We will also provide some performance for

single-carrier block-based CPM transmission where we have

to extrapolate the estimated channel over the data block.

The paper is organized as follows. In section II, we will

present our system model whereas the BEM model for TV

channels is presented in section III. Then, in section IV, we

will discuss two channels estimators which both capitalize
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on the BEM model. We will also show how to exploit those

estimators in the case of a block-based structure of the CPM

signal. We will provide some simulation results with an

emphasis on the aeronautical channel via a satellite link in

section V. Finally, conclusions and perspectives are drawn in

section VI.

II. SYSTEM MODEL

A. Notations

In the following, a vector will be represented by an under-

lined letter (e.g. v, V ) and a matrix by a doubly underlined

letter (e.g. m, M ). The matrix I
N

is the identity matrix of

size N ×N .

B. Communication system description

Fig. 1. CPM BICM Transmitter

We consider the general Bit Interleaved Coded Modulation

(BICM) transmission scheme for CPM, as given in Fig 1. Let

{αn}0≤n≤N−1 ∈ {±1,±3, . . . ,±M − 1}N be a sequence

of N symbols taken from the M-ary alphabet . The complex

envelope sb(t) associated with the transmitted CPM signal is

written as follows

sb(t) =

√
2Es

T
exp (j2πh

N−1∑

i=0

αiq(t− iT )) (1)

where

q(t) =

{∫ t

0
g(τ)dτ, t ≤ Lcpm

1/2, t > Lcpm

Es is the symbol energy, T is the symbol period, g(t) is the

frequency pulse, h is the modulation index and Lcpm is the

CPM memory.

Let us now consider a transmission over a TV channel

hc(t, τ). At the receiver, we assume ideal low-pass filtering

using the front-end filter Ψ(t) and ideal synchronization.

Denoting h(t, τ) = Ψ(t)∗hc(t, τ), where ∗ is the convolution

operator, the received signal can be written as:

r(t) =
∑

m

s(m
T

k
)h
(
t, t−m

T

k

)
+ w(t), (2)

where w(t) is a complex baseband additive white Gaussian

noise with power spectral density 2N0, and k is the oversam-

pling factor.

As the channel is time-varying, we need to spread the pilot

symbols within the frame. To do so, we derive a block-based

model by using a known Unique Word (UW), also called

training sequence. This approach is also useful to perform

frequency-domain equalization, as it allows us to circularize

the channel [5]. Similar model has been considered for linear

modulation in [16].

Unlike for linear modulations, due to the CPM memory,

we need to add some termination symbols at the end of the

data block in order to ensure the phase continuity and the

uniqueness of the UW [17], as illustrated in Fig.2. Moreover,

the length of a UW must be larger than the time dispersion of

the channel to avoid interference between CPM blocks.

Fig. 2. Block-based structure of the CPM signal

C. Baseband representation

Using a Fractionally-Spaced representation of the received

signal, we have the following expression:

r[l] = r

(
lT

k

)
=

∑

m

s(m
T

k
)h
(
l
T

k
, (l −m)

T

k

)
+ w

(
l
T

k

)

=
∑

m

s[m]h[l; l −m] + w[l] (3)

By defining the channel matrix h in Eq.(5) where L is the

channel span, and by neglecting the interference coming from

the previous data block, the signal has the following matrix-

wise representation:

r = hs+w (4)

with r = [r[0], r[1], . . . , r[kN − 1]]T

s = [s[0], s[1], . . . , s[kN − 1]]T

and w = [w[0], w[1], . . . , w[kN − 1]]T

We point out that the interference from the previous data block

can be perfectly removed (and hence, our hypothesis will be

valid) by not taking into account the first L received samples.

We then introduce the following representation:

hl =
[
h[0, l], h[1, l], . . . , h[kN − 1, l]

]T
(6)

where hl is a vector of size kN × 1 corresponding to the

complex attenuation of the lth path. Then, our channel matrix

h can be written as:

h =
L−1∑

l=0

diag(hl)Zl
(7)

where Z
l

is a matrix of size N × N which represents the

delay of the lth path in the lag domain, i.e. [Z
l
]n,(n−l) = 1

and 0 elsewhere, and diag(hl) is a diagonal matrix of size

N ×N whose diagonal entries are hl.

In terms of channel estimation, we can see, by using those

notations, that the number of parameters to estimate can be

too important (as there is kN complex coefficients per path).

The Basis Expansion Model allows us to reduce the number

of parameters to estimate as only a few coefficients which are

required to model the time-varying channels.



h =




h[0, 0] 0 . . . . . . 0
...

. . .
. . .

...

h[L− 1, L− 1]
. . .

. . .
...

...
. . .

