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The research community in soil science and agriculture lacks a cost-effective and

rapid technology for in situ, high resolution vertical soil sensing. Visible and near

infra-red (VisNIR) technology has the potential to be used for such sensor development

due to its ability to derive multiple soil properties rapidly using a single spectrum. Such

efforts must, however, overcome a few challenges: (i) a dry ground soil spectral library

that can be used to predict the target soil properties accurately, (ii) a robust design which

can acquire high quality VisNIR spectra of soil, (iii) an effective method that can link field

intact soil spectra to the dry ground spectra in the library.

The overall goal of the work presented in this dissertation was to design, develop,

and test a VisNIR integrated multi-sensing penetrometer to estimate soil properties in

vertical profile. To achieve this goal, three specific objectives were developed. The first

was to investigate and compare the usefulness of five approaches: External Parameter

Orthogonalization (EPO), Direct Standardization (DS), Global Moisture Modeling

(GMM), Slope Bias Correction (SB) and Selective Wavelength Modeling (SWM), in

enabling VisNIR dry ground models to be applied directly to moist soil spectra to predict

soil organic carbon and inorganic carbon. The second was to design new VisNIR probes

and test them in terms of spectral quality and predictive power using an external spectral

library under laboratory conditions. Third was to develop the fully integrated,

multi-sensing penetrometer system for high resolution vertical soil sensing and field test

the penetrometer to evaluate its performance.

The results showed that EPO, DS and GMM account satisfactorily for the effect of

moisture in soil spectra. The VisNIR probe developed showed high spectral quality,



however with a systematic difference compared to standard MugLite® spectra which was

successfully rectified by DS or spiking. The final designed fully integrated, multi-sensing

penetrometer system, could estimate soil properties: total carbon, total nitrogen and bulk

density, in vertical soil profile with EPO to correct for field intactness. This can lead to a

rapid, robust and cost-effective penetrometer system for in situ high resolution vertical soil

sensing in the future.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 VISNIR TECHNOLOGY FOR SOIL SENSING

1.1.1 What is VisNIR spectroscopy

In the electromagnetic (EM) spectrum, which is the range of all possible frequencies of

EM radiation, visible light lies between 350–700 nm range while near infrared (NIR) lies

in 700–2500 nm range (Figure 1.1). Hence the visible and near infrared (VisNIR) region

is generally considered from 350 to 2500 nm.

tones and combination modes, which can also occur

in the MIR, overlap making qualitative and quantita-

tive interpretations in the visible and NIR more

difficult. Janik et al. (1998) provide a good review

of soil analysis using infrared techniques with

particular attention to MIR.

Quantitative spectral analysis of soil using visible

and infrared reflectance spectroscopy requires sophis-

ticated statistical techniques to discern the response of

soil attributes from spectral characteristics. Various

methods have been used to relate soil spectra to soil

attributes. For example, Ben-Dor and Banin (1995)

used multiple regression analysis (MRA) to relate

specific bands in the NIR to a number of soil

properties. Shibusawa et al. (2001) used stepwise

multiple linear regression (SMLR) for the estimation

of various soil properties from the NIR spectra of soil

acquired by a field-deployed on-the-go soil sensing

system. Shepherd and Walsh (2002) used multivariate

adaptive regression splines (MARS) for the estimation

of soil properties from soil spectral libraries. Fidêncio

et al. (2002) employed radial basis function networks

(RBFN) to relate soil organic matter to soil spectra in

the NIR region. Daniel et al. (2003) implemented

artificial neural networks to estimate soil organic

matter, phosphorus and potassium from the VIS–NIR

spectrum. However, principal components regression

(PCR) (e.g. Chang et al., 2001) and partial least-

squares regression (PLSR) (e.g. McCarty et al., 2002)

are the most common techniques for spectral calibra-

tion and prediction. PLSR is performed in a slightly

different manner to PCR. Rather than first decompos-

ing the spectra into a set of eigenvectors and scores

and performing the regression with soil attributes in a

separate step, PLSR actually uses the soil information

during the decomposition process. PLSR takes

advantage of the correlation that exists between the

spectra and the soil, thus the resulting spectral vectors

are directly related to the soil attribute (Geladi and

Kowalski, 1986). The advantages of PLSR are that it

handles multicollinearity, it is robust in terms of data

noise and missing values, and unlike PCR it balances

the two objectives of explaining response and

predictor variation (thus calibrations and predictions

are more robust) and it performs the decomposition

and regression in a single step. Table 1 provides a

review of the literature comparing quantitative pre-

dictions of various primary and secondary soil

attributes, from aluminium to zinc, using various

multivariate techniques and spectral response in the

ultra violet (UV), VIS, NIR and MIR regions of the

spectrum.

Table 1 demonstrates the potential of quantitative

visible and infrared soil analysis, suggesting the

regions of the spectrum that may be most suitable

for predictions of various soil properties. For example,
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Fig. 1. The electromagnetic (EM) spectrum highlighting the visible and infrared portions (after McBratney et al., 2003).

R.A. Viscarra Rossel et al. / Geoderma 131 (2006) 59–75 61

Figure 1.1. Electromagnetic spectrum (Source: Viscarra Rossel, Walvoort, McBrat-
ney, Janik, and Skjemstad (2006)).

Various chemical substances absorb radiation of different wavelengths, which

correspond to the chemical bonds in the compounds, giving rise to characteristic

signatures in the spectra. Though most of the fundamental vibrations occur in the mid

infrared (MIR) region, their overtones and combinations can be observed in the NIR
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region (Burns & Ciurczak, 2007). However, these overtones are complex in nature and not

easily distinguishable, which requires the use of more advanced multivariate calibration

techniques to develop models to detect different compounds. VisNIR spectroscopy where

VisNIR spectral signatures are used to detect/estimate chemical compounds, is an

inexpensive, non-destructive and powerful tool and is used for quality control and process

monitoring in industrial settings. This technology has developed as a tool for proximal

sensing in natural resources with the evolution of technology and research interest during

the past few decades.

1.1.2 VisNIR spectral signatures of soil constituents

EM radiation interacts with soil causing the individual molecules to absorb energy and

vibrate, either by bending or stretching. The energy absorbed is related to the energy

quantum corresponding to different energy levels of the bonds. The resulting absorbance

spectrum has characteristic patterns (signatures) which can be used to identify different

properties and constituents of soil (Miller, 2001). Though the majority of the fundamental

spectral signatures of soil constituents occur in MIR region, discernible overtones of the

primary signatures can be observed in the VisNIR region (Figure 1.2), which can be used

to identify different soil properties. For instance, iron-containing mineral absorptions

occur in the visible region (Sherman & Waite, 1985). Soil organic matter signatures in the

NIR region are characterized by the overtones and combinational absorptions of O–H,

C–H and N–H bonds (Clark, 1999; Clark, King, Klejwa, Swayze, & Vergo, 1990). Clay

mineral absorption overtones are attributed to the spectral signatures of OH, H2O and

CO3, observed in longer wavelengths (Stenberg, Viscarra Rossel, Mouazen, & Wetterlind,

2010). Moisture absorption bands occur near 1400 and 1900 nm (Bowers & Hanks, 1965;

Dalal & Henry, 1986).

Some of these observed spectral signatures for different soil constituents are

shown in Table 1.1. Literature provides ample evidence in the use of VisNIR spectroscopy
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Figure 1.2. Soil VisNIR spectra showing approximate occurrence of the combination,
first, second, and third overtone (OT) vibrations (Source: Stenberg, Viscarra Rossel,
Mouazen, and Wetterlind (2010)).

to detect different soil properties: moisture (Ben-Dor, Heller, & Chudnovsky, 2008;

Chang, Laird, & Hurburgh, 2005; Hummel, Sudduth, & Hollinger, 2001), organic carbon

(Chang, Laird, Mausbach, & Hurburgh, 2001; Islam, Singh, & McBratney, 2003;

Shepherd & Walsh, 2002), texture (Brown, Shepherd, Walsh, Dewayne Mays, & Reinsch,

2006; Ge, Morgan, & Ackerson, 2014; Stenberg, Jonsson, & Börjesson, 2002) and plant

nutrients (Stenberg et al., 2010). Soil organic carbon (OC) and clay are two soil properties

which have been extensively researched and proved for their potential to be modeled from

VisNIR spectra due to their unique spectral signatures (Figure 1.3). Still, these soil

properties do not show clear distinct spectral signatures so that one can easily model for

target characteristics.

1.1.3 Model calibrations

Due to the overlapping nature of absorption bands, spectral signatures of different soil

properties are non-specific which is further confounded by scattering effects caused by

soil structure or constituents such as quartz. The resulting absorption patterns are complex
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Table 1.1. Fundamental mid-IR absorptions of soil constituents and their overtones
and combinations in the VNIR (Source: Viscarra Rossel and Behrens (2010)).

Soil constituent Fundamental (cm−1)
VNIR
wavelength (nm)

Fe oxides
Geothite 434, 480, 650,

920
Haematite 404, 444, 529,

650, 884
Water ν1 O–H 3278 1915

ν2 H–O–H 1645 1455
ν3 O–H 3484 1380, 1135, 940

Hydroxyl ν1 O–H 3575 1400, 930, 700
Clay minerals

Kaolin doublet ν1a O–H 3695 1395
ν1b O–H 3620 1415
δ Al–OH 915 2160, 2208

Smectite ν1 O–H 3620 2206
δa Al–OH 915 2230
δb AlFe–OH 885

Illite ν1 O–H 3620 2206, 2340, 2450
Carbonate ν3 CO2−

3 1415 2336
Organics

Aromatics ν1 C–H 3030 1650, 1100, 825
Amine δ N–H 1610 2060

ν1 N–H 3330 150, 1000, 751
Alkyl asymmetric

symmetric doublet
ν3 C–H 2930 1706

ν1 C–H 2850 1754, 1138,
1170, 853, 877

Carboxylic acids ν1 C=O 1725 1930, 1449
Amides ν1 C=O 1640 2033, 1524
Aliphatics ν1 C–H 1465 2275, 1706
Methyls ν1 C–H 1445–1350 2307–2469,

1730–1852
Phenolics ν1 C–OH 1275 1961
Polysaccharides ν1 C–O 1170 2137
Carbohydrates ν1 C–O 1050 2381
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spectrum is difficult, as several other organic and inorganic molecules may
absorb in these regions (Clark et al., 1990; Goddu and Delker, 1960). This is
particularly so at longer wavelengths beyond 2000 nm. Viscarra Rossel and
Behrens (2010)present a summaryof important fundamental absorptions in the
mid-IR and the occurrence of their overtones and combinations in the vis–
NIR, which can be used to help with interpretation (Table 1). In Fig. 2 the
influence of SOM in vis–NIR is exemplified.

While the absorptions by SOM in the vis–NIR are often weak and not
readily apparent to the naked eye (Fig. 2), the overall absorption due to
SOM in the visible region is broad but clear (Baumgardner et al., 1985;
Bowers and Hanks, 1965; Krishnan et al., 1980). For this reason, a number
of studies have used soil color to estimate SOM (e.g., Viscarra Rossel et al.,
2006b, 2008b). Thus there are various reports suggesting that vis–NIR
relates better to SOM than the NIR alone (Viscarra Rossel et al., 2006c).
For example, Islam et al. (2003) achieved considerably better results for
Australian soils by including the visible region (350–700 nm) in the
calibration and similar observations have been reported for Norwegian
soils (Fystro, 2002). Udelhoven et al. (2003) suggested that the brightness
of the sample is an important factor in the visible region for prediction of
organic C content. However, In Swedish agricultural soils including the
visible range in calibrations resulted in only small improvements (Stenberg,
2010) wheres the opposite was reported for US land resource areas (Chang
et al., 2001) and south-eastern Australia (Dunn et al., 2002). Although the
general observation is that soil becomes darker with increasing organic
matter, many soil properties, such as texture, structure, moisture, and
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Figure 2 (A) Soil vis–NIR 400–2500 nm spectra and (B) the region 1100–2500 nm
showing the spectra of three soils: an organic agricultural soil with 40% SOC and two
with �1% SOC of which one has 87% sand and 4% clay, and the other 12% sand and
44% clay. Drop lines in (B) indicate wavelengths typical of organic matter.
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Figure 2 (A) Soil vis–NIR 400–2500 nm spectra and (B) the region 1100–2500 nm
showing the spectra of three soils: an organic agricultural soil with 40% SOC and two
with �1% SOC of which one has 87% sand and 4% clay, and the other 12% sand and
44% clay. Drop lines in (B) indicate wavelengths typical of organic matter.
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Figure 1.3. (A) Soil VisNIR spectra and (B) the region 1100–2500 nm showing the
spectra of three soils: organic agricultural soil with 40% SOC, 1% SOC with 87%
sand and 4% clay, 1% SOC with 12% sand and 44% clay (Source: Stenberg, Viscarra
Rossel, Mouazen, and Wetterlind (2010)).

which cannot be used to derive models using simple correlation techniques and require

more advanced multivariate calibration techniques (Martens & Naes, 1992). There are

many linear and non-linear techniques to calibrate models such as partial least squares

regression (PLSR) (Wold, Martens, & Wold, 1983), step-wise multiple linear regression

(Ben-Dor & Banin, 1995; Dalal & Henry, 1986), principal component regression, artificial

neural networks (ANN) (Daniel, Tripathi, & Honda, 2003), boosted regression trees

(Brown et al., 2006), random forests (RF) (Viscarra Rossel & Behrens, 2010) and support

vector regression (SVR) (Stevens et al., 2008; Viscarra Rossel & Behrens, 2010) to obtain

robust models. Out of these, PLSR is the most commonly used linear regression method

whereas ANN, RF and SVR are considered non-linear modeling techniques. These

modeling techniques have tuning parameters which are changed iteratively until the

lowest error is obtained through cross-validation. In this dissertation work, PLSR and

SVR modeling techniques were selected as linear and non-linear modeling techniques.

PLSR is a modeling technique used to build models for highly collinear data.

PLSR uses an algorithm similar to principal component analysis to reduce the number of
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dimensions into several latent variables. It considers the response variable simultaneously

when constructing the latent variables as well. Then, a linear model is fitted between the

latent variables and the target response (Helland, 2004). PLSR is often preferred due to its

ability to explain the response variable with a reduced number of predictor variables,

making it more interpretable and reduce computational demand (Stenberg et al., 2010).

The tuning parameter for PLSR is the number of latent variables (nLV) used for regression.

Support Vector Regression (SVR) focuses on building an optimal hyperplane in

the higher dimensional feature space (Vapnik, 2013). In classification setting, a boundary

which has the smallest distance from the hyperplane to the observations, is calculated as

the decision margin (Hastie, Tibshirani, & Friedman, 2001). In the regression, a linear

regression function is calculated in the higher dimensional feature space for which the

input data is mapped using a kernel function. This technique tries to minimize the

generalization error, instead of reducing the observed training error (Basak, Pal, &

Patranabis, 2007). This modeling technique is effective in higher dimensional modeling of

NIR spectra (Thissen, Pepers, Üstün, Melssen, & Buydens, 2004). Viscarra Rossel and

Behrens (2010) showed that SVR can result in smaller root mean squared errors compared

to many other modeling techniques. The tuning parameter for the SVR used in this work

is ‘C’, which determines the number and severity of the violations to the boundary

(simply, it is the budget for how many observations can violate the margin) (James,

Witten, Hastie, & Tibshirani, 2013).

