
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Mathematics Mathematics, Department of

7-7-2008

A Universal Theory of Decoding and
Pseudocodewords
Nathan Axvig
s-naxvig1@math.unl.edu

Deanna Dreher
University of Nebraska - Lincoln

Katherine Morrison
University of Nebraska-Lincoln

Eric T. Psota
University of Nebraska-Lincoln, epsota@unl.edu

Lance C. Pérez
University of Nebraska-Lincoln, lperez@unl.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub

Part of the Applied Mathematics Commons, and the Mathematics Commons

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University
of Nebraska - Lincoln.

Axvig, Nathan; Dreher, Deanna; Morrison, Katherine; Psota, Eric T.; Pérez, Lance C.; and Walker, Judy L., "A Universal Theory of
Decoding and Pseudocodewords" (2008). Faculty Publications, Department of Mathematics. 165.
https://digitalcommons.unl.edu/mathfacpub/165

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/224735553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub/165?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
Nathan Axvig, Deanna Dreher, Katherine Morrison, Eric T. Psota, Lance C. Pérez, and Judy L. Walker

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/mathfacpub/165

https://digitalcommons.unl.edu/mathfacpub/165?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages

A Universal Theory of Decoding and

Pseudocodewords

SGER Technical Report 0801∗

Nathan Axvig†, Deanna Dreher†, Katherine Morrison†, Eric Psota‡,

Lance C. Pérez‡, and Judy L. Walker†

July 7, 2008

∗This work was supported in part by NSF grants DMS-0735099 and DMS-0602332 and AFOSR Grant
FA9550-06-1-0375.

†N. Axvig, D. Dreher, K. Morrison, and J. L. Walker are with the De-
partment of Mathematics, University of Nebraska, Lincoln, NE 68588-0130, USA,
{s-naxvig1,s-dturk1,s-kmorri11,jwalker}@math.unl.edu

‡E. Psota and L. C. Pérez are with the Department of Electrical Engineering, University of Nebraska,
Lincoln, NE 68588-0511, USA, epsota24@bigred.unl.edu, lperez@unl.edu

SGER Technical Report 0801

1 Introduction

The discovery of turbo codes [5] and the subsequent rediscovery of low-density parity-check

(LDPC) codes [9, 18] represent a major milestone in the field of coding theory. These two

classes of codes can achieve realistic bit error rates, between 10−5 and 10−12, with signal-

to-noise ratios that are only slightly above the minimum possible for a given channel and

code rate established by Shannon’s original capacity theorems. In this sense, these codes

are said to be near-capacity-achieving codes and are sometimes considered to have solved

(in the engineering sense, at least) the coding problem for the additive white Gaussian noise

(AWGN) channel and its derivative channels.

Perhaps the most important commonality between turbo and low-density parity-check

codes is that they both utilize iterative message-passing decoding algorithms. For turbo

codes, one uses the so-called turbo decoding algorithm, and for LDPC codes, both the sum-

product (SP) and the min-sum (MS) algorithms are used. The success of the various iterative

message-passing algorithms is sometimes said to have ushered in a new era of “modern”

coding theory in which the design emphasis has shifted from optimizing some code property,

such as minimum distance, to optimizing the corresponding decoding structure of the code,

such as the degree profile [24, 25], with respect to the behavior of a message-passing decoder.

As successful as these codes and decoders have been in terms of application, there are several

major questions that must be answered before a complete understanding of them can be

achieved.

The theoretical research in the area of capacity-achieving codes is focused on two main

themes. The first theme is whether different types of capacity-achieving codes have common

encoder and structural properties. In [17], it was claimed that turbo codes could be viewed

as LDPC codes, but the relationship was not made explicit. More recently, Pérez, his student

Jiang, and others [11, 16] developed a construction for the parity-check matrices of arbitrary

July 7, 2008 1

SGER Technical Report 0801

turbo codes that clearly connects the components of the turbo encoder to the resulting

structure of the parity-check matrix. From a more abstract perspective, turbo codes and

low-density parity-check codes are examples of codes with long block lengths that exhibit

the random structure inherent in Shannon’s original theorems.

The second and more active research theme is the determination of the behavior of

iterative message-passing decoding and the relationships between the various decoding al-

gorithms. The dominant problem in this area is to understand the non-codeword decoder

errors that occur in computer simulations of LDPC codes with iterative message-passing

decoders. Motivated by empirical observations of the non-codeword outputs of LDPC de-

coders, the notion of stopping sets was first introduced by Forney, et al. [8] in 2001. Two

years later, a formal definition of stopping sets was given by Changyan, et al. [6]. They

demonstrated that the bit and block error probabilities of iteratively decoded LDPC codes

on the binary erasure channel (BEC) can be determined exactly from the stopping sets of

the parity-check matrix. (Here, a stopping set S is a subset of the set of variable nodes such

that all neighboring check nodes of S are connected to S at least twice.)

The intuition behind stopping sets begins with an understanding of message-passing

algorithms. Information given to a specific variable node from a neighboring check node is

derived from all other variable nodes connected to that check node. If two variable nodes

with erasures are connected to a common check node, then the check node is not able to

determine the value of either of them. For this reason, the check nodes connected to a

stopping set are incapable of resolving erasures if every variable node in the stopping set

begins with an erasure.

Decoding errors for iterative message-passing algorithms are also often attributed to pseu-

docodewords, the various notions of which are central to this paper and will be defined and

studied in detail later. Work on relating pseudocodewords to stopping sets for the BEC [8],

the binary symmetric channel (BSC) and the AWGN channel [13] has revealed a relation-

July 7, 2008 2

SGER Technical Report 0801

ship between pseudocodeword weight and stopping set size. However, the current notions

of stopping sets and pseudocodewords do not completely characterize the performance and

non-codeword outputs of iterative decoders on the BSC and AWGN channels.

In his dissertation [31], Wiberg provides the foundation for analyzing these errors by

turning to an analysis of computation trees. Even with these insights, theoretical analyses

of the convergence of iterative message-passing decoding have thus far been scarce. (A no-

table exception is the work done on density evolution [24], [25], which considers ensembles

of LDPC codes rather than individual codes.) Meanwhile, linear programming (LP) decod-

ing has strong heuristic ties to iterative message-passing decoding by way of graph cover

decoding, and its analysis has proven much more tractable [29]. The common finding across

all analyses of these decoders is that pseudocodewords play a significant role in determining

convergence of the decoder and in understanding the non-codeword outputs that arise. This

report is concerned with the analysis, performance and design of iterative message-passing

decoding algorithms for LDPC codes with an emphasis on the role of the various notions of

pseudocodewords.

The formal study of pseudocodewords and their role in iterative message-passing decoders

necessarily begins with several definitions. For additional background in graph theory, we

refer the reader to [30].

Definition 1.1. A (simple) graph G is a pair (V, E), where V is a nonempty set and E

is a (possibly empty) subset of the collection of unordered pairs of distinct elements of V .

Elements of V are called vertices and elements of E are called edges. If an edge e represents

the unordered pair (u, v) of vertices, we sometimes write e = uv and call u and v the

endpoints of e. The graph G is finite if V is a finite set. For v ∈ V , the neighborhood of v is

the set N(v) of vertices u ∈ V such that (u, v) ∈ E. Elements of N(v) are called neighbors

of v, and the degree of v is the number of neighbors v has. We say G is d-regular if every

July 7, 2008 3

SGER Technical Report 0801

vertex in G has degree d. A path in G is a finite sequence of distinct vertices v0, . . . , vk of G

such that vi−1 and vi are neighbors for 1 ≤ i ≤ k. A cycle in G is a finite sequence of vertices

v0, . . . , vk of G such that the sequence v0, . . . , vk−1 is a path in G and v0 = vk is a neighbor

of vk−1. We say G is connected if, for any two vertices u, v of G, there is a path u = v0, v1,

. . . , vk = v from u to v in G. We say G is bipartite if there is a partition V = X ∪ F of V

into nonempty disjoint sets such that each e ∈ E has one endpoint in X and the other in

F . If G is bipartite, we say it is (dX , dF)-regular if the degree of every vertex in X is dX

and the degree of every vertex in F is dF . We say G is a tree if G is connected and has no

nontrivial cycles.

The success of low-density parity-check codes stems from the fact that each such code

comes equipped with a bipartite graph on which the extremely efficient iterative message-

passing algorithms operate. This graph is called the Tanner graph of the code, a notion

whose definition we now recall.

Definition 1.2 (Tanner [28]). A Tanner graph is a finite, connected, bipartite graph T =

(X ∪F, E) such that deg(f) ≥ 2 for all f ∈ F . We call X the set of variable nodes of T and

F the set of check nodes of T . A (valid) configuration on a Tanner graph T is an assignment

c = (cx)x∈X of 0’s and 1’s to the variable nodes of T such that, at each check node f of T ,

the binary sum of the values at the neighbors of f is 0. The collection of configurations on

a Tanner graph T is called the (LDPC) code determined by T .

Let T = (X ∪F, E) be a Tanner graph. Since T is finite, we can identify a configuration

on T with a vector in F
n
2 , where n := |X|. The code C determined by T is the collection of

all such vectors, and it is easy to check that this code is linear of length n and dimension at

least n − r, where r := |F |.

Given a binary linear code, i.e., a subspace C ⊆ F
n
2 , there is a one-to-one correspondence

between Tanner graphs for C and parity-check matrices for C. Indeed, if H = (hji) is an

July 7, 2008 4

SGER Technical Report 0801

r × n binary matrix, then we associate a Tanner graph T = T (H) = (X(H) ∪ F (H), E(H))

to H by setting

X(H) = {x1, . . . , xn},

F (H) = {f1, . . . , fr}, and

E(H) = {(xi, fj) | hji = 1}.

Note that the set of valid configurations on T (H) is precisely the nullspace of H . Conversely,

if T = ({x1, . . . , xn} ∪ {f1, . . . , fr}, E) is a Tanner graph, then we associate a binary r × n

matrix H = (hji) to T , where hji = 1 if and only if (xi, fj) ∈ E; note that the kernel of H(T)

is precisely the set of valid configurations on T . Since T = T (H(T)) for any Tanner graph

T and H = H(T (H)) for any binary matrix H , these operations give the desired one-to-one

correspondence.

A significant problem of practical interest is to transmit a codeword c of some code C

across a noisy channel and then to compute an estimate ĉ based on the channel output.

For the remainder of this report, codewords are assumed to be transmitted using binary

antipodal modulation across the AWGN channel. The process of computing the estimate ĉ

based on the channel output and knowledge of the code is called decoding. Decoding can

result in the following three outcomes:

1. ĉ = c, called a decoding success

2. ĉ = c′, where c′ ∈ C \ {c}, called a decoding error

3. ĉ = r, where r 6∈ C, called a decoding failure.

When a decoding failure occurs, the decoder is said to have a non-codeword output and,

depending on the decoder, the output vector r may have binary, rational or real entries.

July 7, 2008 5

SGER Technical Report 0801

Wiberg [31] showed that iterative message-passing decoders such as sum-product and

min-sum actually operate on finite computation trees associated to the Tanner graph. As

computation tree pseudocodewords will be one major focus of this report, we now make these

notions precise.

Definition 1.3 (Wiberg [31], p.27). Let T be a Tanner graph, and assume an iterative

message-passing algorithm has been run on T for a total of m iterations, where a single

iteration consists of message-passing from the variable nodes to the check nodes and then

back to the variable nodes. The depth m computation tree for T with root node v is the tree

R = R
(m)
v obtained by tracing the computation of the final cost function of the algorithm at

the variable node v of T recursively back through time.

It should be noted that the structure of the computation tree depends upon the particular

choice of scheduling [23] used in the iterative message-passing algorithm. However, a compu-

tation tree corresponding to m iterations can always be drawn as a tree with 2m + 1 levels,

labeled from 0 to 2m, where the 0th level consists only of the root node, each even-numbered

level contains only variable nodes, and each odd-numbered level contains only check nodes.

Moreover, except for the variable nodes at level 2m + 1, the computation tree locally looks

like the original Tanner graph T : if (x, f) is an edge in T , then every copy of x (above level

2m, i.e., the level consisting of the leaf nodes of the tree) in the computation tree is adjacent

to exactly one copy of f and every copy of f in the computation tree is adjacent to exactly

one copy of x.

For min-sum and sum-product decoding, the decoder considers as competitors all valid

configurations on n := |X(T)| computation trees [31] and outputs a vector whose ith entry

is the value assigned to the root node by a minimal cost configuration on a computation

tree rooted at variable node xi; the precise cost function depends on the particular iterative

message-passing decoder chosen, and Wiberg gives explicit definitions for the cost functions

July 7, 2008 6

SGER Technical Report 0801

for both MS and SP decoding. Note that, for each codeword c = (c1, . . . , cn) and for

each computation tree R of T , the assignment of ci to each copy of xi in R determines

a configuration on R. However, there are also configurations that do not correspond to

codewords. This motivates the next definition.

Definition 1.4. Let T be a Tanner graph. A computation tree pseudocodeword for T is

any valid configuration on any computation tree for T . A nontrivial computation tree pseu-

docodeword is a computation tree pseudocodeword that does not correspond to a codeword.

Because iterative message-passing decoders operate on computation trees that, above

the bottom level, are locally identical to the original Tanner graph, these decoders do not

distinguish between the Tanner graph itself and any finite, unramified cover of the Tanner

graph. This intuition leads one to consider graph cover pseudocodewords. To make this

precise, we first must define what we mean by a cover of the Tanner graph.

Definition 1.5 (See, for example, [27], p.130). An unramified cover, or simply a cover, of a

finite graph G is a graph G̃ along with a surjective graph homomorphism π : G̃ → G, called

a covering map, such that for each v ∈ V and each ṽ ∈ π−1(v), the neighborhood of ṽ is

mapped bijectively to the neighborhood of v via π. For a positive integer M , an M-cover of

G is a cover π : G̃ → G such that π−1(v) contains exactly M vertices of G̃ for each vertex v

of G. If G̃ is an M-cover of G, we say the degree of G̃ is M .

Given a Tanner graph T with variable nodes x1, . . . , xn and an M-cover π : T̃ → T of T ,

we label the elements of π−1(xi) as xi,1, . . . , xi,M . The code C̃ determined by T̃ has length

nM , and we write a codeword c̃ ∈ C̃ in terms of its coordinates as

c̃ = (c11, . . . , c1M : · · · : cn1, . . . , cnM).

Definition 1.6 (See, for example, [15]). Let T be a Tanner graph for a binary linear code

July 7, 2008 7

SGER Technical Report 0801

C and let c̃ = (c11, . . . , c1M : · · · : cn1, . . . , cnM) be a codeword in some code C̃ corresponding

to some M-cover T̃ of T . The (unscaled) graph cover pseudocodeword corresponding to c̃ is

the vector

p(c̃) = (p1, . . . , pn)

of nonnegative integers, where, for 1 ≤ i ≤ n,

pi = #{j | cij = 1}.

The (normalized) graph cover pseudocodeword corresponding to c̃ is the vector

ω(c̃) =
1

M
p(c̃).

A nontrivial graph cover pseudocodeword is a graph cover pseudocodeword that is not a

codeword.

Often, given an unscaled or normalized graph cover pseudocodeword, we will want to

consider configurations on covers of the Tanner graph that yield that pseudocodeword. This

motivates the next definition.

Definition 1.7. Let T be a Tanner graph, let p be an unscaled graph cover pseudocodeword

for T and let ω be a corresponding normalized graph cover pseudocodeword. A realization

for p, or for ω, is a pair (T̃ , c̃), where T̃ is a cover of T and c̃ is a configuration on T̃ such

that p = p(c̃) and ω = ω(c̃). The realization (T̃ , c̃) is called a connected realization if T̃ is

a connected graph. If a connected realization exists for p, or for ω, then p, or ω, is called a

connected graph cover pseudocodeword.

