
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Mathematics Mathematics, Department of

10-2007

A Universal Theory of Pseudocodewords
Nathan Axvig
University of Nebraska - Lincoln, s-naxvig1@math.unl.edu

Emily Price
University of Nebraska - Lincoln

Eric T. Psota
University of Nebraska-Lincoln, epsota@unl.edu

Deanna Turk
University of Nebraska - Lincoln

Lance C. Pérez
University of Nebraska-Lincoln, lperez@unl.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub

Part of the Applied Mathematics Commons, Electrical and Computer Engineering Commons,
and the Mathematics Commons

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University
of Nebraska - Lincoln.

Axvig, Nathan; Price, Emily; Psota, Eric T.; Turk, Deanna; Pérez, Lance C.; and Walker, Judy L., "A Universal Theory of
Pseudocodewords" (2007). Faculty Publications, Department of Mathematics. 176.
https://digitalcommons.unl.edu/mathfacpub/176

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/224735566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub/176?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
Nathan Axvig, Emily Price, Eric T. Psota, Deanna Turk, Lance C. Pérez, and Judy L. Walker

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/mathfacpub/176

https://digitalcommons.unl.edu/mathfacpub/176?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages

A Universal Theory of Pseudocodewords

Nathan Axvig, Emily Price, Eric Psota, Deanna Turk, Lance C.Pérez, and Judy L. Walker

Abstract— Three types of pseudocodewords for LDPC codes
are found in the literature: graph cover pseudocodewords,
linear programming pseudocodewords, and computation tree
pseudocodewords. In this paper we first review these three
notions and known connections between them. We then propose
a new decoding rule — universal cover decoding — for
LDPC codes. This new decoding rule also has a notion of
pseudocodeword attached, and this fourth notion provides a
framework in which we can better understand the other three.

I. I NTRODUCTION

The discovery of turbo codes [2] and the subsequent
rediscovery of low-density parity-check (LDPC) codes [4],
[8] represent a major milestone in the field of coding theory.
These two classes of codes can achieve realistic bit error
rates, between10−5 and 10−12, with signal-to-noise ratios
that are only slightly above the minimum possible for a given
channel and code rate established by Shannon’s original
capacity theorems [11].

Perhaps the most important commonality between turbo
and LDPC codes is that they both utilize iterative message-
passing decoding algorithms. The focus of this paper is the
determination of the behavior of iterative message-passing
decoding and the relationships between the various decoding
algorithms, with a particular aim toward an understanding
of the noncodeword decoder errors that occur in computer
simulations of LDPC codes with iterative message-passing
decoders.

In the remainder of this section, we give some necessary
background and terminology from graph theory. In Sec-
tion II, we discuss the intuitively appealing view of iterative
message-passing algorithms as acting locally on the Tanner
graph, a view which leads tograph cover pseudocodewords.
Section III considers linear programming decoding, which
was introduced by Feldman [3], and its relationship to the
ideas of Section II. In Section IV, we give a simulation
result which provides a contradiction to the graph cover
intuition. This leads us to return to the foundational work of
Wiberg [13] in Section V. Finally, in Section VI we propose
a decoding algorithm which provides insight as to how the
newer work of Sections II and III fits in with Wiberg’s theory.

Definition 1.1: A graphG is a pair(V, E), whereV is a
nonempty set of elements calledverticesandE is a (possibly
empty) set of elements callededges, such that each edge

This work was supported in part by NSF grant DMS-0602332.
N. Axvig, E. Price, D. Turk and J. L. Walker are with the Department

of Mathematics, University of Nebraska, Lincoln, NE 68588-0130, USA
{s-naxvig1,s-dturk1,jwalker}@math.unl.edu

E. Psota and L. C. Pérez are with the Department of Electrical
Engineering, University of Nebraska, Lincoln, NE 68588-0511, USA
epsota24@bigred.unl.edu, lperez@unl.edu

e ∈ E is assigned an unordered pair of vertices{u, v} called
the endpointsof e. The graphG is finite if V is a finite set.
The graphG is simpleif, for eache ∈ E, the two endpoints
of E are distinct and, for any two distinct verticesu, v of G,
there is at most one edge ofe with endpoints{u, v}.

For the remainder of this paper, we assume our graphs
are simple. In this case, we can uniquely identify any edge
e with its endpoints, and we writee = (u, v).

Definition 1.2: Let G = (V, E) be a simple graph. For
v ∈ V , the neighborhoodof v is the set of verticesu ∈ V

such that(u, v) ∈ E. Elements of the neighborhood ofv are
calledneighborsof v, and thedegreeof v is the number of
neighborsv has. We sayG is d-regular if every vertex in
G has degreed. A path in G is a finite sequence of distinct
verticesv0, . . . , vk of G such thatvi−1 andvi are neighbors
for 1 ≤ i ≤ k. A cycle in G is a pathv0, . . . , vk in G with
v0 = vk. We sayG is connectedif, for any two verticesu, v

of G, there is a pathu = v0, v1, . . . , vk = v from u to v in
G. We sayG is bipartite if there is a partitionV = X ∪ F

of V into nonempty disjoint sets such that eache ∈ E has
one endpoint inX and the other inF . If G is bipartite, we
say it is (c, d)-regular if the degree of every vertex inX is
c and the degree of every vertex inF is d. We sayG is a
tree if G is connected and has no cycles.

