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Abstract 

The South Saskatchewan River Basin of southern Alberta drains the transboundary central 

Rocky Mountains region and provides the focus for irrigation agriculture in Canada. 

Following extensive development, two tributaries, the Oldman and Bow Rivers, were closed 

for further water allocations, while the Red Deer River (RDR) remains open. The RDR basin 

is at the northern limit of the North American Great Plains and may be suitable for 

agricultural expansion with a warming climate. To consider irrigation development and 

ecological impacts, it is important to understand the regional hydrologic consequences of 

climate change. To analyze historic trends that could extend into the future, we developed 

century-long discharge records for the RDR, by coordinating data across hydrometric gauges, 

estimating annual flows from seasonal records, and undertaking flow naturalization to 

compensate for river regulation. Analyses indicated some coordination with the Pacific 

Decadal Oscillation and slight decline in summer and annual flows from 1912 to 2016 (-

0.13%/year, Sen’s slope). Another forecasting approach involved regional downscaling from 

the global circulation models (GCMs), CGCMI-A, ECHAM4, HadCM3, and NCAR-CCM3. 

These projected slight flow decreases from the mountain headwaters versus increases from 

the foothills and boreal regions, resulting in a slight increase in overall river flows 

(+0.1%/year). Prior projections from these and other GCMs ranged from slight decrease to 

slight increase and the average projection of -0.05%/year approached the empirical trend. 

Assessments of other rivers draining the central and northern Rocky Mountains revealed a 

geographic transition in flow patterns over the past century. Flows from the rivers in 

Southern Alberta declined (around -0.15%/year), in contrast to increasing flows in 

northeastern British Columbia and the Yukon.  The RDR watershed approaches this 

transition and this study thus revealed regional differentiation in the hydrological 

consequences from climate change. 
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Introduction 

 

With fertile soils, abundant sunshine and warm summers, the North American Great Plains 

provides a global centre for agricultural crop production (Cunfer, 2005). This vast region of 

~1.3 million km2 supports prairie grasslands where local precipitation is insufficient for trees 

and forests. With this semiarid climate, there has been extensive irrigation development to 

increase crop diversity and yields, and the water distribution is efficient due the commonly 

flat terrain. With global warming, it is likely that this prairie ecoregion will expand northward 

and there would likely be a corresponding northward expansion of crop production and 

agricultural irrigation (Rosenberg et al., 2003). 

 

The northern region of the Great Plains is situated in Canada, primarily within the South 

Saskatchewan River Basin (SSRB) of southern Alberta and southwestern Saskatchewan.  The 

SSRB watershed supports around 70% of Canada’s irrigated lands (Statistics Canada, 2011) 

and includes three major tributaries. Of these, the Oldman and Bow Rivers have been 

extensively developed for agricultural irrigation and were assessed as fully allocated by the 

year 2000, prompting their closure for further water licenses, and a water market system was 

established to allow continuing regional development (Pentney & Ohrn, 2008). 

 

The northern tributary, the Red Deer River, remains open for further water allocation and this 

sub-basin is at the northern margin, or limit of the Great Plains. Prospective impacts of 

climate change on the flows of this river system are consequently of particular regional 

interest relative to the northward expansion of specialty crop production and agricultural 



 

 
This article is protected by copyright. All rights reserved. 

irrigation. There is also broader interest since this zone provides the transition from the 

prairie grassland to the aspen parkland ecoregions, and this transition is likely to migrate 

northward with global warming (Schneider et al., 2009). Climate change is likely to have 

substantial influence on this transition since the warming climate is predicted to the have the 

greatest impact on the hydrological cycle in snow-dominated watersheds at higher latitudes 

(Barnett et al., 2005; Huntington & Niswonger, 2012; Nogués-Bravo et al., 2007). 

 

While increasing temperatures with climate change are more universal, regional changes in 

the quantity and seasonality of precipitation are much more variable, and projections of 

impacts of climate change on river flows are correspondingly less certain (Stephens et al., 

2010; Stevens & Bony, 2013). Winter warming alters the distributions of rain versus snow-

fall, increasing winter flows and decreasing snow pack accumulations (Lapp et al., 2005). 

With spring warming, snowmelt and the commencement of the spring river flow peak have 

often advanced (Cayan et al., 2001; Mote et al., 2005; Rood et al., 2008). Overall 

precipitation has increased in some regions but due to increased evaporation (Tanzeeba & 

Gan, 2012), river flows in mid- to late summer have gradually declined from some rivers 

draining the Rocky Mountains. This has involved the central Rocky Mountain region, which 

straddles the international border and provides the headwaters for the SSRB tributaries which 

flow northeastward to Hudson Bay, (Rood et al., 2005; 2008; St. Jacques et al., 2010; 2013). 

 

However, the hydroclimatic changes may vary considerably across geographic regions and 

current research efforts seek to better understand localized responses within and across 

watershed-scales. With this objective, this study was undertaken to analyze the historic and 

prospective future hydrology of the Red Deer River and its headwater tributaries. Based on 

prior studies, we expected that: 
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(1) air temperatures would have increased over the past century, particularly in the winter, 

while precipitation may have slightly increased; 

(2) river flows would have progressively declined, especially summer and autumn flows; 

(3) projections of river flows from hydroclimatic modeling following global circulation 

model (GCM) downscaling could provide similar outcomes as empirical trend projections; 

and 

(4) there would be generally similar patterns of river flow change for the rivers that drain the 

central Rocky Mountains towards Hudson Bay, but there could be differences for more 

northerly drainages that flow to the Arctic Ocean. 

 

Methods 

The Red Deer River Basin 

The Red Deer River (RDR) Basin is the most northern, and by area the largest sub-basin in 

the South Saskatchewan River Basin, but contributes only ~20% of the South Saskatchewan 

River flow (Clipperton et al., 2003). The RDR headwaters are in the Rocky Mountains of 

Banff National Park and the river flows eastward through foothills, boreal, and parkland 

natural regions, through the City of Red Deer and then the semi-arid badlands before joining 

the South Saskatchewan River near the Saskatchewan border (Figure 1). While mountain and 

foothills include about 20% of the RDR Basin area, these regions upstream of Red Deer 

provide ~85% of the total river flow (Gill et al., 2008).  

 

1. Historical Temperatures and Precipitation in the Red Deer River Basin 

To assess historical patterns in temperatures and precipitation, which could influence river 

flow patterns, we chose regional weather stations with the most complete records across the 

upper watershed, and avoided the City of Red Deer station due to possible influence from 
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urban development. Subsequently, monthly and annual temperatures for stations at Banff, 

Rocky Mountain House, Olds and Lacombe were obtained from Environment and Climate 

Change Canada’s Second Generation Homogenized Surface Air Temperature Database 

(Vincent et al., 2012), and generally extended from 1912 to 2016. These time series were 

infilled for occasional missing temperatures, through linear regression with values from 

adjacent stations that provided tight correspondences (r2 = 0.97; Philipsen, 2017). 

 

For precipitation, daily rainfall gauge and snowfall ruler data were extracted from the 

National Climate Data Archive of Environment Canada (https://www.ec.gc.ca/dccha-

ahccd/default.asp?lang=en&n=2E5F8A39-1), following measurements that commenced in 

1917. These data follow corrections for rain and snow measurements, as well as some 

merging of data from neighboring stations (Vincent et al., 2012). The record still includes 

occasional data gaps and we investigated trends in the monthly precipitation records without 

any data infilling. Annual precipitation records are more affected by the data gaps since a 

missing record for any month excludes a total for that year. Since regional precipitation is 

heaviest in summer, for gaps in other seasons, the average monthly values from the full 

record provided estimates for the data gaps and this allowed an estimation of annual 

precipitation for that year. However, because this data extension introduced errors, our 

statistical analyses emphasized the measured monthly values, rather than the infilled annual 

precipitation series. 

 

2. Historical River Flows in the Red Deer River Basin 

Streamflow data were obtained from HYDAT, the Water Survey of Canada’s Hydrological 

Database (http://wateroffice.ec.gc.ca/). Trends in mean annual discharge (Qa) and mean 

monthly discharge (Qm) were analyzed for the available gauging locations (Figure 1, Table 

https://www.ec.gc.ca/dccha-ahccd/default.asp?lang=en&n=2E5F8A39-1
https://www.ec.gc.ca/dccha-ahccd/default.asp?lang=en&n=2E5F8A39-1
http://wateroffice.ec.gc.ca/
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1). Discharge records for the upper tributaries were limited since gauging only commenced 

around 1970. Longer records existed for the RDR at Red Deer but the upstream Dickson Dam 

and Gleniffer Reservoir were implemented around 1983. The dam was operated to capture 

and store water in the summer, for subsequent flow augmentation through the winter, partly 

to ensure sufficient dissolved oxygen for the aquatic ecosystem when the river was ice-

covered. Subsequently, the monthly Q have been altered but annual flows are relatively 

unchanged due to the proportionally small size of Gleniffer Reservoir, and limited carry-over 

across years. 

