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Abstract

This paper complements the analysis by Kiso (2019), which is based on Bertrand com-
petition with product differentiation. With a model of Cournot competition with product
differentiation, I investigate the effect of making a subsidy inversely related to the product
price. I show that the Cournot framework overall leads to similar outcomes to the Bertrand
framework: relative to the specific or ad valorem subsidy, the IPR subsidy induces the same
sales with less government outlay and allows the regulator to flexibly adjust the incidence
on producers.
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1 Subsidy Policies and Corresponding Equilibria

Consider a market with n firms, each of which produces a symmetrically differentiated prod-
uct at a constant marginal cost c. The inverse demand function for firm i’s product is repre-
sented by a twice continuously differentiable function P(qi, λi), where qi is the output of prod-
uct i and λi ≡ λ(q−i) is an aggregator of the effects of the outputs of the other n− 1 products
(qj ∀j 6= i). We assume that inverse demand is decreasing in qi: Pq(qi, λi) ≡ ∂P(qi ,λi)

∂qi
< 0.

Also, products are substitutes in the sense that ∂P(qi ,λi)
∂qj

= ∂P(qi ,λi)
∂λi

∂λi
∂qj

< 0 for j 6= i. With-

out loss of generality, λi = λ(q−i) is defined in such a way that ∂λi
∂qj

> 0 ∀j 6= i, so that

Pλ(qi, λi) ≡ ∂P(qi ,λi)
∂λi

< 0. Due to symmetry, permutating the order of the other n− 1 products
does not affect λi.

[Policy A: No Subsidy]

First, we look at the baseline case of no subsidy. The firms engage in Cournot competition.
Firm i sets qi to maximize its profits πA(qi, λi) = [P(qi, λi) − c]qi. Assuming an interior
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solution, the best response to λi, qi = qb
A(λi), is determined by the first order condition (FOC):

Pq(qi, λi)qi + P(qi, λi) = c. (1)

[Policy B: Specific Subsidy]

Suppose that the government offers consumers a specific subsidy of z per unit of the good
purchased, where z ∈ (0, c). The subsidy is provided as a rebate or tax credit, for example.
Importantly, it makes no difference whether the direct recipients of the subsidy are consumers
or producers (physical neutrality). The paper mainly thinks in terms of consumption subsidies
(offered directly to consumers), but its results are valid for production subsidies (offered
directly to producers) as well.

We interpret P(qi, λi) as the consumer price, or the the effective price that consumers pay
out of pocket after accounting for the subsidy. Demand depends on this effective price. The
producer price pp (i.e., the price received by a firm) equals P(qi, λi) + z. Firm i sets qi to
maximize its profits πB(qi, λi) = [P(qi, λi) + z− c]qi, so the best response to λi, qi = qb

B(λi), is
determined by the FOC

Pq(qi, λi)qi + P(qi, λi) = c− z. (2)

[Policy C: Ad Valorem Subsidy]

Suppose that the government offers consumers an ad valorem subsidy of vP(qi, λi) per unit
of the good purchased (v > 0). As under Policy B, the consumer price is P(qi, λi), and the
producer price is (1 + v)P(qi, λi). Firm i sets qi to maximize its profits πC(qi, λi) = [(1 +

v)P(qi, λi)− c]qi, so the best response to λi, qi = qb
C(λi), is determined by the FOC

Pq(qi, λi)qi + P(qi, λi) =
c

1 + v
. (3)

In each of the three cases above, the implicit function theorem gives

∂qb
X

∂qj
=

dqb
X

dλi

∂λi

∂qj
= −

Pλ(qi, λi) + qiPqλ(qi, λi)

2Pq(qi, λi) + qiPqq(qi, λi)

∣∣∣∣
qi=qb

X(λi)

· ∂λi

∂qj
, (4)

where X ∈ {A, B, C} and j 6= i. It is assumed that ∂qb
X

∂qj
= − Pλ(qi ,λi)+qi Pqλ(qi ,λi)

2Pq(qi ,λi)+qi Pqq(qi ,λi)

∣∣
qi=qb

X(λi)
· ∂λi

∂qj
∈

(−1, 0), so that products are strategic substitutes but firm i’s reaction to ∆qj is smaller in
magnitude than ∆qj (or, equivalently, a marginal change in qi has a larger (in magnitude)
effect on firm i’s marginal revenue than a marginal change in qj does. This implies that there
exists a symmetric and unique Nash equilibrium under each of Policies A–C, where the output
per firm q∗X is such that the corresponding FOC is satisfied with qi = q∗X ∀i.1 Denote these
equilibria by EA, EB, and EC, respectively.

