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Let R be a commutative noetherian ring. A well-known theorem in commutative

algebra states that R is regular if and only if every complex with finitely generated

homology is a perfect complex. This homological and derived category characteriza-

tion of a regular ring yields important ring theoretic information; for example, this

characterization solved the well-known “localization problem” for regular local rings.

The main result of this thesis is establishing an analogous characterization for when

R is locally a complete intersection. Namely, R is locally a complete intersection if

and only if each nontrivial complex with finitely generated homology can build a non-

trivial perfect complex in the derived category using finitely many cones and retracts.

This answers a question of Dwyer, Greenlees and Iyengar posed in 2006 and yields

a completely triangulated category characterization of locally complete intersection

rings. Moreover, this work gives a new proof that a complete intersection localizes.
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Chapter 1

Introduction

Preliminary Remark: This thesis is an extended version of the author’s article

[24]. Currently, [24] has been submitted for publication and is posted at arxiv.org

under the reference number arXiv:1805.07627.

Historically, in commutative algebra, it has been effective to study the homological

properties of a ring’s category of modules to gather ring theoretic information. More

recently, studying the structure of a ring’s derived category has been a new and

enlightening approach. The framework of the derived category allows one to draw

from a wealth of ideas from homotopy theory and triangulated categories.

One of the first, and major, accomplishments of importing homological methods

into commutative algebra is the celebrated theorem of Auslander-Buchsbaum and

Serre. Recall that a local ring is regular if its unique maximal ideal is generated

by a regular sequence. The Auslander-Buchsbaum and Serre theorem provides the

following homological characterization of a regular local ring: a local ring R is regular

if and only if every finitely generated R-module has finite projective dimension. This

theorem solved the long open localization problem for regular rings. Said precisely,

an immediate corollary of their result is that if R is a regular local ring, then Rp is

regular for every prime ideal p.
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For the rest of the introduction, let R be a commutative noetherian ring and

let D(R) denote the derived category of R. Basic information in D(R) is contained

in its full subcategory consisting of complexes with finitely generated homology, de-

noted Df (R). Studying Df (R) as a subcategory of D(R) is analogous to examining

the finitely generated R-modules when working in the category of R-modules. An-

other interesting class of objects in D(R) is the collection of small objects; these are

the complexes isomorphic to bounded complexes of finitely generated projective R-

modules. Loosely speaking, the small objects of D(R) are exactly the complexes of

finite projective dimension. The Auslander-Buchsbaum and Serre theorem can be

translated and strengthened to the following homotopical characterization of regular

rings: a commutative noetherian ring R is regular if and only if every object of Df (R)

is a small object of D(R).

In many regards, the local rings that are closest to being regular are complete

intersections. A local ring (R,m) is said to be a complete intersection if its m-adic

completion is isomorphic to a regular local ring modulo a regular sequence. The main

contribution of this thesis is establishing a homotopical characterization for a locally

complete intersection ring.

In 2006, Dwyer, Greenlees and Iyengar laid the foundations for finding such a

characterization for complete intersections [12, 9.4]. Namely, they proved the follow-

ing result: if R is a complete intersection, then every object of Df (R) finitely builds

a nontrivial small object. Roughly speaking, a complex M finitely builds a complex

N provided that N can be obtained from M using finitely many cones and retracts

(see 3.1.7 for a precise statement). Moreover, they showed that if every nontrivial

object of Df (R) finitely builds a nontrivial small object then R is Gorenstein, but the

converse does not hold (see [12, 9.11,9.13,9.14]). This led them to ask the following

question in [12, 9.10]:
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Question 1. If every nontrivial object of Df (R) finitely builds a nontrivial small

object, is R a complete intersection?

The main result of this thesis is the following:

Theorem 1. Let R be a commutative noetherian local ring. The following are equiv-

alent.

1. R is a complete intersection.

2. Every nontrivial object of Df (R) finitely builds a nontrivial small object of D(R).

3. For each nontrivial object M of Df (R), there exists a small object P of D(R)

such that M finitely builds P and SuppRM = SuppR P.

In particular, this theorem settles Question 1 in the affirmative. The implication

“(1) =⇒ (3)” is a strengthening of [12, 9.4] that exploits a construction of P. A.

Bergh from [10, 3.2]. The support condition in (3), forces the small object P , built

by the nontrivial object M , to also be nontrivial. Hence, “(3) =⇒ (2)” holds

immediately; combining this implication with “(1) =⇒ (3)” provides a new proof of

[12, 9.4]. A bulk of the work in this thesis is done to establish “(2) =⇒ (1)”, which

answers the original question set forth by Dwyer, Greenlees and Iyengar.

Similar to the Auslander-Buchsbaum and Serre theorem discussed above, the

structural characterization of a complete intersection’s derived category in Theorem

1 yields ring theoretic information. Namely, condition (3) in Theorem 1 localizes.

Hence, we recover a theorem of Avramov [4] as an immediate corollary of Theorem 1

Corollary. If R is a complete intersection, then Rp is a complete intersection for

every p ∈ SpecR.
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Finally, some extra work is done to establish a global characterization for rings

that are locally complete intersections.

Theorem 2. For a commutative noetherian ring R, R is locally a complete inter-

section ring if and only if nontrivial object of Df (R) finitely builds a nontrivial small

object.

Outline. Much of this work relies heavily on DG algebra techniques. A major tool is

DG homological algebra and studying the derived category of a DG algebra. Hence,

Chapter 2 is devoted to providing the necessary background for the rest of the paper.

Section 2.1 is comprised of notation and conventions that will be used throughout

the paper. The reader should feel free to skip this section and refer to it as needed.

Sections 2.2 and 2.3 contain foundational material involving DG homological algebra,

triangulated categories, and the derived category of a DG algebra. These sections

can be skipped be the experts.

Chapter 3 reviews the theory of support and localization in two settings. Section

3.1 is concerned with localization and support in the derived category of a commu-

tative noetherian ring; while Section 3.2 focuses on homogeneous localization and

the corresponding homogeneous/graded support for graded modules over a graded

commutative noetherian ring. The only new result in this Chapter 3 is Lemma 3.1.8.

The rest of Chapter 3 is background that will be applied later.

Chapter 4 contains a large portion of the technical work in this document. Section

4.1 reviews basic concepts regarding Koszul complexes. It is worth noting that in

this thesis we are interested in Koszul complexes, not just as complexes, but as

DG algebras. Hence, Chapter 4 is where many of the tools in Chapter 2 are applied.

Section 4.2 has one of the key technical results used to establish Theorem 1. Theorem

4.2.1 exploits the theory of DG Γ-algebras. References are given in this section for the
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necessary background on DG Γ-algebras. Section 4.3 develops a theory of cohomology

operators for pairs of DG modules over a Koszul complex. These operators are an

extension of the operators defined over a complete intersection studied by Gulliksen

in [16], Avramov and Buchweitz in [5] and [6], Eisenbud in [14], and many others.

Importing the theory of support for graded modules from Section 3.2 allows us to

define and study a theory of support varieties for DG modules over a Koszul complex

in Section 4.4.

Chapter 5 discusses the content from the introduction. Sections 5.1 and 5.2 are

mostly setup regarding thick subcategories, virtually small objects and proxy small

objects. Finally, Section 5.3 contains the proofs of Theorem 1 and Theorem 2. The

varieties defined in Section 4.4 are put to use in this final section to obtain the main

results of this thesis.
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Chapter 2

Preliminaries

2.1 Notation and Conventions

We fix a commutative noetherian ring Q.

2.1.1. By a graded Q-module, we mean a family of Q-modules M = {Mi}i∈Z. An

element m of M has homological degree i, denoted |m| = i, provided that m ∈ Mi.