 

We analyzed temporal trends in annual and monthly temperatures, precipitation and Q with 

three statistical correlation tests using SPSS v.19 (IBM, Armonk, NY): (1) Pearson product 

moment correlations (r) that are similar to linear regressions; and two non-parametric rank-

order tests, the (2) Kendall’s , and (3) Spearman tests. For preliminary analyses of Q 

trends (Gill et al., 2008; Philipsen, 2017) we undertook pre-whitening (Yue & Wang, 2002), 

but final analyses assessed the original data since pre-whitening attenuates trends and 

autocorrelation is less problematic for century-long data series (Rood et al., 2008). The 

analyses provided very similar outcomes with and without pre-whitening. 

 

3. Prospective Future Climate and River Flows - Empirical Trend Projection 

Empirical trend projection anticipates that the near future will extend from the recent past and 

thus extends the regressions from the historic Q time series. We focused on the RDR at Red 

Deer and to compensate for flow regulation at Dickson Dam, naturalized weekly Q values 

were obtained from Alberta Environment’s Natural Flow Database (Alberta Environment, 

1998). That dataset had been extended to provide weekly discharge data for the period from 

1912 to 2009 and monthly Q were subsequently calculated. We undertook a similar 
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reconstruction to further extend the monthly Q to 2013, by combining the inflows from the 

upstream reach and tributaries (Figure 1), and undertaking a regression-based correction 

based on the pre-dam interval (Philipsen, 2017). Our naturalized Q and Alberta 

Environment’s naturalized Q produced very similar results, with tight correspondences for 

annual and mean monthly Q (r2 = 0.99 and r2 = 0.98, respectively). 

 

In the correlation analyses for the RDR at Red Deer, Pearson r (linear regression) outcomes 

differed substantially from those of the non-parametric rank-order tests, and this reflected the 

exceptionally high flow years of 1915 and 1916, near the commencement of the time series. 

This would inflate the slopes in linear regression analyses and to compensate for these early 

outliers, we assessed the Sen’s slopes, as calculated with MAKESENS (Salmi et al., 2002), 

with modification to accommodate data series that exceeded 100 values. The Sen’s slopes for 

the monthly and annual Q time series were determined and we then extended these patterns 

forward to 2062, a century from 1962, the mid-point of the 1912 to 2013 historic record that 

was analyzed. 

 

4. Projections from Global Circulation Models, Regional Downscaling and River Flow 

Routing 

The analysis applied a similar approach to that described by Shepherd et al. (2010), a 

modeling sequence that provided river flow projections that converged with empirical trend 

projections for the Oldman River, also in the SSRB. The approach applied lumped models, 

which aggregate processes throughout a basin with the application of statistical methods to 

characterize quantitative associations, an approach that was suitable for the available 

environmental records for the RDR Basin (Bingeman et al., 2006; Kouwen et al., 2002; 

Pietroniro et al., 2006). The emissions scenarios were from CMIP3 (Coupled Model 
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Intercomparison Project phase 3), which provided very similar spatial patterns of temperature 

and precipitation change as the subsequent CMIP5 scenarios (Knutti and Sedláček, 2013; 

Wuebbles et al., 2014).   

 

We applied four global circulation models (GCMs), CGCMI-A, ECHAM4, HadCM3 and 

NCAR-CCM3, using a scenario with a balanced emphasis on energy sources, SRES A1B, 

and statistically downscaled the data using an inverse distance process (Shepherd & McGinn, 

2003). These models produce moderate projections relative to the range provided by the 

numerous GCMs (St. Jacques et al., 2018). These models and variants have been commonly 

applied across western North America (Shepherd and McGinn, 2003; Coquard et al., 2004; 

Shepherd et al., 2010; Gray & Hamann, 2013), including for rivers in the SSRB (Table 2). 

 

Regionalization involved hydroclimatic downscaling from the GCM projections with 

watershed modelling for the tributary sub-basins upstream of Red Deer (maps and further 

details are provided in Gill et al., 2008). This commenced with the Mountain Climate model 

(MTCLIM; Hungerford et al., 1989), which was used to transform temperature and 

precipitation from base locations to mountain sites throughout the RDR basin through 

regressions with physical parameters. Historical base weather station data from 1960 to 1989 

were obtained from Agriculture & Agri-Food Canada and downscaled to a 50-×-50 km grid 

of Alberta through the inverse distance squared method developed by McGinn et al. (1999). 

Climate grid points were extracted and input with site parameters including elevation, slope 

and aspect, derived from digital elevation models, and physical parameters including latitude 

and regional adiabatic lapse rate (Berg et al., 2007). However, this free-air lapse rate may 

have slightly overestimated the surface lapse rate, and temperature inversions are common in 

the winter (Wood et al., 2018), further challenging the modeling. The precipitation module of 
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MTCLIM was modified to derive precipitation from base sites rather than from isohyet maps, 

which were unavailable for some locations. To verify the modified MTCLIM model, 

simulated temperature and precipitation outputs were compared with meteorological data at 

two sites, Ricinus and Cuthead Lake (5127’N, 115°46’W; in the Rocky Mountain foothills). 

 

Outputs from MTCLIM were input into a snowpack and snowmelt module, with a 

modification of the UBC model SNOPAC (Pipes & Quick, 1977; Wyman, 1995; Lapp et al., 

2005). Areas of each watershed in the headwaters of the Red Deer River were categorized 

into 48 topoclimatic classes by combining elevation, slope and aspect, and temperature and 

precipitation values were derived (Shepherd et al., 2010). This simulated whether 

precipitation fell as rain, snow, or a combination, based on a minimum and maximum 

projected air temperatures. Above a threshold, snowmelt was determined based on 

temperature, a point melt factor and reference dew point. Throughout the winter, snowpack 

increased and decreased, reflecting the balance between rain, snowfall and melt, which was 

aggregated with rainfall to provide water yields for each position in the upper tributary 

watershed (presented by Gill et al., 2008), and subsequently for the whole RDR Basin. 

 

Water yields were translated into stream discharge using the river flow routing module, 

RIVRQ developed by Shepherd et al. (2010).  This assessed stream discharge with two major 

components: contributions from a relatively stable perennial baseflow, and a more dynamic 

component arising from large rain or snowmelt events. We defined baseflow for each 

tributary as the typical annual low flow rate during the ice-free period and when water yield 

exceeded baseflow, alluvial aquifer recharge was the second priority of RIVRQ. After this 

removal, further water yield increased the downstream river flows, with accumulation over 

the river basin incorporating transit lags. 
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To compensate for the limited evapotranspiration modeling and for model inaccuracies, the 

final step in the hydroclimatic modeling was the application of quadratic regression 

corrections based on the RIVRQ-simulated versus measured river discharges for the record 

interval. Changes in annual and mean monthly discharge were forecast from the thirty year 

period around 1975 (1960 to 1989) relative to the thirty year period around 2055 (2040 to 

2069) with the modelled future compared to the modelled past to compensate for differences 

between the actual recorded and modelled historic datasets. 

 

5. Historical Flows of Other Rocky Mountain Rivers 

Extending from prior analyses for the eastern drainages from the central and northern Rocky 

Mountains (Rood et al., 2005; 2015; 2017), we pulled forward the times series for the mean 

annual discharges (Qannual) of major rivers with longer-term hydrometric records (Table 1). 

These study rivers generally drain relatively pristine watersheds, including a number of parks 

and protected areas, and this would reduce the confounding impacts from changes in land use 

that alter infiltration and run-off. Some rivers were regulated, but there would generally be 

limited carry-over across years and this would have slight influence on the Qannual pattern 

with century-long time series. 

As previously described (Rood et al. 2005; 2017), some flow series were extended to earlier 

intervals through linear regressions to derive Qannual from records that lacked winter 

monitoring. All of these rivers displayed nival, or snowmelt-dominated patterns, with very 

low natural winter flows, which enabled these data extensions. Similar to the analyses for the 

rivers of the RDR Basin, we undertook trend analyses with three correlations, including the 

Pearson r and non-parametric Kendall  and Spearman’s . We again present only the 

Kendall  results if the three statistical tests provided similar outcomes. We also applied 
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linear regressions to the historic time series to estimate the change rates with the regression 

slopes represented as % of the mean Q (Table 1). 

 

For tables and graphs, red indicates drying effects with declining water (precipitation of 

discharge) or increasing temperature, and blue indicates wetter conditions with increasing 

water or decreasing temperature. 

 

Results 

1. Historical Temperatures and Precipitation in the Red Deer River Basin 

There has been substantial warming in the RDR Basin over the past century, with a 

progressive increase superimposed on substantial interannual variation (Figure 2). Warming 

was fairly similar across the four locations with about a 1.5°C rise in the annual mean over 

the past century (Table 3). Across the months, warming was significant in the winter interval 

of January, February and March, and also for September, with more localized warming in the 

summer months of June, July and August (Table 3).  The annual and monthly temperature 

increases were similarly detected with the Pearson product correlation and the two non-

parametric rank order tests, with results for the three tests displayed for Lacombe (Table 3). 

