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Diversity and Functional 
Evolution of Terpene Synthases in 
Dictyostelid Social Amoebae
Xinlu Chen  1, Tobias G. Köllner  2, Gad Shaulsky  3, Qidong Jia1, Jeroen S. Dickschat4, 
Jonathan Gershenzon2 & Feng Chen 1

Dictyostelids, or social amoebae, have a unique life style in forming multicellular fruiting bodies from 
unicellular amoeboids upon starvation. Recently, dictyostelids were found to contain terpene synthase 
(TPS) genes, a gene type of secondary metabolism previously known to occur only in plants, fungi and 
bacteria. Here we report an evolutionary functional study of dictyostelid TPS genes. The number of TPS 
genes in six species of dictyostelids examined ranges from 1 to 19; and the model species Dictyostelium 
purpureum contains 12 genes. Using in vitro enzyme assays, the 12 TPS genes from D. purpureum were 
shown to encode functional enzymes with distinct product profiles. The expression of the 12 TPS genes 
in D. purpureum is developmentally regulated. During multicellular development, D. purpureum releases 
a mixture of volatile terpenes dominated by sesquiterpenes that are the in vitro products of a subset of 
the 12 TPS genes. The quality and quantity of the terpenes released from D. purpureum, however, bear 
little resemblance to those of D. discoideum, a closely related dictyostelid. Despite these variations, 
the conserved clade of dictyostelid TPSs, which have an evolutionary distance of more than 600 million 
years, has the same biochemical function, catalyzing the formation of a sesquiterpene protoillud-7-ene. 
Taken together, our results indicate that the dynamic evolution of dictyostelid TPS genes includes both 
purifying selection of an orthologous group and species-specific expansion with functional divergence. 
Consequently, the terpenes produced by these TPSs most likely have conserved as well as species-
adaptive biological functions as chemical languages in dictyostelids.

Dictyostelids, known as social amoebae, are soil-dwelling eukaryotes that have a unique life style. When food 
(bacteria) is abundant, dictyostelids grow vegetatively as free-living, unicellular amoeboid cells through cell divi-
sion. On the contrary, when food is depleted, dictyostelids form multicellular fruiting bodies by the aggregation 
of unicellular amoeboid cells. The transition from the unicellular form to fruiting bodies is a tightly regulated 
developmental process1. With the aid of genome sequencing and comparative genomics, genes underlying con-
ditional multicellularity in dictyostelids continue to be identified and characterized2–4. Among the many features 
of the genome sequences of dictyostelids is the presence of notable types and numbers of genes of secondary 
metabolism5,6, among which polyketide synthase genes are the best recognized7. Forming a large gene family in 
each species, polyketide synthase genes exhibit extensive species-specific expansion6,8 and have been suggested to 
synthesize various types of polyketides for signaling and defense6,9. Along this line, an important recent finding is 
that dictyostelids also contain terpene synthase (TPS) genes10.

TPS genes encode enzymes that catalyze the conversion of oligoprenyl diphosphates of various chain lengths 
to terpene hydrocarbons or alcohols of enormous structural diversity11,12. The finding that dictyostelids contain 
TPS genes is significant in a number of ways. First, it indicates a wider distribution of TPS genes, which were 
previously observed only in plants and fungi among the eukaryotes. Second, it raises an intriguing question about 
the function of TPS genes in dictyostelids. In plants, where TPS genes are best studied, they are responsible for 
making terpenes that are involved in many processes of plant interactions with the environment as a chemical 
language13. Our previous study showed that TPS genes are absent in several species of solitary amoeba that are 
closely related to dictyostelids10. It is therefore tempting to speculate that TPS genes contribute to the multicellular 
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aspect of the dictyostelids’ unique life style. Dictyostelium discoideum has been used as a model species for func-
tional characterization of TPS genes. This species contains 9 TPS genes, all of which were shown to be expressed 
and active for the in vitro production of sesquiterpenes, while some of them also produce monoterpenes and 
diterpenes. Many of the identified in vitro terpene products were also released as volatile compounds from D. 
discoideum during multicellular development10.