1.2 VISNIR BASED SOIL SENSORS

Unlike other sensing technologies, VisNIR spectroscopy can derive multiple soil

properties non-destructively, rapidly and at a low cost due to the presence of spectral

signatures for different constituents in the same spectrum. VisNIR has the potential to

complement expensive laboratory analysis and enable in-situ sensing (Kodaira &

Shibusawa, 2013). For several decades, researchers have been trying to use this optical
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technology to develop sensors to measure different surface soil properties.

1.2.1 Horizontal VisNIR based soil sensors

Griffis (1985) developed a simple soil carbon sensor which consisted of an incandescent

light source and a silicon phototransistor. The sensor setup was mounted inside a

light-proof housing. The laboratory testing of the sensor with 18 air dried Arkansas soils

resulted an R2 of 0.75 for soil carbon. The same sensor was reported on a system

consisting of an elevating chain and horizontal belt used to convey soil past the senor to

mimic on-the-go in situ sensing. The laboratory evaluation with sieved air-dried soils

showed successful in locating a step change in soil type (Kocher & Griffis, 1989). Shonk,

Gaultney, Schulze, and Van Scoyoc (1991) tested a prototype real-time soil surface

organic matter sensor probe which measured the light reflectance using a photodiode and

red light emitting diodes as light sources (Figure 1.4). They conducted six field tests and

observed good correlations between sensor output and soil organic matter in the 1–6%

range for fine and medium textured soils.

Figure 1.4. Cross-sectional view of the organic matter sensor and probe developed
and tested by Shonk, Gaultney, Schulze, and Van Scoyoc (1991).

A portable spectrometer producing a continuous spectrum with a bandpass of 60

nm or less, was introduced by Sudduth and Hummel (1993) to estimate soil organic matter

(Figure 1.5). The laboratory testing with 30 representative Illinois soils resulted in a R2 of
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0.89 and standard error of prediction (SEP) of 0.23%. However, the limited field tensing

in-furrow did not provide accurate estimates due to movement of the sample relative to the

senor during scanning. The same sensor was updated later to have faster data collection.

The updated sensor was used to predict soil organic matter and moisture contents of

surface and subsurface soils using three soil cores collected at 16 sites in US Corn Belt.

The results showed a SEP of 0.62 and 5.31% for organic matter and moisture respectively

(Hummel et al., 2001).

Figure 1.5. Prototype portable spectrometer developed by Sudduth and Hummel
(1993) to estimate soil organic matter.

Mouazen, De Baerdemaeker, and Ramon (2005) used a fiber-type visible and
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near-infrared spectrophotometer, with a light reflectance measurement range of

306.5–1710.9 nm to measure soil moisture. The optical unit was attached to a subsoiler

chisel backside to scan soil surface and obtain reflectance spectra (Figure 1.6). The system

was calibrated under stationary laboratory conditions on sample collected from an Arenic

Cambsol field with different soil textures. The laboratory testing showed a root mean

squared error (RMSE) of 0.0175 kg kg-1 and correlation of 0.978 for cross-validation. The

field testing of the sensing system showed a RMSE of 0.025 kg kg-1. The same system

was later used for predicting carbon, pH and phosphorus, showing its capacity to measure

multiple soil properties on-line (Mouazen, Maleki, De Baerdemaeker, & Ramon, 2007).

Maleki, Mouazen, Ramon, and De Baerdemaeker (2007) and (2008) demonstrated the

ability of this sensor to be used for variable rate phosphorus application in the field

(Figure 1.7).

Figure 1.6. Subsoiler-optical unit set up developed by Mouazen, De Baerdemaeker,
and Ramon (2005).

An on-the-go in situ spectrophotometer based sensor system was developed by
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Figure 1.7. Field testing of variable rate phosphorus applicator (VR) based on the
soil sensor developed by Mouazen, De Baerdemaeker, and Ramon (2005). (a) planter
and fertilizer applicator (AMAZONE, ED302); (b) sensor and subsoiler; (c) DGPS
antenna; (d) electrical actuator and (e) roller for closing the trench made by subsoiler.
Right: schematic diagram of the soil sensor-based VR applicator.

Christy (2008) for real-time measurements of soil attributes. Figure 1.8 shows the

schematics of the basic design of the senor system which was evaluated using soil samples

from eight fields in Kansas. One-field out validation results showed an RMSE of 0.52%

for soil organic matter with an R2 of 0.67. Bricklemyer and Brown (2010) employed a

new commercially available on-the-go VisNIR sensor (Veris® Technologies Inc., Salina,

KS, USA) which was built into an agricultural shank mounted on a toolbar to be pulled

behind a tractor, to obtain soil spectra and predict soil properties. The field evaluation of

this sensor in Montana showed degraded accuracy compared to laboratory testing due to

soil heterogeneity and moisture variation. However, Knadel, Thomsen, Schelde, and

Greve (2015) demonstrated that the new Veris® mobile sensor platform can be used to

estimate soil organic carbon with VisNIR spectra and fusion of sensor data.

A real-time surface soil sensor attached to the tractor was developed by Kodaira

and Shibusawa (2013) to predict multiple attributes: moisture, organic matter, pH,

electrical conductivity, cation exchange capacity, total carbon, ammonium nitrogen, hot

water extractable nitrogen, nitrate nitrogen, total nitrogen, available phosphorus, and

phosphorus absorptive coefficient (Figure 1.9). One hundred and forty-four soil spectra
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Figure 1.8. The shank-based spectrometer demonstrated by Christy (2008) to obtain
soil NIR reflectance spectra. (1) Sapphire window; (2) halogen lamp; (3) collection
optic; (4) fiber optic; (5) spectrometer; (6) power supply.

were collected using this sensor in the field to build PLSR model and results showed that

the system can accurately estimate some of the soil properties tested and comparable to

lab-based results. Later, the same sensor system was used to develop soil property maps as

well (Aliah Baharom, Shibusawa, Kodaira, & Kanda, 2015).

Figure 1.9. The real-time soil surface sensor developed by Kodaira and Shibusawa
(2013). Left: sensor mounted on the tractor. Right: cross-sectional view of the soil
penetrator and probe housing.

Rodionov et al. (2015) developed a tractor-driven measuring chamber which

obtain VisNIR spectra of surface soil to be used to estimate soil organic carbon (Figure
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1.10). The field testing of the system was done on two long-term experiments and the

results showed an R2 of 0.65 and standard error of 1.12 g kg-1. They concluded that the

system could be used as a reliable on-the-go sensor with further improvements.

1.2.2 Vertical VisNIR based soil sensors

Unlike horizontal sensors which are intended to estimate surface soil attributes, the

vertical sensors based of VisNIR technology are sporadically reported in the literature.

Ben-Dor et al. (2008) constructed a housing assembly which could be adapted to any

portable spectrometer to obtain subsoil spectral readings (Figure 1.11). They tested the

assembly with an attached field spectrometer on drilled holes, trenches, and soil banks to

estimate soil moisture, organic matter, carbonates, free iron oxides and specific surface

area which yielded successful results. Kusumo, Hedley, Tuohy, Hedley, and Arnold

(2010) also developed a modified soil probe for a portable ASD spectroradiometer to scan

the extracted soil cores.

A multi-sensor penetrometer to measure bulk density of surface soils was

developed by Quraishi and Mouazen (2013). The penetrometer consisted of a

spectrophotometer to obtain the VisNIR reflectance spectra of the soil to estimate

moisture, organic matter, and clay content, and a load cell to measure the penetration

resistance. The sensor data was then used to model bulk density. The system was

evaluated with 471 samples collected from various fields across four European countries

and the results showed a validation R2 of 0.84 and RMSE of 0.08 Mg m-1. Poggio,

Brown, and Bricklemyer (2015) evaluated the optical performance of a new soil

penetrometer VisNIR foreoptic under the laboratory conditions (Figure 1.12). Their

design consisted of a halogen lamp to produce broad-spectrum light and mirrors to direct

light to soil surface and to fiber optic. The second design consisted of a bifurcated fiber

optic and a mirror to direct light which was acquired from ASD (Analytical Spectral

Devices formerly, now Malvern Panalytical Inc., Boulder, CO). They compared these
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Figure 1.10. Tractor-drive chamber developed by Rodionov et al. (2015). (a) lateral
view with opened side wall, (b) top view, and (c) rear view with dimensions (mm). (d)
The lamp holder comprises six adjustable halogen lamps and the sensor head with the
optical fiber. (e) Measurement setup during the field VisNIR spectra acquisitions.



14

Figure 1.11. Housing assembly developed by Ben-Dor, Heller, and Chudnovsky
(2008). (a) sketch showing the all parts. (b) schematic configuration of the assem-
bly.

designs with ASD contact probe and observed that their design performed well in terms of

spectral quality and chemometric models.

Figure 1.12. Optical probe designs tested by Poggio, Brown, and Bricklemyer (2015).
(a) main probe housing and cone tip assembly, (b) current optic assembly and (c) first
ASD optic assembly.

Viscarra Rossel, Lobsey, Sharman, Flick, and McLachlan (2017) developed a new

soil profile sensing system called as ‘Soil Condition Analyses System’ (SCANS) (Figure

1.13). This system integrated an automated soil core sensing system with statistical
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analytics and modeling to enable soil characterization at finer depth resolutions. It

consisted of a gamma-ray densitometer to measure bulk density, digital cameras to image

the measured soil, and a VisNIR spectrometer to measure iron oxides, clay mineralogy

and other soil attributes. Their intention was to provide rapid, precise, quantitative and

spatially explicit information on the properties of soil profiles with a level of detail which

is difficult to obtain using other means. This system was further successfully tested by

Poggio, Roudier, Blaschek, and Hedley (2018).

Figure 1.13. Soil Condition Analyses System developed by Viscarra Rossel, Lobsey,
Sharman, Flick, and McLachlan (2017). Top row: Schematic of the SCANS core sens-
ing system: (a) (1) sensor head (2) soil core (3) emergency stop and reset buttons (4)
touch screen PC (5) electronics boxes (6) linear actuator (7) polycarbonate hood with
safety sensors. (b) (8) gamma-ray source (9) gamma-ray detector (10) spectrometer
contact probe attachment (11) cameras. Bottom row: field-deployable core sensing
system’s operation in the field.

There is a commercially available system developed by Veris® Technologies

(P4000) for soil profile sensing which can estimate soil properties such as EC, force of
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penetration, and carbon. Wetterlind, Piikki, Stenberg, and Söderström (2015)

demonstrated the use of this sensor on soil texture and organic matter estimation using

field specific calibration. Veum, Parker, Sudduth, and Holan (2018) demonstrated the

ability to use this system to predict soil OC, TN and texture fractions with a large, regional

dataset and External parameter orthogonalization (EPO) correction (Figure 1.14). They

used field samples and scanned under the air dry conditions using the same system to

implement EPO correction for in situ spectra.

Figure 1.14. Left: Veris® P4000 used by Veum, Parker, Sudduth, and Holan (2018)
in the field. Right: close-up view of P4000 probe tip adapted for acquiring air dry
spectra.

1.3 USE OF VISNIR SPECTRAL LIBRARIES IN SOIL SENSING

1.3.1 VisNIR spectral libraries

All the aforementioned sensors require calibration soil samples to be obtained from the

same field or area to build models to accurately predict soil attributes. However, this is

costly and time consuming. As an alternative, there has been an increasing interest within

the soil community to setup large spectral libraries to be used for model calibration
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(Brown et al., 2006; Shepherd & Walsh, 2002). Recently, there have been a rapid growth

of spectral libraries due to ease of spectral measurement, and decrease in cost per

measurement with technological advances. These spectral libraries can readily provide

calibration samples for a specific model calibration. An Australian spectral library with

>20,000 samples (Viscarra Rossel & Webster, 2012), a Chinese spectral library with 3993

samples (Ji et al., 2016), a global VisNIR spectra library (Viscarra Rossel & Bouma,

2016), the LUCAS database with >20,000 samples (Montanarella, Tóth, & Jones, 2011),

and Rapid Carbon Assessment (RaCA) spectral library (Wills et al., 2014) in US are some

examples of such large spectral libraries available.

The Rapid Carbon Assessment (RaCA) project was initiated in 2010 by the Soil

Science Division of USDA-NRCS with the objective of capturing the baseline soil carbon

stocks across the conterminous U.S. (CONUS). It used a multi-hierarchical design to

obtain samples evenly distributed across regions based on major land resources areas

(MLRA) and land use land cover classes (LULC). Samples were obtained from 6,148 sites

across CONUS, described 32,084 pedons in the field, and collected 144,833 samples. A

fraction of the samples (∼20,000) were extracted and measured for Total Carbon, Total

Nitrogen, Total Sulfur, Carbonates, and Organic Carbon. The intension was to use these

measured properties to calibrate VisNIR models and use to predict for the remaining

samples (Wills et al., 2014).

1.3.2 Challenges of using VisNIR libraries for soil sensors

Some of the spectral libraries are available freely or by request for the users. This enables

the common users such as farmers, government agencies or researchers to use these

sample to build their own models without spending money or time on calibration

sampling. The true potential of VisNIR based sensors is that they can be used with soil

spectral libraries to build models which can immensely reduce cost and time (Brown

et al., 2006; Ge et al., 2014). However, the use of these spectral libraries for VisNIR based
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sensor applications can pose a new challenge.

Spectral libraries are often constructed from dry ground soils whereas the field

samples are quite different in terms of moisture, aggregation, and temperature. Among

these factors, moisture has the most pronounced effect on VisNIR spectra (Bricklemyer &

Brown, 2010; Kuang & Mouazen, 2013; Minasny, McBratney, Pichon, Sun, & Short,

2009; Sudduth & Hummel, 1993). There is an obvious decrease of performance when

models calibrated on dry ground spectra applied to field moist soils (Bricklemyer &

Brown, 2010; Minasny et al., 2009). Due to the need of large numbers of field samples,

the use of field samples for model calibration is neither practical nor economical.

To bridge the gap between dry ground and field spectra, researchers are

investigating different techniques such as external parameter orthogonalization (Ge et al.,

2014; Minasny et al., 2011), direct standardization (Ji, Viscarra Rossel, & Shi, 2015),

spiking (Brown, 2007; Sankey, Brown, Bernard, & Lawrence, 2008; Wetterlind &

Stenberg, 2010), slop bias correction (Osborne & Fearn, 1983), and selective wavelength

modeling (Wu, Jacobson, Laba, & Baveye, 2009).

1.4 REQUIREMENTS FOR A ROBUST VISNIR BASED SOIL SENSORS

There are four essential components to produce a robust real-time VisNIR-based proximal

soil sensing system: (i) a soil (dry ground) spectral library that can be used to predict the

target soil properties (such as texture and carbon forms) with a satisfactory accuracy, (ii)

robust designs that can acquire high quality VisNIR spectra of soil, (iii) an effective

method that can link field moist scans to the dry ground scans in the library, (iv) a

complete software package with an algorithm to do real-time acquisition of spectra, do the

processing, correction and display estimated soil properties on-the-go.

In actual field implementation, there are two significant sources of variation that

the VisNIR sensor system should be able to account for. The first source comes from in

situ soils themselves including moisture, surface roughness, natural aggregation, and
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temperature. The second is from the field operational conditions of fluctuating

temperature and humidity that cause varying responses of the optical/electronic

components and the spectrometers. Since the sensor collects soil VisNIR spectra

on-the-go under natural, field moist conditions, the software should be equipped with two

major components: (i) dry ground spectral libraries and calibration models for targeted

soil properties and (ii) a suitable correction approach (EPO or DS) to account for the field

in situ condition. The sensor software can then convert soil VisNIR spectra to the targeted

soil properties in real time.