Test results were similarly consistent for the other stations. The correlation coefficients were 

quite similar for the Pearson product and Spearman  tests, while the Kendall  test was 

slightly more conservative (Table 3). 

 

Based on linear regressions, which provide the basis for the Pearson product correlation, 

monthly changes over the past century are displayed in Figure 3 for Rocky Mountain House 

and Lacombe. For each location, two plots are provided, with the mean monthly values over 
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the historic record with the midpoint around 1964, and then projections a century later to 

around 2064, based on the historic warming rates. As shown, while the average annual 

temperatures rose around 1.5°C, warming in January, February and March was around two- 

or three-fold higher (4.6, 4.0, 3.1°C, respectively). Thus, in the RDR Basin there was 

substantial warming over the past century and this was greatest in winter. If this historic 

pattern continues, there will be further winter warming, along with more moderate warming 

in other seasons (Figure 3). The above freezing interval, which approximates the plant growth 

season, will commence earlier and consequently lengthen 

 

Precipitation patterns were apparently more variable than temperatures over the past century 

(Figure 2). This variation confounded an annual pattern, but there were significant increases 

in the late spring to summer interval of May, June and July (Table 3, Figure 3). This 

represents the wettest interval for this region and thus the wet interval has gotten even wetter, 

while there was little change in precipitation through the other seasons. Thus, relative to the 

two primary weather components, temperatures have risen and this would increase 

sublimation and evaporation, while precipitation has increased, providing an opposing 

influence on regional water resources. However, the extended weather records only exist for 

lower elevations where towns and cities are located, while the major precipitation in the 

watershed falls in the higher mountain regions, which lack longer records. 
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2. Historical River Flows in the Red Deer River Basin 

River flows integrate the hydrologic processes throughout the upstream watershed and will 

thus include climatic processes in the mountain regions. Within the RDR Basin, the only 

long-term hydrometric record exists for the RDR at Red Deer (since 1912; Table 1; Figure 4). 

There, annual mean flows have varied substantially over the past century but there has not 

been a major change (Figure 4 and Table 4). The record commenced in an exceptionally wet 

interval, with the two highest flow years in 1915 and 1916 (Figure 4). These high flows 

influence the linear regression and Pearson r, thus suggesting a decline in flows. Conversely, 

the outliers have less weighting in the rank-order tests and the Kendall  test provides less 

support for a progressive pattern (Table 4). 

 

Opposing the apparent decline in annual flows of the RDR at Red Deer over the past century, 

the shorter records for the other hydrometric gauges indicate increasing flows over the past 

half-century (Figure 4). For this recent interval, there may have been increase in the flows of 

the RDR at Red Deer but that pattern was uncertain (1960 to 2016: Qannual = 0.159 × year – 

272; r2 = 0.031). The possible increase in annual flows over the past half-century may 

represent a shorter-term pattern and the century-long record displayed some correspondence 

with the Pacific Decadal Oscillation (PDO; Mantua & Hare, 2002; Mote, 2006; St. Jacques et 

al., 2010), with a cool and wet phase early in the twentieth century when hydrometric 

gauging commenced (Figure 5). A change in the PDO to the warm and dry phase was 

associated with low river flows through the 1930s and 1940s, and a PDO change followed 

and was associated with the cool and wet, high flow interval through the 1950s. A subsequent 

return to the regional warm phase occurred in the mid- to late 1970s, leading to the warm and 

low flow interval in the 1980s. Some further correspondence with the PDO over the past four 
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decades may have been associated with the apparent, short-term increases in RDR flows 

(Figure 5). 

 

For the seasonal patterns, there were substantial changes in monthly flows at Red Deer over 

the past century (Table 4), but this largely reflects the deliberate flow regulation by Dickson 

Dam. This provided trapping of summer flows in Gleniffer Reservoir and later release to 

augment winter flows. This contributed to the observed decreases and increases in the 

summer and winter flows, respectively (Table 4). 

 

For the naturalized record which represents monthly flows that would have occurred without 

the damming and flow regulation, the variable record was uncertain, with no significant 

monthly patterns detected by the non-parametric Kendall  and Spearman  tests. The 

Pearson r indicated significant (p < 0.05) flow decline in August and statistical trends (p < 

0.1) suggesting declines in September, October and November (Table 4).  

 

For the upstream reach, or upper RDR, the record was much shorter and over the past half-

century there were flow increases in February, March and June (Table 4). Some tributaries 

also displayed increased flows in June, but patterns for other months were slight or 

inconsistent (Table 4). Similar to the record for the annual flows, these changes in monthly 

flows would have represented temporary trends, since there weren’t progressive flow 

increases for the longer record of the RDR at Red Deer (Table 4). 

 

3. Prospective Future Flows - Empirical Trend Projection 

To avoid trend inflation from the two early, exceptionally high flow years (Table 4) the non-

parametric Sen’s slope analysis was more appropriate than linear regression.  The historic 
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naturalized record extended from 1912 to 2013 with a mid-point around 1962, and the 

monthly Q Sen’s slopes were extended forward to provide projections around 2062 (Figure 

6). 

 

As shown (Figure 6), the historic record displayed little change in river flows in the winter 

months of December, January and February. This was despite the substantial winter warming 

(Figure 3) that could increase the rain versus snow proportion and subsequent winter run-off. 

March flows  apparently increased (0.038 m3/s per year; 0.22%/year), and this would be 

consistent with an earlier commencement of snow melt. The greatest discharge changes over 

the past century involved declining flows in the high flow interval of May and June (Figure 6; 

0.104 and 0.092 m3/s per year; 0.10 and 0.09%/year, respectively), although the variability 

limited the confidence in this interpretation. Subsequently, August flows declined, and 

autumn flows probably declined over the past century. 

 

The interannual flow variation challenged the analyses but the patterns indicate flow decline, 

with negative correlations for 10 or 11 of the months, and all four seasons (Table 4; 11/12 

decline: 2 = 8.33, p = 0.004). It is thus likely that the overall flow of the RDR at Red Deer 

has declined over the past century, and extending the Sen’s slope, the decline could extend 

into the twenty-first century (Figure 6).  An apparent annual decline rate of ~0.060 m3/s 

(0.13%/year) would result in a flow reduction of about 10% from the mid-1970s to the mid-

2050s, an interval that matches that of modeling projections from regionally down-scaled 

global circulation models (GCMs, Table 2). 
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4. Projections from Regional Downscaling of Global Circulation Models and River Flow 

Routing 

The validation phase of the hydroclimatic modeling indicated high accuracies in the 

simulations of mean monthly maximum and minimum temperatures (T). The 

correspondences were very close for the Ricinus meteorological station for the period of June 

1986 to October 1987 (r2 =0.997 Tmax, r
2 = 0.996 Tmin) and for the Cuthead Lake 

meteorological station for the comparison period from January 1999 to January 2005 (r2 = 

0.958 Tmax, r
2 = 0.934 Tmin). The simulation of localized precipitation was much less accurate. 

There was reasonable correspondence between modeled and observed monthly precipitation 

at the Ricinus station values (r2 = 0.789) but weaker correspondence at the higher elevation 

Cuthead Lake site (r2 = 0.340). 

 

The modeling errors were reduced with integration over the watersheds and following the 

flow routing with RIVQ, the simulated monthly discharges provided reasonable 

correspondences for the tributaries in the upper RDR Basin for the period from 1960 to 1989 

(r2 = 0.786), with the patterns for the upper RDR displayed in Figure 7. As displayed, the 

April and May discharges were underestimated as the modelling apparently delayed spring 

peak flows,  the June flow was overestimated, and subsequent summer and autumn flows 

were closely associated in the modeled and observed time series (Figure 7). The 

correspondence between simulated and measured results was weaker for the high flow decade 

from 1960 to 1969, especially due to underestimation of peak flows in the flood year of 1964 

(Gill et al., 2008). Conversely, the low flow decade from 1980 to 1989 provided the closest 

correspondence over the thirty year validation interval. 
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Extending downstream, the model underestimated the spring snow melt contributions from 

the boreal and foothills tributaries and this provided lower projections of April, May and June 

flows of the RDR at Red Deer (Figure 7). The modeling process provided improved 

reconstructions for the Rocky Mountain headwaters (upper RDR, Figure 7), progressively 

weaker correspondences for the James River near Sundre (r2 = 0.480), the Medicine River 

near Eckville (r2 = 0.416), the Little Red Deer near the mouth (r2 = 0.395), and the weakest 

association for the smallest tributary, the Raven River near Raven (r2 = 0.113).  Thus, the 

topoclimatic modelling and flow routing were most accurate for the higher elevation 

mountain zones and were progressively less accurate for the descending foothills, boreal and 

parkland zones. Those lower zones provide proportionally minor contributions to the RDR 

flows but the modeling errors weakened the seasonal projections for the overall RDR at Red 

Deer (Figure 7; and Philipsen, 2017). The modeling errors were partially absorbed with the 

final bias corrections through quadratic regressions and importantly, the future projections are 

compared to the modeled historic flows. With this, the reconstructions and projections would 

be similarly distorted, allowing comparisons across the climate scenarios. 

