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Some influenza A  viruses (IAVs) repre-
sent serious potential threats to public and 
agricultural health, with 3 notable exam-
ples from the past decade. During 2009, 
a novel H1N1 IAV (A[H1N1]pdm09), 
which was first detected in the United 
States, spread rapidly throughout many 
regions of the world [1]. In the United 
States alone, the Centers for Disease 
Control and Prevention estimated that 
>60 million human cases were associated 
with this emergent and pandemic virus 
[1]. During 2013, a novel H7N9 avian-or-
igin IAV (Asian lineage avian influenza 
A[H7N9] virus) was first detected in 
China. This virus not only cost the poul-
try industry more than $1 billion through 
culling and market closures, it also proved 
to be detrimental to public health, as this 
virus is readily transmitted to humans 
and can cause moderate-to-high rates of 
mortality [2, 3]. More recently, a highly 
pathogenic clade 2.3.4.4 avian IAV was 
first detected in North America during 
2014. Ultimately, the introduction of this 
virus (and subsequent reassortant viruses) 
elicited the most expensive highly patho-
genic IAV outbreak in US history [4], with 
total losses estimated to be billions of dol-
lars [5]. These 3 examples exemplify the 

enormous burdens that some IAVs can 
place on public and agricultural health 
systems and suggest that a diversity of 
studies need to be conducted to address 
the complex epidemiology of these virus-
host systems.

The majority of isolations of avian IAVs 
in wild birds have been associated with 
the avian orders Anseriformes (eg, ducks, 
geese, and swans) and Charadriiformes 
(eg, gulls, terns, and shorebirds), and 
certain species in the former are thought 
to be key reservoirs of avian IAVs [6]. 
Indeed, aquatic birds are likely the reser-
voir hosts of all avian IAVs, and the fecal-
oral route of transmission is thought to 
be the primary mechanism of viral spread 
among this diverse group of birds [7].

Distinct lineages of IAVs have also 
become established in select nonhu-
man mammals. For example, multiple 
IAV lineages are established in swine 
and equine populations [8]. While these 
established mammalian IAV lineages are 
readily transmitted among conspecif-
ics [8, 9], IAV transmission within wild 
mammalian species without established 
lineages has not been well studied, and 
little evidence suggests that these viruses 
are maintained within these species in 
natural settings. However, mammalian 
species that do not maintain IAVs within 
their populations could still play a role in 
key transmission events.

Several IAV experimental infection 
studies have been conducted with wild 
mammals. While some species have been 
shown to shed low or moderate amounts 
of virus (eg, raccoons [Procyon lotor] [10, 
11]), others have been shown to shed 
high levels of virus (eg, striped skunks 

[Mephitis mephitis] and cottontail rab-
bits [Sylvilagus species] [12, 13]). Many 
mammalian experimental infection 
studies have been conducted using avian 
IAVs without prior mammalian adapta-
tion, thereby suggesting that several wild 
mammalian species are susceptible to 
avian IAVs under laboratory conditions. 
Of significance, at least 1 wild mamma-
lian species is susceptible to low doses of 
virus inoculum [14], which may be a cru-
cial attribute when considering naturally 
acquired infections.

During recent years, evidence of IAV 
natural exposures has been reported 
for a number of wild mammalian spe-
cies. Some recent examples from a long 
list of diverse candidates include anti-
body detections in raccoons in the 
United States and Japan [10, 15], anti-
body and viral detections in plateau pika 
(Ochotona curzoniae) in China [16–18], 
and antibody detections in water deer 
(Hydropotes inermis) and a leopard cat 
(Prionailurus bengalensis) in Korea [19]. 
Although these mammals clearly appear 
to have been exposed to various IAVs, the 
mechanism by which they were exposed 
and their potential to transmit IAVs 
remains largely undetermined.

It has been suggested that raccoons 
may come into contact with IAVs in the 
aquatic environments in which they can 
often be found, and habitats that con-
centrate raccoons and waterfowl (eg, 
areas with limited riparian habitat) may 
increase exposure and subsequent anti-
body prevalence estimates [10]. Similarly, 
researchers have suggested that plateau 
pika may be exposed through IAV-laden 
secretions of waterfowl deposited within 
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shared foraging sites [16]. Water deer 
were hypothesized to have been exposed 
to IAVs through their peridomestic ten-
dencies and/or potential interactions 
with waterfowl or shared habitats [19]. 
The documented leopard cat exposure 
adds an additional species to an expand-
ing list of IAV exposures in felids [19], 
some of which are thought to have been 
exposed through ingestion of virus-laden 
bird carcasses [20].

