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Constructing Critical Indecomposable Codes
Judy L. Walker

Abstract

Critical indecomposable codes were introduced by Assmus [1],
who also gave a recursive construction for these objects. One of the
key ingredients in the construction is an auxiliary code, which is an
indecomposable code of minimum distance at least 3. In terms of ac-
tually being able to construct all critical indecomposable codes, how-
ever, Assmus leaves many unanswered questions about these auxiliary
codes. In this paper, we provide answers to these questions, includ-
ing a description of when two equivalent auxiliary codes can yield
inequivalent critical indecomposable codes, and results on both the
minimum length and the maximum number of critical columns of an
auxiliary code. We end with an enumeration of all critical indecom-
posable codes of dimension at most 10.

Keywords

Automorphism group, canonical form, category, generator ma-
trix, indecomposable, linear code.

I. Introduction

The study of error-correcting codes was given a strong
impulse in 1948 with Shannon’s ground-breaking paper
[10]. Very early on, people took an abstract approach to
this topic, and in the late 1950’s Slepian [11] introduced
a structure theory for binary linear codes. In particular,
Slepian developed many of the ideas necessary for one to
define the Grothendieck ring of the category of binary lin-
ear codes, although Roos [9] was the first to explicitly dis-
cuss this ring about five years later. Slepian’s notion of
“sum” is the same as the one we use below: for linear
codes C and D of lengths m and n respectively, C ⊕ D
is the code of length m + n consisting of all codewords of
the form (c|d), where c ∈ C and d ∈ D. Though we won’t
need it, we mention that Slepian’s notion of “product” is
the direct or Kronecker product, as described in [7].

It was Slepian’s intent to show that every code is equiva-
lent to a code which has a generator matrix in a certain
canonical form. Alas, this is not true, but Slepian did
manage to make some significant contributions nonethe-
less. Perhaps most importantly, he developed the idea of
an indecomposable code, that is, a code which is not iso-
morphic to a nontrivial direct sum of two other codes. He
proved two important things in this direction: First, ev-
ery code is isomorphic to a unique sum of indecomposable
codes. Second, for a given length and dimension, there is
an indecomposable code which achieves the highest possi-
ble minimum distance.

The problem with indecomposable codes is that there are
simply too many of them. It is easy to see that for a code
to be indecomposable is the same thing as the code not
being equivalent to a code which has a generator matrix
which is block diagonal with at least two blocks. Thus, if

C is any indecomposable code, then appending any column
vector onto any generator matrix for C yields a new inde-
composable code of the same dimension but having length
equal to one more than the length of C. This left Slepian
unable to achieve his original goal, and in fact, not much
new was contributed to the idea of a structure theory for
linear codes for about thirty years. (See, however, [2] and
[4].)

The major breakthrough came in the late 1990’s when
Assmus ([1]) introduced the notion of critical indecompos-
able codes. The idea is that these codes are indecompos-
able codes with no “extra” columns tacked on. More pre-
cisely, an indecomposable code is critical indecomposable
if puncturing at any column yields a code which either is
decomposable or has dimension less than the dimension of
the original code. A critical indecomposable code which
can be obtained by puncturing an indecomposable code at
one or more columns is said to be in the spectrum of that
indecomposable code. The notion of critical indecompos-
able codes appears to be very promising. In fact, Assmus
shows that there is a “quasi-canonical” form for the gener-
ator matrix of such a code, and this seems to be the closest
that one can hope to get to Slepian’s original goal. Fur-
ther, Assmus gives a recursive construction for all critical
indecomposable codes.

It is that construction which is the topic of this paper.
There are two ingredients which go into the construction:
a partition of the intended length of the code, and a so-
called auxiliary code, which is an indecomposable code of
smaller dimension having minimum distance at least 3 and
a certain number (determined by the partition) of critical
columns. While the problem of finding all possible parti-
tions is trivial, the problem of finding all possible auxil-
iary codes was left wide-open in [1]. Further, as mentioned
in [1], two equivalent auxiliary codes, when used with the
same partition, might yield inequivalent critical indecom-
posable codes.

In this paper, we study these auxiliary codes as a means
of clarifying Assmus’s construction of critical indecompos-
able codes. In Section II, we review some of the major
definitions and results from [1], including a description of
the construction of critical indecomposable codes. In Sec-
tion III, we study the question of when equivalent auxiliary
codes can yield inequivalent critical indecomposable codes
and give a complete answer to it. The shortest critical in-
decomposable code of dimension l has length l + 1, and in
Section IV we study the question of which auxiliary codes
can have these short critical indecomposable codes in their
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spectra. At the other extreme, the longest critical inde-
composable code of dimension l has length 2l − 2, and in
Section V we study these codes and the question of which
auxiliary codes can have them in their spectra. In Sec-
tion VI we treat the general case, studying properties of all
possible auxiliary codes. Section VII is an in-depth study
of certain codes of dimension at most four which can be
used as auxiliary codes. Finally, Section VIII applies the
results of the rest of the paper to obtain an enumeration
of all binary critical indecomposable codes of dimension at
most 10.

II. Critical Indecomposable Codes

We begin by recalling some definitions from [1].
Definition II.1: ([1]) Let F be any field, and for a

nonempty finite set X, let F X denote the vector space of
functions from X to F . Any subspace C of F X is called a
(linear) code. The cardinality of X is called the length of
C, and the elements of X are called the columns of C.

It is often convenient to identify X with {1, 2, . . . , n} and
to think of C as being a subspace of F n.

The notion of morphism in the category that Assmus de-
fined in [1] was different from the notion used by Slepian
in [11]. It was this distinction which allowed Assmus to de-
fine critical indecomposable codes, and so our next order
of business is to recall Assmus’s definition of code homo-
morphism.

Definition II.2: ([1]) Let C and D be codes. Writing
wt(·) to denote Hamming weight, a code homomorphism
from C to D is a linear transformation φ : C → D such
that wt(φ(c)) ≤ wt(c) for all c ∈ C. Two codes are said to
be isomorphic or equivalent if there is a bijective code ho-
momorphism, whose inverse is also a code homomorphism,
from one to the other.

As Assmus points out, with this definition of equivalence,
all codes consisting only of the zero vector (of any length)
are equivalent. Thus the length of a code is not an invari-
ant of the equivalence class of the code. However, one may
define the support of a code to be the set of columns which
are not entirely zero, and the cardinality of the support of
a code is an invariant of the equivalence class of the code.
If two binary codes C and D have full support, that is, if
their lengths equal the cardinalities of their supports, then
C and D are equivalent if and only if there is some per-
mutation of the columns of C which sends C to D. More
precisely, if we denote by Σn the full permutation group on
n symbols, then the binary linear codes C and D having
full support and length n are equivalent if there is a per-
mutation σ ∈ Σn such that (c1, . . . , cn) ∈ C if and only if
(cσ(1), . . . , cσ(n)) ∈ D. We will use the convention that Σn

acts on the columns of a code C of length n on the right,
that is, (C)σ = {(cσ(1), . . . , cσ(n)) | (c1, . . . , cn) ∈ C}.

Definition II.3: Let C ′ and C ′′ be linear codes of lengths
m and n respectively. The direct sum of C ′ and C ′′ is the
set C := C ′ ⊕C ′′ of all vectors in F

m+n such that the vec-
tor of length m formed by dropping the last n coordinates
is a codeword in C ′ and the vector of length n formed by
dropping the first m coordinates is a codeword in C ′′. A

code C is called indecomposable if it is not isomorphic to
C ′ ⊕ C ′′ for any nonzero linear codes C ′ and C ′′. A code
which is not indecomposable is called decomposable.

Notice that although some authors use the symbol “⊕”
to mean modulo two addition, this symbol will be used here
only to mean the direct sum of codes.

Let C be an indecomposable code of length n and dimen-
sion k, and let G be a (k×n) generator matrix for C. If any
nonzero column vector of length k is appended to G, we get
a generator matrix of a new indecomposable code which is
not equivalent to C. The dimension of this code will still
be k, but the length will now be n + 1. Roughly speaking,
a critical indecomposable code is an indecomposable code
which hasn’t had extra columns appended to it.

More precisely, let C be an indecomposable code of
length n and dimension k and let G be a generator matrix
for C. For 1 ≤ i ≤ n, define φi(C) to be the code which
is generated by the rows of the matrix obtained from G by
omitting the ith column. (This process is known as punc-
turing C at the ith column and is clearly independent of
the choice of the generator matrix for C.) Then φi(C) will
be a code of length n− 1 and dimension either k or k − 1,
and it may or may not be indecomposable.

Definition II.4: Let C be an indecomposable code of
length n. We say the ith column of C is a critical col-
umn of C if either φi(C) has dimension k − 1 or φi(C) is
decomposable. We say C is a critical indecomposable code
if every nonzero column of C is critical.

Notice that the dimension of φi(C) is less than the di-
mension of C if and only if there is a codeword of C sup-
ported only on the ith column. In this case, either C has
dimension one, or C is not indecomposable. Thus only the
second condition in the definition of critical indecompos-
able codes is relevant when k ≥ 2.

For the remainder of the paper, we will be looking at
specific binary critical indecomposable codes. Thus, while
many of the results in this paper either apply directly, or
can be generalized easily, to the case of linear codes over
any ground field, we will restrict our attention to the case
of the binary field F2. Further, since every code is iso-
morphic to a code with full support (by simply puncturing
at all zero columns), we will concern ourselves only with
codes which have full support. Because of these reasons,
the word code should be taken to mean binary linear code
of full support for the rest of this paper.

It is plain to see that F2 is the only critical indecompos-
able code of dimension 1. Further, for k ≥ 2, there is only
one code (up to isomorphism) of dimension k and length
k + 1, and it is critical indecomposable. We will call this
code Ck+1,k. Assmus shows that for k = 2 and k = 3 the
only critical indecomposable codes of dimension k are C3,2

and C4,3 respectively. He also shows that, up to isomor-
phism, the only critical indecomposable codes of dimension
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4 are C5,4 and the code C6,4 with generator matrix









1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 1 0









Moreover, Assmus gives a recursive construction for all crit-
ical indecomposable codes. We include that construction
here.