 

With the implementation of the climate projections, the seasonal RDR flows were similarly 

estimated with the different GCMs for the various rivers and reaches. Figure 8 provides the 

monthly Q projections with the different GCMs for the upper RDR, and these forecast 

changes in flow seasonality but slight change in the annual Q. Thus, winter flows could 

slightly increase, with some variations in magnitude across the four GCMs (Figure 8). With 

spring warming, the major interval of snow melt commences earlier, increasing river flows in 

April and May. The four models similarly project the greatest change being declining flows 

in May (Figure 8), consistent with the empirical trend projection (Figure 6). The GCM 

projections anticipate little change in flow over the summers from the headwaters (Figure 8) 
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due to opposing impacts from warming weather versus increasing precipitation. The overall 

outcome from these modest projected changes in monthly flows is minimal change in the 

overall annual discharge from the mountain headwaters. The outcomes from the four GCMs 

were very consistent with net flow changes of only around 0.1 m3/s, substantially lower than 

the modelling precision. 

 

Extending downstream along the RDR, the hydroclimatic modeling anticipated increasing 

precipitation and consequently slight increases in the tributary flow contributions from the 

lower foothills and boreal regions. Subsequently, the RDR at Red Deer was projected to 

display flow increases for most months other than April and May (Figure 8). Increased 

summer rains were forecast to increase water contributions and this would extend into 

autumn. The net outcome would be slight increases in the annual discharge, with similar 

values of ~5 m3/s from all four GCMs, over an 80 year interval to around 2055 (Figure 8). 

This would be about 8% of the reconstructed annual mean discharge of ~60 m3/s, or an 

annual flow increase of ~0.1%. 

 

Thus, the flow projections from hydroclimatic modeling from four commonly applied GCMs 

indicated minimal change in river flows from the Rocky Mountain headwater and slight 

increase in flows of the overall RDR due to increased precipitation and runoff from the 

foothills and boreal regions. 

 

5. Historic Flows of other Rocky Mountain Rivers 

The assessments of modest changes in RDR flows over the past century were compared with 

historic discharge patterns for other rivers draining the central and northern Rocky 

Mountains. This study component extended data series that we and others have previously 
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analyzed (Rood et al. 2005; 2008; 2017; St. Jacques et al., 2013). The historic records were 

extended from a decade to 15 years and the patterns previously detected were generally 

confirmed (Table 1, Figure 9). 

 

The most confident change was with substantially increasing annual flows of the Liard River 

(Table 1 (7), +0.29%/year; Figures 9 and 10). This is a major tributary of the Mackenzie 

River and the most northerly Rocky Mountain drainage in this study. Moving southward, the 

Hay River (18) involves substantial boreal drainage and its annual flows have not displayed a 

significant pattern over its record (Figure 10, Rood et al., 2017). The Peace River (8) has the 

massive W.A.C. Bennett Dam and associated Williston Reservoir, which can substantially 

alter seasonal flows. Annual flows have been increasing over the past century (Table 1, 

+0.18%/year; Figure 9) and infilling for the data gap is provided in Rood et al. (2017), 

supporting this conclusion. 

 

In contrast to those rivers that drain the northern Rocky Mountains, the upper reaches of the 

rivers that drain the central Rocky Mountains have displayed declining flows over the past 

century (Table 1; Figure 10). The Smoky River (9) flow record extended from 1916 to 2013 

but has an extensive gap from 1922 through 1954. Recognizing this weakness, the record 

indicates declining flows (Qannual = -0.822 × year + 1969; r2 = 0.056; -0.24%/year). The 

Athabasca River has been extensively studied since it flows through the oil sands region 

downstream from Fort McMurray (reviewed in Rood et al., 2015). Long-term records exist 

for the Rocky Mountain headwater zone (10), which displayed declining flows over the past 

century (Figure 10 and Rood et al., 2015). Conversely, with apparently slightly increasing 

tributary inflows from foothills and boreal regions (19; Rood et al., 2015), the Athabasca 

River at Athabasca (11) and downstream, has displayed substantial interannual variation and 
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some correspondence with the PDO, but no significant long-term pattern over the past 

century (Table 1, Figure 9). 

 

The North Saskatchewan River (12) includes substantial drainage in the Rocky Mountain 

headwaters in Banff and Jasper National Parks and has displayed declining flows over the 

past century (Table 1, Figure 9). Also draining Banff, the Bow River has displayed declining 

flows in the headwater regions (13) and the decline persists downstream to Calgary (14; 

Table 1, Figures 9 and 10). Damming and the relocation of hydrometric gauges challenges 

analyses for the Oldman River (15) but the composite records are consistent with declining 

flows over the past century. Its tributary, the Waterton River (16) has displayed declining 

flows (Table 1, Figure 9) and close correspondence with the Pacific Decadal Oscillation 

(Foster and Rood, 2017). 

 

Those prior rivers drain the Rocky Mountains while the final river that was studied, the Milk 

River, is a transboundary river that drains foothills and grassland ecoregions (17, Figure 10). 

It drains regions south of the Milk River Ridge, or Hudson Bay Divide, and provides the most 

northerly drainage into the Missouri and Mississippi River system that flows into the Gulf of 

Mexico. Its flows were very variable over the past century, with no progressive trend (1910-

2016 ice-free season only: r = 0.02). 

 

Discussion   

With the study commencement, our first prediction was based on prior analyses (Cutforth et 

al., 1999; Barnett et al., 2005; Millett et al., 2009), and anticipated that the climate at the 

northern limit of the Great Plains would have progressively changed over the past century, 

with seasonal warming and slightly increasing precipitation. The weather data sets now 
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extend for a century and confirm these prior interpretations. Average winter temperatures 

have increased significantly in January through March but somewhat surprisingly, not in 

November or December. Slight temperature increases occurred in the summer and in early 

autumn. The warming temperatures would increase regional evaporation and extend the 

growth season for regional vegetation, increasing the annual transpiration (Xia et al., 2015). 

The combination would increase the regional evapotranspiration (ET), the net water loss from 

the prairie and woodland ecosystems. 

 

Countering the increased water vapor loss, regional precipitation has increased over the past 

century, and particularly in the wet months of May, June and July. Increasing rain during the 

wet interval, when the watershed is more saturated, should increase run-off contributions to 

river flows. Relative to these weather changes there was an inversion in the seasonality, with 

the greatest warming in the winter, while precipitation primarily increased in the summer. 

 

Following from the patterns of other rivers in the SSRB (Rood et al., 2005; Shepherd et al., 

2010; St. Jacques et al., 2013; Sauchyn et al., 2016), we expected that the historic climate 

changes would have resulted in the progressive decline in Red Deer River flows, providing 

our second prediction. This was supported as there was apparently decline in May, and June 

flows, and annual flows over the past century. Due to the exceptionally high flows after the 

commencement of gauging, the non-parametric Sen’s slope was applied, indicating an annual 

flow decline rate of ~0.13%. The same decline rate was determined for both Bow River 

locations and for the Waterton River (Table 1), but with a different estimation method, the 

parametric, linear regression approach. This finding of declining flows in the SSRB is 

consistent with prior studies (Rood et al., 2005; Shepherd et al., 2010; St. Jacques et al., 
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2010; 2013; Sauchyn et al., 2016), but with the longer hydrometric records, the typical river 

flow decline rate for this region has dropped from ~0.2%/year to ~0.15%/year. 

 

 

Our third prediction was that hydroclimatic modeling with GCMs would provide converging 

projections with those from empirical trend projection (Shepherd et al., 2010; St. Jacques et 

al., 2013) but this correspondence was less clear. The modelling projected minimal change 

from the Rocky Mountain headwaters and with increasing precipitation in the spatially larger 

foothills and boreal regions, the modeling estimated an increase of ~8% for the overall Red 

Deer River flows from around 1975 to around 2055. The four GCMs that we applied 

provided consistent projections that were also fairly similar to the average 14% increase from 

ten regional circulation models (RCM) applied for this river system by St. Jacques et al. 

(2018) (Table 2). Those RCMs were selected to represent a broader range of modelling 

approaches and scenarios and of those, six indicated minimal change, while four projected 

higher flow increases than our estimates.  

