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Abstract 22 

To adhere to the Paris Agreement of 2015, we need to store several gigatonnes (Gt) of carbon 23 

annually. In the last years, a variety of technologies for carbon capture and storage (CCS) and 24 

carbon capture and usage (CCU) have been demonstrated. While conventional CCS and CCU 25 

are techno-economically feasible, their climate change mitigation potentials are limited, due to 26 

limited amount of CO2 that can be captured. Hence, there is an urgent need to explore other 27 

CCS and CCU routes. Here we discuss an interesting alternative route for capture of carbon 28 

dioxide from industrial point sources, using CO2-binding, so-called autotrophic aerobic bacteria 29 

to produce microbial biomass as a C-storage product. The produced microbial biomass is often 30 

referred to as microbial protein (MP) because it has a crude protein content of ~70- 75%. 31 

Depending on the industrial production process and final quality of the produced MP, it can be 32 

used for human consumption as meat replacement, protein supplement in animal diets, or slow-33 

release organic fertilizer thus providing both organic nitrogen and carbon to agricultural soils. 34 

Here, we discuss the potentials and limitations of this so far unexplored CCU approach. A 35 

preliminary assessment of the economic feasibility of the different routes for CO2 carbon 36 

avoidance, capture and utilization indicates that the value chain to food is becoming attractive 37 

and that the other end-points warrant close monitoring over the coming years. 38 

 39 

  40 

  41 



The need for and limitations of carbon capture and utilization methods 42 

To meet the climate change mitigation challenge and adhere to the Paris Agreement of 2015, 43 

we need to store about 4-5 Gigatonnes (Gt) CO2 per year (Mac Dowell et al. 2017). Several 44 

technologies for carbon capture and storage (CCS) and carbon capture and usage (CCU) exist 45 

and their technological feasibility has been demonstrated (Mac Dowell et al. 2017). 46 

Underground storage of CO2 gas is the cheapest option (Service 2016), but beyond climate 47 

change abatement, this approach brings about no net benefits.  48 

While conventional methods of CCS and CCU are techno-economically feasible, their 49 

overall potential in terms of climate change mitigation is limited (Mac Dowell et al. 2017). For 50 

example, the expectation of CO2 injection into geological reservoirs to achieve enhanced oil 51 

recovery (EOR-CCS), at the current prices of oil and of CO2, at best only cover 4-8% of the 52 

mitigation challenge by 2050 (Mac Dowell et al. 2017). The economic feasibility is directly 53 

linked to the oil price, so with low oil prices, the economics of storage by the oil industry also 54 

becomes less attractive. Another route is the use of carbon dioxide as a feedstock to produce 55 

chemicals (Aresta et al. 2013, Martens et al. 2017). The two chemicals which really represent 56 

major CO2 capture potential at present are urea (i.e., 132 Mt CO2 equivalent per year) through 57 

an 2-step chemical process in which CO2 first undergoes an exothermic reaction with liquid 58 

ammonia to form (NH4)2CO3 followed by endothermic decomposition and dehydration of 59 

(NH4)2CO3 into urea and methanol (i.e., 10 Mt CO2 equivalent per year) via catalytic 60 

hydrogenation of CO2 (Aresta et al. 2013, Boot-Handford et al. 2014). However, the entire CO2-61 

to-chemical route can, at best, account for about 1% of required carbon storage, and will most 62 

likely not play a major role in climate change mitigation in the years ahead (Mac Dowell et al. 63 

2017). Hence, although these different CCS and CCU techniques allow efficient and 64 

economically feasible carbon capture, their ability to decrease  current CO2 emission levels is, 65 

at present, insufficient. 66 



Considering the limitations of the available methods, and the urgency to deal with climate 67 

change, there is a need to explore other routes that can (1) effectively avoid carbon emissions, 68 

(2) capture and utilize carbon, and (3) offer the possibility of being implemented in the near 69 

future. Obviously, such alternative routes must have a clear-cut positive impact on the global 70 

economy, the environment and public health. An interesting alternative option that, so far, has 71 

not been explored on industrial scale, is carbon capture coupled with storage in and utilization 72 

as microbial biomass by using autotropic micro-organisms that rely on renewable hydrogen, 73 

the so-called hydrogen oxidizing bacteria (HOB) (Figure 1) (Matassa et al. 2015, Matassa et al. 74 