Overall, the development of a VisNIR soil sensor involves a good design of both

hardware and software. The hardware should ensure the acquisition of high-quality

reflectance spectra of soil while the software should account for the spectral shifts caused

by various factors including field intactness. Being able to leverage the use of external soil

spectral libraries is of immense importance to make this sensor economically viable under

the practical setting. The following chapters of this dissertation address some of these

challenges leading to develop a VisNIR based multi-sensing penetrometer.
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CHAPTER 2

MOVING FROM LAB TO FIELD: CHALLENGE OF USING DRY
GROUND VISNIR LIBRARY TO PREDICT MOIST SOILS

2.1 INTRODUCTION

2.1.1 VisNIR for soil sensing

Visible and near infrared reflectance spectroscopy (VisNIR) is widely used as a rapid and

cost-effective method to quantitatively infer soil properties (Chang et al., 2001; Stenberg,

2010; Viscarra Rossel, Walvoort, McBratney, Janik, & Skjemstad, 2006). Numerous

studies have shown VisNIR soil spectra to successfully predict a wide array of soil

properties including soil carbon (Brown et al., 2006; Minasny et al., 2011; Nocita,

Stevens, Noon, & van Wesemael, 2013; Sarkhot, Grunwald, Ge, & Morgan, 2011), texture

(Brown et al., 2006; Sørensen & Dalsgaard, 2005; Waiser, Morgan, Brown, & Hallmark,

2007), moisture (Ben-Dor et al., 2008; Mouazen et al., 2005; Zhu et al., 2010), and plant

macro- and micro-nutrients (Ge, Thomasson, Morgan, & Searcy, 2007; Shepherd &

Walsh, 2002).

There have been increasing demands for dense and spatially explicit soil data for

many applications. A good example of such applications is precision agriculture, where

high-resolution (meter and sub-meter scale) soil property maps are generated and used to

enable variable-rate application and the delineation of crop management zones

(Adamchuk, Viscarra Rossel, Hartemink, & McBratney, 2010; Wetterlind, Stenberg, &

Söderström, 2008). Another good example is the Rapid Carbon Assessment (RaCA)

project undertaken by USDA-NRCS Soil Science Division (Wills et al., 2014). The

RaCA’s goal is to estimate soil carbon (C) stocks of the USA, and more than 140,000

georeferenced soil samples were taken across the nation for this purpose. Currently, there
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is an intense focus of research on soil C dynamics and inventory that requires

high-resolution soil data because of the importance of soil C in global climate change,

nutrient cycling, crop production and ecosystem function (Lal, 2004). Hydrological

modeling, remote sensing, mass and energy transport between the atmosphere and

lithosphere, and micro-climate modeling are other applications that would benefit greatly

from high-resolution and spatially explicit soil data (Lagacherie, McBratney, & Voltz,

2006).

Conventional soil sampling and laboratory chemical analysis is time consuming

and labor intensive and will not meet this increasing demand for soil data by many

disciplines. Consequently, in situ proximal soil sensors are being more widely used

(Ben-Dor et al., 2008; Christy, 2008; Kodaira & Shibusawa, 2013; Mouazen et al., 2007),

and the cost for obtaining each soil data point is being greatly reduced. Among the many

sensing principles from which in situ soil sensors can be developed (Adamchuk, Hummel,

Morgan, & Upadhyaya, 2004), VisNIR is the most promising. It is rapid, non-destructive

and, most importantly, several soil attributes can be inferred from a single scan (Brown

et al., 2006).

2.1.2 Use of VisNIR libraries

The true potential of in situ VisNIR-based soil sensors is that they can be coupled with the

soil spectral libraries and calibration models that are under development and are being

tested at the regional, national and continental scales (Brown et al., 2006; Ge et al., 2014).

This would minimize the need to obtain new samples for model calibration, which is the

most costly part for VisNIR.

While conceptually attractive, a primary challenge for using soil spectral libraries

in field applications is the wide range of soil moisture that will be encountered. Spectral

libraries are most likely constructed from dry and ground soils; but field samples will be in

quite different conditions in terms of moisture, small-scale heterogeneity, and
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temperature. Among these three factors, moisture has the most pronounced effects on

VisNIR spectra (Bricklemyer & Brown, 2010; Kuang & Mouazen, 2013; Minasny et al.,

2009; Sudduth & Hummel, 1993).The decrease of VisNIR model performance, when

dealing with field moist soil samples, is also documented in the literature (Bricklemyer &

Brown, 2010; Minasny et al., 2009). Several authors used VisNIR spectra of intact soils

and demonstrated successful prediction of intact soils (Gomez, Viscarra Rossel, &

McBratney, 2008; Morgan, Waiser, Brown, & Hallmark, 2009; Waiser et al., 2007). But it

is neither practical nor economical to develop both field moist spectral libraries and dry

ground libraries due to the large number of field samples needed.

To address this challenge, researchers are investigating methods to link the VisNIR

dry ground models to field moist in situ soil scans. Two approaches that have been put

forward quite recently are external parameter orthogonalization (Ge et al., 2014; Minasny

et al., 2011) and direct standardization (Ji et al., 2015). There are three other approaches in

the literature that have aroused little attention, but could also be useful. These approaches

require statistical treatments of VisNIR spectra, or calibration models or predicted

variables. The following section provides the background information for each approach.

2.1.3 Approaches to link dry ground VisNIR models to moist spectra

2.1.3.1 External parameter orthogonalization (EPO)

This approach was initially introduced by Roger, Chauchard, and Bellon-Maurel (2003) to

remove the effect of temperature on the prediction of Brix (sugar content of an aqueous

solution) of intact apples from their NIR (near infra-red) spectra. Minasny et al. (2011)

were the first to apply EPO to minimize the effect of soil moisture on OC prediction. In

EPO, a VisNIR spectrum is decomposed into two orthogonal components: a useful

component that has a direct relation with the response variable and a parasitic component

that is affected by an external variable (soil moisture in our case). The key step in EPO is

to find the EPO transformation matrix P that is used to transform both the dry ground and
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moist spectra. The original dry ground model needs to be recalibrated with the

EPO-transformed spectra. It is a spectrum-based approach that transforms both dry

ground scans and moist scans to the common useful space. The VisNIR models developed

on EPO-transformed spectra appear to be insensitive to the variation in soil moisture.

More recently, EPO was tested by Ge et al. (2014), Ji et al. (2015) and Ackerson,

Demattê, and Morgan (2015), all with quite positive results. A detailed account of the

EPO algorithm can be found in Roger et al. (2003) and Minasny et al. (2011).

2.1.3.2 Direct standardization (DS)

This was introduced first as a calibration transfer approach that allows the model

calibrated on a primary instrument to be applied to spectra acquired by a secondary

instrument (Feudale et al., 2002; Wang, Veltkamp, & Kowalski, 1991). Ge, Morgan,

Grunwald, Brown, and Sarkhot (2011) demonstrated the value of DS for the transfer of

soil VisNIR models among multiple spectrometers. Ji et al. (2015) proposed that DS could

potentially remove or minimize the effect of soil moisture on VisNIR modeling. The

rationale is that the set of dry ground spectra is from a ‘virtual’ primary instrument,

whereas the set of moist spectra is from a ‘virtual’ secondary instrument. The key step in

DS is to find the transformation matrix F that transforms secondary spectra to primary

spectra. Direct standardization is also a spectrum-based approach, but unlike EPO, model

recalibration is not required. The original dry ground model can be applied directly to

DS-transformed spectra. Ji et al. (2015) demonstrated that DS could predict OC from field

soil spectra with the model from laboratory dry ground scans.

2.1.3.3 Global moisture modelling (GMM)

Multivariate chemometric modeling methods such as partial least squares regression, are

known for their ability to adapt to the intrinsic variation of data. If the model of a primary

variable is sensitive to the variation of a secondary variable, we can create variation
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intentionally in the secondary variable for the samples in model calibration. By doing so,

the model is still satisfactory for the primary variable, but is more robust to variation in the

secondary variable (Feudale et al., 2002; Roger et al., 2003). This is similar to the

situation where an existing library (which lacks variation in the secondary variable) can be

augmented (or spiked) by a set of local samples (with large variation in the secondary

variable) to improve performance (Brown, 2007; Sankey et al., 2008; Wetterlind &

Stenberg, 2010). The GMM approach, therefore, involves recalibration of the initial dry

ground model by including more calibration samples at different moisture contents.

Kawano, Abe, and Iwamoto (1995) showed the potential of this method to improve the

accuracy of prediction for the Brix value of peaches with temperature as the external

variable that affected the spectra.

2.1.3.4 Slope bias correction (SB)

This approach also appeared first in NIR calibration transfer (Osborne & Fearn, 1983).

The assumption for the SB method is that moisture will cause a systematic error in

prediction that can be corrected for through a linear, univariate slope and bias correction.

Slope bias correction is different from EPO and DS because it is a response variable-based

approach where correction is done on the predicted response variable.

2.1.3.5 Selective wavelength modelling (SWM)

This approach is based on research by Wu et al. (2009). The first derivatives of certain

wavelength ranges, 800–1400, 1600–1700, 2100–2200 and 2300–2500 nm, are affected

minimally by moisture content. The authors suggested that VisNIR calibration models

based on these wavelength ranges could be applied across different moisture contents.

This approach is different from the others because no spectral transformation, response

variable correction or model recalibration is involved.
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2.1.4 Objective

The objective of this study was to investigate and compare the usefulness of the

aforementioned five approaches, namely EPO, DS, GMM, SB and SWM, in enabling

VisNIR dry ground models to be applied directly to moist soil spectra to predict selected

soil properties. Soil OC and inorganic carbon (IC) are the focus of this research, which is

important for the development of in situ VisNIR-based soil sensors.

2.2 MATERIALS AND METHODS

2.2.1 Soil samples, VisNIR spectral measurement and sample rewetting

Soil samples used in this study were in an air-dry ground condition (<2.0 mm) and

obtained from the soil archive at the Kellogg Soil Survey Laboratory of USDA-NRCS.

Three hundred and fifty-two samples were selected considering two criteria. First, the

samples should originate from Nebraska, USA. Second, they should represent the full

range of soil OC in the archive from a 20-stratum stratified random sampling. The selected

samples were then divided into two subsets: the dry ground set (n=185) and the rewetting

set (n=167). Samples in the dry ground set were scanned once only in the dry ground state.

An ASD LabSpec® spectrometer with a mug light (Analytical Spectral Devices, Boulder,

Colorado, USA) was used for soil scanning. The spectrometer has a spectral range from

350 to 2500 nm and a spectral sampling interval of 1 nm. Samples were placed in petri

dishes for scanning. A Spectralon® panel (Labsphere Inc., North Sutton, NH, USA) was

also set up in a petri dish and used as the white reference. Each spectrum was obtained

from an average of 100 instantaneous internal scans. The spectral range from 350 to 499

nm was removed from data analysis because of the considerable noise in these wavebands.

Samples in the rewetting set were scanned at eight different moisture contents and

in the dry ground state. First, a soil rewetting experiment was carried out on all rewetting

samples; the procedure was as follows. The samples were divided into four individual
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batches consisting of 35, 46, 46 and 40 samples for easy handling. For each sample in

batch one, approximately 10 g of soil was placed in a petri dish and the VisNIR spectrum

was obtained (this is the dry ground scan). This was followed by adding a known amount

of deionized water to achieve a moisture content of ∼33% (dry basis, gravimetric). The

petri dish was then covered with a glass lid for ∼24 hours to allow homogenization of the

moisture within the sample. Then the sample was weighed and scanned, and the petri dish

was uncovered to facilitate moisture loss. When the sample reached the next desired

moisture content, the petri dish was again covered with the lid for 24 hours (for moisture

homogenization within samples), followed by scanning and weighing for the second

moisture content. This step was repeated to obtain scans at eight different moisture

contents. The same procedure was applied to other batches, except that 15 g of soil was

used for each sample for better control of the moisture content. Almost the same moisture

contents were maintained for all batches; the average moisture contents were 33, 29, 25,

21, 17, 13, 10, 8% and air dry. All moisture contents were calculated as dry basis adjusted

by the ADOD (air-dried weight/oven-dried weight) value of each sample. For the rewetted

samples, ADOD values ranged from 1.002 to 1.082, with an average of 1.027.

2.2.2 Data subsets and analysis

The entire dataset was divided into three subsets for data analysis as follows.

2.2.2.1 Dry ground data set (S0)

This set consisted of 185 samples that were scanned in their dry ground state. It was used

to develop the initial dry ground VNIR model.

The rewetted samples (n=167) were divided into two subsets.
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2.2.2.2 Transformation data set (S1)

This set consisted of 100 rewetted samples. The number of spectra in S1 is 900 (water

contents 33, 29, 25, 21, 17, 13, 10, 8% and air dry). This set was used to develop

transformations for the five different approaches (e.g. EPO transformation matrix P or DS

transformation matrix F).

2.2.2.3 Test data set (S2)

This set consisted of the remaining 67 rewetted samples. The number of spectra in S2 is

603. This set was used for independent validation of the five approaches under study. The

summary statistics of soil OC and IC in the different subsets are given in Table 2.1.

Table 2.1. Summary statistics of soil organic carbon and inorganic carbon in the three
subsets (S0, S1 and S2) in this study.

Soil Property

S0 S1 S2

Number of samples (n) 185 100 67
Number of scans (N) 185 900 603

Organic C (%)

Minimum 0 0.1 0
Median 0.8 1.4 1.1
Maximum 6.2 6.5 5.7
Interquartile range 1.2 1.3 1.5
Kurtosis 7.2 4.9 7.6
Skewness 1.9 1 2
Shapiro-Wilk statistic 1.1×10-14 1.6×10-7 2.8×10-6

Inorganic C (%)

Minimum 0 0 0
Median 0.1 0.1 0.1
Maximum 3.8 1.9 3.9
Interquartile range 0.3 0.2 0.8
Kurtosis 11.5 14.1 5.1
Skewness 2.8 3.1 1.9
Shapiro-Wilk statistic 2.2×10-16 1.4×10-9 8.6×10-7
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2.2.3 Analyses to link dry ground and moist spectra

Below we describe the procedures of the five approaches (EPO, DS, GMM, SB and

SWM) mentioned above; their flow charts are given in Figure 2.1.

First, the dry ground dataset S0 was used to calibrate a partial least squares

regression (PLSR) model (correlated soil OC and IC with the dry ground spectra), which

was used to predict the test dataset (S2) at different moisture contents (dry ground

prediction). Because no effort was made to correct for the effect of moisture, dry ground

prediction is expected to be a weak predictor and it was used as a baseline against which

other predictions were compared.

For EPO, the transformation set S1 was used to develop an EPO transformation

matrix P. The dry ground spectra in S0 were then transformed with the matrix P, and the

transformed spectra were used to calibrate an EPO model. Matrix P was also applied to

the moist spectra in S2, which has eight different moisture contents. The EPO model was

then applied to EPO-transformed S2 spectra to predict soil OC and IC at the different

moisture contents. Figure 2.1(a) shows the EPO modeling and validation procedure. Due

to its complexity and importance, a summary of the mathematical procedure (Figure 2.2)

is given below. The details can be found in Roger et al. (2003).

External Parameter Orthogonalization assumes that spectra matrix X can be

decomposed into two systematic components: a useful component XP and a parasitic

component XQ, as indicated in Eq. 2.1. R is the noise component originated from lack of

fitting.

X = XP+XQ+R (2.1)

The procedure to find XP is through spectra matrix D, which is the difference

between the spectra matrix with and without external influence. Q is estimated through

singular value decomposition of D, and XP is then calculated as X(I−Q); I is the identity
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Figure 2.2. Implementation of external parameter orthogonalization (EPO) transfor-
mation with the model-coupled-Cross Validation (model-coupled-CV) and Wilk’s Λ

method. The matrix symbols drawn in the figure are for the understanding of matrix
operations in the EPO procedure.

matrix.