Let π = (x1, x2, . . . , xr, x
′) be an ordered partition of n

(so n = x1 + · · · + xr + x′) such that x′ ≥ 0, xi ≥ 2 for
1 ≤ i ≤ r, and x1 ≥ x2 ≥ · · · ≥ xr. Let A be an indecom-
posable code of length s := r+x′ and minimum distance at
least 3, and assume that the last x′ columns of A are criti-
cal. Then a generator matrix for a critical indecomposable
code can be constructed from π and A as follows:
• For 1 ≤ i ≤ r, let Gi be the (xi − 1) × xi matrix which
consists of a column of 1’s followed by the identity matrix
of size xi−1. Note that if xi = 2, then Gi is a generator ma-
trix for the code whose only nonzero element is the vector
(1, 1); otherwise Gi generates the code Cxi,xi−1 described
above.
• Let l = dim A and fix a generator matrix GA for A.
• For 1 ≤ i ≤ r, let Li be the l × xi matrix whose first
column is the ith column of GA and whose other entries
are all 0. Also let Lr+1, . . . , Lr+x′ be the last x′ columns
of GA.
• Set

G :=















G1

G2

. . .

Gr

L1 L2 . . . Lr Lr+1 . . . Lr+x′















, (∗)

where all blank spaces are assumed to be filled in with the
appropriate number of zeros.
The matrix G is a generator matrix for a critical indecom-
posable code of length n and dimension k := n−s+ l. The
relatively straight-forward proof is given in [1], and we will
not reproduce it here.

It is also true (see [1]) that every critical indecomposable
code is equivalent to a code with a generator matrix of the
form (∗). To see this, start by defining two operations, ε
and α, each of which take as input a critical indecompos-
able code C. Define ε(C) to be the subcode of C generated
by the vectors of weight 2. It is not hard to prove that
ε(C) is isomorphic to a code of the form E1 ⊕ · · · ⊕ Er,
where each Ei is either the code whose only nonzero ele-
ment is (1, 1) or a code of length ni and dimension ni − 1
for some ni ≥ 2, and we may order the Ei’s in such a
way that n1 ≥ n2 ≥ · · · ≥ nr. Further, if C was con-
structed using the partition π = (x1, . . . , xr, x

′), we have
that ε(C) = E1 ⊕ · · · ⊕Er where Ei = Cxi,xi−1 is the code
with generator matrix Gi as described above.

To define α(C), we first need to choose ci ∈ supp(Ei)
for 1 ≤ i ≤ r. Then α(C) is the subcode of C supported
only on {c1, . . . cr}∪(supp(C)\supp(ε(C))). One can show

([1]) that α(C) is independent of choice of c1, . . . , cr, that
α(C) indecomposable of minimum weight at least 3, and
that the columns of α(C) which were not in the support
of E are all critical. Further, if C was constructed using
the auxiliary code A, then α(C) is simply the code A with
some columns of zeros inserted (see [1]). More precisely, if
A had dimension l, then the last l rows of the generator
matrix (∗) for C form a generator matrix for α(C).

Finally, if C is any critical indecomposable code of length
n, we note that the structure of ε(C) implies a partition
π = (n1, . . . , nr, n

′) of n. Let A be the code obtained by
dropping the columns of zeros from α(C). Then it follows
that the critical indecomposable code constructed from π
and A is equivalent to C.

If A is an indecomposable code of dimension l, then Ass-
mus defines the spectrum of A to be the set Spec(A) of
all critical indecomposable codes of dimension l which can
be obtained by deleting columns of A. Clearly Spec(A) is
nonempty for every indecomposable code A.

We close this section with a proposition which states that
critical indecomposable codes are “short”. The proposition
was already known to Assmus ([1]), who found it to be im-
plied by results of Murty ([8]). The proof we give, however,
is much more elementary.

Proposition II.5: Let C be a critical indecomposable
code of dimension k ≥ 3. Then the length of C is at most
2k − 2.

Proof: The statement holds when k = 3, since the
only critical indecomposable code of dimension 3 is C4,3,
which has length 4 = 2(3)−2. Assume the statement holds
for all l < k, and let C be a critical indecomposable code
of dimension k. If C = Ck+1,k, then the length of C is
k + 1 < 2k − 2. Otherwise, let A be the auxiliary code
used to construct C. Then dim A = l < k, so every critical
indecomposable code in Spec(A) has length at most 2l−2.
Thus, at most 2l− 2 columns of A can be critical. (In fact,
we will show in Theorem VI.1 below that at most l − 1
columns of A can be critical.) But we have k = n − s + l,
where s is the length of A and n is the length of C. Fur-
ther, from the conditions on the partition used to construct
C, we have s = r + x′ ≤ (n − x′)/2 + x′. Putting this all
together, we have

n = k + s− l

≤ k + (n− x′)/2 + x′ − l

which implies that

n ≤ 2k − 2l + x′.

Since x′ ≤ 2l − 2, the result follows.

Assmus ([1]) also states that the results of Murty ([8])
imply that there is a unique critical indecomposable code
of length l and dimension 2l− 2. We will show that this is
true without appealing to [8] in Section V below.
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III. Equivalence of Critical Indecomposable
Codes

The auxiliary code A in the construction of critical inde-
composable codes plays a very important role. Indeed, this
is the one part of the construction which remains somewhat
mysterious. For example, as Assmus comments, equivalent
auxiliary codes, when paired with the same partition of n,
may yield inequivalent critical indecomposable codes. In
this section, we determine exactly when this can happen.

First, let us look at some examples. It is easy to check
that the code A with generator matrix

(

1 1 0 0 1
0 0 1 1 1

)

is indecomposable and has minimum distance 3. Further,
the last column of A is critical. Let A′ be the code with
generator matrix

(

1 0 1 0 1
0 1 0 1 1

)

.

Clearly, A and A′ are equivalent (but distinct) codes, and
the last column of A′ is still critical.

We can use A and A′ along with the partition π =
(2, 2, 2, 2, 1) to construct critical indecomposable codes C
and C ′ of length 9 and dimension 6. The generator matri-
ces constructed for C and C ′ are

















11
11

11
11

1 1 0 0 1
0 0 1 1 1

















and
















11
11

11
11

1 0 1 0 1
0 1 0 1 1

















respectively. Although these are certainly distinct sub-
spaces of F

9
2, applying the permutation (3, 5)(4, 6) to C

yields C ′, so C and C ′ are equivalent codes.
Now we’ll use the partition π = (3, 3, 2, 2, 1) along with

the auxiliary codes A and A′ to construct two critical in-
decomposable codes D and D′ of length 11 and dimension
8. Thus,

























110
101

110
101

11
11

1 1 0 0 1
0 0 1 1 1

























and

























110
101

110
101

11
11

1 0 1 0 1
0 1 0 1 1

























are generator matrices for D and D′ respectively. This
time, we see that the codes D and D′ are inequivalent. In
particular, the all-1 vector is a codeword of D (add up the
first 7 rows of the given generator matrix) but it is not a
codeword of D′.

It turns out that the question of whether the same parti-
tion and equivalent yet distinct auxiliary codes yield equiv-
alent critical indecomposable codes depends upon certain
double-cosets in the full permutation group. To make this
precise, we will need a definition.

Definition III.1: Let π = (x1, . . . , xr, x
′) be a partition

of the integer n as used in the construction of critical inde-
composable codes. We define the block permutations of π
to be the subgroup B(π) ≤ Σr ×Σ{r+1,...,r+x′} ≤ Σs given
by

B(π) :=

{σ ∈ Σr |xσ(i) = xi for 1 ≤ i ≤ r} × Σ{r+1,...,r+x′}.

When looking at equivalent auxiliary codes, we need
to be sure that the permutation of columns preserves the
property that the last x′ columns are critical. Let A be an
indecomposable code of length s with minimum distance
at least 3 and having c critical columns. Without loss of
generality, we may assume that the columns of A are ar-
ranged in such a way that the first s−c are not critical and
the last c are critical. Given a partition π = (x1, . . . , xr, x

′)
to be used with A as auxiliary code, we know that x′ ≤ c.
Further, the only equivalent codes (A)σ we need be con-
cerned with are those where the last x′ columns are crit-
ical. It is not hard to see that this is the same as requir-
ing σ ∈ Σr · Σ{s−c+1,...,s}. In what follows, we denote by
Aut(A) the automorphism group of A, i.e., the subgroup of
Σs which fixes the code A.

Theorem III.2: Let π = (x1, . . . , xr, x
′) be a partition of

the integer n with xi ≥ 2 for 1 ≤ i ≤ r. Let A be an
indecomposable code of length s := r + x′ with minimum
distance at least 3 and c ≥ x′ critical columns. Assume
that the last c columns of A are the critical ones. Let
σ, τ ∈ Σ{s−c+1,...,s} · Σr ⊂ Σs, and let Cσ and Cτ be the
critical indecomposable codes of length n constructed us-
ing the partition π and the auxiliary codes (A)σ and (A)τ

respectively. Then Cσ is equivalent to Cτ if and only if the
double coset Aut(A) · σ ·B(π) contains τ .

Proof: Suppose first that Cσ and Cτ are equivalent
codes. Then there is some γ ∈ Σn such that Cσ = (Cτ )γ .
Apply the operations ε and α described above, choosing ci
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to be the first column of Ei for i = 1, . . . , r in the defini-
tion of α. Set Eσ = ε(Cσ), Eτ = ε(Cτ ), Aσ = α(Cσ), and
Aτ = α(Cτ ). Then we have Eσ = ε(Cσ) = ε((Cτ )γ) =
(ε(Cτ ))γ = (Eτ )γ and Aσ = α(Cσ) = α((Cτ )γ) =
(α(Cτ ))γ = (Aτ )γ . We will use these relationships to de-
duce information about the relationship between σ and τ .