Intuitively, all codewords on all covers of the Tanner graph are competitors in iterative

message-passing decoding algorithms. In this vein, Vontobel and Koetter [29] define graph

July 7, 2008 8

SGER Technical Report 0801

cover decoding ; this decoder simultaneously considers all codewords on all covers of the

Tanner graph and then returns the normalized graph cover pseudocodeword corresponding

to the one that, in a certain precise sense, provides the best explanation of the channel

output. They show that graph cover decoding is equivalent to linear programming (LP)

decoding, as defined by Feldman [7]. We now turn to the formal definition of LP decoding.

Definition 1.8 (Feldman [7]). Let H = (hji) be the r × n parity-check matrix with corre-

sponding Tanner graph T , and, for 1 ≤ j ≤ r, set

N(j) = {i | hji = 1} ⊆ {1, . . . , n}

so that N(j) is the set of variable nodes adjacent to check node j in T . The fundamental

polytope P = P(H) is the subset of the unit hypercube [0, 1]n ⊂ R
n consisting of all vectors

x = (x1, . . . , xn) such that for 1 ≤ j ≤ r and each subset S ⊆ N(j) with |S| odd, we have

∑

i∈S

xi +
∑

i∈N(j)\S
(1 − xi) ≤ |N(j)| − 1.

For a given vector of log-likelihoods λ = (λ1, . . . , λn) determined by the channel output and

for any x = (x1, . . . , xn) ∈ R
n, the cost γ(x) of x is given by

γ(x) = λ · x =

n∑

i=1

λixi.

Linear programming (LP) decoding is defined to be the task of minimizing γ(x) over all

x ∈ P.

Since the cost function is linear and the polytope is defined by linear inequalities, the

output of linear programming decoding may always be taken to be a vertex of the fundamen-

tal polytope. Moreover, since the linear inequalities have integer coefficients, the vertices

July 7, 2008 9

SGER Technical Report 0801

have rational coordinates. Feldman [7] shows that a vector in {0, 1}n is a vertex of the

fundamental polytope if and only if it is a codeword. This motivates the following definition.

Definition 1.9. A linear programming pseudocodeword of a code defined by the parity-check

matrix H is any vertex of the fundamental polytope P(H). A nontrivial linear programming

pseudocodeword is a linear programming pseudocodeword that is not a codeword.

Remark 1.10. This definition of linear programming pseudocodewords is different from that

given by Feldman on page 64 of [7]; the definition there coincides precisely with the unscaled

graph cover pseudocodewords.

Vontobel and Koetter [29] show that the collection of rational points in the fundamental

polytope is precisely the collection of normalized graph cover pseudocodewords. Thus, with

the definitions here, every linear programming pseudocodeword is a normalized graph cover

pseudocodeword, but not vice versa.

2 Linear Programming and Graph Cover Decoding

In this section we review the known connections between linear programming decoding and

graph cover decoding and further examine the relationship between both of these and max-

imum likelihood decoding. We also analyze properties of graph cover and LP pseudocode-

words, in particular with respect to their realizations on covers of the original Tanner graph.

In [29], Vontobel and Koetter show that linear programming decoding and graph cover

decoding are equivalent in the sense that, for a given channel output, graph cover and

linear programming decoding return the same vector of rational numbers between zero and

one (assuming ties are resolved in the same way for both decoders). Thus, in order to

understand the behavior of graph cover decoding it is sufficient to understand that of LP

decoding and vice versa. In particular, it is possible to infer relationships between graph cover

July 7, 2008 10

SGER Technical Report 0801

decoding and maximum likelihood (ML) decoding from known relationships between LP and

ML decoding. Feldman [7] shows that LP decoding has the ML certificate property, which

guarantees that if LP decoding returns a codeword, then this codeword is an ML codeword.

This fact does not necessarily imply that LP decoding is equivalent to ML decoding, as will

be seen in Theorem 2.2 below for the special case where the AWGN channel is used. The

proof of Theorem 2.2 requires the following result from [14].

Proposition 2.1 (Koetter, et al. [14], Proposition 2.12). Let C be the parity-check code

determined by the Tanner graph T with n variable nodes. Suppose that ω is a nontrivial LP

pseudocodeword of C. Then, for some vector λ of log-likelihood ratios, the cost
∑n

i=1 λiωi is

smaller than the cost
∑n

i=1 λici of any codeword c ∈ C.

One might conjecture that the reason linear programming decoding and maximum likeli-

hood decoding can give different outputs is that maximum likelihood decoding only considers

codewords as outputs, whereas if the fundamental polytope contains nontrivial pseudocode-

words, then the linear programming decoder considers these in addition to the codewords.

In the case of the AWGN channel, the difference between LP and ML decoding goes deeper

than the set of competitors that each considers. To expand on this, we first describe a rea-

sonable extension of the ML decoder over the AWGN channel that considers all vertices of

the fundamental polytope.

Over the additive white Gaussian noise channel, maximum likelihood decoding is based

on the squared Euclidean distance between modulated points, where the modulation map

m : {0, 1}n → {±1}n is given by m(x) = 2x − 1, with 1 = (1, . . . , 1). For a received vector

y, the output x̂ML of ML decoding is given by

x̂ML = m
−1

(
argmin
x∈m(C)

n∑

i=1

(yi − xi)
2

)
,

where n is the length of the code. Let V = V(P) denote the set of vertices of the fundamental

July 7, 2008 11

SGER Technical Report 0801

polytope. The modulation map m extends naturally to m : R
n → R

n via the same formula,

and the natural extension of the ML decision rule in this case is the generalized maximum

likelihood (GML) decision rule given by

x̂GML = m
−1

(
argmin
v∈m(V)

n∑

i=1

(yi − vi)
2

)
(2.1)

= m
−1

(
argmin
v∈m(V)

n∑

i=1

y2
i − 2yivi + v2

i

)
, (2.2)

which considers all vertices of the polytope instead of just the codewords.

Theorem 2.2 ([1], Theorem 3.2). Suppose the code C defined by the parity-check matrix H

is used on the additive white Gaussian noise channel. Then the following are equivalent:

1. C has no nontrivial linear programming pseudocodewords with respect to H.

2. Linear programming decoding for C with respect to H is equivalent to maximum like-

lihood decoding for C.

3. Linear programming decoding for C with respect to H and generalized maximum like-

lihood decoding for C with respect to H, as in Equation (2.2), use the same decision

rule.

Proof. As before, let V = V(P) be the set of vertices of the fundamental polytope. We

consider the set m(V) of all n-dimensional vertices of the modulated fundamental polytope

m(P) as possible outputs of GML decoding and LP decoding. This is not a natural setting

for the LP decoder, which considers only vectors in some subset of [0, 1]n. However, the

decision rule for the LP decoder is to output

x̂LP = argmin
w∈V

n∑

i=1

λiwi,

July 7, 2008 12

SGER Technical Report 0801

and since the modulation map is coordinate-wise linear and strictly increasing, we have

argmin
w∈V

n∑

i=1

λiwi = m
−1

(
argmin
v∈m(V)

n∑

i=1

λivi

)
.

The log-likelihood ratios for a given a received vector y on the AWGN channel with noise

variance σ2 are given by

λi = ln

(
Pr[yi|xi = 0]

Pr[yi|xi = 1]

)

= ln




1√
2πσ2

e
−(yi+1)2

2σ2

1√
2πσ2

e
−(yi−1)2

2σ2




= ln
(
e

−4yi
2σ2

)

=
−2yi

σ2
.

Hence the decision rule for linear programming decoding can be reformulated as

x̂LP = m
−1

(
argmin
v∈m(V)

n∑

i=1

−2yi

σ2
vi

)

= m
−1

(
argmin
v∈m(V)

n∑

i=1

−2yivi

)
,

since σ is independent of v ∈ m(V). Finally, notice that adding y2
i to the ith entry inside the

sum will not change the minimization, and thus

x̂LP = m
−1

(
argmin
v∈m(V)

n∑

i=1

(y2
i − 2yivi)

)
. (2.3)

If C has no nontrivial linear programming pseudocodewords with respect to H , then

m(V) = m(C) and
∑n

i=1 v2
i = n, since vi = ±1 for all v ∈ m(C). Thus, adding v2

i to the ith

July 7, 2008 13

SGER Technical Report 0801

term in the sum does not change the minimization problem, and

x̂LP = m
−1

(
argmin
v∈m(V)

n∑

i=1

(y2
i − 2yivi + v2

i)

)

= m
−1

(
argmin
v∈m(C)

n∑

i=1

(y2
i − 2yivi + v2

i)

)
,

which is the same decision rule used to compute x̂GML in generalized maximum likelihood

decoding and x̂ML in maximum likelihood decoding. Thus, when C has no nontrivial LP

pseudocodewords with respect to H , we have that LP decoding is equivalent to both ML

decoding and GML decoding.

Conversely, if C has a nontrivial linear programming pseudocodeword with respect to

H , then there is a vector λ of log-likelihood ratios such that
∑n

i=1 λiωi is smaller than the

cost
∑n

i=1 λici of any codeword c ∈ C, by Proposition 2.1. Over the AWGN channel the

received vector may be any vector in R
n, so we can construct a received vector y such that

the resulting log-likelihood vector is λ. Thus, if y is received, LP decoding will return a

nontrivial pseudocodeword, whereas ML decoding will always return a codeword. Therefore,

LP and ML are not equivalent. Furthermore, because C has a nontrivial LP pseudocodeword

with respect to H ,
∑n

i=1 v2
i is not constant over v ∈ m(V), and hence the LP decision rule as

given in Equation 2.3 differs from the GML decision rule as given in Equation 2.2. Therefore,

LP and GML are not equivalent either. �

Remark 2.3. The proof of Theorem 2.2 cannot be applied to show similar results about when

linear programming decoding is not equivalent to maximum likelihood decoding or generalized

maximum likelihood decoding for the binary symmetric channel or the binary erasure channel

because the set of possible received vectors for each of these channels is finite, and hence the

set of possible log-likelihood ratios is also finite. Given a target vector of log-likelihood ratios

λ ∈ R
n, it is impossible to guarantee that there is a received vector that yields λ. For more

July 7, 2008 14

SGER Technical Report 0801

discussion on this issue, see [26].

Theorem 2.2 shows that linear programming decoding and graph cover decoding differ

from even the generalized version of maximum likelihood decoding when nontrivial pseu-

docodewords are present. In order to better understand these decoders, we must further

study properties of their pseudocodewords. One characterization is given by Koetter, et al.

[14]: a vector p of nonnegative integers is an unscaled graph cover pseudocodeword if and

only if it reduces modulo 2 to a codeword and it lies within the fundamental cone K ⊆ R
n

where

K = K(H) =





(v1, . . . , vn) ∈ R
n

∣∣∣∣∣

vi ≥ 0 for all i,
∑

i′ 6=i

hji′vi′ ≥ hjivi for all i, j





.

Vontobel and Koetter point out an analogous characterization of normalized graph cover

pseudocodewords in [29]: a vector ω = (ω1, . . . , ωn) of rational numbers between zero and

one lies in the fundamental polytope if and only if it is a normalized graph cover pseudocode-

word. These characterizations coincide since the fundamental cone is the conic hull of the

fundamental polytope [29]. While these results elegantly describe graph cover pseudocode-

words, they alone do not provide insight into the realizations of these pseudocodewords as

coming from codewords on covers of the Tanner graph. In particular, given a normalized

graph cover pseudocodeword ω, we are interested in understanding the minimum degree of a

cover T̃ of T on which ω can be realized. With this question in mind, we make the following

definition.

Definition 2.4. A normalized graph cover pseudocodeword ω for the Tanner graph T is

minimally realizable on the cover T̃ of T if there is a configuration c̃ on T̃ such that

1. ω = ω(c̃), and

July 7, 2008 15

SGER Technical Report 0801

2. whenever ω has a realization on an N -cover of T , we have M ≤ N , where M is the

degree of T̃ .

We find an exact value for the degree of a minimal realization of a normalized graph

cover pseudocodeword in Proposition 2.6 below, under the assumption we are given the

coordinates of the graph cover pseudocodeword as a point in Feldman’s extended polytope

[7], rather than simply in the fundamental polytope. We first recall the definition of the

extended polytope.

Definition 2.5 (Feldman [7]). Let H = (hji) be an r × n parity-check matrix and let

P = P(H) be the fundamental polytope of H , as described in Definition 1.8. For 1 ≤ j ≤ r,

set

Ej = {S ⊆ N(j) : |S| is even},

where, as before,

N(j) = {i | hji = 1} ⊆ {1, . . . , n},

and write ej = |Ej|. Label the coordinates of R
n+e1+···+er as {1, . . . , n} ∪ {wj,S | 1 ≤ j ≤

r and S ∈ Ej}, and let Ej(i) be the subset of Ej consisting of those even-sized subsets of

N(j) that contain i. The jth local extended polytope of H is the polytope

Qj(H) =





(x|w) ∈ [0, 1]n+e1+···+er

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ P

wj′,S = 0 if j′ 6= j

∑

S∈Ej

wj,S = 1

xi =
∑

S∈Ej(i)

wj,S





July 7, 2008 16

SGER Technical Report 0801

and the extended polytope of H is the polytope

Q = Q(H) =
⋂

1≤j≤r

Qj(H) ⊆ [0, 1]n+e1+···+er .

A minimal realization of a point in the extended polytope Q is defined in an analogous

fashion to Definition 2.4 above.

Proposition 2.6 ([1], Proposition 4.7). Let ω̄ be a rational point in the extended polytope

and let M be the degree of a minimal realization of ω̄. Then M is the smallest positive

integer such that each coordinate of Mω̄ is a nonnegative integer.

Proof. For any positive integer t such that tω̄ is a vector of integers, Feldman [7] gives a

construction that yields a realization of tω̄. We will show that this realization occurs on a

t-cover.

Since
∑

S∈Ej

wj,S = 1,

we have
∑

S∈Ej

aj,S = t,

where each aj,S := twj,S is an integer. Feldman’s construction gives that for each S ∈ Ej ,

there are aj,S copies of check node j that are satisfied via the configuration S. This constraint

implies that there are t total copies of check node j, i.e., that the realization occurs on a

t-cover.

By hypothesis, ω̄ is realizable on an M-cover so Mω̄ must be a vector of integers.

Furthermore, M must be the smallest number such that Mω̄ is a vector of integers, since if

this held for some t < M then, by the argument above, ω̄ would be realizable on a t-cover,

contradicting the minimality of M . �

July 7, 2008 17

SGER Technical Report 0801

Proposition 2.6 can be extended to describe the minimum degree realization of any vector

ω with rational entries in the fundamental polytope whenever we can construct a correspond-

ing ω̄ in the extended polytope. Feldman [7] establishes that such an ω̄ always exists, and

Vontobel and Koetter [29] give a method for constructing ω̄ under particular circumstances,

namely when it is already known how to express ω as a convex linear combination of vectors

in F
n
2 that satisfy a given check node.

In addition to examining minimal realizations of pseudocodewords, we must also explore

when connected realizations of normalized pseudocodewords exist. Connectivity of the cover

is vital in order to analyze the relationship between LP/graph cover decoding and itera-

tive message-passing decoding algorithms, because the latter operate on computation trees,

which are inherently connected. The following example illustrates that not every graph

cover pseudocodeword can be realized on a connected cover, and thus not all graph cover

pseudocodewords may influence iterative message-passing decoders.

Example 2.7 (See also [4], [1]). Consider the Tanner graph T which is an 8-cycle with

vertices alternating between being check nodes and variable nodes. The code determined by

T is the binary [4, 1, 4] repetition code, with parity-check matrix

H =




1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1




,

and the fundamental polytope is

P = P(H) =
{
(ω, ω, ω, ω) ∈ R

4 | 0 ≤ ω ≤ 1
}

.

