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1. Introduction

Low complexity decoding of low-density parity-
check (LDPC) codes may be obtained from the appli-
cation of iterative message-passing decoding algorithms
to the bipartite Tanner graph of the code. Arguably,
the two most important decoding algorithms for LDPC
codes are the sum-product decoder and the min-sum
(MS) decoder. On a bipartite graph without cycles (a
tree), the sum-product decoder minimizes the probabil-
ity of bit error, while the min-sum decoder minimizes
the probability of word error [9].

While the behavior of sum-product and min-sum is
easily understood when operating on trees, their behav-
ior becomes much more difficult to characterize when
the Tanner graph has cycles. Wiberg [9] showed that
decoding can be modeled by finding minimal cost con-
figurations on computation trees that are formed at
successive iterations of sum-product/min-sum, and re-
turning the value assigned to the root nodes of these
trees. Additionally, he proved that for an error to oc-
cur at a particular variable node, there must exist a
deviation of non-positive cost on the computation tree
rooted at this node.

In this paper, we are interested in analyzing the
non-codeword errors that occur during parallel, iter-
ative decoding with the min-sum decoder. Recently,
work has been done relating the min-sum decoder to
the linear programming (LP) decoder via graph cov-
ers [8]. The LP decoder, as defined by Feldman [3],
recasts the problem of decoding as an optimization
problem whose feasible set is a polytope defined by
the parity-check matrix of a code. In [8], it is shown
that LP decoding can be realized as a decoder oper-
ating on graph covers. The notion that non-codeword
outputs of LP decoding are related to non-codeword
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outputs of min-sum decoding is attractive from an an-
alytical perspective. However, the performance of LP
and min-sum are not consistently related [2]. There-
fore, a different theoretical model is needed to explore
the relationship between decoding on graph covers and
decoding on computation trees. To bridge this gap,
we will turn to the notion of decoding on the universal
cover. Universal covers can be thought of as both in-
finite computation trees and infinite graph covers. For
this reason, decoding on universal covers provides an
intuitive link between LP decoding and min-sum de-
coding of LDPC codes.

This paper is an extension of previous work done
by the authors in [2]; thus, much of the requisite back-
ground material is drawn from [2]. Section 2 introduces
the definition of universal covers. Properties related
to configurations on universal covers and their corre-
sponding costs are established in Section 3. Finally,
in Section 4 a preliminary definition of the universal
cover decoder is given, and it is shown that under cer-
tain conditions the universal cover decoder agrees with
the LP decoder.

2. Universal Covers

Finite covers of Tanner graphs and their applica-
tions to the decoding of low-density parity-check codes
have been studied extensively (see, e.g., [4, 5, 8]). As
such, we do not provide rigorous definitions and discus-
sion of graph covers, though we do include in Figure 1 a
small example to illustrate the concept. In this section
we turn our attention to the universal cover, a well-
studied object in topology that we now define in the
context of graph theory.

Definition 2.1. Let G be a finite connected graph and
suppose the cover π̂ : Ĝ → G enjoys the following uni-
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Figure 1: A Tanner graph T for the [4,1,4] repetition
code (left) and a 2-cover of T (right).

versal property: For any connected cover π : G̃ → G

of G, there is a covering map π̃ : Ĝ → G̃ such that
π ◦ π̃ = π̂. Then π̂ : Ĝ → G is called a universal cover
of G.

If G is a tree, then G is its own universal cover.
When G is not a tree, a practical way of constructing
a universal cover of G is to build the computation tree
Ĝv of infinite depth rooted at a vertex v of G. It is
clear that Ĝv is a cover; that it is a universal cover fol-
lows from Theorem 1.24 in [7], noting that trees have
trivial fundamental group. For example, when this con-
struction is applied to an n-cycle, the universal cover is
simply a path extending infinitely in both directions.

In light of Definition 2.1, for the remainder of this
paper all Tanner graphs are assumed to be finite and
connected. Given a Tanner graph T , the universal
cover of T can also be thought of as an infinite Tanner
graph. This relationship is given by Definition 2.2.

