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ALGEBRAIC GEOMETRIC CODES OVER RINGS

JUDY L. WALKER

Abstract. The techniques of algebraic geometry have been widely and suc-
cessfully applied to the study of linear codes over finite fields since the early
1980’s. Recently, there has been an increased interest in the study of linear
codes over finite rings. In this paper, we combine these two approaches to cod-
ing theory by introducing the study of algebraic geometric codes over rings.
In addition to defining these new codes, we prove several results about their
properties.

1. Introduction

Whenever data is transmitted across a channel, errors are likely to occur. The
data is usually encoded as a string of zeros and ones of fixed length, that is, as a
vector over F2. The set of all possible data vectors is then a subset of F

n
2 . More

generally, a code of length n over Fq is a subset C of F
n
q , and elements of C are

called codewords. It is the goal of coding theory to construct codes which have
many codewords, which are easy to encode and decode, and which correct errors.
Traditionally, the main tools used in coding theory have been those of combina-

torics and group theory. In 1977, V. D. Goppa defined algebraic geometric codes
[4], thus allowing a wide range of techniques from algebraic geometry to be applied.
This idea of Goppa’s has had a great impact on the field. Not long after Goppa’s
original paper, Tsfasman, Vlǎduţ and Zink [14] used modular curves to construct
a sequence of codes with asymptotically better parameters than any previously
known codes. Further, old conjectures in coding theory are now being approached
in a new way via the new techniques, and new results in algebraic geometry have
been proven as a result of the connection with coding theory.
Another recent twist in the study of codes is the attention now paid to linear

codes over finite rings. The main reason for the recent increased interest in these
codes is the 1994 paper of Hammons, Kumar, Calderbank, Sloane, and Solé [6]
which shows that certain nonlinear binary codes are in fact nonlinear projections
of linear codes over Z/4. These nonlinear codes include such famous codes as the
Nordstrom-Robinson code and the Kerdock and Preparata codes. Following the
ideas of that paper, other authors (see, for example, [2]) have constructed new
linear Z/4 codes in such a way that their nonlinear binary projections have more
codewords than any previously known codes of the same length and minimum
distance.
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The object of this paper is to combine these areas of coding theory by introducing
and studying algebraic geometric codes over rings. In section 2, we give a review
of the basic definitions, notations, and results on linear codes over finite fields,
including algebraic geometric codes. In Section 3, we study linear codes over rings.
In particular, we explore the relationship with associated linear codes over finite
fields and obtain new results in this regard. Section 4 gives the background we need
from the algebraic geometry of curves over rings. It is our belief that many of the
results of this section are known, so we only list them here. Complete proofs can
be found in [17]. Section 5 is the heart of the paper. It contains the definition of
algebraic geometric codes over rings, as well as the proofs of the theorems about
them mentioned above. In Section 6, we discuss some applications of this new
theory.
We use the standard terminology and notation of commutative algebra and al-

gebraic geometry, as in [5], [10], and [8].

2. Linear Codes over Finite Fields

The purpose of this short section is to catalog some basic definitions and results
about linear codes over finite fields, including algebraic geometric codes over finite
fields. The references for this section are [9], [11], [13], and [15]. We begin with
some definitions.
A code C of length n over the finite field Fq is a subset of the vector space F

n
q .

If C is actually a subspace, it is called a linear code and its dimension k is its
dimension as a Fq-vector space. Elements of C are called codewords.
The Hamming distance d(x,y) on Fnq is given by

d(x,y) = #{i : xi �= yi}.

The Hamming weight of a vector x in Fnq is defined as d(x,0). The minimum
(Hamming) distance d of C is

d = d(C) = min{d(x,y) : x �= y ∈ C}.

For linear codes, this is equivalent to the minimum Hamming weight of the nonzero
codewords of C.
We can also define a symmetric bilinear form on Fnq by

x · y =
n∑
i=1

xiyi.

The dual code C⊥ of C is then defined as

C⊥ = {y ∈ Fnq : x · y = 0 for every x ∈ C}.

It can be proven that if C is a linear code of dimension k, then C⊥ is a linear code
of dimension n− k. Also, it is easy to see that (C⊥)⊥ = C. Note that it is possible
to have a vector x ∈ Fnq such that x · x = 0, so that C ∩ C

⊥ �= 0 in general.
There are two standard definitions of algebraic geometric codes. Both start with

a smooth, absolutely irreducible, projective curve X over Fq, a set P ⊂ X(Fq) of
Fq-rational points on X, and a divisor D on X. Assume that suppD ∩ P = ∅,
and also use the symbol P to denote the divisor P1 + · · ·+ Pn. The first algebraic
geometric code associated to X, P , and D is given by

CL = CL(X,P , D) = {(f(P1), . . . , f(Pn)) : f ∈ L(D)}.
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The second algebraic geometric code associated to X, P , and D is given by

CΩ = CΩ(X,P , D) = {(resP1(ν), . . . , resPn(ν)) : ν ∈ Ω(P −D)}.

We summarize the properties of CL and CΩ in a theorem, due to Goppa. See
[11], [13], or [15] for the proof.

Theorem 2.1. Let X, P and D be as above, and suppose that 0 ≤ degD < n =
|P|. Then

1. CL is a linear code of length n. The dimension kL and minimum distance dL
of CL satisfy

kL ≥ degD + 1− g,

dL ≥ n− degD.

2. CΩ is a linear code of length n. Its dimension kΩ and minimum distance dΩ
satisfy

kΩ ≥ n− degD + 1− g,

dΩ ≥ degD − 2g + 2.