The dictyostelids are a monophyletic clade that can be subdivided into four taxonomic groups using molecular 
phylogeny14,15. These four groups display enormous diversity in morphology and development16. In our previous 
study, TPS genes were found in five species of dictyostelids and the number of TPS genes in these species ranges 
from 1 to 1910. Such variation in the number of TPS genes poses intriguing questions: do paralogs in each species 
have similar or different catalytic functions? do paralogs and orthologs have similar or diverging expression 
patterns? how do the in vitro enzyme activities and gene expression patterns determine the chemical diversity of 
volatile terpenes produced by each dictyostelid species? what biological functions do these TPS genes and their 
terpene products have? Towards answering these questions, in this report, we investigate the functional evolution 
of the TPS family in dictyostelids using D. purpureum as the main model species.

Results and Discussion
Evolutionary relatedness of TPS genes from six species of dictyostelids. To conduct a compre-
hensive comparative analysis of the dictyostelid TPS gene family, six representative species were selected: D. fas-
ciculatum, Actyostelium subglobosum, Polysphondylium pallidum, D. lacteum, D. purpureum, and D. discoideum. 
There were two main justifications for this selection. First, these six species cover all major taxonomic groups 
of dictyostelids, belonging to groups 1, 2, 2, 3, 4, and 4, respectively (Fig. 1A14). These species exhibit large or 
small variations in development and morphology. D. fasciculatum, A. subglobosum, and P. pallidum form fruiting 
bodies from the location of the aggregate and their fruiting bodies have branches, while D. purpureum and D. 
discoideum form slugs that migrate prior to culmination. Second, the genomes of the six species have been fully  
sequenced3,5,6,8,17, allowing for an in-depth analysis of their TPS genes. As reported in our previous study, the 
genomes of the first five species contain 2 (D. fasciculatum), 1 (A. subglobosum), 19 (P. pallidum), 12 (D. pur-
pureum), and 9 TPS genes (D. discoideum)10. The genome sequence of D. lacteum was recently reported3 and we 
identified 7 TPS genes there (Table S1).

To understand their evolutionary relatedness, TPSs from the six dictyostelids species were subjected to a 
phylogenetic analysis. Four clades (I to IV) could be recognized (Fig. 1B). The phylogeny of clade I is generally 
consistent with the phylogeny of the six species determined using other genes18. All species contain one gene in 
this clade except for D. discoideum, which contains two genes DdTPS6 and DdTPS2. While DdTPS6 appears to be 
the ortholog, DdTPS2 most likely resulted from a relatively recent gene duplication of the DdTPS6/2 ancestor that 
occurred only in D. discoideum after the split of D. purpureum and D. discoideum in group 4.

The split of the two branches of dictyostelids (groups 1 and 2 being one branch and groups 3 and 4 being the 
other branch) was estimated to have occurred between 600 and 400 million years ago (MYA)6,8, indicating that 
dictyostelidal TPSs are ancient. Clade II contains TPS genes from three taxonomic groups, group 2, group 3 and 
group 4, suggesting a possible loss of TPS genes in two species in branch I (D. fasciculatum and A. subglobosum). 
Clade III is specific to P. pallidum, implying extensive gene family expansion in this species after its divergence 
from the main branch. Clade IV is group 4-specific, containing only TPS genes from D. purpureum and D. dis-
coideum, implying the emergence of the genes after the split of the D. purpureum and D. discoideum common 
ancestor from group 3. Between the 12 TPS genes from D. purpureum and 9 TPS genes from D. discoideum, two 
species in group 4, four putative orthologous groups could be identified (Fig. 1B).

Catalytic activities of TPSs from D. purpureum. Prior to this study, D. discoideum was the only species 
of dictyostelids in which TPS genes have been functionally characterized10. To gain insights into the functional 
evolution of dictyostelid TPSs through comparative analysis, in this study, D. purpureum was selected as a model 
species for TPS functional characterization. Both D. purpureum and D. discoideum belong to group 4 and are 
most closely related among the six species examined in this work (Fig. 1A), despite having a large evolutionary 
distance of 400–300 million years8. D. purpureum and D. discoideum have been used as a pair of model spe-
cies for comparative genomics8, comparative transcriptome analyses19 and comparative biological studies20 of 
dictyostelids.