2016b, Pikaar et al. 2017a). The key feature of these bacteria is that they have a special capacity 75 

to use the energy which becomes available when they enzymatically combine hydrogen gas 76 

with oxygen gas to produce water; the renewable energy initially invested to electrolyse the 77 

water to hydrogen and oxygen is thus recovered by the bacteria and used to build up CO2 and 78 

minerals into their cellular components. 79 

 80 

 81 

Fig 1. Overall scheme of the production of Microbial Based Biomass from Haber-Bosch 82 

nitrogen, CO2 and H2 and O2 driven by renewable energy. 83 

 84 



The autotrophic microbial biomass that is formed from CO2 under aerobic conditions 85 

can, depending on the industrial production process and final quality of the microbial biomass, 86 

be used for (1) human food as a protein source (as a meat substitute), (2) protein rich feed for 87 

livestock and (3) slow-release organic fertilizer providing both nutrients to the crops, but also 88 

serving as a means to store carbon in agricultural soils (Lal 2004a, b, 2008, Paustian et al. 1997, 89 

Paustian et al. 2016, Smith 2016). Clearly, in all three cases, the microbial based biomass 90 

represents a temporary storage, but this approach integrates possibilities to decrease the demand 91 

for fossil fuel through direct CO2 usage by the autotrophic HOB. In this paper, we highlight the 92 

potential and limitations of such an approach, and we assess the economic feasibility of the 93 

different routes for CO2 carbon avoidance, capture and utilization routes.  94 

 95 

Carbon capture potential and its economics  96 

Independent of the different end-use possibilities described above, the factor determining the 97 

practical feasibility of the carbon capture and storage potential, is the availability of CO2 that 98 

can be captured and upgraded to adequate quality at large scale from industrial point sources 99 

(e.g.  incinerators, cement ovens and steel plants) or could even be transformed into syngas at 100 

economically competitive costs (Boot-Handford et al. 2014, Verbeeck et al. 2018). Assessments 101 

by the Intergovernmental Panel on Climate Change (IPCC) have revealed that already in 2020, 102 

the annual amount CO2 that can be captured at economically feasible costs from industrial point 103 

sources will reach 0.7 - 1.3 Gt C/year (2.6 to 4.9 Gt CO2/year) (IPCC 2005). This is already in 104 

the same order as the amount of carbon, i.e., 4-5 Gt/year that needs to be stored. By 2050, the 105 

carbon capture potential is estimated to reach 1.3–10 Gt C/year, which reflects 4.7 - 37.5 Gt 106 

CO2/year.  107 

The production costs of hydrogen-based microbial protein are estimated at US$2800 per 108 

tonne product (i.e., dry microbial based biomass at a crude protein content of 70-75%)  (Pikaar 109 



et al. 2018). The hydrogen production costs by means of water electrolysis comprise about 60% 110 

of the total production costs for hydrogen based microbial protein (Pikaar et al. 2018). These 111 

estimated costs are based on a cost of hydrogen of $3/kg hydrogen through water electrolysis 112 

using renewable energy as the energy source at a unit price of $0.05 per kWh. In recent years, 113 

considerable progress has been made in renewable energy generation, with costs for large scale 114 

electricity generation using large scale-solar photovoltaics, with recent bids already reaching 115 

prices as low as US$0.03 per kWh generated (Haegel et al. 2017). 116 

 117 

Microbial protein for human consumption as a meat substitute 118 

Microbial protein (MP) as a food product suitable for human consumption is not new with 119 

microorganisms in the form of fungi, yeast, bacteria and algae being used in food processing 120 

for human consumption (e.g., bread, yoghurt, mushrooms and beer) for thousands of years 121 