Every Q-module can be regarded as a graded Q-module concentrated in degree zero.

That is, we associate to each Q-module M the graded Q-module {Mi}i∈Z given by

Mi :=

 M i = 0

0 i 6= 0

Abusing notation, we write M for this graded Q-module, as well.

2.1.2. A graded A-module M can be graded cohomologically where M = {M i}i∈Z

where M i := M−i for all i ∈ Z. An element m of M has cohomological degree i

provided that m ∈M i.

2.1.3. A complex of Q-modules is a graded Q-module M = {Mi}i∈Z equipped with a

degree -1 Q-linear endomorphism ∂M = {∂Mi : Mi →Mi−1}i∈Z satisfying ∂Mi ∂
M
i+1 = 0

for all i ∈ Z. The map ∂M is referred to as the differential of M . If ∂M = 0, we say
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that M has trivial differential. Every graded Q-module can be regarded as a complex

of Q-modules with trivial differential.

2.1.4. For a complex of Q-modules M , define M \ to be the underlying graded Q-

module. That is, M \ = {Mi}i∈Z with trivial differential.

2.1.5. Let M be a complex of Q-modules. The boundaries and cycles of M are

B(M) := {Im ∂Mi+1}i∈Z and Z(M) := {Ker ∂Mi }i∈Z, respectively. The (co)homology of

M is defined to be the graded Q-module

H(M) := Z(M)/B(M) = {Hi(M)}i∈Z.

2.1.6. Let M and N be complexes of Q-modules. We say that α : M → N is a

morphism of complexes provided α is a family of Q-linear maps {αi : Mi → Ni}i∈Z

such that αi∂
M
i+1 = ∂Ni+1αi+1 for all i ∈ Z.

2.1.7. Let M and N be complexes of Q-modules. We define M⊗QN to be the complex

of Q-modules

(M ⊗Q N)i :=
⊕
j∈Z

Mj ⊗Q Ni−j

and

∂M⊗QN := ∂M ⊗N +M ⊗ ∂N .

According to the sign-rule, the differential of M⊗QN is the Q-linear map determined

by

∂M⊗QN(m⊗ n) = ∂M(m)⊗ n+ (−1)|m|m⊗ ∂N(n).

2.1.8. Let M and N be complexes of Q-modules. We define HomQ(M,N) to be the
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complex of Q-modules

HomQ(M,N)i :=
∏
j∈Z

HomQ(Mj, Ni+j)

and

∂HomQ(M,N) := Hom(M,∂N)− Hom(∂M , N).

Again, according to the sign-rule the differential of HomQ(M,N) applied to an element

of HomQ(M,N) is

∂HomQ(M,N)(f) = ∂Nf − (−1)|f |f∂M .

For α ∈ HomQ(M,N), α ∈ Z0(HomQ(M,N)) if and only if α is a morphism of

complexes.

2.1.9. A DG Q-algebra is a complex of Q-modules A equipped with two morphisms of

complexes µA : A⊗Q A→ A and ηA : Q→ A such the following diagrams commute:

A⊗Q A⊗Q A A⊗Q A

A⊗Q A A

µA⊗A

A⊗µA µA

µA

and

A⊗Q A

Q⊗Q A A A⊗Q Q
µA

ηA⊗A

∼=

A⊗ηA

∼=

We will write ab for µA(a⊗ b) and let 1 denote ηA(1Q). Because µA is a morphism of

complexes, the Leibniz-rule holds:

∂A(ab) = ∂A(a)b+ (−1)|a|a∂A(b)

for all a, b ∈ A. Furthermore, we will impose the condition that a DG Q-algebra is

graded commutative. That is,

ab = (−1)|a||b|ba
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for all a, b ∈ A. A commutative Q-algebra is a DG Q-algebra concentrated in degree

0.

For the rest of the section, we fix a DG Q-algebra A.

2.1.10. A straightforward calculation shows that Z(A) is a graded Q-subalgebra of

A and B(A) is a homogeneous ideal of Z(A). Thus, H(A) is a graded Q-algebra. In

particular, H0(A) is a Q-algebra and Hi(A) is a H0(A)-module.

2.1.11. Let A and A′ be DG Q-algebras. A morphism of DG Q-algebras is a morphism

of complexes ϕ : A→ A′ that is also a morphism ofQ-algebras. Given a DGQ-algebra

A where Ai = 0 for all i < 0, the canonical morphism of complexes A → H0(A) is a

morphism of DG Q-algebras.

2.1.12. A (left) DG A-module M is a complex of Q-modules equipped a morphism of

complexes µM : A⊗QM →M such the following diagrams commute

A⊗Q A⊗QM A⊗QM

A⊗QM M

µA⊗M

A⊗µM µM

µM

and

A⊗QM

Q⊗QM M

µM
ηA⊗M

∼=

We write am instead of µM(a⊗m). Again, the Leibniz-rule holds:

∂M(am) = ∂A(a)m+ (−1)|a|a∂M(m)

for all a ∈ A and all m ∈ M . A DG A-module M is determined by its underlying

graded Q-module M \, its differential ∂M and its A-action µM .

For the rest of the section, we let M and N be DG A-modules.

2.1.13. The action of A on M induces a graded H(A)-module structure on H(M).



10

Explicitly, for each a ∈ Z(A) and z ∈ Z(M),

[a] · [z] := [az]

makes H(M) a well-defined graded H(A)-module.

2.1.14. For each i ∈ Z, ΣiM is the DG A-module given by

(ΣiM)n := Mn−i, ∂
ΣiM := (−1)i∂M , and a ·m := (−1)|a|iam.

2.1.15. A degree d-map, α : M → N , from M to N is a family of Q-linear maps

α = {αi : Mi → Ni+d}i∈Z such that

α(am) = (−1)d|a|aα(m)

for all a ∈ A and m ∈M .

2.1.16. We define HomA(M,N) to be the DG A-module with

HomA(M,N)d : = {α : M → N : α is a degree d map},

∂HomA(M,N) : = Hom(M,∂N)− Hom(∂M , N), and

a · α : = aα(−) = (−1)d|a|α(a · −).

We remark that HomA(M,N) is a subcomplex of HomQ(M,N).

2.1.17. Let α ∈ HomA(M,N)0. We say that α is a morphism of DG A-modules if

α ∈ Z0(HomA(M,N)). Spelling this out, α is a morphism of DG A-modules provided

that α is morphism of complexes satisfying

α(am) = aα(m)
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for all a ∈ A and m ∈M .

2.1.18. Let M and N be DG A-modules. We say that degree d maps α and β from

M to N are homotopic, denoted α ∼ β, if α− β ∈ Bd(HomA(M,N)). A morphism of

DG A-modules α : M → N is a homotopy equivalence if there exists a morphism of

DG A-modules β : N →M such that

βα ∼ idM and αβ ∼ idN .

A morphism of DG A-modules α : M → N is a quasi-isomorphism if H(α) : H(M)→

H(N) is an isomorphism of graded H(A)-modules.

2.1.19. Homotopic maps induce the same maps in homology. Hence, every homotopy

equivalence is a quasi-isomorphism.

2.2 Semiprojective DG Modules and Ext

Fix a DG Q-algebra A.

2.2.1. A DG A-module P is semiprojective if for every morphism of DG A-modules

α : P → N and each surjective quasi-isomorphism of DG A-modules γ : M → N

there exists a unique up to homotopy morphism of DG A-modules β : P → M such

that α = γβ. Equivalently, P \ is a projective graded A\-module and HomA(P,−)

preserves quasi-isomorphisms.