The only connected covers of T are 8M-cycles for M ≥ 1, so the only unscaled graph

July 7, 2008 18

SGER Technical Report 0801

cover pseudocodewords that have connected realizations are those of the form (0, 0, 0, 0) and

(M, M, M, M) for M ≥ 1. Thus the only normalized graph cover pseudocodewords with

connected realizations are (0, 0, 0, 0) and (1, 1, 1, 1). In particular, no rational point of P

that is not a vertex of P has a connected graph cover realization.

Although Example 2.7 shows that there are situations in which some points in the interior

of the polytope cannot be realized on a connected cover of the original Tanner graph, we

know that linear programming decoding (and hence graph cover decoding) will always output

a vertex of the fundamental polytope. In Example 2.7, these vertices do have connected

realizations. This phenomenon happens in general, as shown by the next proposition.

Proposition 2.8 ([4], Proposition 3.3). Let T be a Tanner graph with corresponding funda-

mental polytope P. Suppose ω is a vertex of P, and let (T̃ , c̃) be a realization of ω. Let T̃1,

. . . , T̃k be the connected components of T̃ , so that T̃i is an Mi-cover of T for 1 ≤ i ≤ k, with

M1 + · · ·+ Mk = M , and c̃ = (c̃1| . . . |c̃k), where c̃i is a configuration on T̃i. Then (T̃i, c̃i) is

a connected realization of ω for i = 1, . . . , k. In other words, every graph cover realization

of ω is either connected or the disjoint union of connected graph cover realizations of ω.

Proof. Set αi = ω(c̃i) for 1 ≤ i ≤ k. Then, looking at the unscaled graph cover pseudocode-

words, we have

Mω = M1α1 + · · ·+ Mkαk.

Dividing through by M gives

ω =
M1

M
α1 + · · · +

Mk

M
αk.

Since Mi

M
≥ 0 for each i and

M1

M
+ · · ·+

Mk

M
=

M1 + · · ·+ Mk

M
=

M

M
= 1,

July 7, 2008 19

SGER Technical Report 0801

we have written ω as a convex combination of α1, . . . , αk. But each αi is in P by [29] and

so each Mi

M
αi is too since Mi

M
≤ 1. Since ω is a vertex of the polytope, this forces each αi

to lie on the line segment from the origin to ω, i.e., αi = γiω for some rational numbers

0 < γi ≤ 1. So we have

Mω = (M1γ1 + · · ·+ Mkγk)ω,

which means M1 + · · ·+Mk = M = M1γ1 + · · ·+Mkγk. Hence γi = 1 for each i, i.e., αi = ω

for all i. �

Theorem 2.10 below gives another sufficient condition for connected realizations of graph

cover pseudocodewords to exist. The next lemma will be used in the proof.

Lemma 2.9 ([1], Lemma 5.3). Let T be a Tanner graph, let T ′ be a spanning tree of T , and

suppose e1, . . . , et are edges in T not in T ′. Let π : T̃ → T be any finite connected cover of

T , and let ẽi ∈ π−1(ei) be a fixed lift of ei to T̃ for each i = 1, . . . , t. Then T̃ − {ẽ1, . . . , ẽt}

is connected.

Proof. Let notation be as in the statement of the lemma for i = 1, . . . , t. Notice that to show

that T̃ −{ẽ1, . . . , ẽt} is connected, it suffices to show that there is a path in T̃ −{ẽ1, . . . , ẽt}

from x̃ to f̃ for any ẽi = x̃f̃ . So fix i and let ẽi = x̃f̃ .

Since T ′ is a spanning tree for T , there is a path p on T ′ from x = π(x̃) to f = π(f̃).

Then pei is a cycle on T containing x and f . By [10, Theorem 2.4.3], π−1(pei) consists of a

disjoint union of cycles that project onto pei. Since ẽi ∈ π−1(ei) ⊂ π−1(pei), there is a cycle

Γ in π−1(pei) containing ẽi. Since Γ projects onto pei and p is contained in T ′, we see that

π(Γ) does not contain ej for any j 6= i and hence Γ does not contain ẽj for any j 6= i. Thus,

Γ − {ẽ1, . . . , ẽt} = Γ − ẽi is still connected, and so Γ − ẽi contains a path from x̃ to f̃ in

T̃ − {ẽ1, . . . , ẽt}. �

July 7, 2008 20

SGER Technical Report 0801

Theorem 2.10 ([1], Theorem 5.4). Let T be a Tanner graph with average variable node

degree aX and average check node degree aF . Suppose that either aX ≥ 3 and aF ≥ 3, or

aX ≥ 2 and aF ≥ 4. Then any rational point in the fundamental polytope of T can be

minimally realized on a connected cover.

Proof. Let ω be a rational point in the fundamental polytope of T . Then ω is a normalized

graph cover pseudocodeword [29] and so is minimally realizable on an M-cover for some M .

Let (T̃ , c̃) be a realization on an M-cover with a minimal number of connected components.

By way of contradiction, suppose T̃ is not connected, and let πR : R̃ → T and πS : S̃ → T

be distinct connected components of T̃ . We will give an algorithm for connecting these two

components R̃ and S̃, demonstrating that ω is, in fact, realizable on a cover with fewer

connected components.

Let T ′ be any spanning tree of T . We will first show that there exists a check node

f ∈ F (T) that is incident to at least two edges not on T ′. Assume, for the purpose of

contradiction, that every check node is incident to at most one edge that is not on T ′. If the

check nodes are {f1, . . . , fr}, then we see the number of edges on T ′ is at least

r∑

i=1

(deg(fi) − 1) =

(
r∑

i=1

deg(fi)

)
− r (2.4)

= raF − r (2.5)

= r(aF − 1), (2.6)

since the sum of the check node degrees must be the total number of edges in T , which is

equal to raF .

On the other hand, if there are n variable nodes and r check nodes on T , then T has n+r

vertices and so the number of edges on any spanning tree for T is n + r − 1. The number of

July 7, 2008 21

SGER Technical Report 0801

edges in T is naX = raF , so n = r aF

aX
and we have that the number of edges on T ′ is

r
aF

aX

+ r − 1 = r

(
aF

aX

+ 1

)
− 1.

Putting this together with the bound on the number of edges in T ′ given in (2.6), we see

that

r

(
aF

aX

+ 1

)
− 1 ≥ r(aF − 1).

Thus,

r

(
aF

aX

+ 1

)
> r

(
aF

aX

+ 1

)
− 1 ≥ r(aF − 1),

and so

aF

aX

+ 1 > aF − 1.

Rearranging this we see

2 > aF

(
1 −

1

aX

)
.

In the case where aF , aX ≥ 3, we have 1 − 1
aX

≥ 2
3
, hence

2 >
2

3
aF ,

which implies that 3 > aF . By assumption, aF ≥ 3, so we have a contradiction. A similar

contradiction is reached in the case where aX ≥ 2 and aF ≥ 4.

Thus, there is some check node f of T such that at least two edges incident to f are not

on T ′; let these edges be e = (f, x) and e′ = (f, x′). Let ẽR = (f̃R, x̃R) and ẽ′R = (f̃R, x̃′
R) be

fixed lifts of e and e′, respectively, to R̃ and let ẽS = (f̃S, x̃S) and ẽ′S = (f̃S, x̃′
S) be fixed lifts

of e and e′, respectively, to S̃. By Lemma 2.9, R̃−{ẽR, ẽ′R} and S̃ −{ẽS, ẽ′S} are connected.

For any variable node ṽ of T̃ , let c̃(ṽ) be the bit assignment ṽ receives from the configu-

July 7, 2008 22

SGER Technical Report 0801

ration (T̃ , c̃). If c̃(x̃R) = c̃(x̃S), then crossing the edges ẽR and ẽS does not change the check

sum at f̃R or f̃S and results in R̃ and S̃ becoming a single connected component. In other

words, (T̃ −{ẽR, ẽS}+ {f̃Rx̃S, f̃Sx̃R}, c̃) is a minimal realization of ω with fewer components

than T̃ , a contradiction. We get a similar contradiction if c̃(x̃′
R) = c̃(x̃′

S).

Finally, assume c̃(x̃R) 6= c̃(x̃S) and c̃(x̃′
R) 6= c̃(x̃′

S). Then (c̃(x̃R) + c̃(x̃′
S)) ≡ (c̃(x̃S) +

c̃(x̃′
R)) (mod 2). This means that crossing both ẽR with ẽS and ẽ′R with ẽ′S does not change

the binary check sum at f̃R or at f̃S, and again results in R̃ and S̃ becoming a single connected

component, i.e., (T̃ −{ẽR, ẽ′R, ẽS, ẽ′S}+ {f̃Rx̃S, f̃Rx̃′
S , f̃Sx̃R, f̃Sx̃′

R}, c̃) is a minimal realization

of ω on a cover with fewer connected components than T̃ , a contradiction.

Since, in any case, assuming R̃ and S̃ are distinct connected components of T̃ leads to

a minimal realization of ω on a cover with fewer connected components than T̃ , there must

be a minimal realization of ω on a connected cover of T . �

3 Weights of Pseudocodewords and C-Symmetry

In order to further understand the impact of linear programming pseudocodewords and

graph cover pseudocodewords, we must be able to analyze the probability of decoding error

that will arise from a given set of these pseudocodewords. It is well established that the

distance between codewords significantly impacts the probability of decoding errors, and

thus it is important to further explore the effect of the distance between pseudocodewords

and codewords on LP/graph cover decoding performance. For binary linear codes, the

classical problem of finding distances between codewords is significantly simplified by looking

instead at the weights of codewords, which is made possible by the algebraic structure of

the code. To parallel the classical case, we consider the (effective Hamming) weight [8] of

a pseudocodeword. It should be noted that this notion of weight was originally motivated

by the definition of the generalized weight of a computation tree configuration, as given by

July 7, 2008 23

SGER Technical Report 0801

Wiberg in [31].

Definition 3.1 (See Forney, et al. [8], Corollary 3.1). On the additive white Gaussian noise

channel, the (effective Hamming) weight of a nonzero vector x = (x1, . . . , xn) of nonnegative

rational numbers is given by

w(x) =

(
n∑

i=1

xi

)2

n∑

i=1

x2
i

.

Using the weight measure of Definition 3.1, Forney, et al. [8] show that the minimum

weight of a vertex of the fundamental polytope determines bounds on linear programming

decoding performance. It is important to note that these results deal only with the overall

probability of word error when decoding; they say nothing about the probability of word

error caused by a given pseudocodeword. Example 3.2 provides an illustration of two pseu-

docodewords that have the same weight but appear as errors in decoding with significantly

different probabilities.

July 7, 2008 24

SGER Technical Report 0801

Example 3.2. Consider the code C1 defined by the parity-check matrix

H1 =




1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 1

1 1 1 0 0 1 1 1 0 0

1 1 1 1 1 1 0 0 0 0




.

Then C1 has precisely two codewords: the all-zeros word c0 and the all-ones word c1. The

fundamental polytope is

P1 =





(x1, . . . , x10) ∈ [0, 1]10

∣∣∣∣∣∣∣

x1 = · · · = x5, x6 = · · · = x10,

x1 −
2
3
≤ x6 ≤ x1 + 2

3
, x6 ≤ 5x1 ≤ x6 + 4





.

The non-codeword vertices of P1 are

p1 =

(
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
5

6
,
5

6
,
5

6
,
5

6
,
5

6

)
,

p2 =

(
1

3
,
1

3
,
1

3
,
1

3
,
1

3
, 1, 1, 1, 1, 1

)
,

p3 =

(
5

6
,
5

6
,
5

6
,
5

6
,
5

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

)
,

July 7, 2008 25

SGER Technical Report 0801

and

p4 =

(
2

3
,
2

3
,
2

3
,
2

3
,
2

3
, 0, 0, 0, 0, 0

)
.

One can check that that w(p1) = w(p3); however, p3 shows up much less frequently

than p1 in linear programming decoding when the all-zeros word is sent; see Appendix A

for details of the simulation. In order to visualize the fundamental polytope, it is convenient

to project P1 into R
2 since x1 = x2 = x3 = x4 = x5 and x6 = x7 = x8 = x9 = x10. We

may then think of the codewords as c0 = (0, 0) and c1 = (1, 1), and the pseudocodewords

as p1 = (1
6
, 5

6
), p2 = (1

3
, 1), p3 = (5

6
, 1

6
), and p4 = (2

3
, 0). This projected version of the

fundamental polytope P1 is given in Figure 1. Notice that the ray from the origin to p3 is

not an edge of the fundamental polytope, but the ray from the origin to p1 is. Thus, there

are no vertices of the polytope with smaller weight than p1 that lie between p1 and the

origin, but there is a vertex of smaller weight lying between p3 and the origin, namely p4.

This might explain the observed difference in the number of errors caused by p1 and p3.

Although considering projections of polytopes into lower dimensional spaces can help to

visualize these structures, care must be taken when using such projections. The weight of a

vector frequently changes under a projection, and pseudocodewords of the same weight may

even be mapped to vectors of different weights, as shown in the following example.

Example 3.3. Consider the code C2 = {(0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1, 1, 1)} defined by

July 7, 2008 26

SGER Technical Report 0801

c0

p1

p2 c1

p4

p3

Figure 1: The projected polytope of P1 into R
2

the parity-check matrix

H2 =




1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

1 1 1 0 0 1 1 1

1 1 1 1 1 1 0 0




.

July 7, 2008 27

SGER Technical Report 0801

The fundamental polytope is

P2 =





(x1, . . . , x8) ∈ [0, 1]8

∣∣∣∣∣∣∣

x1 = · · · = x5, x6 = · · · = x8,

x1 −
2
3
≤ x6 ≤ x1 + 2

3
, x6 ≤ 5x1 ≤ x6 + 4





and the non-codeword vertices of this polytope are

q1 =

(
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
5

6
,
5

6
,
5

6

)
,

q2 =

(
1

3
,
1

3
,
1

3
,
1

3
,
1

3
, 1, 1, 1

)
,

q3 =

(
5

6
,
5

6
,
5

6
,
5

6
,
5

6
,
1

6
,
1

6
,
1

6

)
,

and

q4 =

(
2

3
,
2

3
,
2

3
,
2

3
,
2

3
, 0, 0, 0

)
.

Notice that if we again make the projection into R
2 by identifying x1 = x2 = x3 = x4 = x5

and x6 = x7 = x8, we get the same polytope as in Figure 1. In P2, we have w(q1) = w(q4),

while the projections of q1 and q4 to the vectors (1
6
, 5

6
) and (2

3
, 0) have weights 18

13
and 1,

respectively.

To analyze the performance of a classical decoder (e.g., a maximum likelihood decoder)

on a binary linear code, it is sufficient to consider only the case where the all-zeros codeword

is sent. The reason for this is that the linearity of the code implies that for two codewords

c1 and c2, the codeword c1 − c2 has the same relation to the all-zeros word as the vector c1

has to c2. The fundamental polytope of a code displays a similar type of symmetry.

Proposition 3.4 (See Feldman [7]). Any fundamental polytope P for the binary linear code

July 7, 2008 28

SGER Technical Report 0801

C of length n has the following property: for every ω = (ω1, . . . , ωn) ∈ P and c ∈ C, the

point ω[c] = (ω
[c]
1 , . . . , ω

[c]
n) is also in P, where ω

[c]
i = |ωi − ci| for i = 1, . . . , n.

Because of the symmetry described in Proposition 3.4 above, the fundamental polytope

of a binary linear code C is said to have C-symmetry. As a consequence of C-symmetry, the

probability of word error is independent of the codeword sent, implying that the all-zeros

assumption may be used when analyzing the performance of the LP decoder [7]. As was

the case with the bounds on performance given by Forney, et al. in [8], this result only

deals with the probability of error; it says nothing about errors caused by a particular LP

pseudocodeword. Additionally, if we allow LP pseudocodewords to be sent across a channel

using the generalized modulation map described before Theorem 2.2, we are not guaranteed

that the probability of decoding error will be independent of the LP pseudocodeword sent.