 

Opposing these projections of increasing flows, a decrease of ~ 12% was projected by Lapp 

et al. (2009)  by combining different GCM estimates of future temperature and precipitation 

with the WATFLOOD hydrologic model. Those projections were somewhat consistent with 

analyses by Tanzeeba and Gan (2012), who applied a landscape hydrologic model, MISBA, 

Modified Interactions Soil-Biosphere-Atmosphere. That modelling indicated that the 

increased evaporation with climate warming would result in substantial water loss, resulting 

in regional river flow declines of ~10 to 20% through the non-winter seasons. That modelling 

was still incomplete relative to transpirational water use by woodlands including riparian 

cottonwood forests, and that hydrologic component is advancing, following the regional 
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applications of newer research tools including eddy covariance flux measurements (Flanagan 

et al., 2017). 

 

Substantial variation in river flow projections from downscaled GCMs or RCMs is common 

since precipitation modeling and forecasts are inherently variable and much less confident 

than temperature estimations (Coquard et al., 2004; Stephens et al., 2010; Knutti and 

Sedláček, 2013).  The important snow accumulation and melt processes are especially 

challenging for modelling in the SSRB due to the common temperature inversions in the 

central Rocky Mountains in the winter, and extensive sublimation and redistribution due to 

the frequent warm and dry Chinook winds (Shepherd et al., 2010; Wood et al., 2018). 

 

Different hydroclimatic modeling with a range of GCMs and RCMs has thus been applied to 

the RDR system and the outcomes are consistent in projecting that changes in river flows 

would be slight with anticipated future climate conditions. However, the projections are 

variable in the outcomes, ranging from slight increase, through no change and to slight 

decrease, and there was also variation relative to the seasonality of the changes. The blending 

of these projections could indicate little change or a slight decrease, with the latter outcome 

being consistent with the empirical trend projection. From these different approaches, the 

magnitude of change may be ~ 0.1%/year, a change rate within the imprecision of the 

hydroclimatic models and the statistical trend projection. Consequently, the composite 

conclusion would be that changes in RDR flows over the next half century will likely be 

slight and might involve gradual decline superimposed on interannual variation that is partly 

coordinated with the PDO (Rood et al., 2005; St. Jacques et al., 2013). 
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Alberta WaterSMART (2015) researchers affiliated with the study by St. Jacques (2018) had 

previously recognized substantial uncertainty in model projections for the RDR. They 

proposed that part of this uncertainty reflected a geographic transition between the southern 

Canadian prairies that are becoming dryer with declining river flows, versus the wetter, more 

northerly boreal regions that are apparently becoming wetter. We have similarly observed 

regional differences in the hydrologic consequences of climate change, with declining flows 

of the rivers that drain the central Rocky Mountains toward Hudson Bay, little change in river 

flows in a transition zone, and increasing flows of the rivers that drain the Northern Rocky 

Mountains towards the Arctic Ocean (Rood et al., 2005; 2015; 2017). 

 

This relates to our fourth prediction, and we explored flow patterns for the major rivers that 

drain a north-south transect along the Canadian Rocky Mountains (Figure 10). As anticipated, 

there was an apparent transition, with declining flows of rivers draining the central Rocky 

Mountains of southern Alberta and this pattern extended northward to the Arctic 

Ocean/Hudson Bay watershed divide. Extending northward into British Columbia (BC), 

annual flows of the Peace River increased over the past century and from northern BC and 

the Yukon, more substantial flow increase was displayed for the most northern drainage, the 

Liard River. 

 

There was also a second regional pattern, with differentiation between the Rocky Mountain 

headwaters and the lower elevation foothills and boreal regions. In contrast to the mountain 

zones, those easterly areas displayed minimal change in river flow contributions over the past 

century (Figure 10). This pattern apparently extended over an extensive north to south 

corridor, from the Hay River near the 60th parallel (Rood et al., 2017), southwards possibly to 

a foothills zone near the American border (49oN), which provided run-off to the Milk River. 
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Our study thus supports the prediction of regional differentiation in the impacts of climate 

change on hydrologic patterns and river flows. 

 

This study characterized the changes in temperatures, precipitation and river flows for the 

Red Deer River system, which occurs at the northern limit of the North American Great 

Plains. With these regional hydroclimatic changes, it is likely that the treeless prairie region 

will expand northward, while the aspen parkland will also shift northward (Schneider et al., 

2009). The future conditions may favor increased agriculture in some areas of the RDR 

Basin,, with a lengthening frost-free growth season. Increased summer precipitation could 

alsoenable regional crop diversification (McGinn et al., 1999; Bryant et al., 2000). 

 

The projection of slight decline in RDR flows is important relative to establishing limits for 

water withdrawal from this river for irrigation and other uses (Alberta WaterSMART, 2015). 

As well, water budgeting for the RDR Basin is important for water management in the overall 

South Saskatchewan River Basin since the southern tributaries, the Oldman and Bow Rivers, 

are fully or over-allocated, and this has imposed stress on the aquatic and riparian ecosystems 

(Golder, 2003; World Wildlife Fund-Canada, 2009). In addition, the combined flows from 

the three tributaries are assessed for the requirement to pass on sufficient flows downstream, 

in accordance with the Agreement on Apportionment for the Canadian Prairie Provinces. 

Water management of the transboundary SSRB also has international obligations in 

accordance with Boundary Waters Treaty between Canada and the United States (Pentny & 

Ohrn, 2008), further emphasizing the need to better understand how climate change is 

altering river flows from the different Rocky Mountain regions of western North America. 
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This study reveals the complexity and uncertainty in analyzing hydrological consequences of 

climate changeat the river basin scale, which often provides the basis for water resource 

management. We undertook somewhat independent approaches, by assessing: (1) historic 

weather patterns, (2) historic river flows, and (3) hydroclimatic modeling after GCM 

downscaling, and while there was some convergence, there was also some differentiation in 

the outcomes. For other river systems, we would recommend a similar approach that blends 

trend analyses of historic weather and discharge data with the longest records possible, along 

with hydroclimatic modeling with different GCMs, different regional downscaling methods, 

and alternate river routing approaches, to strengthen the confidence in the outcomes and 

interpretations. 

 

However, even with these multiple approaches, some uncertainty may remain and this 

diminishes the confidence relative to future flow projections, which are essential for water 

resource managers to assess water budgets and consider aspects such as applications for 

additional water withdrawals to enable irrigation expansion (Bryant et al., 2000; Rosenberg et 

al., 2003; Elliott et al., 2014; Alberta WaterSMART, 2015). For the RDR system and for 

other regulated rivers in which the future flow projections are uncertain, it would be 

appropriate to apply the precautionary principle (Pentney & Ohrn, 2008; Lapp et al., 2009). 

This would encourage limiting further water allocations until the hydrometric record is 

lengthened to better characterize the natural variability, advancements in hydroclimate 

modeling provide outcomes that converge with the actual empirical patterns, and the 

superimposed influences of anthropogenic climate change are more fully understood (Barnett 

et al., 2005; St. Jacques et al., 2010; Knutti & Sedláček, 2013; Sauchyn et al., 2016). 

 

  



 

 
This article is protected by copyright. All rights reserved. 

Acknowledgements 

This projected commenced with support from Alberta Agriculture and the Red Deer River 

Watershed Alliance, and subsequent funding was provided by Alberta Environment and 

Parks, Alberta Innovates, and the Canadian Natural Sciences and Engineering Research 

Council (NSERC), and Agriculture and Agri-Food Canada provided some climate data. This 

paper follows from an MSc Thesis chapter by the first author and we extend thanks to faculty 

advisors Cam Goater, Stefan Kienzle and Larry Flanagan, and to two anonymous reviewers 

for very helpful recommendations. 

 

References 

Alberta Environment. (1998). South Saskatchewan River Basin historical natural flows 1912 

to 1998. Edmonton, Alberta, Canada.  

Alberta WaterSMART. (2015). Climate vulnerability and sustainable water management in 

the SSRB Project: Red Deer River Basin modelling, Final Report. pp. 99 

Barnett, T.P., Adam, J.C., & Lettenmaier, D.P. (2005). Potential impacts of a warming 

climate on water availability in snow-dominated regions. Nature, 438(7066), 303-309. 

http://doi.org/10.1038/nature04141 

Berg, K.J., Samuelson, G.M., Willms, C.R., Pearce, D.W., & Rood, S.B. (2007). Consistent 

growth of black cottonwoods despite temperature variation across elevational 

ecoregions in the Rocky Mountains. Trees, 21(2), 161-169. 

https;//doi.org/10.1007/s00468-006-0108-9 

Bingeman, A.K., Kouwen, N., & Soulis, E., (2006). Validation of the hydrological processes 

in a hydrological model. Journal of Hydrologic Engineering, 11(5), 451-463. 

http://doi.org/10.1061/(ASCE)1084-0699(2006)11:5(451) 

http://doi.org/10.1038/nature04141


 

 
This article is protected by copyright. All rights reserved. 

Bryant, C. R., Smit, B., Brklacich, M., Johnston, T. R., Smithers, J., Chjotti, Q., & Singh, B. 