1Suppose that an asymmetric Nash equilibrium exists under Policy X. Then, there are (at least) two firms
(denoted by 1 and 2) such that q∗1X 6= q∗2X , where q∗iX is firm i’s output in this equilibrium. Without loss of
generality, assume q∗1X < q∗2X . By definition, q∗1X = qb

X(λ(q
∗
2X , q∗3X , · · · , q∗nX)) and q∗2X = qb

X(λ(q
∗
1X , q∗3X , · · · , q∗nX)).
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Some additional regularity conditions are assumed on inverse demand P(qi, λi) so that a sub-
sidy payment will have reasonable effects on firm behavior and equilibrium outcomes. First,
given λi, marginal revenue (the LHS of (1)) is decreasing in qi (i.e., 2Pq(qi, λi) + qiPqq(qi, λi) <

0). Thus, conditional on λi, the best response qb
X(λi) is a singleton, and an increase in

the subsidy rate (z or v) or reduction in the production cost (c) leads to a larger output,
so that qb

A(λi) < qb
B(λi) and qb

A(λi) < qb
C(λi). It is also assumed that, when qi = q ∀i,

2Pq(q, λ(q, · · · , q)) + qPqq(q, λ(q, · · · , q)) + qPqλ(q, λ(q, · · · , q)) dλ(q,··· ,q)
dq < 0, where dλ(q,··· ,q)

dq ≡
(n − 1) ∂λ(q,··· ,q)

∂qj
. Together with the FOCs (1), (2), and (3), this means that a higher sub-

sidy rate or lower production cost raises equilibrium outputs and profits under Policies A–
C.2 Hence, q∗A < q∗B and πA(q∗A, λ(q∗A, · · · , q∗A)) < πB(q∗B, λ(q∗B, · · · , q∗B)), and q∗A < q∗C and
πA(q∗A, λ(q∗A, · · · , q∗A)) < πC(q∗C, λ(q∗C, · · · , q∗C)).

[Policy D: IPR Subsidy]

The government conditionally offers consumers a subsidy that is inversely related to the prod-
uct price pi = P(qi, λi). No subsidy is provided if the price of a good is greater than or equal
to a government-set threshold p (i.e., if pi ≥ p), where we assume rp < c < p.3 If the price is
below p, the subsidy per unit of the good increases linearly as the price decreases. Specifically,
if the consumer price pi < p, a subsidy of r[p− pi] is provided per unit of the good, where
0 < r < 1. Thus, the producer price pp

i = (1− r)pi + rp.4 The assumption r < 1 ensures
dpp

i
dpi

= 1− r > 0, so that the subsidy is not so generous that the producer price can be raised
by lowering the consumer price pi.

This leads to a contradiction:

− 1 =
q∗1X − q∗2X
q∗2X − q∗1X

=
qb

X(λ(q
∗
2X , q∗3X , · · · , q∗nX))− qb

X(λ(q
∗
1X , q∗3X , · · · , q∗nX))

q∗2X − q∗1X
> −1, (5)

where the inequality holds because ∂qb
X

∂qj
> −1. A similar argument shows the uniqueness of a symmetric Nash

equilibrium provided that ∂qb
X

∂qj
< 1

n−1 .
2In a symmetric equilibrium with qi = q ∀i, each firm’s equilibrium marginal revenue decreases with q because

d[Pq(q, λ(q, · · · , q))q + P(q, λ(q, · · · , q))]/dq = 2Pq(q, λ(q, · · · , q)) + qPqq(q, λ(q, · · · , q)) + [Pλ(q, λ(q, · · · , q)) +

qPλq(q, λ(q, · · · , q))] dλ(q,··· ,q)
dq < 0. This implies that a higher subsidy rate or lower production cost increases

the equilibrium output, so that q∗A < q∗B and q∗A < q∗C. By substituting the FOCs, the profits at EA, EB, and EC
are −Pq(q∗A, λ∗A) · q∗2A , −Pq(q∗B, λ∗B) · q∗2B , and −(1 + v)Pq(q∗C, λ∗C) · q∗2C , respectively, where λ∗X = λ(q∗X , · · · , q∗X)
for X ∈ {A, B, C}. Since d[−Pq(q, λ(q, · · · , q)) · q2]/dq = −q

[
2Pq(q, λ(q, · · · , q)) + qPqq(q, λ(q, · · · , q)) +

qPqλ(q, λ(q, · · · , q)) dλ(q,··· ,q)
dq

]
> 0, a higher subsidy rate or lower production cost, which raises the equilibrium

output q, leads to higher equilibrium profits under each of Policies A–C.
3This assumption sets the range on the generosity of the subsidy: c < p means that the subsidy is generous

enough to give positive profits for marginal cost pricing (pi = c), while rp < c means that it is not so generous
that even the price of zero does not result in losses.