The next example illustrates this.

Example 3.5. Let

C3 =
{(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0), (1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)}

July 7, 2008 29

SGER Technical Report 0801

be defined by the parity-check matrix

H3 =




1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1




.

Two of the non-codeword vertices of the polytope are

p1 =

(
1

2
,
1

2
,
1

2
, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1

)

and

p2 =

(
1

2
,
1

2
,
1

2
, 1,

1

2
,
1

2
,
1

2
,
1

2
,
1

2
, 0, 0, 0, 0, 0

)
.

Notice that w(p1) = w(p2).

A simulation was performed in which the linear programming pseudocodewords p1 and

p2, in addition to all of the codewords, were transmitted across the additive white Gaussian

noise channel using the generalized modulation map m : R
n → R

n described in the discussion

preceding Theorem 2.2. For example, the vector p1 =
(

1
2
, 1

2
, 1

2
, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1

)
was

July 7, 2008 30

SGER Technical Report 0801

modulated to m(p1) = (0, 0, 0, 1,−1,−1,−1,−1,−1, 1, 1, 1, 1, 1).

For a given signal-to-noise ratio, the four binary codewords and the linear programming

pseudocodewords p1 and p2 were each transmitted across the additive white Gaussian noise

channel 20,000 times. Each received vector was input to the LP decoder and the output

of the decoder was recorded. This experiment was performed over a signal-to-noise ratio

(SNR) range from 0.0 dB to 6.5 dB in 0.5 dB increments. Table 1 shows the results of this

experiment for the SNR value of 3.0 dB; see Appendix B for additional results.

word sent total errors errors due to p1 errors due to p2

00000000000000 3057 200 100
11100000000000 3033 216 88
00001111100000 3084 4 108
11101111100000 3035 11 110

p1 3498 — 57
p2 15113 518 —

Table 1: Simulation results for the code of Example 3.5 at 3.0 dB.

4 Minimal and Irreducible Pseudocodewords

We will again mimic the classical coding case in looking at minimal codewords, i.e., codewords

whose supports do not properly contain the support of any other nonzero codeword. In

particular, we examine different extensions of the theory of minimal codewords to graph

cover (and hence LP) pseudocodewords.

Definition 4.1 (Vontobel and Koetter [29], p.27). A minimal pseudocodeword is a pseu-

docodeword p such that {αp |α ∈ R, α ≥ 0} is an edge of the fundamental cone.

Here, by edges of the fundamental cone, we mean a set of half-rays through the origin

whose conic hull is the fundamental cone, with the property that no proper subset of this

set has the fundamental cone as its conic hull. A similar generalization is presented in [12]:

July 7, 2008 31

SGER Technical Report 0801

Definition 4.2 (Kelley and Sridhara [12], Definition 2.7). An unscaled pseudocodeword is

irreducible if it cannot be written as a (nontrivial) sum of other unscaled pseudocodewords.

Note that while a minimal pseudocodeword can refer to either a normalized or unscaled

pseudocodeword, an irreducible pseudocodeword can only refer to an unscaled pseudocode-

word.

Remark 4.3. If an irreducible pseudocodeword p is actually a codeword, then p cannot be

written as a (nontrivial) sum of codewords and we will call p an irreducible codeword. With

this terminology, irreducible codewords coincide precisely with minimal codewords. Addition-

ally, if p is irreducible as a codeword, then p is also irreducible as a pseudocodeword because

if p were the sum of pseudocodewords then each of those pseudocodewords must consist of

only zeros and ones and thus must be codewords themselves [14], which contradicts the irre-

ducibility of p. Hence a vector p is an irreducible codeword if and only if it is a minimal

codeword if and only if it is an irreducible pseudocodeword that is also trivial.

It is important to note that the notions of irreducible pseudocodeword and minimal pseu-

docodeword do not necessarily coincide. If p is a minimal pseudocodeword, then 2p is also a

minimal pseudocodeword but it is not irreducible. Conversely, irreducible pseudocodewords

may not be minimal, as seen in the next example.

Example 4.4. Let C be the null space of

H =




0 1 1 0

0 0 1 1

1 1 1 1




July 7, 2008 32

SGER Technical Report 0801

so that C = {(0, 0, 0, 0), (1, 1, 1, 1)}. The fundamental cone is given by

K(H) =





(x1, x2, x3, x4) ∈ R
4

∣∣∣∣∣
xi ≥ 0 for all i,

x2 = x3 = x4, and 3x2 ≥ x1





.

The cone can be seen as a two-dimensional cone embedded in R
4, and the edges are the

half-rays {α(3, 1, 1, 1)|α ∈ R≥0} and {α(0, 2, 2, 2)|α ∈ R≥0}.

If (1, 1, 1, 1) = x + y with x and y being nonzero nonnegative integer vectors, then x

must have at least one coordinate that is 0 and one coordinate that is 1, and hence is not

a pseudocodeword since it will not reduce modulo 2 to a codeword [14]. This means that

(1, 1, 1, 1) is an irreducible pseudocodeword, but it is not a minimal pseudocodeword, since

it does not lie on an edge of the fundamental cone. Additionally, since (1, 1, 1, 1) is an

irreducible pseudocodeword that is also a codeword, it is actually a minimal codeword, even

though it is not a minimal pseudocodeword.

Since the fundamental cone consists of only nonnegative vectors and we consider only

linear codes, it always has a vertex at the origin. This means that we can find a set of

nonnegative integer vectors that generates the fundamental cone under addition [19]. We

had originally conjectured that the set of unscaled minimal pseudocodewords would generate

all pseudocodewords in the fundamental cone. However, Example 4.4 above shows that

unscaled minimal pseudocodewords certainly do not generate the pseudocodewords in the

fundamental cone, since (1, 1, 1, 1) is a pseudocodeword and is not generated by the unscaled

minimal pseudocodewords.

Remark 4.5. It is stated in passing in [12] that the irreducible pseudocodewords correspond

to the vertices of the fundamental polytope. A formal proof of this fact is not known to us but,

if true, it yields a finite generating set for the set of pseudocodewords. However, enumerating

the vertices of the fundamental polytope is still computationally difficult.

July 7, 2008 33

SGER Technical Report 0801

5 Connections Between Min-Sum and Linear Program-

ming/Graph Cover Decoding

Iterative message-passing decoders such as min-sum are computationally efficient suboptimal

decoders for low-density parity-check codes. Their efficiency makes them ideal for implemen-

tation, but in order to use them effectively it is important to be able to characterize their

non-optimality; in other words, it is necessary to understand the errors that arise in iterative

message-passing decoding. Theoretical analyses of these errors have been scarce thus far.

On the other hand, graph cover decoding has proven much more attractive from a theoret-

ical standpoint. There are multiple characterizations of graph cover pseudocodewords, as

mentioned in Section 2, and significant progress has been made in understanding when these

pseudocodewords result in decoding errors, e.g., analysis of weights of pseudocodewords;

see, for example, [12] and [29]. Graph cover decoding, however, is only a theoretical tool

and is not implementable as defined. Furthermore, its equivalent practical decoder, LP, be-

comes computationally unfeasible at block lengths larger than about 100, and hence is much

less desirable than iterative message-passing decoders in practice. Thus, we are motivated

to explore possible relationships between iterative message-passing decoders and LP/graph

cover decoding to determine if the insights gained for these latter decoders can shed light on

the decoding performance of the former. This section focuses primarily on the relationship

between LP/graph cover decoding and MS decoding, with MS decoding taken as a specific

example of an iterative message-passing decoder.

Iterative message-passing decoders perform operations locally, in that they only take in-

formation from immediate neighbors on the Tanner graph T when performing computations.

Since every finite cover T̃ of a Tanner graph T is locally isomorphic to T , a local algorithm

cannot distinguish between T and any finite cover of T . Given this, it seems reasonable to

assume that iterative message-passing decoders actually operate on all possible covers of the

July 7, 2008 34

SGER Technical Report 0801

Tanner graph, as is the case with graph cover decoding. Thus, it is conjectured [29] that

iterative message-passing decoders and graph cover decoding approximate each other.

Figure 2 illustrates a problem with this view of graph cover decoding as the correct model

for iterative message-passing decoders. The common perception, based on past simulation

results, is that LP/graph cover decoding typically performs worse than SP decoding, and

better than MS decoding. However, in Figure 2, we get very different behavior: MS and

SP both outperform LP decoding, in terms of both word error rate and bit error rate, at all

SNRs simulated.

Figure 2: Performance of a turbo-code-based LDPC code with linear programming (LP),
sum-product (SP) and min-sum (MS) decoding.

If iterative message-passing decoding and linear programming/graph cover decoding did,

in fact, approximate each other, we would expect the behavior of these decoders to be inex-

tricably linked; in particular, we would expect their relative performances to be consistent

across simulations and LP/graph cover decoding would always outperform MS (since it does

July 7, 2008 35

SGER Technical Report 0801

in many previous simulations). Since this is not the case in the simulation represented in

Figure 2, we are led to believe that LP/graph cover decoding is not the correct model for

iterative message-passing decoders.

5.1 Computation Trees and Graph Covers

The conflict observed above — that iterative message-passing decoding and graph cover

decoding do not appear to approximate each other — is resolved by returning to the fun-

damental work of Wiberg [31]. Wiberg proves that iterative message-passing algorithms

actually work by finding minimal cost configurations on computation trees. To make this

more precise, we focus on the min-sum algorithm. In this case, we have:

Definition 5.1 (Wiberg [31], pp.16–17). Let R be a computation tree for a Tanner graph T

with variable nodes x1, . . . , xn. Let X(R) be the variable nodes of R, and let c = (cx)x∈X(R)

be a configuration on R. For each x ∈ X(R) that is a copy of xi, define the local cost function

λx by

λx(α) := λiα,

where λ = (λ1, . . . , λn) is the log-likelihood vector and α ∈ {0, 1}. The (global) cost of c is

G(c) :=
∑

x∈X(R)

λx(cx).

Theorem 5.2 (Wiberg [31], Corollary 4.1). Let T be a Tanner graph with variable nodes

x1, . . . , xn. For each i = 1, . . . , n, the min-sum algorithm finds, after m iterations, the value

ci at the root node of a lowest cost configuration on the computation tree of depth m rooted

at xi. The output of the algorithm is the vector (c1, . . . , cn) ∈ {0, 1}n.

To better understand errors that arise in min-sum decoding, it is necessary to further

examine computation tree pseudocodewords. One important observation to begin this anal-

July 7, 2008 36

SGER Technical Report 0801

ysis is that any configuration on a connected graph cover induces a configuration on every

computation tree. This is shown in Section 6 below by examining the notion of truncated

universal covers. Thus, every graph cover pseudocodeword that has a connected realization

gives rise to at least one computation tree pseudocodeword, which may impact MS decoding.

It is not known, however, whether every computation tree configuration is induced by

a graph cover configuration. Thus there may be computation tree pseudocodewords that

cause errors in MS decoding and that are unrelated to graph cover configurations. This

may yield one explanation for the inconsistent behavior of MS decoding versus LP/graph

cover decoding observed across simulations. Kelley and Sridhara [12] give a characterization

of computation tree pseudocodewords that arise from graph cover pseudocodewords. They

first define the notion of a consistent valid binary configuration on a computation tree for

the Tanner graph T .

Definition 5.3 (Kelley and Sridhara [12], p. 4014). Let T be a Tanner graph and let R be

a computation tree of T that contains at least one copy of each check node of T and let c

be a configuration on R. For each variable node x of T and for each check node f adjacent

to x, the local assignment of x at f by the configuration c, written Lc(x, f), is the average

of the values c assigns to all copies of x in R that are adjacent to a copy of f in R. The

configuration c is called consistent if, for each variable node x of T , the value of Lc(x, f) is

independent of the choice of check node f adjacent to x.

Remark 5.4. Kelley and Sridhara [12] do not specify that the computation tree R must

contain at least one copy of each check node of the Tanner graph T . However, as we will

see below, the point of defining consistency is that a consistent configuration yields a vec-

tor of length n that is a point in the fundamental polytope, i.e., a normalized graph cover

pseudocodeword. If a check is not represented in the computation tree, we can find otherwise

consistent configurations whose corresponding vectors of length n are not elements of the

July 7, 2008 37

SGER Technical Report 0801

fundamental polytope. An example of this is given as follows.

Let T be the Tanner graph shown in Figure 3 and consider the configuration shown in

Figure 4 on the computation tree for T rooted at x1 of depth 1.

x1

x2 x3

f1

f2

Figure 3: The Tanner graph T .

x1

x2 x3

f1

Figure 4: A configuration on a computation tree for T . The circled nodes have a binary
value of 1, and the other node has a binary value of 0.

It is clear that, modulo the requirement that all check nodes of T are represented, that

the configuration in Figure 4 is consistent. The vector of length 3 associated to this vector

is (1, 1, 0). This vector is not in the fundamental polytope associated to T since it does not

satisfy the constraint given by f2 that states that x2 = x3.

Suppose that R is a computation tree of T that contains at least one copy of each check

node of T , and suppose that T has variable nodes x1, . . . , xn. A consistent configuration c

July 7, 2008 38

SGER Technical Report 0801

on R gives rise to a vector ω ∈ [0, 1]n, where ωi = Lc(xi, f) for arbitrary f ∈ N(xi). Note

that ωi is well-defined by the consistency of c [12]. The consistency of c also gives us that

ω satisfies each of the local check constraints in the fundamental polytope, since Lc(x, f)

comes from an average of valid local configurations on N(f) for any check node f adjacent

to x. As the fundamental polytope is the intersection of the collections of vectors satisfying

each of the local check constraints, we see that ω is a point in the fundamental polytope,

and hence is realizable on a finite cover of T [12]. An example of a valid configuration on a

computation tree that is not consistent is shown in Example 5.5 below.

Example 5.5 (Compare to Kelley and Sridhara [12], pp. 4017-4018.). It can be shown

that there are no nontrivial computation tree pseudocodewords for the Tanner graph T of

Example 2.7. However, the addition of a new, redundant check allows for both nontrivial

computation tree pseudocodewords as well as connected realizations of graph cover pseu-

docodewords that are not vertices of the fundamental polytope. Let T1 be the Tanner graph

of Figure 5. Then the code determined by T1 is again the [4, 1, 4] repetition code, but Figure 6

shows a nontrivial computation tree pseudocodeword for T1.

x1

x2

x3

x4

f1

f2f3

f4

f5

Figure 5: The Tanner graph T1 of Example 5.5.

Table 2 gives values of Lc(xi, fj) for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 5. If the variable node xi is

not adjacent to the check node fj , no value of Lc(xi, fj) is given. Since there is at least one

column in this table that contains differing values, the configuration given in Figure 6 is not

July 7, 2008 39

SGER Technical Report 0801

x1x1x1x1

x1

x2x2

x2x2

x3

x3 x3x3x3x3 x3

x4

x4 x4

x4

Figure 6: A computation tree of depth 2 rooted at x1 for the Tanner graph T1 in Figure 5.
Labels on the check nodes are omitted for clarity. An inconsistent binary assignment c is
shown on the tree, where the circled variable nodes are set to 1 and the others to 0.

consistent.

x1 x2 x3 x4

f1
1
2

1
2

— —

f2 — 2
3

2
3

—

f3 — — 2
3

2
3

f4
1
2

— — 1
2

f5
1
3

1
3

2
3

2
3

Table 2: Values of Lc(xi, fj), with c as given in Figure 6.

Since the configuration in Figure 6 is not consistent, Kelley and Sridhara [12] point out

that there is no meaningful vector of length four we may associate to it and, hence, it cannot

correspond directly to a graph cover pseudocodeword. In a different sense, however, the con-

figuration in Figure 6 can be considered as being induced by a graph cover pseudocodeword.