If, in addition, we have 2g − 2 < degD, then

1. kL = degD + 1− g, and
2. kΩ = n− degD + 1− g.

Further, regardless of degD,

CL
⊥ = CΩ,

and there is a canonical divisor K such that

CL(X,P ,K + P −D) = CΩ(X,P , D).

Hence, for a fixed X and P, the class of algebraic geometric codes CL(X,P , D) is
closed under duals as D varies.

3. Linear Codes over Rings

Definition 3.1. Let A be a ring. A linear code C of length n over A is a submodule
of the free module An. If C itself is isomorphic to a free A-module, then we say
C is a free code and we define the dimension of C to be dimC = rankA(C). We
define a symmetric bilinear form on An by

(a1, . . . , an) · (a
′
1, . . . , a

′
n) =

n∑
i=1

aia
′
i

and then the dual code C⊥ of a linear code C over A is defined in the usual way.

In the rest of this paper, we will assume that A denotes a local Artinian ring, m
its maximal ideal, and π : A→ A/m the natural surjection. Later, we will assume
that A/m is finite. We denote by ms the sth power of m, and by m×n the Cartesian
product of n copies of m. Elements of An will be called vectors. A vector which is
an element of a code C ⊂ An will also be called a codeword.
We will use the following lemmas often.

Lemma 3.2. Let k < n be integers, and let f : Ak ↪→ An be any inclusion. Then
f splits. Hence, if C is a free linear code of length n and dimension k over A and
π : An → (A/m)n denotes coordinatewise projection, then π(C) = C/mC.
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Proof. We can represent f as an n × k matrix of rank k over A. Suppose ms = 0
but ms−1 �= 0. Not all entries of the matrix lie in m, since then any vector which
has all of its coordinates in ms−1 would lie in the kernel of f . Therefore, some
entry of the matrix is a unit. By performing row and column operations, we may
assume that the top left entry is the identity of A and the rest of the first row
and column are zeros. The matrix obtained by deleting the first row and column
of this matrix will represent an injection Ak−1 ↪→ An−1, so we repeat the above
argument. Eventually, we will have a matrix which is a k×k identity matrix above
a (n− k)× k zero matrix, so that the corresponding map is the standard injection
of Ak into An. This map splits, so our original f must also.
The last sentence of the Lemma follows by replacing the arbitrary Ak with our

code C. The above argument shows that injection C ↪→ An splits. Since the functor
− ⊗ A/m preserves split injections, both horizontal arrows in the commutative
diagram

C ��

��

An

��
C ⊗A/m �� (A/m)n

are injections. Hence m×n ∩ C = mC, and so π(C) = C/mC.

Lemma 3.3. Let u1, . . . ,ud ∈ An be vectors over A. If there are elements a1, . . . , ad ∈
A with at least one ai �= 0 satisfying a1u1 + · · · + adud = 0, then the vectors
π(u1), . . . , π(ud) are linearly dependent over A/m.

Proof. We prove the contrapositive of this statement, which we phrase as follows:
If a map ϕ : Ad → An induces a map ϕ̄ : (A/m)d → (A/m)n of rank d, then ϕ
is injective. To prove this statement, notice that some d × d minor of the matrix
of ϕ̄ is nonzero, i.e., a unit of A/m. Hence the corresponding d × d minor of the
matrix of ϕ is a unit of A. Thus this minor has an inverse which gives a splitting
An → Ad, and the map ϕ is injective.

The next result gives a somewhat surprising relationship between the minimum
Hamming distance of a code over a ring and that of its coordinatewise projection.

Theorem 3.4. Let C be a linear code over A and C̄ = π(C) its coordinatewise
projection. Let d and d̄ denote the minimum Hamming distances of C and C̄,
respectively. Assume that C̄ �= {0}, so that d̄ > 0. Then

1. d ≤ d̄, and
2. if C is free, then d = d̄.

Proof. (1) Suppose that y ∈ C̄ has weight d̄ > 0. Choose x ∈ C with π(x) = y.
Then wt(x) ≥ d̄. Further, exactly d̄ coordinates of x lie in A× and the other n− d̄
coordinates belong to m. Since A is Artinian, there is some s so that ms−1 �= 0 and
ms = 0. Choosing a ∈ ms−1 \{0}, we have ax ∈ C, ax �= 0, and wt(ax) = d̄. Hence
d ≤ d̄.
(2) Assume C is free, and suppose d < d̄. Let H be a parity check matrix for

C, so that H̄ is a parity check matrix for C̄. By a generalized version of a well-
known result for codes over fields (see Theorem 1.10 of [9] for the result for codes
over finite fields and Proposition 3.5 of [17] for the generalized result to codes over
rings), every d columns of H̄ are linearly independent over A/m but some d columns
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of H are linearly dependent over A. Applying Lemma 3.3 to these d columns of H
gives a contradiction.

Remark 3.5. If C is not free, it may be true that d = d̄ or d < d̄. For example, if
C is the code

C = {(00), (10), (20), (30), (02), (12), (22), (32)}

over Z/4, then
C̄ = {(00), (10)}

over F2 and d = d̄ = 1. On the other hand, if C is the code

C = {(000), (011), (022), (033), (200), (211), (222), (233)}

over Z/4, then
C̄ = {(000), (011)}

over F2 and d = 1 but d̄ = 2.