4Subsidy payment r[p − pi](= pp
i − pi) is defined in terms of the consumer price pi. Alternatively, it can

be expressed with the producer price pp
i as rp[p − pp

i ], where the parameter rp differs from r, while p is, by
construction of the policy, identical to the one in the consumer price-based definition above. Equating the values
from the two definitions gives pp

i − pi = r[p− pi] = rp[p− pp
i ]. Rearranging this, we obtain rp = r/(1− r). Since

the function g : (0, 1) → (0, ∞) defined as g(r) = r/(1− r) is bijective (one-to-one and onto), it does not matter
whether the subsidy is defined in terms of the consumer or producer price.
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Under this policy, firm i’s profits are expressed as

πD(qi, λi) =

πA(qi, λi) if P(qi, λi) ≥ p,

πD0(qi, λi) if P(qi, λi) < p,
(6)

where πA(qi, λi) is the firm’s profits under Policy A, as defined above, and πD0(qi, λi) ≡{
P(qi, λi) + r[p− P(qi, λi)]− c

}
qi. Note that, by definition, πD(qi, λi) is continuous, including

at qi such that P(qi, λi) = p.

We first consider maximizing the function πD0(qi, λi) with respect to qi, conditional on λi,
with ignoring the eligibility condition P(qi, λi) < p in (6) for the moment. The maximizer
qi = qb

D0
(λi) satisfies the FOC

Pq(qi, λi)qi + P(qi, λi) =
c− rp
1− r

(< c). (7)

As under Policies A–C, the slope of qi = qb
D0
(λi) is given by (4) with X = D0 and assumed

to be ∈ (−1, 0), implying that the map Πn
i=1qb

D0
(λi), where λi = λ(q−i), has a symmetric and

unique fixed point ED0 with qi = q∗D0
∀i. Also, qb

A(λi) < qb
D0
(λi), and q∗A < q∗D0

(but it may not
be the case that πA(q∗A, λ(q∗A, · · · , q∗A)) < πD0(q

∗
D0

, λ(q∗D0
, · · · , q∗D0

)), as will be analyzed later
in the paper).

Next, define G(λi) as the difference between maxqi πA(qi, λi) = πA(qb
A(λi), λi) and maxqi πD0(qi, λi) =

πD0(q
b
D0
(λi), λi), where maximization is unconditional on the (in)eligibility conditions given

in (6), and qb
A(λi) and qb

D0
(λi) are defined by (1) and (7), respectively:

G(λi) ≡ πA(qb
A(λi), λi)− πD0(q

b
D0
(λi), λi)

= [P(qb
A(λi), λi)− c] · qb

A(λi)− [(1− r)P(qb
D0
(λi), λi) + rp− c] · qb

D0
(λi).

(8)

It is assumed that G(λi) = 0 implies G′(λi) < 0. This can be interpreted as follows. Suppose
that, given the subsidy policy (r and p) and other firms’ actions represented by λi, firm i
is indifferent between opting in and out. Under these circumstances, a marginal increase in
the aggressiveness of the other firms’ aggregate behavior (i.e., a marginal increase in λi) and
the resulting downward shift of the residual demand curve for product i (because Pλ < 0)
makes opting in and receiving government support the (strictly) preferred choice for firm i.5

A sufficient condition for this to be the case is Pλ(qi, λi) −
Pλ(qi ,λi)+qi Pqλ(qi ,λi)

2Pq(qi ,λi)+qi Pqq(qi ,λi)
· Pq(qi, λi) < 0,

which implies that P(qi, λi) goes down if λi is increased and i’s optimal choice of qi under
each policy is adjusted accordingly.6

Proposition 1. If G(λ(0, · · · , 0)) ≥ 0 and G(M) ≤ 0 for some M (≥ λ(0, · · · , 0)), there exists a
unique λ̃ ∈ [λ(0, · · · , 0), M] such that G(λ̃) = 0. In this case, the best response correspondence under

5As shown by (19) in the proof of the proposition, G < 0 means opting in is strictly preferred to opting out.
6Recall that ∂qb

X(λi)
∂λi

= − Pλ(qi ,λi)+qi Pqλ(qi ,λi)
2Pq(qi ,λi)+qi Pqq(qi ,λi)

∣∣
qi=qb

X(λi)
.
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Policy D is

qb
D(λi) =

qb
A(λi) if λi ≤ λ̃,

qb
D0
(λi) if λi ≥ λ̃.