. . . 0
0 . . . h[kN − 1, L− 1] . . . h[kN − 1, 0]




(5)

III. BASIS EXPANSION MODEL

We now introduce the BEM which has been presented in

[9]. However, in this section, our notations are inspired by the

work of [10] for OFDM systems in case of Doppler Spread

Channels.

A. Received signal using BEM

The complex attenuation corresponding to the lth path is

described as:

hl = [ζ
0
, ζ

1
, . . . , ζ

P−1
]

︸ ︷︷ ︸
ζ

[ηl,0, ηl,1, . . . , ηl,P−1]
T

︸ ︷︷ ︸
=η

l

=
P−1∑

p=0

ηl,pζp

(8)

where P be the number of basis function, ζ
p

is the (p+1)th

deterministic base of size kN × 1, and ηl,p is the (p+1)th

stochastic parameter for the (l+1)th path.

By introducing Eq.(8) in Eq.(7), we obtain:

h =
∑

l

∑

p

ηl,p diag(ζ
p
)Z

l︸ ︷︷ ︸
=Γ

l,p

=
∑

l

∑

p

ηl,pΓl,p
(9)

Γ
l,p

is a deterministic matrix of size kN×kN . We now define

the matrix Γ of size kN × PLkN :

Γ = [Γ
0,0

, . . . ,Γ
0,P−1

,Γ
1,0

, . . . ,Γ
1,P−1

, . . . ,Γ
L−1,P−1

]

and the vector η = [ηT
0
,ηT

1
, . . . ,ηT

L−1
]T of size LP × 1.

Using the Kronecker product ⊗, we have:

h = Γ(η ⊗ I
kN

) (10)

Finally, it can be shown that the received vector is:

r = Γ(η ⊗ I
kN

)s+w = Γ(I
LP

⊗ s)η +w (11)

B. Case of a time-invariant channel

In the case of TIV channels, the BEM can be simplified.

By taking P = 0 and ζ
0
= [1, 1, . . . , 1]T , we obtain:

hl = h[l]ζ
0

(12)

We have now:

η = [η
0
,η

1
, . . . ,η

L−1
]T = [h[0], h[1], . . . , h[L− 1]]T (13)

(14)

and also

Γ
l,0

= diag(ζ
0
)Z

l
= I

N
Z

l
= Z

l
(15)

and so Γ = [Z
0
,Z

1
, . . . ,Z

L−1
] (16)

Our received signal (11) becomes:

r = Γ(I
L
⊗ s)

︸ ︷︷ ︸
=s

h+w (17)

which corresponds exactly to the equation (33) of [5] but

using the fractionally-spaced representation instead of the

polyphase representation.

C. BEM Design

In the State of the Art, various BEMs are considered. We

discuss here a few models, in a non-exhaustive way, that we

will use later.

[11] and [12] use the discrete Karhunen-Loeve expansion

(KL-BEM). It is assumed that the auto-correlation function of

the complex attenuation is the zeroth-order Bessel function

(which is the case when the Doppler has a Jakes’ Doppler

Spectrum). With the knowledge of the maximum Doppler

frequency and of the variance of the attenuation, this technique

is optimal [12]. We note R the channel correlation matrix of

a tap. By using a Singular Value Decomposition (SVD), we

obtain R = V diag(∆)V H . Then, the KL-BEM is designed

by taking the P first column of the matrix V as the basis

functions {ζ
p
}p.

[13] introduces a BEM based on Complex Exponential

(CE-BEM) functions which has been ”extended” to the over-

sampled CE-BEM (OCE-BEM) in [14], [18]. In this case,

no prior knowledge channel statistics is needed, reducing the

problem of mismatched model. The basis function are defined

by:

ζp[n] = ej2π(p−P/2)n/(KkN), with K a positive integer

(18)

It is well-known that CE-BEM (K = 1) suffers from model

error on the edge of the considered block (as it implies that

the channel is periodic with a period equal to the duration of

the block). OCE-BEM (K ≥ 2) allows for a more accurate

parameterization, but we loose the orthogonality of the base.

Others BEM exist (such as polynomial BEM and discrete

prolate spheroidal BEM) but they will not be discussed in this

paper. A comparison of some BEMs in terms of modelling

performance is given in [19], [20].

IV. CHANNEL ESTIMATION

In this section, we will present the Data-Aided Least

Squares channel estimation of the BEM parameters η. Unlike



for linear modulation, due to the use of the CPM, this

estimation must be performed on the over-sampled received

signal r. We will consider now the transmitted signal s known

at the receiver. Hence, the matrix s = Γ(I
LP

⊗ s) of size

kN × LP is also known.

