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Modeling Long-Term Corn Yield
Response to Nitrogen Rate and
Crop Rotation
Laila A. Puntel1*, John E. Sawyer1, Daniel W. Barker1, Ranae Dietzel1,
Hanna Poffenbarger1, Michael J. Castellano1, Kenneth J. Moore1, Peter Thorburn2 and
Sotirios V. Archontoulis1*

1 Department of Agronomy, Iowa State University, Ames, IA, USA, 2 Commonwealth Scientific and Industrial Research
Organisation Agriculture, St Lucia, QLD, Australia

Improved prediction of optimal N fertilizer rates for corn (Zea mays L.) can reduce N
losses and increase profits. We tested the ability of the Agricultural Production Systems
sIMulator (APSIM) to simulate corn and soybean (Glycine max L.) yields, the economic
optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa,
USA that included two crop sequences (continuous corn and soybean-corn) and five
N fertilizer rates (0, 67, 134, 201, and 268 kg N ha−1) applied to corn. Our objectives
were to: (a) quantify model prediction accuracy before and after calibration, and report
calibration steps; (b) compare crop model-based techniques in estimating optimal N
rate for corn; and (c) utilize the calibrated model to explain factors causing year to
year variability in yield and optimal N. Results indicated that the model simulated
well long-term crop yields response to N (relative root mean square error, RRMSE
of 19.6% before and 12.3% after calibration), which provided strong evidence that
important soil and crop processes were accounted for in the model. The prediction of
EONR was more complex and had greater uncertainty than the prediction of crop yield
(RRMSE of 44.5% before and 36.6% after calibration). For long-term site mean EONR
predictions, both calibrated and uncalibrated versions can be used as the 16-year mean
differences in EONR’s were within the historical N rate error range (40–50 kg N ha−1).
However, for accurate year-by-year simulation of EONR the calibrated version should
be used. Model analysis revealed that higher EONR values in years with above normal
spring precipitation were caused by an exponential increase in N loss (denitrification
and leaching) with precipitation. We concluded that long-term experimental data were
valuable in testing and refining APSIM predictions. The model can be used as a tool
to assist N management guidelines in the US Midwest and we identified five avenues
on how the model can add value toward agronomic, economic, and environmental
sustainability.

Keywords: maize, economic optimum N rate, soybean, soil organic carbon, modeling, APSIM

INTRODUCTION

The economic optimum nitrogen (N) rate (EONR) is the fertilizer rate at which crop yield increase
is not large enough to pay for additional N application, and therefore more N would only result in
unnecessary costs (Sawyer et al., 2006). Optimal N input needs to be considered when making N
recommendations since it has the potential to improve N use efficiency, crop yield, and profitability
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as well as to reduce environmental impacts (Wang et al., 2003;
Lawlor et al., 2008; Kyveryga et al., 2009; Basso et al., 2016).
Nitrogen losses by leaching are proportional to the N rate applied
and tend to increase rapidly at rates greater than optimal for crop
use (Haghiri et al., 1978; Cooper and Cooke, 1984; Andraski et al.,
2000; Randall et al., 2000).

There is tremendous uncertainty and risk associated with
prediction of the EONR in corn–based systems, both at the
field and sub-field scale (Paz et al., 1999; Scharf et al., 2005;
Tremblay et al., 2012). Farmers may attempt to protect corn yield
potential with high fertilizer N inputs, which leads to decreased
profitability (Lambert et al., 2006) and increased likelihood of
environmental contamination (Andraski et al., 2000; Jaynes et al.,
2001; Robertson and Groffman, 2007).

A number of approaches have been developed to predict
optimal N application rates. These include yield goal-based N
recommendations and N budgets (Stanford, 1973, 1982; Stanford
and Legg, 1984), pre-plant and pre-sidedress soil nitrate test
(PPNT and PSNT, Bundy and Andraski, 1995; Shapiro et al.,
2008), Illinois soil nitrogen test (ISNT, Mulvaney et al., 2001),
crop canopy sensing (NDVI, Schmidt et al., 2009 and chlorophyll
meter, Blackmer and Schepers, 1995; Varvel et al., 1997), and
economic maximum return to N (MRTN, Sawyer et al., 2006).
Some of these tools are static in that they give the same
recommendation regardless of yearly weather or crop/fertilizer
prices, or evaluate N status after grain crop harvest. Soil tests
or hand-held crop meters are often time consuming, expensive,
and/or require periodic and intense sampling (Blackmer et al.,
1997; Ma and Dwyer, 1999; Grove and Schwab, 2006; van Es et al.,
2007; Lemaire et al., 2008; Franzen et al., 2016). Most current
and widely adopted N management practices also assume field-
uniformity, recommending N applications that ignore variation
in landscape factors such as topography, soil texture, and
organic matter (Cassman et al., 2002; Mamo et al., 2003; Scharf
et al., 2005), as well as interactions with plant population and
hybrid (Ciampitti and Vyn, 2012). Use of precision agriculture
technologies (real-time remote sensing, unmanned aerial images,
soil mapping, etc.) combined with variable N application have
the potential to increase N use efficiency by matching the N
requirements within field zones (Dobermann and Cassman,
2002; Ferguson et al., 2002; Mamo et al., 2003; Mulla, 2013).
However, the selection of a site-specific optimum N rate is
difficult to predict based on the large temporal and spatial
variability of the N supply and demand (van Es et al., 2007;
Setiyono et al., 2011). Unfortunately, the above approaches have
not fully resolved needed improvements from N management
and gains in N use efficiency (Raun and Johnson, 1999; Fageria
and Baligar, 2005) since N losses from corn-based systems are
still high with negative environment impacts (Jaynes et al., 2001;
Mitsch et al., 2001).