D. purpureum contains 12 TPS genes (designated DpTPS1-12), in contrast to 9 TPS genes in D. discoideum. 
Full-length cDNAs for all 12 TPS genes from D. purpureum were cloned and heterologously expressed in 
Escherichia coli. Because most DdTPSs function as sesquiterpene synthases10, for comparison, individual 
recombinant DpTPSs were first tested with farnesyl diphosphate, the substrate for sesquiterpene synthases. 
All 12 DpTPSs were capable of producing sesquiterpene hydrocarbons or alcohols, indicating that the genes 
encode bona fide TPS enzymes (Fig. 2A). While DpTPS1 produced a sole compound, protoillud-7-ene, all the 
other 11 DpTPSs catalyzed the formation of complex sesquiterpene mixtures. The product spectra of DpTPS2 
and DpTPS6 were dominated by the acyclic compound (E)-β-farnesene. DpTPS11 and DpTPS12 produced 
(E,E)-α-farnesene and α-selinene, respectively, as main products. The other enzymes formed mixtures of mainly 
unidentified sesquiterpene hydrocarbons or oxygenated sesquiterpenes.

Beside their sesquiterpene synthase activity, DpTPSs except DpTPS1 and DpTPS10 also exhibited monoter-
pene synthase activity when provided with geranyl diphosphate as substrate. While DpTPS3, DpTPS4, DpTPS6, 
DpTPS7, DpTPS8, DpTPS11, and DpTPS12 formed linalool as the major monoterpene product, DpTPS2 and 
DpTPS9 produced β-myrcene and DpTPS5 produced (Z)-β-ocimene as major product (Fig. S1). Seven DpTPSs 
accepted also geranylgeranyl diphosphate as substrate and catalyzed the formation of different unidentified dit-
erpene alcohols (Fig. S2).
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Based on the phylogenetic analysis, D. purpureum DpTPS1, DpTPS6, DpTPS2/9, and DpTPS4/5 were inferred 
to be orthologous to D. discoideum DdTPS6, DdTPS8, DdTPS5, and DdTPS3, respectively (Fig. 1B). The com-
plete biochemical characterization of the DdTPS family (Fig. 2) and the DpTPS family10,21 enabled the functional 
comparison of these putative orthologs (Fig. S3). The first orthologous pair, DpTPS1 and DdTPS6, exhibited 
identical activities, producing a single sesquiterpene protoillud-7-ene, whereas the second orthologous pair, 
DpTPS6 and DdTPS8, exhibited distinct activities. The major product of DpTPS6 is (E)-β-farnesene, whereas the 
major product of DdTPS8 is an unidentified sesquiterpene. (E,E)-α-Farnesene is a common product of DpTPS7 
and DdTPS8. The third putative pair of orthologs contains two genes from D. purpureum, DpTPS2 and DpTPS9. 
These two have completely distinct catalytic activities. The product profile of DdTPS5 is more similar to that of 
DpTPS2, with (E)-β-farnesene being the most abundant product for both enzymes. The fourth putative ortholog 
pair also contains two genes from D. purpureum, DpTPS4 and DpTPS5. While the catalytic activities of DpTPS4 