First notice that since Cσ and Cτ were both constructed
using the same partition π, we have Eσ = Eτ = E1 ⊕ · · · ⊕
Er ⊕ Z, where Ei = Cxi,xi+1 and Z is the code consist-
ing of the zero vector of length x′. It is easy to see that
Aut(Ei) = Σxi

. Set B̂(π) = {β̂ |β ∈ B(π)}, where β̂ is
the obvious extension of the block permutation β to an el-
ement of Σn. More precisely, if we label the n columns of
F

n
2 as (1, 1), . . . , (1, x1), . . . , (r, 1), . . . , (r, xr), (r + 1, 1),

. . . , (r + x′, 1), then β((i, j)) = (β(i), j). Therefore, since
Eτ = Eσ = (Eτ )γ , we have that

γ ∈ B̂(π)× Σ{(1,1),...,(1,x1)} × · · · × Σ{(r,1),...,(r,xr)} ≤ Σn.

Thus, we can write

γ = β̂ ◦ γ1 ◦ · · · ◦ γr

for some β̂ ∈ B̂(π) and γi ∈ Σ{(1,1),...,(1,xi)}, 1 ≤ i ≤ r.
Next we consider information about Aσ and Aτ . No-

tice first that only the columns (i, 1) for 1 ≤ i ≤ r and
(r + 1, j) for 1 ≤ j ≤ s := r + x′ are nonzero for either
of these codes, and when we drop the columns of zeros,
we recover the codes (A)σ and (A)τ respectively. Since we
have Aσ = (Aτ )γ , the location of the columns of zeros of
these codes implies that γi((i, 1)) = (i, 1) for 1 ≤ i ≤ r.

Now, since Aσ = (Aτ )γ and γ acts as β on {(i, 1) | 1 ≤
i ≤ s}, we have (A)σ = ((A)τ )β , so we have (A)σ = (A)τβ ,
which implies that τβσ−1 ∈ Aut(A). This means that
τ ∈ Aut(A)σβ ⊂ Aut(A) · σ ·B(π), as desired.

On the other hand, suppose that τ ∈ Aut(A) · σ · B(π).
Then τ = χσβ for some automorphism χ of A and some
block permutation β of π. Therefore, (A)τ = (A)χσβ =
(A)σβ = ((A)σ)β , so (A)τ is just a block permutation of
(A)σ. It is plain to see now that the codes Cσ and Cτ con-
structed from the partition π and the auxiliary codes (A)σ

and (A)τ , respectively, are equivalent: simply apply β̂ to
Cτ to obtain Cσ.

The following corollary is immediate.
Corollary III.3: Let π = (x1, . . . , xr, x

′) be a partition
of the integer n with xi ≥ 2 for 1 ≤ i ≤ r and x1 ≥
x2 ≥ · · · ≥ xr. Let A be an indecomposable code of length
s := r + x′ with minimum distance at least 3 and c ≥ x′

critical columns. Assume that the last c columns of A are
the critical ones. Then the number of inequivalent criti-
cal indecomposable codes which can be constructed from
π and codes equivalent to A is precisely the number of
Aut(A)−B(π) double cosets which have representatives in
the subset Σ{s−c+1,...,s} · Σr of Σs.

IV. Admissible Codes from Short Critical
Indecomposable Codes

In the construction of critical indecomposable codes, the
auxiliary code is required to have minimum distance at

least 3 and at least x′ critical columns. This begs the ques-
tion of how many critical columns an indecomposable code
of minimum distance at least 3 can have. The following
definition will make the exposition a little smoother.

Definition IV.1: An indecomposable code of minimum
distance at least 3 having no zero columns is called an ad-
missible code.

In this section, we treat the special case of admissible
codes A such that Cl+1,l ∈ Spec(A). The case where the
spectrum of A contains a critical indecomposable code of
length 2l − 2 and dimension l is treated in Section V, and
the most general case is the subject of Section VI.

We will need Slepian’s Criterion, which gives a way of
deciding whether a binary linear code is indecomposable.
Let C be any binary linear code, and let G be a system-
atic generator matrix for (a code equivalent to) C. Thus,
G = [I|M ], where I is the identity matrix of size dim C.
Form a graph whose vertices correspond to the 1’s in M ,
and draw an edge between two vertices if and only if the
corresponding 1’s are in either the same row or the same
column of M . Then Slepian’s Criterion states that C is in-
decomposable if and only if this graph is connected. Below,
we will extend terminology and refer to M itself as being
either connected or disconnected.

Theorem IV.2: Let A be an indecomposable code of
minimum distance at least 3 and dimension l. Assume
Cl+1,l ∈ Spec(A). Then A has at most l − 1 critical
columns.

Proof: Suppose the indecomposable code A of dimen-
sion l and minimum distance at least 3 has at least l criti-
cal columns. Consider a generator matrix of A of the form
[1|I|M ], where 1 is a column vector of l ones, I is the l× l
identity matrix, and M is a matrix with l rows. Certainly
no column of M is critical, and since Aut(Cl+1,l) is the full
symmetric group, we may assume that the l columns of I
are the critical ones. Further, since A is admissible, we
know that dmin(A) ≥ 3, so the l rows m1, m2, . . . , ml of
M must be distinct and nonzero. Finally, note that if we
puncture A at the ith column of I, we get a code equivalent
to a code with generator matrix [I|M (i)], where M (i) has

rows m
(i)
1 , m

(i)
2 , . . . , m

(i)
l with

m
(i)
j =

{

mj , if i = j

mj + mi, if i 6= j.

Since the ith column of I is thus critical if and only if the
matrix M (i) is disconnected, it is enough to show that not
all of the matrices M (i), 1 ≤ i ≤ l, can be disconnected. In
other words, we need to show that it is impossible to find
a matrix M with l distinct nonzero rows such that M (i) is
disconnected for 1 ≤ i ≤ l.

Suppose we have such a matrix M . Then certainly no
column of weight M has weight 1, since otherwise M (i)

would be connected for some i. Let t1 > 1 be the weight of
the first column of M . Without loss of generality, we may
assume that the first t1 rows of M each have a one in the

first position. It is easy to see that the rows m
(1)
1 and m

(1)
j

are connected for t1 + 1 ≤ j ≤ l.
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Since m1 6= mt1 , we may assume that m1 has a one in
the second position and that mt1 has a zero in the second
position. Let t2 be the number of ones in the second po-
sition in rows m1, . . . , mt1 . By rearranging the rows m2,
. . . , mt1−1 if necessary, we may assume that row mi has
a one in the second position for 1 ≤ i ≤ t2 < t1, and row
mj has a zero in the second position for t2 + 1 ≤ j ≤ t1.
Notice that we have no information about the second en-
try of row mj for j > t1. However, we may conclude that

rows m
(1)
1 and m

(1)
j are connected for t2 + 1 ≤ j ≤ t1. But

also we still have that rows m
(1)
1 and m

(1)
j are connected

for t1 + 1 ≤ j ≤ l because of their first entries. There-

fore, at this point we can see that rows m
(1)
1 and m

(1)
j are

connected for t2 + 1 ≤ j ≤ l.
We continue this process, until we eventually have ts = 2,

so m
(1)
1 and m

(1)
j are connected for 3 ≤ j ≤ l. But certainly

m1 6= m2, so without loss of generality, we may assume
that there is a column where m1 has a one and m2 has

a zero. This means that m
(1)
1 and m

(1)
2 are connected as

well. We conclude that the matrix M (1) is connected, a
contradiction.

By examining the proof of Theorem IV.2, we get:
Proposition IV.3: Let A be an admissible code of dimen-

sion l with l − 1 critical columns and suppose Cl+1,l ∈
Spec(A). Then the length of A is at least 2l + 1. Further,
up to equivalence, there is exactly one admissible code A of
length 2l + 1 and dimension l having l− 1 critical columns
and Cl+1,l ∈ Spec(A).

For each l ≥ 2, the unique (up to equivalence) indecom-
posable code of length 2l + 1, dimension l, and minimum
distance 3 which has l−1 critical columns and has Cl+1,l in
its spectrum has generator matrix [1|I|U ], where U is the
l × l upper triangular matrix whose entries on and above
the diagonal are all 1. The critical columns of this code are
precisely the last l − 1 columns of the matrix I.

V. Critical Indecomposable Codes of Length
2l − 2 and Dimension l

We have already shown that the longest critical inde-
composable code of dimension l has length 2l−2. Our goal
now is to study these codes in detail. In particular, we will
show three main things: First, as mentioned earlier, there
is a unique critical indecomposable code of length 2l − 2
and dimension l for each l ≥ 4. Next, any admissible code
with this code in its spectrum has at most l − 1 critical
columns. Finally, any admissible code with this code in
its spectrum and l − 1 critical columns has length at least
3l − 3.

We begin by constructing a critical indecomposable code
of length 2l − 2 and dimension l, where l ≥ 4. Let π be
the partition of 2l− 2 into r := l− 1 copies of 2, and let A
be the code whose only nonzero element is the all-one vec-
tor of length l − 1. Then the critical indecomposable code
constructed from π and A is the one we’re looking for, and
we’ll call it C2l−2,l. The generator matrix (∗) for this code
looks like [ē1, e1, . . . , ēl−1, el−1], where ei is the vector of
length l with a 1 in the ith position and 0’s otherwise, and

ēi is the same as ei except that the lth position is 1 as well.
Lemma V.1: Let c = (c1, . . . , cl)

t be a column vector of
length l and consider the indecomposable code of length
2l − 1 and dimension l obtained by appending c to the
generator matrix for C2l−2,l described above. Then

1. If cl = 0, then ej is not critical for each j with 1 ≤ j ≤
l − 1 such that cj = 1.
2. If cl = 1, then ēj is not critical for each j with 1 ≤ j ≤
l − 1 such that cj = 1.
3. If ci = cj = 1 for some i 6= j with 1 ≤ i, j ≤ l − 1, then
ei, ej , ēi, and ēj are all not critical.