(2000). Adaptation in Canadian agriculture to climatic variability and change. 

Climatic Change, 45(1), 181-201. https://doi.org/10.1023/A:1005653320241 

Burn, D.H. (1994). Hydrologic effects of climatic change in west-central Canada. Journal of 

Hydrology, 160(1), 53-70. https://doi.org/10.1016/0022-1694(94)90033-7 

Burn, D.H., Cunderlik, J.M., & Pietroniro, A. (2004). Hydrological trends and variability in 

the Liard River basin. Hydrological Sciences Journal, 49(1), 53-67. 

https://doi.org/10.1623/hysj.49.1.53.53994 

Cayan, D.R., Dettinger, M.D., Diaz, H.F., & Graham, N.E. (1998). Decadal variability of 

precipitation over western North America. Journal of Climate, 11(12), 3148-3166. 

https://doi.org/10. 1175/1520-0442(1998)011<3148:DVOPOW>2.0.CO;2 

Cayan, D.R., Dettinger, M.D., Kammerdiener, S.A., Caprio, J.M., & Peterson, D.H. (2001). 

Changes in the onset of spring in the western United States. Bulletin of the American 

Meteorological Society, 82(3), 399-415. https://doi.org/10.1175/1520-

0477(2001)082<0399:CITOOS>2.3.CO;2 

Clipperton, G.K., Koning, C.W., Locke, A.G.H., Mahoney, J.M., & Quazi, B. (2003). 

Instream flow needs determinations in the South Saskatchewan River Basin, Alberta., 

Publication No. T/719, Alberta Environment and Sustainable Resource Development, 

Calgary, AB, Canada.  

Coquard, J., Duffy, P.B., Taylor, K.E., & Iorio, J.P. (2004). Present and future surface 

climate in the western USA as simulated by 15 global climate models. Climate 

Dynamics, 23(5), 455-472. https://doi.org/10.1007/s00382-004-0437-6 

Cunfer, G. (2005). On the Great Plains: agriculture and environment (No. 20). Texas A&M 

University Press. 

https://doi.org/10.1007/s00382-004-0437-6


 

 
This article is protected by copyright. All rights reserved. 

Cutforth, H.W., McConkey, B.G., Woodvine, R.J., Smith, D.G., Jefferson, P.G., & Akinremi, 

O.O. (1999). Climate change in the semiarid prairie of southwestern Saskatchewan: 

Late winter-early spring. Canadian Journal of Plant Science, 79(3), 343-350. 

https://doi.org/10.4141/P98-137 

Elliott, J., Deryng, D., Müller, C., ... & Wisser, D. (2014). Constraints and potentials of future 

irrigation water availability on agricultural production under climate change. 

Proceedings of the National Academy of Sciences, 111(9), 3239-3244. 

https://doi.org/10.1073/pnas.1222474110 

Flanagan, L.B., Orchard, T.E., Logie, G.S., Coburn, C.A., & Rood, S.B. (2017). Water use in 

a riparian cottonwood ecosystem: Eddy covariance measurements and scaling along a 

river corridor. Agricultural and Forest Meteorology, 232, 332-348. 

https://doi.org/10.106/j.agrformet.2016.08.024 

Foster, S.G. & Rood, S.B. (2017) River regulation and riparian woodlands: Cottonwood 

conservation with an environmental flow regime along the Waterton River, Alberta. 

River Research and Applications, 33(7),1088-1097. https:///doi.org/10.1002/rra.3156 

Gan, T.Y. (2000). Reducing vulnerability of water resources of Canadian prairies to potential 

droughts and possible climatic warming. Water Resources Management, 14(2), 111-

135. https://doi.org/10.1023/A:1008195827031 

Gill, K.M., Shepherd, A., Romuld, M., & Rood S.B. (2008). Historic and prospective future 

flows of the Red Deer River and its headwater tributaries. Prepared for the Red Deer 

River Watershed Alliance and Alberta Ingenuity, Univ. Lethbridge, AB. 

https://www.researchgate.net/publication/284179523 

Golder Associates Ltd. (2003). Strategic overview of riparian and aquatic conditions of the 

South Saskatchewan River Basin. Prepared for Alberta Environment, Edmonton, AB, 

Canada. 



 

 
This article is protected by copyright. All rights reserved. 

Gray, L.K. & Hamann, A. (2013). Tracking suitable habitat for tree populations under 

climate change in western North America. Climatic Change, 117(1-2), 289-303. 

https://doi.org/10.1007/s10584-012-0548-8 

Hungerford, R.D., Nemani, R.R., Running, S.W., & Coughlan, J.C. (1989). MTCLIM: A 

mountain microclimate simulation model. USDA Forest Service Research Paper, 

Document No. INT-414. 0146-3551.  

Huntington, J.L. & Niswonger, R.G. (2012). Role of surface-water and groundwater 

interactions on projected summertime streamflow in snow dominated regions: An 

integrated modeling approach. Water Resources Research, 48(11), W11524. 

https://doi.org/10.1029/2012WR012319 

Knutti, R. & Sedláček, J. (2013). Robustness and uncertainties in the new CMIP5 climate 

model projections. Nature Climate Change, 3(4), 369-373. https://doi.org 

/10.1038/nclimate1716 

Kouwen, N.& Mousavi, S. (2002). WATFLOOD/SPL9 hydrological model & flood 

forecasting system. In: Singh, V.P. & Frevert D.K. (eds.), Mathematical models of 

large watershed hydrology. Water Resources Publications, LLC, Littleton, CO, USA,  

pp. 649-685.  

Lapp, S., Byrne, J., Townshend, I., & Kienzle, S. (2005). Climate warming impacts on 

snowpack accumulation in an alpine watershed. International Journal of Climatology, 

25(4), 521-536. https://doi.org /10.1002/joc.1140 

Lapp, S., Sauchyn, D., & Toth, B. (2009). Constructing scenarios of future climate and water 

supply for the SSRB: Use and limitations for vulnerability assessment. Prairie 

Forum, 34(1), 153-180.  

Mantua, N.J. & Hare, S.R. (2002). The Pacific decadal oscillation. Journal of Oceanography, 

58(1), 35-44. https://doi.org /10.1023/A:1015820616384 



 

 
This article is protected by copyright. All rights reserved. 

McGinn, S.M., Touré, A., Akinremi, O.O., Major, D.J., & Barr, A.G. (1999). Agroclimate 

and crop response to climate change in Alberta, Canada. Outlook on Agriculture, 

28(1), 19-28. https://doi.org/10.1177/003072709902800104 

Mekis, É. & Vincent, L.A. (2011). An overview of the second generation adjusted daily 

precipitation dataset for trend analysis in Canada. Atmosphere-Ocean, 49(2), 163-177. 

http://dx.doi.org/10.1080/07055900.2011.583910  

Millett, B., Johnson, W.C., & Guntenspergen, G. (2009). Climate trends of the North 

American prairie pothole region 1906-2000. Climatic Change, 93(1-2), 243-267. 

https://doi.org/10.1007/s10584-008-9543-5 

Mote, P.W. (2006). Climate-driven variability and trends in mountain snowpack in Western 

North America. Journal of Climate, 19(23), 6209-6220. 

https://doi.org/10.1175/Jcli3971.1 

Mote, .PW., Hamlet, A.F., Clark, M.P., & Lettenmaier, D.P. (2005). Declining mountain 

snowpack in western North America. Bulletin of the American Meteorological 

Society, 86(1), 39-49. https://doi.org/10.1175/BAMS-86-1-39 

Nogués-Bravo, D., Araújo, M.B., Errea, M.P., 7 Martínez-Rica, J.P. (2007). Exposure of 

global mountain systems to climate warming during the 21st Century. Global 

Environmental Change, 17(3–4), 420-428. 

https://doi.org/10.1016/j.gloenvcha.2006.11.007 

Pentney, A., & Ohrn, D. (2008). Navigating from history into the future: The water 

management plan for the South Saskatchewan River Basin in Alberta. Canadian 

Water Resources Journal, 33(4), 381-396. http://dx.doi.org/10.4296/cwrj3304381 

Philipsen, L.J. (2017). River regulation and riparian woodlands along the lower Red Deer 

River, Alberta. MSc Thesis, University of Lethbridge, Lethbridge, AB, Canada. 



 

 
This article is protected by copyright. All rights reserved. 

Pietroniro, A., Leconte, R., Toth, B., Peters, D.L., Kouwen, N., Conly, F.M., & Prowse, T. 

(2006). Modelling climate change impacts in the Peace and Athabasca catchment and 

delta: III-Integrated model assessment. Hydrological Processes, 20(19), 4231-4245. 

https://doi.org/10.1002/hyp.6428  

Pipes, A. & Quick, M.C. (1977). UBC watershed model users guide. Department of Civil 

Engineering, University of British Columbia, Vancouver, BC, Canada.  