4. Curves over Rings

In this section, we collect some definitions and results on curves over rings which
we will need in order to define algebraic geometric codes over rings. Most proofs
are omitted. We suspect that many of these results are part of the “folklore”, but
complete proofs can be found in [17].
As before, A denotes a local Artinian ring with maximal ideal m. In this section,

we will use k to denote the residue field A/m of A. Let Y = SpecA. Following
[7], we will use the phrase “X is a curve over A” to mean that X is a connected
irreducible projective scheme over Y which is smooth of relative dimension one. We
write X ′ for the fiber of X over the unique maximal ideal of A. In other words,
X ′ = X ×SpecA Spec k. We will assume that X ′ is absolutely irreducible. Denote
by φ the natural map X ′ → X. For a line bundle L on X, write L′ = φ∗L. We
denote by K the sheaf of total quotient rings on X, by K∗ the sheaf of invertible
elements in K, and by O∗ the sheaf of invertible elements of OX .

Lemma 4.1. If X is a curve over A, then K is a constant sheaf.

Proof. Since X has a unique generic point, it is enough to show that K is locally
constant. We may assume X = SpecR with R having a unique minimal prime
ideal. A basis for the topology on X consists of all sets SpecRf , where f is a
non-nilpotent element of R. Since the map A→ R is smooth, f ∈ R is nilpotent if
and only if it is a zero divisor. Thus K(X) = K(SpecRf ) for each basic open set
SpecRf .

Using this Lemma, the proof of ([8], Proposition II.6.15) is easily modified to
give the following result.

Proposition 4.2. Let X be a curve over A. Then CaCl(X) � Pic(X).

Definition 4.3. Let X be a curve over A and Z a zero-dimensional closed sub-
scheme of X. Let i : Z → X be inclusion and f : X → Y the structure morphism.
We call Z an A-point of X if the composition f ◦ i is an isomorphism of schemes.

In the study of algebraic geometric codes over fields, one makes frequent use of
the fact that closed points give Weil divisors. In order to study algebraic geometric
codes over rings, we will need some sort of analog of this fact.
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Lemma 4.4. Let X be a curve over A and Z an A-point on X. Then there is a
unique, well-defined Cartier divisor (which we will also denote by Z) associated to
Z.

Proof. By ([1],Exposé VII, Proposition 1.10), the inclusion i : Z → X is a regular
closed immersion. Hence, the ideal for Z is locally principal. Let {Ui} be an open
cover of X on which the ideal for Z is locally principal; say fi is the generator on
Ui. Since fi and fj are non-zero-divisors which must generate the same ideal on
Ui ∩ Uj, we certainly have fi/fj ∈ Γ(Ui ∩ Uj ,O∗) Therefore, {(Ui, fi)} is a Cartier
divisor.

We can express the Cartier divisor for Z much more explicitly, using the fact
that every A-point Z of X has a local parameter in a neighborhood of the unique
closed point x contained in Z; see [7] or [17]. Let U = SpecB be an open affine
neighborhood of x on which the ideal for Z is principal, and let V = X \ {x}. Let
t be a local parameter for Z on U . We have that B/t � A and so t is a unit on
U \{x} = U∩V . Hence, the Cartier divisor for Z can be expressed as {(U, t), (V, 1)}.

Remark 4.5. A smooth map is formally smooth ([5]), and so the map

HomSpecA(SpecA,X)→ HomSpecA(Spec k,X)

is surjective. But HomSpecA(SpecA,X) is in one-to-one correspondence with the
A-points of X and HomSpecA(Spec k,X) is in one-to-one correspondence with the
closed points of X which are k-rational points of X ′. Hence, every closed point
x ∈ X which is a k-rational point of X ′ is contained in an A-point of X and thus
has a local parameter on X.

We will need versions of both the Riemann-Roch Theorem and the Residue
Theorem for curves over a local Artinian ring. We treat the Riemann-Roch Theorem
first. The idea for the proof we give is due to Thomason ([12]).

Lemma 4.6. For any open affine U ⊂ X, write U ′ = U ∩X ′ = U ×SpecA Spec k.
Then U ′ is an affine open subset of X ′ and we have

Γ(U,L)⊗A k = Γ(U
′,L′).

Proof. Write U = SpecB. Then U ′ = Spec(B/mB). Further, since U is affine,

L|U = M̃ for some B-module M , and Γ(U,L)⊗A k =M ⊗A k =M/mM . On the
other hand, L′|U ′ = (L|U )′ = (M/(mB)M )̃ and so Γ(U ′,L′) = M/(mB)M . Since
mM = (mB)M , we have the result.

Applying the functor −⊗ k to the complex

Γ(U,L)⊕ Γ(V,L)→ Γ(U ∩ V,L),(4.1)

we get the complex

Γ(U ′,L′)⊕ Γ(V ′,L′)→ Γ(U ′ ∩ V ′,L′)(4.2)

By the above Lemma, we can use this complex to compute the cohomology groups
of L′ on X ′.
From our original complex 4.1, we get an exact sequence

0→ Γ(X,L)→ Γ(U,L)⊕ Γ(V,L)→ Γ(U ∩ V,L)→ H1(X,L)→ 0,

and applying the right-exact functor −⊗ k gives

Γ(U ′,L′)⊕ Γ(V ′,L′)→ Γ(U ′ ∩ V ′,L′)→ H1(X,L)⊗ k → 0.
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At the same time, the complex 4.2 yields an exact sequence

0→ Γ(X ′,L′)→ Γ(U ′,L′)⊕ Γ(V ′,L′)→ Γ(U ′ ∩ V ′,L′)→ H1(X ′,L′)→ 0.