Figure 1. Phylogeny of six species of dictyostelid social amoeba and their terpene synthase genes. (A) 
Phylogeny of six species of dictyostelid social amoeba representing the four taxonomic groups adapted 
from3. Cartoons show the development patterns of the six species. (B) Phylogenetic tree of dictyostelid TPSs 
reconstructed using the maximum likelihood method. Protein sequences of 50 TPS genes include 19, 12, 9, 
7, 2 and, 1 from P. pallidum, D. purpureum, D. discoideum, D. lacteum, D. fasciculatum and, A. subglobosum, 
respectively. These genes formed four groups, highlighted with skyblue, light pink, light green, and grey. Ten 
genes from D. discoideum and D. purpureum occurred in the skyblue group. Representative genes from each 
species PpTPS18, DdTPS6, DpTPS1, DfTPS1, DlTPS1, and AsTPS1 were found in the light pink group. Fourteen 
genes from P. pallidum made up the light green group. Five genes from D. purpureum and six genes from D. 
lacteum were present in the grey group.
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and DpTPS5 are completely different, the two major products of DpTPS5 (unidentified sesquiterpenes) have the 
same mass spectra as the two unidentified major products of DdTPS3.

Orthologous TPSs of clade I across the six dictyostelid species have the same catalytic activi-
ties. The orthologous pair of DpTPS1 and DdTPS6 belongs to clade I, and these enzymes have apparent ort-
hologs in the other four species: DfTPS1 from D. fasciculatum, AsTPS1 from A. subglobosum, PpTPS18 from P. 
pallidum, and DlTPS1 from D. lacteum (Fig. 1B). The observation that DpTPS1 and DdTPS6 have the same cata-
lytic activity prompted us to ask whether the other orthologs have the same catalytic activities as well. To answer 
this question, the full-length cDNAs for DfTPS1, AsTPS1, PpTPS18 and DlTPS1 were cloned from the respective 

Figure 2. Sesquiterpene synthase activities of recombinant terpene synthases from Dictyostelids. (A) 
Sesquiterpene synthase activities of 12 TPSs from D. purpureum. DpTPS genes were expressed in E. coli 
individually, and crude proteins were isolated and their activities were analyzed with farnesyl diphosphate 
as substrate. 1, protoillud-7-ene; 2, δ-elemene; 3, β-elemene; 4, (E)-β-caryophyllene; 5, (E)-β-farnesene; 6, 
9-epi-(E)-caryophyllene; 7–9, unidentified sesquiterpenes (STs); 10, CAS 137235-51-9; 11; α-neoclovene; 12, 
β-neoclovene; 13, bicycloelemene; 14–17; unidentified STs; 18, (E,E)-α-farnesene; 19–24, unidentified STs; 25, 
germacrene D; 26, unidentified oxygenated ST; 27–31, unidentified STs; 32, valencene; 33, α-selinene; 34, 7-epi-
α-selinene; cont, contamination. (B) Sesquiterpene synthase activities of recombinant TPSs in the cluster of 
DpTPS1 orthologs identified by phylogenetic analysis (Fig. 1). AsTPS1 from A. subglobosum, DfTPS1 from D. 
fasciculatum, PpTPS18 from P. pallidum and DlTPS1 from D. lacteum. The sesquiterpene products from all four 
enzymes were identified to be protoillud-7-ene.
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species and expressed in E. coli to produce recombinant proteins. Testing with farnesyl diphosphate, all four 
TPSs catalyzed the formation of the same sesquiterpene protoillud-7-ene, exhibiting the same catalytic activity 
as DpTPS1 and DdTPS6 (Fig. 2B). This indicates that the sole orthologous group among all the six species has an 
identical biochemical function despite more than 600 million years of divergence6. Such functional conservation 
is rare among TPSs from plants, fungi and bacteria.

Expression patterns of TPS genes during development of D. purpureum and comparative anal-
ysis. The multicellular development program in D. purpureum is initiated upon starvation. The 24-hour devel-
opmental process can be broadly divided into several stages: streaming, loose aggregate, mound, Mexican hat, and 
fruiting body (Fig. 1A). The expression of the DpTPS genes at seven time points during the 24 h development with 
4 h intervals was extracted from a previous transcriptome analysis19 and presented in Fig. 3A.