More specifically, the Tanner graph in Figure 7 is a 4-cover of the Tanner graph of Figure 5,

so the configuration in Figure 7 is a realization of a graph cover pseudocodeword. By rooting

a computation tree at the top-left variable node in Figure 7, one can derive the inconsistent

computation tree configuration of Figure 6 from the configuration given in Figure 7. Thus,

July 7, 2008 40

SGER Technical Report 0801

the computation tree pseudocodeword of Figure 6 is, in this sense, induced by a graph cover

pseudocodeword.

x1 x1

x1 x1

x2 x2

x2 x2

x3 x3

x3 x3

x4 x4

x4 x4

Figure 7: A configuration on a 4-cover of the Tanner graph T given in Figure 5. Circled
nodes have a binary value of 1, and other nodes have a binary value of 0.

We see from the preceding example that the criterion of consistency does not lead to a

complete characterization of the distinction between computation tree pseudocodewords and

graph cover pseudocodewords. It is clear that in order to study the relationship between

LP/graph cover decoding and MS decoding, one must better understand the relationship

between graph covers and computation trees, and thus the notion of consistency or other

characterizations of the distinctions between computation tree and graph cover pseudocode-

words must be further explored. Many questions remain unanswered about the behavior of

iterative message-passing decoders in general; hence, in order to simplify the analysis, it is

natural to study the behavior in a restricted environment. For example, if only computation

tree configurations induced by graph cover pseudocodewords were allowed, how would the

performance of MS compare to that of LP/graph cover decoding? In Section 6, questions

July 7, 2008 41

SGER Technical Report 0801

such as these are addressed in the context of universal covers.

5.2 Average Min-Sum Decoding

One characteristic of min-sum decoding that makes it particularly difficult to analyze is its

perpetually changing output across iterations. The observed behavior of MS in computer

simulations can be characterized in two ways: either the output stabilizes at a codeword

or the output oscillates between a set of non-codeword/codeword outputs. By stabilizing

at a codeword, we mean that for a sufficiently large number of iterations the output vector

of min-sum is consistently the same codeword. The other behavior mentioned, oscillation

between a set of codeword or non-codeword outputs, is best illustrated by an example.1

Example 5.6. Decoding of a single received vector was performed using 800 iterations of

min-sum on the Tanner graph given in Figure 8. When the all-zeros codeword was sent

(modulated as the vector (−1,−1,−1,−1,−1,−1,−1)) over an additive white Gaussian

noise (AWGN) channel with SNR 0.0 dB, the channel output was

(−1.1504,−1.8782,−1.1789, 2.6625,−2.3933, 1.2978, 0.4123).

For sufficiently large iterations, the output of the min-sum decoder cycled through six vectors

in F
7
2, of which only one was a codeword. For example, the outputs after iterations 783–800

were as follows:

1Much of the material in this section has been previously published in [2].

July 7, 2008 42

SGER Technical Report 0801

(1, 1, 1, 1, 1, 1, 0) (1, 1, 1, 1, 1, 1, 0) (1, 1, 1, 1, 1, 1, 0)

(1, 1, 1, 1, 1, 0, 0) (1, 1, 1, 1, 1, 0, 0) (1, 1, 1, 1, 1, 0, 0)

(0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 1, 0, 0, 0)

(0, 0, 0, 1, 0, 0, 1) (0, 0, 0, 1, 0, 0, 1) (0, 0, 0, 1, 0, 0, 1)

(0, 0, 0, 1, 0, 1, 1) (0, 0, 0, 1, 0, 1, 1) (0, 0, 0, 1, 0, 1, 1)

(1, 1, 1, 0, 1, 1, 1) (1, 1, 1, 0, 1, 1, 1) (1, 1, 1, 0, 1, 1, 1)

Here, the first column gives the outputs after iterations 783–788, the second column cor-

responds to iterations 789–794, and the third column represents iterations 795–800. Notice

the pronounced pattern that these output vectors follow.

x1

x2

x3

x4

x5

x6

x7

Figure 8: The Tanner graph of Example 5.6.

Example 5.6 presents a situation where the min-sum algorithm repeatedly cycles through

a set of outputs that includes both codewords and non-codewords, even after more than 700

iterations have been performed. If the min-sum algorithm were stopped in this example at

iterations 788, 794, or 800, the decoder would output the codeword (1, 1, 1, 0, 1, 1, 1). Within

the set of iterations shown above, however, the codeword (1, 1, 1, 0, 1, 1, 1) only represents one

sixth of all possible outputs of MS. In particular, for all non-codeword outputs, the binary

value assigned to the fourth coordinate is 1. In an oscillatory case such as this, we see that

the output of MS can vary drastically even between consecutive iterations. We propose the

following decoding algorithm with the aim of capturing the overall behavior of MS, rather

than simply a snapshot of a particular iteration.

July 7, 2008 43

SGER Technical Report 0801

Definition 5.7. The average min-sum (AMS) decoder is given by the following rule: After

m iterations, the decoder outputs

x̂AMS :=
1

m

m∑

i=1

x̂(i),

where x̂(i) is the output of the min-sum decoder after i iterations.

Example 5.8. Again, consider the [7, 2, 3] code of Example 5.6, defined by the Tanner graph

of Figure 8. A simulation of 800 iterations of MS decoding on the AWGN channel with SNR of

0.0 dB was performed to obtain the AMS output. It was observed that over these iterations,

MS always reached a steady oscillatory pattern, which resulted in an output of AMS that

was a vector of “nice” rational numbers. In particular, four common non-codeword outputs

were observed. These four outputs were extremely close to the following rational vectors:

{(
1
2
, 1

2
, 1

2
, 1, 1

2
, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 1

2
, 5

6
, 1

2
, 1

2
, 1

2

)
,

(
1
2
, 1

2
, 1

2
, 2

3
, 1

2
, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)}

Notice that the vector (1
2
, 1

2
, 1

2
, 5

6
, 1

2
, 1

2
, 1

2
) is obtained, for example, in the situation of Exam-

ple 5.6. Meanwhile, there is only one nontrivial LP pseudocodeword for this code, namely,
(

1
2
, 1

2
, 1

2
, 1, 1

2
, 1

2
, 1

2

)
.

Because the observed behaviors of the min-sum decoder imply that the outputs always

either stabilize at a codeword or eventually repeatedly cycle through some finite set of vectors,

it is reasonable to believe that the output of the average min-sum decoder always approaches

some limit, i.e., that for any channel input, the limit

lim
m→∞

x̂AMS = lim
m→∞

1

m

m∑

i=1

x̂(i) (5.1)

always exists. This motivates the next definition.

July 7, 2008 44

SGER Technical Report 0801

Definition 5.9. An average min-sum pseudocodeword is a limiting value of the output

vectors of the average min-sum decoding algorithm. A nontrivial average min-sum pseu-

docodeword is an average min-sum pseudocodeword that is not a codeword.

If the limit of (5.1) exists, then we have

lim
m→∞

x̂AMS = lim
m→∞

1

m

m∑

i=1

x̂(i)

= lim
m→∞

1

(m − (ℓ − 1))

m∑

i=ℓ

x̂(i)

for any ℓ ∈ N. Since the output of MS for the first several iterations typically jumps around

before the behavior described above manifests itself, using a larger value of ℓ may actually

improve the rate of convergence in the above limits. Because of this, the implementation of

AMS used below computes

1

(m − 599)

m∑

i=600

x̂(i),

where m is chosen uniformly at random from the integers {800, 801, . . . , 900}. We note that

applying this implementation to Example 5.8 results in the same performance and set of

observed outputs.

5.2.1 Average Min-Sum Simulation Results

Simulation results are presented here on a variety of codes in order to explore the performance

of the average min-sum decoder. The focus is on the relationship between MS and AMS

performance as well as a comparison of these two decoders with LP/graph cover decoding. In

particular, when practical, the set of nontrivial AMS pseudocodewords is examined in hopes

of elucidating the oscillatory nature of MS across iterations. Additionally, examination of

AMS pseudocodewords may further explain a link, or perhaps a disparity, between MS and

LP/graph cover decoding.

July 7, 2008 45

SGER Technical Report 0801

Let H1 be the parity-check matrix

H1 =




1 1 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 1 1




and let C1 be the code determined by H1. Then

C1 =
{(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1), (0, 1, 1, 1, 1, 0), (1, 1, 0, 0, 0, 0),

(1, 1, 0, 0, 1, 1), (1, 0, 1, 1, 0, 1), (1, 0, 1, 1, 1, 0), (0, 1, 1, 1, 0, 1)}

has length 6 and dimension 3. In simulations, we observed very few distinct AMS pseu-

docodewords, and all of them were approximations of simple rational vectors in the fun-

damental polytope. While the only nontrivial LP pseudocodewords determined by H1 are
(

1
2
, 1

2
, 1, 0, 1

2
, 1

2

)
and

(
1
2
, 1

2
, 0, 1, 1

2
, 1

2

)
, the following AMS pseudocodewords were the ones com-

monly seen in simulations:

(
1
2
, 1

2
, 1, 0, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 0, 1, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 1

4
, 0, 1

2
, 1

2

)
,

(
1
2
, 1

2
, 0, 1

4
, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 3

4
, 0, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 0, 3

4
, 1

2
, 1

2

)
.

Moreover, AMS, MS and LP perform identically in almost all simulations on this code with

respect to both word and bit error rate, and are very close to ML. When AMS output a

codeword, it always equaled the LP output and, as a result of the ML certificate property

of LP decoding, was the ML codeword.

July 7, 2008 46

SGER Technical Report 0801

Now consider H2 the semi-regular parity-check matrix

H2 =




1 1 0 0 0 0 0

0 1 1 1 0 0 0

1 0 1 0 0 0 0

0 0 0 1 1 0 1

0 0 0 0 1 1 0

0 0 0 0 0 1 1




and let

C2 = {(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1, 1), (1, 1, 1, 0, 0, 0, 0), (1, 1, 1, 0, 1, 1, 1)}

be the code of length 7 and dimension 2 determined by H2; this is the same code considered

in Examples 5.6 and 5.8 above. Simulations of this code result in behavior similar to that

of the code C1 above, in that AMS, MS and LP perform identically and are close to ML,

and there was a small set of AMS pseudocodewords. The sets of LP and common AMS

pseudocodewords are discussed in Example 5.8. The performance results from the previous

two codes agree with Feldman’s comment [7] that the performance of LP and MS agree when

the parity-check matrix has a constant column weight of two.

Consider next the (3, 3)-regular low-density parity-check code C3 of length 6 and dimen-

July 7, 2008 47

SGER Technical Report 0801

sion 3 determined by the parity-check matrix

H3 =




1 1 1 0 0 0

1 1 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 1 1

0 0 0 1 1 1




.

Note that, as subspaces of F
6
2, we have C3 = C1. Min-sum and AMS perform similarly in

simulations, as do LP and ML, though LP and ML perform much better than either MS

or AMS. The following set of commonly witnessed AMS pseudocodewords is still simple,

in that it is small and consists of vectors in the fundamental polytope that appear to be

approximations of fractions with small denominators:

{(
1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 0, 0, 0, 0

)
,
(
0, 0, 0, 0, 1

2
, 1

2

)
,

(
1
2
, 1

2
, 0, 0, 1, 1

)
,
(
1, 1, 0, 0, 1

2
, 1

2

)}
.

In contrast to the case of the code determined by H1, where two of the six nontrivial AMS

pseudocodewords appearing in simulations were nontrivial LP pseudocodewords, in this case

the nontrivial LP pseudocodewords
(

1
2
, 1

2
, 1, 0, 1

2
, 1

2

)
and

(
1
2
, 1

2
, 0, 1, 1

2
, 1

2

)
are not present in

the set of AMS pseudocodewords for H3.

As with the parity-check matrices of column weight two above, the regularity condition

may be loosened to semi-regularity so as to further examine the impact of regularity on the

July 7, 2008 48

SGER Technical Report 0801

behavior of the average min-sum decoder. The matrix

H4 =




1 1 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 1 1

1 1 1 1 1 1




defines a semi-regular LDPC code C4 of length 6 and dimension 3 with constant column

weight 3. Notice that, as subsets of F
6
2, we have C4 = C3 = C1. Min-sum and AMS again

performed similarly in simulations. The performances of LP and ML are still close, but now

they are only slightly better than MS and AMS. With this description of the code, however,

the set of AMS pseudocodewords is now large and unwieldy; even at high SNRs the non-

codeword outputs of AMS no longer appear to be simple rational vectors. Four such AMS

outputs obtained at 5.0 dB are

(0.50, 0.50, 0.27, 0.47, 0.28, 0.33) ,

(0.14, 0.14, 0.14, 0.17, 0.81, 0.80) ,

(0.45, 0.33, 0.41, 0.49, 0.50, 0.50) , and

(0.11, 0.11, 0.04, 0.07, 0.02, 0.08) .

Additionally, enforcing regularity at the check nodes, i.e., maintaining constant row

weight, does not appear to simplify the set of AMS pseudocodewords any more than enforcing

regularity at the variable nodes, as seen in the next example. Let H5 be the parity-check

July 7, 2008 49

SGER Technical Report 0801

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR E
b
/N

0
 (dB)

P
b/P

w

Word Error LP
Bit Error LP
Word Error AMS
Bit Error AMS
Word Error MS(FC)
Bit Error MS(FC)
Bit/Word Error ML

Figure 9: Performance of the irregular LDPC code C6 with maximum likelihood (ML), linear
programming (LP), min-sum (MS) and average min-sum (AMS) decoding.

matrix

H5 =




1 1 1 0 0 0

1 1 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 1 1




and let C5 be the code determined by H5. Then C5 is a code of length 6 and dimension 3

and H5 has a constant row weight of three. As subspaces of F
6
2, we have C5 = C4 = C3 = C1.

The relative performance is similar to that of C4: MS and AMS are close, with LP and ML

performing similarly and only slightly better than MS and AMS. As was the case with C4,

however, we also observe very little discernible structure in the large set of nontrivial AMS

pseudocodewords.

The final example that we consider for which it is practical to examine the set of average

July 7, 2008 50

SGER Technical Report 0801

min-sum pseudocodewords is an irregular low-density parity-check code C6 of length 10 and

dimension 1 defined by the parity-check matrix

H6 =




1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 1

1 1 1 0 0 1 1 1 0 0

1 1 1 1 1 1 0 0 0 0




.

The performance of this code under various decoding algorithms is shown in Figure 9. In this

simulation, MS is implemented such that it terminates when it reaches its first codeword.

The performance of both AMS and MS are very close to ML and far better than that of LP.

The nontrivial AMS pseudocodewords are extremely irregular and again it is hard to discern

any structure.

Finally, we offer in Figures 10 and 11 results of two simulations of the average min-sum

decoder on larger regular codes that are more similar to codes actually used in practice. In

these simulations, it can be seen that the performance of AMS is the same as that of MS

with respect to word error rate, but better than that of MS with respect to bit error rate.

Unfortunately, it is impractical to examine the set of AMS pseudocodewords or to compare

this performance to that of LP or ML for codes with such large block lengths.

July 7, 2008 51

SGER Technical Report 0801

0 0.5 1 1.5 2 2.5 3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR E
b
/N

0
 (dB)

P
b/P

w

Word Error MS/AMS
Bit Error MS
Bit Error AMS

Figure 10: Performance of a rate 1/2, (6,3)-regular LDPC code of length 1080 with min-sum
(MS) and average min-sum (AMS) decoding.

5.2.2 Discussion of Average Min-Sum Results

We have observed through simulation of the small parity-check matrices H1, H2, H3, H4 and

H5 that min-sum and average min-sum have similar performance with respect to both bit

and word error rate. Furthermore, on the large codes of lengths 1,080 and 131,072, MS and

AMS again have comparable word error rates, but AMS has a significantly better bit error

rate than MS; see Figures 10 and 11. The question of whether AMS typically outperforms

MS with respect to bit error rate for codes with reasonable parameters is an object of future

investigation.