Proof: First assume cl = 0, and without loss
of generality, assume cl−1 = 1. Puncture the code at
el−1 to obtain a code equivalent to the code generated
by [e1, . . . , el−2, ēl−1, ē1, . . . , ēl−2, c]. Start row reducing
by adding the last row to the first row. The result is
[e1, . . . , el−2, f, el|M |c], where f is the vector of weight 3
with 1’s in the first, (l − 1)st, and lth positions, and M is
an l×(l−3) matrix whose first and last rows are entirely 1’s.
Further, the (l− 1)st row of M is entirely 0’s, and the sec-
ond through (l− 2)nd rows of M form the identity matrix
of size l−2. Finish row reducing by adding the (l−1)st row
to the first and the lth row. The result is [I|M |c′], where I
is the identity matrix of size l, M is the matrix described
above, and c′ is the same as c, except that c′1 = 1 + c1 and
c′l = 1. The matrix [M |c′] is now clearly connected since
its last row is entirely ones and all other rows are nonzero.
Therefore, el−1 is not critical. This proves (1).

Now, assume cl = 1. If this is the only nonzero en-
try of c then the Lemma doesn’t assert anything. There-
fore, we may assume cl−1 = 1. Puncture the code at
ēl−1 to obtain a code equivalent to the code generated by
[e1, . . . , el−1, ē1, . . . , ēl−2, c]. To row reduce, we just need to
add the last row to the first. We get the matrix [I|M |c′′],
where M is as described above and c′′ is the same as c ex-
cept c′′1 = 1 + c1. This means [M |c′′] is connected and so
ēl−1 is not critical, which proves (2).

To prove (3), assume ci = cj = 1 for some 1 ≤ i 6= j ≤
l−1. If cl = 0, we know from (1) that ei and ej are not crit-
ical, so we need only show that ēi and ēj are not critical as
well. By symmetry, we only need to show ēi is not critical,
and without loss of generality, we may assume i = l − 1.
Puncture at ēl−1 to obtain a code equivalent to the code
with generator matrix [e1, . . . , el−1, ē1, . . . , ēl−2, c]. To row
reduce, we need only add the last row to the first, and we
obtain the matrix [I|M |c] where M is the matrix described
above. Since cl−1 = cj = 1, [M |c] is connected, and ēl−1 is
not critical.

Finally, consider the case where cl = 1. If ci = cj = 1
for some 1 ≤ i 6= j ≤ l − 1, then we know from (2) that
ēi and ēj are not critical. Therefore, we only need to show
that ei and ej are not critical. Again, by symmetry, it is
enough to show that ei is not critical, and without loss of
generality, we may assume i = l − 1. Puncture the code
at el−1 to obtain a code equivalent to the code with gen-
erator matrix [e1, . . . , el−2, ēl−1, ē1, . . . , ēl−2, c]. Begin row
reducing by adding the last row to the first. The result is
[e1, . . . , el−2, f, el|M |c′′], where f and M are the vector of



7

weight three and the l× (l−3) matrix described above and
c′′ is the same as c except that c′′1 = c1 + 1. Finish row
reducing by adding the (l−1)st row to the first and the lth
row. The result is [I|M |c′′′], where I is the identity matrix
of size l, M is still the same matrix, and c′′′ is the same as
c′′, except that c′′′l = 0. The matrix [M |c′′] is now clearly
connected since c′′l−1 = c′′j = 1, so el−1 is not critical. This
completes the proof of (3).

Theorem V.2: Let A be an indecomposable code of di-
mension l and minimum distance at least 3, and suppose
C2l−2,l ∈ Spec(A). Then
1. At most l − 1 columns of A are critical.
2. If A has l − 1 critical columns, then the length of A is
at least 3l − 3.
3. Up to isomorphism, there is only one indecomposable
code A of length 3l − 3, dimension l, and minimum dis-
tance at least 3 which has l−1 critical columns and satisfies
C2l−2,l ∈ Spec(A).

Proof: Since A has minimum distance at least three,
it must have a generator matrix of the form

[e1, . . . , el−1, ē1, . . . , ēl−1|N ],

where N is a matrix with l rows with each of its first l− 1
rows nonzero. By Lemma V.1, this makes at least one of
ei, ēi not critical for 1 ≤ i ≤ l− 1. Therefore, at least l− 1
of the first 2l − 2 columns of A are not critical, and cer-
tainly no column of N is critical, so the maximum possible
number of critical columns of A is (2l− 2)− (l− 1) = l− 1,
proving (1).

To prove (2), suppose the number of critical columns of
A is exactly l− 1. Then each column of N has at most one
1 among its first l−1 entries, so N must have at least l−1
columns. Therefore, the minimum length of A is at least
(2l − 2) + (l − 1) = 3l − 3.

By the above argument, any A satisfying the conditions
of (3) must be equivalent to a code having a generator ma-
trix whose first 2l−2 columns are ei and ēi for 1 ≤ i ≤ l−1,
and whose last l− 1 columns are f1, . . . , fl−1, where each
fi is either ei or ēi. For each i such that fi = ēi, inter-
change the appearance of ei and ēi among the first 2l − 2
columns. Adding the ith row to the last row yields an
identical matrix to what we started with, except that fi is
replaced with ei. Thus, A is equivalent to the code hav-
ing generator matrix [ē1, e1, e1, . . . , ēl−1, el−1, el−1], which
proves (3).

Theorem V.3: For each k ≥ 4, the only critical indecom-
posable code of length 2k − 2 and dimension k is C2k−2,k.

Proof: Assmus ([1]) shows that the theorem is true
when k = 4, so assume it is true for all l < k. Let C be a
critical indecomposable code of length 2k−2 and dimension
k, constructed from the partition π = (x1, . . . , xr, x

′) and
the auxiliary code A, where A is an indecomposable code
of length s := r + x′, dimension l, and minimum distance
at least three, with at least x′ critical columns.

If l = 1, then x′ = 0 and (2k − 2) − k = s − 1, which
means that s = r = k − 1. The only possibility for π is
then xi = 2 for 1 ≤ i ≤ k − 1, so C = C2k−2,k. Therefore,
we may assume l ≥ 2.

Since each xi, 1 ≤ i ≤ r = s−x′, satisfies xi ≥ 2, we have
2k−2−x′ ≥ 2(s−x′), which means 2k ≥ 2s+s−x′. On the
other hand, since (2k−2)−k = s−l, we have 2k = 2s−2l+4.
Putting this together, we have 2s−2l+4−2−x′ ≥ 2s, which
means x′ ≥ 2l − 2. Since the only critical indecomposable
code of dimension 1 is F2 and the only critical indecompos-
able codes of dimensions 2 and 3 are C3,2 and C4,3, The-
orem IV.2 implies that l ≥ 4. We know there is a critical
indecomposable code of length n ≥ 2l − 2 and dimension l
in the spectrum of A, but by Lemma II.5, the longest crit-
ical indecomposable code of dimension l has length 2l − 2,
so n = 2l − 2. Now by induction hypothesis, this code is
C2l−2,l, so by Theorem V.2, A has at most l − 1 critical
columns, a contradiction. Hence l = 1 and C = C2k−2,k.

VI. Admissible Codes: General Case

Now that we have explored the two extremes of admissi-
ble codes, we can tackle the general case. Our main result
is:

Theorem VI.1: Let A be an admissible code of dimen-
sion l. Then A has at most l − 1 critical columns.

Proof: We have already proven this in the case that
Cl+1,l ∈ Spec(A), so in particular the theorem is true if
l = 2 or l = 3. Therefore, we assume l ≥ 4 and that
the theorem is true for all l0 < l. Let C ∈ Spec(A),
C 6= Cl+1,l. Without loss of generality, we have that C
is constructed from the partition π = (x1, . . . , xr, x

′) and
the auxiliary code A0 of length s := r + x′ and dimension
l0. Let g1, . . . , gs be the columns in the chosen generator
matrix for A0, so that for 1 ≤ i ≤ r, the l0 × xi matrix
Li has gi as its first column and zeros elsewhere, and for
i ≥ r + 1, Li = gi. We will show:

Claim If the ith column of A0 is not a critical column,
1 ≤ i ≤ r, then not every column in the block of A corre-
sponding to xi can be critical.

Once we have shown this Claim, we will have that the
number of critical columns of A is at most

r
∑

i=1

(xi − 1) + x′+

# {i | 1 ≤ i ≤ r and gi is a critical column of A0}

≤

r
∑

i=1

(xi − 1) + #(critical columns of A0)

= l − l0 + l0 − 1

= l − 1,

which completes the proof.

Thus all that remains is to show the Claim. We will
do this by induction on xi ≥ 2. Without loss of general-
ity, we may assume that i = 1, so that the two columns
in question are the standard basis vector e1, and the vec-
tor ē1 := e1 + ĝ1, where ĝ1 is the column vector obtained
by prepending enough zeros to the top of g1. Since the
first column of A0 is not critical, we may assume that the
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columns of the identity matrix of size l0 appear in some or-
der in the list g2, . . . , gs of the last s−1 columns of our cho-
sen generator matrix for A0. Let G be the quasi-canonical
generator matrix (∗) for C using this generator matrix for
A0. Since A is admissible, at least one of the columns ap-
pended to G to form a generator matrix for A must have
a 1 in the first position. Let m = (1,m2, . . . ,ml)

t be this
column. Then it is enough to show that one of the first
two columns of the code generated by K = [G|m] is not
critical.

By rearranging the columns of K, we obtain a matrix of
the form

(

I(l−l0) S T ē1 m

0l0×(l−l0) Il0 U
...

...

)

.

Note that ē1 and m are column vectors of length l, so they
fill the entire height of the matrix. Also, the first row of
the matrix [S|T ] is entirely zeros, and the other rows have
exactly one 1. Further, since A0 has minimum distance at
least 3, every row of U has at least one 1. Finally, since g1

doesn’t represent a critical column of A0, the matrix [Il0 |U ]
is connected.

Row reducing this matrix yields a matrix of the form

K ′ =

(

Il−l0 0(l−l0)×l0 T ′ f m′

0l0×(l−l0) Il0 U
...

...

)

.

Again, f and m′ are column vectors of length l; they are
what comes out of ē1 and m after row reduction. Also, the
first row of T ′ still is zero and every other row has at least
one 1 since it is the sum of a vector of weight 1 and a vec-
tor of weight at least 2. Further, since [Il0 |U ] is connected,
the matrix formed by dropping the first row and last two
columns of K ′ is connected. Finally, notice that the first
entry of f is 1, as is the first entry of m′.