This means that H1(X,L) ⊗ k = H1(X ′,L′). In particular, if H1(X ′,L′) =
0, then since cohomology groups of coherent sheaves on projective schemes over
Noetherian rings are always finitely generated ([8], Theorem III.5.2), we can apply
Nakayama’s lemma ([10]) to obtain H1(X,L) = 0.
From now on, assume H1(X ′,L′) = 0. Then we have exact sequences

0→ Γ(X,L)→ Γ(U,L)⊕ Γ(V,L)→ Γ(U ∩ V,L)→ 0

and
0→ Γ(X ′,L′)→ Γ(U ′,L′)⊕ Γ(V ′,L′)→ Γ(U ′ ∩ V ′,L′)→ 0.

Applying −⊗ k to the first of these two sequences gives

TorA1 (Γ(U ∩ V,L), k)→ Γ(X,L)→ Γ(U,L)⊕ Γ(V,L)→ Γ(U ∩ V,L)→ 0

since −⊗ k is only right-exact. However, the fact that Γ(U ∩ V,L) is flat as an A-
module means that TorA1 (Γ(U∩V,L), k) = 0. Hence, we conclude that Γ(X,L)⊗k =
Γ(X ′,L′). Further, since Γ(X,L) is the kernel of a surjective map of flat A-modules,
it is itself flat as an A-module. Since a finitely generated flat module is projective
and a projective module over the local ring A is free, Γ(X,L) is a free A-module.
Applying the standard Riemann-Roch Theorem [8], we have

Theorem 4.7. Let X be a curve over A and L a line bundle on X. Let X ′ =
X ×SpecA Spec k and L′ = φ∗L, where φ : X ′ → X is the natural map. Define
the degree of L to be degL = degL′ and the genus g of X to be the genus of X ′.
Assume that degL > 2g−2. Then Γ(X,L) is a free A-module of rank degL+1−g.

Proof. The Riemann-Roch Theorem states that for any curve C of genus g over a
field k and any line bundle E on C,

dimH0(C, E) − dimH1(C, E) = deg E + 1− g.

In our case, X ′ = C and L′ = E . Since degL′ = degL > 2g − 2 means that L′ is a
very ample sheaf, we have H1(X ′,L′) = 0. Therefore,

dimH0(X ′,L′) = degL′ + 1− g.

But H0(X ′,L′) = Γ(X ′,L′) = Γ(X,L) ⊗A k, so the arguments above give the
result.

Our next task is the Residue Theorem. The version that we need is a special
case of a very general theorem stated in [7]. Because it is far from obvious, we show
how the version in [7] reduces to what we need. Consequently, the reference for the
remainder of this section is [7].
As above, X is a curve over the local Artinian ring A, Y = SpecA, f : X → Y

is the structure morphism, and X ′ is the fiber of X over the unique maximal ideal
of A. Notice that X ′ is a curve over k = A/m and that the unique closed point
contained in an A-point of X is a k-rational point of X ′. In what follows, we will
make the additional assumption that A is a Gorenstein ring; since A is local and
Artinian, this is equivalent to saying that A is injective as a module over itself.
In fact, we need a consequence of the Gorenstein property. Recall that for A-

modules M ⊆ L, L is an essential extension of M if N ∩M �= 0 for every nonzero
submodule N of L. Also, L is the injective hull of M if L is an essential extension
of M and L is an injective module; in this case we write L = EA(M).
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Lemma 4.8. ([3]) Let A be any local Artinian Gorenstein ring, m its maximal
ideal, and k its residue field. Then EA(k) = A.

Proof. Since A is an Artinian ring, there is an integer s so that ms−1 �= 0 and
ms = 0, where m is the maximal ideal of A. Choose a ∈ ms−1 \ {0}, and consider
the map A→ A given by multiplication by a. Since the kernel of this map is m, we
get an injection of A-modules k ↪→ A. Since A is a Gorenstein ring, it is injective
as an A-module and we need only show that this extension is essential. We will
show the following, slightly stronger, statement: Let I and J be any two ideals of
A. If I ∩ J = 0, then either I = 0 or J = 0.
To do this, let I and J be as above, and consider the natural map

A ↪→ A/I ⊕A/J.

Since A is injective, this map splits and the splitting maps either A/I or A/J
onto A. Without loss of generality, A/I maps onto A. If 1̄ ∈ A/I is mapped to
u ∈ A under this map, then u is a unit and the composite map A→ A is given by
multiplication by u, and has I in its kernel. Since multiplication by a unit is an
isomorphism, we must have I = 0.

We now return to our treatment of the Residue Theorem.

Definition 4.9. (see [7], p.304) Let Y be a scheme, and for any y ∈ Y , let J(y) be
the quasi-coherent injective OY -module which is the constant sheaf I = EOY,y(k(y))

on {y} and 0 elsewhere. A residual complex K · on Y is a complex of quasi-coherent
injective OY -modules bounded below with coherent cohomology sheaves such that
there is an isomorphism ∑

p∈Z

Kp �
∑
y∈Y

J(y).

