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ABSTRACT

On Fractional Realizations of Tournament Score Sequences

by

Kaitlin S. Murphy, Master of Science

Utah State University, 2019

Major Professor: David E. Brown, Ph.D.
Department: Mathematics and Statistics

The problem of determining whether a list of nonnegative integers is the score sequence

of some round robin tournament, sometimes referred to as the Tournament Score Sequence

Problem (or TSSP), can be proposed in the form of an integer program and was determined

fully by mathematician H.G. Landau in the 1950’s. In this thesis, we examine a generaliza-

tion of tournaments which allow for fractional arc-weightings; we introduce several related

polytopes as well as the new notion of probabilization and prove several results about them.

Fractional scores of a tournament are discussed in the context of relaxing the constraints

on the aforementioned integer program to obtain a linear program. The feasible solution

space of this linear program forms an n-dimensional polytope. We will prove that the

vertices of this polytope are those that correspond to tournaments with integral scores.

These results complement the work of M. Barrus in “On fractional realizations of graph

degree sequences”, Electronic Journal of Combinatorics 21 (2014), no. 2, Paper #P2.18.

The intersection of digraph theory, polyhedral combinatorics, and linear programming

is a relatively new branch of graph theory. These results pioneer research in this field.

(53 pages)
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PUBLIC ABSTRACT

On Fractional Realizations of Tournament Score Sequences

Kaitlin S. Murphy

Contrary to popular belief, we can’t all be winners.

Suppose 6 people compete in a chess tournament in which all pairs of players compete

directly and no ties are allowed; i.e., 6 people compete in a ‘round robin tournament’.

Each player is assigned a ‘score’, namely the number of games they won, and the ‘score

sequence’ of the tournament is a list of the players’ scores. Determining whether a given

potential score sequence actually is a score sequence proves to be difficult. For instance,

(0, 0, 3, 3, 3, 6) is not feasible because two players cannot both have score 0. Neither is the

sequence (1, 1, 1, 4, 4, 4) because the sum of the scores is 16, but only 15 games are played

among 6 players. This so called ‘tournament score sequence problem’ (TSSP) was solved

in 1953 by the mathematical sociologist H. G. Landau. His work inspired the investigation

of round robin tournaments as directed graphs.

We study a modification in which the TSSP is cast as a system of inequalities whose

solutions form a polytope in n-dimensional space. This relaxation allows us to investigate

the possibility of fractional scores. If, in a ‘round-robin’-ish tournament, Players A and B

play each other 3 times, and Player A wins 2 of the 3 games, we can record this interaction as

a 2/3 score for Player A and a 1/3 score for Player B. This generalization greatly impacts

the nature of possible score sequences. We will also entertain an interpretation of these

fractional scores as probabilities predicting the outcome of a true round robin tournament.

The intersection of digraph theory, polyhedral combinatorics, and linear programming

is a relatively new branch of graph theory. These results pioneer research in this field.
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CHAPTER 1

INTRODUCTION

The tournament score sequence problem (TSSP) of determining which lists of integers

coincide with tournaments was completely determined by a mathematician by the name

of H. G. Landau when he provided necessary and sufficient conditions characterizing such

lists. The work presented in this thesis will use techniques from linear programming and

fractional graph theory to investigate the feasible region obtained when viewing the TSSP

as a system of linear inequalities, essentially allowing fractional scores in a tournament.

The motivation for this research came mostly from the recent work of Dr. Michael Bar-

rus in a paper published in 2013 [2]. In this paper, Barrus approaches realizations of graphic

degree sequences from a degree-based perspective while allowing fractional weightings on

edges. This is achieved by relaxing the conditions on an integer programming interpreta-

tion of a realization of a degree sequence to a linear program. The feasible region of the

associated linear program is the intersection of a finite number of halfspaces, hence a convex

polytope. The findings presented in this thesis are complementary to the work of Barrus,

but lie instead in the realm of directed graphs.