One of the most important parameters to be determined during EPO development

is the number of EPO components g (the same notation as in Roger et al. (2003) and

Minasny et al. (2011); Ge et al. (2014) used c for the same meaning). Roger et al. (2003)

suggested two methods to determine g: (1) Cross validation of PLS calibration on

transformed spectra S1* (PLS-CV); and (2) calculating Wilk’s Λ of the transformed

spectra S1* as:

Wilk′s Λ =
Trace(B)
Trace(T)

(2.2)

where T is the variance-covariance matrix of the EPO transformed spectra S1*,

and B is the variance-covariance matrix of S1* aggregated by sample (i.e., averaging

across all moisture levels for each sample).

For DS, two different implementations were carried out. In the first (referred to as
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moisture-explicit DS), the dataset S1 was used to develop eight DS transformation

matrices that corresponded to each moisture content. The moist spectra of S2 were then

transformed to a dry ground state by the corresponding transformation matrix. The dry

ground model was then applied to the DS-transformed spectra to predict OC and IC of the

S2 samples at each moisture content. In the second implementation (simply referred to as

DS), we created a new set of data (n=100, N=100) by randomly selecting one moisture

content from each sample in S1. This set of scans was used to compute an overall DS

transformation matrix, which was then used to transform all moist spectra in S2. The

rationale for the moisture-explicit DS is that the spectra at different moisture contents

should be treated as different ‘secondary’ states. For field samples, however, soil moisture

content will not be known explicitly. This renders moisture-explicit DS impractical.

Therefore, an investigation of overall DS transformation with all moisture contents

involved is needed and more practically valuable. In Ji et al. (2015), DS was implemented

in the second way. Figure 2.1(b) shows the procedure for moisture-explicit DS and DS.

The GMM does not involve spectral transformation as in EPO and DS. Instead,

the S1 and S0 datasets were combined and a global model (in terms of the variation in

moisture) was calibrated with the combined set to account for the variation in moisture in

the spectra. The global model was then applied directly to S2 to predict OC and IC at

different moisture contents. Figure 2.1(c) shows the flow chart of GMM modeling and

validation.

The SB method does not involve spectral transformation either. Instead, the

predictions are corrected. First, the dry ground model was used to predict OC and IC of

the S1 spectra at different moisture contents. Eight different SB corrections that represent

the linear relation between the predictions in the dry state and each moisture state were

developed. The dry ground model was then used to predict OC and IC for S2 at different

moisture contents and the predictions were corrected with the SB corrections at each

moisture content. Figure 2.1(d) shows the procedure used for SB correction.
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For SWM, first we calculated the first derivative of soil spectra at the selected

wavelength ranges: 800–1400, 1600–1700, 2100–2200 and 2300–2500 nm (Wu et al.,

2009). An SWM model was then calibrated with the S0 samples, and then applied to all

moist spectra in S2. Dataset S1 was not used in this approach. Figure 2.1(e) shows the

modeling procedure.

Partial least squares regression (PLSR) was used for the calibration of all models.

The sizes of the PLSR models were determined by selecting the number of PLSR factors

that gave the first local minimum in the root mean squared error of cross-validation

(RMSECV) with 25 random segments. The coefficient of determination (R2), root mean

squared error of prediction (RMSEP), ratio of performance to interquartile range (RPIQ,

Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, and McBratney, 2010) and bias

were used to compare the performance of the five moisture correction approaches. The

RPIQ was used instead of the ratio of performance to deviation (RPD) because the data

subsets had non-normal distributions (Table 2.1). Data analysis was carried out in the R

statistical environment (R Core Team, 2018) with the pls (Mevik, Wehrens, & Liland,

2013), gnm (Turner & Firth, 2015), psych (Revelle, 2015) and ggplot2 (Wickham, 2009)

packages.

2.3 RESULTS AND DISCUSSION

2.3.1 Comparison of the five approaches to account for moisture effect

The initial dry ground model developed from S0 for OC had a cross-validation R2 of 0.59

and RMSECV of 0.74%. For IC, the model had an R2 of 0.71 and RMSECV of 0.33%.

Table 2.2 summarizes the accuracy of prediction of soil OC and IC for the five

moisture correction approaches. The result for no moisture correction is also given in

Table 2.2. The statistics were calculated by combining all eight moisture contents.

Prediction for dry ground spectra is not included in this comparison because the purpose is

to compare the performance of each approach for moist spectra prediction.
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For soil OC, EPO, moisture-explicit DS, DS and GMM increase R2 from almost 0

to greater than 0.55 and increase RPIQ from 0.38 to more than 1.7 (Table 2.2). The largest

accuracy was obtained by GMM with an R2 of 0.61 and RPIQ of 1.91. The model

improvements for these four approaches are related mainly to two factors. First, there is a

large increase in the linear correlation between model-predicted and laboratory-measured

OC (increase in R2). Second, there is an appreciable decrease in the systematic bias of

prediction that is caused by the presence of moisture (decrease in RMSEP and bias). The

improvements produced by SB for the prediction of OC are marginal only. There appears

to be no improvement in the linear correlation between the predicted and measured

variables (R2 remains small, 0.02) (Table 2.2). However, both bias and RMSEP decrease

substantially and RPIQ increases, which suggest that SB does partially account for the

systematic prediction bias caused by soil moisture. The SWM method fails completely; its

R2, RMSEP, RPIQ and bias are similar to those for no correction.

For soil IC, the dry ground model applied directly to the moist scans achieved an

R2 value of 0.62, which suggests a strong linear relation between predicted and measured

IC (Table 2.2). The small RPIQ value (0.53), however, indicates poor model performance,

which arises from the systematic bias of prediction caused by moisture. For this reason,

the improvement in R2 after EPO, moisture-explicit DS, DS and GMM correction is quite

marginal (R2 for GMM even decreases slightly). However, all of these approaches

improve the RMSEP, bias and RPIQ, which suggests that the systematic bias in prediction

was effectively removed from the original dry ground model. Table 2.2 shows that the

prediction of soil IC by the SB and SWM approaches is better than that of OC, but to a

lesser extent than for the other four approaches.

Figure 2.3 shows the scatterplot of measured against predicted OC with no

correction and with GMM correction for the eight moisture contents. Similarly, Figure 2.4

shows the scatterplot of measured against predicted IC with no correction and

moisture-explicit DS correction. These plots illustrate how moisture correction improves



35

prediction at all moisture contents in terms of R2, RMSEP, RPIQ and bias.
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Figure 2.3. Scatterplots of soil organic carbon (OC) prediction at eight different mois-
ture contents: (a) no correction and (b) global moisture modeling (GMM). The solid
line is the 1:1 line.

Overall, EPO, moisture-explicit DS, DS and GMM improved predictions of both

soil OC and IC at various moisture contents. Slope bias correction provides a marginal

improvement in prediction for both soil properties, and there is also a marginal

improvement for the prediction of soil IC with SWM but it fails for soil OC prediction.

This result is not surprising because, as stated above, the effect of moisture on soil VisNIR

spectra is nonlinear and complex.

External parameter orthogonalization, moisture-explicit DS, DS and GMM

involve some form of transformation of spectral matrices or model recalibration, or both.

Therefore, the complex effect of moisture on soil spectra and modeling can be accounted

for better. Slope bias correction, however, uses only simple linear corrections of predicted

variables that are clearly not adequate to account for the complex and nonlinear effect of

soil moisture. Our results accord with those of Minasny et al. (2011) and Ji et al. (2015),
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Figure 2.4. Scatterplots of soil inorganic carbon (IC) prediction at eight different
moisture contents: (a) no correction and (b) moisture-explicit direct standardization
(moisture-explicit DS). The solid line is the 1:1 line.

who applied EPO and DS, respectively, to predict soil OC in the presence of soil moisture.

2.3.2 Comparison between EPO, moisture-explicit DS and DS

Ji et al. (2015) was the only paper in the literature that compared DS with EPO, and they

found that DS was marginally superior to EPO for soil organic matter. Our result also

shows that for OC, EPO and DS perform similarly well; for IC, DS is slightly better than

EPO. Originally, we thought that moisture-explicit DS would outperform EPO and DS

because eight different transformation matrices were developed for this method, each

dedicated to correcting for one moisture content, whereas in EPO and DS only one

transformation matrix is developed for all moisture contents. To our surprise, however,

moisture-explicit DS performed the same for OC and was just slightly superior for IC (in

terms of RMSEP, RPIQ and bias). It seems that this method does not require

moisture-specific correction.
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Figure 2.5 illustrates transformations by EPO, moisture-explicit DS and DS. The

first row shows the spectra of a randomly selected soil sample scanned at different

moisture contents. The middle row shows the transformation matrices and the bottom row

the transformed spectra. Note that there are eight moisture-explicit DS matrices; only one

example of the transformation matrix (for 21% moisture content) is shown in Figure 2.5.

0.2

0.4

0.6

500 1000 1500 2000 2500
Wavelength /nm

R
ef

le
ct

an
ce

0.2

0.4

0.6

500 1000 1500 2000 2500
Wavelength /nm

R
ef

le
ct

an
ce

0.2

0.4

0.6

500 1000 1500 2000 2500
Wavelength /nm

R
ef

le
ct

an
ce

−0.05

0.00

0.05

0.10

500 1000 1500 2000 2500
Wavelength /nm

R
ef

le
ct

an
ce

(a)

0.1

0.2

0.3

0.4

0.5

0.6

500 1000 1500 2000 2500
Wavelength /nm

R
ef

le
ct

an
ce

(b)

0.1

0.2

0.3

0.4

0.5

0.6

500 1000 1500 2000 2500
Wavelength /nm

R
ef

le
ct

an
ce

(c)

0.2

0.4

0.6

500 1000 1500 2000 2500
Wavelength /nm

R
ef

le
ct

an
ce

MC % 33 29 25 21 17 13 10 8 Dry

Figure 2.5. Spectral transformation at different moisture contents by: (a) exter-
nal parameter orthogonalization (EPO), (b) moisture-explicit direct standardization
(moisture-explicit DS) and (c) direct standardization (DS). There are eight moisture-
explicit DS transformations, one for each moisture content; the transformation ma-
trix at 21% moisture content is shown in (b). The first row indicates the spectra at
different moisture contents before spectral transformation. The second row shows the
transformation matrices. The third row illustrates the spectra after transformation
at different moisture contents.

There are a few important points to note from Figure 2.5. First, EPO,

moisture-explicit DS and DS all reduce within-sample variation in VisNIR spectra caused

by differences in moisture content. This can be seen in the transformed spectra, which

have much less variation than the original spectra. Second, EPO, moisture-explicit DS and
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DS use different methods for moisture correction. The EPO transformation matrix (Figure

2.5a) appears to be quite different from the moisture-explicit DS (Figure 2.5b) and DS

transformation matrices (Figure 2.5c). The EPO-transformed spectra have a different

spectral shape, and the magnitude of reflectance values has decreased. This is why a

model-recalibration step is needed for EPO. Moisture-explicit DS and DS, on the contrary,

strive to match the moist spectra at different moisture contents to the dry ground spectrum.

Therefore, the original dry ground model is still valid, and no model recalibration is

needed. Finally, the transformation matrices of moisture-explicit DS and DS appear to be

similar, but they have quite different values for the matrix elements, and their transformed

spectra deviate little from the original dry ground spectra. This supports the result in Table

2.2 that DS can be effective in moisture correction and provide substantial improvements

in the prediction of soil OC and IC.

2.3.3 Comparison of the results of moisture correction at different moisture contents

In Table 2.2, EPO, moisture-explicit DS, DS and GMM show the potential to be able to

correct for the moisture effect on soil VisNIR spectra and improve the prediction of soil

OC and IC. A further question that arises is, do these moisture correction approaches

perform equally well for different moisture contents? In other words, for two groups of

soil samples, one with large and one with small moisture content, can these approaches

make the correction equally well and predict with comparable accuracy? This is important

because in the field the moisture content of the soil will vary. A satisfactory approach to

moisture correction should show no bias in relation to the soil’s moisture content. Table

2.3 summarizes the performance of EPO, moisture-explicit DS, DS and GMM at the eight

moisture contents for the prediction of OC.

Table 2.3 shows that for EPO there is a consistent decrease in the accuracy of

prediction for OC with the increase in moisture content in the samples (expressed by a

continuous decrease in R2 and RPIQ, and an increase in RMSEP). The accuracy of
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prediction with DS also depends in general on moisture content. The accuracy decreases

appreciably when moisture content is larger than 17%. On the other hand,

moisture-explicit DS shows no clear trend in the accuracy of prediction for various

moisture contents; the model statistics fluctuate with the increase in moisture content.

This is not surprising because again moisture-explicit DS develops one transformation

matrix for each moisture content. Finally, GMM seems to be quite insensitive to the

moisture content of the sample sets; R2, RMSEP and RPIQ remain stable with the increase

in moisture content, but there is a slight increase in bias (absolute value).

Table 2.4 summarizes the accuracy of prediction of soil IC by EPO,

moisture-explicit DS, DS and GMM at the eight moisture contents. Again, prediction

accuracy of EPO depends strongly on moisture content; there is a consistent decrease in

R2 and RPIQ and increase in RMSEP and bias (absolute value) as moisture content

increases.

Moisture-explicit DS does not show a clear trend in the accuracy of prediction

with moisture content. Direct standardization differs from other approaches. The R2

values remain quite stable and there is a substantial decrease in RMSEP and bias with the

increase in moisture. This leads to a substantial increase in RPIQ and therefore in the

model’s prediction performance. This is the only example in the study where there is an

increase in the accuracy of prediction with the increase in moisture. Lastly, GMM shows a

consistent but only small decrease in the accuracy of prediction as moisture content

increases.

For prediction of both soil OC and IC, moisture-explicit DS and GMM appear to

be the best approaches for moisture correction because their predictions depend little on

moisture content. The correction and accuracy of prediction by EPO for both soil

properties was superior to the previous two methods at smaller moisture contents (8 and

10%), but they decline when the moisture content increases. This suggests that EPO might

not bring adequate correction for spectra with large moisture contents.
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2.3.4 Practical considerations: field implementation of the moisture correction ap-

proaches

There are three essential components for a viable VisNIR-based proximal soil sensing

system. First, high quality soil (dry ground) spectral libraries are required that can be used

to predict an array of soil properties (such as texture and carbon forms) accurately.

Second, robust and flexible designs are needed that can acquire high quality VisNIR

spectra of soil surfaces (or along soil profiles). Third, there must be effective methods that

can link field moist scans to the dry ground spectral libraries in the laboratory. Although

there has been considerable advancement in the literature on the first two aspects above,

effective moisture correction approaches for soil VisNIR modeling have not been

investigated thoroughly. This is a major stumbling block for in situ VisNIR technology,

and this study fills that gap by comparing various moisture correction approaches to

predict soil OC and IC at different moisture contents.

We now consider how a VisNIR-based in situ soil sensor would work in the field.

The sensor will collect soil VisNIR spectra on-the-go in natural, field moist conditions.

The sensor’s software will be equipped with two major components: (i) dry ground

spectral libraries and calibration models for targeted soil properties and (ii) a suitable

moisture correction approach (EPO, DS or GMM). The sensor software can then convert

soil VisNIR spectra to the targeted soil properties in real time.

In this context, the moisture content of field samples is not known a priori. This

would preclude the moisture-explicit DS approach because we do not know which DS

transformation should be selected. On the other hand, EPO, DS and GMM would be

useful because they use one transformation or model recalibration for all (unknown)

moisture contents.