2.2.2. A semiprojective resolution of a DGA-moduleM is a surjective quasi-isomorphism

of DG A-modules ε : P → M where P is a semiprojective DG A-module. Semipro-

jective resolutions exist and any two semiprojective resolutions of M are unique up

to homotopy equivalence [1, 5.1] or [15, 6.6].
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2.2.3. For DG A-modules M and N , define

Ext∗A(M,N) := H(HomA(P,N))

where P is a semiprojective resolution of M over A. Since any two semiprojective

resolutions of M are homotopy equivalent, Ext∗A(M,N) is independent of choice of

P . An element [α] of Ext∗A(M,N) is the class of a morphism of DG A-modules

α : P → Σ|α|N.

Moreover, given [α] and [β] in Ext∗A(M,N), [α] = [β] if and only if α and β are

homotopic morphisms of DG A-modules.

2.2.4. Fix a morphism of DG Q-algebras ϕ : A′ → A. Let M and N be DG A-

modules, ε : P → M be a semiprojective resolution of M over A, and ε′ : P ′ → M

a semiprojective resolution of M over A′. There exists a unique up to homotopy

morphism of DG A′-modules α : P ′ → P such that ε′ = εα. Define Homϕ(α,N) to

be the composition

HomA(P,N)
Homϕ(P,N)−−−−−−→ HomA′(P,N)

HomA′ (α,N)−−−−−−−→ HomA′(P
′, N).

This induces a map in cohomology

Ext∗ϕ(M,N) : Ext∗A(M,N)→ Ext∗A′(M,N)

given by Ext∗ϕ(M,N) = H(Homϕ(α,N)); it is independent of choice of α, P , and P ′.

2.2.5. Let ϕ : A′ → A be a morphism of DG Q-algebras and let M and N be DG

A-modules. If ϕ is a quasi-isomorphism, then Ext∗ϕ(M,N) is an isomorphism [15,
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6.10].

2.3 The Derived Category of a DG Algebra

Throughout this thesis we use the theory of triangulated categories. See [21], [23,

Chapter 1] or [27, Chapter 10] for standard references on triangulated categories.

2.3.1. Let T denote a triangulated category. We will use Σ to denote the suspension

functor and will display exact triangles as

X → Y → Z → .

A full subcategory T′ of T is called triangulated if it is closed under suspensions and

has the two out of three property on exact triangles. If, in addition, T′ is closed

under direct summands, we say that T′ is a thick subcategory of T. That is, a full

subcategory T′ of T is a thick subcategory provided that

1. ΣnX is an object of T′ for all n ∈ Z and all objects X of T′,

2. if X ′ → X → X ′′ → is an exact triangle in T with two of X ′, X,X ′′ being

objects of T′, then so is third, and

3. if X is an object of T′ and X = X ′
∐
X ′′, then X ′ and X ′′ are objects of T′.

2.3.2. Let T denote a triangulated category and suppose that X is an object of T.

Define the thick closure of X in T, denoted ThickT X, to be the intersection of all

thick subcategories of T containing X. Since an intersection of thick subcategories is

a thick subcategory, ThickT X is the smallest thick subcategory of T containing X.

See [7, Section 2] for an inductive construction of ThickT X and a discussion of the
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related concept of levels. If Y is an object of ThickT X, then we say that X finitely

builds Y .

2.3.3. Fix triangulated categories (T,Σ) and (T′,Σ′). An exact functor T → T′ is a

pair (F, η) where F : T→ T′ is a functor and η : FΣ→ Σ′F is a natural isomorphism

that sends each exact triangle in T to an exact triangle in T′. Explicitly, given an

exact triangle X
α−→ Y

β−→ Z
γ−→ in T we get an exact triangle

F (X)
F (α)−−→ F (Y )

F (β)−−→ F (Z)
ηXF (γ)−−−−→ .

We will often write F : T → T′ for an exact functor and suppress η unless we need

to specifically reference it.

Let A be a DG Q-algebra.

2.3.4. Let D(A) denote the derived category of A (see [20] for an explicit construction).

Loosely speaking, D(A) is obtained by formally inverting quasi-isomorphisms between

DG A-modules. Recall that D(A), equipped with Σ, is a triangulated category. Define

Df (A) to be the full subcategory of D(A) consisting of all M such that H(M) is a

finitely generated graded module over H(A). We use ' to denote isomorphisms in

D(A) and reserve ∼= for isomorphisms of DG A-modules.

2.3.5. Let α : M → N be a morphism of DG A-modules. We let cone(α) denote the

mapping cone of α and

0→ N
ι−→ cone(α)

π−→ ΣM → 0

be the mapping cone exact sequence. Then

M
α−→ N

ι−→ cone(α)
π−→



15

is an exact triangle in D(A). Moreover, α is a quasi-isomorphism if and only if

cone(α) ' 0 in D(A).

Example 2.3.6. Let R be a commutative ring. A complex of R-modules M is

perfect if it is quasi-isomorphic to a bounded complex of finitely generated projective

R-modules. By [12, 3.7], the objects of ThickD(R)R are exactly the perfect complexes.

Moreover, ThickD(R)R contains the compact objects, or small objects, of D(R). That

is, each object M of ThickD(R)R satisfies that HomD(R)(M,−) preserves arbitrary

direct sums.

We sketch the argument here that ThickD(R)R consists exactly of the perfect

complexes for the convenience of the reader. Moreover, this gives a nice illustration

of some techniques used while proving things about thick subcategories.

Let T denote the full subcategory of D(R) consisting of perfect complexes. It is

left to the reader to check that T is a thick subcategory of D(R). As R is an object of

T and ThickD(R)R is the smallest thick subcategory of D(R) containing R (see 2.3.2),

ThickD(R)R is a subcategory of T.

Conversely, an object of T is isomorphic in D(R) to a complex

P = 0→ Ps → . . .→ Pi → 0

where each Pj is a finitely generated projective R-module. We will show every such

P is an object of ThickD(R)R by inducting on the number of degrees such a P is

concentrated in. If s − i = 0, then P is a finitely generated projective R-module

concentrated in a single degree. Hence, P is an object of ThickD(R)R. For s− i > 0,

consider the exact triangle

P ′ → P → ΣsPs →
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where P ′ = P<s, i.e., the truncation of P below degree s. It is clear that P ′ and

ΣsPs are bounded complexes of finitely generated projective R-modules concentrated

in a fewer number of homological degrees. Hence, by induction P ′ and ΣsPs are

objects of ThickD(R)R and so P is an object of ThickD(R)R (see 2.3.1(2)). Therefore,

every bounded complex of finitely generated projective R-modules is an object of

ThickD(R)R. Since ThickD(R)R is closed under isomorphisms in D(R) it follows that

every object of T is an object of ThickD(R)R, finishing the sketch.

2.3.7. Let ϕ : A → A′ be a morphism of DG Q-algebras. Suppose M and N are

objects of D(A′). Via restriction of scalars each DG A′-module is a DG A-module

and hence, we can regard M and N as objects of D(A) by restricting scalars along ϕ.

This defines an exact functor ϕ∗ : D(A′)→ D(A). If M is in ThickD(A′)N , then M is

an object of ThickD(A)N when M and N are viewed as DG A-modules via restriction

of scalars along ϕ. More precisely, M is an object of ThickD(A′)N implies that ϕ∗(M)

is an object of ThickD(A) ϕ
∗(N).
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Chapter 3

Support for Complexes and Graded Modules

3.1 Support of a Complex of Modules

Let R be a commutative noetherian ring and let SpecR denote the set of prime ideals

of R. Recall that SpecR is a topological space with the Zariski topology.

3.1.1. Let S be a flat R-algebra. As the functor −⊗R S is exact we get a well-defined

exact functor of derived categories −⊗R S : D(R)→ D(S).

3.1.2. For each p ∈ SpecR, localization at p defines an exact functor D(R)→ D(Rp)

as

(−)p ∼= −⊗R Rp.