Definition 1.3: A Tanner graphis a finite bipartite graph
T = (X ∪ F, E). We call X the set ofvariable nodesof
T andF the set ofcheck nodesof T . A configurationon a
Tanner graphT is an assignmentc = (cx)x∈X of 0’s and
1’s to the variable nodes ofT such that, at each check node
f of T , the binary sum of the values at the neighbors off

is 0. The collection of configurations on a Tanner graphT

is called the(LDPC) code determined byT .
Let T = (X ∪F, E) be a Tanner graph. SinceT is finite,

we can identify a configuration onT with a vector inF
n
2 ,

where n := |X |. The code determined byT is then the
collection of all such vectors, and it is easy to check that
this code is linear of lengthn and dimension at leastn− r,
wherer := |F |.

If H = (hji) is anr×n binary matrix, then we associate
a Tanner graphT = T (H) = (X(H) ∪ F (H), E(H)) to H

by setting

X(H) = {x1, . . . , xn},

F (H) = {f1, . . . , fr}, and

E(H) = {(xi, fj) |hji = 1}.

Note that the code determined byT (H) is precisely the code
with parity check matrixH .

Conversely, ifT = ({x1, . . . , xn} ∪ {f1, . . . , fr}, E) is a

proyster2
Typewritten Text
Published in Proceedings of the 45th Annual Allerton Conference on Communication, Control and Computing, Monticello, IL; October 2007.

Tanner graph, then we associate a binaryr × n matrix H =
(hji) to T , wherehji = 1 if and only if (xi, fj) ∈ E. Note
that the code with parity check matrixH(T) is precisely the
code determined byT .

SinceT = T (H(T)) for any Tanner graphT and H =
H(T (H)) for any binary matrixH , we have, for any binary
linear codeC, a one-to-one correspondence between parity
check matrices and Tanner graphs forC.

The proof of the next proposition is clear.
Proposition 1.4:SupposeT is a Tanner graph which is

not connected, sayT1, . . . ,Tk are the connected components
of T . LetC ⊆ F

n
2 be the code determined byT andCi ⊆ F

ni

2

the code determined byTi for i = 1, . . . , k, wheren1+ · · ·+
nk = n. ThenC is the direct sum of theCi, i.e.,

C = C1 ⊕ · · · ⊕ Ck

:= {(c1| . . . |ck) ∈ F
n
2 | c1 ∈ C1, . . . , ck ∈ Ck}.

In light of Proposition 1.4, we will assume for the remainder
of the paper that the Tanner graphT is connected.

The power of LDPC codes lies in the existence of iterative
message-passing decoding algorithms which act on the asso-
ciated Tanner graph. Two such algorithms are the min-sum
and the sum-product algorithms, discussed by Wiberg in [13].
Loosely speaking, an iterative message-passing algorithmis
a method of decoding in which each variable node and each
check node ofT is initialized with some data set provided by
the output of the channel. The variable and check nodes take
turns passing data to their neighbors inT , performing some
calculation at each step. This process of ‘message passing’
is allowed to continue for some predetermined number of
iterations, with the expectation being that if the number
of iterations is sufficiently large, then the messages will
converge.

II. GRAPH COVER PSEUDOCODEWORDS

In any iterative message-passing algorithm, the computa-
tion at each particular vertex uses only information from its
immediate neighbors. This local nature of the algorithm on
the Tanner graph prompts us to considercoversof graphs.

Definition 2.1: An unramified cover, or simply acover, of
a finite graphG is a graphG̃ along with a surjective graph
homomorphismπ : G̃ → G, called acovering map, such
that for eachv ∈ V and each̃v ∈ π−1(v), the neighborhood
of ṽ is mapped bijectively to the neighborhood ofv. For a
positive integerM , an M -cover of G is coverπ : G̃ → G

such that for each vertexv of G, π−1(v) contains exactly
M vertices ofG̃.

Notice that, with this definition, a cover of a connected
graph need not be connected.

Example 2.2:If G is an r-cycle, then forM ≥ 1 the
only connected cover ofG is the rM -cycle. Other graphs,
however, admit several connected covers of each degree. For
example, the graph on the left in Figure 1 has two connected
2-covers, as shown on the right of that figure.

Let T = (X ∪ F, E) be a Tanner graph for the code
C ⊆ F

n
2 and let π : T̃ → T be anM -cover of T . Then

Fig. 1. The graph of Example 2.2, along with its two connected2-covers.