(Anupama and Ravindra 2000, Matassa et al. 2016a). In recent years, there has been an 122 

increasing interest in MP for human consumption as a meat substitute. Indeed, MP can already 123 

be produced at commercially competitive prices, and is increasingly sold as meat substituents 124 

in fungal based MP products, like Quorn(TM). Yet, a more challenging issue is to opt for MP 125 

produced not from carbohydrates (as in the case for Quorn(TM)), but from non-food CO2 as a 126 

carbon source, coupled with hydrogen as an energy source (Figure 1). Interestingly, the concept 127 

of using carbon dioxide and hydrogen to produce MP food is not completely new. Human trials 128 

were already conducted by NASA in the 1960s in their quest to produce food for astronauts 129 

(Waslien et al. 1969). The production of Spirulina platensis in the MELiSSA loop is an 130 

excellent example of how integrated nutrient recovery in space can be used to produce MP 131 

(Gòdia et al. 2002).  132 

Considering total production costs of about $2800/tonne (dry microbial based biomass 133 

at a crude protein content of 70-75%; all costs in terms of ingredients, mixing, pumping, 134 



dewatering, drying, sterilization, processing, overhead, and CAPEX) (Pikaar et al. 2018), and 135 

the current value of top-quality protein for human food in the market (such as, for instance, pea 136 

protein) of about US$3500-5000/tonne, it appears that the capture and upgrading of CO2 to 137 

microbial protein has reached a stage of economic feasibility. However, when looking at 138 

absolute values, carbohydrate-based products like Quorn (TM), although increasing in produced 139 

volumes, at present, represent only a very small fraction of the overall protein market with an 140 

annual production of 25,000 tonnes per year (Matassa et al. 2016a). A comparison of the CO2 141 

footprint of N-fixing crops, such as soy, reveals that it amounts 4-8 tonnes of CO2 equivalents 142 

per tonne soy dry matter produced (http://faostat.fao.org/). In contrast, the microbial route has, 143 

in principle, a CO2 footprint that is negative, since anthropogenic CO2 is fixed, and the 144 

microbial biomass produced is generated through green energy, and can be harvested and dried 145 

in an energy neutral way, by using natural drying processes. Hence, if the concept of hydrogen-146 

oxidizing bacteria based food production could be implemented, it offers the potential to 147 

contribute to CO2 avoidance relative to the conventional agro-supply line. Despite the enormous 148 

market potential to feed 7.5 billion people worldwide with nutritious microbial protein, it seems 149 

unlikely that this microbial-based carbon capture and utilization route will directly influence 150 

climate change. This is related to the fact that consumers would need to adapt rapidly in the 151 

near future to this unusual food supply, provided also that it qualifies under the rigorous 152 

demands imposed by the regulator on novel foods. However, as the market is currently already 153 

open to microbial products, such as Quorn(TM), Spirulina, and other less obvious microbial 154 

products, such as cheese and beer, the legislative and societal acceptance could fall within this 155 

framework, making the transition to MP less troublesome.  The onset of such a route in the 156 

coming decades has the potential to decrease  the pressure on agricultural land with some 9% 157 

(Pikaar et al. 2017a), one of the key drivers of deforestation, biodiversity loss and land use 158 



change induced greenhouse gas emissions (Crist et al. 2017, Maxwell et al. 2016, Newbold et 159 

al. 2015, Popp et al. 2014). 160 

   161 

Microbial based biomass for protein rich animal feed 162 

The production of MP to produce livestock feed is well documented (Anupama and Ravindra 163 

2000, Kihlberg 1972). It was already produced at industrial scale in the 1970s (Matassa et al. 164 

2016a, Pikaar et al. 2017a), when MP was often referred to as single cell protein (SCP). In 1976, 165 

the UNESCO science price was awarded to ‘large-scale and low-cost production of single cell 166 

proteins from oil’ (Pikaar et al. 2017b). The bacterial protein product, called Pruteen®, produced 167 

from methanol, was commercialized by Imperial Chemical Industries Ltd in 1980. 168 

Interestingly, the Soviet Union government was very active in achieving large-scale industrial 169 

production of microbial protein. As described in a recent de-classified CIA report, the Soviet 170 

Union had a state-wide research programme, entitled “The Soviet Hydrocarbon-Based Single 171 