Now, if m′ = e1, then the second column of our origi-
nal A is not critical. If some entry of m′ other than the
first is nonzero, it is in the same row as either a nonzero
entry of T ′ or a nonzero entry of [Il0 |U ], which connects
the first row of K ′ to the rest of K ′, even without using f .
Therefore, f represents a noncritical column of A, so the
first column of the original A (before we rearranged the
columns) is not critical. Finally, we have that m′ 6= e1 if
and only if m 6= e1. Putting it all together, we see that if
m = e1, then the second column of our original A is not
critical, and if m 6= e1, then the first column of our orig-
inal A is not critical. This completes the base step of our
induction.

Now assume xi ≥ 3 and that the Claim is true for all
x < xi. Again, without loss of generality, we may assume
that i = 1. Let G = [G|M ] be a generator matrix for A,
where G is the quasi-canonical form (∗) of the generator
matrix for C. Let G′ := [G′|M ′] be the matrix obtained by
dropping the second column and the first row of G. Let C ′

be the code generated by G′ and let A′ be the code gener-
ated by G′. It is clear that C ′ is the critical indecomposable
code constructed from the partition (x1 − 1, x2, . . . , xr, x

′)
and A0 and that A′ is admissible.

Let P ′ be the code obtained by puncturing A′ at one of
the columns in the first block. Let P be the code obtained
by puncturing A at the corresponding column. If every
column in the first block of A is critical, then P must be
decomposable (since it clearly has dimension l), so we have
P = P1 ⊕P2, where P1 and P2 are nonzero codes. Since A
is generated by the rows c1, . . . , cl of G, every element of A
is of the form

∑

aici, where ai ∈ F2 for i = 1, . . . , l. We
have an onto code homomorphism

φ : A → A′

l
∑

i=1

aici 7→

l
∑

i=2

aic
′
i,

where c′i is the i− 1st row of G′, i.e., the ith row of G with
the second entry removed. This induces a map

φ̄ : P → P ′,

which shows that P ′ = P ′
1⊕P ′

2, where P ′
j = φ̄(Pj), j = 1, 2.

Since neither P ′
1 nor P ′

2 can be the zero code, P ′ is decom-
posable. This means that every column of the first block of
A′ is critical, which contradicts our induction hypothesis.

The next corollary is found in the proof of Theorem VI.1.
Corollary VI.2: Let C be a critical indecomposable code

of dimension l constructed using the auxiliary code A0 of
dimension l0. Assume A0 has c0 critical columns. Then
any admissible A with C ∈ Spec(A) has at most l− l0 + c0

critical columns.
Theorem VI.1 is quite powerful and can be used to fur-

ther determine the parameters of admissible codes. In par-
ticular, we have the following two corollaries.

Corollary VI.3: The shortest admissible code of dimen-
sion l with l − 1 critical columns has length 2l + 1.

Proof: By Proposition IV.3, the shortest admissible
code of dimension l with l − 1 critical columns and Cl+1,l

in its spectrum has length 2l+1. Also, the shortest admis-
sible code of dimension 1 is the code whose only nonzero
codeword is (1, 1, 1). Therefore, the corollary is true in di-
mensions at most 3. So, let A be an admissible code of
dimension l ≥ 4 and let C ∈ Spec(A) of length n. With-
out loss of generality, C is constructed from a partition
π of n and an auxiliary code of dimension l0 < l. Let
G = [GC |M ] be a generator matrix for A, where GC is a
quasi-canonical generator matrix (∗) for C. If A has l − 1
critical columns, then Corollary VI.2 implies that A0 has
l0 − 1 critical columns. Thus the length s0 of A0 satisfies
s0 ≥ 2l0+1 by induction. Further, it follows from the proof
of Theorem VI.1 that M is block diagonal and has at least
l − l0 columns. Therefore, the length s of A satisfies

s ≥ n + l − l0

= s0 − l0 + l + l − l0 = s0 + 2l − 2l0

≥ 2l0 + 1 + 2l − 2l0

= 2l + 1,

which is the desired result.
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Corollary VI.4: Let C be a critical indecomposable code
of dimension k, constructed using an auxiliary code A of
length s. Then s ≤ k − 1.

Proof: Let n be the length of C and let l be the dimen-
sion of A. The partition π of n is of the form (x1, . . . , xr, x

′)
with xi ≥ 2 for i = 1, . . . , r and s = r + x′. We have
s = n − k + l, so n ≤ k − l + (n − x′)/2 + x′, which im-
plies n ≤ 2k − 2l + x′. By Theorem VI.1, x′ ≤ l − 1, so
n ≤ 2k − l − 1, which can be written as n− k + l ≤ k − 1.
Substituting s back in, we have the result.

We close this section with an elementary yet extremely
useful result about the minimum length of any admissible
code.

Lemma VI.5: Let C be a critical indecomposable code of
length n and dimension l, constructed from the partition
π = (x1, . . . , xr, x

′) and the auxiliary code A0 of length
s0 = r + x′ and dimension l0. Then any admissible code A
with C ∈ Spec(A) has length

s ≥ n + max{dlog2(xi)e | 1 ≤ i ≤ r}.
Proof: Let G be the quasi-canonical generator matrix

for C coming from the construction described in the state-
ment of the lemma, and suppose the code A generated by
[G|M ] is admissible. Then each of the first l− l0 rows of M
is nonzero, and the rows within any one block of size xi−1
are distinct. Thus, the rows must be long enough so that
we can choose xi−1 distinct nonzero rows for each i. Thus,
the number of columns m of M satisfies xi − 1 ≤ 2m − 1.
Thus m ≥ log2(xi) for each i, and since m ∈ Z, the result
follows.

VII. The Necessary Auxiliary Codes

In order to construct critical indecomposable codes of
dimension at most 10, we only need admissible codes of
length at most 9 by Corollary VI.4. In fact, as one realizes
in actually performing the construction, we need only ad-
missible codes of length s and dimension l having c critical
columns, where (s, l; c) is (5, 2;≤ 1), (6, 2;≤ 1), (7, 2;≤ 1),
(8, 2;≤ 1), (9, 2; 1), (6, 3;≤ 2), (7, 3;≤ 2), (8, 3; 2), (8, 3; 1),
(9, 3; 2), (8, 4; 2), and (9, 4; 3). In this section, we will de-
scribe all the admissible codes which are needed to con-
struct all binary critical indecomposable codes of dimen-
sion at most 10.

First, we recall from [1] that, up to equivalence, F2 is the
only critical indecomposable code of dimension 1, C3,2 is
the only one of dimension 2, C4,3 is the only one of dimen-
sion 3, and C5,4 and C6,4 are the only two of dimension 4.
Since any admissible code of dimension l must have a crit-
ical indecomposable code of dimension l in its spectrum,
these five codes are our starting points.

Every admissible code of dimension 1 is generated by
the all-one vector of the appropriate length, and we will
refer to the admissible code of dimension 1 and length s as
As,1. We note that we used A3,1 in the construction of C6,4

given in Section II and, more generally, we used Al−1,1 in
the construction of C2l−2,l given in Section V. Since As,1 is
the only admissible code of dimension 1 and length s (not
just up to isomorphism), there is no need to worry about

equivalence for critical indecomposable codes constructed
using auxiliary codes of dimension 1.

Lemma VI.5 implies that the shortest admissible code of
dimension 2 has length 5. Any admissible code of length
5 and dimension 2 is equivalent to a code with generator
matrix formed by adding two distinct columns to the 2× 3
matrix [1|I]. Up to equivalence, therefore, we may assume
that the columns added are (1, 0)t and (1, 1)t. The re-
sulting code, which we call A5,2;1, has exactly one critical
column. Its generator matrix and automorphism group are
given in the table below. Notice that the arrangement of
columns has been chosen in such a way that the one critical
column is the last one.

To form an admissible code of dimension 2 and length 6,
we need to add three columns to the 2 × 3 matrix [1|I] in
such a way that the added portions of the rows are nonzero
and distinct. We can either repeat one of the original three
columns twice and another once or repeat all three of the
original columns once each. In the first case, we get a code
with one critical column which we call A6,2;1. In the second
case, we get a code with no critical columns, which we call
A6,2;0.

Admissible codes of dimension 2 and length 7 are equiv-
alent to codes with generator matrices formed by adding 4
columns to the 2 × 3 matrix [1|I] in such a way that the
added portions of the rows are nonzero and distinct. We
can do this in three different ways: (1) repeat two columns
twice each, (2) repeat one column thrice and another once,
or (3) repeat one column twice and the other two once
each. The first two cases yield codes with one critical col-
umn, equivalent to the codes A1

7,2;1 and A2
7,2;1 described

in the table below. The third case yields a code with no
critical columns, equivalent to the code A7,2;0.

Likewise, there are four ways to get admissible codes of
length 8 and dimension 2: (1) repeat one column 4 times
and another once, (2) repeat one column 3 times and an-
other twice, (3) repeat two columns twice each and the
third once, or (4) repeat one column 3 times and the other
two once each. The first two cases give us one critical col-
umn, and we call the resulting codes A1

8,2;1 and A2
8,2;1. The

last two cases give us no critical columns, and we call the
resulting codes A1

8,2;0 and A2
8,2;0.

Finally, there are three ways to construct admissible
codes of length 9 and dimension 2 which have one critical
column. We can repeat one column 5 times and another
once, repeat one column 4 times and another twice, or re-
peat two columns 3 times each. We get the codes A1

9,2;1,

A2
9,2;1, and A3

9,2;1, as described in the table below.
The constructions of the necessary admissible codes of

dimension 3 and 4 are very similar to what we have just
done, so the details are omitted. We do want to point out,
however that there are no admissible codes with (s, l; c) =
(8, 4;≥ 2). To see this, suppose such a code exists, and call
it A. Either C6,4 or C5,4 must be in the spectrum of A. If
C6,4 ∈ Spec(A), then A is equivalent to a code with gen-
erator matrix [ē1, e1, ē2, e2, ē3, e3, c1, c2], for some column
vectors c1 and c2. Since A is admissible, the first three
rows of [c1, c2] are nonzero, so at least one of c1 and c2 has
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weight at least two and the other has weight at least one.
By Lemma V.1, this means that A has at most one critical
column. On the other hand, if C5,4 ∈ Spec(A), then A is
equivalent to a code with generator matrix [1|I|M ] where
M is a 3 × 3 matrix with distinct nonzero rows. A check
of the possibilities for M (using a strategy similar to that
found in the proof of Theorem IV.2) shows that A has at

most one critical column, a contradiction. Therefore, our
A cannot exist.