Definition 2.2 ([2], Definition 6.2). Let T = (X ∪

F,E) be a Tanner graph, and let π̂ : T̂ → T be the
universal cover of T . Set

X̂ := X(T̂ ) =
⋃

x∈X

π̂−1(x)

and
F̂ := F (T̂ ) =

⋃
f∈F

π̂−1(f).

We call X̂ the set of variable nodes of T̂ and F̂ the
set of check nodes of T̂ . A configuration on T̂ is an
assignment ĉ = (ĉbx)bx∈ bX of 0’s and 1’s to the variable

nodes of T̂ such that the binary sum of the neighbors
of each check node in T̂ is 0. A universal cover pseu-
docodeword for T is a configuration on T̂ .

3. Configurations and Cost on Universal Covers

Some basic relationships between universal cover
pseudocodewords, graph cover pseudocodewords and
computation tree pseudocodewords are established in
Proposition 6.3 of [2]. This proposition first states
that every computation tree psuedocodeword can be
extended to a configuration on the universal cover and
that any universal cover pseudocodeword can be trun-
cated to a computation tree pseudocodeword. Addi-
tionally, every graph cover pseudocodeword ω that has
a connected realization induces a universal cover pseu-
docodeword. Here, we define a connected realization of
ω to be a pair (T̃ , c̃) such that T̃ is a connected cover

of T and c̃ is a codeword in the code defined by T̃ such
that the normalized graph cover pseudocodeword of c̃

(see, e.g., [8]) is ω. If ω has a connected realization, we
often say that ω is a connected graph cover pseudocode-
word. With this definition, it is clear how ω will induce
a universal cover pseudocodeword: first, let (T̃ , c̃) be a

connected realization of ω and let T̂ be the universal
cover of T . By Definition 2.1, T̂ also covers T̃ via a
map π̃. The configuration c̃ can then be lifted through
π̃, much as we lift codewords onto finite computation
trees. Similarly, any configuration on a connected cover
of T induces a universal cover pseudocodeword. An im-
portant implication of this proposition is that the uni-
versal cover is an environment in which it is natural to
consider both computation tree pseudocodewords and
connected graph cover pseudocodewords.

With the ultimate goal of defining a universal cover
decoder as motivation, the authors propose a cost func-
tion on infinite computation trees [2]. The cost func-
tion presented in this paper differs slightly from its
original form in [2] but is still designed to capture a
limiting value of normalized versions of Wiberg’s cost
function [9].

Definition 3.1 (See also [2], Definition 6.5). Let T =

(X ∪F,E) be a Tanner graph and let T̂v be the univer-
sal cover of T , realized as an infinite computation tree
rooted at the variable node v of T . For any positive

integer m, let R
(m)
v be the computation tree of depth m

rooted at v, so that R
(m)
v is formed by truncating T̂v

after the 2mth level. For any configuration ĉv on T̂v,

let ĉ
(m)
v , m ≥ 1, be the truncation of ĉv to R

(m)
v , and

let G(ĉ
(m)
v ) be the cost of ĉ

(m)
v as given by Wiberg [9].

The rooted cost of the universal cover configuration ĉv

on the infinite computation tree T̂v is defined to be

Gv(ĉv) := lim sup
m→∞

⎛
⎝ |X|∣∣∣X(m)

v

∣∣∣G(ĉ(m)
v )

⎞
⎠ ,



where X
(m)
v is the set of variable nodes of R

(m)
v .

The normalization factor of |X|˛̨
˛X(m)

v

˛̨
˛

above ensures

that for a given log-likelihood vector the limit supre-
mum is applied to a bounded sequence, hence guaran-
teeing that the rooted cost exists and is finite. Though
the use of the limit supremum guarantees convergence,
it is useful to ask for which universal cover pseudocode-
words the rooted cost can be computed with a limit
rather than a limit supremum, It is also interesting
to explore the relationships between a universal cover
pseudocodeword’s structure (i.e., how it assigns binary
values to variable nodes) and the corresponding rooted
cost. Before these questions are addressed, we begin
with discussion on the necessary background material
and tools that will go into the proofs. We begin this dis-
cussion with Theorem 3.2, which states that for a par-
ticular class of codes the distribution of variable nodes
in finite computation trees approaches uniformity as
the number of iterations goes to infinity.