The challenge in managing N and estimating the optimum N
fertilization rate comes from the complex interactions that exist
in the dynamic soil-plant-atmosphere system and uncertainty in
weather (Havlin et al., 2005; Tremblay and Belec, 2006; Brady
and Weil, 2008). Soil N mineralization from SOC and crop N
uptake, and N losses are three important components defining
the optimum N rate, however, these processes are dynamic

and difficult to predict (Cassman et al., 2002). Therefore N
management tools that simultaneously consider dynamics in soil
organic carbon mineralization, crop growth, weather conditions,
and agronomic practices may greatly improve site- and year-
specific EONR estimates (Basso et al., 2012, 2016; Dumont et al.,
2016). Dynamic cropping system simulation models such as
Agricultural Production Systems sIMulator (APSIM; Holzworth
et al., 2014), DSSAT (Jones et al., 2003), RZWQM (Ahuja et al.,
2000), CropSyst (Stockle et al., 2003), SALUS (Basso et al.,
2006), and others have been used to investigate soil-crop-weather
dynamics, however, model use has been limited to address long-
term optimum N rates (Ma et al., 2007; Basso et al., 2010).
The scientific literature is also rich with examples of model
applications to improve our understanding of N dynamics and to
answer questions that cannot be addressed with field research due
to time and cost constraints (Batchelor et al., 2002; Schnebelen
et al., 2004; Fountas et al., 2006; Malone et al., 2010; Basso et al.,
2012, 2016; Anapalli et al., 2014). However, use of models in
practical applications to assist real-life challenges such as N rate
guidance is limited because models typically require: (a) a large
number of input parameters, which are usually not available
(Wallach, 2006; Basso et al., 2012); (b) particular skills to develop
model specific input parameters and cultivar coefficients from
internet databases; and (c) intensive training for use.

Over the last few years web-applications have been developed
to simplify the use of models (e.g., Yield Prophet, Carberry et al.,
2009). Furthermore, digital soil and weather databases such as
web soil survey1 (Soil Survey Staff, 2006) and daymet (Daymet,
1980–2008; Thornton et al., 2012) provide free access to high-
resolution input parameters. As a result, the potential of using
simulation models to assist with real-life practical problems and
especially to predict the risk associated with selecting specific N
fertilizer rates has received strong industrial interest (Thorp et al.,
2007; Gowda et al., 2008; Nangia et al., 2008). The next challenge
to applying models across different scales (within fields, regions,
and cropping systems) is to determine prediction accuracy; e.g.,
how well cropping system models can predict crop yield, N
dynamics, and EONR. And if they can predict corn response to
N rate, how can this information be used to develop better N rate
guidelines.

In this study we used a 16-year field research dataset from
a site in central Iowa, USA that included five N rates and two
crop sequences to test the ability of the APSIM model (Holzworth
et al., 2014) to predict crop yields and optimal N rate for corn.
Our specific objectives were to: (a) quantify model prediction
accuracy before and after calibration, and report calibration steps;
(b) compare crop model-based techniques in estimating optimal
N rate for corn; and (c) utilize the calibrated model to explain
factors causing year to year variability in yield and optimal N.
The APSIM model was selected for use in this study because of
its flexibility and easy use in specifying crop rotations via the
user interface, capability in simulating long-term dynamics in
both soil and crop processes, advanced flexibility in simulating
the effect of shallow water table dynamics that are important
in this geographic region (Helmers et al., 2012) and previously

1http://websoilsurvey.nrcs.usda.gov/
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determined good performance in this geographic region (Malone
et al., 2007; Hammer et al., 2009; Lobell et al., 2013; Archontoulis
et al., 2014a,b, 2016; Basche et al., 2016; Dietzel et al., 2016;
Martinez-Feria et al., 2016).

MATERIALS AND METHODS

Site, Weather, and Experimental
Datasets
The field-experiment was conducted at the Agricultural
Engineering and Agronomy Research Farm near Ames, Iowa,
USA (42◦ 0′37.50′′N, 93◦47′22.98′′W) on a Clarion loam soil
(fine-loamy, mixed, superactive, mesic Typic Hapludoll). The
experiment was initiated in 1999 and continuous to the present.
For this study we used data from 1999 to 2014 (16-years). The
climate at the site is humid continental (warm, rainy summers)
with annual precipitation of 900 mm and a mean temperature of
9◦C (Supplementary Figure S1). Over the 16-year experimental
period, crops experienced warm and wet conditions (3 years),
cool and wet conditions (3 years), warm and dry conditions
(5 years), and cool and dry conditions (5 years; Supplementary
Figure S1). Years 2008, 2010, and 2014 were the wettest and
years 2000, 2011, 2012, and 2013 the driest. Mean annual
air temperatures were 16 and 23◦C for spring and summer,
respectively. Year 2012 was the warmest and year 2008 the
coolest (Supplementary Figure S1).

The long-term experiment was designed to study the effect
of five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha−1;
hereafter N0, N67, N134, N201, and N268, respectively) on
corn yield in continuous corn (CC) and soybean-corn rotation
(SC). The experimental design was a randomized complete block
design with four replications. Nitrogen fertilizer was applied near
planting (± 10–15 days). Specific information on the fertilizer
type and application dates are provided in Supplementary Table
S1. Within the SC rotation, corn and soybean phases were present
each year in the rotation: thus a simulation starting with corn in
year one and another simulation starting with soybeans on year
one were set up. Hereafter SC when the rotation starts with corn
in year one (odd numbered years) and a validation set (SC_val)
when the rotation starts with soybean in year 1 (even numbered
years). Each treatment had four replications. Nitrogen fertilizer
was only applied to corn. Supplementary Table S1 provides
management information by year and rotation. Measurements
included corn and soybean grain yields each year (expressed at
15.5 and 13% moisture content, respectively). Soil organic carbon
measurements were available at 0–15 cm in 1999, 2009, and 2014,
and at 0–30 cm in 2009 for CC (Brown et al., 2014; Poffenbarger
et al., unpublished).

The APSIM Modeling Platform
The APSIM (Keating et al., 2003; Holzworth et al., 2014) is
an open-source advanced simulator of agricultural systems that
combines several process-based models in a modular design.
APSIM is a field-scale model that operates mainly on a daily time
step. Details about APSIM and its performance across a range of
studies can be found at http://www.apsim.info.

APSIM Configuration and Calibration
Two rounds of APSIM model evaluations were performed;
a blind phase (uncalibrated model) where management and
cultivar information were used, and a calibrated phase (calibrated
model) where crop yield and SOC data were provided into
the model. Similar protocols have been used in the AgMIP
project (Agricultural Model Inter-Comparison and Improvement
Project; Rosenzweig et al., 2013).