All twelve TPS genes exhibited moderate levels of mRNA abundance and vast changes during the 24-hour 
course of the developmental process. Based on the mRNA abundance at the time of peak expression, the 12 genes 
can be categorized into three groups (Fig. 3A): high-abundance genes included DpTPS1, DpTPS8, DpTPS9 and 
DpTPS12, while medium-abundance genes were represented by DpTPS3, DpTPS5, DpTPS6 and DpTPS7, and 
low-abundance genes were DpTPS2, DpTPS4, DpTPS10 and DpTSP11. Furthermore, different time points for the 
highest expression levels of the DpTPS genes were observed. DpTPS2 was the only gene whose highest abundance 
levels occurred during vegetative growth (0 h). For all other genes, peak abundance occurred at various times 
during development. DpTPS1 and DpTPS7 were the two genes whose peak abundance happened at a time point 
during the first half of development. The highest expression of DpTPS9 and DpTPS12 occurred at the half point 
of development (12 h), while the peak abundance of the rest of the DpTPS genes was recorded during the second 
half of development (Fig. 3A).

The expression of orthologous pairs/groups between D. purpureum and D. discoideum was also compared 
(Fig. S4). It appeared that DpTPS9 and DdTPS5 had similar patterns of expression, and the same applied to 
DpTPS1 and DdTPS6. There were similarities between the expression patterns of DpTPS5 and DdTPS3, although 
the abundance of DdTPS5 was much higher.

During multicellular development, cells of Dictyostelium amoebae differentiate into two types: prestalk cells 
and prespore cells, which will eventually develop into the stalk and spores of the fruiting body22. All 12 DpTPS 
genes in D. purpureum were enriched in prestalk cells (Fig. 3B). This pattern is different from that of DdTPS genes 
in D. discoideum. While the majority of DdTPS genes also showed preferential expression in prestalk cells, two of 
them, DdTPS1 and DdTPS8, have higher expression in prespore cells (Fig. 3C). This is an intriguing observation, 
but its significance cannot be evaluated until we understand the biological functions of the terpenes produced by 
these gene products.

Emission of volatile terpenes during development of D. purpureum and comparative analy-
sis. Most DpTPS genes showed dynamic expression during multicellular development, suggesting that they 
may have a function during this process. In addition, all of the DpTPSs were active in producing sesquiterpenes 
and seven of them were active in producing monoterpenes in the in vitro enzyme assays (Fig. 2A). Since sesqui-
terpenes and monoterpenes are volatiles, we performed volatile profiling of D. purpureum culture during 24 h 
development. Volatile collections were performed in every four hours.

During this time course experiment a mixture of eight volatile sesquiterpenes was detected (Fig. 4), most 
of them were identified as the products of DpTPS1, DpTPS9 and DpTPS12. The predominant sesquiterpene 
was α-selinene, the major product of DpTPS12. Besides α-selinene, β-elemene, an unidentified sesquiterpene 
(peak#31) and valencene were minor products produced by DpTPS12. From time point 4 to 24 hour, emission 
of these four sesquiterpenes produced by DpTPS12 increased with time, and reached the highest levels at 24 h. 
Protoillud-7-ene and germacrene D were produced by DpTPS1 and DpTPS9, respectively.

D. discoideum also released a mixture of volatile terpenes, including nine sesquiterpenes, one monoterpene 
and one diterpene10. In contrast to D. purpureum in which three DpTPS genes are main contributors of volatile 
production, the terpene products of all DdTPSs except DdTPS8 could be validated by the detection of DdTPS 
products in the volatile bouquet of D. discoideum10. Among all the volatile terpenes emitted from the two species, 
only one terpene is common: protoillud-7-ene, which is the product of the ortholog pair DpTPS1 and DdTPS6 
in the clade 1 (Fig. 1B). In D. purpureum, α-selinene is the most abundant terpene at any time throughout multi-
cellular development. In contrast, in D. discoideum the most abundant terpene before 24 hours is different from 
that at 24 h during development.