T̃ is a Tanner graph, with variable nodes in the set

X̃ :=
⋃

x∈X

π−1(x)

and check nodes in the set

F̃ :=
⋃

f∈F

π−1(f).

Writing X = {x1, . . . , xn}, we can write

X̃ = {xik | 1 ≤ i ≤ n, 1 ≤ k ≤ M}

with π(xik) = xi. We use this indexing to write a vector
ã ∈ F

nM
2 as

ã = (a11 : · · · : a1M , . . . , an1 : · · · : anM).

Definition 2.3: For any vectora = (a1, . . . , an) ∈ F
n
2 , the

M -lift a↑M ∈ F
nM
2 is the vector

a↑M = (a11 : · · · : a1M , . . . , an1 : · · · : anM)

with aik = ai for 1 ≤ i ≤ n, 1 ≤ k ≤ M .
Let C̃ ⊆ F

nM
2 be the code determined bỹT . It is easy

to see that ifã ∈ F
nM
2 satisfiesã = a↑M for somea ∈

F
n
2 , then a↑M ∈ C̃ if and only if a ∈ C. In particular,

C↑M := {c↑M | c ∈ C} is a subcode of̃C. However, in many
situations we haveC↑M 6= C̃, i.e., C̃ contains codewords
which are not constant on all preimages of variable nodes of
T . This leads us to the next definition.

Definition 2.4: Let C ⊆ F
n
2 be a binary linear code with

Tanner graphT . Let T̃ be anM -cover ofT and letC̃ ⊆ F
nM
2

be the code determined bỹT . For any codeword

c̃ = (c11 : · · · : c1M , . . . , cn1 : · · · : cnM) ∈ C̃,

theunscaled graph cover pseudocodewordassociated tõc is
the vector

p(c̃) := (p1, . . . , pn)

of nonnegative integers, wherepi = #{k | cik = 1}. The
normalized graph cover pseudocodewordassociated tõc is
the vector

ω(c̃) :=
1

M
p(c̃)

of rational numbers between0 and 1. If p is an unscaled
graph cover pseudocodeword forT , then(T̃ , c̃) is a realiza-
tion for p if T̃ is a finite cover ofT andc̃ is a configuration
on T̃ (i.e., a codeword in the code determined byT̃) such
that p(c̃) = p; a realization of a normalized graph cover
pseudocodeword is defined similarly. A realization(T̃ , c̃)

of a graph cover pseudocodeword is called aconnected
realization if T̃ is connected.

If the appropriate adjective is clear from context, the term
pseudocodewordwill often be used to refer to either an
unscaled graph cover pseudocodeword or a normalized graph
cover pseudocodeword. We note that every codeword is both
an unscaled graph cover pseudocodeword and a normalized
graph cover pseudocodeword, since the Tanner graphT is a
1-cover of itself.

Example 2.5 (See also [6].):The Tanner graphT on
top in Figure 2 determines the codeC spanned by
a := (1, 1, 1, 0, 0, 0, 0) and b := (0, 0, 0, 0, 1, 1, 1).
The graph T̃ on the bottom in Figure 2 is a 2-cover
of T and determines the codẽC spanned by a↑2,
b↑2 and c̃ := (1:0, 1:0, 1:0, 1:1, 1:0, 1:0, 1:0). The un-
scaled graph cover pseudocodeword corresponding toc̃

is p(c̃) = (1, 1, 1, 2, 1, 1, 1) and the normalized graph
cover pseudocodeword corresponding toc̃ is ω(c̃) =
(1
2 , 1

2 , 1
2 , 1, 1

2 , 1
2 , 1

2).
The relevance of graph covers to iterative message-passing

decoding is very intuitive: since every finite coverT̃ of T

is locally isomorphic toT , a local algorithm onT cannot
distinguish betweenT and any finite cover ofT . Thus, it
seems reasonable that all codewords in all covers of the
Tanner graph are considered by an iterative decoder. This
intuition was formalized by Vontobel and Koetter [12] with
their definition ofgraph cover decoding.

Definition 2.6: [12] Assume the codeC with Tanner
graphT is used on a binary-input, memoryless channel with
channel law described by the conditional probability density
function PY|X(y|x) =

∏n

i=1 PYi|Xi
(yi|xi). Let M be the

collection of all triples(M, T̃ , x̃) whereT̃ is anM -cover of
T and x̃ is a codeword in the code determined byT̃ . For a
given channel outputy and for anyx̃ with (M, T̃ , x̃) ∈ M
for someM and T̃ , set

PeY|eX(y↑M x̃) :=

n∏

i=1

M∏

k=1

PYi|Xi
(yi|xik),

wherey↑M is the vector obtained by repeating each entry
M times. Graph cover decodingis the decoding algorithm
given by the following decision rule: For a received vectory,
find the triple(M, T̃ , x̃) ∈ M that maximizes the quantity
1
M

log PeY|eX(y↑M |x̃), and returnω(x̃).
In other words, graph cover decoding simultaneously lifts

the received vector to all finite covers of the Tanner graph,
compares these lifts to all the codewords in the corresponding
codes, and returns the normalized graph cover pseudocode-
word corresponding to the covering-code codeword which
has the highest likelihood of having been sent.

