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Using DNA to Identify the Source of Invasive Mongooses,
Herpestes auropunctatus (Carnivora: Herpestidae)

Captured on Kaua‘i, Hawaiian Islands1

Darren J. Wostenberg,2 Matthew W. Hopken,2,3 Aaron B. Shiels,2
and Antoinette J. Piaggio2,4

Abstract: Two small Indian mongooses (Herpestes auropunctatus) were live-
captured in 2012 at separate locations on theHawaiian Island of Kaua‘i, whichwas
previously considered to be free of this invasive species. Genotypes from these two
individuals were compared to genotypes of H. auropunctatus from the islands of
Hawai‘i (n = 39), O‘ahu (n = 91), Maui (n = 39), andMoloka‘i (n = 19) to determine
the island of origin of the Kaua‘i individuals. Genotypes were generated from each
individual using five microsatellite loci. Genetic clustering was estimated by
Bayesian inference of spatial clustering of individuals and clustering of groups of
individuals. Both analyses separated the samples into three distinct genetic clusters
(K = 3).Kaua‘i individuals consistently formeda single clusterwith individuals from
O‘ahu, whereas Hawai‘i and Maui formed a second cluster, and Moloka‘i was the
third cluster.Thus,we conclude that the origin of twoH. auropunctatus capturedon
Kaua‘i was O‘ahu. All three genetic clusters showed evidence of transportation of
mongooses between islands, indicating that sampled islands in the archipelago are
capable of acting as both donors and receivers of mongooses.

Keywords: biosecurity, Hawaiian Islands, introduced predator, microsatellite

THE SMALL INDIAN MONGOOSE, Herpestes
auropunctatus (HODGSON 1836), is an invasive
predator in the Hawaiian Islands (Veron et al.
2007, Gilchrist et al. 2009, Bennett et al. 2011,
Berentsenetal. 2017).A total of287mongooses
were introduced to the Hawaiian Islands from
Jamaica in1883–1885(Bryan1938,Thulinetal.

2006), and later an unknown number of
mongooses from theWest Indies were released
(Lever1985,Thulinetal.2006).Whilenativeto
Central Asia, this species was introduced to the
Hawaiian Islands to control rodent populations
in sugarcane fields (Bryan 1938). However, this
species was ineffective for rodent biocontrol at
the landscape scale, and it quickly became an
established threat to native avifauna and inver-
tebrates (Baldwin et al. 1952, Case and Bolger
1991, Hays and Conant 2007). Plantation
owners on Kaua‘i, Lāna‘i, and Ni‘ihau refused
to accept the importation of mongooses
(Baldwin et al. 1952). Established mongoose
populations are currently found onmany of the
Hawaiian Islands, except Kaua‘i and Lāna‘i in
the main Hawaiian Islands and several other
smaller islands.

In 2012, two individuals were sighted and
subsequently trapped near the main port in
Lihue, Kaua‘i. With these two individuals
captured and euthanized, managers currently
believe there is no breeding population of
mongoose on Kaua‘i. Identifying the source
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population of these two individuals could
allow managers to improve biosecurity plans
to stem the tide of invasion before a breeding
population is established on a mongoose-
free island. The goal of this study was to use
microsatellite DNA from mongoose tissue
sampled across the Hawaiian Islands, along
with population genetic analyses, to identify
the source population of the mongoose
individuals captured on Kaua‘i. While our
study demonstrates how molecular analyses
may be used to improve biosecurity practices,
we expect the information gained here will
also aid efforts to protect natural resources on
Kaua‘i from mongoose depredation.