Also of interest is the set of nontrivial average min-sum pseudocodewords. It was observed

that for codes defined by parity-check matrices of column weight of two or of uniform row

and column weight, the set of nontrivial AMS pseudocodewords is a small set of vectors

resembling “nice” rational vectors that lie within the fundamental polytope. In the cases

July 7, 2008 52

SGER Technical Report 0801

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SNR E
b
/N

0
 (dB)

P
b/P

w

Word Error MS/AMS
Bit Error MS
Bit Error AMS

Figure 11: Performance of a rate 1/2, (6,3)-regular LDPC code of length 131, 072 with
min-sum (MS) and average min-sum (AMS) decoding.

where the parity-check matrix is irregular with at least one column having weight different

from two, the set of nontrivial AMS pseudocodewords was extremely large and it was difficult

to find any apparent structure in the vectors. For parity-check matrices with a uniform

column weight two, perhaps the phenomenon of “nice” rational vectors can be explained

by Feldman’s comment that MS and LP have identical performance on cycle codes [7], i.e.,

codes determined by parity-check matrices of constant column weight of 2. As for the regular

LDPC code defined by H3, possible connections between the distribution of copies of variable

nodes in computation trees and the outputs of MS remain under investigation.

In summary, the average min-sum decoder performs analogously in most cases with min-

sum, and in the simulations on codes most similar to those used in practice, AMS displayed

a significant improvement in bit error rate over MS. Thus, AMS is interesting in its own

right as well as being an instrument with which to study the long-term behavior of MS.

July 7, 2008 53

SGER Technical Report 0801

Additionally, in the simulations performed with regular LPDC codes and cycle codes, the

set of nontrivial AMS pseudocodewords approximated rational points in the fundamental

polytope. Moreover, some of these nontrivial AMS pseudocodewords were not vertices of the

fundamental polytope, and hence are not possible outputs of (the standard implementations

of) LP/graph cover decoding. These results suggest that the study of AMS decoding may

shed light on relationships that exist between MS and LP/graph cover decoding.

6 Limiting Behavior of Min-Sum

As discussed previously, a primary goal of this work is to gain a more complete understanding

of the behavior of the min-sum decoding algorithm. In this section2, we examine how the

algorithm behaves as the number of iterations goes to infinity. Since, as Wiberg [31] shows,

the min-sum algorithm for m iterations operates on the computation tree of depth m derived

from the Tanner graph, we are led to consider computation trees of infinite depth. As we will

see, such infinite trees are actually universal covers of the Tanner graph and, as such, are well-

known topological objects. Since the Tanner graphs we consider are finite and connected,

we deal exclusively with universal covers of finite connected graphs. For universal covers of

more general topological spaces, see [20].

Definition 6.1. Let G be a finite connected graph and suppose the cover π̂ : Ĝ → G enjoys

the following universal property: For any connected cover π : G̃ → G of G, there is a covering

map π̃ : Ĝ → G̃ such that π ◦ π̃ = π̂. Then π̂ : Ĝ → G is called a universal cover of G.

If G is a finite connected graph, then a universal cover of G exists, is a tree, and is unique

up to graph isomorphism [22], so we will refer to the universal cover of G. Note that if G is a

tree, then G is its own universal cover. When G is not a tree, a practical way of constructing

2Many of the results of this section and the next were previously published in [4]; see also [3].

July 7, 2008 54

SGER Technical Report 0801

the universal cover of G is to build the computation tree of infinite depth rooted at a vertex

of G. It is clear that this infinite tree is a cover; the covering map π̂ is found by using the

labels typically included on the computation tree. That it is the universal cover follows from

Theorem 1.24 in [22], noting that trees have trivial fundamental group.

6.1 Configurations and Cost on Universal Covers

Given a Tanner graph T , the universal cover of T can be thought of as an infinite Tanner

graph in the following sense.

Definition 6.2 ([4], Definition 6.2). Let T = (X ∪ F, E) be a Tanner graph, and let π̂ :

T̂ → T be the universal cover of T . Set

X̂ := X(T̂) =
⋃

x∈X

π̂−1(x) and F̂ := F (T̂) =
⋃

f∈F

π̂−1(f).

We call X̂ the set of variable nodes of T̂ and F̂ the set of check nodes of T̂ . A configuration

on T̂ is an assignment ĉ = (ĉbx)bx∈ bX of 0’s and 1’s to the variable nodes of T̂ such that the

binary sum of the neighbors of each check node in T̂ is 0. A universal cover pseudocodeword

for T is a configuration on T̂ .

Proposition 6.3 outlines some relationships between universal cover pseudocodewords,

graph cover pseudocodewords and computation tree pseudocodewords.

Proposition 6.3 ([4], Proposition 6.3). Let T be a Tanner graph. Then

1. Every computation tree pseudocodeword for T extends to a universal cover pseudocode-

word.

2. Every graph cover pseudocodeword for T that has a connected graph cover realization

induces a universal cover pseudocodeword.

July 7, 2008 55

SGER Technical Report 0801

3. Every universal cover pseudocodeword truncates to a computation tree pseudocodeword

on every computation tree for T .

Proof. Let π̂ : T̂ → T be the universal cover of T and let X̂ be the set of variable nodes of

T̂ .

1. Let c = (cx)x∈X(R) be a computation tree pseudocodeword on some computation tree

R of T , rooted at the variable node v of T . Thinking of T̂ as a computation tree of

infinite depth rooted at v, c can be superimposed onto the top portion of T̂ and, since

there are no cycles in T̂ , it can be extended (possibly in several ways) to a configuration

on all of T̂ .

2. Let p be an unscaled graph cover pseudocodeword with a connected graph cover real-

ization (T̃ , c̃), where T̃ is a connected finite cover of T and c̃ is a configuration on T̃ .

Since T̃ is connected, there is a covering map π̃ : T̂ → T̃ and p induces a configuration

ĉ = (ĉbx)bx∈ bX on T̂ by setting ĉbx = c̃eπ(bx) for each x̂ ∈ X̂.

3. Let ĉ be a universal cover pseudocodeword and let R be a computation tree for T ,

rooted at the variable node v of T . Then T̂ can be drawn as an infinite computation

tree for T rooted at v, so that R is a subtree of T . The truncation of ĉ to R yields a

computation tree pseudocodeword on R.

�

The next step is to apply the notion of the universal cover towards the analysis of other

decoders. We first define a cost function on the set of universal cover pseudocodewords. We

would like the cost function to resemble the limit of the cost given in Definition 5.1, which is

Wiberg’s cost function for finite computation trees [31]. Since the number of variable nodes

on a computation tree increases exponentially with the number of iterations, we cannot

simply take the limit of Wiberg’s cost function. These costs are therefore normalized by

July 7, 2008 56

SGER Technical Report 0801

dividing through by the average number of copies of a given variable node in the computation

tree before a limiting process is applied.

Definition 6.4 (See also [4], Definition 6.4). Let T = (X ∪ F, E) be a Tanner graph, let R

be a (finite) computation tree for T , and let X(R) be the set of variable nodes of R. For any

configuration c on R, let G(c) be the cost of c, as given in Definition 5.1. The normalized

cost of c on R is

G(c) :=
|X|

|X(R)|
G(c).

Definition 6.5 (See also [4], Definition 6.5). Let T = (X ∪F, E) be a Tanner graph and let

T̂v be the universal cover of T , realized as an infinite computation tree rooted at the variable

node v of T . For any positive integer m, let R
(m)
v be the computation tree of depth m rooted

at v, so that R
(m)
v is formed by truncating T̂v after the 2mth level. For any configuration ĉv

on T̂v, let ĉ
(m)
v , m ≥ 1, be the truncation of ĉv to R

(m)
v , and let G

(m)

v (ĉ
(m)
v) be the normalized

cost of ĉ
(m)
v on R

(m)
v . The rooted cost of the universal cover configuration ĉv on the infinite

computation tree T̂v is defined to be

Gv(ĉv) := lim sup
m→∞

G
(m)

v (ĉ(m)
v) = lim sup

m→∞

|X|∣∣∣X(m)
v

∣∣∣
G(ĉ(m)

v),

where X
(m)
v is the set of variable nodes of R

(m)
v .

Notice that the normalized cost of the configuration ĉv always satisfies |G
(m)

v (ĉ
(m)
v)| ≤

|X|
∑n

i=1 |λi|, where (λ1, . . . , λn) is the cost vector associated with the received vector, and,

moreover, that this bound is independent of ĉv, m and v. As long as each λi is finite, we

therefore have that Gv(ĉv) exists and is finite for any configuration ĉv on the universal cover

T̂v of T .

We further investigate the notion of rooted cost to provide the missing link between graph

cover decoding and min-sum decoding. Toward this goal, we must first introduce the notion

July 7, 2008 57

SGER Technical Report 0801

of a non-backtracking random walk, which is described for an arbitrary graph G as follows:

select a vertex v0 of G from which to begin the walk, and select uniformly at random an

edge e1 incident to v0. Let v1 be the other endpoint of e1 and select uniformly at random an

edge e2 6= e1 incident to v1. Repeat this process some predetermined finite number of times.

More formally (and restricting to walks of even length for reasons that will become clear

shortly), let W
(m)
v be the set of all non-backtracking walks of length 2m in G whose initial

vertex is v, and define the probability of the walk w ∈ W
(m)
v with vertices v = v0, v1, . . . , v2m

to be

P (w) :=
1

deg(v)(deg(v1) − 1) . . . (deg(v2m−1) − 1)
.

A non-backtracking random walk of length 2m with initial vertex v is then a pair (w, P (w))

where w ∈ W
(m)
v and P (w) is its probability. One can see that this is a probability measure

on W
(m)
v by using induction on m, and it is clear that this measure agrees with the intuitive

description in the previous paragraph.

In our situation, the graph G is a Tanner graph T , and the walks of interest to us must

start and end at variable nodes. Since any such walk must have even length because T is

bipartite, we focus exclusively on walks of even length.

Let q
(m)
v (x) =

∑
w∈W P (w), where W = W

(m)
v (x) is the set of non-backtracking walks

in T of length 2m that start at variable node v and end at variable node x. With this

definition, we see that q
(m)
v (x) is the probability that a non-backtracking random walk in

T of length 2m that starts at vertex v will have terminal vertex x [21]. Theorem 6.6 and

Proposition 6.7 below are used to show that for a subset of regular LDPC codes, the rooted

cost of universal cover pseudocodewords induced by connected graph cover pseudocodewords

can be computed using a limit rather than a limit superior. Moreover, an exact formula for

the rooted cost of such a configuration is given.

Theorem 6.6 (See Ortner and Woess [21], Theorem 1.2(ii)). Let T = (X ∪ F, E) be a

July 7, 2008 58

SGER Technical Report 0801

Tanner graph with minimum degree at least 3. Using the notation established above, we have

lim
m→∞

q(m)
v (x) =

deg(x)

|E|

for all v, x ∈ X.

Recall from Definition 6.5 that X
(m)
v is the set of variable nodes in the computation tree

R
(m)
v of depth m rooted at the variable node v of T , and write X

(m)
v (x) for the set of copies of

the variable node x of T in X
(m)
v . The next theorem shows that the distribution of variable

nodes in the computation tree becomes uniform as the depth of the tree goes to infinity.

Theorem 6.7. Let T = (X ∪ F, E) be the Tanner graph of a (dX , dF)-regular LDPC code

with dX , dF ≥ 3. For any positive integer m, let R
(m)
v be the computation tree of depth m

rooted at the variable node v of T . For any x ∈ X, we have

lim
m→∞

∣∣∣X(m)
v (x)

∣∣∣
∣∣∣X(m)

v

∣∣∣
=

1

|X|
.

Proof. For m ≥ 1, the biregularity of T forces the number of non-backtracking walks in T

of length 2m that start at any given variable node to be τ (m) := dX

dX−1
(dX − 1)m(dF − 1)m,

with each walk equally probable. Let T̂v be the universal cover of T , realized as an infinite

computation tree rooted at v, so that R
(m)
v is the truncation of T̂v to depth m. Let η

(m)
v (x) be

the number of copies of variable node x in the 2mth level of T̂v. There is a natural bijection

between non-backtracking walks in T that start at v and paths in T̂v that start at the root

node; thus, η
(m)
v (x) is precisely the number of non-backtracking walks in T of length 2m that

start at v and end at x. Therefore q
(m)
v (x) = η

(m)
v (x)

τ (m) .

Let p
(m)
v (k) be the probability of picking uniformly at random a variable node in the 2kth

level from all variable nodes in R
(m)
v . Since the probability of selecting uniformly at random

July 7, 2008 59

SGER Technical Report 0801

a copy of variable node x from all variable nodes of R
(m)
v is

˛̨
˛X(m)

v (x)
˛̨
˛

˛̨
˛X(m)

v

˛̨
˛

, we have

∣∣∣X(m)
v (x)

∣∣∣
∣∣∣X(m)

v

∣∣∣
= q(0)

v (x)p(m)
v (0) + q(1)

v (x)p(m)
v (1) + · · ·+ q(m)

v (x)p(m)
v (m).

Let ǫ > 0 be given and set L = deg(x)
|E| . By Theorem 6.6, there is a positive integer M1 such

that |q
(m)
v (x)−L| < ǫ

3
for all m ≥ M1. Since the number of variable nodes from one level to

the next in the computation tree grows exponentially by a factor of (dX − 1)(dF − 1) ≥ 4,

the probability of selecting a variable node from the first 2M1 levels of a computation tree

diminishes to zero as the depth of the tree increases. Thus, we can find M2 > M1 such that

for all m ≥ M2,
M1∑

i=0

p(m)
v (i) <

ǫ

3
.

Then for all m ≥ M2,

∣∣∣∣∣∣

∣∣∣X(m)
v (x)

∣∣∣
∣∣∣X(m)

v

∣∣∣
− L

∣∣∣∣∣∣
=
∣∣q(0)

v (x)p(m)
v (0) + · · ·+ q(M1)

v (x)p(m)
v (M1) + · · ·+ q(m)

v (x)p(m)
v (m) − L

∣∣

≤

M1∑

i=0

|q(i)
v (x)p(m)

v (i)| +
∣∣q(M1+1)

v (x)p(m)
v (M1 + 1) + . . .

· · · + q(m)
v (x)p(m)

v (m) −

M1∑

j=0

p(m)
v (j)L −

m∑

k=M1+1

p(m)
v (k)L

∣∣∣∣∣

≤
ǫ

3
+

M1∑

j=0

p(m)
v (j)L +

m∑

k=M1+1

p(m)
v (k)

∣∣q(k)
v (x) − L

∣∣

≤
ǫ

3
+

ǫ

3
L +

m∑

k=M1+1

p(m)
v (k)

ǫ

3

≤
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ.

July 7, 2008 60

SGER Technical Report 0801

Thus, we have

lim
m→∞

∣∣∣X(m)
v (x)

∣∣∣
∣∣∣X(m)

v

∣∣∣
=

deg(x)

|E|
=

dX

|X| dX

=
1

|X|

as desired. �

The next few results examine the behavior of the rooted cost function for certain special

types of universal cover configurations. The exposition will be helped by the following

definition, which is motivated by the definition of the support of a vector as the collection of

coordinates in which the vector is nonzero.

Definition 6.8. Let T be a Tanner graph, let T̂ be the universal cover of T , and let X̂ be

the set of variable nodes of T̂ . The support of a configuration ĉ = (ĉbx)bx∈ bX on T̂ is

supp(ĉ) := {x̂ ∈ X̂ | ĉbx = 1}.

