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DIRECTED TOPOLOGICAL COMPLEXITY OF SPHERES

AYŞE BORAT AND MARK GRANT

Abstract. We show that the directed topological complexity (as defined by
E. Goubault [4]) of the directed n-sphere is 2, for all n ≥ 1.

1. Introduction

Topological complexity is a numerical homotopy invariant, defined by Michael
Farber [2, 3] as part of his topological study of the motion planning problem from
robotics. Given a path-connected space X , let PX denote the space of all paths in
X endowed with the compact open topology, and let π : PX → X ×X denote the
endpoint fibration given by π(γ) = (γ(0), γ(1)). Viewing X as the configuration
space of some mechanical system, one defines a motion planner on a subset A ⊆
X × X to be a local section of π on A, that is, a continuous map σ : A → PX

such that π ◦ σ equals the inclusion of A into X ×X . Assuming X is an Euclidean
Neighbourhood Retract (ENR), the topological complexity of X , denoted TC(X),
is defined to be the smallest natural number k such that X ×X admits a partition
into k disjoint ENRs, each of which admits a motion planner.

Many basic properties of this invariant were established in the papers [2, 3], which
continue to inspire a great deal of research by homotopy theorists (a snapshot of
the current state-of-the-art can be found in the conference proceedings volume [6]).
Here we simply mention that the topological complexity of spheres was calculated
in [2]; it is given by

TC(Sn) =

{
2 if n is odd,

3 if n is even.

In the recent preprint [4], Eric Goubault defined a variant of topological com-
plexity for directed spaces. Recall that a directed space, or d-space, is a space X

together with a distinguished class of paths in X called directed paths, satisfying
certain axioms (full definitions will be given in Section 2). Partially ordered spaces

give examples of d-spaces. The directed paths of a d-space form a subspace
−→
P X

of PX . The endpoint fibration restricts to a map χ :
−→
P X → X ×X , which is not

surjective in general. Its image, denoted ΓX ⊆ X ×X , is the set of (x, y) ∈ X ×X

such that there exists a directed path from x to y. A directed motion planner on
a subset A ⊆ ΓX is defined to be a local section of χ on A. The directed topolog-

ical complexity of the d-space X , denoted
−→
TC(X), is the smallest natural number

k such that ΓX admits a partition into k disjoint ENRs, each of which admits a
directed motion planner.
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As remarked in the introduction to [4], the directed topological complexity seems
more suited to studying the motion planning problem in the presence of control
constraints on the movements of the various parts of the system. It was shown in
[4] to be invariant under a suitable notion of directed homotopy equivalence, and
a few simple examples were discussed. It remains to find useful upper and lower
bounds for this invariant, and to compute its value for familiar d-spaces.

The contribution of this short note is to compute the directed topological com-

plexity of directed spheres. For each n ≥ 1 the directed sphere
−→
Sn is the directed

space whose underlying topological space is the boundary ∂In+1 of the (n + 1)-
dimensional unit cube, and whose directed paths are those paths which are non-
decreasing in every coordinate.

Theorem. The directed topological complexity of directed spheres is given by

−→
TC(

−→
Sn) = 2 for all n ≥ 1.

This theorem will be proved in Section 3 below by exhibiting a partition of Γ−→
Sn

into 2 disjoint ENRs with explicit motion planners.
The first author wishes to thank the University of Aberdeen for their hospitality

during her stay at the Institute of Mathematics, where this work was carried out.
Both authors wish to thank Eric Goubault for useful discussions and for sharing
with them preliminary versions of his results.

2. Preliminaries

Definition 2.1 (M. Grandis, [5]). A directed space or d-space is a pair (X,
−→
P X)

consisting of a topological space X and a subspace
−→
P X ⊆ PX of the path space

of X satisfying the following axioms:

• constant paths are in
−→
P X ;

•
−→
P X is closed under pre-composition with non-decreasing continuous maps
r : [0, 1] → [0, 1];

•
−→
P X is closed under concatenation.

The paths in
−→
P X are called directed paths or dipaths, and the space

−→
P X is called

the dipath space.

Examples of d-spaces include partially ordered spaces (where dipaths in
−→
P X

consist of continuous order-preserving maps γ : ([0, 1],≤) → (X,≤)) and cubical

sets. We can also view any topological space X as a d-space by taking
−→
P X = PX .

The dipath space is usually omitted from the notation for a d-space.

Definition 2.2 ([4]). Given a d-space X , let

ΓX = {(x, y) ∈ X ×X | ∃γ ∈
−→
P X such that γ(0) = x, γ(1) = y} ⊆ X ×X.

The dipath space map is given by

χ :
−→
P X → ΓX , χ(γ) =

(
γ(0), γ(1)

)
.

That is, the dipath space map is obtained from the classical endpoint fibration
π : PX → X ×X by restriction of domain and codomain.
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Definition 2.3 ([4]). Given a d-spaceX , its directed topological complexity, denoted
−→
TC(X), is defined to be the smallest natural number k such that there exists a
partition ΓX = A1⊔· · ·⊔Ak into disjoint ENRs, each of which admits a continuous

map σi : Ai →
−→
P X such that χ ◦ σi = incl : Ai →֒ ΓX .