A. Least Squares Estimation

As for linear modulations, the standard approach is to

perform a LS estimation of the BEM parameters. We assume

in this case that there is no model error. The Least Square

estimation is:

η̂ = (sHs)−1sHr (19)

and so ĥ = Γ(η̂ ⊗ I
N
) (20)

as the noise in our system model is a white Gaussian noise.

The overall complexity of this estimation is dominated by

the multiplication of the matrix (sHs)−1sH of size LP ×kN
by a vector of size kN . Note however that this matrix can be

pre-computed and stored at the receiver.

B. Least Squares Estimation with a priori positioning

As in case of TIV Channel estimation for linear modulation

[21] and for CPM [5], we can introduce a parametric depen-

dence on the estimation of the BEM parameters and the delays

of the Lc paths.

Let define the vector τ = [τ0, ..., τLc−1]
T which contains

the delay of the different paths and a = [aT
0 , ...,a

T
Lc−1]

T

the associated BEM parameters such as hc(t, τ) =∑Lc−1
l=0 al(τ)δ(t − τl). We now introduce the dependence on

the delays τ , and by using the BEM on the complex attenu-

ation (we suppose τ constant during the frame transmission)

and the same idea as previously (see Eq.(10)), we obtain:

h =

Lc−1∑

l=0

P−1∑

p=0

ηl,pdiag(ζ
p
)Z

τl
(21)

= Γ
τ
(η

P
⊗ I

N
) (22)

where Z
τl
=̇Toeplitz(Ψ(τl)) (23)

and [Ψ(τl)]n=̇Ψ(n
T

k
− τl) (24)

Let us emphasize the difference between this parametric

model and the one presented in Eq.(11). In this model, Γ
τ

contains only the contribution of the front-end filter Ψ(t)
with the delays of the considered paths τ . The vector η

p
of

size PLc × 1 contains only the BEM parameters for each

considered paths. Our received signal is now:

r = Γ
τ
(I

PLc
⊗ s)η

P
+w = s

P
η
P

+w (25)

where s
p

is now a matrix of kN × PLc. This matrix s
p

is known at the receiver as the vector τ is also known by

geometrical consideration [5], [21] or previously estimated as

in [22]–[24].

As our noise in our system model is still a white Gaussian

noise, the Least Squares estimation of η
P

is given by:

η̂
P
= (sH

p
s
p
)−1sH

p
r (26)

and so ĥ
P
= Γ

τ
(η̂

P
⊗ I

kN
) (27)

By using this parametric estimator, we reduce the number

of parameters to estimate from PL to PLc parameters. We

also reduce the computational complexity of the inverse as the

matrix sH
p
s
p

is of size Lc×Lc instead of L×L. For instance, in

the case of the aeronautical channel, it is commonly admitted

that Lc = 2

C. Block-based transmission

In case of block-based transmission as presented in Fig. 2,

only the UWs (composed of NUW symbols) are known at the

receiver, however we need to estimate the channel over both

data block and UW in order to perform channel estimation as

the one presented in [8]. To do so, we propose to consider the

previous UW, the data block and the next UW as proposed

in [15]. In this case, we can separate the contribution of

the UWs and of the data block. By considering, the vector

rUW = [r[L], r[L + 1], . . . , r[kNUW − 1], r[k(N − NUW) +
L], . . . , r[kN − 1]]T of size 2k(NUW −L)× 1 which contains

only the received samples corresponding to the contribution

of the UWs (we have remove the ISI coming from the data

blocks), we can rewrite our system as [15]:

rUW = h
UW

[sTUW, sTUW]T︸ ︷︷ ︸
=̇sUW,2

+wUW (28)

where the matrix h
UW

of size k(NUW − L) × 2kNUW is a

concatenated sub-matrix of h. We point out that this matrix

h
UW

depends on the same BEM parameters as the matrix h

as it is only a partitioning of this former matrix. Hence, the

LS estimation, based only on the UW, is given by:

η̂
UW

= (sH
UW ,2

s
UW,2

)−1sH
UW,2

rUW (29)

with s
UW,2

=̇Γ(I
PL

⊗ sUW,2) (30)

This LS estimation can use a priori positioning as described

in the previous section. Hence, our estimated channel is

obtained by ĥ = Γ(η̂
UW

⊗ I
kN

). The interpolation of our

estimated channel over the data block is directly perform by

the BEM model.

V. RESULTS

For simulation, we consider a binary CPM scheme with

h = 1/2, a CPM memory LCPM = 3 and a REC pulse shape.

We point out that, as our Unique Word can be independent

of our CPM parameters, our results can be extended to other

CPM schemes. We define the Normalized Mean Square Error

NMSE, which explicitly takes the BEM modeling error into

account, as:

NMSE = E

{∑L−1
l=0 |hl − ĥl|

2

∑L−1
l=0 |hl|

2

}
(31)



Fig. 3. NMSE over TV channels using KL-BEM

We have evaluated our channel estimation in the case of a

TIV channel (not shown here) and we obtain results similar

to the ones presented in [5].