Theorem 3.2. Let T = (X∪F,E) be the Tanner graph
of a (dX , dF )-regular LDPC code with dX , dF ≥ 3. For

any positive integer m, let X
(m)
v (x) be the set of copies

of variable node x in X
(m)
v . For any x ∈ X, we have

lim
m→∞

∣∣∣X(m)
v (x)

∣∣∣∣∣∣X(m)
v

∣∣∣ =
1

|X|
.

The notion of non-backtracking random walks plays
a key role in subsequent arguments; therefore, we pro-
vide a brief introduction to this concept before giving
the proof of Theorem 3.2. A non-backtracking ran-
dom walk is a random process on an arbitrary graph
G, which is not assumed to be bipartite. It is described
as follows: select a vertex v0 of G from which to begin
the walk, and select uniformly at random an edge e1

incident to v0. Let v1 be the other endpoint of e1 and
select uniformly at random an edge e2 �= e1 incident
to v1. Repeat this process some predetermined finite
number of times.

More formally (and restricting to walks of even
length for reasons that will become clear shortly),

let W
(m)
v be the set of all non-backtracking walks of

length 2m in G whose initial vertex is v, and define

the probability of the walk w ∈ W
(m)
v with vertices

v = v0, v1, . . . , v2m to be

P (w) :=
1

deg(v)(deg(v1) − 1) . . . (deg(v2m−1) − 1)
.

A non-backtracking random walk of length 2m with ini-

tial vertex v is then a pair (w,P (w)) where w ∈ W
(m)
v

and P (w) is its probability. One can see that this is

a probability measure on W
(m)
v by using induction on

m, and it is clear that this measure agrees with the
intuitive description in the previous paragraph.

In our situation, the graph G is a Tanner graph T ,
and the walks of interest to us must start and end at
variable nodes. Since any such walk must have even
length because T is bipartite, we focus exclusively on
walks of even length.

Let q
(m)
v (x) =

∑
w∈W P (w), where W = W

(m)
v (x)

is the set of non-backtracking walks in T of length 2m
that start at variable node v and end at variable node x.
With this definition, we see that q

(m)
v (x) is the probabil-

ity that a non-backtracking random walk in T of length
2m that starts at vertex v will have terminal vertex
x [6]. With the following result on non-backtracking
random walks from [6], we have the tools necessary to
proceed with the proof of Theorem 3.2.

Theorem 3.3 (See [6], Theorem 1.2(ii)). Let T = (X∪
F,E) be a Tanner graph with minimum degree at least
3. Using the notation established above, we have

lim
m→∞

q(m)
v (x) =

deg(x)

|E|

for all v, x ∈ X.

Proof of Theorem 3.2. Recall that X
(m)
v is the set of

variable nodes in the computation tree R
(m)
v and that

X
(m)
v (x) is the set of copies of the variable node x

of T in X
(m)
v . For m ≥ 1, the biregularity of T

forces the number of non-backtracking walks in T of
length 2m that start at any given variable node to
be τ (m) := dX

dX−1 (dX − 1)m(dF − 1)m, with each walk

equally probable. Let T̂v be the universal cover of T ,
realized as an infinite computation tree rooted at v,

so that R
(m)
v is the truncation of T̂v to depth m. Let

η
(m)
v (x) be the number of copies of variable node x in

the 2mth level of T̂v. There is a natural bijection be-
tween non-backtracking walks in T that start at v and

paths in T̂v that start at the root node; thus, η
(m)
v (x)

is precisely the number of non-backtracking walks in T

of length 2m that start at v and end at x. Therefore

q
(m)
v (x) =

η(m)
v

(x)

τ(m) .