(9)

If G(λ(0, · · · , 0)) < 0, the best response correspondence under Policy D is

qb
D(λi) = qb

D0
(λi) ∀λi. (10)

If G(λi) > 0 for all λi, the best response correspondence under Policy D is

qb
D(λi) = qb

A(λi) ∀λi. (11)

Proof. See the Appendix. �

In the latter two cases, (10) and (11), the subsidy scheme is either so generous or parsimonious
that the choice of opting in or out does not depend on other firms’ actions, resulting in the
Nash equilibrium with qi = q∗D0

∀i (ED0) or with qi = q∗A ∀i (EA). These extreme cases are
of little interest and not considered in the following, so there exists a unique λ̃ such that
G(λ̃) = 0.

Proposition 2. There are at least one, and at most two Nash equilibria under Policy D. All Nash
equilibria are symmetric. In one possible equilibrium, all firms follow qb

A(λi), realizing EA. In the other
possible equilibrium, all firms follow qb

D0
(λi), realizing ED0 . Given a unique λ̃ such that G(λ̃) = 0,

consider a unique q̃ such that λ̃ = λ(q̃, · · · , q̃).

1. If q̃ < q∗A, the only equilibrium under Policy D is ED0 .

2. If q∗A ≤ q̃ ≤ q∗D0
, the two equilibria under Policy D are EA and ED0 ;

3. If q∗D0
< q̃, the only equilibrium under Policy D is EA;

Proof. See the Appendix. �

2 Comparing the Outcomes of Different Policies

Section 1 has considered firm behavior and market equilibria under exogenous subsidy poli-
cies. Suppose now that the government aims to increase social and consumer surplus by
setting Policies B, C, or D (z, v, or r and p) to induce the firms to raise the output (per-firm)
from the no-subsidy level q∗A to a common target level q̂ (= q∗B = q∗C = q∗D0

).7 This section com-
pares equilibrium outcomes of Policies A–D when the specific, ad valorem, and IPR subsidies
are all designed to achieve the same target.

7If no externality is associated with the consumption/production of the good, social surplus (consumer surplus
+ producer surplus − government expenditure) is maximized with q̂ such that P(q̂, λ(q̂, · · · , q̂)) = c. With positive
externalities, which are often the very reason for subsidization but not considered explicitly in this paper, socially
optimal q̂ will be greater than the level that equates the (consumer) price with c. Note that the following analysis
is not about setting q̂ optimally, and thus is not restricted to socially optimal q̂.
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[Policies B and C]

Under Policies B and C, substituting qi = q̂ ∀i into the FOCs (2) and (3) shows that the
government target q̂ (> q∗A) is induced by setting z = −Pq(q̂, λ̂)q̂ − P(q̂, λ̂) + c and v =

c
Pq(q̂,λ̂)q̂+P(q̂,λ̂)

− 1, respectively, where λ̂ ≡ λ(q̂, · · · , q̂). With these values, the subsidy pay-
ment per unit under each policy is

σB(q̂) ≡ −Pq(q̂, λ̂)q̂− P(q̂, λ̂) + c,

σC(q̂) ≡
( c

Pq(q̂, λ̂)q̂ + P(q̂, λ̂)
− 1
)

P(q̂, λ̂).
(12)

Using the FOCs, equilibrium profits per firm are expressed as πB(q̂, λ̂) = −Pq(q̂, λ̂)q̂2 and

πC(q̂, λ̂) = − cPq(q̂,λ̂)q2

Pq(q̂,λ̂)q+P(q̂,λ̂)
.

[Policy D]

The FOC (7) implies that pairs of r and p that satisfy the following equation result in q∗D0
= q̂:

(1− r)[Pq(q̂, λ̂) · q̂ + P(q̂, λ̂)] + rp− c = 0. (13)

From (13), p is given as a function of r and q̂, and ∂p
∂r < 0.8 Hereafter, p is eliminated by using

(13), which means that when we consider below the effect of changing r conditional on q̂, p is
also implicitly changed to satisfy (13), and we observe the total effect of the changes in both r
and p.

First, we investigate the conditions on r (and p) under which Policy D can induce a Nash
equilibrium with q∗D0

= q̂. Let r2 and r3 be determined by G(λ∗A; r2, p(r2, q̂)) = 0 and
G(λ̂; r3, p(r3, q̂)) = 0, where λ∗A ≡ λ(q∗A, · · · , q∗A) and λ̂ ≡ λ(q̂, · · · , q̂). In words, given the
government target q̂ and other firms’ choices qj = q∗A ∀j 6= i , r2 makes firm i indifferent
between opting in and out (i.e., between qi = qb

D0
(λ∗A; r2, p(r2, q̂)) and qi = qb

A(λ
∗
A), and r3 is

described analogously. It can be shown that r2 ∈ (0, 1) and r3 ∈ (0, 1).9 The following propo-
sition rephrases Proposition 2 of Section 1 in terms of policy variables (r, q̂, and implicitly p),
and is useful from a policy-making perspective.