Blind-Phase Model Parameters and Set-Up
For the blind phase, we first incorporated available management
information into APSIM (Supplementary Table S1). When
required management information was unavailable, we used
typical values from the literature relevant to the research
site (Abendroth et al., 2011; Pedersen and Licht, 2014). The
following input parameters were held constant across the 16-
years: planting depth of 5 cm for both crops, plant populations
of 8 and 38 plants m−2 for corn and soybean, respectively,
and November 10th and April 10th dates for fall and spring
tillage operations; and corn hybrid (106-day) and soybean
variety (2.5 maturity group) values derived from previous studies
in the region (Archontoulis et al., 2014a,b; Supplementary
Table S2). Daily weather data were obtained from the Iowa
Environmental Mesonet (2014). Soil profile information was
taken from Web Soil Survey (Soil Survey Staff, 2006) and soil-root
related parameters were developed following the methodology
described in Archontoulis et al. (2014a). The maximum rooting
depths for corn and soybean were set to 1.5 and 1.2 m,
respectively.

We set up APSIM by connecting the following models:
corn and soybean crop models (Keating et al., 2003), Soil N
(soil N and C cycling model with default soil temperature
model; Probert et al., 1998), SoilWat (a tipping bucket soil
water model; Probert et al., 1998); SURFACEOM (residue
model; Probert et al., 1998; Thorburn et al., 2001, 2005), and
the following management rules: planting, harvesting, fertilizer,
tillage, and rotations (Keating et al., 2003). In addition we
implemented within the MANAGER module an N deposition
rule that simulates atmospheric N deposition as a function of
daily precipitation (N deposition in kg N ha−1 d−1

= 0.01∗
precipitation in mm; Holland et al., 2005). On average this
added about 7 kg N ha−1 year−1 into the system. Initial model
conditions such as root mass, surface residue mass, soil water, soil
nitrate, and SOC pool partitioning were obtained by starting the
model 6 years prior to the start of the experiment (Supplementary
Table S3). Experience using APSIM in this geographic region
for simulating corn-soybean production systems has indicated
that the fast microbial SOC pool (BIOM) of APSIM requires
at least 4 years to stabilize (Basche et al., 2016; Dietzel et al.,
2016; Martinez-Feria et al., 2016). Having this pool stabilized
is important to remove confounding effects of microbial SOC
buildup or decline which affects N dynamics. The APSIM
version 7.6 was used on a daily time step. The simulation
process was consecutive to account for carry-over effects from
year to year, such as soil inorganic nitrogen, soil moisture,
root and residue carbon and nitrogen inputs from previous
crops.
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Model Calibration and Testing
In the calibration and testing phase, we used end-of-season grain
yields and SOC data to improve predictions. The long-term (end-
of-season) data are powerful in detecting weakness in the model
(i.e., years with low prediction accuracy), but do not provide
guidance on which of the model’s processes or parameters
needed to be improved. Therefore, to inform the calibration
process, additional information was used: knowledge gained from
other APSIM calibration studies in Iowa (Archontoulis et al.,
2014a, 2016; Basche et al., 2016; Dietzel et al., 2016), sensitivity
techniques, and model behavior analysis coupled with expert
judgment (Supplementary Figure S2). The odd-numbered years
(for CC and SC) were used for calibration and even numbered
years for validation (SC_val dataset).

During calibration the following changes in APSIM were
made: first, we replaced the default APSIM soil temperature
model that uses EPIC model equations (Williams et al., 1984)
with a more mechanistic soil temperature model (Campbell,
1985) available in APSIM (soiltemp2). The reason was twofold:
(a) soiltemp2 has been found to perform better in Iowa
(Archontoulis et al., 2014a; Basche et al., 2016; Dietzel et al.,
2016); and (b) soiltemp2 better represents reality than the
default model as it accounts for soil temperature changes due
to tillage, residue cover, and management practices. Second,
we replaced SoilWat with the SWIM soil water model (Huth
et al., 2012) available in APSIM. This model allowed simulation
of fluctuating shallow groundwater tables, which in this region
varies from about 80 to 200 cm (Groundwater, USGS, Iowa
Water Science Center). Third, we improved the simulation of
soybean residue C:N ratio at harvest because the simulated C:N
ratio was low when compared to published data (Johnson et al.,
2007) and caused an over-prediction of corn yields in the SC
rotation with no N applied. We improved soybean C:N ratio
by decreasing the critical N concentration of different plant
tissues at physiological maturity by about 20% (Supplementary
Table S2). Additionally, we decreased the potential N fixation
rate (Supplementary Table S2) to better match seasonal N
fixation estimates to those observed in the literature for this
region (Salvagiotti et al., 2008). No changes were made in the
corn crop model, although various options were explored via
sensitivity analysis. Given all these changes we re-initialized
conditions at the start of the simulation on year 1999
(Supplementary Table S3).

Data Analysis
Estimation of the Annual Economic Optimum
Nitrogen Rate
The relationship between observed or simulated yield and N rate
was fit using the quadratic

y = a+ bx+ cx2 (1)

the quadratic-plus-plateau,

y = a+ bx+ cx2, x < x0 (2)

y = a+ bx0 + cx2
0, x ≥ x0 (3)

In these equations, y represents corn yield (either observed or
simulated), x is the fertilizer N rate, a is the intercept, b is the
linear coefficient, c is the quadratic coefficient, and x0 is the N rate
at the join point. The PROC NLIN procedure in SAS (Version
9.4, SAS, 2013). Equations were deemed significant at p < 0.05
and the equations with the smallest sums of squares and largest
R2 were selected.

Corn EONR and the yield at the EONR (YEONR) were
calculated from the N response equations by setting the first
derivative of the fitted response curve equal to the historical
price ratio of 5.6:1 N:corn grain price (US$ kg−1 N:US$kg−1

grain) ratio (Cerrato and Blackmer, 1990; Bullock and Bullock,
1994). The impact of the N:corn grain price ratio on EONR has
been well documented in the literature (Cerrato and Blackmer,
1990; Sawyer et al., 2006). In this study, we used a fixed ratio
across years similarly to other modeling studies (Basso et al.,
2012). Using this approach, we calculated EONR and YEONR
values for: (a) the observed data (EONR-Obs, YEONR-Obs); (b)
the simulated data from the uncalibrated model (EONR-APSIM-
Unc, YEONR-APSIM-Unc); and (c) the simulated data from the
calibrated model (EONR-APSIM-Cal, YEONR-Cal).