Another practical concern is the effort and labor needed to acquire soil samples at

different moisture contents for the implementation. We created our moist set by rewetting

archive soil samples to obtain a few predetermined moisture contents. Alternatively,



43

others have used moist samples from the field; there is evidence that the correction done in

this way also works for EPO (Ge et al., 2014) and DS (Ji et al., 2015). There are

differences between using the archive and actual field samples, both with their respective

advantages and disadvantages. In addition to moisture, natural aggregation also affects

soil VisNIR spectra and the prediction performance of dry ground models (Ge et al.,

2014). The use of actual field samples might provide the opportunity to correct for this

factor also (possibly implicitly through EPO or DS). The acquisition of VisNIR spectra for

field samples (either by transporting a VisNIR spectrometer to fields or by carefully

preserving the natural state of samples to scan in the laboratory) may, however, be

challenging logistically. Rewetted archive samples do not involve fieldwork, and the

researchers can have more control over the targeted moisture contents and soil properties

to improve the performance of moisture correction algorithms.

Regardless of the methods being used, there are two critical questions that need to

be addressed in future research. The first is: are the moisture correction approaches

investigated in this study transferable? Can transformations developed in one scenario be

used in another, for example a different field, geographic region or soil type? This is the

key for the development of a universally functional moisture correction algorithm for the

VisNIR-based soil proximal sensor. The second question is: what is the optimal

proportion of moist samples required in relation to the dry ground library to achieve good

moist correction? In our study, the correction set has 100 samples (with 8 moisture levels)

in relation to a dry ground sample set of 185. An answer to this question would minimize

the effort and time needed to develop adequate moisture correction transformations.

2.4 CONCLUSIONS

Moisture correction is an essential component of the development of VisNIR-based

proximal soil sensors if the existing dry ground soil spectral libraries and calibration

models are to be used. We found that EPO, moisture-explicit DS, DS and GMM corrected



44

for the moisture effect successfully and increased substantially the accuracy of prediction

for both soil OC and IC in this research, whereas SB and SWM were not successful.

Global moisture modeling and moisture-explicit DS showed a consistent correction

performance across different moisture contents, which is desirable for field samples.

Although moisture-explicit DS had larger prediction accuracy overall, its use in the field

would be limited because the moisture content of field samples is not known a priori. Any

of the other three approaches can be integrated with the VisNIR-based soil proximal

sensor for real-time moisture correction and soil property determination. Two future

research directions include (i) the investigation of a universally functional moisture

correction algorithm for the VisNIR-based soil proximal sensor and (ii) the optimal

proportion of moist samples required in relation to the dry ground library to achieve good

moisture correction.
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CHAPTER 3

DESIGN, DEVELOPMENT, AND LAB TESTING OF A VISNIR
OPTICAL PROBE FOR SOIL SENSING

3.1 INTRODUCTION

3.1.1 Soil sensing technologies

The demands for spatially explicit, high resolution 3D soil data are increasing for many

disciplines such as precision agriculture, hydrological and ecological modeling, climate

modeling, and land resource management. Digital soil mapping is a successful

sub-discipline of soil science where traditional and modern soil measurement and

inference methods are used in a holistic framework to provide 3D quantitative soil data

across different scales (Minasny & McBratney, 2016).

Several modern techniques are available that can characterize the horizontal

variation of soils effectively. These techniques include aerial and satellite remote sensing

(Barnes et al., 2003; Ben-Dor, 2002), on-the-go (in-situ) soil sensors (Adamchuk et al.,

2004), apparent electrical conductivity/resistivity (Corwin & Lesch, 2003), ground

penetrating radar (Davis & Annan, 1989), and γ-ray sensors (Triantafilis, Gibbs, & Earl,

2013). They are now widely used to produce high resolution soil maps that capture lateral

variability. On the other hand, technologies to characterize soil profiles without pulling a

soil core or opening a soil pit are still limited (Hartemink & Minasny, 2014). While

technologies like soil apparent electrical conductivity do sense soil to a certain depth, they

return a signal that is a weighted integration of the profile and are not capable of providing

layered information directly.
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3.1.2 VisNIR technology for vertical soil sensing

Visible and near infrared reflectance spectroscopy (VisNIR) has a few advantages that

make it a viable technology for in situ soil sensing in general and high resolution vertical

soil sensing in particular: (1) the non-contact nature of interactions between VisNIR

electromagnetic energy and soils, (2) ease of miniaturization for a VisNIR sensing probe,

and (3) the ability to interrogate multiple soil properties from one scan. There have

already been a number of reports on the development and application of in situ VisNIR

sensors for surface (lateral) soil mapping (Bricklemyer & Brown, 2010; Christy, 2008;

Kodaira & Shibusawa, 2013; Mouazen et al., 2007).

Several authors conducted studies where soil cores were collected and scanned in

the lab at fine vertical resolution to obtain“simulated” in situ soil profile sensing. Hummel

et al. (2001) collected 48 cores from Illinois and soil samples (at 2.5 cm increment from

the cores) were scanned at six moisture levels to predict soil organic matter and moisture.

Waiser et al. (2007) and Morgan et al. (2009) conducted simulated profile characterization

of clay and soil organic and inorganic carbon, respectively, with the 72 soil cores collected

from Texas. Doetterl, Stevens, Van Oost, and van Wesemael (2013) collected 151 soil

cores from central Belgium and demonstrated the simulated high vertical resolution (3

cm) soil organic carbon assessment with VisNIR. While these are not true in situ sensing,

they establish the technical feasibility and demonstrate the potential of a VisNIR-based

vertical sensing system.

Demonstrations of in situ vertical soil sensing are only sporadically reported in the

literature. Ben-Dor et al. (2008) described a custom-made spectral head device that can

penetrate into the subsoil to measure VisNIR reflectance along the profile after a hole is

drilled. Wetterlind et al. (2015) and Veum et al. (2018) tested a commercial Veris® P4000

probe (Veris® technologies Inc., Salina, Kansas, USA) for the measurement of soil texture

and organic matter along the soil profile. One limitation of this system is that it employs a

spectrometer with lower spectral resolution, which makes it incompatible with soil spectra
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and libraries generated elsewhere. Poggio et al. (2015) evaluated the optical performance

of a newly developed VisNIR foreoptic in the lab. They scanned 389 milled and pressed

surface and subsurface samples with the new VisNIR foreoptic and an ASD’s contact

probe (Analytical Spectral Devices formerly, now Malvern Panalytical Inc., Boulder, CO).

Their main objective was to quantify the potential performance degradation of the VisNIR

foreoptic compared to an ASD contact probe.

Different from other direct sensing mechanisms, VisNIR relies on multivariate

calibration models to convert spectral measurements to target soil properties. In almost all

previous studies, a significant portion of the field samples (usually more than 50%) were

lab analyzed for model calibration. While this is justifiable for research, in real

applications analysis of field samples should be kept at minimum. A more practical and

economical approach is to use the calibration models from the existing VisNIR soil

spectral libraries. This brings two issues that should be carefully evaluated. Because in

situ VisNIR sensors will have different measurement geometry and operation condition

compared to a lab-based system (for example using a bench-top spectrometer and

scanning accessories), the first question is how the two sets of spectra (even for identical

samples) are different from each other. The second question is whether it is possible to

correct for this apparent difference between them so that VisNIR models calibrated on the

lab-based spectral libraries can be applied to in situ scans to predict target soil properties.

3.1.3 Objective

We developed a new optical probe that is designed to measure VisNIR reflectance from

soil profiles. Our long-term goal was to develop a VisNIR equipped soil penetrometer

system for in situ high resolution vertical soil sensing. The specific objective of this study

was to evaluate the performance of this new VisNIR probe in terms of its spectral quality

and predictive power using an external spectral library. Our particular effort was to

investigate whether the prediction performance of the VisNIR probe can be improved via
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two strategies: calibration transfer (direct standardization) and sample spiking (i.e. adding

probe scans to model calibration dataset).

3.2 MATERIALS AND METHODS

3.2.1 VisNIR optical probe

Two VisNIR probes were developed to be tested in this study to find the design with

minimum noise and internal scattering. First probe (D1) consisted of a bifurcated cable

with an angled ferrule and the light source outside; while the second probe (D2) consisted

of a broad-spectrum light source (a halogen lamp) and a 45° parabolic reflective mirror

inside (Figure 3.1). The probe had an outside diameter of 31.8 mm (1.25 in.). The wall of

the penetrometer has a 12.8 mm (1/2 in.) aperture sealed with a 1-mm thick fused silica

window. A custom designed cone tip is connected to the bottom of the penetrometer; and

the top end was machined with threads so that it can be connected to a hydraulic press.

The VisNIR probe was designed with the goal of coupling with a commercial

spectrometer (ASD Labspec, Analytical Spectral Devices formerly, now Malvern

Panalytical Inc., Boulder, CO) by which majority of soil spectra are collected, but can also

be coupled with spectrometers from other manufacturers.

3.2.2 Soil samples and datasets

The spectral library we used to build calibration models for assessing the performance of

the VNIR probe is from the Rapid Carbon Assessment (RaCA) Project (Wills et al.,

2014). RaCA is a national-wide effort to capture the baseline soil carbon stocks across the

conterminous U.S. A subset of RaCA samples from RaCA Region 5 was used. This gave

us a total of 1595 samples, all having the full characterization of Organic Carbon (OC),

Total Carbon (TC), and Total Nitrogen (TN), as well as the VNIR reflectance spectrum.

The VisNIR spectra were collected with an ASD LabSpec® spectrometer and its

MugLite® accessory in the lab setting.
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Figure 3.1. Designed VisNIR optical probes. The first design (D1) consisted of a bifur-
cated fiber optic cable with an angled ferrule, the second design (D2) had a straight
ferrule, 45° mirror and a halogen lamp inside.
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One hundred and fifty air-dried, ground and sieved (<2 mm) soil samples archived

at the National Soil Survey Center of USDA-NRCS were extracted and used for the

performance assessment of the VisNIR probe. Three criteria were used for sample

selection from the archive. First, the geographic region of the samples is Nebraska, USA.

This matches RaCA Region 5 of the soil library we are using. Second, the samples have

the measurement of OC, TC, and TN (again, to be consistent with the library). Since OC

is an emphasis property, the third criterion is to select the samples representing the full

range of OC in the archive through a 20-stratum stratified random sampling.

These 150 samples were further divided into two sets using the Kennard-Stone

algorithm (Kennard & Stone, 1969): Group A and B. Group A has 50 samples and was

used for two different purposes: (1) to develop a spectral transfer by direct standardization

(DS) to match the spectra of the VNIR probe with those of the ASD MugLite®

(Analytical Spectral Devices formerly, now Malvern Panalytical Inc., Boulder, CO), and

(2) to spike the library for calibration model development. Group B has 100 samples and

was used for model validation and performance assessment. Table 3.1 gives the summary

statistics of OC, TC, and TN for the library, Group A, and Group B, as well as the spectral

measurements acquired for each set.

3.2.3 VNIR probe testing and modeling

The testing of VisNIR probes was conducted at the Kellogg Soil Survey Laboratory of

USDA-NRCS and Figure 3.2 shows the experimental setup. Probes were mounted on a

table with the viewing aperture pointing upwards using a vise clamp to hold their position

and orientation tightly. Since D2 used a halogen lamp as the light source, a DC power

supply was used to provide a constant 1.0 ampere electric current with approximate 3.8 V

supply voltage. For D1, SLS201 - compact stabilized broadband light source (Thorlabs

Inc., Newton, New Jersey, USA) was used as the light source. Reflected light energy from

the probe was acquired by an ASD LabSpec® spectrometer (Analytical Spectral Devices
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Table 3.1. Summary statistics of the soil properties for the library and the local set
(Groups A and B) used in the lab testing of the VisNIR probe.

Dataset No. of samples Spectra mea-
sured by

Soil
property

Min. Median Mean Max.

Library
a

1595 MugLite®
OC

b
(%) 0 0.93 1.48 39

TC
c
(%) 0 1.21 1.84 39

TN
d
(%) 0 0.12 0.17 3.09

Group A 50
MugLite®

& VisNIR
probe

OC
b
(%) 0 0.55 1.00 5.5

TC
c
(%) 0 1.06 1.32 5.52

TN
d
(%) 0 0.09 0.14 0.73

Group B 100 VisNIR probe
OC

b
(%) 0 0.94 1.17 9.01

TC
c
(%) 0 1.03 1.30 10.7

TN
d
(%) 0 0.12 0.14 0.77

aThe library contains the samples from RaCA Region 5 of the Rapid Carbon Assessment
Project; bRoot Mean Squared Error of Prediction; cRatio of Performance to Deviation;
dPartial Least Squares Regression

formerly, now Malvern Panalytical Inc., Boulder, CO) through the fiber optical bundle.

Pucks with soil samples were then placed on the top of the viewing aperture of the probe

for scanning. This configuration is similar to standard soil spectra acquire by ASD

MugLite® (Analytical Spectral Devices formerly, now Malvern Panalytical Inc., Boulder,

CO) attachment where light goes through two layers of fused silica windows between the

samples and the receiving fiber optics. However, this is slightly different from the

intended field application since there will only be one layer of silica window (only the

window of the probe).

The selected 150 soil samples (groups A and B in table 3.1) were scanned by both

D1 and D2 probes while the samples from group B (table 3.1) were scanned with the

standard MugLite® attachment as well. A standard Spectralon® panel with 99%

reflectance (Labsphere Inc., North Sutton, NH, USA) was used as the white reference in

10-minute intervals to ensure proper calibration of the spectrometer. Additionally, a

standard dark reference panel with 2% reflectance (Labsphere Inc., North Sutton, NH,

USA) was used to acquire the internal light back scattering of the probes. All acquired
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(a) (b)

Figure 3.2. Laboratory experimental setup for the testing of the VisNIR probes. (a)
shows the optical probe attached to the clamp and (b) shows the puck on the optical
probe being scanned.

spectra from D1 and D2 were corrected as shown in equation 3.1.

RDRC =
Es−EDR

EWR−EDR
(3.1)

where RDRC is the dark reference corrected (DRC) reflectance of the sample, Es is

the reflected energy by the sample, EDR is the reflected energy by the dark reference panel

and EWR is the reflected energy by the white reference panel.

We used only the 400–2500 nm wavelength range to avoid noise observed in the

350-399 nm range and the spectra were preprocessed by Savitzky-Golay smoothing with

3rd order polynomial and 11 nm window prior to the data analysis. Three types of VisNIR

models were calibrated. The first type of models was built from the library samples only

(n = 1595). The second type of models were built from the library samples spiked by the

VisNIR probe scans of the samples in Group A (n = 1595 + 50). The third type of models

was similar to the second type except that extra weight was given to the spiking sample in

Group A. In our case, the samples in Group A were replicated 31 times and added to the

library for model calibration (n = 1595+50×31). Guerrero et al. (2014) showed that

putting extra weight on the local spiking samples (that is, to add copies of the spiking set
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to achieve 50-50% composition of the final library) can improve the prediction of soil OC.

To test DS, we first developed a spectral transfer matrix F using the two spectral

sets of Group A by the VisNIR probe and the MugLite® using the equation 3.2.

F = (RGroupA,V NIRP)
−1× (RGroupA,MugLite®) (3.2)

where RGroupA,V NIRP is the reflectance spectra of Group A acquired by the VisNIR

probe; RGroupA,MugLite® is the reflectance spectra of Group A by the MugLite®. (·)-1

denotes matrix inversion.

In principle, this transfer matrix F characterizes and can account for the

systematic differences of the spectra acquired by the two systems. F was then used to

transfer the VisNIR probe scans of Group B with equation 3.3.