Proposition 3. Given q̂ (> q∗A), r2 < r3. Moreover,

1. if r < r2, the only equilibrium under Policy D is ED0 ;

2. if r2 ≤ r ≤ r3, the two equilibria under Policy D are EA and ED0 ;

3. if r3 < r, the only equilibrium under Policy D is EA.

Proof. See the Appendix. �

8 p = [c− Pq(q̂, λ̂) · q̂− P(q̂, λ̂)]/r + Pq(q̂, λ̂) · q̂ + P(q̂, λ̂), and ∂p/∂r = [Pq(q̂, λ̂) · q̂ + P(q̂, λ̂)− c]/r2 < 0.
9By the definition of G (with the FOCs substituted), 1− r2 =

Pq(q∗A ,λ∗A)·q∗2A
Pq(qb

D0
(λ∗A ;r2,p(r2,q̂)),λ∗A)·[qb

D0
(λ∗A ;r2,p(r2,q̂))]2

and 1−

r3 =
Pq(qb

A(λ̂,λ̂)·[qb
A(λ̂]

2

Pq(q̂,λ̂)·q̂2 . Since ∂[Pq(q, λ) · q2]/∂q = q
[
2Pq(q, λ) + qPqq(q, λ)

]
< 0 and Pq < 0, 1− r2 ∈ (0, 1) and

1− r3 ∈ (0, 1).
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By Proposition 3, if r ≤ r3, ED0 is a Nash equilibrium and the subsidy payment per unit (i.e.,
r(p− p̂) with (13) satisfied) in this equilibrium is

σD0(r, p̂) ≡ −[P(q̂, λ̂)− c]− (1− r)Pq(q̂, λ̂) · q̂. (14)

Using the FOCs, equilibrium profits per firm are expressed as πD0(q̂, λ̂) = −(1− r)Pq(q̂, λ̂) · q̂2.
The next proposition is the main result of the paper, showing the relative efficiency of the
different subsidy schemes in achieving a given government target (q̂).

Proposition 4. Suppose Policies B, C, and D (with r ≤ r3) are all designed to attain q̂ (> q∗A). Then,
as to the subsidy payment per unit under these policies, σD0(r, q̂) < σB(q̂) < σC(q̂). Specifically, the
differences in subsidy payment (or, equivalently, in profits) per unit of a good are as follows:

σB(q̂)− σD0(r, q̂) = −rPq(q̂, λ̂) · q̂ > 0,

σC(q̂)− σB(q̂) =
( c

Pq(q̂, λ̂)q̂ + P(q̂, λ̂)
− 1
)(
− Pq(q̂, λ̂) · q̂

)
> 0.

(15)

Proof. The results follow from (12) and (14). �

Next, I compare a firm’s profits at the two potential equilibria EA and EDS that can be realized
under Policy D. Using the FOCs (1) and (7), πA(q∗A, λ∗A) = −Pq(q∗A, λ∗A) · q∗2A , and πD0(q̂, λ̂) =

−(1− r)Pq(q̂, λ̂) · q̂2. Therefore, with r1 ≡ 1− Pq(q∗A,λ∗A)·q∗2A
Pq(q̂,λ̂)·q̂2 ∈ (0, 1),10

πA(q∗A, λ∗A)


< πD0(q̂, λ̂) if r < r1,

= πD0(q̂, λ̂) if r = r1,

> πD0(q̂, λ̂) if r > r1.

(16)

Proposition 5. Given q̂ (> q∗A), r1 < r2(< r3). Therefore, Policy D can make a firm’s profits at ED0

higher than, equal to, and lower than at EA by setting r to satisfy 0 < r < r1, r = r1, and r1 < r ≤ r3,
respectively, and p by (13). In particular, if r1 < r < r2, the unique Nash equilibrium under Policy D
(ED0) results in lower profits than EA.

Proof. See the Appendix. �
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2Pq(q, λ(q, · · · , q)) + qPqq(q, λ(q, · · · , q)) +

qPqλ(q, λ(q, · · · , q)) dλ(q,··· ,q)
dq

]
< 0, Pq < 0, and q∗A < q̂.
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A Proof of Proposition 1

Proof. By the definition of G(λi),

G(λi) ≥ 0 ⇐⇒ πA(qb
A(λi), λi) = max

qi
{max{πA(qi, λi), πD0(qi, λi)}}. (17)

Thus, given λi, if G(λi) ≥ 0 and additionally if the eligibility requirement is not satisfied at
qi = qb

A(λi) (that is, P(qb
A(λi), λi) ≥ p), then (6) and (17) imply that qb

iA(λi) is firm i’s best
response. Similarly, conditional on λi,

G(λi) ≤ 0 ⇐⇒ πD0(q
b
D0
(λi), λi) = max

qi
{max{πA(qi, λi), πD0(qi, λi)}}. (18)

Thus, given λi, if Gi(λi) ≤ 0 and additionally if the eligibility requirement is satisfied at
qi = qb

D0
(λi) (that is, P(qb

D0
(λi), λi) < p), then (6) and (18) imply that qb

D0
(λi) is firm i’s best

response. The following lemma implies that the (in)eligibility conditions in (6) can be ignored
in deriving the optimal response because they are implied by the conditions on G(λi).