MATERIALS AND METHODS

Sample Collection and Tissue Analyses

Two individual mongooses were captured on
opposite sides of Nāwiliwili Harbor, Līhu‘e,
Kaua‘i in 2012. The first individual was an

adult male that was live captured on 23 May
2012 at Kaua‘i Lagoons. The second indivi-
dual was a juvenile female that was live
captured on 29 June 2012 at Young Brothers
shipping dock, which is approximately 2.0 km
from the location of the first captured
individual (P. Reese, unpublished data). The
collection of tissue samples across the Hawai-
ian Islands included collaboration among
several agencies (see acknowledgments). In
addition to the two individuals captured on
Kaua‘i, 188 mongooses were collected from
four other islands (Hawai‘i = 39; Maui = 39;
Moloka‘i = 19; O‘ahu = 91). We attempted to
obtain individuals from multiple sites across
each island so that we could account for
potentialpopulationstructure (Figure1).Other
than the two whole bodies that we obtained
from Kaua‘i, the remaining mongooses had
approximately 4mm� 6mm sections of ear
tissue removedwith a razorblade sterilizedwith
ethanol and stored in 2.0mL microcentrifuge
tubes containing a DET buffer in a 1:4 volume

FIGURE 1. Sample locations of small Indian mongooses (Herpestes auropunctatus) collected fromHawaiian Islands, USA.
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sample tosolutionratio (Seutinetal. 1991).The
samples were sent to USDA APHIS Wildlife
Services National Wildlife Research Center in
Fort Collins, Colorado, for laboratory and
statistical analyses.

DNA Extraction and Amplification

Genomic DNA was extracted from tissue
samples using the DNeasy Blood and Tissue
Kit, automated on aQIAcube (Qiagen,Hilden,
Germany)with theAnimalTissues andRodent
Tails protocol with default settings, and then
storedat�20.0 °C.Weusedprimersdeveloped
to amplify five microsatellite loci from small
Indian mongoose (Thulin et al. 2002). PCR
reactions were performed using the Multiplex
PCR Kit (Qiagen) and primer concentrations
of 10.0mM in two 19.0mLmultiplex reactions
(Table 1). PCR cycling conditions were as
follows: initial denaturation at 95 °C for 15
min, 20 cycles of 94 °C for 30 s, touchdown
annealing temperature decreasing 0.5 °C per
cycle for 90 s (panel A Ta = 60–50 °C, panel B
Ta = 55–45 °C), and extension at 72 °C for 45 s,
followed by five cycles of 94 °C for 30 s,
annealing temperature for 90 s (panel A Ta =
50 °C, panel B Ta = 45 °C), and extension at
72 °C for 45 s (Table 1). We used a final
extension of 60 °C for 30min. PCR products
were added to a mixture of HiDi Formamide
(LifeTechnologies,Carlsbad,California,USA)

and GeneScan 400HD ROX Size Standard
(LifeTechnologies).All lociwere runonanABI
3130 or 3500 Genetic Analyzers (Life Tech-
nologies) following standard protocols. Alleles
were binned and scoringwasmanually checked
using GeneMapper v.5.0 (Life Technologies).
Complete scored genotypes for each individual
were exported to GMconvert v.0.32 (Faircloth
2006) to generate Genepop input files.

DNA Data Analysis

Microsatellite genotypes were checked for the
presence of null alleles and genotyping errors
using Micro-Checker (Van Oosterhout et al.
2004). Assumptions of Hardy-Weinberg
Equilibrium (HWE) and linkage disequilibria
(LD) were tested using Arlequin v.3.5.2.2
(Excoffier and Lischer 2010). The signifi-
cance of the tests were assessed at P = .05,
which was Bonferroni corrected for multiple
comparisons (Rice 1989). Total number of
alleles (NA) and number of private alleles
(alleles found only on one island, APR) per
locus by island were compiled by Convert
v.1.31 (Glaubitz 2004; Table 2).

The microsatellite data were analyzed
using a Bayesian clustering program BAPS
v.6.0 (Corander et al. 2006, Corander et al.
2008a), to identify the source population for
the Kaua‘i individuals. This approach tests a
range of defined number of genetic clusters

TABLE 1

Microsatellite Multiplex Panels Used in this Study Based on Loci Developed for the Small Indian Mongoose
(Herpestes auropunctatus) (Thulin et al. 2002)

Panel Locus Primer Sequence (50–30)
F, forward; R, reverse

Dye Ta (°C) n Size Range
(bp)