Rood, S.B., Pan, J., Gill, K.M., Franks, C.G., Samuelson, G.M., & Shepherd, A. (2008). 

Declining summer flows of Rocky Mountain rivers: Changing seasonal hydrology and 

probable impacts on floodplain forests. Journal of Hydrology, 349(3-4), 397-410. 

https://doi.org/10.1016/j.jhydrol.2007.11.012 

Rood, S.B., Samuelson, G.M., Weber, J.K., & Wywrot, K.A. (2005). Twentieth-century 

decline in streamflows from the hydrographic apex of North America. Journal of 

Hydrology, 306(1), 215-233. https://doi.org/10.1016/j.jhydrol.2004.09.010 

Rood, S.B., Stupple, G.W., & Gill, K.M. (2015). Century-long records reveal slight, 

ecoregion-localized changes in Athabasca River flows. Hydrological Processes, 

29(5), 805-816. https://doi.org/10.1002/hyp.10194 

Rood, S.B., Kaluthota, S., Philipsen, L.J., Rood, N.J., & Zanewich, K.P. (2017). Increasing 

discharge from the Mackenzie River system to the Arctic Ocean. Hydrological 

Processes, 31(1), 150-160. https://doi.org/10.1002/hyp.10986 

Rosenberg, N.J., Brown, R.A., Izaurralde, R.C., & Thomson, A.M. (2003). Integrated 

assessment of Hadley Centre (HadCM2) climate change projections on agricultural 

productivity and irrigation water supply in the conterminous United States: I. Climate 

change scenarios and impacts on irrigation water supply simulated with the HUMUS 

model. Agricultural and Forest Meteorology, 117(1), 73-96. 

https://doi.org/10.1016/S0168-1923(03)00025-X 

https://doi.org/10.1016/S0168-1923(03)00025-X


 

 
This article is protected by copyright. All rights reserved. 

Salmi, T., Määttä, A., Anttila, P., Ruoho-Airola, T. & Amnell, T. (2002). Detecting trends of 

annual values of atmospheric pollutants by the Mann-Kendall test and Sen's slope 

estimates-the Excel template application MAKESENS.  Publications on Air Quality 

No. 31, Report Code FMI-AQ-31. Finnish Meteorological Institute, Helsinki, Finland. 

Sauchyn, D.J., St.Jacques, J.-M., Barrow, E., Nemeth, M.W., MacDonald, R.J., Sheer, 

A.M.S., & Sheer, D.P. (2016). Adaptive water resource planning in the South 

Saskatchewan River Basin: Use of scenarios of hydroclimatic variability and 

extremes. JAWRA Journal of the American Water Resources Association, 52(1), 222-

240. http://dx.doi.org/10.1111/1752-1688.12378 

Schneider, R.R., Hamann, A., Farr, D., Wang, X., & Boutin, S. (2009). Potential effects of 

climate change on ecosystem distribution in Alberta. Canadian Journal of Forest 

Research, 39(5), 1001-1010. https://doi.org/10.1139/X09-033 

Shepherd, A., Gill, K.M., & Rood S.B. (2010). Climate change and future flows of Rocky 

Mountain rivers: Converging forecasts from empirical trend projection and down‐

scaled global circulation modelling. Hydrological Processes, 24(26), 3864-3877. 

https://dx.doi.org/10.1002/hyp.7818 

Shepherd, A., & McGinn, S.M. (2003). Assessment of climate change on the Canadian 

prairies from downscaled GCM data. Atmosphere-Ocean, 41(4), 301-316. 

https://doi.org/10.3137/ao.410404 

St. Jacques, J.-M., Andreichuk, Y., Sauchyn, D.J., & Barrow, E. (2018) Projecting Canadian 

prairie runoff for 2041-2070 with North American Regional Climate Change 

Assessment Program (NARCCAP) data. Journal of the American Water Resources 

Association, 12642-17-0005 proofs returned. 



 

 
This article is protected by copyright. All rights reserved. 

St. Jacques, J.-M., Lapp, S.L., Zhao, Y., Barrow, E.M., & Sauchyn, D.J. (2013). Twenty-first 

century central Rocky Mountain river discharge scenarios under greenhouse forcing. 

Quaternary International, 310, 34-46. https://doi.org/10.1016/j.quaint.2012.06.023 

St. Jacques, J.-M., Sauchyn, D.J., & Zhao, Y. (2010). Northern Rocky Mountain streamflow 

records: Global warming trends, human impacts or natural variability? Geophysical 

Research Letters, 37(6), L06407. https://doi.org/10.1029/2009GL042045 

Statistics Canada. (2011). Environment Accounts and Statistics Division, Agricultural Water 

Survey (Survey number 5145) Ottawa, ON, Canada. 

Stephens, G.L., L'Ecuyer, T., Forbes, R., Gettlemen, A., Golaz, J.C., Bodas‐Salcedo, A., 

Suzuki, K., Gabriel, P., & Haynes, J. (2010). Dreary state of precipitation in global 

models. Journal of Geophysical Research: Atmospheres, 115(D24). 

http://dx.doi.org/10.1029/2010JD014532 

Stevens, B, & Bony, S. (2013). What are climate models missing? Science, 340(6136), 1053-

1054. https://doi.org/10.1126/science.1237554 

Tanzeeba, S. & Gan, T.Y. (2012). Potential impact of climate change on the water 

availability of South Saskatchewan River Basin. Climatic change, 112(2), 355-386. 

https://doi.org/10.1007/s10584-011-0221-7 

Vincent, L.A., Wang, X.L., Milewska, E.J., Wan, H., Yang, F., & Swail, V. (2012). A second 

generation of homogenized Canadian monthly surface air temperature for climate 

trend analysis. Journal of Geophysical Research: Atmospheres, 117(D18). 

http://dx.doi.org/10.1029/2012jd017859 

Wilby, R.L. & Wigley, T. (1997). Downscaling general circulation model output: A review 

of methods and limitations. Progress in Physical Geography, 21(4), 530-548. 

https://doi.org/10.1177/030913339702100403 



 

 
This article is protected by copyright. All rights reserved. 

Wood, W.H., S.J. Marshall, T. Whitehead and S.E. Fargey (2018). Temperature records from 

a mesoscale observational network in the Canadian Rocky Mountains, 2004-2010. 

Earth System Science Data, https://doi.org/10.5194/essd-2017-107. 

World Wildlife Fund (WWF)-Canada. (2009). Canada's rivers at risk: Environmental flows 

and Canada's freshwater future. Toronto:WWF-Canada. 

http://assets.wwf.ca/downloads/wwf_rivers_risk_2011.pdf 

Wuebbles, D., Meehl, G., Hayhoe, K. ... & Sun, L. (2014). CMIP5 climate model analyses: 

Climate extremes in the United States. Bulletin of the American Meteorological 

Society, 95(4), 571-583. https://doi.org/10.1175/BAMS-D-12-00172.1 

Wyman, R.R. (1995). Modeling snowpack accumulation and depletion. In: Guy, B.T. & 

Barnard, J. (eds)  Mountain Hydrology Peaks and Valleys in Research and 

Applications Conference Proceedings. Canadian Water Resources Association, 

Vancouver, BC, Canada. 

Xia, J., Niu, S., Ciais, P., ... Juo, Y. (2015). Joint control of terrestrial gross primary 

productivity by plant phenology and physiology. Proceedings of the National 

Academy of Sciences, 112(9), 2788-2793. http://doi.org/10.1073/pnas.1413090112 

Yue, .S & Wang, C.Y. (2002). Applicability of prewhitening to eliminate the influence of 

serial correlation on the Mann‐Kendall test. Water Resources Research, 38(6), 4-1-4-

7. https://doi.org/10.1029/2001WR000861 

 

 

  



 

 
This article is protected by copyright. All rights reserved. 

 

Figure 1. Map of the Red Deer River Basin in Alberta, Canada. The locations of weather 

stations are displayed and Banff is in the adjacent Bow River watershed, ~ 175 km 

SSW from Red Deer. 
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Figure 2. Mean annual temperature at Locombe (top) and annual precipitation at Rocky 

Mountain House (bottom) near the Red Deer River Basin, over the past century. 
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Figure 3. Average monthly temperatures (left) and precipitation (right) over the past century 

and with empirical trends projected to around 2055 for weather stations around the 

Red Deer River Basin, with significant monthly trends indicated (*, p < 0.05). 
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Figure 4. Mean annual discharges (Qa) for locations along the Red Deer River system over 

the periods of record, with linear regression plotted. 
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Figure 5. Moving 5-year average discharge of the Red Deer River and for the Pacific Decadal 

Oscillation (PDO) over the past century. 
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Figure 6. Averaged monthly discharges of the Red Deer River from 1912 to 2012 and flows 

around 2062 estimated by historic trend projections. 
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Figure 7. Measured and modelled monthly discharges of the Red Deer River (RDR) below 

Burnt Timber Creek (‘Upper RDR’) and at Red Deer. 
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Figure 8. Projected changes in monthly river flows of the Red Deer River (RDR) below Burnt 

Timber Creek (‘Upper’) and at Red Deer, following GCM climate projections, 

followed by regional downscaling and river routing. 
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Figure 9. Mean annual discharges (Qa) for rivers that drain the east-slope of the central Rocky 

Mountains of Canada, over the periods of record, with significant linear regression 

plotted (blue, increasing; red, decreasing). 
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Figure 10. Map of Alberta with major rivers plotted and river and reach numbers in 

accordance with Table 1. Additionally, the Hay (18) and Athabasca tributaries (19) 

are included, based on analyses in Rood et al., 2017 and 2015, respectively. 
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Table 1. Water Survey of Canada hydrometric stations included in the analyses. Significant 

(p < 0.05) flow trends are provided for mean annual discharge (Q), based on linear 

regression slopes, except for the RDR that was based on the Sen’s slope (red = flow 

decline; blue = increase). 