The concept of fractional tournaments has been studied in the past from a matrix

perspective as opposed to a degree perspective (like the one taken in this paper). In [9],

a generalized tournament matrix is defined as an n× n matrix P with nonnegative entries

for which the property P + Ptr = J − I holds where J denotes the matrix of 1’s and I the

identity matrix. This paper proposes several methods for ranking players in a tournament

and possible handicapping measures that could be taken. A similar matrix theory approach

is discussed briefly in [12] by Bryan Shader.

In Chapter 2, foundational material is presented on the basics of graph theory, optimiza-

tion, and fractional graph theory. Two fundamental optimization problems are investigated

from both the integer programming and linear programming perspective to demonstrate
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the usefulness of relaxing integer constraints. The motivating work of Dr. Michael Barrus

in “On Fractional Realizations of Tournament Score Sequences” (2013) is introduced.

Chapter 3 consists of the novel fractional analogues of directed graphs, tournaments,

and score sequences which will serve as the basis for the main results of this thesis presented

in the following chapters.

Two of the polytopes in question are defined and studied in Chapter 4. We show that

if a score sequence is of the form (0, 1, 2, ..., n − 1), there is a unique fractional realization

of the sequence. It is also shown that a point of the polytope of possible arc weightings for

a given sequence is a vertex of the polytope if and only if all weightings are integral.

In Chapter 5 the arc weightings of fractional complete directed graphs are interpreted

as probabilities that may, in a sense, “predict” the outcome of a round robin tournament

between the vertices. This concept of an expected outcome tournament and an associated

effective score sequence is developed and an associated polytope is studied.

Chapter 6 concludes this work with a brief foray into possible future research directions.



CHAPTER 2

PRELIMINARIES

2.1 Graphs, Digraphs, and Tournaments

2.1.1 Graphs

A graph G is an ordered pair (V, E) in which V = V(G) is a set of vertices and E = E(G)

is a set of edges disjoint from V together with an incidence function ψG : E → (
V
2

)
that

associates each edge with an unordered pair of vertices. Note that some authors may allow

ψG : E→ (
V
2

)
∪ V. Such graphs may contain loops, i.e. edges joining a vertex to itself. We

assume loopless graphs, so each edge is assigned to an unordered pair of distinct vertices.

For ease of notation, we use uv (equivalently vu) to represent the unordered pair {u, v}.

Graphs are commonly visualized as vertices and edges, such as in Example 1.

Example 1. Let G = (V, E) with V = {v1, v2, v3, v4, v5} and E = {e1, e2, e3, e4, e5} where ψG

is given by

ψG(e1) = v1v2, ψG(e2) = v1v3, ψG(e3) = v1v5, ψG(e4) = v2v4, ψG(e5) = v3v5

e2

e5

e1

e3

e4

v1

v2

v3

v5 v4

Fig. 2.1: A visual representation of G.
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We will often identify an edge with its image under the incidence function. In Example

2.1, we may refer to the edge e1 as the edge v1v2 since ψG(e1) = v1v2.

A vertex vi is said to be adjacent to a vertex vj in a graph G if vivj is in the image

of ψG. A vertex vi is said to be incident to an edge if there exists an e ∈ E(G) such that

ψG(e) = vivk for some vk ∈ V. For a vertex vi ∈ V(G) we may refer to the set of all vertices

adjacent to vi in G as the neighborhood of vi, denoted NG(vi). Note that in a loopless graph

vi /∈ NG(vi). The degree of a vertex vi, denoted dG(vi), is the number of vertices adjacent

to vi, so dG(vi) = |NG(vi)|. For example, in Figure 2.1 the degree of v1 in G is dG(v1) = 3.

The subscript serves to clarify the graph in which we are determining the degree of the

vertex and may be omitted if the context clearly determines the graph in question.

A simple graph is a loopless graph in which the incidence function is injective (one to

one). Note that the graph in Example 1 is simple. A simple graph on n vertices is complete

if the associated incidence function is a bijection. The complete graph on n vertices is

unique up to isomorphism and is commonly notated as Kn.

If two edges in the edge set have the same image under the incidence function, the

resulting graph is called a multigraph.