In order to use Theorem III.2, we need to know the au-
tomorphism groups of these codes. These groups can be
computed by hand or using the computer algebra package
MAGMA ([3]). The following table (spanning three pages)
summarizes the important information we have thus far.

Table I
Auxiliary Codes and Their Automorphism Groups

Name Generator Matrix Aut(A) |Aut(A)|

A5,2;1

(

1 1 1 1 0
1 1 0 0 1

)

〈(1, 2), (3, 4), (1, 3)(2, 4)〉 8

A6,2;1

(

1 1 1 1 1 0
1 1 1 0 0 1

)

Σ{1,2,3} × Σ{4,5} 12

A6,2;0

(

1 1 1 1 0 0
1 1 0 0 1 1

)

〈(1, 2), (3, 4), (5, 6),
(1, 3)(2, 4), (1, 5)(2, 6)〉

48

A1
7,2;1

(

1 1 1 1 1 1 0
1 1 1 1 0 0 1

)

Σ{1,2,3,4} × Σ{5,6} 48

A2
7,2;1

(

1 1 1 1 1 1 0
1 1 1 0 0 0 1

) 〈

Σ{1,2,3},Σ{4,5,6},
(1, 4)(2, 5)(3, 6)〉

72

A7,2;0

(

1 1 1 1 1 0 0
1 1 1 0 0 1 1

) 〈

Σ{1,2,3}, (4, 5)
(6, 7), (4, 6)(5, 7)〉

48

A1
8,2;1

(

1 1 1 1 1 0 0 1
0 0 0 0 0 1 1 1

)

Σ5 × Σ{6,7} 240

A2
8,2;1

(

1 1 1 1 0 0 0 1
0 0 0 0 1 1 1 1

)

Σ4 × Σ{5,6,7} 144

A1
8,2;0

(

1 1 1 1 1 1 0 0
1 1 1 0 0 0 1 1

) 〈

Σ{1,2,3},Σ{4,5,6},
(7, 8), (1, 4)(2, 5)(3, 6)〉

144

A2
8,2;0

(

1 1 1 1 1 1 0 0
1 1 1 1 0 0 1 1

)

〈Σ4, (5, 6), (7, 8),
(5, 7)(6, 8)〉

192

A1
9,2;1

(

1 1 1 1 1 1 0 0 1
0 0 0 0 0 0 1 1 1

)

Σ6 × Σ{7,8} 1440

A2
9,2;1

(

1 1 1 1 1 0 0 0 1
0 0 0 0 0 1 1 1 1

)

Σ{1,2,3,4,5} × Σ{6,7,8} 720

A3
9,2;1

(

1 1 1 1 0 0 0 0 1
0 0 0 0 1 1 1 1 1

) 〈

Σ{1,2,3,4},Σ{5,6,7,8}

(1, 5)(2, 6)(3, 7)(4, 8)〉
1152

A6,3;0





1 1 0 0 1 0
1 0 1 0 0 1
1 0 0 1 1 1





〈(2, 6)(3, 5), (2, 5)(3, 6),
(1, 5)(4, 6)〉

24
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Table I (con’t)

Name Generator Matrix Aut(A) |Aut(A)|

A7,3;2





1 1 1 1 1 0 0
1 1 0 0 1 1 0
1 1 0 0 0 0 1





〈(1, 2), (3, 4),
(1, 3)(2, 4)(6, 7)〉

8

A7,3;1





1 1 0 0 0 0 1
0 0 1 1 0 0 1
0 0 0 0 1 1 1





〈(1, 2), (3, 4), (5, 6),
(1, 3)(2, 4), (1, 5)(2, 6)〉

48

A1
7,3;0





1 1 0 0 1 0 1
1 0 1 0 0 1 1
1 0 0 1 1 1 1





〈(1, 7), (2, 3)(5, 6),
(2, 6)(3, 5)〉

8

A2
7,3;0





1 1 0 0 1 0 1
1 0 1 0 0 1 1
1 0 0 1 1 1 0





〈(1, 2)(5, 7), (2, 3)(5, 6),
(3, 4)(5, 7), (3, 7)(4, 5)〉

168

A1
8,3;2





1 1 1 0 0 1 0 1
0 0 0 1 1 0 0 1
0 0 0 0 0 1 1 1



 Σ{1,2,3} × Σ{4,5} 12

A2
8,3;2





1 1 0 0 1 1 0 1
0 0 1 1 0 0 0 1
0 0 0 0 1 1 1 1





〈(1, 2), (3, 4), (5, 6),
(1, 3)(2, 4)(7, 8)〉

16

A1
8,3;1





1 1 1 0 0 0 0 1
0 0 0 1 1 0 0 1
0 0 0 0 0 1 1 1





〈

Σ{1,2,3}, (4, 5), (6, 7),
(4, 6)(5, 7)〉

48

A2
8,3;1





1 1 0 0 0 0 1 1
0 0 1 1 0 0 0 1
0 0 0 0 1 1 1 1





〈(1, 2), (3, 4), (5, 6),
(1, 5)(2, 6)〉

16

A1
9,3;2





1 1 1 1 0 0 1 0 1
0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 1



 Σ{1,2,3,4} × Σ{5,6} 48

A2
9,3;2





1 1 1 0 0 0 1 0 1
0 0 0 1 1 1 0 0 1
0 0 0 0 0 0 1 1 1





〈

Σ{1,2,3},Σ{4,5,6},
(1, 4)(2, 5)(3, 6)(8, 9)〉

72

A3
9,3;2





1 1 1 0 0 1 1 0 1
0 0 0 1 1 0 0 0 1
0 0 0 0 0 1 1 1 1



 Σ{1,2,3} × Σ{4,5} × Σ{6,7} 24

A4
9,3;2





1 1 0 0 1 1 1 0 1
0 0 1 1 0 0 0 0 1
0 0 0 0 1 1 1 1 1





〈

Σ{5,6,7}, (1, 2), (3, 4),
(1, 3)(2, 4)(8, 9)〉

48
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Table I (con’t)

Name Generator Matrix Aut(A) |Aut(A)|

A1
9,4;3









1 1 1 1 1 1 0 0 0
1 1 0 0 1 1 1 0 0
1 1 0 0 0 1 0 1 0
1 1 0 0 0 0 0 0 1









〈(1, 2), (3, 4)
(1, 3)(2, 4)(5, 6)(7, 9)〉

8

A2
9,4;3









1 1 0 0 0 0 1 0 0
0 0 1 1 0 0 0 1 0
0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 1









〈(1, 2), (3, 4), (5, 6),
(1, 3)(2, 4)(7, 8),

(1, 3, 5)(2, 4, 6)(7, 8, 9)〉
48

As discussed in Section III, equivalent auxiliary codes,
when paired with the same partition, can yield inequivalent
critical indecomposable codes. Theorem III.2 and Corol-
lary III.3 described exactly when that could happen, and
it boiled down to looking at double-cosets of the automor-
phism group of the auxiliary code with the block permuta-
tion group of the partition. The next proposition gathers

the information of this sort that we will need in Section VIII
below.

Proposition VII.1: Table II (which spills onto the next
page) gives the number of, and representatives for, the
Aut(A) − B double cosets with representatives inside the
subset T of Σs for various values of A, B, T , and s.

Table II
Double-Coset Representatives

#Aut(A)−B
Double-Cosets Non-Identity

A T B
with reps Reps
inside T

Σ{2,3,4} 1 −

Σ{1,2,3} 1 −

Σ4 Σ{3,4} 2 (2, 3)

Σ{1,2} × Σ{3,4} 2 (2, 3)

Σ{2,3} 2 (1, 3)
A5,2;1 Σ{2,3,4,5} 2 (1, 5)

Σ{1,2} × Σ{3,4,5} 3 (1, 3), (1, 5)

Σ5 Σ{1,2,3} × Σ{4,5} 3 (1, 5), (3, 5)
(1, 5), (2, 5),

Σ{3,4,5} 4
(2, 3)

Σ{2,3,4,5} 2 (1, 5)
(1, 5),

Σ{1,2} × Σ{3,4,5} 3
(1, 4)(2, 5)

Σ5 (1, 5), (2, 5),
Σ{3,4,5} 4

(1, 4)(2, 5)
A6,2;1 (1, 5),

Σ{1,2,3} × Σ{4,5} 3
(1, 4)(2, 5)

Σ{2,3,4,5,6} 3 (1, 4), (1, 6)
(2, 6), (1, 4),

Σ6 Σ{1,2} × Σ{3,4,5,6} 5 (1, 4)(2, 5),
(1, 5)(2, 6)

Σ{2,3,4,5,6} 1 −
A6,2;0 Σ6 Σ{1,2} × Σ{3,4,5,6} 2 (1, 6)
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Table II (con’t)

#Aut(A)−B
Double-Cosets Non-Identity

A T B
with reps Reps
inside K

Σ6 1 −
Σ{6,7} · Σ6 (6, 7), (1, 6),

A7,3;2
Σ{2,3,4,5,6} 4

(1, 5)

Σ{2,3,4,5} × Σ{6,7} 2 (1, 5)
Σ5 × Σ{6,7} Σ{1,2} × Σ{3,4,5} × Σ{6,7} 3 (1, 5), (2, 3)

Σ{2,3,4,5,6} 2 (1, 6)
Σ6 (1, 6),

A1
7,2;1 Σ{1,2} × Σ{3,4,5,6} 3

(1, 5)(2, 6)

Σ7 Σ{2,3,4,5,6,7} 3 (1, 7), (1, 5)

Σ{2,3,4,5,6} 1 −

A2
7,2;1

Σ6 Σ{1,2} × Σ{3,4,5,6} 2 (1, 6)

Σ7 Σ{2,3,4,5,6,7} 2 (1, 7)

Σ{7,8} · Σ7 Σ7 2 (7, 8)
A1

8,3;2 Σ6 × Σ{7,8} Σ{2,3,4,5,6} × Σ{7,8} 3 (1, 6), (1, 4)

Σ{7,8} · Σ7 Σ7 1 −
A2

8,3;2 Σ6 × Σ{7,8} Σ{2,3,4,5,6} × Σ{7,8} 2 (1, 6)

A1
8,2;1 Σ7 Σ{2,3,4,5,6,7} 2 (1, 7)

A2
8,2;1 Σ7 Σ{2,3,4,5,6,7} 2 (1, 7)

A6,3;0 Σ6 Σ{2,3,4,5,6} 1 −

A7,3;1 Σ6 Σ{2,3,4,5,6} 1 −

A7,2;0 Σ7 Σ{2,3,4,5,6,7} 2 (1, 7)

Proof: The main tool is the standard formula

|H · x ·K| =
|H||K|

|H ∩ xKx−1|
(∗∗)

where H and K are subgroups of the group G and x ∈ G.
(See, for example, [6].) The computations can easily be
done by hand or with a computer algebra package such as
MAGMA ([3]) or GAP ([5]). The proofs all follow roughly
the same method and we will give the details of only one
line of the table here. The example we give has many com-
plicating details; most lines of the table are in fact much
easier to verify.