In our case, since Y = SpecA, there is only one point y ∈ Y : the unique closed
point corresponding to the maximal ideal of A. Further, since A is Gorenstein,
EA(k) = A, where k is the residue field of A. Hence the sheaf Ã = OY , thought of
as a complex concentrated in degree zero, is a residual complex on Y .
There is a functor f� ([7], p.318) which maps the category of residual complexes

on Y to the category of residual complexes on X. In order to write down f�(Ã),
we need to set up some notation. Denote the generic point of X by η. Let ω = ωX
be the canonical sheaf on X. For any sheaf E on X and any x ∈ X, we write Ex for
the stalk of E at x. For example, if A is a field, then ωη = Ω(X), the vector space
of rational differential forms on X. For x ∈ X, let ψx : SpecOX,x → X be the
inclusion and M an OX,x-module. Define ix(M) to be the sheaf ψx∗(M̃). Finally,
let H1x(ωx) be the local cohomology group defined in ([7], section IV.1). Then by

Proposition VII.1.1(d) of [7], f�(Ã) is the complex

iη(ωη)→
∐
x ∈ X
x closed

ix(H
1
x(ωx))(4.3)

concentrated in degrees −1 and 0.
The following technical lemma allows us to better understand the above complex.

Lemma 4.10. We have:
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1.
( ∐
x ∈ X
x closed

ix(H
1
x(ωx))

)
x
= H1x(ωx)

2. H1x(ωx) = ωη/ωx

Proof. Statement 1 is clear since by definition of local cohomology, H1x(ωx) is sup-
ported only at x. By ([7], Prop VII.1.1(d)), complex 4.3 is an injective resolution

of f∗(Ã)⊗ ω[1], so the two term complex fits in an exact sequence of sheaves

0→ ω → iη(ωη)→
∐
x ∈ X
x closed

ix(H
1
x(ωx))→ 0.

Taking stalks at x gives an exact sequence

0→ ωx → ωη → H
1
x(ωx)→ 0,

proving 2.

Remark 4.11. In [7], statement (1) is implicitly assumed and (2) is proven only in
the special case where x ∈ X is a k-rational point of the closed fiber X ′ of X.

The Residue Theorem is stated in terms of the trace map ([7], VI.4), which in
general is a map of graded sheaves (but not necessarily of complexes)

Trf : f∗f
�K · → K ·,

for a morphism f : X → Y and a residual complex K · on Y .
In our case, noting that both terms of 4.3 are injective so that we can apply

f∗ degree-wise, the trace map yields a (not necessarily commutative) diagram of
sheaves

f∗iη(ωη) ��

��

f∗
∐

x ∈ X
x closed

ix(ωη/ωx)

��
0 �� Ã

(4.4)

with the vertical maps being Trf .
Notice that the sheaf ∐

x ∈ X
x closed

ix(ωη/ωx)

is given by

Γ(U,
∐
x ∈ X
x closed

ix(ωη/ωx)) =
∐
x ∈ X
x closed

Γ(U, ix(ωη/ωx))

for an open set U of X. In particular,

Γ(X,
∐
x ∈ X
x closed

ix(ωη/ωx)) =
∐
x ∈ X
x closed

Γ(X, ix(ωη/ωx))
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and so

f∗
∐
x ∈ X
x closed

ix(ωη/ωx) =
∐
x ∈ X
x closed

f∗ix(ωη/ωx).

Further, since f∗iη(ωη) = ω̃η and f∗ix(ωη/ωx) = ω̃η/ωx, for each closed x ∈ X,
the diagram 4.4 induces maps of A-modules

ωη �� ωη/ωx

��
A

We denote by Resx the composition of these two maps, so that Resx : ωη → A
factors through ωη/ωx, and, for a rational differential form ν ∈ ωη, we call Resx(ν)
the residue of ν at x. In particular, notice that if x ∈ X is a closed point and ν ∈ ωη
is a rational differential form which is regular at x, then the residue of ν at x is zero.
For a point x ∈ X which is a k-rational point of X ′, we can describe Resx more
precisely as follows (see [7], Proposition VII.1.3, for the rest of this paragraph). By
Remark 4.5, there is a local parameter t for x. The ideal generated by the local
parameter defines an A-point Z containing x. The map Resx is described in terms
of a local parameter, so we may think of it as defining the residue of ν at Z and
we will sometimes write resZ for the map Resx when we wish to emphasize this.
Choose ν ∈ ωη, and consider the image ν̄ ∈ ωη/ωx. In a neighborhood of Z, we
can write down an expansion for ν̄

ν̄ =
∑
j<0

ajt
jdt

with aj ∈ A. Then resZ(ν) = Resx(ν) is simply described as

resZ(ν) = a−1.

Remark 4.12. In fact, Resx is well-defined, independent of the choice of local pa-
rameter t. In particular, if Z ′ is some other A-point containing x, then for every
ν ∈ ωη,

resZ(ν) = resZ′(ν).

We are now ready to state the Residue Theorem.

Theorem 4.13. ([7], Theorem VII.2.1) Let f : X → Y be a proper morphism of
Noetherian schemes, and let K · be a residual complex on Y . Then the trace map

Trf : f∗f
�K · → K ·

is a morphism of complexes.

Corollary 4.14. Let A be a local, Artinian, Gorenstein ring, and let X be a curve
over A. Then for any rational differential form ν on X,∑

x ∈ X
x closed

Resx(ν) = 0.

Proof. Theorem 4.13 simply states that the diagram 4.4 commutes.
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5. Algebraic Geometric Codes over Rings

Let A be a local Artinian ring with maximal ideal m. We assume that the field
A/m is finite; say A/m = Fq. Let X be a curve over A, that is, a connected
irreducible scheme over SpecA which is smooth of relative dimension one, as in
Section 4. Let X ′ = X ×SpecA SpecFq be the fiber of X over m, so that we have a
Cartesian square

X ′
φ ��

��

X

��
SpecFq �� SpecA

We will always assume X ′ is absolutely irreducible, so that it is the type of curve on
which algebraic geometric codes over Fq are defined. Let L be a line bundle on X
andZ = {Z1, . . . , Zn} a set of disjointA-points onX. Then for each i, Γ(Zi,L|Zi) �
A, but noncanonically. Let γ = {γi} be a system of these isomorphisms.