In particular, each exact triangle

L
α−→M

β−→ N
γ−→

in D(R) is sent to an exact triangle

Lp
αp−→Mp

βp−→ Np
γp−→

in D(Rp). Moreover, it is straightforward to see the localization functor is essentially
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surjective.

3.1.3. For a complex of R-modules M , define the support of M to be

SuppRM := {p ∈ SpecR : Mp 6' 0 in D(Rp)}.

As localization is exact,

SuppRM =
⋃
i∈Z

SuppR Hi(M)

where the the supports on the right-hand side of the equation above are the classical

supports defined for R-modules. In particular, SuppRM = ∅ if and only if M ' 0.

3.1.4. Let M be a nontrivial object of Df (R). As the (classical) support of a finitely

generated R-module is a closed subset of SpecR, it follows that SuppRM is a finite

union of closed subsets of SpecR. Thus, SuppRM is a closed subset of SpecR. In

particular, there exists a maximal ideal in SuppRM .

3.1.5. Let M be an object of D(R). It is clear that

SuppRM = SuppR ΣiM

for any i ∈ Z. Moreover, for any exact triangle M(1)→M(2)→M(3)→ in D(R),

SuppRM(i) ⊆ SuppRM(j) ∪ SuppRM(`)

where {i, j, `} = {1, 2, 3}.

3.1.6. Let M be in Df (R) and let x = x1, . . . , xn generate an ideal I of R. It follows
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from Nakayama’s lemma that

SuppR(M ⊗R KosR(x)) = SuppRM ∩ SuppR(R/I).

In particular, if x generates a maximal ideal m of R with m ∈ SuppRM , then

SuppR(M ⊗R KosR(x)) = {m}.

Example 3.1.7. Let R be a commutative ring and let m be a maximal ideal of

R. By [12, 3.10], ThickD(R)(R/m) consists of all objects M of Df (R) such that

SuppRM = {m}. In particular, if x is a generating set of m, then KosR(x) is an

object of ThickD(R)(R/m).

Lemma 3.1.8. Let n be a nonzero integer and let M be in Df (R). If α : M → ΣnM

is a morphism in D(R), then

SuppRM = SuppR(cone(α)).

Proof. Let C := cone(α). We have an exact triangle

M
α−→ ΣnM → C → (3.1)

in D(R) (c.f. 2.3.5). Now using 3.1.5, it follows that SuppR C ⊆ SuppRM .

Conversely, suppose p /∈ SuppR C. Localizing (3.1), we obtain an exact triangle

Mp → ΣnMp → Cp →
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in D(Rp). By assumption, Cp ' 0 and since

cone(αp) ' Cp

it follows that cone(αp) ' 0. By 2.3.5, we conclude that

Mp'ΣnMp (3.2)

in D(Rp). However, since Mp is in Df (Rp) and n 6= 0, (3.2) implies that Mp ' 0.

Thus, p /∈ SuppRM .

3.2 Cohomological Support for Graded Modules

Let A = {Ai}i≥0 be a cohomologically graded, commutative noetherian ring. Define

ProjA to be the set of homogeneous prime ideals of A not containing the irrelevant

homogeneous maximal ideal A>0 := {Ai}i>0.

3.2.1. Let X be a graded A-module. For each p ∈ ProjA we let Xp denote the

homogeneous localization of X at p. Define the homogeneous support of X over A to

be

Supp+
AX := {p ∈ ProjA : Xp 6= 0}.

3.2.2. Fix homogeneous elements a1, . . . , am ∈ A. Define

V(a1, . . . , am) = {p ∈ ProjA : ai ∈ p for each i}.

It is straightforward to check that

V(a1, . . . , am) = Supp+
A(A/(a1, . . . , am)).
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The following properties of (cohomologically) graded A-modules follow easily from

the definition of homogeneous support; see [8, 2.2].

Proposition 3.2.3. Let A = {Ai}i≥0 be a cohomologically graded, commutative

noetherian ring.

1. Let X be a graded A-module and n ∈ Z. Then Supp+
AX = Supp+

A(ΣnX).

2. Given an exact sequence of graded A-modules 0→ X′ → X→ X′′ → 0 then

Supp+
AX = Supp+

AX′ ∪ Supp+
AX′′.

3. If X is a finitely generated graded A-module, then Supp+
AX = ∅ if and only if

X�0 = 0.
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Chapter 4

Cohomology Operators and Support Varieties

4.1 Koszul Complexes

Fix a commutative noetherian ring Q. Let f = f1, . . . , fn be a list of elements in Q.

Define KosQ(f) to be the DG Q-algebra with KosQ(f)\ the exterior algebra on a free

Q-module with basis ξ1, . . . , ξn of homological degree 1, and differential ∂ξi = fi. One

can realize KosQ(f) as the DG Q-algebra obtained by adjoining homological variables

of degree one, ξ1, . . . , ξn, to kill the cycles f (see [3, Section 6], [17, Chapter 1], or

[26]). Hence, we write

KosQ(f) = Q〈ξ1, . . . , ξn|∂ξi = fi〉.

4.1.1. Let f ′ = f ′1, . . . , f
′
m be in Q and set E ′ := Q〈ξ′1, . . . , ξ′m|∂ξ′i = f ′i〉. Assume that

there exists aij ∈ Q such that

fi =
m∑
j=1

aijf
′
j.

Then there exists a morphism of DG Q-algebras KosQ(f) → E ′ which is uniquely

determined by

ξi 7→
m∑
j=1

aijξ
′
j.
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Therefore, E ′ is a DG KosQ(f)-module where the action is determined by

ξi · e′ =
m∑
j=1

aijξ
′
je
′

for all e′ ∈ E ′.

4.1.2. Assume that (Q, n, k) is a commutative noetherian local ring. Define KQ to be

the Koszul complex on some minimal generating set for n. Then KQ is unique up to

DG Q-algebra isomorphism.

4.1.3. Let E := KosQ(f) and R := Q/(f). Since H(E) is a finitely generated graded

Q-module, it follows that M is an object of Df (E) if and only if H(M) is a finitely

generated graded Q-module (equivalently, H(M) is a finitely generated graded R-

module as (f) H(M) = 0). Moreover, since H0(E) = R and using 2.1.11, E → R

is a morphism of DG Q-algebras. Thus, every complex of R-modules (i.e., a DG

R-module) can be regarded as a DG E-module via restriction of scalars (see 2.3.7).

Finally, each object of Df (R) can be regarded as an object of Df (E) restricting along

the augmentation map E → R.

4.2 Map on Ext

This section is devoted to the following technical theorem; its proof uses the theory

of DG Γ-algebras. See [3, Section 6] or [17, Chapter 1] as a reference for definitions

and notation employed in the proof of Theorem 4.2.1.

Theorem 4.2.1. Assume (Q, n, k) is a regular local ring. Let R = Q/I where I is

minimally generated by f = f1, . . . , fn ∈ n2. Let E be the Koszul complex on f over
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Q. Let ϕ : E → R denote the augmentation map. The canonical map

Ext∗ϕ(k, k) : Ext∗R(k, k)→ Ext∗E(k, k)

is surjective.

Proof. Write E = Q〈ξ1, . . . , ξn|∂ξi = fi〉. For an element a ∈ Q, let a denote the image

of a in R. Let s1, . . . , se be a minimal generating set for n. Let X = {x1, . . . , xe}

be a set of exterior variables of homological degree 1 and Y = {y1, . . . , yn} a set of

divided power variables of homological degree 2. By [3, 7.2.10], the morphism of DG

Γ-algebras ϕ : E → R extends to a morphism of DG Γ-algebras

ϕ〈X〉 : E〈X|∂xi = si〉 → R〈X|∂xi = si〉

such that ϕ〈X〉(xi) = xi for each 1 ≤ i ≤ e.