 

 Station Name Number 

Drainage 

area 

(km2) 

Start 

Mean 

Discharge 

(Q; m3/s) 

Flow Trend 

(%/year) 

Red Deer (RD) River (R) system 

1 RDR b Burnt Timber Ck. 05CA009 2,250 1973 21.6  

2 James R near Sundre 05CA002 821 1955 seasonal  

3 Raven R near Raven 05CB004 645 1971 2.29  

4 Medicine R near Eckville 05CC007 1,920 1962 4.21  

5 Little RDR near mouth 05CB001 2,580 1960 4.81  

6 RDR at RDa 05CC002 11,600 1912 48.0 -0.13 

Other regional, Rocky Mountain rivers 

7 Liard R at Ft. Liard 10ED001 222,000 1942 1,960 +0.29 

8 Peace R at Peace Ra 07HA001 194,000 1915 1,850 +0.18 

9 Smoky R at Watino 07GJ001 50,300 1915 342 declineb 

10 Athabasca R near Jasper 07AA002 3,870 1913 87.1 declineb 

11 Athabasca R at Athabasca 07BE001 74,600 1913 421 no changeb 

12 N. Sask. R at Edmontona 05DF001 28,100 1911 210 -0.18 

13 Bow R at Banff 05BB001 2,210 1909 39.1 -0.13 

14 Bow R at Calgarya 05BH004 7,870 1911 90.1 -0.13 

15 Oldman R - 05AA001 & 05AA023 1,940 1908 13.7 declineb 

16 Waterton R - Waterton Pk. 05AD003 613 1908 18.0 -0.13 

17 Milk R at western crossing 11AA025 1,050 1931 seasonal no changeb 

aRegulated 
bFor rivers with data complications, analyses are presented in the Results text. 
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Table 2. Global circulation models (GCMs) and projected changes in Red Deer River flows by 

the mid-twenty-first century. The outcomes from different analyses have been adjusted to 

provide 80 year projections to ~2055 (red = increase, blue = decline). Each study included 

multiple GCMs, and mean or median outcomes are provided, as listed in those reports or 

calculated from the figures presented. Model abbreviation or nationality: CCSM, Community 

Climate System Model, USA; CGCM, Coupled General Circulation Model, Canada; CSIRO, 

Australia; ECHAM, Germany; GFDL, Geophysical Fluid Dynamics Laboratory, USA; 

HadCM, Hadley Coupled Model, UK; MIROC, Model for Interdisciplinary Research on 

Climate, Japan; NCAR, National Ctr. for Atmospheric Research, USA. 

Source Global Circulation Models Change 

in flow 

Comments 

Pietroniro 

et al., 

2006 

10 GCMs screened, chose 

ECHAM4, HadCM3, 

NCAR-PCM 

-12% NCAR projected 

increase; other 2 models 

suggested spring and 

autumn decrease 

Lapp et 

al., 2009 

CGCM3, CSIRO- MK3, 

ECHAM5, GFDL2, 

HadCM3, MIROC3.2  

-13% Decrease in summer and 

autumn flows 

Tanzeeba 

& Gan, 

2012 

CCSRNIES, CGCM2, 

ECHAM4, HadCM3 

-15% Decrease especially in 

summer flows 

St. 

Jacques et 

al., 2018 

CCSM, CGCM3, GFDL, 

HadCM3, coupled with 

RCMs 

+14% 6 model combinations 

indicated little change, 

and 4 projected major 

increase in spring flows 

This study CGCMI-A, ECHAM4, 

HadCM3, NCAR-CCM3 

+8% General increase in flows 

This study Empirical Trend Projection 

(Sen’s slope) 

-10% Decrease in summer 

flows 
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Table 3. Correlation coefficients revealing historical trends in monthly or mean annual 

temperatures or precipitation for weather stations in or near the Red Deer River basin (Figure 

1), generally from 1912 to 2012. For temperatures, positive coefficients (red) indicate 

warming, and for precipitation, positive (blue) indicates increasing precipitation (t, p < 0.1; *, 

p < 0.05; **, p < 0.01). 

 Temperature Precipitation 

 

Banff 

 

Rocky 

Mtn. 

House 

Olds 

 

Lacombe 

 

Rocky 

Mtn. 

House 

Olds 

 Kendall  

Pearson 

r 

Kendall 

 

Spearman 

 

Kendall  

Jan 0.150* 0.186** 0.154* 0.269** 0.185** 0.282** 0.070 0.086 

Feb 0.176** 0.185** 0.155* 0.267** 0.173** 0.256** -0.009 -0.022 

Mar 0.217** 0.197** 0.160* 0.316** 0.224** 0.313** -0.030 -0.004 

Apr 0.069 0.105 0.034 0.149 0.083 0.117 -0.005 -0.039 

May 0.079 0.082 0.082 0.157 0.126t 0.181t 0.159* 0.078 

Jun 0.099 0.054 0.136* 0.240* 0.137* 0.208* 0.115 0.148* 

Jul 0.115t -0.029 0.094 0.187t 0.134* 0.193* 0.147* 0.138* 

Aug 0.156* 0.091 0.128t 0.243* 0.160* 0.244* -0.320 -0.033 

Sept 0.193** 0.172** 0.161* 0.285** 0.188** 0.278** 0.010 0.089 

Oct 0.062 0.068 -0.013 0.153 0.085 0.127 0.001 -0.093 

Nov -0.025 0.024 -0.017 0.043 0.033 0.047 0.096 0.017 

Dec -0.005 0.038 0.016 0.112 0.072 0.099 0.041 0.057 

Annual 0.296** 0.226** 0.239** 0.494** 0.347** 0.510**   

Warming 

(oC per 

century) 

1.41 1.45 1.11 1.83     
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Table 4.  Correlation coefficients revealing historical trends for annual, monthly or seasonal 

discharge (Q) of the Red Deer River (RDR) or tributaries (start year indicated, analyses to 

2013). Kendall’s  coefficients are shown, except for the Naturalized RDR at Red Deer, as 

indicated. Flow increases are in blue, declines in red; t , p < 0.1; *, p < 0.05; **, p < 0.01. 

 

 

 RDR at Red Deer 1912 

Upper 

RDR 

1973  

Little 

RDR 

1960 

Medicine 

R. 1962 
Measureda   

Naturalized 

Pearson r 

Naturalized 

Kendall  

Annual 0.176 0.164t 0.153 -0.007 
-0.156 -0.038 

Month       

Jan 0.207t 0.135 0.145 0.414** -0.120 -0.032 

Feb 0.222* 0.089 0.235* 0.476** -0.066 -0.033 

Mar 0.356** -0.067 -0.008 0.298** 0.073 0.104 

Apr 0.023 -0.039 0.072 -0.005 -0.058 -0.022 

May 0.022 0.080 0.085 -0.154 -0.078 -0.050 

June 0.295** 0.177t 0.226* -0.136 -0.030 -0.045 

July 0.095 0.073 0.113 -0.061 -0.110 -0.009 

Aug -0.058 0.164t 0.049 -0.112t -.201* -0.042 

Sept 0.049 0.258 -0.031 -0.033 -0.177t -0.018 

Oct 0.190t 0.217* -0.027 0.026 -0.189t -0.003 

Nov 0.096 0.150 0.008 0.148** -0.187t 0.009 

Dec 0.150 0.187* 0.167 0.312** -0.142 -0.044 

Seasonal (3 months, winter = DJF, etc.)    

Winter 0.257* 0.100 0.195t 0.394*a -0.137 -0.051 

Spring 0.062 -0.001 0.095 -0.064 -0.071 -0.039 

Summer 0.197t 0.184* 0.144 -0.107 -0.113 -0.018 

Autumn 0.095 0.240** -0.008 0.040 -0.188 -0.010 

 

aThis is downstream from Dickson Dam which is operated to trap summer flows and augment 

winter flows (this analysis to 2016). 

 