Let p
(m)
v (k) be the probability of picking uniformly

at random a variable node in the 2kth level from all
variable nodes in R

(m)
v . Since the probability of select-

ing uniformly at random a copy of variable node x from



all variable nodes of R
(m)
v is

|X(m)
v

(x)|˛̨
˛X(m)

v

˛̨
˛

, we have

∣∣∣X(m)
v (x)

∣∣∣∣∣∣X(m)
v

∣∣∣ =
∑m

i=0 q
(i)
v (x)p

(m)
v (i). (3.1)

Let ε > 0 be given and set L = deg(x)
|E| = dX

dX |X| =
1

|X| . By Theorem 3.3, there is a positive integer M1

such that |q
(m)
v (x) − L| < ε

3 for all m ≥ M1. Since the
number of variable nodes from one level to the next in
the computation tree grows exponentially by a factor
of (dX − 1)(dF − 1) ≥ 4, the probability of selecting
a variable node from the first 2M1 levels of a compu-
tation tree diminishes to zero as the depth of the tree
increases. Thus, we can find M2 > M1 such that for
all m ≥ M2,

M1∑
i=0

p(m)
v (i) <

ε

3
.

By writing L as
∑m

i=1 p
(m)
v (i)L and using Equa-

tion 3.1, one can use standard triangle inequality ar-
guments to show that

∣∣∣∣∣∣

∣∣∣X(m)
v (x)

∣∣∣∣∣∣X(m)
v

∣∣∣ − L

∣∣∣∣∣∣ ≤ ε

for all m ≥ M2, which concludes the proof.
�

Theorem 3.4 below gives our first result on how
structure is related to rooted cost. One implication
of Theorem 3.4 is of particular importance: for a uni-
versal cover pseudocodeword induced by a connected
graph cover pseudocodeword ω the rooted cost, which
is derived from normalized versions of Wiberg’s cost
function, is equal to the cost of ω in linear program-
ming decoding [3]. This fact plays a key role in Sec-
tion 4.

Theorem 3.4 (see also [2], Theorem 6.6). Let T =
(X ∪ F,E) be the Tanner graph of a (dX , dF )-regular

LDPC code, with dX , dF ≥ 3. Let T̃ be a connected
cover of T , let c̃ be a codeword in the code defined by
T̃ , and let ω = ω(c̃) be the normalized pseudocodeword

associated to c̃. Suppose that, on the universal cover T̂v

of T realized as an infinite computation tree rooted at
the variable node v of T , the configuration ĉv is induced
by c̃. Then

Gv(ĉv) = lim
m→∞

⎛
⎝ |X|∣∣∣X(m)

v

∣∣∣G(ĉ(m)
v )

⎞
⎠ = λ · ω,

where λ is the vector of log-likelihood ratios.

Proof. Let M be the degree of the cover T̃ = (X̃∪F̃ , Ẽ)

of T . Note that T̂v is a universal cover of T̃ and that
T̃ is finite and connected with variable node degree
d eX = dX ≥ 3 and check node degree d eF = dF ≥ 3, and

let ĉv be a configuration on T̂v induced by c̃. Then we
have

Gv(ĉv) = lim sup
m→∞

|X|∣∣∣X(m)
v

∣∣∣
∑
ex∈ eX

λex

∣∣∣X(m)
v (x̃) ∩ supp(ĉ(m)

v )
∣∣∣

= lim sup
m→∞

|X|∣∣∣X(m)
v

∣∣∣
∑

ex∈supp(ec)

λex

∣∣∣X(m)
v (x̃)

∣∣∣

= |X|
∑

ex∈supp(ec)

λex lim
m→∞

∣∣∣X(m)
v (x̃)

∣∣∣∣∣∣X(m)
v

∣∣∣
= |X|

∑
ex∈supp(ec)

λex
1∣∣∣X̃∣∣∣

by Theorem 3.2, where λex is the Wiberg min-sum cost
function assigned to node x̃. To continue the string of

equalities, we use that
∣∣∣X̃∣∣∣ = M |X|, λex = λx for each

x̃ ∈ X̃ in the inverse image of x under the covering
map, and the number of such x̃ in the support of c̃ is
precisely Mωx. We then have:

Gv(ĉv) = |X|
∑

x∈supp(ω)

Mωxλx

1

M |X|

=
∑

x∈supp(ω)

λxωx

= λ · ω,

as desired. �

We conclude this section by examining the costs
of another class of universal cover pseudocodewords,
defined below.

Definition 3.5. Let T be a Tanner graph and let T̂

be the universal cover of T . A minimal universal cover
pseudocodeword is a configuration on T̂ whose support
does not properly contain the support of any non-zero
universal cover pseudocodeword.