Lemma 1. G(λi) ≥ 0 implies P(qb
A(λi), λi) ≥ p, and G(λi) ≤ 0 implies P(qb

D0
(λi), λi) < p.

Equivalently, P(qb
A(λi), λi) < p implies G(λi) < 0, and P(qb

D0
(λi), λi) ≥ p implies G(λi) > 0.

Proof. Suppose P(qb
A(λi), λi) < p. Then,

πD0(q
b
D0
(λi), λi) > πD0(q

b
A(λi), λi)

= [(1− r)P(qb
A(λi), λi) + rp− c] · qb

A(λi)

= [P(qb
A(λi), λi)− c] · qb

A(λi) + r[p− P(qb
A(λi), λi)] · qb

A(λi)

= πA(qb
A(λi), λi) + r[p− P(qb

A(λi), λi)] · qb
A(λi)

> πA(qb
A(λi), λi).

That is, G(λi) < 0. In other words, if G(λi) ≥ 0, then P(qb
A(λi), λi) ≥ p.

Suppose P(qb
D0
(λi), λi) ≥ p. Then,

πA(qb
A(λi), λi) > πA(qb

D0
(λi), λi)

= [P(qb
D0
(λi), λi)− c] · qb

D0
(λi)

≥ [P(qb
D0
(λi), λi)− c] · qb

D0
(λi) + r[p− P(qb

iD0
(λi), λi)] · qb

D0
(λi)

= [(1− r)P(qb
D0
(λi), λi) + rp− c] · qb

D0
(λi)

= πD0(q
b
D0
(λi), λi).

That is, G(λi) > 0. In other words, if G(λi) ≤ 0, then P(qb
D0
(λi), λi) < p. �

Lemma 1 and the argument preceding it suggest that the best response correspondence under
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Policy D conditional on λi, denoted by qb
D(λi), is as follows:

qb
D(λi) =

qb
A(λi) if G(λi) ≥ 0,

qb
D0
(λi) if G(λi) ≤ 0.

(19)

Next, the conditions in (19) are simplified. By the assumption that G(λi) = 0 implies G′(λi) <

0, as λi increases, the curve G(λi) can cross the λi axis (G = 0) only from above and at most
once. Together with the intermediate value theorem, this implies that if G(λ(0, · · · , 0)) ≥ 0
and G(M) ≤ 0 for some M (≥ λ(0, · · · , 0)), then there exists a unique λ̃ ∈ [λ(0, · · · , 0), M]

such that G(λ̃) = 0; G(λi) > 0 for all λi < λ̃; and G(λi) < 0 for all λi > λ̃.

Lemma 2. 1. If there exists λ̌ such that G(λ̌) ≥ 0, then G(λi) > 0 for all λi < λ̌.

2. If there exists λ̌ such that G(λ̌) ≤ 0, then G(λi) < 0 for all λi > λ̌.

3. There is at most one λ̃ such that G(λ̃) = 0.

Proof. By the envelope theorem, dπA(qb
A(λi),λi)
dλi

= Pλ(qb
A(λi), λi) · qb

A(λi) and
dπD0 (q

b
D0

(λi),λi)

dλi
=

(1− r)Pλ(qb
D0
(λi), λi) · qb

D0
(λi). Thus,

G′(λi) = Pλ(qb
A(λi), λi) · qb

A(λi)− (1− r)Pλ(qb
D0
(λi), λi) · qb

D0
(λi)

= Pq(qb
A(λi), λi) · [qb

A(λi)]
2 ·

Pλ(qb
A(λi), λi)

Pq(qb
A(λi), λi) · qb

A(λi)

− (1− r)Pq(qb
D0
(λi), λi) · [qb

D0
(λi)]

2 ·
Pλ(qb

D0
(λi), λi)

Pq(qb
D0
(λi), λi) · qb

D0
(λi)

<
{

Pq(qb
A(λi), λi) · [qb

A(λi)]
2 − (1− r)Pq(qb

D0
(λi), λi) · [qb

D0
(λi)]

2
} Pλ(qb

A(λi), λi)

Pq(qb
A(λi), λi) · qb

A(λi)

= −G(λi)
Pλ(qb

A(λi), λi)

Pq(qb
A(λi), λi) · qb

A(λi)
.