Cell Protein Program”, aiming to produce microbial protein in the form of yeast using n-paraffin 172 

derived from oil as the carbon and energy source (CIA 1977). Despite these major international 173 

efforts, MP never reached full market potential with most of these initiatives being ceased at 174 

the end of the 1980s.  175 

 In recent years, the production of MP has regained significant interest, particularly in 176 

the aquaculture industry, with the production of natural gas based MP as a fish food, reaching 177 

industrial production at economically competitive prices (http://calystanutrition.com/). The fact 178 

that this process relies heavily on the use of natural gas implies that such a pathway will not 179 

provide an ultimate long-term sustainable solution. Recently, it was demonstrated that high-180 

quality MP with an amino-acid composition similar to fish meal can be produced using 181 

hydrogen as energy source coupled with carbon capture (Matassa et al. 2016b) (see Fig 2).  182 



 183 

Figure 2.  Comparison of essential amino acid composition of H2-oxidizing microbial 184 

protein by a Sulfuricurvum spp. dominated culture (red) with fish meal (orange) and soy 185 

bean meal (purple), adapted from Mattasa et al., (2016) (Matassa et al. 2016b). 186 

 187 

Currently, MP production costs appear to be substantially higher than conventional protein-rich 188 

supplements, like soy bean meal and fish meal, with market prices in the last 5 years in the 189 

order of US$600-1100 per ton for soy bean meal and $2000-3000 per ton for fish meal, both 190 

expressed as 100% protein crude content. The hydrogen based MP production route cannot 191 

compete yet with the soybean-for-feed route. It could be competitive with fish protein, though 192 

its demand will certainly remain high, due to its very valuable amino acid profile. Current 193 

practice of supplying aquaculture with wild-catch fish protein harvested from the ocean, 194 

however, is subject to severe environmental considerations, which creates possibilities for other 195 

more sustainable opportunities, such as MP. The global aquaculture industry is, at present, 196 

under enormous pressure to find alternative, more sustainable, protein sources. Microbial 197 

protein production, driven by renewable energy, and coupled with carbon capture, could be an 198 

interesting ‘out of the box’ solution that warrants further exploration. 199 

 200 

Production of Microbial Based slow release Organic Nitrogen (MBB-SON) fertilizer for 201 

soil carbon sequestration 202 



It is widely accepted that enhancing the soil organic carbon content in general improves the soil 203 

health and is well known to increase crop yields (Diacono and Montemurro 2010, Lal 2006, 204 

2009, 2010, 2011, Lal et al. 2007, Steiner et al. 2007). The increase in soil organic carbon also 205 

enhances the water holding capacity (Emerson 1995, Rawls et al. 2003), cation exchange 206 

capacity and aggregation, and reduces the occurrence of soil erosion (Lal 2006). Recently, 207 

increasing the soil carbon of agricultural soils has been proposed as a climate change mitigation 208 

tool (Minasny et al. 2017). Indeed, the global carbon currently stored in soils is about a factor 209 

3.3 higher than the CO2 levels in our atmosphere (Lal 2004a). In 2015, the ‘4 per mille Soils 210 

for Food Security and Climate’ (http://4p1000.org/) was launched at the COP21 in Paris, with 211 

the aspirational goal to increase global soil organic matter stocks by 0.4 % per year, which 212 

could make a strong contribution to decreasing  atmospheric CO2 concentrations (Minasny et 213 

al. 2017). Agricultural soils are of particular interest because these soils have been substantially 214 

depleted in soil organic carbon since the introduction of intensive agricultural practices, so these 215 

have the highest potential to increase in carbon content (Lal 2004b). If the 0.4% increase were 216 

restricted to agricultural soils, the carbon sequestration potential would be around 1.2 GtC/ year, 217 

which corresponds to about 4-5 Gt CO2 per year (van Groenigen et al. 2017), and this should, 218 

in theory, be sufficient to comply with Paris Agreement targets, if immediate and aggressive 219 

mitigation is pursued. However, considering an average C/N ratio of 12 for soil organic carbon 220 

(SOC) (Batjes 1996), this would require some 100 Teragram reactive nitrogen per year. This 221 

value corresponds with the yearly supply of nitrogen from the entire global fertilizer industry 222 