Theorem 6.9 (see also [4], Theorem 6.6). Let T = (X ∪ F, E) be the Tanner graph of a

(dX , dF)-regular LDPC code, with dX , dF ≥ 3. Let T̃ be a connected cover of T , let c̃ be a

codeword in the code defined by T̃ , and let ω = ω(c̃) be the normalized pseudocodeword asso-

ciated to c̃. Suppose that, on the universal cover T̂v of T realized as an infinite computation

tree rooted at the variable node v of T , the configuration ĉv is induced by c̃. Then

Gv(ĉv) = lim
m→∞

G
(m)

v (ĉ(m)
v) = λ · ω,

where λ is the vector of log-likelihood ratios.

Proof. Let M be the degree of the cover T̃ = (X̃ ∪ F̃ , Ẽ) of T . Note that T̂v is a universal

cover of T̃ and that T̃ is finite and connected with d eX = dX ≥ 3 and d eF = dF ≥ 3, and let

July 7, 2008 61

SGER Technical Report 0801

ĉv be a configuration on T̂v induced by c̃. Then we have

Gv(ĉv) = lim sup
m→∞

|X|∣∣∣X(m)
v

∣∣∣

∑

ex∈ eX

λex
∣∣X(m)

v (x̃) ∩ supp(ĉ(m)
v)

∣∣

= lim sup
m→∞

|X|∣∣∣X(m)
v

∣∣∣

∑

ex∈supp(ec)

λex
∣∣X(m)

v (x̃)
∣∣

= |X|
∑

ex∈supp(ec)

λex lim sup
m→∞

∣∣∣X(m)
v (x̃)

∣∣∣
∣∣∣X(m)

v

∣∣∣

= |X|
∑

ex∈supp(ec)

λex
1∣∣∣X̃
∣∣∣

by Theorem 6.7. To continue the string of equalities, we use that
∣∣∣X̃
∣∣∣ = M |X|, λex = λx for

each x̃ ∈ X̃ in the inverse image of x under the covering map, and the number of such x̃ in

the support of c̃ is precisely Mωx, and so we have:

= |X|
∑

x∈supp(ω)

Mωxλx

1

M |X|

=
∑

x∈supp(ω)

λxωx

= λ · ω,

as desired. �

As a consequence of Theorems 6.9 and 6.7, we obtain the following result, which says that

the distribution of 1’s in a universal cover configuration induced by a codeword on a cover

of the Tanner graph is given by the corresponding normalized graph cover pseudocodeword.

Proposition 6.10. Let T = (X ∪ F, E) be the Tanner graph of a (dX , dF)-regular LDPC

code with dX , dF ≥ 3 and write X = {x1, . . . , xn}. Let c̃ be a configuration on some finite

July 7, 2008 62

SGER Technical Report 0801

connected cover of T and let ω = ω(c̃) = (ω1, . . . , ωn) be the normalized pseudocodeword

associated to c̃. Let ĉv be a configuration induced by c̃ on T̂v, the universal cover of T realized

as an infinite computation tree rooted at the variable node v of T . Then for 1 ≤ i ≤ n we

have

lim
m→∞

∣∣∣X(m)
v (xi) ∩ supp(ĉ

(m)
v)

∣∣∣
∣∣∣X(m)

v (xi)
∣∣∣

= ωi.

Proof. Let λ be the vector that has a value of 1
n

in the ith position and 0 elsewhere. Then,

by using this λ as our log-likelihood vector in Theorem 6.9, we have

1

n
ωi = λ · ω = lim

m→∞
G

(m)

v (ĉ(m)
v)

= lim
m→∞

n∣∣∣X(m)
v

∣∣∣
G(ĉ(m)

v)

= lim
m→∞

n∣∣∣X(m)
v

∣∣∣
1

n

∣∣X(m)
v (xi) ∩ supp(ĉ(m)

v)
∣∣

= lim
m→∞

∣∣∣X(m)
v (xi) ∩ supp(ĉ

(m)
v)

∣∣∣
∣∣∣X(m)

v

∣∣∣
.

Hence, by Theorem 6.7, we have

lim
m→∞

∣∣∣X(m)
v (xi) ∩ supp(ĉ

(m)
v)

∣∣∣
∣∣∣X(m)

v (xi)
∣∣∣

= lim
m→∞




∣∣∣X(m)
v (xi) ∩ supp(ĉ

(m)
v)

∣∣∣
∣∣∣X(m)

v

∣∣∣






∣∣∣X(m)
v

∣∣∣
∣∣∣X(m)

v (xi)
∣∣∣




=


 lim

m→∞

∣∣∣X(m)
v (xi) ∩ supp(ĉ

(m)
v)

∣∣∣
∣∣∣X(m)

v

∣∣∣







1

limm→∞

˛̨
˛X(m)

v (xi)
˛̨
˛

˛̨
˛X(m)

v

˛̨
˛




=

(
1

n
ωi

)(
1
1
n

)

= ωi

July 7, 2008 63

SGER Technical Report 0801

as desired. �

In light of Proposition 6.10, Theorem 6.9 may now be interpreted as saying that, in the

case of universal cover configurations induced by graph cover pseudocodewords, the rooted

cost can be computed by simply taking the dot product of the vector of log-likelihoods with

the vector representing the distribution of 1’s in the configuration. Our next result is a

generalization of this.

Proposition 6.11. Let T = (X ∪ F, E) be the Tanner graph of a (dX , dF)-regular LDPC

code with dX , dF ≥ 3 and write X = {x1, x2, . . . , xn}. Let ĉv be a configuration on T̂v, the

universal cover of T realized as an infinite computation tree rooted at the variable node v of

T . Suppose the limit

ξi := lim
m→∞

∣∣∣X(m)
v (xi) ∩ supp(ĉ

(m)
v)

∣∣∣
∣∣∣X(m)

v (xi)
∣∣∣

exists for 1 ≤ i ≤ n. Then the rooted cost of ĉv on T̂v is given by

Gv(ĉv) = λ · ξ,

where λ is the vector of log-likelihood ratios and ξ is the vector (ξ1, . . . , ξn).

Proof. From Definition 6.5, Theorem 6.7 and our hypothesis on the existence of ξ1, . . . , ξn,

July 7, 2008 64

SGER Technical Report 0801

we have

Gv(ĉv) = lim sup
m→∞

n∣∣∣X(m)
v

∣∣∣
G(ĉ(m)

v)

= lim sup
m→∞

n∣∣∣X(m)
v

∣∣∣

n∑

i=1

λi

∣∣X(m)
v (xi) ∩ supp(ĉ(m)

v)
∣∣

= n lim sup
m→∞

n∑

i=1

λi

∣∣∣X(m)
v (xi) ∩ supp(ĉ

(m)
v)

∣∣∣
∣∣∣X(m)

v (xi)
∣∣∣

∣∣∣X(m)
v (xi)

∣∣∣
∣∣∣X(m)

v

∣∣∣

= n

n∑

i=1

λiξi

1

n

= λ · ξ,

as desired. �

The results of this section will be used in Section 6.3 below to define two variants of

min-sum, which will in turn lead to a proposed universal cover decoder in Section 7. First,

however, we take a brief detour to examine minimal pseudocodewords on the universal cover.

6.2 Minimal Universal Cover Pseudocodewords

Recall that the theory of minimal linear programming and graph cover pseudocodewords

is discussed in Section 4. The following definition gives a straightforward generalization of

minimal codewords, allowing for further parallels between the analyses of universal cover

pseudocodewords and LP/graph cover pseudocodewords.

Definition 6.12. A minimal universal cover pseudocodeword is a configuration on T̂ whose

support does not properly contain the support of any nonzero universal cover pseudocode-

word.

July 7, 2008 65

SGER Technical Report 0801

A deviation, as defined by Wiberg [31], is simply a finite truncation of a minimal universal

cover pseudocodeword that assigns a bit value of 1 to the root node. To construct a minimal

configuration ĉ that does not assign a bit value of 1 to the root node, start with the all-zeros

configuration. Pick any check node and assign a bit value of 1 to precisely two of the variable

nodes immediately below it, i.e., to two of its children. Consider these two variable nodes

now as parents. For each check node adjacent to and below each of these two parents, assign

exactly one of its children a bit value of 1. Then, considering the child variable nodes as

parents at the next level of the tree, repeat this process indefinitely on the universal cover.

The end result is a configuration such that, with the exception of the initially chosen check

node, every check node that is adjacent to at least one variable node in the support of ĉ has

precisely one parent variable node that is assigned a 1 and one child variable node that is

assigned a 1. The next proposition describes minimal configurations more precisely.

Proposition 6.13. Let T be a Tanner graph such that each check node has degree at least

2, and let T̂ be its universal cover. Let ĉ be a configuration on T̂ , let A be the neighborhood

of supp(ĉ), and let S be the subgraph of T̂ induced by supp(ĉ)∪A. Then ĉ is minimal if and

only if S is connected and each check node in A is adjacent to exactly two variable nodes in

supp(ĉ).

Proof. Suppose first that ĉ is minimal. Then, since each connected component of S corre-

sponds to a universal cover configuration, S must have precisely one connected component,

i.e., S must be connected. Further, since ĉ is a valid configuration, every check node in A

must be adjacent to a positive, even number of variable nodes in supp(ĉ). By way of con-

tradiction, suppose that some check node f ∈ A is adjacent to at least four variable nodes

in supp(ĉ); call them v1, v2, v3, v4. We give an algorithm to construct a nonzero universal

cover configuration from ĉ whose support is a strict subset of the support of ĉ. First, set v1

and v2 equal to 0; check node f is still satisfied. Inductively, assign 0’s to all the variable

July 7, 2008 66

SGER Technical Report 0801

nodes in the sub-trees of T̂ that emanate from f through variable nodes v1 and v2. Since T̂

is a tree, this assignment of 0’s will have no effect on the binary values of variable nodes v3

and v4, so the resulting configuration is a nonzero configuration whose support is properly

contained in supp(ĉ). This contradicts the minimality of ĉ, so each check node in A must

be adjacent to exactly two variable nodes in supp(ĉ).

Conversely, assume that S is connected and that each check node in A is adjacent to

exactly two variable nodes in supp(ĉ). Let ĉ′ be a universal cover configuration with supp(ĉ′)

properly contained in supp(ĉ). Then there is a variable node x̂ in supp(ĉ) such that ĉbx = 1

and ĉ′bx = 0. Since ĉ′ is a valid configuration, each of the neighboring check nodes of x̂ must

be satisfied. By assumption, each of these neighboring check nodes is connected to a unique

variable node ŷ ∈ supp(ĉ). Since supp(ĉ′) is a subset of supp(ĉ), we must have ĉ′by = 0.

Applying this argument inductively and using the assumption that S is connected, we see

that ĉ′ must be the all-zeros configuration. Thus, ĉ is minimal. �

With this characterization of minimal universal cover configurations, we show in Propo-

sition 6.14 below that, in the case of (dX , dF)-regular LDPC codes with dX , dF ≥ 3, every

minimal universal cover configuration has rooted cost equal to zero and cannot be induced

by a graph cover pseudocodeword.

Proposition 6.14. Let T = (X ∪ F, E) be the Tanner graph of a (dX , dF)-regular LDPC

code of length n with dX , dF ≥ 3. Let T̂v be the universal cover of T , realized as the infinite

computation tree rooted at the variable node v of T . Let ĉv be a minimal configuration on T̂v

and assume that the coordinates of the log-likelihood vector are all finite. Then

Gv(ĉv) = lim
m→∞

G
(m)

v (ĉ(m)
v) = 0.

Moreover, ĉv is not induced by any graph cover pseudocodeword.

July 7, 2008 67

SGER Technical Report 0801

Proof. By Proposition 6.13, we have that
∣∣∣X(m)

v ∩ supp(ĉ
(m)
v)

∣∣∣ grows on the order of (dX−1)m,

but the size of X
(m)
v grows on the order of (dX − 1)m(dF − 1)m. Since (dX − 1) < (dX −

1)(dF − 1), it follows that

lim
m→∞

∣∣∣X(m)
v ∩ supp(ĉ

(m)
v)

∣∣∣
∣∣∣X(m)

v

∣∣∣
= 0. (6.1)

Set λ0 = max{|λi| : i = 1, . . . , n}, where λ = (λ1, . . . , λn) is the log-likelihood vector.

Then
∣∣∣G(m)

v (ĉ(m)
v)

∣∣∣ =
n∣∣∣X(m)
v

∣∣∣

∣∣G(ĉ(m)
v)

∣∣ ≤ λ0n

∣∣∣X(m)
v ∩ supp(ĉ

(m)
v)

∣∣∣
∣∣∣X(m)

v

∣∣∣
.

Using (6.1), we see that limm→∞ G
(m)

v (ĉ
(m)
v) = 0, and so Gv(ĉ) = 0.

It remains to be shown that ĉ is not induced by any graph cover pseudocodeword. If

it were, by Theorem 6.9 the rooted cost Gv(ĉ) would be equal to λ · ω, where ω is some

normalized, connected, graph cover pseudocodeword. But we have shown that Gv(ĉ) = 0 for

all vectors λ in which all coordinates are finite, so it must be that ω = 0. Since ĉ is not the

all-zeros configuration, it is not induced by the all-zeros graph cover pseudocodeword. �

6.3 Two Variants of Min-Sum

In this section, we propose two different variants of the min-sum decoder, with the aim of

understanding how one should define universal cover decoding; see Section 7 below. Work

remains in utilizing the decoders to establish a relationship between iterative message-passing

decoders and the LP/ graph cover decoder. Below, we discuss currently known properties of

the two decoders and conjectures related to them.

As discussed in Section 5.1, Wiberg [31] shows that for each variable node v of T , the

value that min-sum assigns to v after m iterations is the same value assigned to the root node

of R
(m)
v by a minimal cost configuration on R

(m)
v . Min-sum performs this task by computing,

July 7, 2008 68

SGER Technical Report 0801

for each v ∈ X(T), the minimal cost κ
(m)
v (z) over all configurations on R

(m)
v that assign a

binary value of z to the root node. It then assigns to the variable node v of T the binary value

arg minz=0,1 κ
(m)
v (z). In the case of a tie, i.e., if κ

(m)
v (0) = κ

(m)
v (1), the algorithm chooses a

binary value arbitrarily [31].

Thus, there is a strong connection between the output of min-sum and the binary value

assigned to a particular copy of variable node v in the computation tree by a minimal cost

configuration. The following decoder explores the relationships between the bit-wise decision

made by min-sum and the binary values assigned to all copies of v in R
(m)
v by a minimal cost

configuration.

Definition 6.15. Let T be a Tanner graph with variable nodes x1, . . . , xn. For each m ∈ N

and for 1 ≤ i ≤ n, let R
(m)
xi be the computation tree of depth m rooted at xi, and let c

(m)
i be

a configuration of minimal cost on R
(m)
xi . The extended min-sum decoder is defined to be the

iterative decoder that, after m iterations, returns the vector (α
(m)
1 , α

(m)
2 , . . . , α

(m)
n), where,

for 1 ≤ i ≤ n,

α
(m)
i =

∣∣∣X(m)
xi (xi) ∩ supp(c

(m)
i)

∣∣∣
∣∣∣X(m)

xi (xi)
∣∣∣

is the proportion of copies of xi in R
(m)
xi that are assigned a bit value of 1 by c

(m)
i .

Suppose, for each i and for sufficiently large m, the configurations c
(m)
i are all truncations

of the same universal cover pseudocodeword ĉi on T̂xi
. Moreover, suppose that each ĉi is

induced by the same graph cover pseudocodeword. Then, if we set αi = limm→∞ α
(m)
i and

α = (α1, . . . , αn), Theorem 6.9 and Propositions 6.10 and 6.11 say that the vector α exists

and is finite and that the rooted cost of each ĉi is λ·α, where λ is the vector of log-likelihoods.