If a minimal universal cover pseudocodeword as-
signs a value of 1 to a particular output node, this
corresponds precisely to the notion of a deviation, as
defined by Wiberg [9]. Proposition 3.6 describes these
configurations more precisely.

Proposition 3.6. Let T be a Tanner graph such that
each check node has degree at least 2, and let T̂ be its
universal cover. Let ĉ be a configuration on T̂ , let A be



the neighborhood of supp(ĉ), and let S be the subgraph

of T̂ induced by supp(ĉ) ∪ A. Then ĉ is minimal if
and only if S is connected and each check node in A is
adjacent to exactly two variable nodes in supp(ĉ).

The proof of Proposition 3.6 may be found in [1].
Proposition 3.7 below shows that the class of minimal
universal cover pseudocodewords is, in fact, disjoint
from the class of universal cover pseudocodewords in-
duced by connected graph cover pseudocodewords. In-
tuitively, this is plausible since minimal universal cover
pseudocodewords seem to have significantly fewer vari-
ables set to 1 than do the others. With the aid of the
characterization given by Proposition 3.6 we make this
intuitive justification rigorous.

Proposition 3.7. Let T = (X ∪ F,E) be the Tanner
graph of a (dX , dF )-regular LDPC code of length n with

dX , dF ≥ 3. Let T̂v be the universal cover of T , realized
as the infinite computation tree rooted at the variable
node v of T . Let ĉv be a minimal universal cover pseu-
docodeword on T̂v and assume that the coordinates of
the log-likelihood vector are all finite. Then

Gv(ĉv) = lim
m→∞

⎛
⎝ |X|∣∣∣X(m)

v

∣∣∣G(ĉ(m)
v )

⎞
⎠ = 0.

Moreover, ĉv is not induced by any graph cover pseu-
docodeword.

Proof. By Proposition 3.6, we have that∣∣∣X(m)
v ∩ supp(ĉ

(m)
v )

∣∣∣ grows on the order of (dX − 1)m,

but the size of X
(m)
v grows on the order of

(dX −1)m(dF −1)m. Since (dX −1) < (dX −1)(dF −1),
it follows that

lim
m→∞

∣∣∣X(m)
v ∩ supp(ĉ

(m)
v )

∣∣∣∣∣∣X(m)
v

∣∣∣ = 0. (3.2)

Using the assumption that the log-likelihoods are
finite and Equation 3.2, we have

Gv(ĉ) = lim
m→∞

⎛
⎝ |X|∣∣∣X(m)

v

∣∣∣G(ĉ(m)
v )

⎞
⎠ = 0.

It remains to be shown that ĉ is not induced by
any graph cover pseudocodeword. If it were, by Theo-
rem 3.4 the rooted cost Gv(ĉ) would be equal to λ ·ω,
where ω is some normalized, connected, graph cover
pseudocodeword. But we have shown that Gv(ĉ) = 0
for all vectors λ in which all coordinates are finite, so
it must be that ω = 0. Since ĉ is not the all-zeros
configuration, it is not induced by the all-zeros graph
cover pseudocodeword. �

4. Decoding on Universal Covers

Definition 4.1 gives a working definition of universal
cover decoding.

Definition 4.1. Let T be a Tanner graph with variable
nodes x1, . . . , xn and, for 1 ≤ i ≤ n, let T̂xi

be the
universal cover of T realized as an infinite computation
tree rooted at xi. For a given received vector y, let θi

be the probability that a randomly chosen configuration
of minimal rooted cost on T̂xi

has assigned a 1 to the
root node xi. Universal cover (UC) decoding is defined
as the decoder that returns the vector

UC(y) = (θ1, . . . , θn).

The motivation for Definition 4.1 is two-fold. First,
we wish to mimic Wiberg’s model of min-sum [9] by
making a bit-wise decision that is based on the bi-
nary value the root node receives from a minimal cost
computation tree configuration. We then modify this
approach by returning the probability that the root
node xi receives a 1 from a minimal rooted cost con-
figuration, since the universal cover does not, a priori,
have a root node. In particular, for a given univer-
sal cover pseudocodeword (e.g., those induced by con-
nected graph cover pseudocodewords of regular LDPC
codes), it is possible for the configuration to look dif-
ferent from various potential root nodes (copies of xi),
yet still have the same rooted cost.