Remarks 2.4. The dipath space map is not a fibration, in general. One can easily

imagine directed spaces X for which the homotopy type of the fibre
−→
P X(x, y) is

not constant on the path components of ΓX . Related to this is the fact that, unlike
in the classical case of TC(X), the above definition does not coincide with the
alternative definition using open (or closed) covers. Both of these remarks are due
to E. Goubault.

Note that we are using the unreduced version of
−→
TC, as in the article [4].

A notion of dihomotopy equivalence was defined in [4, Definition 3], and it was
shown in [4, Lemma 6] that if X and Y are dihomotopy equivalent d-spaces then
−→
TC(X) =

−→
TC(Y ). Furthermore, a notion of dicontractibility for d-spaces was out-

lined in [4, Definition 4], and [4, Theorem 1] asserts that a d-space X that is

contractible in the classical sense has
−→
TC(X) = 1 if and only if X is dicontractible.

Here we will only require the following weaker assertion.

Lemma 2.5. Let X be a d-space for which
−→
TC(X) = 1. Then for all (x, y) ∈ ΓX ,

the corresponding fibre
−→
P X(x, y) of the dipath space map is contractible.

Proof. We reproduce the relevant part of the proof of [4, Theorem 1]. Suppose
−→
TC(X) = 1, and let σ : ΓX →

−→
P X be a global section of χ :

−→
P X → ΓX . Given

(x, y) ∈ ΓX , let f : {σ(x, y)} →
−→
P X(x, y) and g :

−→
P X(x, y) → {σ(x, y)} denote

the inclusion and constant maps, respectively. Clearly g◦f = Id{σ(x,y)}, so to prove

the lemma it suffices to give a homotopy H :
−→
P X(x, y)× I →

−→
P X(x, y) from f ◦ g

to Id−→
P X(x,y)

. Such a homotopy is defined explicitly by setting

H(γ, t)(s) =





γ(s) for 0 ≤ s ≤ t
2

σ
(
γ
(
t
2

)
, γ

(
1− t

2

)) ( s− t

2

1−t

)
for t

2 ≤ s ≤ 1− t
2

γ(s) for 1− t
2 ≤ s ≤ 1

for all t, s ∈ [0, 1]. �

3. Directed topological complexity of directed spheres

Definition 3.1. Let n ≥ 1 be a natural number. The directed n-sphere, denoted
−→
Sn,

is the d-space whose underlying space is the boundary ∂In+1 of the unit cube In+1 =
[0, 1]n+1 ⊆ R

n+1, and whose dipaths are those paths which are non-decreasing in
each coordinate.

We now fix some notation, most of which is borrowed from [1, Section 6]. A
point x = (x0, . . . , xn) ∈ R

n+1 will be denoted x = x0 · · ·xn for brevity. We use
− to denote an arbitrary element of (0, 1). Therefore we may indicate an arbitrary
point in ∂In+1 by a string x0 · · ·xn where each xi ∈ {0,−, 1}, and at least one
xi ∈ {0, 1}.

For example, − − 0 denotes an arbitrary point in the interior of the bottom
(z = 0) face of ∂I3, while −11 denotes a point on the interior of the top (z = 1),
back (y = 1) edge. The point −−− is not in ∂I3.



4 AYŞE BORAT AND MARK GRANT

000

111

00x2

11x2

Figure 1. Directed paths in
−→
S2 from 00x2 to 11x2 must

remain in the blue square, illustrating the homeomorphism
−→
P
−→
S2(00x2, 11x2) ∼=

−→
P
−→
S1(00, 11).

With these notations, if (x0 · · ·xn, y0 · · · yn) ∈ Γ−→
Sn then xi ≤ yi for i = 0, . . . , n,

but the converse does not hold. For example, any pair of the form (0 − −, 1 − −)
is not in Γ−→

S2
.

We are now ready to prove our main result, restated here for convenience.

Theorem. The directed topological complexity of directed spheres is given by
−→
TC(

−→
Sn) = 2 for all n ≥ 1.

Proof. To see that
−→
TC(

−→
Sn) > 1, it suffices by Lemma 2.5 to find (x,y) ∈ Γ−→

Sn such

that
−→
P
−→
Sn(x,y) is not contractible. Fix x2, . . . , xn ∈ (0, 1). It is clear that

−→
P
−→
Sn(00x2 · · ·xn, 11x2 · · ·xn) ∼=

−→
P
−→
S1(00, 11),

and that the latter space is disconnected (since not all dipaths from 00 to 11 are

dihomotopic), see Figure 1. In particular,
−→
P
−→
Sn(00x2 · · ·xn, 11x2 · · ·xn) is not con-

tractible, hence
−→
TC(

−→
Sn) > 1.