Additionally, a different technique to calculate an optimal N
rate was used (Basso et al., 2016). The calibrated APSIM model
was ran for every 5 kg N ha−1 increments from 0 to 350 kg
N ha−1 to simulate corn yields. Then the N rate at which the
economic return on N was maximized [hereafter RTN (return
to N approach)-APSIM] was estimated by difference: simulated
yield times corn price minus fertilizer rate times N cost between
two levels of N rate. A value of zero (or near zero) corresponds to
the optimum N rate. Same prices for corn grain and N fertilizer
was used as with the EONR technique.

The RTN-APSIM technique differs from the EONR-APSIM-
Cal in the following way: EONR-APSIM-Cal estimates the
economic optimum N rate through regression equations
(Eq. 1–3) fitted to five simulated corn yields at 0, 68, 134, 200,
and 268 kg N ha−1. The RTN-APSIM uses the ability of APSIM to
run on any desired N rate increment to predict corn yield (every
5 kg N, from 0 to 350 kg N ha−1) and therefore the economic
optimum N rate can be identified without use of regression
equations. The RTN approach follows a similar methodology
to that is currently used for corn N rate recommendations
in the USA Midwest (known as the MRTN approach; Sawyer
et al., 2006). The difference between RTN-APSIM and MRTN is
that the regression equations for MRTN are within a database
with extensive N rate response trials and associated regression
equations, while RTN-APSIM generates a synthetic database,
which depends on the accuracy of the model to predict yields and
N response.

Estimation of Site Mean Economic Optimum Nitrogen
Rate
Two methods were used to estimate the site mean EONR and
YEONR: (a) we first averaged individual annual estimates of
EONR and YEONR for each rotation, and then calculated the
associated standard deviation (SD; across years mean); and (b)
we averaged corn yields across years for each rotation and then
we estimated EONR and YEONR using regression equation
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fitting and EONR calculation, which is an approach used for
N recommendations (pooled mean, Sawyer et al., 2006). The
same methods were used for RTN-APSIM, except no regression
equation fitting was required.

Statistical Evaluation of Model Performance
To evaluate APSIM model goodness of fit, we used graphical and
statistical methods. For the statistical evaluation, we computed
the root mean square error (RMSE),

RMSE =

√∑n
i=1(Si−Oi)2

n
(4)

and RRMSE,

RRMSE =
RMSE

Ō
× 100 (5)

where Ō is the mean observed value, Si is the model estimated
value, Oi is the observed value, and n is the number of data
pairs. The RMSE summarizes the average difference between
observed and predicted values, while RRMSE provides the
relative difference. In both cases, the lower the value of the index
the better the model performance. In this study, we considered
RRMSE ≤ 15% as “good” agreement; 15–30% as “moderate”
agreement; and≥ 30% as “poor” agreement (Liu et al., 2013; Yang
et al., 2014).

Factors Affecting Optimal Nitrogen Rate Inter-Annual
Variability
Regression analysis was performed to identify statistical
significant relationships between simulated EONR and
explanatory factors. We considered three explanatory factors:
yield at optimum N rate, time of N application rate relative to
corn planting date, and precipitation sums over different time
periods. We used R2 to evaluate predictability of optimum N rate
based on the factors mentioned above.

RESULTS

Observed Corn and Soybean Yield
Response to N Fertilizer, and Crop
Rotation
Observed corn yield varied across years, N rates, and crop
sequences (Figures 1 and 2). Yearly variability CC, corn yield
averages across years ranged from 4.2 (N0) to 11.6 (N268) Mg
ha−1 with a maximum yield response to N (difference between
N0 and N268 treatment) of 7.6 Mg ha−1 (Figure 3). In SC,
corn yield averages were greater for all N treatments compared
to CC, and varied from 7.8 (N0) to 12.9 (N268) Mg ha−1 with
a maximum yield response to N of 5.1 Mg ha−1. At N0, for
individual years the largest yield difference between CC and SC
was 3.6 Mg ha−1. Greater yearly variability in corn yield was
observed in CC (coefficient of variation, CV = 17.8%) than in
SC (CV = 12.9%). The CV decreased with increasing N rate in
CC (from 24.8 to 15.4%), but was consistent across N rate in SC.
Across rotations, high corn yields under non-limited N condition

were obtained in wet years (precipitation above 1100 mm, e.g.,
2008 and 2010; Figures 1–3) and low corn yields in dry years
(precipitation below 600 mm precipitation, e.g., 2000, 2012, and
2013). Observed soybean yields varied from 2.1 to 4.8 Mg ha−1

across years and N rates (Figure 4; Supplementary Figure S2).
The yearly variability in soybean yield had a CV of 19.5%.
Soybean yields were not affected by N rates applied to corn
(Figure 3; Supplementary Figure S2).

Model Accuracy before and after
Calibration
Simulation of Corn Yields
Overall, across years, N rates and crop sequences, APSIM
explained from 50–69% (before calibration) to 67–88%
(after calibration) of the observed variability in corn yield
(Figure 3). The model agreement improved during calibration
from moderate (RRMSE = 19.6%, uncalibrated) to good
(RRMSE = 12.3%, calibrated) for corn yield prediction
(Figure 3). In CC, the uncalibrated model simulated corn yield
response to N well in 7 years (RRMSE < 15%), moderately well in
6 years (RRMSE 15–30%), and poorly in 3 years (RRMSE > 30%);
while after calibration the model simulated yields well in 14 years
and moderately well in 3 years (Figure 1). In SC, the uncalibrated
model simulated corn yield response to N well in 10 years,
moderately well in 3 years, and poorly in 2 years; while after
calibration the model simulated yields well in 11 years and poorly
in 4 years (Figure 2). In general the calibrated model captured
the trends in the observed variability in corn yields across years
(Supplementary Figure S4A) as well as the annual yield response
to N rates (Figures 1 and 2).

Simulation of Soybean Yields
Given that the simulation setup was sequential and soybean
was part of the CS rotation, the ability of APSIM in simulating
soybean yields was also tested. The model simulated no response
to N rate applied to the previous corn crop, which agrees with the
observed data (Figure 4; for individual years see Supplementary
Figure S3). The agreement in simulated soybean yields was
moderate before and after calibration (calibrated RRMSE= 19%;
Figure 3).