In [6], Koetter, Li, Vontobel and Walker study
characterizations of graph cover pseudocodewords. In
particular, they show that a vectorp of nonnegative
integers is an unscaled graph cover pseudocodeword
if and only if it reduces modulo 2 to a codeword
and it lives in the fundamental coneK ⊆ R

n given

by

K = K(H) =

8
><
>:

(v1, . . . , vn) ∈ R
n

˛̨
˛̨
˛

vi ≥ 0 for all i,X

i′ 6=i

h
ji′

v
i′

≥ hjivi for all i, j

9
>=
>;

.

In the case ofcycle codes, they show that a vectorp =
(p1, . . . , pn) of nonnegative integers is an unscaled graph
cover pseudocodeword if and only ifup := u

p1

1 · · ·upn
n

appears with nonzero coefficient in theedge zeta function
of the normal graph of the Tanner graph, and they give
a generalization of this characterization to arbitrary LDPC
codes.

III. L INEAR PROGRAMMING PSEUDOCODEWORDS

In this section, we discuss linear programming decoding
and the notion of linear programming pseudocodewords. We
also review the connections found by Vontobel and Koetter
[12] between linear programming decoding and graph cover
decoding.

Much of the setup is the same as in the previous sec-
tion. In particular, we assume a binary-input, memoryless
channel with channel law described byPY|X(y|x) =∏n

i=1 PYi|Xi
(yi|xi). For a given outputy = (y1, . . . , yn)

of the channel, thelog-likelihood vectorλ = (λ1, . . . , λn)
is given by

λi = log

(
PYi|Xi

(yi|0)

PYi|Xi
(yi|1)

)
,

and, forx ∈ R
n, the costof x is

λ · x =

n∑

i=1

λixi.

Definition 3.1: [3] Let H = (hji) be a fixedr×n parity-
check matrix with corresponding Tanner graphT . For each
j = 1, . . . , r, let N(j) be the set of variable nodes which
are adjacent to check nodej in T , i.e.,

N(j) := {i |hji = 1}.

We call a vectorω = (ω1, . . . , ωn) ∈ R
n goodif 0 ≤ ωi ≤ 1

for eachi, and
∑

i∈S

ωi +
∑

i∈N(j)\S

(1 − ωi) ≤ |N(j)| − 1

for eachj and each subsetS ⊆ N(j) with |S| odd. The
fundamental polytopeP = P(H) of H is the set of all good
vectors andlinear programming decodingis the decision rule
which returns a vectorω = (ω1, . . . , ωn) ∈ P which has
minimal cost.

Because the output of linear programming decoding may
always be taken to be a vertex of the fundamental polytope,
we define alinear programming pseudocodewordto be any
vertex of the fundamental polytope. Feldman [3] showed that
every codeword is a linear programming pseudocodeword
and that a vector of0’s and 1’s is a linear programming
pseudocodeword if and only if it is a codeword. However,
as is the case with graph cover pseudocodewords, there are
often linear programming pseudocodewords which are not
codewords.

x1
x1

x2 x2

x3
x3

x4

x4

x5

x5

x6 x6

x7

x7

x′
1

x′
2

x′
3

x′
4

x′
5

x′
6

x′
7

f1

f1f2

f2

f3

f3

f4

f4f5

f5

f6

f6

f ′
1

f ′
2

f ′
3

f ′
4

f ′
5

f ′
6

Fig. 2. The graphs of Example 2.5.

In [12], Vontobel and Koetter showed that linear program-
ming decoding and graph cover decoding are essentially the
same: for a given channel output, graph cover decoding and
linear programming decoding return the same vector of ra-
tional numbers between 0 and 1. Moreover, the fundamental
cone mentioned in Section II above is precisely the conic
hull of Feldman’s fundamental polytopeP , and a vector
ω = (ω1, . . . , ωn) of rational numbers between 0 and 1 is in
P if and only if it an unscaled graph cover pseudocodeword.

Notice that disconnected covers are needed for this last
statement to be true, as the next example shows.

Example 3.2:Consider the Tanner graphT which is an
8-cycle with vertices alternating between being check nodes
and variable nodes. The code determined byT is the binary
[4, 1, 4] repetition code, with parity check matrix

H =

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 .

The fundamental polytope is

P = P(H) =
{
(ω, ω, ω, ω) ∈ R

4 | 0 ≤ ω ≤ 1
}

.