To make the probabilities θ1, . . . , θn of Defini-
tion 4.1 well-defined, one needs a probability measure
on the set of universal cover configurations. The search
for a meaningful probability measure is an area of cur-
rent study. One particular property that this probabil-
ity measure should display is given in the next defini-
tion.

Definition 4.2. Let T = (X∪F,E) be a Tanner graph

and let T̂v be the universal cover of T realized as an in-
finite computation tree rooted at the variable node v of
T . A probability measure on the set of configurations
on T̂v is called admissible if, for every normalized, con-
nected graph cover pseudocodeword ω = (ωx)x∈X , the
probability that an arbitrarily chosen configuration on
T̂v that is induced by ω assigns a 1 to the root node of
T̂v is ωv.

If an admissible measure exists for the Tanner graph
T = (X ∪ F,E) with X = {x1, . . . , xn}, we can relate
the output of the universal cover decoder to that of LP
decoding. First, restrict the universal cover decoder in
the following manner. For each i = 1, 2, . . . , n, consider
only the set of configurations on T̂xi

induced by con-
nected graph cover pseudocodewords. From this set,



find the set of minimal cost configurations. Let θi be
the probability that a randomly chosen minimal cost
configuration has assigned a 1 to the root node xi, as
in Definition 4.1. Define

UC |GC(y) := (θ1, θ2, . . . , θn).

From this point on, we will consider only (dX , dF )-
regular LDPC codes of length n with dX , dF ≥ 3 so
as to utilize a number of earlier results. Let λ be the
log-likelihood vector for the received vector y. Theo-
rem 3.4 shows that the rooted cost of a configuration
induced by a configuration c̃ on a finite connected cover
of T is equal to λ · ω(c̃), where ω(c̃) denotes the nor-
malized graph cover pseudocodeword associated with
c̃, and that this value is independent of the root node
of T̂ . Thus, a configuration on T̂xi

induced by a con-
nected graph cover pseudocodeword c̃ will have mini-
mal rooted cost if it minimizes λ·ω where ω ranges over
all possible normalized connected graph cover pseu-
docodewords. In our situation, every graph cover pseu-
docodeword has a connected realization by Theorem
2.10 of [1]. This implies that the set over which we
are minimizing is precisely the set of rational points in
the fundamental polytope P [8], where P is the feasi-
ble set for the LP decoder [3]. Note that the vertices
of P [3] are rational, and are thus included in this set.
Given that the cost function of the LP decoder is sim-
ply the vector of log-likelihoods, we have the following
proposition.

Proposition 4.3. Let T = (X ∪ F,E) be the Tanner
graph of a (dX , dF )-regular LDPC code with dX , dF ≥
3. Let P be the fundamental polytope of the parity-
check matrix defined by T . Suppose that some v ∈ P
satisfies

λ · v < λ · ω

for every ω ∈ P \ {v}, and that an admissible prob-
ability measure exists. Then v is a vertex of P, and
universal cover decoding restricted to graph cover con-
figurations, as described above, agrees with LP decod-
ing; in other words, UC |GC(y) = v, where y is the
channel output.

Proof. That v must be a vertex of P is clear. Write
X = {x1, . . . , xn}. Since v is the unique value of
argmin{λ · ω |ω ∈ P}, a configuration c̃ on a finite

connected cover of T induces a configuration on T̂xi

of minimal rooted cost among all pseudocodewords in-
duced by connected graph cover pseudocodewords if
and only if its corresponding normalized graph cover
pseudocodeword is v. Since the probability measure
used for universal cover decoding is admissible, we have
that the probability that an arbitrarily chosen element

of the minimal rooted cost configurations on T̂xi
as-

signs a binary value of 1 to the root node xi is vi.
Thus, UC |GC(y) = v. �

The proposed universal cover decoder agrees with
linear programming decoding under the conditions de-
scribed in Proposition 4.3. Further research on univer-
sal cover decoding should help to solidify our under-
standing of both LP decoding and iterative message-
passing decoding by providing the missing link between
these two sets of decoders.
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