Motivated by this very special case, we make the following conjecture:

Conjecture 6.16. Suppose there is a configuration ĉv on the universal cover T̂ of T , realized

as an infinite computation tree rooted at the variable node v of T such that

July 7, 2008 69

SGER Technical Report 0801

1. ĉv is induced by a codeword c̃ on some finite connected cover T̃ of T , and

2. Gv(ĉv) ≤ Gv(ĉ
′
v) for every configuration ĉ′v on T̂ .

Then, if (ω1, . . . , ωn) is the normalized graph cover pseudocodeword corresponding to c̃ and

α
(m)
1 , . . . , α

(m)
n are as in Definition 6.15, we have

lim
m→∞

α
(m)
i = ωi.

In other words, if there is a configuration of minimal rooted cost on the universal cover that

happens to be induced by a graph cover pseudocodeword, then the outputs of the extended min-

sum decoder will converge to that (normalized) graph cover pseudocodeword as the number

of iterations goes to infinity.

Of course, although a configuration ĉv may have minimal rooted cost on the universal

cover, the truncation of ĉv to R
(m)
v does not necessarily have minimal cost on R

(m)
v . This

presents a large obstacle to proving Conjecture 6.16.

The fact that the min-sum algorithm must make an arbitrary choice in the case of a tie

motivates our second decoder.

Definition 6.17. Let T be a Tanner graph with variable nodes x1, . . . , xn and, for 1 ≤ i ≤ n,

let Γ
(m)
xi be the set of all configurations on R

(m)
xi of minimal cost. For a given number of

iterations m, let β
(m)
i be the number of configurations in Γxi

(m) that assign a 1 to the root

node of R
(m)
xi , divided by the size of Γ

(m)
xi . The probabilistic min-sum decoder is defined to be

the iterative decoder that, after m iterations, returns the vector (β
(m)
1 , β

(m)
2 , . . . , β

(m)
n).

It is important to investigate whether the output of probabilistic min-sum tends to a

limit as the number of iterations goes to infinity. If the aforementioned limit exists, one

should also examine whether the limit has a connection either with graph cover decoding or

with the outputs of the min-sum algorithm as the number of iterations increases.

July 7, 2008 70

SGER Technical Report 0801

7 Decoding on the Universal Cover

Definition 7.1 gives a working definition of universal cover decoding. This definition is

motivated by the probabilistic min-sum decoder of Definition 6.17, with the rationale being

that, a priori, the universal cover of a Tanner graph does not have a root node, making the

idea of taking the value of a configuration at the root node artificial when working on the

universal cover. With this definition of decoding, the results of restricting the decoder to

universal cover configurations induced by connected graph cover configurations are examined

in Proposition 7.3.

Definition 7.1. Let T be a Tanner graph with variable nodes x1, . . . , xn and, for 1 ≤ i ≤ n,

let T̂xi
be the universal cover of T realized as an infinite computation tree rooted at xi. For

a given received vector y, let θi be the probability that a randomly chosen configuration

of minimal rooted cost on T̂xi
has assigned a 1 to the root node xi. Universal cover (UC)

decoding is defined as the decoder that returns the vector

UC(y) = (θ1, . . . , θn).

To make the probabilities θ1, . . . , θn of Definition 7.1 well-defined, one needs a positive,

finite measure defined on certain subsets of the set of universal cover configurations on the

universal covers T̂xi
. The search for a meaningful probability measure is an area of current

study. One particular property that this probability measure should display is given in the

next definition, which is motivated by Proposition 6.10.

Definition 7.2. Let T = (X ∪F, E) be a Tanner graph and let T̂v be the universal cover of

T realized as an infinite computation tree rooted at the variable node v of T . A probability

measure on the set of configurations on T̂v is called admissible if, for every normalized,

connected graph cover pseudocodeword ω = (ωx)x∈X , the probability that an arbitrarily

July 7, 2008 71

SGER Technical Report 0801

chosen configuration on T̂v that is induced by ω assigns a 1 to the root node of T̂v is ωv.

Suppose an admissible measure exists for the Tanner graph T = (X ∪ F, E) with X =

{x1, . . . , xn}. Under this hypothesis, we wish to relate the output of the universal cover

decoder to that of LP/graph cover decoding. To do this, we will restrict the universal cover

decoder in the following manner. For each i = 1, 2, . . . , n, first consider only the set of

configurations on T̂xi
induced by connected graph cover pseudocodewords. From this set,

find the set of minimal cost configurations. Let θi be the probability that a randomly chosen

minimal cost configuration has assigned a 1 to the root node xi, as in Definition 7.1. Define

UC |GC(y) := (θ1, θ2, . . . , θn).

From this point on, we will consider only (dX , dF)-regular LDPC codes of length n with

dX , dF ≥ 3 so as to utilize a number of earlier results. Let λ be the log-likelihood vector for

the received vector y. Theorem 6.9 shows that the rooted cost of a configuration induced

by a configuration c̃ on a finite connected cover of T is equal to λ · ω(c̃), and this value is

independent of the root node of T̂ . Thus, a configuration on T̂xi
induced by a connected

graph cover pseudocodeword c̃ will have minimal rooted cost if it minimizes λ · ω where ω

ranges over all possible normalized connected graph cover pseudocodewords. In our situation,

every graph cover pseudocodeword has a connected realization by Proposition 2.10. Thus,

the set over which we are minimizing is precisely the set of rational points in the fundamental

polytope P. With this motivation, we have:

Proposition 7.3. Let T = (X ∪F, E) be the Tanner graph of a (dX , dF)-regular LDPC code

with dX , dF ≥ 3. Let P be the fundamental polytope of the parity-check matrix defined by T .

Suppose that some v ∈ P satisfies

λ · v < λ · ω

July 7, 2008 72

SGER Technical Report 0801

for every ω ∈ P\{v}, and that an admissible probability measure exists. Then v is a vertex of

P, and universal cover decoding restricted to graph cover configurations, as described above,

agrees with LP/graph cover decoding; in other words, UC |GC(y) = v, where y is the channel

output.

Proof. That v must be a vertex of P is clear. Write X = {x1, . . . , xn}. Since v is the

unique value of argmin{λ · ω |ω ∈ P}, a configuration c̃ on a finite connected cover of T

induces a configuration on T̂xi
of minimal rooted cost among all pseudocodewords induced

by connected graph cover pseudocodewords if and only if ω(c̃) = v. Since the probability

measure used for universal cover decoding is admissible, we have that the probability that an

arbitrarily chosen element of the minimal rooted cost configurations on T̂xi
assigns a binary

value of 1 to the root node xi is vi. Thus, UC |GC(y) = v.

�

Thus, the proposed universal cover decoder agrees with linear programming/graph cover

decoding under the conditions described in Proposition 7.3. Furthermore, this notion of

universal cover decoding has an obvious connection to min-sum decoding by way of its

relationship to probabilistic min-sum decoding. Further research on universal cover decoding

should help to solidify our understanding of both LP/graph cover decoding and iterative

message-passing decoding by providing the missing link between these two sets of decoders.

July 7, 2008 73

SGER Technical Report 0801

Appendix A Simulation Results for Example 3.2.

SNR Words sent errors due to p1 errors due to p3

0.0 dB 1990 118 31
0.5 dB 2387 135 40
1.0 dB 2792 157 43
1.5 dB 3201 133 42
2.0 dB 3424 160 48
2.5 dB 4437 173 44
3.0 dB 5833 155 44
3.5 dB 6880 187 35
4.0 dB 8234 176 40
4.5 dB 11, 865 223 37
5.0 dB 17, 601 258 31
5.5 dB 23, 099 266 23
6.0 dB 33, 019 256 31

Table 3: Simulation results for the code of Example 3.2.

Appendix B Simulation Results for Example 3.5.

word sent total errors errors due to p1 errors due to p2

00000000000000 6518 669 336
11100000000000 6625 689 332
00001111100000 6597 56 316
11101111100000 6545 61 299

p1 7018 — 215
p2 16438 1021 —

Table 4: Simulation results for the code of Example 3.5 at 0.0 dB.

July 7, 2008 74

SGER Technical Report 0801

word sent total errors errors due to p1 errors due to p2

00000000000000 5179 505 206
11100000000000 5406 493 254
00001111100000 5369 20 234
11101111100000 5298 32 244

p1 5807 — 137
p2 16200 833 —

Table 5: Simulation results for the code of Example 3.5 at 1.0 dB.

word sent total errors errors due to p1 errors due to p2

00000000000000 4084 338 151
11100000000000 4137 324 183
00001111100000 4058 14 143
11101111100000 4149 14 175

p1 4589 — 77
p2 15590 662 —

Table 6: Simulation results for the code of Example 3.5 at 2.0 dB.

word sent total errors errors due to p1 errors due to p2

00000000000000 2106 113 47
11100000000000 2139 109 52
00001111100000 2156 2 48
11101111100000 2174 1 49

p1 2437 — 29
p2 14394 345 —

Table 7: Simulation results for the code of Example 3.5 at 4.0 dB.

July 7, 2008 75

SGER Technical Report 0801

word sent total errors errors due to p1 errors due to p2

00000000000000 1416 41 23
11100000000000 1460 54 22
00001111100000 1393 0 21
11101111100000 1304 0 14

p1 1543 — 10
p2 13736 217 —

Table 8: Simulation results for the code of Example 3.5 at 5.0 dB.

word sent total errors errors due to p1 errors due to p2

00000000000000 832 17 7
11100000000000 848 15 5
00001111100000 816 0 5
11101111100000 844 0 8

p1 838 — 5
p2 13014 118 —

Table 9: Simulation results for the code of Example 3.5 at 6.0 dB.

July 7, 2008 76

SGER Technical Report 0801

References

[1] N. Axvig, D. Dreher, K. Morrison, E. Psota, L.C. Pérez, and J.L. Walker. Analysis of

connections between pseudocodewords. Submitted for publication, March 2008.

[2] N. Axvig, D. Dreher, K. Morrison, E. Psota, L.C. Pérez, and J.L. Walker. Average

min-sum decoding of LDPC codes. Accepted June, 2008; to appear in 5th International

Symposium on Turbo Codes and Related Topics, December 2008.

[3] N. Axvig, D. Dreher, K. Morrison, E. Psota, L.C. Pérez, and J.L. Walker. Towards

universal cover decoding. Submitted to 2008 International Symposium on Information

Theory and its Applications (ISITA2008), May 2008.

[4] N. Axvig, E. Price, E. Psota, D. Turk, L.C. Pérez, and J.L. Walker. A universal

theory of pseudocodewords. In Proceedings of the 45th Annual Allerton Conference on

Communication, Control, and Computing, September 2007.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting

coding and decoding: Turbo codes 1. In Proceedings of the 1993 IEEE International

Conference on Communications, pages 1064–1070, Geneva, Switzerland, 1993.

[6] D. Changyan, D. Proietti, I.E. Telatar, T.J. Richardson, and R.L. Urbanke. Finite

length analysis of low-density parity-check codes on the binary erasure channel. IEEE

Transactions on Information Theory, 48:1570–1579, June 2002.

[7] J. Feldman. Decoding Error-Correcting Codes via Linear Programming. PhD thesis,

Massachusetts Institute of Technology, Cambridge, MA, 2003.

[8] G.D. Forney, Jr., R. Koetter, F.R. Kschischang, and A. Reznik. On the effective weights

of pseudocodewords for codes defined on graphs with cycles. In Codes, Systems, and

July 7, 2008 77

SGER Technical Report 0801

Graphical Models (Minneapolis, MN, 1999), volume 123 of IMA Vol. Math. Appl., pages

101–112. Springer, New York, 2001.

[9] R.G. Gallager. Low-Density Parity Check Codes. MIT Press, Cambridge, MA, 1963.

[10] J.L. Gross and T.W. Tucker. Topological Graph Theory. Dover Publications Inc., Mi-

neola, NY, 2001.

[11] F. Jiang. Time-Varying and Capacity Approaching Codes. PhD thesis, University of

Nebraska, Lincoln, 2006.

[12] C. Kelley and D. Sridhara. Pseudocodewords of Tanner graphs. IEEE Transactions on

Information Theory, 53:4013–4038, November 2007.

[13] C. Kelley, D. Sridhara, J. Xu, and J. Rosenthal. Pseudocodeword weights and stopping

sets. In Proceedings of the 2004 IEEE International Symposium on Information Theory,

page 67, Chicago, IL, 2004.

[14] R. Koetter, W.-C.W. Li, P.O. Vontobel, and J.L. Walker. Characterizations of pseudo-

codewords of (low-density) parity-check codes. Advances in Mathematics, 213:205–229,

2007.

[15] R. Koetter and P.O. Vontobel. Graph covers and iterative decoding of finite-length

codes. In Proceedings of the IEEE International Symposium on Turbo Codes and Ap-

plications, pages 75–82, Brest, France, 2003.

[16] Y. Li, B. Vucetic, F. Jiang, and L.C. Pérez. Recent advances in turbo code design

and theory. Proceedings of the IEEE, Special Issue on Turbo-Information Processing:

Algorithms, Implementations and Applications, 95(6):1323–1344, June 2007.

[17] D.J.C. MacKay. Good error-correcting codes based on very sparse matrices. IEEE

Transactions on Information Theory, 45(2):399–431, March 1999.

July 7, 2008 78

SGER Technical Report 0801

[18] D.J.C. MacKay and R.M. Neal. Near Shannon limit performance of low density parity

check codes. IEE Electronic Letters, 32(18):1645–1646, August 1996.

[19] E. Miller and B. Sturmfels. Combinatorial Commutative Algebra, volume 227 of Grad-

uate Texts in Mathematics. Springer-Verlag, New York, 2005.

[20] J.R. Munkres. Topology. Prentice Hall, Inc., Upper Saddle River, New Jersey, 2000.

[21] R. Ortner and W. Woess. Non-backtracking random walks and cogrowth of graphs.

Canadian Journal of Mathematics, 59(4):828–844, 2007.

[22] V.V. Prasolov. Elements of Combinatorial and Differential Topology, volume 74 of

Graduate Studies in Mathematics. American Mathematical Society, Providence, RI,

2006. Translated from the 2004 Russian original by Olga Sipacheva.

[23] P. Radosavljevic, A. de Baynast, and J.R. Cavallaro. Optimized message passing sched-

ules for LDPC decoding. In Proceedings of the 39th Asilomar Conference on Signals,

Systems, and Computers, pages 591–595, 2005.

[24] T. Richardson, A. Shokrollahi, and R. Urbanke. Design of capacity-approaching ir-

regular low-density parity-check codes. IEEE Transactions on Information Theory,

47(2):619–637, February 2001.

[25] T. Richardson and R. Urbanke. The capacity of low-density parity-check codes under

message-passing decoding. IEEE Transactions on Information Theory, 47(2):599–618,

February 2001.

[26] R. Smarandache and P.O. Vontobel. Pseudo-codeword analysis of Tanner graphs from

projective and Euclidean planes. IEEE Transactions on Information Theory, IT-

53(7):2376–2393, July 2007.

July 7, 2008 79

SGER Technical Report 0801

[27] H.M. Stark and A.A. Terras. Zeta functions of finite graphs and coverings. Advances

in Mathematics, 121(1):124–165, 1996.

[28] R.M. Tanner. A recursive approach to low complexity codes. IEEE Transactions on

Information Theory, 27(5):533–547, 1981.

[29] P. Vontobel and R. Koetter. Graph-cover decoding and finite-length analysis of message-

passing iterative decoding of LDPC codes. To appear in IEEE Transactions on Infor-

mation Theory.

[30] D.B. West. Introduction to Graph Theory. Prentice-Hall Inc., Upper Saddle River, NJ,

2001.

[31] N. Wiberg. Codes and Decoding on General Graphs. PhD thesis, Linköping University,

Linköping, Sweden, 1996.

July 7, 2008 80

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	7-7-2008

	A Universal Theory of Decoding and Pseudocodewords
	Nathan Axvig
	Deanna Dreher
	Katherine Morrison
	Eric T. Psota
	Lance C. Pérez
	See next page for additional authors
	Authors

	main_SGERTech_v12.dvi