As discussed in Example 2.2, the only connected covers ofT

are 8M -cycles forM ≥ 1. Hence the only unscaled graph
cover pseudocodewords which have connected realizations
are those of the form(0, 0, 0, 0) and(M, M, M, M) for M ≥
1, and so the only normalized graph cover pseudocodewords
with connected realizations are(0, 0, 0, 0) and(1, 1, 1, 1). In
particular, no rational point ofP which is not a vertex ofP
has a connected graph cover realization.

On the other hand, we know that linear programming de-
coding (and hence graph cover decoding) will always output
a vertex of the fundamental polytope and, we observe that in
Example 3.2, these vertices do have connected realizations.
This phenomenon happens in general, as shown by the next
proposition.

Proposition 3.3:Let T be a Tanner graph with corre-
sponding fundamental polytopeP . Supposeω is a vertex
of P , and let(T̃ , c̃) be a realization ofω. Let T̃1, . . . , T̃k

be the connected components ofT̃ , so thatT̃i an Mi-cover
of T for 1 ≤ i ≤ k, with M1 + · · · + Mk = M , and
c̃ = (c̃1| . . . |c̃k), where c̃i is a configuration onT̃i. Then
(T̃i, c̃i) is a connected realization ofω for i = 1, . . . , k.
In other words, every graph cover realization ofω is either
connected or the disjoint union of connected graph cover
realizations ofω.

Proof: Set αi = ω(c̃i) for 1 ≤ i ≤ k. Then, looking
at the unscaled graph cover pseudocodewords, we have

Mω = M1α1 + · · · + Mkαk.

Dividing through byM gives

ω =
M1

M
α1 + · · · +

Mk

M
αk.

Since Mi

M
≥ 0 for eachi and

M1

M
+ · · · +

Mk

M
=

M1 + · · · + Mk

M
=

M

M
= 1,

we have writtenω as a convex combination ofα1, . . . , αk.
But eachαi is in P by [12] and so eachMi

M
αi is too since

Mi

M
≤ 1. Sinceω is a vertex of the polytope, this forces

eachαi to lie on the line segment from the origin toω, i.e.,
αi = γiω for some rational numbers0 < γi ≤ 1. So we
have

Mω = (M1γ1 + · · · + Mkγk)ω,

which meansM1 + · · · + Mk = M = M1γ1 + · · · + Mkγk.
Henceγi = 1 for eachi, i.e., αi = ω for all i.

IV. A S IMULATION RESULT

As discussed above, intuition tells us that iterative
message-passing decoders are approximations to graph cover
decoding. As graph cover decoding requires a comparison
involving all codewords in the codes corresponding to all
finite covers of the Tanner graph, it must be viewed as a the-
oretical tool rather than as an implementable (or simulatable)
algorithm. However, one can implement linear programming
decoding and, since (as discussed above) linear programming
decoding and graph cover decoding are equivalent [12], this
yields a way of testing the intuition. In particular, if the
intuition is correct, then graph cover decoding (i.e., linear
programming decoding) should always out-perform iterative
message-passing-decoding. However, simulations show that
this is not the case, as is shown in the next example.

Example 4.1:Figure 3 shows the simulation results for
a turbo-based LDPC code [7] with linear programming
decoding, sum-product decoding and min-sum decoding.
This figure clearly shows that the iterative message-passing
decoders are superior to linear programming decoding (i.e.,
graph cover decoding) for this particular code, with respect
to both word error rate and bit error rate.

0 1 2 3 4 5 6 7
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Probability of Error for LP, SP, and MS decoding of Turbo Code

E
b
/N

o
 (dB)

P
b/P

w

Word Error LP
Word Error SP
Word Error MS
Bit Error LP
Bit Error SP
Bit Error MS

Fig. 3. Performance of a turbo code based LDPC code with linear programming (LP), sum-product (SP) and min-sum (MS) decoding.

V. COMPUTATION TREE PSEUDOCODEWORDS

The conflict observed above — that iterative message-
passing decoding does not appear to be an approximation
of graph cover decoding — is resolved by returning to the
fundamental work of Wiberg [13]. Recall that every iterative
message-passing decoding algorithm works by recursively
computing a cost function at each variable node and then
making a decision based on those cost functions.

Definition 5.1: [13] Let T be a Tanner graph, and assume
an iterative message-passing algorithm has been run onT

for a total ofm iterations, where a single iteration consists
of message-passing from the variable nodes to the check
nodes and then back to the variable nodes. Thedepth m

computation treefor T with root nodev is the tree obtained
by tracing the computation of the final cost function of
the algorithm at the variable nodev of T recursively back
through time.

It should be noted that the structure of the computation tree
depends upon the particular choice of scheduling used in the
iterative message-passing algorithm. However, a computation
tree of depthm can always be drawn as a tree with2m + 1
levels, labeled from 0 to2m, where the0th level consists only
of the root node, each even-numbered level contains only
variable nodes, and each odd-numbered level contains only
check nodes. Moreover, the computation tree locally looks
like the original Tanner graphT : if (x, f) is an edge inT ,
then every copy ofx in the computation tree is adjacent to
exactly one copy off and every copy off in the computation
tree is adjacent to exactly one copy ofx.