Simulation of Optimum N Rate and
Methods Comparison
Site Mean Optimum N Rate
The calibration process improved the prediction of the site
mean EONR in the SC but not in CC (Table 1; Figure 3). The
simulated EONR (both calibrated and uncalibrated versions) was
overestimated in CC and underestimated in SC (Table 1). The
absolute difference in site mean EONR between simulated and
observed values was smaller in SC; −39 and 18 kg N ha−1 for
CC and SC, respectively, before calibration and −41 and 10 kg
N ha−1 for CC and SC, respectively, after calibration (Table 1).
In addition, the simulated EONR SD was high with the APSIM-
Unc, largely due to mis-estimation of some years as non-N
responsive.
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FIGURE 1 | Corn yield response to N fertilizer for the continuous corn (CC) cropping system. The blue points with standard errors (n = 4) indicate the
observations. The gray and red points are Agricultural Production Systems sIMulator (APSIM) simulations before and after calibration, respectively. Continuous lines
are regression fits from Eqs. 1–3. When lines are not shown it means that Eqs. 1–3 did not converge. Relative root mean square error for both calibrated (RRMSE)
and uncalibrated model (RRMSE_un) are shown for each year.
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FIGURE 2 | Corn yield response to N fertilizer for the soybean-corn (SC) cropping system. The blue points with standard errors (n = 4) indicate the
observations. The gray, red, and green points indicate uncalibrated, calibrated and validated simulations from the Agricultural Production Systems sIMulator (APSIM)
model. Continuous lines are regression fits from Eqs. 1–3. When lines are not shown it means that Eqs. 1–3 did not converge. Relative root mean square error for
both calibrated (RRMSE) and uncalibrated model (RRMSE_un) are shown for each year.
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FIGURE 3 | Sixteen year mean crop yield response to N fertilizer rate (A, D, and G panels), and observed versus simulated crop yields across years and N
rate (B, C, E, F, H, and I). Points are observations or simulations, continuous lines are regression fits from Eqs. 1–3, and broken lines show 1:1 relationship.

Annual Optimum N Rate
The calculated EONR-Obs (from observations) was highly
variable from year to year and ranged from 123 to 268 kg N ha−1

in CC and from 42 to 241 kg N ha−1 in SC (Figure 4). The inter-
annual variability in EONR-Obs was greater in SC than in CC
(CV of 32 vs. 22%, respectively).

The calculated EONR from the APSIM model followed some
of the observed annual trends (Figure 4), with the prediction
error to be larger in SC than CC (Supplementary Figure S7).
In CC, the RMSE ranged from 63 kg N ha−1 before calibration
to 56 kg N ha−1 after calibration. In SC, the RMSE ranged
from 83 kg N ha−1 before calibration to 68 kg N ha−1 after
calibration. Interestingly, the two methods of calculating EONR
from modeled yields (via regression Eqs. 1–3 or via the RTN

approach) had similar RMSE and RRMSE values across years, but
the annual predictions of optimum N using the RTN approach
were less variable across years (Figure 4). These results show
that for year-to-year simulation of EONR, the calibrated version
should be used either via Eqs. 1–3 with regression analysis or
the RTN approach. Overall the calibration process reduced the
RRMSE in annual EONR predictions by 14.2% in CC and 10.3%
in SC (Supplementary Figure S8).

The calculated yearly YEONR-Obs (from observation) was
less variable compared to the EONR variability (CV of 17 and
12% for CC and SC, respectively, Figure 4). The simulated
YEONR followed the observed annual trends well (Figure 4;
RMSE of 1.88 Mg ha−1 before calibration and 1.41 Mg ha−1 after
calibration). The model simulated YEONR was more accurate
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FIGURE 4 | Economic optimum N rate (EONR) and corn yield at the EONR (YEONR) for every year in CC and SC. The EONR and YEONR estimates from
observations using Eqs. 1-3 are shown as bars. Different color symbols show Agricultural Production Systems sIMulator (APSIM) model simulations: red points
calibrated model, gray points uncalibrated model, and green points return to N approach (RTN) from the calibrated model.

than EONR. In relative terms, the error in YEONR prediction
was about four times lower than the error in EONR prediction
(Supplementary Figures S6 and S7). However, there was no
correlation between these errors (Supplementary Figure S6).

Use of the RTN approach to compute the optimum N rate, and
compared to the simulated calibrated values (Table 1), produced
a closer EONR in CC to the observed EONR (−8 kg N ha−1),
but a greater difference in SC (18 kg N ha−1). Unlike the APSIM-
Cal and APSIM-Unc simulations, the RTN-APSIM did not over-
estimate EONR in CC, but underestimated in SC (Table 1).

Factors Causing Yearly Variability in
Optimal Nitrogen Rate
The YEONR-Obs (Supplementary Figure S5), precipitation
(Figure 5), and the time of N application (Supplementary Figure
S8) were explored as possible factors to explain inter-annual
variability in EONR. There was a significant positive relationship
between spring precipitation and EONR-Obs but the relationship
had low predictive power (p < 0.05; R2

= 0.27–0.45; Figure 5).
Spring precipitation, defined here as precipitation accumulated
from April 1 to June 31, was selected from among many other
precipitation intervals explored in this study as the best predictor

of inter-annual EONR variability (Supplementary Figure S8).
The YEONR, time of N rate application, the July precipitation
(15 days window around corn silking), and combinations of
those factors (including spring precipitation) via multi-factor
regression modeling did not result in any significant correlation.

The calibrated APSIM version showed a similar relationship
between EONR and spring precipitation as with EONR-Obs
(Figure 5) and therefore the model was used to provide insights
into factors causing this relationship. Soil net N mineralization
(simulated N supply), and the sum of denitrification and N
leaching below 1 m depth (simulated N loss) were used as
explanatory variables. The model indicated that the relationship
between EONR and spring precipitation was primarily caused
by an exponential increase in simulated N loss and to
some extent by a reduction in simulated N supply with
increasing spring precipitation (Figure 5). The model also
showed that the rate of the simulated N supply reduction
with increased precipitation was similar between rotations.
Furthermore model analysis showed that the level of simulated
N supply was 50% higher in SC than CC, which explains the
lower EONR values typically found in SC systems (Table 1;
Figure 3).
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TABLE 1 | Mean economic optimum N rate (EONR, kg N ha−1) across 16-years for: observed, Obs; un-calibrated Agricultural Production Systems
sIMulator (APSIM) model, Unc; calibrated model, Cal; and the return to N approach from the calibrated model, RTN.