Since fi ∈ n2, there exists aij ∈ n such that

fi =
e∑
j=1

aijsj.

For each 1 ≤ i ≤ n, we have degree 1 cycles

zi :=
n∑
j=1

aijxj − ξi and zi :=
n∑
j=1

aijxj

in E〈X〉 and R〈X〉, respectively. Moreover, for each 1 ≤ i ≤ n

ϕ〈X〉(zi) = zi.
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Applying [3, 7.2.10] yields a morphism of DG Γ-algebras

ϕ〈X, Y 〉 : E〈X〉〈Y |∂yi = zi〉 → R〈X〉〈Y |∂yi = zi〉

extending ϕ〈X〉 such that ϕ〈X, Y 〉(yi) = yi for each 1 ≤ i ≤ n.

By [3, 6.3.2], E〈X, Y 〉 is an acyclic closure of k over E. In particular, E〈X, Y 〉 is a

semiprojective resolution of k over E. Next, s1, . . . , se is a minimal generating set for

the maximal ideal of R. Also, since f1, . . . , fn minimally generates I, it follows that

[z1], . . . , [zn] is a minimal generating set for H1(R〈X〉) (see [26, Theorem 4] or [17,

1.5.4]). Thus, R〈X, Y 〉 is the second step in forming an acyclic closure of k over R. Let

ι : R〈X, Y 〉 ↪→ R〈X, Y, V 〉 denote the inclusion of DG Γ-algebras where R〈X, Y, V 〉

is an acyclic closure of k over R and V consists of Γ-variables of homological degree

at least 3. Define α : E〈X, Y 〉 → R〈X, Y, V 〉 to be the morphism of DG Γ-algebras

that is the the following composition of DG Γ-algebra

E〈X, Y 〉 ϕ〈X,Y 〉−−−−→ R〈X, Y 〉 ι−→ R〈X, Y, V 〉.

The following is a commutative diagram of Γ-algebras

E〈X, Y 〉 ⊗E k R〈X, Y, V 〉 ⊗R k

k〈X, Y 〉 k〈X, Y, V 〉

∼=

α⊗k

∼=

⊆

Therefore, α⊗k is an injective morphism of Γ-algebras. In particular, α⊗k is injective

as a map of graded k-vector spaces. Also, the following is a commutative diagram of

graded k-vector spaces

Homk(R〈X, Y, V 〉 ⊗R k, k) Homk(E〈X, Y 〉 ⊗E k, k)

HomR(R〈X, Y, V 〉, k) HomE(E〈X, Y 〉, k)

∼=

Homk(α⊗k,k)

∼=
Homϕ(α,k)
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Since α⊗ k is injective, Homk(α⊗ k, k) is surjective. Thus, Homϕ(α, k) is surjective.

Moreover, HomE(E〈X, Y 〉, k) and HomR(R〈X, Y, V 〉, k) have trivial differential (see

[3, 6.3.4]). Thus, Ext∗ϕ(k, k) = Homϕ(α, k), and so Ext∗ϕ(k, k) is surjective.

4.3 Cohomology Operators and Support Varieties

Notation 4.3.1. Throughout this section, and the next, we fix the following notation.

Let Q be a commutative noetherian ring. When Q is local, we will let n denote its

maximal ideal and k its residue field.

Let I be an ideal of Q and fix a generating set f = f1, . . . , fn for I. Set R := Q/I

and E := Q〈ξ1, . . . , ξn|∂ξi = fi〉. The augmentation map E → R is a map of DG

Q-algebras. Hence, we consider each complex of R-modules as DG E-modules via

restriction of scalars along E → R (c.f. 4.1.3).

Let S := Q[χ1, . . . , χn] be a graded polynomial ring where each χi has cohomo-

logical degree 2. When Q is local, set

A := S ⊗Q k = k[χ1, . . . , χn].

Define Γ to be the graded Q-linear dual of S, i.e., Γ is the graded Q-module with

Γi := HomQ(S i, Q).

Let {y(H)}H∈Nn be the Q-basis of Γ dual to {χH := χh11 . . . χhnn }H∈Nn the standard

Q-basis of S. Then Γ is a graded S-module via the action

χi · y(H) :=

 y(h1,...,hi−1,hi−1,hi+1,...,hn) hi ≥ 1

0 hi = 0
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4.3.2. Let M be a DG E-module. A Koszul resolution of M is a surjective quasi-

isomorphism of DG E-modules ε : P
'−→ M such that ε : P → M is a semiprojective

resolution of M over Q where we view each DG E-module as DG Q-module via

restriction of scalars along the structure map Q→ E. A semiprojective resolution of

M over E is a Koszul resolution of M , and hence Koszul resolutions exist (c.f. 2.2.2).

By [5, 2.1], when M is perfect over Q and Q is local, there exists a Koszul resolution

P
'−→M where

P \ ∼=
t∐
i=0

ΣiQβi

for some nonnegative integers t and βi.

Construction 4.3.3. Let ε : P
'−→ M be a Koszul resolution of M . Define UE(P ) to

be the DG E-module with

UE(P )\ ∼= (E ⊗Q Γ⊗Q P )\

and differential given by the formula

∂ = ∂E ⊗ 1⊗ 1 + 1⊗ 1⊗ ∂P +
n∑
i=1

(1⊗ χi ⊗ λi − λi ⊗ χi ⊗ 1)

where λi denotes left multiplication by ξi. By [5, 2.4], UE(P )→M is a semiprojective

resolution over E where the augmentation map is given by

a⊗ y(H) ⊗ x 7→

 aε(x) |H| = 0

0 |H| > 1

Notice that UE(P ) has a DG S-module structure where S acts on UE(P ) via its action
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on Γ. For a DG E-module N , HomE(UE(P ), N) is a DG S-module and hence,

Ext∗E(M,N) ∼= H(HomE(UE(P ), N)) (4.1)

is a graded module over S.

Remark 4.3.4. Let M and M ′ be DG E-modules and assume that α : M → M ′ is a

morphism of DG E-modules. Let F and F ′ be semiprojective resolutions of M and

M ′ over E, respectively. Since F is semiprojective over E, there exists a morphism

of DG E-modules α̃ : F → F ′ lifting α that is unique up to homotopy. Moreover, α̃

induces a morphism of DG E-modules 1⊗ 1⊗ α̃ : UE(F ) → UE(F ′) that is S-linear

and unique up to homotopy.

In particular, if F and F ′ are both semiprojective resolutions of a DG E-module

M , then there exists a DG E-module homotopy equivalence UE(F ) → UE(F ′) that

is S-linear and unique up to homotopy. Thus, the S-module structures of

H(HomE(UE(F ), N)) and H(HomE(UE(F ′), N))

coincide when F and F ′ are both semiprojective resolutions of M over E.

Proposition 4.3.5. Let M and N be in D(E). Then the S-module structure on

Ext∗E(M,N) given by (4.1) is independent of choice of Koszul resolution for M .

Moreover, the S-module action on Ext∗E(M,N) is functorial in M and given an exact

triangle

M ′ →M →M ′′ →

in D(E) the canonical maps, induced by applying Ext∗E(−, N), form an exact sequence
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of graded S-modules

Σ−1 Ext∗E(M ′, N)→ Ext∗E(M ′′, N)→ Ext∗E(M,N)→ Ext∗E(M ′, N).