RGroupB,DS = RGroupB,V NIRP×F (3.3)

where RGroupB,V NIRP is the reflectance spectra of Group B acquired with the

VisNIR probe.

The first type model developed with the library samples only was applied to the

transferred spectra (RGroupB,DS) for prediction. DS is a standard NIR calibration transfer

method (Feudale et al., 2002) and has been successfully tested on soils (Ge et al., 2011).

All models were evaluated with the test set group B (n = 100), which was scanned by the

VNIR probe only.

Partial least squares regression (PLSR) is used for model calibration. The number

of latent factors (nLV) was allowed to vary from 1 to 30, and the size of a model was

selected for the nLV that gave the minimum RMSECV (Root Mean Squared Error of Cross

Validation) with 25 random segment cross-validation. Statistics including R2 (Coefficient

of Determination), Bias, RMSEP (Root Mean Squared Error of Prediction), SEP (Standard

Error of Prediction), and RPD (Ratio of Performance to Deviation) were calculated to
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assess different types of models for different soil properties.

All data analyses were performed in the R environment (R Core Team, 2018) with

the pls package for PLSR modeling (Mevik et al., 2013), caret as the modeling wrapper

(Max et al., 2015), doParallel for parallel processing (Revolution Analytics & Weston,

2015), ggplot2 package for graph generation (Wickham, 2009) and gnm for calculating

Moore-Penrose generalized inverse (Turner & Firth, 2015)).

3.3 RSULTS AND DISCUSSION

3.3.1 Comparison of D1 and D2

Figure 3.3 shows the spectrum of a sample obtained from D1, D2 and MugLite®.

−0.2

0.0

0.2

0.4

0.6

0.8

500 1000 1500 2000 2500
Wavelength (nm)

R
ef

le
ct

an
ce ML

D1
D2
DRC−D1
DRC−D2

Figure 3.3. Spectra obtained from VisNIR probe designs D1, D2, dark reference cor-
rected D1 (DRC-D1), dark reference corrected D2 and MugLite® (ML).

It can be seen in figure 3.3 that both D1 and D2 had systematic lower reflectance

throughout the entire wavelength range. This could be mainly attributed to the difference

in optical configurations between the MugLite® and the VisNIR probes. If the soil surface

acts as perfect Lambertian surface, both MugLite® and VisNIR probes should receive the
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same amount of energy at any viewing angle. However, since these soil surfaces are not

Lambertian and the viewing angles of the MugLite® and VisNIR probes are different,

VisNIR probes could intercept lower reflected energy compared to MugLite®. This type

of systematic deviations of spectra can be corrected using spectral treatment methods such

as direct standardization and piecewise direct standardization (Fearn, 2001; Feudale et al.,

2002; Ji et al., 2015; Wang et al., 1991).

Dark reference correction did not affect the spectra significantly, suggesting lower

internal scattering (<2%) in the VisNIR probes. According to Figure 3.3, it was evident

that D1 had higher noises at the beginning (400–499 nm) and end (2301–2500 nm) of the

wavelength range. This could be due to the optical characteristics of the custom-made

bifurcation cable with the angled ferrule used in D1 restricting sufficient energy

throughput at lower and higher wavelength regions. Unlike D1, D2 showed smooth

spectra analogous to MugLite® spectra throughout the whole wavelength range. This

suggests satisfactory optical configuration of D2 in comparison with MugLite®. Due to

the obvious high-quality spectra, only the spectra obtained from D2 were used for the

proceeding analysis. The D2 is hereinafter called as ‘VisNIR probe’ or ‘VNIRP’.

3.3.2 Qualitative Assessment of soil spectra acquired by the VNIR probe

We compared group B’s MugLite® scans, VisNIR probe scans, and VisNIR probe scans

transformed with the DS matrix F and the result is shown in Figure 3.4. Soil spectra

acquired by the VisNIR probe was very smooth compared to the MugLite® scans,

indicating that the VisNIR probe has a satisfactory optical configuration. The signal to

noise ratio of spectral readings at all wavelengths was quite high.

The VisNIR probe scans showed an overall reduction in reflectance across all

wavelengths. This was likely due to the difference in optical design and configurations

between the MugLite® and the VisNIR probe. Similar to the reduced amplitude, the

spectral variation of the VisNIR probe scans (spectral bounding box in Figure 3.4) was
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Figure 3.4. Qualitative assessment of the soil spectra of 15 samples from Group B
scanned by the MugLite® and the VisNIR probe (VNIRP), and the VNIR probe scans
transformed by direct standardization (VNIRP.DS). The bounding boxes are the max-
imum and minimum reflectance at each wavelength for the three sets.

also smaller than that of the MugLite® scans. This systematic shift in spectral

measurement can lead to poor prediction if the spectral library acquired by the MugLite®

is directly used for prediction. In this work we tried to use two approaches to account for

this systematic error. DS was the first approach, where a spectral transfer matrix F was

derived to account for this shift explicitly before applying the model. As can be seen in

Figure 3.4, the DS-transferred VisNIR probe spectra matched with the MugLite® spectra

very well (with the mean spectrum almost identical and the spectral variance windows

overlap significantly). The convex hull in the first two principal component space gave

even better visualization of how DS account for this spectral difference (Figure 3.5). The

second approach was sample spiking, where a portion of the samples scanned by the

VisNIR probe was added to the library for model calibration. In this approach, we relied

on multivariate modeling (PLSR in this study) to account for this spectral shift implicitly.



57

−2

−1

0

1

−6 −3 0 3
PC1

P
C

2 MugLite
VNIRP
VNIRP.DS

Figure 3.5. The convex hull of the three spectral sets in the first two principal com-
ponent space. The black convex hull encloses the scans by the ASD MugLite®; the
red convex hull encloses the scans by the VisNIR probe (VNIRP); the blue convex
hull encloses the VisNIR probe scans after Direct Standardization transformation
(VNIRP.DS).

3.3.3 Prediction performance of the spectra acquired by the VisNIR probe

Table 3.2 shows the prediction performances of the three VisNIR models (library only,

library & group A, and library & Group A with extra weight) tested on the scan sets in

Group B.

Per table 3.2, cross validation R2 of all three models for all three soil properties

were quite similar, indicating similar model performance. For OC and TC, the models

calibrated with library & Group A with extra weight showed significantly lower RMSEP.

This was because the ranges of these soil properties are much lower in group A than the

library. When extra weight was applied to combine with the library, that lowers the range

of the combined calibration set and therefore the lower model RMSEP (given the model

performance remains the same).

When the model calibrated with the library was directly applied to the VisNIR
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probe scans, the predictions were not quite satisfactory. The prediction R2 was high

(ranging from 0.74 to 0.81), meaning the linear association between the predicted and

measured values was strong. The main problem was the high prediction biases, which was

clearly linked to the systematic differences of the spectra acquired by the VisNIR probe

versus the MugLite® (Figures 3.4 and 3.5).

Direct standardization transform improved the prediction accuracy consistently for

all three soil properties. The improvement was substantial for OC (RDP from 1.16 to

1.95) and TC (RPD from 1.00 to 1.67) and marginal for TN (RPD from 1.57 to 1.65). In

comparing the model statistics, it was clear that DS removes the systematic prediction

biases, which were caused by the systematic differences of the spectra between the

VisNIR probe and the MugLite® (Figure 3.4). DS can partially remove this difference and

therefore reduce the prediction bias.

The results in Table 3.2 also suggested that spiking samples scanned with the

VisNIR probe was an effective approach to improve prediction accuracy. Even without

extra weight (50 Group A samples combined with 1595 library samples), the model

performance was greatly improved for all three soil properties (RPD from 1.16 to 1.76 for

OC, from 1.10 to 1.89 for TC, and from 1.57 to 1.91). Similar to DS, the improvement

primarily came from the decrease in prediction bias whereas the R2 values (indicating the

linear association between measured and predicted values) remain quite constant. Giving

extra weight to the spiking samples can further improve the prediction accuracy (RPD of

2.38, 2.37, and 2.15 for OC, TC, and TN, respectively). This is to be expected since extra

weighing incorporates the effect of foreoptic differences into the calibration dataset more

effectively allowing the modeling technique to rectify for it. Augmenting the local

samples with extra weight makes the local sample to carry almost the same weight as the

library samples (given the fact that the number of samples in a library is much high than

the spiking set). In our case, we replicated the spiking set 31 times to achieve a nearly 1:1

ratio. The result showed this almost completely removes the prediction bias (-0.06, -0.01
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and 0.01% for OC, TC, and TN, respective) and thus improved the prediction

substantially.

Figure 3.6 shows the prediction plots of OC for Group B samples with the

different models. This figure provides readers with the information on how the measured

vs. predicted OC points scattered around the 1:1 line. Although not shown here, TC and

TN showed similar patterns.

When comparing the different methods (DS, spiking, and spiking with extra

weight), the results indicated that spiking with extra weight is most effective in accounting

for the differences between the sets and improve the prediction. Two sources of

differences existed between the library and Group B. First, there was difference in the soils

of these two sets because they were created and compiled under different situations (i.e.

under different projects in different times). Second, there is difference in the spectra as the

library was scanned by the MugLite® and Group B was scanned with the VisNIR probe.

Note that all previous studies on sample spiking deal with the first source of difference.

It is certain that DS would only account for the second source of difference

because the DS matrix was developed from Group A (part of the local set). On the other

hand, spiking would account for both sources of difference by combining Group A with

the library in PLSR modeling. As pointed out by several authors (Gogé, Gomez, Jolivet,

& Joffre, 2014; Guerrero et al., 2014; Wetterlind & Stenberg, 2010), spiking ensures the

calibration set to contain samples with similar characteristics to the local set and enables

the models to capture the spectral variations present in the local set. With a small spiking

set and a large spectral library (in our case, 50 spiking samples versus 1595 library

samples), the effect of spiking is diluted. Therefore, putting extra weight would be

effective because the calibration set achieve a balance between the numbers of local and

library samples (Guerrero et al., 2016). Our results clearly indicate that spiking with extra

weight gives the best prediction for the VisNIR probe scans of Group B.
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Figure 3.6. Prediction plot of Organic Carbon (OC) in Group B: (a) Library only
model on VisNIR probe scans; (b) Library only model on DS transformed scans; (c)
spiked model on VisNIR probe scans; and (d) spiked and extra weighted model on
VisNIR probe scans.
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3.3.4 Development and field implementation of the VisNIR based penetrometer:

Challenges

It should be noted that this study only examined the spectral difference and subsequently

the predictive performance due to the inherent optical difference between the VisNIR

probe and the ASD MugLite®. In actual field implementation, there are other significant

sources of variation that the VisNIR penetrometer system should be able to account for.

These variations can be classified into two categories. The first category comes from in

situ soils themselves including moisture, surface roughness, natural aggregation, and

temperature. The second category comes from the field operational conditions of

fluctuating temperature and humidity that cause varying responses of the

optical/electronic components and the spectrometers.

Although there have been a number of reports on VisNIR-based in situ soil

sensors for lateral surface layer soil sensing (Christy, 2008; Hummel et al., 2001; Kodaira

& Shibusawa, 2013; Maleki, Mouazen, De Ketelaere, Ramon, & De Baerdemaeker, 2008;

Mouazen et al., 2007), they all used so called internal validation scheme where the field

samples were used for model calibration. This makes these sources of spectral variations

not critical when it comes to model calibration and validation. However, if external dry

ground soil spectral libraries are to be utilized for model calibration, the development of

algorithms to account for these spectral variations is of paramount importance.

Several studies have already examined the correction of soil moisture effect on

VisNIR modeling and demonstrated that spectral transformation algorithms like external

parameter orthogonalization and DS are quite useful (Ackerson et al., 2015; Ge et al.,

2014; Ji et al., 2015; Minasny et al., 2011). In this study, we also demonstrated that DS is

useful to account for the difference in optical configuration between the VisNIR probe and

the ASD MugLite®. It remains a research question whether multiple transformations

should be developed and employed, or one “catch-all” transformation could be sufficiently

constructed, to account for these different sources of spectral variations. In the case of
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sample spiking, no spectral transformation is needed. But it does require lab analysis of a

small fraction of field samples (to obtain Y measurement) to be merged with the external

library for chemometric modeling.

Taken together, the development of a VisNIR penetrometer entails good design of

both hardware and software. The hardware ensures the acquisition of high-quality

reflectance spectra and the software ensures the compensation of spectral shifts caused by

various factors. Being able to leverage the external soil spectral libraries is critical to make

this technology economically viable in the practical setting. Addressing some of the

challenges discussed in this section are presented in the subsequent chapter.

3.4 CONCLUSIONS

In this study, we conducted a lab-based performance evaluation of a new VisNIR optical

probe for high resolution vertical soil mapping. We used an external soil spectral library

for VisNIR model calibration, and investigated two strategies, namely direct

standardization and sample spiking, to improve the prediction of soil Organic Carbon,

Total Carbon, and Total Nitrogen. We found that, although the spectra acquired by the

VisNIR probe are of high quality (low in noise), there exist systematic differences (in both

amplitude and variation) when they are compared to the spectra by the MugLite®. We also

found that both direct standardization and sample spiking are viable approaches to

account for the systematic differences and substantially improve the prediction accuracy.

The improvement is mainly from a reduction in prediction Bias. Sample spiking with

extra weight showed the highest prediction accuracy, with Bias lower than 0.06% and

RPD greater 2.15 for all three soil properties. We conclude that the current design of the

VisNIR optical probe, together with spectral libraries and the spectral compensation

algorithms, can lead to a rapid, accurate and cost-effective penetrometer system for in situ

high resolution vertical soil sensing.
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CHAPTER 4

DEVELOPMENT, AND FIELD TESTING A VISNIR INTEGRATED
MULTI-SENSING SOIL PENETROMETER

4.1 INTRODUCTION

4.1.1 Soil sensing

The demands for spatially explicit, high resolution soil data in three dimensions (i.e.,

laterally and vertically) are increasing for a number of crosscutting disciplines such as

precision agriculture, soil process and crop modeling, and digital soil mapping (Minasny

& McBratney, 2016; Vereecken et al., 2016; Viscarra Rossel & Bouma, 2016). Several

modern technologies are available to effectively characterize the lateral variation of soils.

These techniques include aerial and satellite remote sensing (Barnes et al., 2003; Ben-Dor,

2002), on-the-go soil sensors (Adamchuk et al., 2004), apparent electrical

conductivity/resistivity (Corwin & Lesch, 2003), ground penetrating radar (Lunt,

Hubbard, & Rubin, 2005) , and the γ-ray sensor (Triantafilis et al., 2013). These

technologies are commonly used to produce high resolution soil maps to capture lateral

variability. On the other hand, technologies to characterize soil profiles without pulling a

soil core or opening a soil pit are limited (Hartemink & Minasny, 2014). While

technologies like soil apparent electrical conductivity do sense soil to a certain depth, they

return a signal that is a weighted integration of the profile and are not capable of providing

layered information directly.

4.1.2 VisNIR for in situ soil sensing

Visible and near infrared reflectance spectroscopy (VisNIR) has several advantages that

make it viable for in situ soil sensing and , in particular high resolution vertical soil
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sensing: (1) the non-contact nature of interactions between VisNIR electromagnetic

energy and soils, (2) ease of miniaturization for a VisNIR sensing probe using optical

fibers, and (3) the ability to infer multiple soil properties from a single VisNIR scan.

There have been a number of reports on the development and application of in situ VisNIR

sensors for surface (lateral) soil mapping (Bricklemyer & Brown, 2010; Christy, 2008;

Kodaira & Shibusawa, 2013; Mouazen et al., 2007).