To prove that
−→
TC(

−→
Sn) ≤ 2, we will exhibit a partition Γ−→

Sn = A1 ⊔ A2 into two
disjoint ENRs, each equipped with a continuous directed motion planner σi : Ai →
−→
P (

−→
Sn).

Consider the d-space
−−−→
R

n+1, where the dipaths are non-decreasing in each coor-

dinate. Here we have
−→
TC(

−−−→
R

n+1) = 1, for we can describe a directed motion planner
σ̃1 on

Γ−−−→
R

n+1
= {(x0 · · ·xn, y0 · · · yn) | xi ≤ yi for all i = 0, . . . , n}

by first increasing x0 to y0, then increasing x1 to y1, and so on, finally increasing xn

to yn. It is not difficult to write a formula for σ̃1, and check that is it continuous.
Similarly, we can define a second motion planner σ̃2 which first increases xn to yn,
then increases xn−1 to yn−1, and so on, finally increasing x0 to y0.
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For i = 1, 2, let Bi be the set of pairs (x,y) in Γ−→
Sn ⊆ Γ−−−→

R
n+1

such that the path

σ̃i(x,y) has image contained in ∂In+1. The restriction σ̃i|Bi
: Bi →

−→
P (

−→
Sn) is

clearly continuous, and is a directed motion planner on Bi.
We will show that B1 ∪B2 = Γ−→

Sn , and that both B1 and its complement U1 :=

Γ−→
Sn \ B1 are ENRs. Hence we may set A1 = B1 and A2 = U1 ⊆ B2 to obtain a

cover by disjoint ENRs with motion planners σi = σ̃i|Ai
, as required.

The sets B1 and B2 are best understood in terms of their complements U1 and
U2 := Γ−→

Sn \B2, and in fact we will show that U1 ∩ U2 = ∅.

Observe that U1 is the set of pairs (x,y) ∈ Γ−→
Sn such that σ̃1(x,y) enters the

interior of the cube, and this can happen upon increasing any of the n + 1 coor-
dinates. Thus an element (x0 · · ·xn, y0 · · · yn) ∈ U1 falls into one of the following
cases:

(1) x0 < y0 and x1 = · · · = xn = −;
(2) For some j ∈ {1, . . . , n− 1} we have

xj < yj and y0 = · · · = yj−1 = xj+1 = · · · = xn = −;
(3) y0 = · · · = yn−1 = − and xn < yn.

Similarly, an element (x0 · · ·xn, y0 · · · yn) ∈ U2 falls into one of the following
cases:

(A) x0 = · · · = xn−1 = − and xn < yn;
(B) For some k ∈ {1, . . . , n− 1} we have

xk < yk and x0 = · · · = xk−1 = yk+1 = · · · = yn = −;
(C) x0 < y0 and y1 = · · · = yn = −.

A case-by-case analysis will show that an element (x,y) = (x0 · · ·xn, y0 · · · yn) ∈
U1 cannot be in U2.

Suppose first that (x,y) is in case (1). Since x0 · · ·xn ∈ ∂In+1 and x0 < y0,
we must have x0 = 0, and therefore we cannot be in either case (A) or case (B).
If we are in case (C), then since y0 · · · yn ∈ ∂In+1 it follows that y0 = 1, and that
in fact (x,y) = (0 − · · · −, 1 − · · · −). This element is not in Γ−→

Sn (since there are

no directed paths from the interior of a face to the interior of the opposite face), a
contradiction.

Next suppose (x,y) ∈ U1 is in case (2). Then y0 = xn = −, and so we cannot
be in either case (A) (which would give x = − · · · −) or case (C) (which would give
y = − · · ·−). If we are in case (B), then there exist j, k ∈ {1, . . . , n− 1} such that

(x,y) = (x0 · · ·xj − · · ·−,− · · · − yj · · · yn)

= (− · · · − xk · · ·xn, y0 · · · yk − · · · −).

We observe that if j < k then x = − · · ·−, while if j > k then y = − · · ·−.
Hence j = k, and (x,y) = (− · · · − xj · · ·−,− · · · − yj − · · · −) where xj < yj.
Since x and y are in ∂In+1, we must have xj = 0 < 1 = yj. This gives (x,y) =
(− · · · − 0− · · ·−,− · · · − 1− · · · −) which is not in Γ−→

Sn , a contradiction.

Now suppose (x,y) ∈ U1 is in case (3). Since y0 · · · yn ∈ ∂In+1 and xn < yn,
we conclude that yn = 1. Hence we are not in cases (B) or (C). In case (A), since
x0 · · ·xn ∈ ∂In+1 it follows that xn = 0, and so (x,y) = (− · · ·− 0,− · · ·− 1) which
is not in Γ−→

Sn , a contradiction.
Thus U1 ∩U2 = ∅, and B1 ∪B2 = Γ−→

Sn . It only remains to observe that both B1

and U1 are semi-algebraic subsets of R2n+2 (they are the solution sets of a finite
number of linear equalities and inequalities) hence are ENRs. �
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