Definition 5.1. Let A, X, Z, L, and γ be as above. Define CA(X,Z,L, γ) to be
the image of the composition α

Γ(X,L) ��
�A BC

α

OO⊕Γ(Zi,L|Zi)
γ �� An.

Then CA(X,Z,L, γ) is called an algebraic geometric code over A.

Remark 5.2. Tsfasman and Vlǎduţ’s “H”-construction ([13]) gives a generalization
of algebraic geometric codes to allow higher dimensional algebraic varieties rather
than just curves, but assumes that one is working over a field. Our definition is
motivated by theirs, and in the case that our ring A is a field, both definitions are
the same.

As the definition of algebraic geometric codes over rings is abstract, our first
task is to relate it to classical algebraic geometric codes over finite fields. Recall
that one way to construct such codes was to evaluate functions at rational points
on the curve. Under certain conditions, we may think of these codes in the same
way.

Definition 5.3. Let D be a Cartier divisor on X and P ∈ X a closed point which
is a rational point of X ′. Then we say P is not in the support of D if there is a
neighborhood U of P such that the local equation f for D on U is an element of
OX(U)×.

Recall from Proposition 4.2 that Pic(X) � CaCl(X), so we can write L � OX(D)
for some Cartier divisor D. Let P = {P1, . . . , Pn} be the set of closed points of X
contained in the A-points Z1, . . . , Zn of Z. Suppose we can choose D so that each
Pi ∈ P is not in the support of D. Then evaluation provides a natural choice for
γ, and hence for α.
To see this, assume n = 1 and write Z = {Z}, P = {P}. Choose s ∈ Γ(X,L) ⊂

K(X) and some neighborhood U of P for which D is locally a unit f of OX(U) on
U . We may assume that U is affine, say U = SpecB. Notice that Z is contained
in every open set which contains P , so in particular, Z ⊂ U and Z = Spec(B/J)
for some ideal J of B such that B/J � A. This means that the natural map
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Γ(X,L) → Γ(Z,L|Z) factors through Γ(U,L). But Γ(U,L) =
1
f
OX(U) =

1
f
B, so

that s|U is of the form
h
f
for some h ∈ B ⊂ K(X). Suppose X ⊂ Pr and Z is given

in projective coordinates by Z = (z0 : · · · : zr). Since z0, . . . , zr generate the unit
ideal of A and A is local, some zi is a unit. Without loss of generality, we may
assume that z0 = 1 and that U is contained in the standard open affine subscheme
of Pr defined by z0 = 1. Then J is the ideal generated by z1 − x1, . . . , zr − xr,
where x1, . . . , xr are affine coordinates of U . The map Γ(X,L)→ Γ(Z,L|Z) � A is
given by

s �→
h

f
�→
h(1, z1, . . . , zr)

f(1, z1, . . . , zr)
∈ A.

In other words, the map is the evaluation map.
We now proceed to explore the properties of algebraic geometric codes over rings.

We begin by computing the parameters.

Theorem 5.4. Let X, L, Z = {Z1, . . . , Zn} and γ be as above. Let g denote the
genus of X, and suppose 2g − 2 < degL < n. Then C = CA(X,Z,L, γ) is a free
code of length n and dimension k = degL+ 1− g.

Proof. By Theorem 4.7, it is enough to show that the map α : Γ(X,L)→ An is an
injection.
Suppose s ∈ Γ(X,L) with α(s) = 0. By Lemma 4.4, each Zi may be considered

as a Cartier divisor. Let D be any Cartier divisor such that OX(D) � L. By taking
refinements if necessary, we may write D = {(Uj, gj)} and Zi = {(Uj, gij)}. Then
the divisor D − Z1 − · · · − Zn may be written {(Uj,

gi
g1j ...gnj

)}. Our first step is to

show that s ∈ Γ(X,OX(D−Z1 − · · · −Zn)), i.e., that s ∈
g1j ...gnj
gj

OX(Uj) for each
j.
The fact that s ∈ Γ(X,L) means that s ∈ 1

gj
OX(Uj) for each j, and so gjs ∈

OX(Uj) for each j. Further, since the ith coordinate of α(s) is 0 for i = 1, . . . , n,
we have that gjs is an element of the ideal (gij)OX(Uj) ⊂ OX(Uj) for each i and
j. Since the Zi are disjoint, we have for each j⋂

i

gijOX(Uj) = g1j . . . gnjOX(Uj).

Hence ker(α) = Γ(X,OX(D − Z1 − · · · − Zn)), and our next step is to show that
this is zero.
Consider the line bundle φ∗OX(D−Z1−· · ·−Zn) on X ′, where φ : X ′ → X is as

in Definition 5.1. We have deg φ∗OX(D−Z1−· · ·−Zn) = deg(D−Z1−· · ·−Zn) < 0,
so Γ(X ′, φ∗OX(D − Z1 − · · · − Zn)) = 0. By ([8], Theorem III.12.11), if E is any
line bundle, the map

Γ(X, E)⊗ Fq → Γ(X
′, φ∗E)

is an isomorphism if it is onto. Hence Γ(X,OX(D − Z1 − · · · − Zn)) ⊗ Fq = 0.
Applying Nakayama’s lemma gives the result.