Proof. Let P be a Koszul resolution of M and F a semiprojective resolution of M over

E. There exists a morphism of DG E-modules α̃ : F → P lifting the identity on M

which is unique up to homotopy. This induces a DG E-module homotopy equivalence

1 ⊗ 1 ⊗ α̃ : UE(F ) → UE(P ) that is S-linear and unique up to homotopy. Thus, F

and P determine the same S-module structure on Ext∗E(M,N). From Remark 4.3.4,

it follows that the S-module structure on Ext∗E(M,N) is independent of choice of

Koszul resolution for M .

Moreover, by Remark 4.3.4 the S-module structure on Ext∗E(M,N) is functorial

in M . Thus, Ext∗E(−, N) sends exact triangles in D(E) to exact sequences of graded

S-modules.

4.3.6. Assume that (Q, n, k) is a local ring and recall that A = S ⊗Q k. Let M be in

D(E). The S-action on Ext∗E(M,k) factors through S → A, and hence, Ext∗E(M,k)

is a graded A-module. Therefore, by Proposition 4.3.5, for any exact triangle M ′ →

M →M ′′ → in D(E), we get an exact sequence of graded A-modules

Σ−1 Ext∗E(M ′, k)→ Ext∗E(M ′′, k)→ Ext∗E(M,k)→ Ext∗E(M ′, k).

Lemma 4.3.7. Assume that (Q, n, k) is a local ring and M is in D(E). For any

x ∈ n, there exists an exact sequence of graded A-modules

0→ Σ−1 Ext∗E(M,k)→ Ext∗E(M ⊗Q KosQ(x), k)→ Ext∗E(M,k)→ 0.
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Proof. By 4.3.6, applying Ext∗E(−, k) to the exact triangle

M →M →M ⊗Q KosQ(x)→

in D(E) gives us an exact sequences of graded A-modules

Σ−1 Ext∗E(M,k)→ Ext∗E(M ⊗Q KosQ(x), k)→ Ext∗E(M,k)
x·−→ Ext∗E(M,k).

Since x is in n, we obtain the desired result.

Proposition 4.3.8. Assume that (Q, n, k) is a regular local ring. For each M in

Df (E), Ext∗E(M,k) is a finitely generated graded A-module.

Proof. As H(M) is finitely generated over Q and Q is regular, there exists a Koszul

resolution P
'−→ M such that P is a bounded complex of finitely generated free Q-

modules (see 4.3.2). Also, we have an isomorphism of graded A-modules

HomE(UE(P ), k)\ ∼= A⊗k HomQ(P, k)\.

Thus, HomE(UE(P ), k) is a noetherian graded A-module. As A is a noetherian

graded ring and Ext∗E(M,k) is a graded subquotient of HomE(UE(P ), k), it follows

that Ext∗E(M,k) is a noetherian graded A-module.

Remark 4.3.9. Suppose the local ring (Q, n, k) is regular. By 4.1.1, KQ is a DG E-

module. Assume that I ⊆ n2. Left multiplication by ξi on KQ is zero modulo n.

Thus, we have an isomorphism of DG A-modules

HomE(UE(KQ), k) ∼= A⊗k HomQ(KQ, k),
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where both DG A-modules have trivial differential (see 4.1.1). Therefore, there is an

isomorphism of graded A-modules

Ext∗E(k, k) ∼= A⊗k HomQ(KQ, k).

In particular,

Supp+
A (Ext∗E(k, k)) = ProjA.

Remark 4.3.10. We import the assumptions from 4.3.9. We give an alternative proof

of Proposition 4.3.8 in this case that uses thick subcategories.

Let T be the full subcategory of D(E) consisting of objectsM such that Ext∗E(M,k)

is a finitely generated graded A-module. Then T is a thick subcategory.

Let M ∈ Df (E). By [7, 3.10], M ⊗QKQ is an object of ThickD(E) k. Since k is an

object of T and T is a thick subcategory of D(E), we conclude that M ⊗Q KQ is an

object of T. That is, Ext∗E(M ⊗Q KQ, k) is finitely generated as an A-module. By

applying Lemma 4.3.7, Ext∗E(M,k) is a finitely generated graded A-module.

4.4 Support Varieties

We import the notation set in Notation 4.3.1. Further assume that (Q, n, k) is a

regular local ring, f minimally generates I, and I ⊆ n.

By Proposition 4.3.8, Ext∗E(M,k) is a finitely generated graded A-module for

each M in Df (E). This leads to the following definition which recovers the support

varieties of Avramov in [2] in the case that f is a Q-regular sequence. The varieties,

defined below, are investigated and further developed in [25].

Definition 4.4.1. Let M be in Df (E). Define the support variety of M over E to
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be

VE(M) := Supp+
A (Ext∗E(M,k)) .

Theorem 4.4.2. With the assumptions above, the following hold.

1. Let M and N be in Df (E). If N is in ThickD(E)M , then VE(N) ⊆ VE(M).

2. For any M in Df (E), VE(M) = VE(M ⊗Q KQ).

3. f is a regular Q-sequence if and only if VE(R) = ∅.

Proof. Using 4.3.6 and Proposition 3.2.3, it follows that the full subcategory of Df (E)

consisting of objects L such that VE(L) ⊆ VE(M) is a thick subcategory of Df (E).

Therefore, (1) holds.

Iteratively applying Lemma 4.3.7 and Proposition 3.2.3(2), establishes (2).

For (3), first assume that f is a Q-regular sequence. Hence, the augmentation

map E → R is a quasi-isomorphism. Therefore, 2.2.5 yields an isomorphism

Ext∗E(R, k) ∼= Ext∗R(R, k) = k.

Thus, by Proposition 3.2.3(3) we conclude that

VE(R) = Supp+
Ak = ∅.

Conversely, assume that VE(R) = ∅. Hence, by Proposition 4.3.8 and Proposition

3.2.3(3),

Ext�0
E (R, k) = 0. (4.2)

Next, let g = g1, . . . , gn be a minimal generating set for I such that g′ = g1, . . . , gc is a

maximal Q-regular sequence in I for some c ≤ g. Set Q := Q/(g′), g to be the image
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of gc+1, . . . , gn in Q, and E := KosQ(g). Since g′ is a Q-regular sequence, we have a

quasi-isomorphism of DG Q-algebras E
'−→ E. Hence, 2.2.5 yields an isomorphism of

graded k-vector spaces

Ext∗
E

(R, k)∼= Ext∗E(R, k).

In particular, Ext�0
E

(R, k) = 0 by (4.2). Hence, R has a semiprojective resolution P

over E where

P \ ∼=
t∐

j=0

Σj(E
βj

)\

(c.f. [9, B.9]). Therefore, R has finite projective dimension over Q.

As R = Q/IQ where IQ contains no Q-regular element, it follows that IQ = 0

(see [11, 1.4.7] ). Thus, g = g′, that is, I is generated by a Q-regular sequence.

Therefore, by [11, 1.6.19], f is Q-regular sequence.

Remark 4.4.3. In [25], a different argument is used to establish Theorem 4.4.2(3). In

fact, the following is shown: f is a Q-regular sequence if and only if VE(M) = ∅ for

some nonzero finitely generated R-module M. The proof in [25] is simpler but uses

the amplitude inequality established by Jørgensen in [19, 4.1]. One of the key lemmas

Jørgensen proved to establish [19, 4.1] depends on the new intersection theorem, which

was proved in full generality by P. Roberts.

Theorem 4.4.4. Assume (Q, n, k) is a regular local ring. Let R = Q/I where I is

minimally generated by f = f1, . . . , fn ∈ n2. Let E be the Koszul complex on f over

Q and set A = k[χ1, . . . , χn]. For each homogeneous element g ∈ A, there exists a

complex of R-modules C(g) in ThickD(R) k such that

VE(C(g)) = V(g).
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Proof. As Q is regular, the Koszul complex KQ is a free resolution of k over Q.