Now let us consider a time-varying channel. We examine

our channel estimators for a Rayleigh channel with a Jakes’

Doppler Spectrum and a maximum Doppler frequency of

0.0183Rs (where Rs is the symbol rate: Rs = 1/T ). This

channel is composed of 2 paths with a delay of 1.5T between

them. First, we consider the case where even the data block is

known at the receiver in order to validate our methods. In our

simulations, we perform the LS estimation with 128 known

symbols.

In Fig. 3, we consider the KL-BEM and present simulations

results for different numbers of basis functions. We can

observe that, by increasing the number of basis functions,

the performance are improved, which is explained by the fact

that our BEM is closer to the simulated channel. The floor

error phenomenon is due to the BEM modeling error. It is

acknowledged that a BEM is accurate when the modeling error

is on the order of 10−4 [15], which is the case when we use 7

basis functions. We do not consider the improved LS channel

estimation using the knowledge of the delays due to the fact

that the KL-BEM already uses this knowledge, by considering

the variance of the attenuation.

Nevertheless, the KL-BEM described in subsection III-C

requires an important knowledge on the channel such as the

maximum Doppler frequency and the variance of the complex

attenuation (which provides the knowledge on the delays).

Hence, we investigate more robust BEM.

A common BEM is the (O)CE-BEM only based on complex

exponentials. This model does not require any knowledge of

the channel statistics. In this case, the BEM channel estimation

suffers from the unknown sparsity of the channel. Indeed, we

try to estimate a null path by a sum of weighted complex

exponentials. Even the LS estimation with positioning a priori

exhibits a large BEM modeling error as shown in Fig. 4. We

can also observe that for the same number of basis functions,

the KL-BEM outperforms the chosen OCE-BEM, which can

be explained by the optimally of the KL-BEM. However, we

Fig. 4. NMSE over TV channels using OCE-BEM

Fig. 5. NMSE over TV channels using KL-BEM for block-based CPM

can see, in any of our chosen case, that the OCE-BEM can be

considered accurate as the error floor is around 10−3, which

can lead to further study to find an other suitable model based

on the OCE-BEM (by changing the factor or by considering

a completely different BEM).

To conclude, we now present the performance of our algo-

rithm in the case of a block-based transmission. As explained

in subsection IV-C, only the UWs are known at receiver, and

so the channel is interpolated over the data block thanks to

the BEM.

We will consider different sizes NUW of UW and different

sizes of data block of NDATA (which give us a bandwidth

efficiency of 1−NUW/(NDATA +NUW)). We choose for those

simulations a normalized Doppler spread of 0.0008Rs and

the KL-BEM to approximate our channel which suppose a

maximum Doppler frequency of 0.002Rs. Those parameters

have been used in [15]. Only 3 basis functions are considered,

which gives us 6 BEM parameters to estimate as only 2 paths

are considered. Simulations results are presented in Fig.5. We

obtain similar performance compared to the ones in [15],

which tends to validate our approach. We can observe that



Fig. 6. BER over TV channels for block-based CPM

when we increase the size of the data block, while keeping the

same size of UW, the performance are degrading which can be

explained easily. Indeed, in this case, the interpolation of the

channel over the data block is worse due to BEM modelling

error. Finally, we evaluate the impact of the channel estima-

tion in terms of Bit Error Rate (BER) in Fig.6, considering

now a coded transmission (using a convolutional code with

polynomial generators (5, 7)8 ) and an iterative concatenated

scheme between the CPM MAP detector and the MAP channel

decoder. We send 40 data blocks of 112 symbols with Unique

Word of 16 symbols, which give us a bandwidth efficiency

of 75%. To perform channel equalization, we use the band

Frequency-Domain MMSE Equalizer presented in [25] (with

Q = 5). We use the same simulation parameters as previously.

We consider the case of perfect channel knowledge and the

case where we use the previous KL-BEM channel estimation.

The degradation due to the the channel estimation error is

around 2dB at a BER of 10−3. Similar results have been

observed in [2] in the case of TIV channels where the MMSE

equalizer suffers from a degradation of 3dB.

VI. CONCLUSION

In this paper, we have evaluated the performance of BEM-

based channel estimation for CPM over time-varying channels

and we have shown how to perform it in case of a block-

based transmission. We have shown that the knowledge of

the paths delays can improved significantly the performance

of such estimation. We also observe that the performance of

BEM-based estimation is very depending on the chosen BEM

which can have large modeling error.
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