Before computing the minimum distance, we explore the behavior of our codes
under linear projection. The minimum distance estimate will be a direct corollary
of the following theorem.
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Theorem 5.5. Let X, L and Z be as above. Let P = {P1, . . . , Pn} ⊂ X ′(Fq)
be the set of closed points contained in Z1, . . . Zn. Let γ = {γi} be a system of
isomorphisms

γi : Γ(Zi,L|Zi)→ A.

Let γ′ = {γ′i} be the induced system of isomorphisms

γ′i : Γ(Pi,L
′|Pi) = Γ(Zi,L|Zi)⊗A Fq → Fq.

Consider the codes C = CA(X,Z,L, γ), C′ = CFq(X
′,P ,L′, γ′) and C̄ = π(C),

where π : An → Fnq denotes coordinatewise projection. Then

C̄ = C′.

Proof. From Theorem 4.7 and its proof, we know that Γ(X,L) ⊗A Fq � Γ(X ′,L′)
and that this isomorphism is simply the “mod m” map. Hence, the following
diagram commutes:

Γ(X,L) ��

��

Γ(X,L)⊗A Fq
∼ �� Γ(X ′,L′)

��
⊕Γ(Zi,L|Zi)

γ

��

⊕Γ(Pi,L′|Pi)

γ′

��
An

π �� Fnq

The image of the clockwise composition Γ(X,L)→ Fnq is C
′, and the image of the

counterclockwise composition is C̄.

Remark 5.6. Essentially, we have shown that C′ = C⊗AFq and applied Lemma 3.2.

Corollary 5.7. Let X,Z,L, γ be as in Theorem 5.5. Then the minimum Hamming
distance d of the algebraic geometric code C = CA(X,Z,L, γ) satisfies

d ≥ n− degL.

Proof. By Theorem 5.4, C is a free code. Theorem 5.5 and Proposition 3.4 give the
result.

Our next goal is to show that the class of algebraic geometric codes is closed
under duals. In particular, for a given A, X, Z, L, and γ, there is some other line
bundle F on X and a system of isomorphisms ξ = {ξi : Γ(Zi,F|Zi)→ A} such that

CA(X,L,Z, γ)
⊥ = CA(X,F ,Z, ξ).

Because we will be using the Residue Theorem to do this, from now on we will
make the additional assumption that A is a Gorenstein ring. Our proof is inspired
by the proof of Theorem 3.1.44 in [13].

Lemma 5.8. Let L be any line bundle on X. As usual, let ω = ωX/A denote the
canonical line bundle on X, ωη its stalk at the generic point, and iη(ωη) = ψη∗(ω̃η),
where ψη : SpecOX,η → X is inclusion. Then ω⊗OX L is isomorphic to a subsheaf
of iη(ωη).
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Proof. We know that ω is a subsheaf of iη(ωη). Since L is a line bundle, it is locally
free and hence a flat OX -module, so that −⊗OX L is exact. Hence ω ⊗OX L is a
subsheaf of iη(ωη)⊗OXL. Further, let U be any open subset ofX such that L � OX
on U . Then Γ(U, iη(ωη)⊗L) � Γ(U, iη(ωη)) = ωη. Since a locally constant sheaf is
constant, we have iη(ωη)⊗OX L � iη(ωη).

Consider the line bundle E = ω ⊗ OX(Z), where Z denotes the Cartier divisor
obtained by adding up the Cartier divisors Z1, . . . , Zn. Since E is a subsheaf of
iη(ωη) by the above Lemma, Γ(X, E) ⊂ ωη, and for each i, the residue map of
Section 2 defines a map resZi : Γ(X, E)→ A.

Lemma 5.9. For each i, the map resZi factors through Γ(Zi, E|Zi). In particular,
there is an isomorphism ρi : Γ(Zi, E|Zi) → A which makes the following diagram
commute:

Γ(X, E) ��

resZi
��G

GG
GG

GG
GG

Γ(Zi, E|Zi)

ρi
zzuuu

uu
uu
uu
u

A

Proof. Notice that OX(Z)Pi = OX(Zi)Pi , so we may assume n = 1 and write
Z = {Z}, P = {P}. Let t be a local parameter for Z, that is, a local parameter
for P which defines Z. The following diagram is given for reference in reading the
rest of the proof.

Γ(X, E) ��

��PP
PPP

PPP
PPP

PP

��A
AA

AA
AA

AA
AA

AA
AA

AA
AA

���
��

��
��

��
��

��
��

��
��

��
��

��
�

resZ

���
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
Γ(Z, E|Z) = EP /tEP

ρZ

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

EP

��

		jjjjjjjjjjjjjjjjj

Eη

��
ωη

��
A

Since any open set U containing P also contains Z, the map Γ(X, E)→ Γ(Z, E|Z)
factors through Γ(Spec(OX,P ), E|Spec(OX,P )) = EP . Further, the map Γ(X, E) →
Eη also factors through EP since η ∈ Spec(OX,P ). Since ωη = Γ(X, iη(ωη)) =
(iη(ωη))η, the injection Γ(X, E) ↪→ ωη factors through Eη. Thus, the residue map
resZ : Γ(X, E)→ A factors through EP .
By definition of t, Γ(Z, E|Z) = EP ⊗OX,P OX,P /t = EP /tEP . If we can show that

tEP is in the kernel of the residue map resZ , we know that the residue map factors
through Γ(Z, E|Z).
We have that EP = (ω ⊗ OX(Z))P = ωP ⊗ OX(Z)P . This means that EP is

generated by elements of the form ν ⊗ f for some ν ∈ ωP and f ∈ O(Z)P . But f
is of the form s/t, where s ∈ OX,P , so tEP is generated by elements of the form