Definition 5.2: Let R be a computation tree for the Tanner
graphT . Thevariable nodesof R are the vertices ofR which
are copies of the variable nodes ofT , and thecheck nodes

of R are the vertices ofR which are copies of the check
nodes ofT . A configurationon R is an assignment of0’s
and 1’s to the variable nodes ofR in such a way that the
binary sum of the neighbors of each check node inR is 0.

Wiberg [13] proves that iterative message-passing algo-
rithms actually work by finding the minimal cost configura-
tion on the computation tree. To make this more precise, we
focus on the min-sum algorithm. In this case, we have:

Definition 5.3 (Wiberg, [13]):Let R be a computation
tree for the Tanner graphT and letX(R) be the variable
nodes ofR. Let c = (cx)x∈X(R) be a configuration on a
computation tree. For eachx ∈ X(R) which is a copy of
the ith variable node ofT , define thelocal cost functionλx

by
λx(α) := λiα,

where λ = (λ1, . . . , λn) is the log-likelihood vector and
α ∈ {0, 1}. The (global) costof c is

G(c) :=
∑

x∈X(R)

λx(cx).

Theorem 5.4 (Wiberg, [13]):For each variable node on
the Tanner graph, the min-sum algorithm computes, afterm

iterations, the lowest cost configuration on the computation
tree of depthm rooted at that variable node. The output of
the algorithm is the vector(c1, . . . , cn) ∈ {0, 1}n such thatci

is the value at the root node of the lowest cost configuration
on the depthm tree rooted at theith variable node ofT .

In analogy with the graph cover and linear programming
situations, we define acomputation tree pseudocodewordto
be any configuration on any computation tree. Note that if
(c1, . . . , cn) is a codeword, then, for any computation tree
R, the assignmentc = (cx)x∈X(R), given by cx = ci if x

is a copy of theith variable node ofT , is a configuration
on R. Therefore, every codeword is a computation tree
pseudocodeword. In most cases, there are computation tree
pseudocodewords which are not codewords. We call such
computation tree pseudocodewordsnontrivial.

Example 5.5:[See also [5].] It can be shown that there
are no nontrivial computation tree pseudocodewords for the
Tanner graphT of Example 3.2. However, the addition of a
new, redundant check allows for nontrivial computation tree
pseudocodewords. LetT1 be the Tanner graph of Figure 4.
Then the code determined byT1 is again the[4, 1, 4] repeti-
tion code, but Figure 5 shows a nontrivial computation tree
pseudocodeword forT1.

x1

x2

x3

x4

f1

f2f3

f4

f5

Fig. 4. The Tanner graphT1 of Example 5.5.

x1x1x1x1

x1

x2x2

x2x2

x3

x3 x3x3x3x3 x3

x4

x4 x4

x4

Fig. 5. A computation tree of depth 2 rooted atx1 for the Tanner graph
T1 of Example 5.5. Labels on the check nodes are omitted for clarity. A
nontrivial computation tree pseudocodeword is shown on thetree, where
the ringed variable nodes are assumed to be set to “1” and the others to
“0”.

In light of Wiberg’s theorem, we see that it is the nontrivial
computation tree pseudocodewords which are impediments
to correct decoding with iterative message-passing algo-
rithms. This simple observation was certainly known to
Wiberg at the time of his thesis in 1996. However, perhaps
because of stark contrast between the complicated nature
of computation trees and the elegance of finite covers, the
pseudocodeword literature has focused almost exclusively
on graph cover pseudocodewords. In the next section, we
propose a new decoding rule, the study of which should shed
light on computation tree pseudocodewords, including their
connection to graph cover pseudocodewords.

VI. U NIVERSAL COVER DECODING

The connection between computation trees and finite cov-
ers can be found in theuniversal cover, a notion from
topology which we now define in the context of graph theory.
For more information, see [10] or [9].

Definition 6.1: Let G be a finite connected graph and
suppose the cover̂π : Ĝ → G enjoys the following universal

property: For any finite connected coverπ : G̃ → G of G,
there is a covering map̃π : Ĝ → G̃ such thatπ ◦ π̃ = π̂.
Then π̂ : Ĝ → G is called auniversal coverof G.

It can be shown (see [10] or [9]) that every finite connected
graphG has a unique (up to graph isomorphism) universal
cover. The universal cover̂G of G is always a tree, and it
is an infinite tree (i.e., it has infinitely many vertices) if and
only if G is not a tree. Moreover,̂G can be constructed from
G by following the computation tree construction for infinite
depth with any vertex ofG as the root node. The importance
of the universal cover in terms of decoding is that every finite
connected cover of a Tanner graphT is a surjective image
of the universal cover ofT , and every computation tree for
T is a subgraph of the universal cover ofT .