Several authors conducted studies where soil cores were collected and scanned in

the lab at fine vertical resolution to obtain “simulated” in situ soil profile sensing.

Hummel et al. (2001) collected 48 cores from Illinois and soil samples (at 2.5 cm

increment from the cores) were scanned at six moisture levels to predict soil organic

matter and moisture. Waiser et al. (2007) and Morgan et al. (2009) conducted simulated

profile characterization of clay and soil organic and inorganic carbon, respectively, with

the 72 soil cores collected from Texas. Doetterl et al. (2013) collected 151 soil cores from

central Belgium and demonstrated the simulated high vertical resolution (3 cm) soil

organic carbon assessment with VisNIR. While these were not true in situ sensing, they

established the technical feasibility and demonstrated the potential of a high-resolution

vertical soil sensing system based on VisNIR.

Demonstrations of in situ vertical soil sensing are sporadically reported in the

literature. Ben-Dor et al. (2008) described a custom-made spectral head device that was

inserted into the subsoil to measure VisNIR reflectance along the profile after a hole was

drilled. Wetterlind et al. (2015) tested a commercial Veris P4000 probe (Veris®

Technologies Inc., Salina, Kansas, USA) for the measurement of soil texture and organic

matter along the soil profile. Cho, Sheridan, Sudduth, and Veum (2017) tested the same

Veris probe in Missouri USA to measure total carbon, bulk density, and clay content.

Poggio et al. (2015) evaluated the performance of a new VisNIR foreoptic in the lab. They

scanned 389 milled and pressed surface and subsurface samples with the VisNIR foreoptic

and an ASD contact probe (Malvern Panalytical Company, Longmont, CO, USA). Their
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main objective was to quantify the potential performance degradation of the VisNIR

foreoptic compared to an ASD contact probe. More recently, Ackerson, Morgan, and Ge

(2017) tested a custom-developed VisNIR penetrometer for vertical soil sensing in Texas

USA. A Texas Soil Spectral Library was used to develop VisNIR calibration models

together with External Parameter Orthogonalization (EPO) for clay content prediction.

EPO (Roger et al., 2003) was a method designed to minimize the effect of moisture on soil

VisNIR spectra and allow the VisNIR models calibrated on dry-ground soil samples to

predict soil properties of field moist samples (Ge et al., 2014; Minasny et al., 2011).

4.1.3 Objectives

The objectives of this work were to develop a fully integrated, multi-sensing penetrometer

system for high resolution vertical soil sensing and field test the penetrometer to evaluate

its performance. The developed penetrometer incorporated an improved VisNIR sensing

probe (coupled to an ASD spectrometer), a load cell, an ultrasonic depth sensor, and a

GPS receiver. A software program was also developed in LabVIEW (National

Instruments, Austin, TX, USA) and run on a controlling computer for automated data

collection and storage. This fully automated system was tested in 11 agricultural fields in

Nebraska (NE), Illinois (IL), Iowa (IA), and South Dakota (SD).

4.2 MATERIALS AND METHODS

4.2.1 VisNIR integrated multi-sensing soil penetrometer system

The key components of the penetrometer system included a VisNIR probe based on the

design discussed in chapter 3, an ultrasonic distance sensor (ToughSonic14, Senix Corp.,

Hinesburg, VT, USA), and a miniature load cell (LC202, Omega Engineering, Norwalk,

CT, USA) (Figure 4.1). The VisNIR probe comprised of a broad-spectrum halogen light

source (MR4-188, International Light Technologies, Peabody, MA, USA), a 45°parabolic

reflective mirror (MPD019-G01, Thorlabs Inc, Newton, NJ, USA), and a fiber optical
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cable (ASD, a Malvern Panalytical Company, Longmont, CO, USA) to collect light

reflected from soil surface. The other end of the fiber optical cable was connected to an

ASD LabSpec® spectroradiometer (ASD, a Malvern Panalytical Company, Longmont,

CO, USA). The VisNIR measurement was made through an aperture (12.7 mm in

diameter) on the wall of the penetrometer sealed with a 1-mm thick UV-fused silica

broadband window (WG40530, Thorlabs Inc, Newton, NJ, USA).

The load cell measured insertion force F as the penetrometer was inserted into the

soil. The ultrasonic distance sensor measured insertion depth D. A GPS receiver

(BU-353S4, GlobalSat WorldCom Corporation, Taiwan) was also included to record the

geographic coordinates of each sampling location. The penetrometer housing (which

housed the VisNIR probe and the load cell) was 31.75 mm in diameter and connected to a

28.58 mm diameter extension shaft. The housing of the penetrometer and the extension

shaft were made from stainless steel. A custom designed cone tip (tip half angle = 15°)

was connected to the bottom of the penetrometer. During field sampling, the whole

penetrometer assembly was attached to a Giddings probe truck (Giddings Machine

Company, Windsor, CO, USA). At each sampling location, the penetrometer was

hydraulically driven into the soil, while in situ soil VisNIR reflectance spectra, insertion

force F, insertion depth D, and GPS coordinates were continuously and automatically

measured and logged. Figure 4.1 shows the cross-sectional view and three-dimensional

solid rendering of the multi-sensing penetrometer system.

A program was written in LabVIEW (National Instrument) to control the sensors

on the penetrometer, retrieve, and store measurements on the controlling computer’s hard

drive. The program’s graphic user interface displayed real-time measurements including

in situ soil VisNIR spectra, insertion force, insertion depth, and GPS coordinates. An

instrument box was constructed to house the ASD spectroradiometer, the GPS module, the

datalogger (LabJack U6, LabJack Corporation, CO, USA), and additional circuits to

monitor and control the voltage supply for the light source (Figure 4.2). The instrument
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Fiber optic tip (ferrule)

45 parabolic
mirror

Light source

Load cell holder

Load cell

Tip

UV fused 
silica window

Optical module
base (black plastic)

Figure 4.1. Cross-sectional view of the multi-sensing penetrometer to show the key
system components (left) and the solid rendering of the penetrometer with the exten-
sion shaft (right).

box was also equipped with a temperature sensor to monitor the temperature inside the

box and fans to regulate the temperature when needed.

4.2.2 Field experiment to test the integrated VisNIR multi-sensing penetrometer

4.2.2.1 Field testing

The integrated VisNIR multi-sensing penetrometer system was tested in 11 agricultural

fields of four states (NE, IL, IA, and SD) in the U.S.A. The location, predominant soil

type, and number of soil cores collected in each field are summarized in Table 4.1.

At each sampling location, the penetrometer was first mounted to a Giddings

probe truck. Before each insertion, a white reference panel (99% reflectance, Labsphere,
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Figure 4.2. The graphical user interface of the LabVIEW program showing data
collection from the VisNIR multi-sensing penetrometer system. B: The penetrometer
was mounted on a Giddings probe truck for the field test. C: Close-up photo of the
ultrasonic depth sensor for measuring insertion depth. D: A white reference panel
was pressed on the penetrometer’s aperture before each insertion. E: The instrument
box to hold the spectroradiometer, data logger and other system components is shown.
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North Sutton, NH, US) was used to cover the penetrometer’s aperture to standardize the

ASD spectroradiometer. The penetrometer was inserted into the soil to a nominal depth of

1 m. The insertion was maintained at a constant speed of approximately 0.5 cm s-1. This

slow and constant insertion speed was beneficial to improve the quality of in situ VisNIR

and insertion force measurements. Two insertions were made at each sampling location,

with the insertion points roughly 20 to 30 cm apart. The two sets of in situ soil VisNIR

spectra were averaged depth-wise for later analysis.

Two 76.2 mm diameter soil cores (for gravimetric moisture content and bulk

density determination) and one 50.8 mm diameter core (for soil property determination)

were extracted at each location to validate the VisNIR penetrometer measurement. Note

that gravimetric moisture content and bulk density cores were only collected from the

fields in IA and SD (Table 4.1). To measure bulk density and soil moisture, cores were cut

in the field at 10 cm intervals (e.g., 0 to 10 cm, 10 to 20 cm, etc.) to ensure known

volumes. The samples were weighed after collection, while moist, then oven-dried at 105

°C, and weighted again. Values of moisture content and bulk density from the two cores

were averaged. The cores collected to measure soil properties were described for basic

soil morphology, such as horizon nomenclature, in the lab and cut according to horizon,

except for the fields in NE. For the NE fields, the soil property cores were segmented by

depth to match with the in situ VisNIR measurements. For instance, if 5 consecutive

spectra were acquired along 10 cm in the beginning and 12 cm afterwards, the core was

segmented at 10 and 22 cm depths. All samples from the soil property cores were air dried

at 40 °C for 3 to 7 days, ground and sieved to pass a 2 mm screen. The air-dry ground and

sieved samples were scanned in the lab with the ASD spectroradiometer to obtain

dry-ground VisNIR spectra. The soil samples were analyzed in the lab for total carbon

(TC) and total nitrogen (TN) by dry combustion and clay content by the pipette method

(Soil Survey Staff, 2014).

A soil VisNIR spectral library from USDA-NRCS-Kellogg Soil Survey Lab
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(Lincoln, NE) was used as an independent, external library for spectral modeling. The

whole library had ∼20,000 soil samples from the U.S.; and 3603 samples, which

originated from NE (1815), IL (725), IA (589) and SD (474) were extracted. Table 4.2

gives the summary statistics of the soil properties of the extracted library and the soil

samples collected from the field campaign. More details on the USDA-NRCS spectral

library can be found in Wijewardane, Ge, Wills, and Loecke (2016) and Wills et al. (2014).

Table 4.2. Summary statistics of the soil properties for the VisNIR dry-ground li-
brary from USDA-NRCS and the field samples.

Dataset Property
Summary statistics

Min. Max. Mean Median Skewness Kurtosis

Library
TC

a
(%) 0.01 9.57 1.59 1.26 2.02 8.72

TN
b
(%) 0.00 0.89 0.15 0.13 1.86 7.72

Field samples

TC
a
(%) 0.12 5.52 1.35 1.29 1.53 7.15

TN
b
(%) 0.01 0.45 0.11 0.09 1.25 5.57

Clay (%) 9.80 54.00 33.34 33.70 0.13 2.38
MC

c
(%) 8.20 53.81 24.14 24.54 0.51 4.68

BD
d
(g cm-3) 0.84 2.09 1.39 1.38 0.13 4.04

aTotal carbon; bTotal nitrogen; cBulk density; dMoisture content

4.2.2.2 Modeling of TC and TN

The goal of this analysis was to predict soil TC and TN from the in situ soil spectra

collected by the VisNIR penetrometer. The field samples had two sets of VisNIR spectral

measurements: (1) in situ spectra measured by the VisNIR penetrometer and (2)

dry-ground spectra measured in the lab. A total of 261 cores samples were analyzed for

TC and TN. They were randomly divided into an EPO calibration transfer set (30%) and a

validation set (70%). Firstly, the dry-ground spectral library was used to calibrate a TC

and TN model using support vector regression (SVR). The dry-ground models were

applied to the dry-ground spectra of the field samples (the validation set) to assess the

model performance.
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Next, an EPO transformation matrix was calculated using the matched in situ and

dry-ground spectra of the field samples (the EPO calibration transfer set). The optimum

number of EPO components (eigenvectors) was decided on the lowest cross validation

RMSE (Root Mean Squared Error) of partial least squares regression (PLSR). The EPO

transformation matrix was then applied to both the dry-ground spectral library and the in

situ spectra of field samples (the validation set). EPO was employed to correct for the

moisture effect on in situ soil VisNIR spectra and allow the models calibrated on the

dry-ground library to predict with in situ spectra. Readers are referred to Roger et al.

(2003) for a theoretical basis of EPO, and Minasny et al. (2011), Ge et al. (2014) and

Wijewardane, Ge, and Morgan (2016a) for implementing EPO on soil spectral data.

After the EPO transformation, a second TC and TN model was calibrated using

the EPO-transformed spectral library (using SVR) and validated with the

EPO-transformed spectra of the field samples.

Support vector regression is a nonlinear modeling technique that constructs an

optimal hyperplane in a higher dimensional feature space (Vapnik, 2013). A linear

regression function is then computed in the higher dimensional feature space for the input

data, which are mapped through a kernel function (Basak et al., 2007). This modeling

technique was known to effectively model VisNIR spectral data with low errors (Thissen

et al., 2004; Viscarra Rossel & Behrens, 2010). All models were tuned using ten random

segment cross-validation and C (soft margin cost function) as a tuning parameter, which

was the degree of penalty for the violations to the margin (James et al., 2013). Models

were assessed and compared with RMSE, R2, Bias, RPD (Ratio of Performance to

Deviation) and RPIQ (Ratio of Performance to Inter Quartile Range).

4.2.2.3 Modeling and prediction of soil bulk density

The goal of this analysis was to predict soil bulk density using in situ measurements of

insertion force F, insertion depth D, and clay content and soil moisture content by the



74

multi-sensing penetrometer. Literature suggests that these four parameters are important to

model bulk density (Bennie & Burger, 1988; Henderson, Levett, & Lisle, 1988; Hernanz,

Peixoto, Cerisola, & Sánchez-Girón, 2000; Lin, Sun, & Schulze Lammers, 2014; Mirreh

& Ketcheson, 1972). Two models suggested by Hernanz et al. (2000) were explored;

ρb = K1 ·FK2 ·DK3 (4.1)

ρb = K1 ·FK2 ·DK3 ·MCK4 ·CLK5 (4.2)

In Equations 4.1 and 4.2, ρb is bulk density (g cm-3); F is insertion force (N); D is

insertion depth (cm); MC is gravimetric soil moisture content (%); CL is clay content (%);

and K’s are regression coefficients.

Note that F and D were directly measured by the multi-sensing penetrometer,

whereas soil moisture and clay content were modeled from the in situ soil spectra

measured by the VisNIR penetrometer. The total number of field samples available for

bulk density analysis was 138 (see Table 4.1), which was divided into calibration (70%)

and validation (30%) sets. The calibration set was used for two purposes; (1) developing

PLSR models to predict soil moisture and clay content from in situ soil spectra, and (2)

calibrating the regression coefficients K’s to predict bulk density. The calibrated models

were then applied to the validation set to evaluate the model performance.

4.3 RESULTS AND DISCUSSION

4.3.1 Performance of the VisNIR penetrometer during the field test

The penetrometer system was tested in 11 agriculture fields in four states during different

seasons and years. In all fields, the penetrometer performed satisfactorily with minor

adjustments as needed. The system was first supplied by 12V 9Ah lead-acid battery,

which could run the system for ∼2 hours before recharge. Later, a 12V deep cycle battery

was used to supply the whole system (including the laptop), which allowed the operation
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for the whole day without recharge. In the first two NE fields, we also used a dark

reference panel (2% reflectance) to characterize the internal scattering of the

penetrometer. This practice was not continued in other fields as it did not improve the

spectral quality or modeling performance significantly.

During insertion of the penetrometer, soil smearing or scratching on the fused

quartz window of the optical aperture was not observed, which was important for the

acquisition of genuine soil spectra at the registered depths. Compared to the dry-ground

soil spectra, in situ soil spectra did show higher noise at 350 to 400 and 2450 to 2500 nm

spectral ranges, which was due to energy attenuation by the long fiber optic cable used to

carry reflected energy from the penetrometer head to the spectrometer. One key challenge

of operation was to maintain a constant speed of penetration at ∼0.5 cm s-1. At this speed,

the LabVIEW program could obtain and record 10 in situ spectra corresponding to an

insertion depth interval of 2 to 3 cm. This constant insertion speed also improved insertion

force measurement by removing fluctuations due to acceleration or deceleration. One

insertion of the penetrometer took 5 to 8 min. for completion (i.e. insert in and out).