Some experimental work address-
ing possible IAV transmission routes to 
mammals has been conducted. In a study 
addressing 3 ecological routes of IAV 
transmission to raccoons, results indi-
cated that transmission of a low-patho-
genic virus subtype occurred through 
ingestion of virus-contaminated water 
but was not successful through the con-
sumption of virus-contaminated eggs 
and avian carcasses [11]. In contrast, 
highly pathogenic IAV H5N1–infected 
bird carcasses represented a success-
ful vehicle to transmit this IAV sub-
type to red fox (Vulpes vulpes) [21]. 
Furthermore, anecdotal evidence from 
zoo-housed and wild carnivores indi-
cates that virus-contaminated carcasses 
may have the capacity to infect some 
species within this taxonomic group with 
some subtypes [20, 22].

Overall, there appear to be 3 pre-
dominant hypotheses for wild mammal 
exposure to avian IAVs in natural set-
tings. These include shared habitat with 
waterfowl [10, 16], shared water sources 
with waterfowl [10, 11], and predation/
scavenging upon waterfowl [10, 11, 21]. 
In this issue of The Journal of Infectious 
Diseases, a unique analysis was used to 
address whether host phylogenetic relat-
edness, sociality, and/or diet have an 
influence on IAV antibody prevalence 
and subtype diversity in an understud-
ied set of wild African mammals from 
a region of Africa where information on 
IAV epidemiology is scant [23]. Thus, 
the analyses presented that are asso-
ciated with diet, especially as it relates 
to diet of carnivorous and/or scaveng-
ing mammals that commonly feed on 

birds, build on one of the 3 hypotheses 
mentioned above.

In their analyses, Soilemetzidou et  al 
[23] reported that neither phylogenetic 
relatedness (ie, the recency of a common 
ancestor shared by 2 species) nor gregar-
iousness (ie, the tendency of a species to 
form social groups) of the mammalian 
species analyzed significantly influenced 
IAV antibody frequency or the diver-
sity of subtypes detected within a spe-
cies; however, a higher seroprevalence 
and a greater number of IAV subtypes 
were noted in carnivorous species that 
are thought to regularly feed on avian 
species. This analysis supports previous 
experimental work that showed produc-
tive infections in mammalian carnivores 
fed highly pathogenic IAV–infected bird 
carcasses [21]. Further, the diversity of 
IAV subtypes reported, including those 
that are not H5 nor H7 [23], suggests 
that mammalian antibody responses as-
sociated with low-pathogenic IAVs may 
more commonly occur through con-
sumption of virus-laden bird carcasses 
than previous experimental work has 
suggested [11].

Although IAV antibody detections 
in wild mammals, especially those pre-
sumed to be from avian sources, is of 
scientific interest, several items must 
be taken into consideration before any 
implications associated with the epide-
miological impacts of these exposures 
can be realized. First, various mamma-
lian species could be readily exposed to 
IAVs through various mechanisms (eg, 
virus-infected bird carcasses), as deter-
mined by antibodies, but not have the 
capacity to shed the viruses at sufficient 
levels to initiate transmission to a popula-
tion of interest. Second, IAV antibodies in 
social mammals could represent a com-
mon exposure through environmental 
contamination and not necessarily the 
ability to transmit the virus among con-
specifics. Third, certain behavioral traits, 
such as peridomestic tendencies that put 
an animal into close contact with humans 
or domestic poultry, could be an import-
ant facet of the actual risk that a given 

mammalian species poses to agricultural 
or zoonotic infections. Thus, when pos-
sible/practical, experimental infection 
studies addressing transmission to, from, 
and within a species would be valuable 
to complement results found in serosur-
veys. This type of information, coupled 
with knowledge of key behavioral traits, 
will help to elucidate the role a given wild 
mammalian species might play in the 
transmission and maintenance of IAVs.
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