NA HO HE

A Hj15 F: CAGGGCTGAGACAATATCCACTA NED 50 190 231–239 2 0.42 0.47
R: GTAACCGCCTTTTTCTTTCCTCTG

Hj34 F: TACAGGCAGTTAGAAGTCACATTT FAM 50 190 183–201 6 0.59 0.68
R: GAGTTCAAGCCCCACATCAGAG

Hj45 F: TCAATTTGCCGTCCTTTACA HEX 50 190 223–235 5 0.50 0.58
R: GGGCTTTTGGGTTACTTTTG

B Hj40 F: AATGGACAGAAAGTGGGAGGAATA HEX 45 190 235–245 4 0.37 0.50
R: ATCAGGCCACCAATCAGTCATC

Hj56 F: AGCCCCAAATCAGACTC NED 45 190 208–232 8 0.69 0.77
R: GAACTGGGCTGGAATCT

Ta, annealing temperature; n, number of samples;NA, number of alleles;HO, observed heterozygosity;HE, expected heterozygosity.
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(K) based on Bayesian posterior probabilities.
The highest posterior probability determines
the most likely number of genetic clusters
found within the genotypes provided. We
identified the origin of the Kaua‘i individuals
based on the cluster(s) they were assigned to.
We used capture locality (latitude and long-
itude coordinates of capture site) as an
informative prior probability distribution in
theBayesiananalysiswitheach individualbeing
considered iteratively for cluster membership
(spatial clustering of individuals; Corander
et al. 2008b, Cheng et al. 2013). The inclusion
of capture location information allowed the
spatial genetic structure to be depicted as amap
(Voronoi tessellation) of the genetic clusters
(Corander et al. 2008b). The uncertainty
associated with genetic cluster assignment
was calculated by one minus the posterior
probability of the cluster assignment and
graphed as a third axis applied to the previously
mentioned Voronoi tessellation (Corander
et al. 2008b).Wealso analyzed thedatawithout
precise capture locality but used an informative
prior probability that groups individuals by
capture island (n = 5) (clustering of groups of
individuals; Corander et al. 2006, Corander
et al. 2008a).Apreliminary runofK = 1–10with
10iterations foreachKwasusedtoapproximate
the value of K. After the preliminary run we
ran K = 1–5 with 20 iterations for each K to
confirm the value of K. Once we identified the
number of genetic clusters, we estimated
differentiation with pairwise FST through
10,000 permutations in Arlequin (Excoffier
and Lischer 2010).

RESULTS

Each microsatellite produced between two
and eight alleles across all samples (n = 190).
Each locus was polymorphic across all islands
sampled except Kaua‘i where two loci each
had a single allele due to the small sample size
(n = 2; Table 2). Alleles unique to a particular
island were observed in three of the five loci
tested on three of the five islands sampled.
The islands of Hawai‘i and Maui each had a
single private allele for a single locus (Hj56
and Hj34, respectively), while private alleles
were observed in three loci on O‘ahu (Hj34,
Hj45, and Hj56). After Bonferroni correc-
tions, there was no evidence of deviation
from HWE and no evidence of linkage
disequilibrium. The presence of null alleles
was detected at locus Hj34; however, we
included this locus in the analyses as it was
not expected to bias our estimates because it
occurred at a frequency of <0.20 (Dakin and
Avise 2004).

The genetic clustering analyses, based
on groups of individuals and precise geo-
graphic locality, identified three genetic
clusters (K = 3). The first cluster included
samples from Hawai‘i and Maui, the second
cluster included samples from Moloka‘i,
and the third cluster included samples from
O‘ahu and the two Kaua‘i samples (Figure 2).
There were five exceptions to this pattern; two
samples from Hawai‘i fell into the third
cluster, a single sample from Hawai‘i fell into
the second cluster, and a single O‘ahu and
single Moloka‘i sample grouped into the first

TABLE 2

Number of Samples (n), Number of Alleles (NA), and Number of Private Alleles (APR) for Each Locus Tested in the
Small Indian Mongoose (Herpestes auropunctatus) Summarized by Island in Hawai‘i, USA