We will prove that there are precisely four Aut(A7,3;2)−
Σ{2,3,4,5,6} double-cosets with representatives inside the
set Σ{6,7} · Σ6. First, we recall that Aut(A7,3;2) =
〈(1, 2), (3, 4), (1, 3)(2, 4)(6, 7)〉 has order 8, and we note
that Σ{2,3,4,5,6} is isomorphic to Σ5 and thus has order
120. Since τΣ{2,3,4,5,6}τ

−1 = Σ{τ(2),τ(3),τ(4),τ(5),τ(6)} for
any τ ∈ Σ7, applying formula (∗∗) is easy. We find that

|Aut(A7,3;2) · Σ{2,3,4,5,6}| =
(8)(120)

2
= 480,

|Aut(A7,3;2) · (6, 7) · Σ{2,3,4,5,6}| =

(8)(120)

|Aut(A7,3;2) ∩ Σ{2,3,4,5,7}|
=

(8)(120)

2
= 480,

|Aut(A7,3;2) · (1, 6) · Σ{2,3,4,5,6}| =

(8)(120)

|Aut(A7,3;2) ∩ Σ5|
=

(8)(120)

4
= 240,

and

|Aut(A7,3;2) · (1, 5) · Σ{2,3,4,5,6}| =

(8)(120)

|Aut(A7,3;2) ∩ Σ{1,2,3,4,6}|
=

(8)(120)

4
= 240.

Our next task is to see if these four double-cosets are
distinct. Clearly, the only way that this could fail is if the
first two are equal or the last two are equal. However, any
element of the second double-coset is of the form α(6, 7)β,
where α ∈ Aut(A7,3;2) and β ∈ Σ{2,3,4,5,6}. Such a permu-
tation cannot fix both 1 and 7, and so the identity permu-
tation (which is clearly a member of the first double-coset)
is not contained in the second double-coset. This shows
that the first two double-cosets are distinct. Similarly, any
element of the fourth double-coset sends 5 to 1, and so the
permutation (1, 6) (which is clearly a member of the third
double-coset) is not an element of the fourth double-coset.
This shows that the last two double-cosets are distinct.

It is easy to check that each of these four double-
cosets is entirely contained in σ{6,7} · Σ6. Thus, since
480 + 480 + 240 + 240 = 1440 = |Σ{6,7} · Σ6|, we have
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found all the Aut(A7,3;2) − Σ{2,3,4,5,6} double-cosets with
representatives inside Σ{6,7} · Σ6.

VIII. Enumeration of Critical Indecomposable
Codes of Dimension At Most 10

Using the results discussed so far, we can write down
constructions for all critical indecomposable codes of di-
mension at most 10. Recall that in order to construct a
critical indecomposable code of dimension k and length n,
we need two things: (1) a partition π = (x1, . . . , xr, x

′)
of n where x′ ≥ 0 and, for 1 ≤ i ≤ r, we have xi ≥ 2,
and (2) an auxiliary code A of length s := r + x′ and di-
mension l := s + k − n, such that the last x′ columns of
A are critical. For clarity, we make two notational con-
ventions. First, when several values of xi have the same
value, we will group them and use an exponent to signify
the number of xi’s with the value. For example, we will
write (4, 23) rather than (4, 2, 2, 2). Second, when we use
a partition with x′ = 0, we will write π = (x1, . . . , xr),
omitting the “0”, and when we have x′ > 0, we will write
π = (x1, . . . , xr, 1

x′

). Thus (27) unambiguously means the
partition of 14 into r = 7 parts of size 2, while (26, 12)
means the partition of 14 into r = 6 pieces of size 2 and
x′ = 2 pieces of size 1. In particular, the second partition
can be used only with A1

8,3;2 or A2
8,3;2 as the auxiliary code

(yielding in either case a critical indecomposable code of
length 14 and dimension 9), while the first partition can be
used with A7,3;2, A7,3;1, A1

7,3;0, or A2
7,3;0 to obtain a criti-

cal indecomposable code of length 14 and dimension 10, or
with A1

7,2;1, A2
7,2;1, or A7,2;0 to obtain a critical indecom-

posable code of length 14 and dimension 9.
We have already discussed critical indecomposable codes

of dimension at most 4, so we begin with dimension 5.
For each dimension, we discuss the parameters of auxiliary
codes which must be used and the partitions which can go
along with them. When necessary, we refer to the results
of the previous section to determine equivalence. We do
only dimension 5, dimension 6, and one case of dimension
10 in detail; all other cases are very similar. At the end
of this section is a theorem summarizing our results, in-
cluding a table giving the complete enumeration of critical
indecomposable codes of dimension at most 10.

A. Critical Indecomposable Codes of Dimension 5

Any critical indecomposable code of dimension 5 has
length n with 6 ≤ n ≤ 8, and we know that there is ex-
actly one, C6,5, of length 6 and one, C8,5, of length 8. For
length 7, the formula s = l + (n− k) gives s = l + 2. This
means that l = 1 and s = 3. Therefore we need to find
all partitions of 7 into 3 pieces, each one of which is at
least 2. The only such partition is (3, 22). This partition,
when paired with the auxiliary code A3,1, yields the unique
critical indecomposable code of length 7 and dimension 5.

B. Critical Indecomposable Codes of Dimension 6

The possible lengths n must satisfy 7 ≤ n ≤ 10. In
length 7, there is only C7,6, and in length 10, there is only
C10,6. In length 8, we have s = l + 2, so A3,1 is the only

possible auxiliary code. It can be paired with either of two
partitions: (4, 22) and (32, 2).

For length 9, we have s = l + 3. On the other hand, by
Corollary VI.4, we have s ≤ 6 − 1 = 5. Thus we have 2
possibilities: l = 1, s = 4 or l = 2, s = 5. In the first case,
we need the auxiliary code A4,1, paired with a partition of
9 into 4 pieces, each of which is at least 2. The only such
partition is (3, 23). In the second case, we need an auxiliary
code of dimension 2 and length 5, and the only such code
is A5,2;1. Therefore, we need a partition of 9 into 5 pieces,
at most one of which is 1, and the other four of which are
at least 2. The only such partition is π = (24, 1). It is
clear that any permutation of the columns of A5,2;1 which
preserves the last column as being critical will yield, when
paired with the partition π, the same critical indecompos-
able code (up to equivalence).

C. Critical Indecomposable Codes of Dimensions 7, 8, 9,
and 10

The construction of critical indecomposable codes of di-
mensions 7, 8, 9, and 10 follows the same pattern as indi-
cated above. As we did in Section VII, we will choose one
particularly complicated example to do in detail, and leave
the rest to the reader.

To construct all critical indecomposable codes of dimen-
sion 10 and length 14, Corollary VI.4 combined with the
formula n− k = s− l gives us that we need s = l + 4 ≤ 9.
Thus the possibilities for (s, l) are (5, 1), (6, 2), (7, 3), (8, 4),
and (9, 5). However, to partition 14 into nine pieces, we
need at least four 1’s, and the shortest admissible code of
dimension 5 with 4 critical columns has length 11 by Corol-
lary VI.3. Thus (s, l) = (9, 5) is not possible. Also, since
we saw in Section VII that every admissible code of length
8 and dimension 4 has at most one critical column, and
any partition of 14 into 8 pieces must involve at least two
1’s, (8, 4) is not possible either. In the case (s, l) = (5, 1)
we have the auxiliary code A5,1 and the partitions (6, 24),
(5, 3, 23), (42, 23), (4, 32, 22), and (34, 2).

When (s, l) = (6, 2), we have A6,2;1 and A6,2;0. Our pos-
sible auxiliary codes are A7,3;2, A7,3;1, A1

7,3;0, and A2
7,3;0.

We have five possible partitions: π1 = (4, 25), π2 = (32, 24),
π3 = (5, 24, 1), π4 = (4, 3, 23, 1), and π5 = (33, 22, 1).
Their corresponding block permutation groups are B(π1) =
Σ{2,3,4,5,6}, B(π2) = Σ{1,2} ×Σ{3,4,5,6}, B(π3) = Σ{2,3,4,5},
B(π4) = Σ{3,4,5}, and B(π5) = Σ{1,2,3} × Σ{4,5}. The first
two partitions can be used with either A6,2;0 or A6,2;1 as
auxiliary codes, and, by Corollary III.3, we need to look
inside Σ6 for double-coset representatives. The last three
partitions can only be used with A6,2;1, and we need to
look inside Σ5 for double-coset representatives.

By Proposition VII.1, π1 yields exactly one critical in-
decomposable code when paired with A6,2;0, and π2 yields
exactly two. Similarly, the auxiliary code A6,2;1 yields three
codes with π1, five with π2, two with π3, four with π4, and
three with π5.