Moreover, 4.1.1 says that KQ is a Koszul resolution of k. By Construction 4.3.3,

ε : UE(KQ)
'−→ k is a semiprojective resolution of k over E. Set U := UE(KQ) and

let d denote the degree of g. Define

C̃(g) := cone(U
g·−→ ΣdU).

The same proof1 given in [8, 3.10] and Remark 4.3.9 yield

VE(C̃(g)) = V(g). (4.3)

Fix a projective resolution δ : P
'−→ k over R. Since U is a semiprojective DG

E-module there exists a morphism of DG E-modules α : U → P such that δα = ε.

Note that α is a quasi-isomorphism.

By Theorem 4.2.1 and 2.2.3, there exists a morphism of complexes of R-modules

γ : P → Σdk such that

U ΣdU

P Σdk

'α

g·

Σdε'

γ

(4.4)

is a diagram of DG E-modules that commutes up to homotopy. Define

C(g) := cone(γ).

Since P ' k and γ is a morphism of complexes of R-modules, it follows that C(g)

is in ThickD(R) k. Also, as α are Σdε quasi-isomorphisms and (4.4) commutes up to

1A proof of Equation (4.3) follows the proof of Theorem 4.4.4.
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homotopy, we get an isomorphism

C(g) ' C̃(g)

in D(E). Therefore, Equation (4.3) yields

VE(C(g)) = VE(C̃(g)) = V(g).

We sketch the argument of (4.3) for the convenience of the reader.

Proof. We import the notation from the proof of Theorem 4.4.4. Set E := Ext∗E(k, k)

and E ′ := Ext∗E(C̃(g), k). Applying Ext∗E(−, k) to the exact triangle

U
g·−→ ΣdU → C̃(g)→

gives us an exact sequence of graded A-modules

Σ−d−1E g·−→ Σ−1E → E ′ → Σ−dE g·−→ E

(see 4.3.6). Thus, we obtain the exact sequence

0→ Σ−1E/gE → E ′ → Σ−d(0 :E g)→ 0

of graded A-modules where (0 :E g) is graded A-submodule of E consisting of elements

of E that are annihilated by g. The exact sequence of graded A-modules yields

Supp+
AE ′ = Supp+

AE/gE ∪ Supp+
A(0 :E g) (4.5)



36

(see Proposition 3.2.3(2)). As E is a finitely generated A-module,

Supp+
AE/gE = Supp+

AE ∩ Supp+
AA/(g)

and hence,

Supp+
AE/gE = Supp+

AE ∩ V(g).

Furthermore, since (0 :E g) is a submodule of E that is annihilated by g,

Supp+
A(0 :E g) ⊆ Supp+

AE ∩ V(g).

Combining these equalities with Equation (4.5), we conclude that

Supp+
AE ′ = Supp+

AE ∩ V(g).

Finally, using Remark 4.3.9 we obtain the desired result.
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Chapter 5

Virtually Small Complexes and Complete Intersections

5.1 Thick subcategories revisited

5.1.1. Let F : T→ T′ be an exact functor between triangulated categories with right

adjoint exact functor G. Let ε : FG → idT′ and η : idT → GF be the co-unit and

unit transformations.

The full subcategory of T consisting of all objects X such that the natural map

ηX : X → GF (X) is an isomorphism is a thick subcategory of T. For each X in T,

the composition

F (X)
F (ηX)−−−→ FGF (X)

εF (X)−−−→ F (X)

is an isomorphism. Therefore, if ηX is an isomorphism in T then εF (X) is an isomor-

phism in T′ and F induces an equivalence of categories

ThickT X
∼=−→ ThickT′ F (X).

Lemma 5.1.2. Let ϕ : R → S be flat morphism of commutative rings. Suppose M

is in D(R) and the natural map M →M ⊗R S is an isomorphism in D(R). Then the
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functor −⊗R S : D(R)→ D(S) induces an equivalence of categories

ThickD(R)M
∼=−→ ThickD(S)(M ⊗R S).

In particular, for each N in ThickD(R)M the natural map N → N ⊗R S is an isomor-

phism in D(R).

Proof. The restriction of scalar functor ϕ∗ : D(S)→ D(R) is right adjoint to −⊗RS :

D(R)→ D(S). By assumption, the natural map

M → ϕ∗(M ⊗R S)

is an isomorphism in D(R). Hence, 5.1.1 completes the proof.

Let R be a commutative noetherian ring. Recall that a complex of R-modules is

perfect provided that it is an object of ThickD(R)R (see Example 2.3.6).

5.1.3. The following theorem is a remarkable and beautiful result due to M. Hopkins

[18] and Neeman [22]: For objects M and N of ThickD(R)R, M is an object of

ThickD(R)N if and only if SuppRM ⊆ SuppRN.

5.2 Virtualy Small Complexes

Let R be a commutative noetherian ring. A complex of R-modules M is virtually

small if M ' 0 or there exists a nontrivial object P in

ThickD(R)M ∩ ThickD(R)R.

If in addition P can be chosen with SuppRM = SuppR P , we say M is proxy small.

These notions were introduced by Dwyer, Greenlees, and Iyengar in [12] and [13],
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where the authors apply methods from commutative algebra to homotopy theory and

vice versa.

Remark 5.2.1. In [12] and [13], the objects of ThickD(R)R are called the small objects

of D(R). With this terminology, the nontrivial virtually small objects of D(R) are

the complexes that finitely build a nontrivial small object.

Example 5.2.2. A trivial class of virtually small complexes are the perfect com-

plexes.

Example 5.2.3. Let m be a maximal ideal of R and suppose it is generated by x. By

3.1.7, KosR(x) is an object of ThickD(R)(R/m). Thus, R/m is virtually small. Notice

that R/m is a perfect complex if and only if Rm is a regular local ring. Indeed, if R/m

is a perfect complex then (R/m)m has finite projective dimension over the local ring

Rm. Moreover, Rm is a local ring with residue field

Rm/mRm
∼= (R/m)m

and hence, by the Auslander-Buchsbaum and Serre theorem we conclude that Rm is

a regular local ring.

Conversely, assume that Rm is a regular local ring. Since Rm is regular, (R/m)m

has finite projective dimension over Rm. Moreover, (R/m)p = 0 for all p 6= m. Thus,

R/m has finite projective dimension over R. That is, R/m is a perfect complex.

In summary, whenever R is not a regular ring then there is some maximal ideal

m of R such that R/m is virtually small but not a perfect complex.

5.2.4. A nontrivial object M of Df (R) is virtually small if and only if there exists a

maximal ideal m = (x) of R such that KosR(x) is in ThickD(R)M . In particular, if
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R is local, a nontrivial complex M in Df (R) is virtually small if and only if KR is in

ThickD(R)M . This was observed in [12, 4.5], and is a consequence 5.1.3.

As a matter of notation, let VS(R) to be the full subcategory of Df (R) consisting

of all virtually small complexes. In the following lemma, the argument for “(1) implies

(2)” is abstracted from the proof of [12, 9.4].

Lemma 5.2.5. Let R be a commutative noetherian ring. The following are equivalent:

1. ThickD(R)(R/m) is a subcategory of VS(R) for each maximal ideal m of R.

2. Df (R) = VS(R).

3. VS(R) is a thick subcategory of D(R).

Proof. (1) =⇒ (2): Let M be a nontrivial object of Df (R). Since M is nontrivial,

there exists a maximal ideal m in SuppRM . Let x generate m and set

N := M ⊗R KosR(x).

By 3.1.6, SuppRN = {m} and hence, N is in ThickD(R)(R/m) (see 3.1.7). By as-

sumption, there exists a nontrivial object P in ThickD(R)N ∩ ThickD(R)R. Finally,

since N is in ThickD(R)M , ThickD(R)N is a subcategory of ThickD(R)M. Thus, P is in

ThickD(R)M . That is, M is virtually small.