Definition 6.2: Let T = (X ∪ F, E) be a Tanner graph
and π̂ : T̂ → T the universal cover ofT . Set

X̂ :=
⋃

x∈X

π̂−1(x) and F̂ :=
⋃

f∈F

π̂−1(f).

We call X̂ the set ofvariable nodesof T̂ and F̂ the set of
check nodesof T̂ . A configurationon T̂ is an assignment
ĉ = (ĉbx)bx∈ bX of 0’s and 1’s to the variable nodes of̂T in
such a way that the binary sum of the neighbors of each
check node inT̂ is 0. A universal cover pseudocodeword
for T is a configuration on̂T .

The next proposition shows how graph cover pseudocode-
words, computation tree pseudocodewords, and universal
cover pseudocodewords are related. Recall that linear pro-
gramming pseudocodewords and graph cover pseudocode-
words were shown to coincide by Vontobel and Koetter [12].

Proposition 6.3:Let T be a Tanner graph. Then

1) Every computation tree pseudocodeword forT extends
to a universal cover pseudocodeword.

2) Every graph cover pseudocodeword forT which has a
connected graph cover realization induces a universal
cover pseudocodeword forT .

3) Every universal cover pseudocodeword induces a com-
putation tree pseudocodeword on every computation
tree forT .

Proof: Let π̂ : T̂ → T be the universal cover ofT .

1) Supposec = (cx)x∈X(R) is a computation tree pseu-
docodeword on some computation treeR of T , rooted
at the variable nodev. Thinking of T̂ as a computation
tree of infinite depth rooted atv, c can be superimposed
onto the top portion of̂T and, since there are no cycles
in T̂ , it can be extended (possibly in several ways) to
a configuration on all of̂T .

2) Supposep is an unscaled graph cover pseudocodeword
with a connected graph cover realization(T̃ , c̃), where
T̃ is a connected finite cover ofT and c̃ is a configu-
ration onT̃ . SinceT̃ is connected, there is a covering
map π̃ : T̂ → T̃ and p induces a configuration
ĉ = (ĉbx)bx∈ bX on T̂ by setting ĉbx = ceπ(bx) for each
x̂ ∈ X̂.

3) Supposêc is a universal cover pseudocodeword andR

is a computation tree forT , rooted at the variable node

v of T . ThenT̂ can be drawn as an infinite computation
tree for T , rooted atv, and the truncation of̂c to R

yields a computation tree pseudocodeword onR.

Note that the restriction to graph cover pseudocodewords
with connected realizations in part (2) of Proposition 6.3
does not pose a problem since the output of the graph cover
decoding algorithm is always a graph cover pseudocodeword
with a connected realization by Proposition 3.3.

In order to propose a definition for universal cover decod-
ing, we need some notion of cost for a configuration on the
universal cover of a Tanner graph. As the universal cover is
the infinite computation tree, the idea is that the cost of a
configuration on the universal cover ought to be the limit of
the costs of the truncated versions of the configuration on
finite computation trees. Since the cost of a configuration on
a computation tree is defined as a sum over all variable nodes
in the computation tree and the number of variable nodes
grows exponentially with the depth of the tree, we must first
define a normalized computation tree cost function.

Definition 6.4: Let T be a Tanner graph, letR be a (finite)
computation tree forT , and letX(R) be the set of variable
nodes ofR. For any configurationc = (cx)x∈X(R) on R,
let G(c) be the cost ofc, as defined in Definition 5.3. The
normalized costof c on R is

G(c) :=
1

|X(R)|
G(c).

Definition 6.5: Let T be a Tanner graph and letv be a
variable node ofT . Let T̂v be the universal cover ofT ,
realized as an infinite computation tree rooted atv. For any
positive integerm, let R(m)

v be the computation tree of depth
m rooted atv, so thatR(m)

v is formed after truncatinĝTv

after level 2m. For any configurationcv on T̂v, let c
(m)
v ,

m ≥ 1, be the truncation ofcv to R
(m)
v , and letG

(m)

v (c
(m)
v)

be the normalized cost ofc(m)
v on R

(m)
v . The rootedv-cost

of the configurationcv on the infinite computation treêTv

is defined as

Gv(c) := lim sup
m→∞

G
(m)

v (c(m)).