Obs Unc Cal RTN Obs-Unc Obs-Cal Obs-RTN

Rotation Mean values Differences

Average of years ± SD1 CC 188 ± 42 190 ± 82 225 ± 33 176 ± 21 −2 −37 12

SC 149 ± 48 99 ± 71 137 ± 43 118 ± 30 50 12 31

Pooled2 CC 187 226 228 195 −39 −41 −8

SC 158 140 147 140 18 10 18

Absolute differences between EONR-Obs and simulations are also shown. Continuous corn, CC and soybean-corn rotation, SC.
1 Individual annual optimum N rate estimates were averaged across 16-years and the standard deviation (SD) calculated.
2 Individual annual corn yield values were first averaged across years and then the optimum N rates estimated.

TABLE 2 | Statistical evaluation of the uncalibrated and calibrated APSIM model performance in simulating corn and soybean yields by N rate across
16-years.

Uncalibrated Calibrated/Validated

Corn Soybean Corn Soybean

N rate CC SC SC_val1 SC SC_val CC SC SC_val1 SC SC_val

RMSE (kg ha−1)

0 1412 946 1365 631 1337 1283 920 1829 560 789

67 1255 806 1996 689 1275 1284 718 1892 663 619

134 1627 1324 2269 672 1264 1085 1466 1259 662 599

201 1870 1586 2528 726 1320 1084 1365 1367 783 716

268 1806 1611 2353 723 1288 946 1387 1452 884 608

Mean 1611 1287 2019 689 1297 1136 1171 1560 722 666

RRMSE (%)

0 39.4 14.7 20.0 21.5 43.5 30.8 12.2 22.9 16.6 22.2

67 17.8 8.8 20.7 23.4 41.1 15.7 6.6 16.9 19.5 17.3

134 18.0 13.3 20.8 22.9 40.9 10.2 15.6 9.9 19.5 16.8

201 19.6 15.2 22.4 25 41.1 9.7 11.2 10.4 23.4 19.3

268 18.2 15.4 20.6 24.8 39.7 8.1 12.3 10.9 26.4 16.3

Mean 20.6 14.4 20.3 23.5 41.3 14.9 11.6 14.2 21.1 18.3

1 Dataset used for model validation.
Root mean square error, RRMSE; relative root mean square error, RRMSE; continuous corn, CC; corn and soybean phases over the corn-soybean rotation (SC), part of
the SC phase-years used for validation (SC_val).

DISCUSSION

Calibration Strategy and Steps
Evaluating a model against long-term data is critical when
the model is to be used for N management. This is because
processes such as N mineralization, require several years
to be sufficiently evaluated (Jenkinson et al., 1994; Leigh
et al., 1994; Körschens, 2006) and can differentially affect
N response among years. Our study is among a few in
the literature that tests a process-based model in the long-
term (Ma et al., 2007). The long-term data were powerful
in detecting weakness in the model, but did not provide
guidance on which of the model’s processes or parameters needed
to be improved (Kersebaum et al., 2015). Therefore, during
calibration we aimed to improve the overall representation
of the system based on previous knowledge of the site (for
example, C:N ratio of soybean and corn residue, phenology,

etc.) rather than just optimizing cultivar parameters by year
to better fit the observed data within the study range. This
strategy is robust and allows the calibrated model to be used
outside the study period (future years) with confidence at this
site.

During calibration we implemented the alternate soil water
(SWIM) and temperature (soiltemp) models available in the
framework, and changed parameters influencing soybean residue
C:N ratio (Table 2; Figure 3). Among changes made in
the model, the activation of fluctuating water table via the
SWIM soil water model was found to be the most important
(e.g., see improvements in yield prediction from 2012 drought
in Figures 2 and 3). Yet, few models have this capability,
despite the great importance of water table depth on water
balance, N dynamics, and crop growth (Kalita and Kanwar,
1992; Varvel et al., 1997; Hefting et al., 2004; Kahlown
et al., 2005; Nosetto et al., 2009; Portela et al., 2009).
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FIGURE 5 | Cumulative spring precipitation from April 1st to June 30th (every year) versus economic optimum N rate (observed and simulated EONR,
circles and squares, respectively; top panels), simulated spring soil N supply (from soil organic carbon mineralization; middle panels), and simulated
spring N loss (denitrification and leaching; lower panels) for CC and SC crop sequences.

Simulations of the groundwater table depth (Supplementary
Figure S2I) were reasonable judging measurements in nearby
sites (Hatfield et al., 1999; Helmers et al., 2012; Archontoulis et al.,
2016).

The simulated soybean residue C:N ratio was initially low
(∼20, Supplementary Figure S2) compared to literature values
(25–40; Al-Kaisi et al., 2005; Bichel, 2013; Li et al., 2013).
The low C:N ratio occurred mainly because APSIM supplies
enough N through fixation to ensure non-N limiting soybean
growth, and thus no response of soybean yield to prior-year N
application to corn (potential residual inorganic-N (Figure 4;
Supplementary Figure S2). This effect resulted in simulated
luxurious N uptake in plant tissues and therefore low C:N

ratio of the soybean residue. After calibration, the soybean
residue C:N ratio increased to reasonable values (around 30;
Supplementary Figure S2D), the simulation of the annual N
fixation decreased to realistic estimates (around 180 kg N
ha−1 year−1, Salvagiotti et al., 2008; Christianson et al., 2012),
while the model maintained good performance in terms of N
fixation and yield response to prior-year corn N fertilization
(Figure 4; Supplementary Figures S2G and S3). We believe
these changes improve the representation of N fixation (Chen
et al., 2016) and soybean residue in the model. However,
more experimental work is needed to verify these changes
and improve the simulation of soybean rotation effects in
APSIM.
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APSIM Performance in Simulating Yields
before and after Calibration
This study quantified accuracy of both calibrated and
uncalibrated versions in order to show the degree of
improvement possible with the use of long-term data. The ability
of a model to predict crop yield in any environment depends on
the given inputs (soil, weather, and management), how well the
model structure represents reality, and the model parameters. To
evaluate and test APSIM model performance, we used a system
approach that explicitly considered available experimental
data (corn and soybean yield, and SOC measurements) and
also using literature information to evaluate additional model
processes such as N fixation, root/shoot ratio, N concentrations,
phenology, and others (Supplementary Figures S3 and S4).
Interestingly, the model simulated long-term SOC change
equally before and after calibration (RRMSE < 5%). The
reason is likely that for modeling SOC, the cumulative carbon
input change over time is most important (e.g., Luo et al.,
2011). Annual over- and under-prediction of yields and
corresponding carbon input are compensated over time if the
long-term site mean yield prediction is similar before and after
calibration.