(Bodirsky et al. 2014). Hence, achieving the CO2 mitigating challenge in which the soils play 223 

an important role seems unlikely, with the availability of nitrogen being the limiting factor. It 224 

can be suggested to focus on ‘over-exploited‘ soils, and try to return them to agricultural 225 

practices that assure that the soil organic carbon is not decreasing, and at least remains constant. 226 



This will not only prevent increasing soil-related CO2 emissions, it may also sustain overall 227 

physico-chemical stability of the soil, with higher biomass yields. 228 

 The addition of organic materials, such as compost, peat, sewage sludge, and manure, 229 

to increase soil organic carbon levels and enhance crop yield are well-established methods 230 

(Diacono and Montemurro 2010). However, the use of compost and sewage sludge is often 231 

impaired by the fact that these can contain heavy metals and organic pollutants arising from 232 

pesticides, pharmaceuticals and personal care products (Andrade et al. 2010, Lozano et al. 2013, 233 

Tou et al. 2017, Westerhoff et al. 2015). Animal manure is largely free from such pollutants, 234 

but there is increasing concern that manure addition could result in agricultural soils that 235 

accumulate antibiotic resistant bacteria (McGrath et al. 1995, Singer et al. 2016, Tou et al. 2017, 236 

Udikovic-Kolic et al. 2014, Westerhoff et al. 2015, Zhu et al. 2013). Moreover, their overall 237 

potential in terms of climate change mitigation is limited (Edenhofer 2014). Considering the above-238 

mentioned stoichiometric constraints in terms of nutrient, especially nitrogen, availability, and 239 

limitations of conventional methods to increase carbon content of soils in the context of climate 240 

mitigation, we suggest to use a novel approach in which MP is used as a slow-release organic 241 

nitrogen fertilizer (see Figure 1). The production process is almost identical to the MP based food 242 

and feed production processes described in the sections above, but with some key differences in 243 

process requirements. The fermentation conditions are less strict in terms of hygiene, there is no 244 

need for sterilization and consistent composition of the microbial biomass (i.e., no need for 245 

strict, pure culture conditions), and the final product does not require a 100% dry form, reducing 246 

the drying requirements.  247 

The production of this MP for slow-release nitrogen supply to the soil would still rely on 248 

the use of Haber-Bosch process to produce the reactive nitrogen source (Figure 1). However, the 249 

inorganic Haber-Bosch nitrogen fertilizer is transformed into an organic nitrogen form. Indeed, it 250 

is integrated by the microbes into their cell biomass. The rationale behind this is that, worldwide, 251 



inorganic nitrogen fertilizer has a very low use-efficiency of 40%, due to leaching, run-off, 252 

denitrification and volatilization (Bodirsky et al. 2014). The concept is that upgrading this 253 

mineral nitrogen to organic nitrogen in the form of MP increases the nitrogen use efficiency 254 

with concomitant enrichment of the agricultural soil with organic matter. While many studies 255 

highlight the positive impact of increasing the soil organic carbon on e.g., agricultural yields, 256 

carbon storage, nutrient and water retention as highlighted above, greenhouse gas fluxes from 257 

agricultural soils are very large, complex and highly heterogeneous (Singh et al. 2010, Smith et 258 

al. 2008, Xu et al. 2011). As such, under certain soil conditions, the increase in soil organic 259 

carbon and organic nitrogen levels could even increase carbon dioxide, methane and nitrogen 260 

emissions from the soil.  Long-term trials would be essential to verify whether the addition of 261 

MP results in increased storage of carbon in the soil organic matrix, coupled with low nitrogen 262 

and highly potent greenhouse gas emissions. 263 

A situation can be considered in which the total current global use of Haber-Bosch 264 

fertilizer N of ~100 Mt/year (Zhang et al. 2015) would first be upgraded to MP. Considering a 265 

typical C/N ratio for microbial biomass of 5 (Pikaar et al. 2017a), the theoretical potential of 266 

MP to capture and temporarily store carbon in the soils reaches 0.5 Gt C/year (1.83 Gt 267 

CO2/year). This is substantially lower than the amount of carbon that has to be sequestrated per 268 

annum in soils according to the Paris mitigation challenges (i.e., 1.2 Gt C) (Minasny et al. 2017). 269 