For any variable nodev of T and any variable nodêv of
the universal cover̂T lying over v, we can rootT̂ at v̂ to
obtain the infinite computation treêTv rooted atv. Thus, for
any configurationc on T̂ and any variable nodêv of T̂ lying
overv, we get a configurationcv̂ on T̂v. We conjecture that,
for many universal cover configurationsc, the rootedv-cost
of cv̂ is independent of choice of̂v lying overv, so that the
v-cost ofc is defined in a non-rooted manner. Moreover, we
conjecture that, for many universal cover configurations, this
v-cost is actually independent ofv, so that one can discuss
the costof a universal cover configuration. In particular, we
have:

Theorem 6.6 ([1]): Let T be the (finite, connected) Tan-
ner graph of a(dv, dc)-regular LDPC code, withdv ≥ 3
being the degree of each variable node anddc ≥ 3 being
the degree of each check node. LetT̂ be the universal cover
of T and let c be a configuration on̂T which is induced

by a connected graph cover pseudocodeword. Then for any
v ∈ X(T) and anyv̂ ∈ X(T̂) lying overv, the rootedv-cost
of cv̂ is independent of choice of̂v and is equal to

lim
m→∞

G
(m)

v (ĉ(m)).

Moreover, the value of this limit is independent of the choice
of v.

Note that requiring the minimum degree ofT to be at
least three is not a serious restriction. Ifdc ≤ 2, the code
defined byT is either the entire vector space, the zero code
or the repetition code. Furthermore, ifdv ≤ 2, we either get
the entire vector space, a code consisting of all even weight
vectors inF

n
2 or a cycle code.

We can now defineuniversal cover decoding.
Definition 6.7: Assume the codeC with Tanner graphT

having variable nodes{x1, . . . , xn} is used on a binary-
input, memoryless channel.Universal cover decodingis the
decoding algorithm given by the following decision rule:
For a given channel output and eachi = 1, ..., n, find a
configurationci on T̂xi

of minimal rootedxi-cost. Return
ω = (ω1, . . . , ωn), whereωi is the probability that a random
copy x̂i of xi in T̂xi

is assigned a value of one byci.
Because the universal cover is infinite for any graph that

is not a tree, universal cover decoding cannot be simulated;
rather, it should be seen as a theoretical tool that formallyties
together graph cover decoding and iterative message-passing
decoding. Indeed, graph cover decoding is a sub-decoder
of universal cover decoding in the sense that both seek to
minimize the same cost but universal cover decoding sees all
configurations on the universal cover whereas graph cover
decoding sees only those configurations induced by graph
cover pseudocodewords. On the other hand, universal cover
decoding is the limit of the min-sum decoder, in the sense
that both seek to minimize the same cost but universal cover
decoding operates on the infinite computation tree whereas
min-sum operates on a finite computation tree, i.e., universal
cover decoding allows for infinitely many iterations whereas
min-sum must run for only finitely many iterations. See [1]
for details.

REFERENCES

[1] N. Axvig, K. Morrison, E. Psota, D. Turk, L.C. Pérez, andJ.L. Walker.
“Universal cover decoding”. In preparation, 2007.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima. “Near Shannon limit
error-correcting coding and decoding”. InProceedings of the 1993
IEEE International Conference on Communications, pages 1064–
1070, Geneva, Switzerland, 1993.

[3] J. Feldman.Decoding Error-Correcting Codes via Linear Program-
ming. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, 2000.

[4] R. G. Gallager. Low-Density Parity Check Codes. MIT Press,
Cambridge, MA, 1963.

[5] C. Kelley and D. Sridhara. “Pseudocodewords of Tanner graphs”. To
appear inIEEE Transactions on Information Theory.

[6] R Koetter, W.-C. W. Li, P. O. Vontobel, and J. L. Walker. “Char-
acterizations of pseudo-codewords of LDPC codes”.Advances in
Mathematics, 213:205–229, 2007.

[7] Y. Li, B. Vucetic, F. Jiang, and L. C. Pérez. “Recent Advances in
Turbo Code Design and Theory”.Proceedings of the IEEE, 95:1323–
1344, June 2007.

[8] D. J. C. MacKay and R. M. Neal. “Near Shannon limit performance of
low-density parity check codes”.IEE Electronic Letters, 32(18):1645–
1646, August 1996.

[9] V. V. Prasolov. Elements of combinatorial and differential topology,
volume 74 ofGraduate Studies in Mathematics. American Mathemat-
ical Society, Providence, RI, 2006. Translated from the 2004 Russian
original by Olga Sipacheva.

[10] J.-P. Serre.Trees. Springer Monographs in Mathematics. Springer-
Verlag, Berlin, 2003. Translated from the French original by John
Stillwell, Corrected 2nd printing of the 1980 English translation.

[11] C. E. Shannon. “A mathematical theory of communication”. Bell
System Technical Journal, 27:379–423 and 623–656, July and October
1948.

[12] P. Vontobel and R. Koetter. “Graph-cover decoding and finite-length
analysis of message-passing iterative decoding of LDPC codes”. To
appear inIEEE Transactions on Information Theory.

[13] N. Wiberg. Codes and Decoding on General Graphs. PhD thesis,
Linköping University, Linköping, Sweden, 1996.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	10-2007

	A Universal Theory of Pseudocodewords
	Nathan Axvig
	Emily Price
	Eric T. Psota
	Deanna Turk
	Lance C. Pérez
	See next page for additional authors
	Authors

	allerton.dvi