Concluding Remarks
This study has led to new insights into the diversity and functional evolution of the TPS gene family in dictyos-
telid social amoebae. Through phylogenetic analysis, a conserved clade of TPS genes from the six species of 
social amoebae was identified (Fig. 1B), implying a common evolutionary origin of dictyostelid TPS genes. The 
variation in the number of TPS genes among the six species suggests group- or species-specific expansion of TPS 
genes through gene duplication. At the biochemical level, individual orthologs in this conserved clade encode 
enzymes of the same catalytic activity (Fig. 2B), while the paralogs in D. purpureum (Fig. 2A) as well as those 
in D. discordeum10 exhibit divergent catalytic functions. While essentially nothing is known about the biologi-
cal function of terpenoids in dictyostelids, this family of metabolites is involved in diverse biological processes 
in other organisms. In plants, for example, some terpenoids function as phytohormones critical for regulating 
growth and development and many others are involved in mediating plant-environment interactions13. In anal-
ogy, protoillud-7-ene, the product of DpTPS6 and its orthologs, may play a conserved, critical role, such as in 
regulating multicellular development, while the products of other TPS genes may have group- or species-adaptive 
functions, such as in chemotaxis23, defense24, or attracting beneficial organisms25. Such functions have been 
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Figure 3. Expression of terpene synthase genes during dictyostelid development. (A) Expression of DpTPS 
genes during 24 hour development. Expression of DpTPS genes was measured by RPKM (reads per kilobase 
per million sequenced reads) based on RNA-Seq data produced from web-based interface program (http://
dictyexpress.biolab.si/) and then displayed on a log2(RPKM+1) scale in this line plot. The cartoons depict six 
stages of multicellular development: vegetative, individual cells (0 h), streaming (8 h), loose aggregate (10 h), 
slug (16 h), Mexican hat (20 h), and fruiting bodies (24 h). (B) Expression of D. purpureum TPS genes in prestalk 
and prespore cells. The numbers 1 to 12 correspond to DpTPS1 to DpTPS12. (C) Expression of DdTPS genes 
from D. discoideum in prestalk and prespore cells. The numbers 1 to 9 correspond to DdTPS1 to DdTPS9.

http://dictyexpress.biolab.si/
http://dictyexpress.biolab.si/
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proposed for terpenoids as well as other types of secondary metabolites made by dictyostelid social amoebae26. 
Knowledge of the catalytic activities of individual TPSs and their contribution to the biosynthesis of volatile ter-
penoids during multicellular development in D. purpureum and D. discoideum now enables future researchers 
to elucidate the specific role of individual TPS genes and their terpenoid products. For this endeavor, mutant 
strains with disrupted TPS genes that could be produced using restriction enzyme-mediated integration (REMI) 
mutagenesis27 or recently reported CRISPR/Cas9 technology for Dictyostelium28 will be particularly useful.

Materials and Methods
Experimental organisms. D. purpureum DpAX1 (DBS0308472), Acytostelium subglobosum LB1 
(DBS0235452), D. fasciculatum SH3 (DBS0235810), D. lacteum (DBS0235831) and Polysphondylium pallidum 
PN500 (DBS0236808) were obtained from Dicty Stock Center (http://dictybase.org/). Five fruiting bodies of D. 
purpureum DpAX1 were added into 300 µl liquid culture of Klebsiella pneumonia, mixed well, and spread onto 
SM agar plate (http://dictybase.org/). Five Fruiting bodies of A. subglobosum LB1, D. fasciculatum SH3, D. lac-
teum and P. pallidum PN500 were mixed with E. coli B/r stain, and spread onto LP agar plates (http://dictybase.
org/). The plates were incubated at 22 °C in the dark.

Sequence and phylogenetic analysis. Amino acid sequence dataset of D. lacteum (http://sacgb.
leibniz-fli.de) was downloaded and searched against Pfam-A database locally using HMMER 3.0. Putative ter-
pene synthase genes were identified using a HMM profile Terpene_synth_C (PF03936) with an e-value of 1e−2. 
Multiple sequences were aligned using MAFFT(L-INS-i). The maximum likelihood phylogenetic trees were built 
using RAxML under the LG + G + F model with 1000 bootstrap replicates.