(20)
The inequality in (20) follows because qb

A(λi) < qb
D0
(λi) and

∂
Pλ(q,λ)
qPq(q,λ)

∂q
= −

2Pq + qPqq

(qPq)2

[
Pq(−

Pλ + qPqλ

2Pq + qPqq
) + Pλ

]
< 0 (21)

imply Pλ(qb
A(λi),λi)

Pq(qb
A(λi),λi)·qb

A(λi)
>

Pλ(qb
D0

(λi),λi)

Pq(qb
D0

(λi),λi)·qb
D0

(λi)
. The last equality in (20) results from substituting

the FOCs (1) and (7) into (8). Thus, G(λi) = 0 implies G′(λi) < 0. Therefore, as λi increases,
the curve G(λi) can cross the λi axis (G = 0) only from above and at most once, so the three
statements of Lemma 2 follow. �

Thus, based on (19), the best response correspondence is given by (9) if G(λ(0, · · · , 0)) ≥ 0
and G(M) ≤ 0 for some M (≥ λ(0, · · · , 0)), by (10) if G(λ(0, · · · , 0)) < 0, and by (11) if
G(λi) > 0 for all λi.



10

�

B Proof of Proposition 2

Proof. First, it is proved by contradiction that no asymmetric Nash equilibrium exists under
Policy D. If there is one, there are (at least) two firms (denoted by 1 and 2) such that q∗1D 6= q∗2D,
where q∗iD is firm i’s output in this equilibrium. Without loss of generality, assume q∗1D < q∗2D.
By definition, q∗1D = qb

D(λ(q
∗
2D, q∗3D, · · · , q∗nD)) and q∗2D = qb

D(λ(q
∗
1D, q∗3D, · · · , q∗nD)).

Recall that qb
D(·) = qb

A(·) or qb
D(·) = qb

D0
(·). Suppose that at this equilibrium qb

D(·) = qb
A(·)

for both firms or qb
D(·) = qb

D0
(·) for both firms. This leads to a contradiction as in footnote

1. Next, suppose that q∗1D = qb
D(λ(q

∗
2D, q∗3D, · · · , q∗nD)) = qb

D0
(λ(q∗2D, q∗3D, · · · , q∗nD)) and q∗2D =

qb
D(λ(q

∗
1D, q∗3D, · · · , q∗nD)) = qb

A(λ(q
∗
1D, q∗3D, · · · , q∗nD)), then

−1 =
q∗1D − q∗2D
q∗2D − q∗1D

=
qb

D0
(λ(q∗2D, q∗3D, · · · , q∗nD))− qb

A(λ(q
∗
1D, q∗3D, · · · , q∗nD))

q∗2D − q∗1D

>
qb

A(λ(q
∗
2D, q∗3D, · · · , q∗nD))− qb

A(λ(q
∗
1D, q∗3D, · · · , q∗nD))

q∗2D − q∗1D
> −1,

(22)

which is a contradiction. Lastly, suppose that q∗1D = qb
D(λ(q

∗
2D, q∗3D, · · · , q∗nD)) = qb

A(λ(q
∗
2D, q∗3D, · · · , q∗nD))

and q∗2D = qb
D(λ(q

∗
1D, q∗3D, · · · , q∗nD)) = qb

D0
(λ(q∗1D, q∗3D, · · · , q∗nD)). Then, (9) implies that

λ(q∗2D, q∗3D, · · · , q∗nD) ≤ λ̃ ≤ λ(q∗1D, q∗3D, · · · , q∗nD), but q∗1D < q∗2D means λ(q∗1D, q∗3D, · · · , q∗nD) <

λ(q∗2D, q∗3D, · · · , q∗nD), which is a contradiction.

Next, we look into symmetric equilibria. Proposition 1 implies that there are two potential
cases to occur at a symmetric equilibrium: [1] all firms follow qb

A(·), or [2] all firms follow
qb

D0
(·). In case [1], the potential equilibrium is nothing other than EA, the symmetric and

unique equilibrium under Policy A. According to Proposition 1, qb
D(λi) = qb

A(λi) if and only
if λi ≤ λ̃ (note that the trivial cases (10) and (11) have been disregarded). Therefore, q∗A is a
fixed point of the map qb

D(λ(q, · · · , q)) (that is, qi = q∗A = qb
D(λ(q

∗
A, · · · , q∗A)) for all i, and EA

is a Nash equilibrium under Policy D) if and only if λ(q∗A, · · · , q∗A) ≤ λ̃, or q∗A ≤ q̃.