(2) =⇒ (3): Whenever R is noetherian, Df (R) is a thick subcategory of D(R).

(3) =⇒ (1): Let m be a maximal ideal of R and suppose x generates m. By

3.1.7, KosR(x) is in ThickD(R)(R/m). Thus, R/m is in VS(R). Since VS(R) is a thick

subcategory of D(R), it follows that ThickD(R)(R/m) is contained in VS(R).

Lemma 5.2.6. Let ϕ : R → S be a flat morphism of commutative noetherian rings.

Suppose m is a maximal ideal of R such that mS is a maximal ideal of S and the
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canonical map R/m → S/mS is an isomorphism. Then ThickD(R)(R/m) is a subcat-

egory of VS(R) if and only if ThickD(S)(S/mS) is a subcategory of VS(S).

Proof. Set K := KosR(x) where x generates m. Let x′ denote the image of x under

ϕ and set K ′ := KosS(x′). Hence, we have an isomorphism of DG S-algebras K ′ ∼=

K ⊗R S.

Assume ThickD(R)(R/m) is a subcategory of VS(R). Let N be a nontrivial ob-

ject of ThickD(S)(S/mS). By Lemma 5.1.2, there exists a nontrivial complex M in

ThickD(R)(R/m) such that M ⊗R S ' N in D(S). By assumption and 5.2.4, K is

in ThickD(R)M . Hence, K ⊗R S is in ThickD(S)(M ⊗R S). Since K ′ ∼= K ⊗R S and

N 'M ⊗R S, we conclude that K ′ is in ThickD(S)N . Thus, N is in VS(S).

Let M be a nontrivial object of ThickD(R)(R/m). Thus, M ⊗R S is a nontrivial

object of ThickD(S)(S/mS). By assumption and 5.2.4, K ′ is in ThickD(S)(M ⊗R S).

Therefore,

K ′ ∈ ThickD(R)(M ⊗R S). (5.1)

Since the natural map R/m → S/mS is an isomorphism and K and M are in

ThickD(R)(R/m), by applying Lemma 5.1.2 we obtain the following isomorphisms in

D(R)

K
'−→ K ⊗R S ∼= K ′ and M

'−→M ⊗R S.

These isomorphisms and (5.1) imply that K is in ThickD(R)M . That is, M is in

VS(R).

Proposition 5.2.7. Let R be a commutative noetherian ring.

1. Then Df (R) = VS(R) if and only if Df (Rm) = VS(Rm) for every maximal ideal

m of R.
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2. In addition, assume (R,m, k) is local and let R̂ denote its m-adic completion.

Then Df (R) = VS(R) if and only if Df (R̂) = VS(R̂).

Proof. By Lemma 5.2.5, Df (R) = VS(R) if and only if ThickD(R)(R/m) is a subcate-

gory of VS(R) for each maximal ideal of m of R. By Lemma 5.2.6, the latter holds if

and only if ThickD(Rm)(κ(m)) is a subcategory of VS(Rm) for each maximal ideal m of

R where κ(m) = Rm/mRm. Equivalently, Df (Rm) = VS(Rm) for each maximal ideal

m of R by Lemma 5.2.5. Thus, (1) holds.

Next, Lemma 5.2.6 yields that ThickD(R) k is a subcategory of VS(R) if and only

if ThickD(R̂) k is a subcategory of VS(R̂). Applying Lemma 5.2.5, finishes the proof of

(2).

5.3 The Main Results

Let (R,m) be a commutative noetherian local ring and let R̂ denote its m-adic com-

pletion. The local ring R is said to be a complete intersection provided

R̂ ∼= Q/(f1, . . . , fc)

where Q is a regular local ring and f1, . . . , fc is a Q-regular sequence. In [12, 9.4],

the following was established: if R is a complete intersection every object of Df (R)

virtually small. If in addition R is a quotient of a regular local ring, every object of

Df (R) is proxy small. Moreover, the authors posed the following question:

Question 5.3.1. [12, 9.4] If every object of Df (R) is virtually small, is R a complete

intersection?

Theorem 5.3.2, below, answers Question 5.3.1 in the affirmative. Much of the

work in establishing “(1) implies (3)” is done in the proof of a theorem of Bergh [10,
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3.2]. The theory of support varieties developed in Section 4.4 is the key ingredient

used to prove “(2) implies (1).”

Theorem 5.3.2. Let R be a commutative noetherian local ring. The following are

equivalent.

1. R is a complete intersection.

2. Every object of Df (R) is virtually small.

3. Every object of Df (R) is proxy small.

Proof. (1) =⇒ (3): Let M be in Df (R). In the proof of [10, 3.2], it is shown there

exist positive integers n1, . . . , nt and exact triangles in D(R)

M → Σn1M →M(1)→

M(1)→ Σn2M(1)→M(2)→
...

...
...

...

M(t− 1)→ ΣntM(t− 1)→M(t)→

such that M(t) is in ThickD(R)R. Also, it is clear that M(t) is in ThickD(R)M . Since

each ni 6= 0, Lemma 3.1.8 yields

SuppRM = SuppR(M(1)) = . . . = SuppR(M(t)).

Thus, M is proxy small.

(3) =⇒ (2): Clear from the definitions.

(2) =⇒ (1): By Proposition 5.2.7(2), we may assume that R is complete. Write

R = Q/I where (Q, n, k) is a regular local ring. Assume I is minimally generated by

f = f1, . . . , fn ∈ n2 and let E be the Koszul complex on f .
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Fix 1 ≤ i ≤ n. By Theorem 4.4.4, there exists C(i) in ThickD(R) k with

VE(C(i)) = V(χi).

Since each C(i) is an object of ThickD(R) k, it follows that each C(i) is an object of

Df (R). Hence, by assumption each C(i) is virtually small. Therefore, 5.2.4 implies

that KR is in ThickD(R)C(i). Hence,

VE(KR) ⊆ VE (C(i)) = V(χi)

by Theorem 4.4.2(1). Applying Theorem 4.4.2(2) with M = R yields

VE(R) = VE(KR),

and hence, VE(R) ⊆ V(χi).

Therefore,

VE(R) ⊆ V(χ1) ∩ . . . ∩ V(χn).

That is, VE(R) = ∅ and so by Theorem 4.4.2(3), f is a Q-regular sequence. Thus, R

is a complete intersection.

This structural characterization of a complete intersection’s derived category yields

the following corollary which was first established by Avramov in [4].

Corollary 5.3.3. Assume a commutative noetherian local ring R is a complete in-

tersection. For any p ∈ SpecR, Rp is is a complete intersection.

Proof. For any p ∈ SpecR, the functor − ⊗R Rp : Df (R) → Df (Rp) is essentially

surjective. Also, the property of proxy smallness localizes. These observations and
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Theorem 5.3.2 complete the proof.

Let R be a commutative noetherian ring. We say that R is locally a complete

intersection if Rp is a complete intersection for each p ∈ SpecR. By Corollary 5.3.3,

R is locally a complete intersection if and only if Rm is a complete intersection for

every maximal ideal m of R. We obtain the following homotopical characterization

of rings that are locally complete intersections.

Theorem 5.3.4. A commutative noetherian ring R is locally a complete intersection

if and only if every object of Df (R) is virtually small.

Proof. As remarked above, R is locally a complete intersection if and only if Rm is a

complete intersection for each maximal ideal m of R. By Theorem 5.3.2, the latter

holds if and only if Df (Rm) = VS(Rm) for each maximal ideal m of R. Equivalently,

Df (R) = VS(R) by Proposition 5.2.7(1).
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