Moreover, part of this MP carbon will be released from the soils over time, as it is biodegraded 270 

to release nitrogen to the plants, thus decreasing the net carbon captured.  271 

In addition to the limitations in carbon capture potential, this approach also comes with 272 

considerable economic constraints. Considering the production cost of about 2800 US$/tonne 273 

HOB-based MP, which is equivalent to a cost of ~US$1500/tCO2 incorporated, it is clear that 274 

these values are much higher than  the economic costs for underground carbon storage of CO2 275 

or other available CCU routes (Service 2016). In contrast to the production of MP as human 276 



food or animal feed, where the microbial biomass product has a high market value, MP for soil 277 

application has to compete with alternative organic nitrogen fertilizers, such as (digested) 278 

manure, sludge, kelp, feathers, and horn meal, as well as with inorganic fertilizer. These have 279 

a relatively low market value, especially inorganic fertilizers, with prices for urea below 280 

US$500/t N (http://www.indexmundi.com/commodities/?commodity=urea&months=60). The 281 

use of inorganic nitrogen is integrated in the MP production cost at a value of US$112/tonne 282 

MP, which is only a fraction of the overall production cost (4%). Even when considering high 283 

carbon pricing schemes of US$150–220/t CO2 when implementing low stabilisation climate 284 

targets such as the Representative Concentration Pathways (RCPs) (van Vuuren et al. 2011), at 285 

best, a carbon capture benefit of about US$ 400/tonne MP can be achieved. Even under these 286 

low stabilization climate targets, the organic nitrogen has a cost of about US$2280 per 160 kg 287 

N present in the MP, which is equivalent to 14000 US$/tonne organic N. This is a factor 10 - 288 

20 higher than the current commodity prices for inorganic and organic nitrogen. 289 

In addition to the economic limitations describe above, there are also substantial energy-290 

related constraints. The production of MP for soil application requires substantial amounts of 291 

renewable energy to produce hydrogen via water electrolysis. It would require about 3000 292 

Gigawatt of renewable energy per Gt of MP produced (Pikaar et al. 2018). To put this amount 293 

into a global context; the current installed capacity of renewables worldwide is only 912 294 

Gigawatt (REN21 2017).  295 

 296 

Concluding remarks 297 

To deal with the climate change challenge, there is an urgent need to develop alternative routes 298 

that can be implemented in the near future, capable of effectively avoiding carbon emissions 299 

and/or capturing and utilizing carbon, that also have a positive impact on the environment and 300 

the global economy. In this short paper, we examined the potential of autotrophic hydrogen-301 



oxidizing bacteria to capture and utilize carbon in the form of human food, protein rich animal 302 

feed and slow-release nitrogen fertilizer. The production of food via the route of microbial 303 

protein has the current potential to decrease the use of fossil fuel, water, pesticides, and land 304 

use, to provide the global population with nutritious protein, but there may be issues with public 305 

acceptability/demand and would require further research concerning its composition and 306 

potential side effects. The production of microbial protein as animal feed via autotrophic 307 

microbial biomass is not yet economically competitive. At current hydrogen production costs 308 

through water electrolysis, the overall production price of microbial protein exceeds the costs 309 

of conventional soybean and fishmeal. Yet, if in the future or in specific geographic regions the 310 

cost can be decreased substantially or the as costs of conventional soybean and fishmeal 311 

increase, this line of production of protein could become cost competitive. 312 

The production of microbial protein for slow-release organic nitrogen fertilizer applications 313 

is clearly of interest as a means to considerably increase the carbon content in agricultural soils, 314 

and in light of its potential to reduce global nitrogen pollution. For many reasons, the dynamics 315 

of such an increase in soil organic carbon storage through this route are hard to predict and 316 

would ─ simply because MP is fully biodegradable ─ be reversible. Despite its theoretical 317 

potential as a clean-tech solution to capture carbon and increase soil organic carbon content, 318 

the current low market value of organic nitrogen fertilizer, the high-energy demands and current 319 

production costs, severely limit the practical feasibility and potential as a climate change 320 

mitigation tool. Although MP does not seem immediately ready for practice, this concept opens 321 

new long-term perspectives to serve as a food and feed source, combined with its potential to 322 

contribute to carbon capture and climate change abatement. 323 
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