ALGEBRAIC GEOMETRIC CODES OVER RINGS 15

ν⊗ s with ν ∈ ωP and s ∈ OX,P . Hence, tEP ⊂ ωP , and by the explicit description
of residues at rational points given in Section 4, the residue at Z of any element of
tEP is zero.
Finally, we must show that the residue map resZ : EP → A is onto. To do this,

it is certainly enough to show that the form 1
t dt is in EP , since by the explicit

description, the residue at Z of this form is 1. Clearly 1t ∈ OX(Z)P and dt ∈ ωP .
Since EP = ωP ⊗OX(Z)P , the result follows.

We now prove our Duality Theorem.

Theorem 5.10. Let A be a local Artinian Gorenstein ring with finite residue field
and let X be a curve over A. Let Z = {Z1, . . . , Zn} be a set of disjoint A-points
on X. Let L be any line bundle on X and let γ = {γi : Γ(Zi,L|Zi) → A} be
any system of isomorphisms. Notice that for any si ∈ Γ(Zi,L|Zi) and any νi ∈
Γ(Zi, (ω ⊗ OX(Z) ⊗ L−1)|Zi), we have siνi ∈ Γ(Zi, (ω ⊗ OX(Z))|Zi). Define an
isomorphism

ξi : Γ(Zi, ω ⊗OX(Z)⊗L
−1)→ A

by the rule

ξi(νi) = ρi(γ
−1
i (1)νi),

where ρ is the system of isomorphisms from Lemma 5.9. Then

CA(X,Z,L, γ)
⊥ = CA(X,Z, ω ⊗OX(Z)⊗L

−1, ξ).

Proof. Let s ∈ Γ(X,L) have image si ∈ Γ(Zi,L|Zi) and ν ∈ Γ(X,ω⊗OX(Z)⊗L
−1)

have image νi ∈ Γ(X, (ω ⊗OX(Z)⊗L−1)|Zi). Then we must show
n∑
i=1

γi(si)ξi(νi) = 0.

By the definition of ξi and the fact that ρi, γi, and γ
−1
i are isomorphisms of A-

modules, we have
n∑
i=1

γi(si)ξi(νi) =
n∑
i=1

γi(si)ρi(γ
−1
i (1)νi)

=
n∑
i=1

ρi(γi(si)γ
−1
i (1)νi)

=
n∑
i=1

ρi(γ
−1
i (γi(si)× 1)νi)

=
n∑
i=1

ρi(siνi)

=
n∑
i=1

resZi(sν)

=
n∑
i=1

ResPi(sν).

We now claim that the only closed points P ∈ X for which ResP (sν) �= 0 are
P1, . . . , Pn. To see this, let U = X\P and for each i, let Vi be an open neighborhood
of Pi not containing Pj for i �= j. We may use the open cover X = U ∪V1 ∪· · ·∪Vn
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to express the Cartier divisor for each Zi. The local equation for Zi on U is always
1, and the local equation on Vj is 1 if i �= j and the local parameter ti if i = j. The
Cartier divisor Z can then be represented as {(U, 1), (V1, t1), . . . , (Vn, tn)}. Choose
any closed P ∈ X which is not in P . Then P ∈ U , so sν|U ∈ Γ(U, ω) and thus has
nonzero residue at P , proving our claim.
Hence,

n∑
i=1

γi(si)ξi(νi) =
n∑
i=1

ResPi(sν)

=
∑
x ∈ X
x closed

Resx(sν)

= 0

by the Residue Theorem.

6. Concluding Remarks

In the Introduction, we mention that one motivation for this work was the paper
[6], which showed that certain famous nonlinear binary codes were in fact nonlinear
projections of linear Z/4-codes. It is now natural to ask whether these linear Z/4-
codes can be constructed as algebraic geometric codes. In [18], we prove

Theorem 6.1. The Nordstrom-Robinson code is the image under the Gray map of
an algebraic geometric code over Z/4.

The proof of this theorem is very explicit. In fact, we are able to give equations
for a curve X over Z/4, coordinates for a set of Z/4-points Z on X, and a minimal
generating set for the free module of global sections of a line bundle L on X, so
that the Nordstrom-Robinson code is the image of the code CZ/4(X,Z,L, γ), where
γ is the evaluation map as described in section 5 above.
We also prove that none of the other Kerdock and Preparata codes can be con-

structed as images of algebraic geometric codes over Z/4. It remains possible,
however, that these codes could be constructed as images of trace codes of alge-
braic geometric codes over Galois rings. To answer this question, one needs to
study the “Lee weight” of linear codes over Z/4 which are trace codes of algebraic
geometric codes over Galois rings. This amounts to finding a bound on the absolute
value of a certain exponential sum; see [17] for details. In [16], we find a bound on
this sum in the case where X ′ is an ordinary elliptic curve and X is its Serre-Tate
canonical lift.
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[14] M. A. Tsfasman, S. G. Vlǎduţ, and Th. Zink. Modular curves, Shimura curves, and Goppa

codes, better than the Varshamov-Gilbert bound. Math. Nachrichten, 109:21–28, 1982.
[15] J. H. van Lint and G. van der Geer. Introduction to Coding Theory and Algebraic Geometry.
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