Overall, the system was capable of acquiring high quality, in situ soil spectra with low

noise at 400 to 2450 nm, as well as the insertion force measurements.

4.3.2 Using in situ soil spectra from the VisNIR penetrometer to predict soil TC and

TN

Table 4.3 gives prediction performance of soil TC and TN using the dry-ground library

models on dry ground spectra, in situ spectra, and after EPO correction. When the models

were applied to the dry-ground soil samples, the prediction performance was satisfactory:

TC had a R2 of 0.81, RPIQ of 2.73, and RMSE of 0.43%; and TN had a R2 of 0.87, RPIQ

of 2.17, and RMSE of 0.05%. However, when the dry-ground library models were applied

directly to the in situ soil spectra from the penetrometer, their prediction capability

degraded substantially. TC was predicted with R2 of 0.29, RPIQ of 0.38, and RMSE of
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3.06; and TN was predicted with R2 of 0.51, RPIQ of 0.33, and RMSE of 0.36%.

Table 4.3. Prediction model statistics for soil total carbon (TC) and total nitrogen
(TN). Models were calibrated on the USDA-NRCS dry-ground spectral library and
applied to the dry-ground spectra and in situ (from the VisNIR multi-sensing pen-
etrometer) of the field samples.

Property Spectra source RMSE
f

R2 Bias RPD
g

RPIQ
h

TC
a
(%)

DG
c

0.43 0.81 -0.14 2.07 2.73
VNIRP

d
3.06 0.29 2.22 0.29 0.38

EPO
e

0.79 0.5 -0.11 1.12 1.48

TN
b
(%)

DG
c

0.05 0.87 0.04 1.75 2.17
VNIRP

d
0.36 0.51 0.35 0.26 0.33

EPO
e

0.06 0.62 -0.01 1.49 1.86
aTotal carbon; bTotal nitrogen; cDry ground spectral;
dPenetrometer spectra; eExternal Parameter Orthogonalization;
f Root mean squared error; gRatio of performance to deviation;
hRatio of performance to inter-quartile range

These results indicated that dry-ground models were able to predict for the

dry-ground spectra of the field samples but failed for in situ spectra that were not

corrected using EPO. This was due to the differences in dry-ground and in situ conditions.

The dry-ground model was calibrated on the VisNIR spectra of air-dried sieved samples;

whereas the in situ spectra were obtained in the in situ field moist intact condition. These

two conditions differed because of moisture content, temperature, and inhomogeneity.

Among these factors, soil moisture content was known to alter soil VisNIR spectra

significantly and has been investigated by several authors (Ji et al., 2015; Wijewardane,

Ge, & Morgan, 2016b) . Figure 4.3 depicts the differences between dry ground and in situ

spectra for field samples. This discrepancy highlights the need to employ EPO, which

allows models calibrated on the dry-ground spectra to predict samples scanned in situ.

The EPO correction improved predictions from the in situ VisNIR spectra for both

TC and TN (Table 4.3). For TC, prediction RMSE reduced from 3.06% to 0.79%; bias

reduced from 2.22 to -0.11; and R2 increased from 0.29 to 0.50. Similarly, for TN, RMSE



77

0.0

0.2

0.4

0.6

500 1000 1500 2000
Wavelength (nm)

R
ef

le
ct

an
ce

−1.0

−0.5

0.0

0.5

1.0

−4 −2 0 2 4
PC1

P
C

2

DG
VNIRP

Figure 4.3. Difference in soil VisNIR spectra acquired in the lab (dry ground) and by
the VisNIR multi-sensing penetrometer (in situ).

reduced from 0.36 to 0.06%; bias reduced from 0.35 to -0.01%; and R2 increased from

0.51 to 0.62. Scatterplots of the predictions are given in Figure 4.4 to provide the visual

assessment on how EPO improved the prediction of in situ soil spectra. Without EPO,

both TC and TN were predicted with a higher bias than the lab-measured values. This

over prediction was attributed to the difference between the dry-ground and in situ spectra,

primarily from soil moisture effects (Figure 4.3). EPO successfully removed this over

prediction and made the points closer to the 1:1 line. The linear association between

lab-measured values and EPO-predicted values also became stronger. However,

predictions after the EPO correction with in situ spectra did not exceed the accuracy

achieved by dry-ground predictions. This result was also expected, because EPO (or any

other moisture correction methods for that matter) was designed to minimize the effect of

external parameters on prediction but would not reduce prediction bias or uncertainty that

were already present in modeling dry-ground spectra. The potential of EPO to improve in

situ spectral predictions was also reported in Ackerson et al. (2017).

4.3.3 Modeling soil bulk density

Penetration force (or cone index), moisture content, texture, and depth have been reported

in literature as key soil physical properties contributing to bulk density (Bennie & Burger,
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Figure 4.5. Prediction plots for soil bulk density modeling with (a) insertion force F
and insertion depth D, and (b) insertion force F , insertion depth D, as well as gravi-
metric moisture content and clay content estimated from in situ VisNIR data corrected
with external parameter orthogonalization.

1988; Ehlers, Köpke, Hesse, & Böhm, 1983; Elbanna & Witney, 1987; Hernanz et al.,

2000; Lin et al., 2014). Figure 4.5a shows the validation result using Eq. 4.1, or only

insertion force F and insertion depth D in the model. The model had moderate accuracy

with an R2 of 0.78 and RMSE of 0.14 g cm-3. This model underestimated bulk density of

soil depths with high bulk density. Including VisNIR-predicted clay and moisture contents

(Equation 4.2) improved the model performance, with R2 of 0.80 and RMSE of 0.12 g

cm-3 (Figure 4.5b). Moreover, all points were evenly distributed around the 1:1 line, with

no obvious prediction bias for high bulk density samples.

4.3.4 VisNIR integrated multi-sensing penetrometer

Since the multi-sensing penetrometer obtained soil VisNIR data and other measurements

at high vertical resolution (∼2.5 cm), these data could be used to estimate soil properties

along the profile at the same resolution. An example showing the variation of the five soil

properties (TC, TN, bulk density, gravimetric soil moisture, and clay) along the soil profile
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Figure 4.6. High resolution predictions of bulk density, clay, gravimetric moisture
content, Total Carbon, and Total Nitrogen along the soil profile for one selected sam-
pling location. The blue points represented the lab-analyzed values and the red lines
represented the high-resolution predictions from the penetrometer data.

from our data is given in Figure 4.6. The continuous curves represent the high-resolution

estimate from the penetrometer data, whereas the regularly spaced points represented the

lab-analyzed values at each depth. Although the curves did not fall exactly on the points,

they clearly captured the trends of the soil properties along the profile. Soil bulk density

showed an increase as a function of depth, whereas TC, TN and gravimetric soil moisture

decrease. For clay, there was an abrupt transition between A and B horizons

(approximately at 20 cm). This transition was also captured in the clay curve, more or less

in a continuous fashion.

Once again, we would like to emphasize that obtaining high resolution, vertical

distribution of soil properties, like in Figure 4.6, was rapid, compared to needing

subsequent lab measurements. We achieved this by inserting our multi-sensing
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penetrometer into the soil and continuously logging in situ soil VisNIR spectra along with

insertion force F and insertion depth D. These in situ measurements were then used to

predict targeted soil properties without the need to pull soil cores or open soil pits. The

multi-sensing soil penetrometer therefore fills a current technological gap for rapid and

low-cost direct sensing of subsoils at high vertical resolution. This kind of soil data would

benefit a number of disciplines such as precision agriculture and site-specific management

of irrigation and fertilization, soil carbon inventory and change detection, and digital

mapping of soil properties across various scales.

When VisNIR-based, on-the-go soil sensors were reported in the literature, more

than half of the field samples were lab-analyzed with the reference methods for model

calibration (Aliah Baharom et al., 2015; Kodaira & Shibusawa, 2013; Maleki et al., 2007;

Mouazen et al., 2007; Veum et al., 2018; Zhang, Biswas, Ji, & Adamchuk, 2017). While

this approach was acceptable in the research setting, it would not be viable in real

applications, because it was neither practical nor economical to lab-analyze more than half

of the field samples for each and every sampling campaign. Using an external,

independent soil spectral library would eliminate this need by providing calibration

samples with known soil properties. However, this approach caused another problem. The

library samples were scanned in the dry-ground state, whereas field samples were scanned

in situ with varying moisture contents and aggregation. An EPO (or other spectral

correction methods) became an essential piece of the system to bridge the dry-ground

spectral library and in situ scans of the field samples.

Our results demonstrate that EPO consistently improved soil TC and TN

prediction (improved R2 and reduced bias and RMSE), even though the prediction

accuracy was still quite low compared to direct dry-ground prediction (Table 4.3 and Fig.

4.4). In addition to EPO, other methods including direct standardization, piece-wise direct

standardization and spiking were also investigated in the literature for spectral correction

(Ji et al., 2016; Ji et al., 2015; Wijewardane, Ge, & Morgan, 2016b). Future research is
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needed to comprehensively evaluate these methods and identify the ones that are high in

performance and logistically favorable to implement for in situ soil spectral data.

We will continue to develop the VisNIR integrated multi-sensing penetrometer in

the following aspects. We will incorporate a Wenner electrode array (either ring-type or

button-type) into the penetrometer. The Wenner electrode array, when in good contact

with the soils, can measure bulk soil electrical conductivity (Adamchuk et al., 2010;

Corwin & Lesch, 2005) and infer moisture content of non-saline soils. This measurement

could provide independently measured soil moisture to substantiate EPO and spectral

correction, as well as improve modeling for soil bulk density.

Currently, predictions of soil properties were carried out in two steps. At first, in

situ soil VisNIR spectra and other sensor data along the soil profile were obtained during

the field campaign. Then, EPO correction and VisNIR modeling were conducted in the

office for the prediction of soil properties. Therefore, another improvement is to

incorporate the dry-ground VisNIR spectral library (and calibrated models) and the EPO

implementation into system’s software program. By doing so we will realize true in situ

prediction of soil properties while the penetrometer is taking soil measurements.

4.4 CONCLUSIONS

In this chapter, we reported a new VisNIR-integrated multi-sensing penetrometer for in

situ, high resolution vertical soil sensing. Field testing of this penetrometer demonstrated

its potential to quantify several targeted soil properties including total carbon, total

nitrogen, and bulk density. The use of an external, independent soil spectral library for

model calibration, and the use of the EPO algorithm to correct for the spectral difference

between the dry-ground spectra in the library and the in situ spectra acquired by the

penetrometer, was demonstrated. These steps were essential for the viability of the

penetrometer in real applications. Finally, we showed the example of high-resolution

vertical distribution of the soil properties along a profile. It was concluded that the new
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soil penetrometer could greatly enhance our ability to measure properties of subsoil, and

benefit disciplines such as precision agriculture and digital soil mapping where

high-resolution vertical soil data are currently lacking.
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CHAPTER 5

GENERAL CONCLUSIONS AND FUTURE WORK

The overall goal of the work presented in this dissertation was to design, develop, and test

a VisNIR integrated multi-sensing penetrometer to estimate soil properties in vertical

profile. This goal was further expanded to several specific objectives.

Soil VisNIR spectra is affected by intactness, i.e. moisture, temperature, and

aggregation. If a VisNIR based sensor needs to use a dry ground spectral library to obtain

calibration samples, this “dry ground–field intactness” gap has to be closed. To that end,

the first objective was devised to investigate and compare the usefulness of five

approaches: External Parameter Orthogonalization (EPO), Direct Standardization (DS),

Global Moisture Modeling (GMM), Slope Bias Correction (SB) and Selective Wavelength

Modeling (SWM), to enable VisNIR dry ground models to be applied directly to moist

soil spectra to predict soil organic carbon (OC) and inorganic carbon (IC).

To test the applicability of these techniques, we conducted a rewetting experiment

with selected soil samples from a soil archive at the USDA-NRCS-KSSL (Kellogg’s Soil

Survey Laboratory). The results of this study revealed that EPO, moisture-explicit DS, DS

and GMM can correct for the moisture effect successfully and increase the accuracy of

prediction substantially for both soil OC and IC, whereas SB and SWM showed

otherwise. GMM and moisture-explicit DS demonstrated a consistent correction

performance across different moisture levels, which is desirable for field samples.

However, the use of moisture-explicit DS in the field would be limited because the

moisture content of field samples is not known a priori.

Integration of VisNIR technology to a soil penetrometer demands the optical

components arranged neatly which can acquire quality spectra under field conditions. To
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this end, the second objective was to design new VisNIR probes and test them in terms of

spectral quality and predictive power using an external spectral library under laboratory

conditions. Under this objective, two VisNIR probes: one with a bifurcated cable with an

angled ferrule and the light source outside and the second with a broad-spectrum light

source (a halogen lamp) and a 45° parabolic reflective mirror inside, were developed and

tested with 150 dry ground soil samples. A spectral library was used for calibrating

models for OC, Total Carbon (TC) and Total Nitrogen (TN).

The results showed that second design was superior in terms of spectral quality. In

spite of the high spectral quality acquired by the VisNIR probe, there was still a

systematic difference when compared with the standard MugLite® spectra. Then direct

standardization and sample spiking were identified as approaches to account for this

difference and substantially improve the prediction accuracy by reducing the bias. Spiking

with extra weight showed the highest accuracy with bias lower than 0.06% and Ratio of

Performance to Deviation (RPD) greater than 2.15 for all three soil properties.

With the experience gained through the first two objectives, the third and final

objective were devised to develop the fully integrated, multi-sensing penetrometer system

for high resolution vertical soil sensing and field test the penetrometer to evaluate its

performance. The developed penetrometer incorporated an improved VisNIR sensing

probe from second objective (coupled to an ASD spectrometer), a load cell, an ultrasonic

depth sensor, a GPS receiver, and a LabVIEW software program for automated data

collection and storage. This system was tested in 11 agricultural fields in Nebraska (NE),

Illinois (IL), Iowa (IA), and South Dakota (SD).

Field testing of this VisNIR integrated multi-sensing penetrometer showed its

potential to quantify several targeted soil properties including TC, TN, and bulk density

(BD). An independent dry ground soil spectral library was used for model calibration and

the EPO algorithm was successfully used to account for the spectral discrepancies due to

field intactness under in situ conditions. Estimating soil properties in vertical soil profile at
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high resolution was also demonstrated using the penetrometer. This newly developed soil

VisNIR integrated multi-sensing penetrometer could enhance the measurement of subsoil

properties, and benefit disciplines such as precision agriculture, digital soil mapping, and

other environmental studies where high-resolution vertical soil data are required.

Through the work presented in this dissertation, we developed, and field tested a

VisNIR integrated multi-sensing penetrometer which can acquire high quality spectra

under the field conditions and be used to map soil profile attributes such as total carbon,

organic carbon, total nitrogen and bulk density, at a higher resolution. The real strength of

this system was originated from the use of already available dry ground spectral library to

calibrate models instead of field sample spectra which reduces the cost. However, all these

analyses were conducted after the field campaigns. In the future, we want to incorporate

the whole process to the developed LabVIEW program so that it can acquire in situ field

spectra, use in-built model to predict soil properties with EPO correction, and show on the

screen in real time. In addition, we expect to incorporate a Wenner electrode array (either

ring-type or button-type) into the penetrometer which can measure bulk soil electrical

conductivity and infer moisture content of non-saline soils. This can provide

independently measured soil moisture to substantiate EPO and spectral correction, as well

as improve modeling for soil bulk density. With all these modifications and upgrades,

more field testing under diverse conditions and geographic regions has to be conducted to

further ensure its robustness in the field.
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