The fact that APSIM simulated well yields and crop yield
response to N (Figures 1–3), provided strong evidence that
important soil and crop processes were being accounted for in
the model. Otherwise, the model would consistently produce
large under- or over-estimated yields values, resulting in
different patterns across time compared to the observations
(Supplementary Figure S4A). It is important to note the good
simulation of grain yield with no N fertilizer input across the
16-years (Supplementary Figure S4A), which provides evidence
that soil N supply and N uptake were well simulated by the
model. Furthermore, the model simulated greater net soil N
mineralization in the SC rotation than in CC, which is in
line with literature reports (Bundy et al., 1993; Schoessow
et al., 2010). Difference in net soil N mineralization (caused
by residue amount and C:N ratio) was the main cause of
EONR difference between CC and SC as the simulated N
loss was found to be about the same in both rotations
(Figure 5).

As expected, APSIM performance in simulating crop
yields improved after calibration: RRMSE decreased from
15–30% to below 15%; Figure 3; Table 2). These performance
evaluation results for crop yields are comparable to those
reported in the literature for other models (Ahmed et al.,
2007; Thorp et al., 2008; Liu et al., 2011; Yang et al.,
2014). For a fair judgment of model performance, we
should also mention the following assumptions, and those
unknowns that may have an impact on model results: (a)
we used a fixed cultivar focused on representing well the
phenology across the 16-years (Supplementary Figure S2);
however, different cultivars were used in the experiment
(Supplementary Table S1) and some probably had different
physiological characteristics; (b) there were unknowns in
plant population at harvest, tillage date, and depth; (c) there
was likely to be abiotic stresses in some years, hail storm

damage (2013, Figure 2), and lodging issues (2002 and
2004 in CC, Figure 1) that were not considered within the
model.

Corn yield predictability with calibrated APSIM (in particular
for CC) increased at high N rates in particular for CC (see
RMSE, Table 2). This occurred mainly because at high N rates the
model has to account for only water limitations to crop growth,
while at low N rates both water and N (and their interactions)
become limiting factors to crop growth. This is also in accordance
with published results from other crop models (Timsina and
Humphreys, 2006; Liu et al., 2011; Yang et al., 2013; Li et al.,
2015a,b).

Modeling Optimal Nitrogen Rate
Simulating EONR was more sensitive and complex, and had more
associated uncertainty, than simulating yields (Supplementary
Figures S6 and S7). This occurred because identification of the
optimum N rate and associated yield in the yield-N response
relationship – were quite dependent on the small incremental
change (slope) in yield as N rate approached the maximum
response. Over- or under-estimation of simulated yields around
the optimum N rate resulted in deviations in model-derived
EONR values (Eqs. 1–3). For example, in year 2002 the RRMSE
for CC yield predictions by the calibrated model across N
rates was 8.6% (Figure 1). This variation resulted in a 50%
RRMSE in EONR prediction and in a 9.3% RRMSE in YEONR
prediction. The difficulty in accurately predicting EONR from
five simulated yield points is no different than uncertainties
associated with the selection of regression equations to describe
yield response to N with observed yields, and thus can affect
APSIM estimation of the agronomic and economic optimum
N rate (Waugh et al., 1973; Cerrato and Blackmer, 1990;
Kyveryga, 2005; Scharf et al., 2005; Hernandez and Mulla,
2008).

However, the RTN-APSIM technique that did not use
regression fitted equations had similar RMSE and RRMSE values
as with EONR-APSIM-Cal, and was in close agreement with
the across years mean (pooled) EONR-Obs (Table 1). A main
difference between the two techniques was that the RTN-APSIM
was less variable from year to year, especially for CC (Figure 4).
The lower inter-annual variability in optimum N estimates
from the RTN-APSIM method could be attributed to the N
rate increments used in the calculations (5 kg vs. 67 kg N
increments) and computation method differences, which can
affect the identification of the optimum N point in yield response
to N rate (Bachmaier, 2012). We concluded that the differences
between simulated and observed annual optimum N rate values
(Supplementary Figure S7) are due to over- and under-estimates
of corn yields, especially surrounding the N rate inflection point,
and to a smaller extent, due to the sensitivity of Eqs. 1–3 used to
estimate EONR.

The 16-year mean differences in EONRs, especially for RTN-
APSIM (Table 1), which could be called estimated errors, are
acceptable within historical and current N rate ranges (46–56 kg
N ha−1; ± 23–28 kg N ha−1) suggested for corn (Voss and
Shrader, 1979; Sawyer et al., 2006) that includes uncertainty in
estimation of optimal N (note that the range also depends on the
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fertilizer: corn price ratio). This means that the APSIM model
can be used as a tool to assist optimum N rate recommendations
in this USA region.

An important question is how the model can be used to
add value within existing N rate guidelines. The main problem
with EONR estimation is that the determination is made after
crop harvest when yields are known. However, rate guidance is
needed before N application in the fall or spring before and after
planting. Thus farmers and crop advisers use guidelines based
on extensive numbers of N rate research trials (MRTN; Sawyer
et al., 2006). This makes the estimation of the site mean EONR
very important in this study, given also that a large portion of
Midwestern farmers apply N before crop planting. The APSIM
model can assist N rate decisions via the following pathways.
First, if the objective of long-term experiments is to derive site
mean EONR recommendations, then the model can assist in this
task (Figure 3). Given that the calibration processes improved
more the yearly EONR prediction (14.2 and 10.3% reduction
in the RRMSE for CC and SC, respectively, see Supplementary
Figure S7) than site mean EONR prediction (no improvement
for CC and 5% reduction in the RRMSE for SC rotation using
the pooled mean), this study provides an encouraging result for
model usability if only minimum site-information is available.