Now we look at constructing critical indecomposable
codes of length 14 with auxiliary codes satisfying (s, l) =
(7, 3). This time, there are four possible partitions: π1 =
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(27), π2 = (3, 25, 1), π3 = (4, 24, 12), and π4 = (32, 23, 12).
The first partition can be used with any of the four aux-
iliary codes A1

7,3;0, A2
7,3;0, A7,3;1, or A7,3;2, and it is clear

that, no matter which of these auxiliary codes is used, we
don’t need to worry about double-cosets. We have B(π2) =
Σ{2,3,4,5,6} and we need to look for double-cosets inside Σ6

when we use π2 with A7,3;1, and inside Σ{6,7} · Σ6 when
we use π2 with A7,3;2. (We are not allowed to use A1

7,3;0

or A2
7,3;0 because π2 requires at least one critical column

in our auxiliary code.) By Proposition VII.1, we get one
critical indecomposable code from π2 and A7,3;1 and four
from π2 and A7,3;2. We have B(π3) = Σ{2,3,4,5} × Σ{6,7}

and B(π4) = Σ{1,2} × Σ{3,4,5} × Σ{6,7}. These two parti-
tions can only be used with A7,3;2, and we need to look
inside Σ5 × Σ{6,7} for double-cosets. Again referring to
Proposition VII.1, we find that we obtain two critical in-
decomposable codes from π3 and three from π4.

D. Summary

The remaining critical indecomposable codes of dimen-
sions at most 10 are constructed in a similar manner, giving
the following theorem:

Theorem VIII.1: The critical indecomposable codes of
dimension at most 10 can be described as follows:

1. F is the unique critical indecomposable code of dimen-
sion 1.

2. C3,2 is the unique critical indecomposable code of di-
mension 2.

3. C4,3 is the unique critical indecomposable code of di-
mension 3.

4. There are exactly two critical indecomposable codes of
dimension 4: C5,4 and C6,4.

5. There are exactly three critical indecomposable codes of
dimension 5: C6,5, C8,5, and a code of length 7.

6. There are exactly six critical indecomposable codes of
dimension 6: C7,6, C10,6, two codes of length 8, and two of
length 9.

7. There are exactly eleven critical indecomposable codes
of dimension 7: C8,7, C12,7, three codes of length 9, four of
length 10, and two of length 11.

8. There are exactly twenty-four critical indecomposable
codes of dimension 8: C9,8, C14,8, four codes of length 10,
eight of length 11, seven of length 12, and three of length
13.

9. There are exactly fifty-one critical indecomposable codes
of dimension 9: C10,9, C16,9, five codes of length 11, fifteen
of length 12, sixteen of length 13, ten of length 14, and
three of length 15.

10. There are exactly one hundred and twenty critical in-
decomposable codes of dimension 10: C11,10, C18,10, seven
codes of length 12, twenty-four of length 13, thirty-nine of
length 14, thirty of length 15, fourteen of length 16, and
four of length 17.

More precisely, Table III (which spans the rest of this arti-
cle) describes the partitions and auxiliary codes needed to
construct all critical indecomposable codes of dimension at

most 10.

Table III
Critical Indecomposable Codes

of Dimension at most 10

Dim. Length Partition Aux. Code
1 1 − −
2 3 − −
3 4 − −

5 − −
4

6 (23) A3,1

6 − −

5 7 (3, 22) A3,1

8 (24) A4,1

7 − −

(4, 22)
8

(32, 2)
A3,1

6
(3, 23) A4,19
(24, 1) A5,2;1

10 (25) A5,1

8 − −

(5, 22)
9 (4, 3, 2) A3,1

(33)

(4, 23)

7 (32, 22)
A4,1

10
(3, 23, 1)

(25)
A5,2;1

(3, 24) A5,111
(25, 1) A6,2;1

12 (26) A6,1

9 − −

(6, 22)
(5, 3, 2)

10
(42, 2)

A3,1

(4, 32)

(5, 23)

(4, 3, 22) A4,1

(33, 2)
A5,2;111 (3, 24)

(A5,2;1)
(1,5)

(4, 23, 1) A5,2;18
A5,2;1(32, 22, 1)

(A5,2;1)
(2,3)

(4, 24)

(32, 23)
A5,1

A6,2;0

12
(26)

A6,2;1

A6,2;1
(3, 24, 1)

(A6,2;1)
(1,5)

(25, 12) A7,3;2

(3, 25) A6,1

13 A1
7,2;1(26, 1)

A2
7,2;1

14 (28) A8,1
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Table III (con’t)

Dim. Length Partition Aux. Code
10 − −

(7, 22)
(6, 3, 2)

11 (5, 4, 2) A3,1

(5, 32)

(42, 3)

(6, 23)

(5, 3, 22)

(42, 22) A4,1

(4, 32, 2)

(34)
A5,2;1(4, 24)

(A5,2;1)
(1,5)

12 A5,2;1

(32, 23) (A5,2;1)
(1,3)

(A5,2;1)
(1,5)

(5, 23, 1) A5,2;1

A5,2;1
(4, 3, 22, 1)

(A5,2;1)
(2,3)

(33, 2, 1) A5,2;1

(26) A6,3;0

(5, 24)

(4, 3, 23) A5,1

9 (33, 22)
A6,2;0

A6,2;1
(3, 25)

(A6,2;1)
(1,4)

(A6,2;1)
(1,6)

A6,2;113 (4, 24, 1)
(A6,2;1)

(1,5)

A6,2;1

(32, 23, 1) (A6,2;1)
(1,5)

(A6,2;1)
(1,4)(2,5)

A7,3;1(26, 1)
A7,3;2

A7,3;2
(3, 24, 12)

(A7,3;2)
(1,5)

(4, 25)

(32, 24)
A6,1

A7,2;0

(27) A1
7,2;1

A2
7,2;114

A1
7,2;1

(3, 25, 1) (A1
7,2;1)

(1,6)

A2
7,2;1

A1
8,3;2(26, 12)

A2
8,3;2

Table III (con’t)

Dim. Length Partition Aux. Code

(3, 26) A7,1

9 15 A1
8,2;1

(con’t)
(27, 1)

A2
8,2;1

16 (28) A8,1

11 − −

(8, 22)
(7, 3, 2)
(6, 4, 2)

12 (52, 2) A3,1

(6, 32)
(5, 4, 3)

(43)

(7, 23)

(6, 3, 22)

(5, 4, 22)

(5, 32, 2)
A4,1

(42, 3, 2)

(4, 33)
A5,2;1

(5, 24)
(A5,2;1)

(1,5)

A5,2;1

(A5,2;1)
(1,5)

(4, 3, 23)
(A5,2;1)

(2,5)

13
(A5,2;1)

(2,3)

10 A5,2;1

(33, 22) (A5,2;1)
(1,5)

(A5,2;1)
(3,5)

(6, 23, 1) A5,2;1

A5,2;1
(5, 3, 22, 1)

(A5,2;1)
(2,3)

A5,2;1
(42, 22, 1)

(A5,2;1)
(2,3)

A5,2;1
(4, 32, 2, 1)

(A5,2;1)
(1,3)

(34, 1) A5,2;1

(3, 25) A6,3;0

(6, 24)

(5, 3, 23)

(42, 23) A5,1

(4, 32, 22)

14 (34, 2)
A6,2;0

A6,2;1
(4, 25)

(A6,2;1)
(1,4)

(A6,2;1)
(1,6)
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Table III (con’t)

Dim. Length Partition Aux. Code
A6,2;0

(A6,2;0)
(1,6)

A6,2;1

(32, 24) (A6,2;1)
(2,6)

(A6,2;1)
(1,4)

(A6,2;1)
(1,4)(2,5)

(A6,2;1)
(1,5)(2,6)

A6,2;1
(5, 24, 1)

(A6,2;1)
(1,5)

A6,2;1

(A6,2;1)
(1,5)

(4, 3, 23, 1)
(A6,2;1)

(2,5)

(A6,2;1)
(1,4)(2,5)

A6,2;1

14 (33, 22, 1) (A6,2;1)
(1,5)

(con’t) (A6,2;1)
(1,4)(2,5)

A1
7,3;0

A2
7,3;0(27)

A7,3;1

A7,3;2

A7,3;110
A7,3;2

(con’t)
(3, 25, 1) (A7,3;2)

(6,7)

(A7,3;2)
(1,6)

(A7,3;2)
(1,5)

A7,3;2
(4, 24, 1, 1)

(A7,3;2)
(1,5)

A7,3;2

(33, 23, 12) (A7,3;2)
(1,5)

(A7,3;2)
(2,3)

(5, 25)

(4, 3, 24) A6,1

(33, 23)
A7,2;0

(A7,2;0)
(1,7)

A1
7,2;1

15 (3, 26) (A1
7,2;1)

(1,7)

(A1
7,2;1)

(1,5)

A2
7,2;1

(A2
7,2;1)

(1,7)

A1
7,2;1

(4, 25, 1) (A1
7,2;1)

(1,6)

A2
7,2;1

Table III (con’t)

Dim. Length Partition Aux. Code

A1
7,2;1

(A1
7,2;1)

(1,6)

(32, 24, 1) (A1
7,2;1)

(1,5)(2,6)

A2
7,2;1

(A2
7,2;1)

(1,6)

A1
8,3;1

A2
8,3;115

(27, 1) A1
8,3;2

(con’t)
(A1

8,3;2)
(7,8)

A2
8,3;2

A1
8,3;2

(A1
8,3;2)

(1,6)

(3, 25, 12) (A1
8,3;2)

(1,4)

A2
8,3;2

(A2
8,3;2)

(1,6)

A1
9,4;3(26, 13)

A2
9,4;3

10 (4, 26)

(con’t) (32, 25)
A7,1

A1
8,2;0

A2
8,2;0(28)

A1
8,2;1

A2
8,2;1

A1
8,2;1

16
(A1

8,2;1)
(1,7)

(3, 26, 1)
A2

8,2;1

(A2
8,2;1)

(1,7)

A1
9,3;2

A2
9,3;2(27, 12)

A3
9,3;2

A4
9,3;2

(3, 27) A8,1

A1
9,2;117

(28, 1) A2
9,2;1

A3
9,2;1

18 (29) A9,1
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