Locus Hawai‘i Maui Moloka‘i O‘ahu Kaua‘i Total

n NA APR n NA APR n NA APR n NA APR n NA APR n NA APR

Hj15 39 2 – 39 2 – 19 2 – 91 2 – 2 1 – 190 2 –

Hj34 39 4 – 39 5 1 19 3 – 91 4 1 2 2 – 190 6 2
Hj40 39 4 – 39 3 – 19 2 – 91 3 – 2 2 – 190 4 –

Hj45 39 4 – 39 4 – 19 2 – 91 5 1 2 1 – 190 5 1
Hj56 39 7 1 39 5 – 19 4 – 91 4 1 2 3 – 190 8 2
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cluster (Figure 2). The local uncertainty of
assigning a sample to a genetic cluster ranged
from 0.0 to 0.52 (Figure 3).

Pairwise comparisons of FST between
genetic clusters ranged from 0.112 to 0.195.
Among pairwise comparisons, the smallest

FST value was between the Hawai‘i/Maui
cluster and O‘ahu cluster (0.112, P < .001),
then the Hawai‘i/Maui cluster and Moloka‘i
cluster (0.191, P < .001), and the largest FST
value was between the O‘ahu cluster and the
Moloka‘i cluster (0.195, P < .001).

FIGURE 2. Voronoi tessellation depicting spatial structure of the observed genetic clusters (K = 3) of small Indian
mongoose (Herpestes auropunctatus) samples collected fromHawaiian Islands, USA. Each cell within an island represents
a sample collected in this study. The shape and size of each cell is based on the proximity of each sample to surrounding
samples. Insets amplify detail of indicated areas. The color of each cell identifies which genetic cluster the sample is
assigned to. TheO‘ahu genetic cluster is predominantly shaded red (including the two samples fromKaua‘i in the upper
left portion of the figure), the Moloka‘i genetic cluster is predominantly shaded gray, and the Hawai‘i/Maui genetic
cluster is predominantly shaded yellow.
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DISCUSSION

The goal of our studywas to identify the source
of two invasive mongooses captured on Kaua‘i
in 2012. We detected genetic structure within
the dataset from only five microsatellite loci to
identify a total of three genetic clusters across
theHawaiian Islands: (1)Hawai‘i andMaui, (2)
O‘ahu, and (3) Moloka‘i. Our analyses of
genetic clustering among individual genotypes
demonstrated a close genetic association
between theKaua‘i andO‘ahu samples. There-
fore it is likely that the twomongooses captured
on Kaua‘i were introduced from O‘ahu. The
uncertainty associated with the assignment of
the twoKaua‘i samples to a genetic cluster with
O‘ahu individuals was very low (2.63� 10�4

and 7.23� 10�5), as indicated by the flat cells
representing the Kaua‘i samples (Figure 3).

When genetic clustering included a prior
probability that assumes individuals originated
from island of capture, the algorithm consis-
tently identified the same three clusters as
without this prior probability, and these

included the same individuals. Thus two clus-
ters each contained individuals from multiple
islands (five groups assigned to three clusters),
which suggests recent gene flow among islands.

In addition to identifying the source
island of the Kaua‘i individuals, our analyses
also indicated that mongooses may have been
transported among other islands in the
archipelago recently. Five individuals were
assigned to clusters that were different from
the island where the sample was collected.
Two individuals from Hawai‘i possessed an
allele at locus Hj40 that was otherwise limited
to individuals from the O‘ahu cluster. One
individual from Hawai‘i possessed an allele at
locus Hj56 that was limited to individuals
from the Moloka‘i genetic cluster. One
heterozygous individual from Moloka‘i pos-
sessed an allele at locus Hj40 that was
otherwise not observed on that island but
had a high frequency in the Hawai‘i/Maui
cluster. Finally, one individual fromO‘ahu was
heterozygous for an allele at locus Hj45,
which was otherwise not observed on that