Second, APSIM has the potential to predict in real-time soil
nitrate dynamics within the soil profile and this information
could be used to adjust early-to-mid season N application
rates (Archontoulis et al., 2016). This approach is currently
being used by commercial companies. Third, since APSIM can
predict grain yields early in the season using a range of possible
weather conditions (actual, historical, future; Archontoulis et al.,
2016), it could also predict needed N rates based on yield
predictions as it is currently being applied in Australia as
decision-support tool (Yield Prophet; Carberry et al., 2009).
Nitrogen rate accuracy from yield prediction would be highly
dependent on model yield predictability, and needs to be
confirmed with an additional study. The value added by models
and the accuracy in predicting needed N rates will always
be greater when models are supported by local experimental
data to periodically check performance and allow updates in
the model algorithms or parameters to deal with new genetics
and changes in soil and weather over time (Ahuja et al.,
2014).

Causes of Optimal Nitrogen Rate
Variability
In addition to predictability, deeper understanding of the
factors causing EONR inter-annual variability is important for
optimizing agronomic, economic, and environmental outcomes.
Among three factors explored with data available for this
study (time of N application, optimum yield, and precipitation
periods), the cumulative May to June (spring) precipitation
explained yearly EONR variability (Figure 5). However, the
relatively low predictability of this relationship might be due to
other confounding factors such as time of N application and
planting date, which were not constant over the 16-year period
in this study. The relationship between spring precipitation and

EONR found in this study agreed with other studies conducted in
rainfed environments (Vanotti and Bundy, 1994; Piekielek et al.,
1995; Kachanoski et al., 1996; Bundy, 2000; Lory and Scharf,
2003; Sawyer et al., 2006; Scharf et al., 2006), but not with studies
conducted in irrigated regions where yield level (optimum yield)
was the main driver for the inter-annual variability in EONR
(Dobermann et al., 2003; Gehl et al., 2005). Interestingly, the July
precipitation which reflects the ± 15 day period around corn
silking (see APSIM diagnostics Supplementary Figure S2) was not
correlated with EONR yearly variability (R2 < 0.25, p < 0.05;
Supplementary Figure S9) despite the great importance of this
period for kernel number determination and corn grain yields
(Edmeades et al., 2000; Andrade et al., 2002; Calviño et al.,
2003). This would be attributed to high soil moisture capacity of
the soil and shallow groundwater tables in this region that can
compensate for period of water stress and also due to the fact that
corn takes up about 70% of its total N uptake by silking (Ciampitti
and Vyn, 2012; Woli et al., 2016).

Variability in EONR and its relationship with spring
precipitation in the US Midwest has typically been associated
in previous research with an increase in N loss with high
spring precipitation but previous studies lacked comprehensive
measurements (Meisinger, 1984; Eghball and Varvel, 1997; Kay
et al., 2006; Lawlor et al., 2008). The APSIM model analysis
explicitly quantified the shape and magnitude of N loss per mm
of precipitation and indicated that the shape of the relationship is
similar in CC and SC systems (Figure 5).

The ability of APSIM and other mechanistic process-based
models to simulate and explain the effect of precipitation on
simulated N loss and supply, and thus, the impact on N response
(Figure 5) becomes even more relevant with future climate
change scenarios. For the US Midwest several studies have
predicted higher frequency of both drought and flood events
(Schoof et al., 2010; Kunkel et al., 2013; Dai et al., 2015). In this
context, long-term simulations with different weather allow to
capture the ranges of yield responses to N rates and choose the
optimal rate that more frequently provides the best outcomes
in terms of higher yield and lower nitrate leaching (Basso et al.,
2016). Furthermore, the APSIM model can generate predictions
across different weather scenarios that could be used to inform
potential need for changes in future N management decisions.

CONCLUSION

Model analysis of a 16-year field-experiment dataset that included
crop yields and SOC values with five N fertilizer rates and two
crop sequences revealed the following main findings:

(1) The fact that APSIM simulated well crop yields and crop
yield response to N rate, provided strong evidence that
important soil and crop processes were being accounted for
in the model;

(2) Model calibration (implementation of SWIM soil water
model with activation of soil water table, use of soil
temperature 2 model, and improvements in soybean
residue C:N ratio) reduced the simulation error (RRMSE)
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in crop yield prediction by 9% and the annual EONR
prediction by 12%. We also found that SOC prediction was
insensitive to calibration when long-term mean crop yield
was simulated well;

(3) The optimum N rate was higher for CC than SC and
according to the model analysis this is associated with
higher SOC net mineralization in the SC rotation.

(4) Simulation of EONR was more sensitive and complex than
simulating crop yield. Results suggest that for long-term
site mean EONR predictions both versions (calibrated and
uncalibrated) can be used, while for accurate year-by-
year simulation of EONR the calibrated version should
be used. Use of the RTN-APSIM approach (small N
rate increment with no regression fit) for optimal rate
estimation had similar performance compared to EONR-
APSIM-Cal approach (five N rate-points and regression
fit). A main difference in optimal N rate estimation
between the two techniques was that the RTN-APSIM
output was less variable from year to year.

(5) Five potential applications were identified where the
model could assist N management: (a) estimation of
long-term mean EONR; (b) simulation of N dynamics
(soil N available and crop N demand); (c) prediction of
optimal N using a range of possible weather conditions;
(d) simulation of climate change impact on optimal N
need;

(6) The APSIM model can be used to explore and explain
factors causing inter-annual variability in EONR. For
example, the model showed that in rainfed corn-based
systems in Iowa, the higher the spring precipitation (April
to June) the higher the EONR because simulated N loss via
denitrification and leaching increased exponentially while
simulated N supply via mineralization tended to decrease.

Finally, for rainfed corn-based systems in the USA Midwest,
a combination of process-based modeling, coupled with existing
N rate recommendation methods and field data, may be the best

approach to fine tune optimal N rate guidance for corn and
to develop future management-based strategies under climate
change scenarios for maximizing agronomic, economic, and
environmental outcomes.
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