Analogously, in case [2], the potential equilibrium is nothing but ED0 , the symmetric and
unique fixed point of the map Πn

i=1qb
D0
(λi), where λi = λ(q−i). Proposition 1 shows that

qb
D(λi) = qb

D0
(λi) if and only if λi ≤ λ̃. Therefore, q∗D0

is a fixed point of the map qb
D(λ(q, · · · , q))

(that is, qi = q∗D0
= qb

D(λ(q
∗
D0

, · · · , q∗D0
)) for all i, and ED0 is a Nash equilibrium under Policy

D) if and only if λ(q∗D0
, · · · , q∗D0

) ≥ λ̃, or q∗D0
≥ q̃.

Since q∗A < q∗D0
as discussed below (7), statements 1–3 of the proposition follow.

�
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C Proof of Proposition 3

Proof. By substituting (13),

πD0(q
b
D0
(λi), λi; r, p(r, q̂)) = (1− r)[P(qb

D0
(λi), λi)− Pq(q̂, λ̂) · q̂− P(q̂, λ̂)] · qb

D0
(λi). (23)

The FOC to be satisfied is

[P(qb
D0
(λi), λi)− Pq(q̂, λ̂) · q̂− P(q̂, λ̂)] + Pq(qb

D0
(λi), λi) · qb

D0
(λi) = 0. (24)

By the envelope theorem,

dG(λi; r, p(r, q̂))
dr

= −
dπD0(q

b
D0
(λi), λi; r, p(r, q̂))

dr
= [P(qb

D0
(λi), λi)− Pq(q̂, λ̂) · q̂− P(q̂, λ̂)] · qb

D0
(λi)

= −Pq(qb
D0
(λi), λi) · [qb

D0
(λi)]

2

> 0.

(25)

By the maintained assumption that G(λi; r, p) = 0 implies G′(λi; r, p) < 0, G(λ∗A; r2, p(r2, q̂)) =
0 and λ̂ > λ∗A imply G(λ̂; r2, p(r2, q̂)) < 0. By (25), G(λ̂; r2, p(r2, q̂)) < 0 and G(λ̂; r3, p(r3, q̂)) =
0 mean r2 < r3.

Also, G(λ∗A; r2, p(r2, q̂)) = 0 and (25) imply that G(λ∗A; r, p(r, q̂)) < (>) 0 if r < (>) r2. Thus,
according to (19), if r < r2, then qb

D(λ
∗
A; r, p(r, q̂)) = qb

D0
(λ∗A; r, p(r, q̂)) > q∗A, so that EA is not a

Nash equilibrium under Policy D. If r ≥ r2, then qb
D(λ

∗
A; r, p(r, q̂)) = qb

A(λ
∗
A) = q∗A, so that EA

is a Nash equilibrium under Policy D.

Similarly, G(λ̂; r3, p(r3, q̂)) = 0 and (25) imply that G(λ̂; r, p(r, q̂)) < (>) 0 if r < (>) r3. Thus,
according to (19), if r ≤ r3, then qb

D(λ̂; r, p(r, q̂)) = qb
D0
(λ̂; r, p(r, q̂)) = q̂, so that ED0 is a Nash

equilibrium under Policy D. If r > r3, then qb
D(λ̂; r, p(r, q̂)) = qb

A(λ̂) < q̂, so that ED0 is a Nash
equilibrium under Policy D.

Hence, the three statements of the proposition follow. �

D Proof of Proposition 5

Proof. By the definitions of r1 and r2, π̃A(q∗A, λ∗A) = π̃D0(q̂, λ̂; r1, p(r1; q̂)) = π̃D0(q
b
D0
(λ∗A), λ∗A; r2, p(r2; q̂)).

By the envelope theorem,
dπ̃D0 (q

b
D0

(λi),λi ;r,p)
dλi

= (1− r)Pλ(qb
D0
(λi), λi) · qb

D0
(λi) < 0. Then, because

λ∗A < λ̂, π̃D0(q
b
D0
(λ∗A), λ∗A; r2, p(r2; q̂)) > π̃D0(q

b
D0
(λ̂), λ̂; r2, p(r2; q̂)) = π̃D0(q̂, λ̂; r2, p(r2; q̂)).

Thus, π̃D0(q̂, λ̂; r2, p(r2; q̂)) < π̃D0(q̂, λ̂; r1, p(r1; q̂)) by the first sentence of this proof. This

implies r1 < r2 because
dπD0 (q

b
D0

(λi),λi ;r,p(r,q̂))
dr < 0 by (25). The remaining statements follow

from Proposition 3 and (16).
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