FIGURE 3. Graph of local uncertainty associated with genetic cluster assignment (Figure 2) of small Indian mongoose
(Herpestes auropunctatus) samples collected from the Hawaiian Islands, USA. The uncertainty values associated with the
assignment of the two Kaua‘i samples to the O‘ahu genetic cluster were 2.63� 10�4 and 7.23� 10�5. The uncertainty
value was calculated as one minus the conditional posterior probability. The O‘ahu genetic cluster is predominantly
shaded red (including the two Kaua‘i samples), the Moloka‘i genetic cluster is predominantly shaded gray, and the
Hawai‘i/Maui genetic cluster is predominantly shaded yellow.
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island. Three of these cases (two individuals
from Hawai‘i belonging to the O‘ahu cluster
and one individual from O‘ahu belonging to
the Hawai‘i/Maui cluster) may be explained by
a single motif mutation as an insertion or
deletion of a dinucleotide repeat, but the
remaining two cases cannot be explained so
easily given the observed allele frequencies
(one individual from Hawai‘i belonging to the
Moloka‘i cluster and one individual from
Moloka‘i belonging to the Hawai‘i/Maui
cluster). It is thus most likely that individuals
havebeen transportedbetween islands and thus
poses an ongoing challenge to stemming
exchangeof this invasive species among islands.

DNA methodologies have been used to
identify non-native species arrivals to islands
and their associated source populations (e.g.,
mice, Hardouin et al. 2010; Argentine ant,
Corin et al. 2007).One important use of genetic
tools is determining if island-wide eradications
of vertebrates have been successful. For exam-
ple, Abdelkrim et al. (2007) and Savidge et al.
(2012) used genetic evidence to determine
whether rats observed after an eradication
campaign were survivors of the eradication
attempt or recent immigrants. Population
geneticsareoften theonlymeansofestablishing
non-native species introduction routes, and
these methods and technologies can be used to
inform island communities of management/
eradication units and biosecurity strategies.
(e.g., separating islands into eradication units,
Savidge et al. 2012). However, the utility of
genetic analyses may be limited in island
communitiesduetogeneflowandtimerequired
for genetic differentiation (Manel et al. 2005,
Fitzpatrick et al. 2012). Genetic surveys should
be performed prior to eradication events to
estimate genetic differentiation among target
populations and to later evaluate the success of
eradication campaigns (Savidge et al. 2012).

Early detection and elimination of invasive
species on islands is fundamental to the
protection of island resources. Despite early
reasoning that favored mongoose as a biocon-
trol agent, mongoose are a threat to island
ecosystems by causing native species declines,
transmission of zoonotic pathogens, and
damaging the economy (Hays and Conant
2007). Prior to the two individual mongooses

found near the harbor on Kaua‘i in 2012, the
biosecurity that was implemented for mon-
goose introductions to Kaua‘i was minimal.
Mongoose surveillance methods are limited to
the use of tracking tunnels (inked and baited
cards placed in tunnels to reveal foot tracks of
animal visitors) near the main port in Kaua‘i
with a rapid-response team ready to trap,
and general public education covering how
mongooses are unwanted pest species on
Kaua‘i (P. Reese, pers. comm.). Relative to the
efforts to maintain Kaua‘i mongoose-free,
there are examples of very extensive biose-
curity actions occurring to prevent unwanted
vertebrate pest species from arriving on
islands. For example, Guam practices exten-
sive biosecurity for preventing brown tree
snakes (Boiga irregularis) from leaving Guam
in cargo. The security measures utilize an
integrative pest management plan that
includes the use of detection dogs to survey
cargo for snakes, trapping and use of poison
baits around ports, and spotlighting fence
lines for hand-removal (Engeman et al. 2018).
New Zealand is known for their strong stance
on island biosecurity, which includes the
prevention of pest species introductions into
the country, rapid-response for invasive
species removal following detection (Broome
2007), and keeping off-shore islands predator
free (Russell et al. 2008). Part of what makes
these biosecurity efforts attractive and effec-
tive is that the various techniques and
methodologies that are used are periodically
tested and validated (Russell et al. 2008,
Engeman et al. 2018). DNA analyses can help
elucidate invasion pathways and thus direct
managers to increase biosecurity at weak links.
In this case, daily ship traffic to and from
Kaua‘i establishes the strong possibility of
mongoose or other vertebrate pest transport,
and preventing such arrival and establishment
will require more robust biosecurity measures
between O‘ahu and Kaua‘i ports, continued
public education about this issue, and effective
and on-going surveillance efforts.
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