Full-length cDNA cloning. Social amoeba tissues at the stage of fruiting body were collected and homog-
enized using TissueLyser II according to manufacturer’s manual (https://www.qiagen.com). Total RNA was 
isolated using RNeasy Mini kit following manufacturer’s protocol (https://www.qiagen.com). cDNA was syn-
thesized using First Strand Synthesis Kit according to manufacturer’s protocol (http://www.gelifesciences.com). 

Figure 4. Volatile profiles of Dictyostelium purpureum culture during development. Volatile emissions during 
development of D. purpureum were collected by SPME and analyzed using GC-MS. All peaks labeled with a 
number are sesquiterpenes and the numbers correspond to the numbers of peaks in Figs 2 and 3. 1, protoillud-
7-ene*; 3, β-elemene*; 28, germacrene D; 31, unidentified sesquiterpene hydrocarbon; 32, valencene; 33, 
α-selinene. Letters indicate compounds that are not found in the product spectra of DpTPS. “a”, unidentified 
compound; “b”, widdrol; “c”, unidentified oxygenated sesquiterpene; “d”, allo-hedycaryol; “e”, unidentified 
oxygenated terpene. Compounds marked with asterisks (*) were identified using authentic standards. The 
cartoons depict six stages of multicellular development: vegetative, individual cells (0 h), streaming (8 h), loose 
aggregate (10 h), slug (16 h), Mexican hat (20 h) and fruiting bodies (24 h).

http://dictybase.org/
http://dictybase.org/
http://dictybase.org/
http://dictybase.org/
http://sacgb.leibniz-fli.de
http://sacgb.leibniz-fli.de
https://www.qiagen.com
https://www.qiagen.com
http://www.gelifesciences.com
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Full-length cDNA of individual TPS genes was amplified with gene specific primers (Table S2), cloned into vector 
pEXP5-CT/TOPO (https://www.thermofisher.com), and fully sequenced.

Terpene synthase enzyme assays. Individual social amoeba TPS genes in the pEXP5-CT/TOPO protein 
expression vector were transformed into E. coli Bl21(DE3) for heterologous protein expression. Crude protein 
extracts were desalted into assay buffer (10 mM Tris-HCl, pH 7.5, 1 mM dithiothreitol, 10% (v/v) glycerol) before 
enzyme assays. The catalytic activity of each social amoeba TPS was determined in assays containing 50 μl of 
the crude protein and 50 µl of assay buffer with 10 μM substrate (geranyl diphosphate, farnesyl diphosphate or 
geranylgeranyl diphosphate), 10 mM MgCl2 and 0.05 mM MnCl2. A solid phase microextraction (SPME) fiber 
consisting of 100 µm polydimethylsiloxane (SUPELCO, Belafonte, PA, USA) was inserted into the headspace of 
the assay vial. After incubation at 30 °C for 1 h, the SPME fiber was withdrawn from the vial and then inserted 
directly into the injector of the gas chromatograph. For the substrate geranylgeranyl diphosphate, assays were 
overlayed with 100 µl hexane. After extraction by vortexing, 2 µl of the organic phase was analyzed by GC/MS. A 
Hewlett-Packard model 6890 gas chromatograph coupled with a Hewlett-Packard model 5973 mass spectrometer 
with a quadrupole mass selective detector was employed for product identification. Each assay was repeated at 
least three times and the results were found to be consistent.

Expression analysis of terpene synthase genes in D. purpureum and D. discoideum. The expres-
sion data of individual TPS genes in D. purpureum and D. discoideum was obtained from the dataset reported 
previously29 and profiled using the dictyExpress web interface (https://dictyexpressresearch.bcm.edu/landing/).

Volatile profiling. D. purpureum spores and freshly grown K. pneumonia were mixed and spread onto SM 
agar plates to initiate culture. Volatiles of D. purpureum cultures during 24-hour multicellular development were 
collected at seven time points (every 4 hours) using SPME and analyzed using GC-MS as previously reported10.

Data Availability
Sequences of functionally characterized terpenes synthase genes from Dictyostelid social amoebae are available 
on GenBank: MG262459-MG262475.
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