A degree sequence is a nondecreasing sequence of nonnegative numbers representing

the degrees of the vertices in a graph G. For example, the degree sequence of G in Figure

2.1 is given by d = (1, 2, 2, 2, 3).

2.1.2 Digraphs

Let V = {vi}i∈I be a set. Define the set V ./ V = {(vi, vj) | i, j ∈ I, i 6= j}.

Note that V ./ V is a subset of V × V.

Example 2. Let V = {v1, v2, v3}. Then we have the three following sets:

(
V

2

)
= {{v1, v2} , {v1, v3} , {v2, v3}}

V × V = {(v1, v1), (v1, v2), (v1, v3), (v2, v1), (v2, v2), (v2, v3), (v3, v1), (v3, v2), (v3, v3)}



5

and

V ./ V = {(v1, v2), (v1, v3), (v2, v1), (v2, v3), (v3, v1), (v3, v3)} .

A directed graph or digraph is an ordered pair D = (V,A) where V = V(D) is a set of

vertices and A = A(D) is a set of arcs together with an incidence function ψD : A→ V×V.

If ψmaps instead into the restricted codomain V ./ V, the digraph is called loopless. For our

purposes, all digraphs being considered will be loopless. Once again, we omit parentheses,

so uv is understood to represent the ordered pair (u, v). Digraphs are commonly represented

as vertices and arrows as in Example 3.

Example 3. Let D = (V,A) with V = {v1, v2, v3, v4, v5} and A = {a1, a2, a3, a4, a5} where

ψD is given by

ψD(a1) = v1v2, ψD(a2) = v1v3, ψD(a3) = v1v5, ψD(a4) = v2v4, ψD(a5) = v5v3

a2

a5

a1

a3

a4

v1

v2

v3

v5 v4

Fig. 2.2: A visual representation of D.

Again we may identify an arc with its image under the incidence function. In Figure 3,

arc a1 may be identified as v1v2. The outdegree of a vertex v in a digraph D, denoted dD(v),

is the number of outgoing arcs from vertex v. In Figure 3, dD(v5) = 1 and dD(v3) = 0.

2.1.3 Tournaments

Given an undirected graph, an orientation of the graph is an assignment of exactly one
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direction to each of the edges of the graph. An orientation may be thought of as a map from(
V
2

)
to V ./ V. A tournament T = (V,A) is an orientation of a complete loopless undirected

graph. One can think of a tournament as a directed graph whose incidence function ψT

satisfies the following properties: for any two vertices vi, vj ∈ V(T), either vivj ∈ ImψT or

vjvi ∈ ImψT as in Example 4.

Example 4. Let T = (V,A) with V = {v1, v2, v3, v4, v5} and

A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10} with ψT given by

ψT (a1) = v1v2, ψT (a2) = v1v3, ψT (a3) = v1v4, ψT (a4) = v1v5, ψT (a5) = v2v4

ψT (a6) = v2v5, ψT (a7) = v3v2, ψT (a8) = v3v4, ψT (a9) = v4v5, ψT (a10) = v5v3.

v1

v2

v3

v5 v4

Fig. 2.3: A visual representation of T .

If vivj ∈ ImψT , we say that vertex vi beats vertex vj or vj is beaten by vertex vi. In

a tournament T , we refer to the outdegree of a vertex v as the score of vertex v, denoted

sT (v). The score of vertex v3 in T in Figure 2.3 is sT (v3) = 2 since v3 beats v2 and v3 beats

v4. A score sequence is a nondecreasing sequence of nonnegative integers representing the

scores of vertices in a tournament. For example, the score sequence of T in Figure 2.3 is

given by −→s = (1, 1, 2, 2, 4). In the case of labeled digraphs, we may refer to a score vector

in which the ith entry of the vector is the score of vector vi. Note that the score vector of

T is identical to the score sequence, but that is not always the case.
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The incidence function of a transitive tournament has the additional constraint that if

vivj ∈ Imψ and vjvk ∈ Imψ then vivk ∈ Imψ. A transitive tournament on n vertices has

score sequence (0, 1, 2, ..., n− 1).

2.2 Optimization Motivation

Given a condition or parameters, it is natural to seek for a best or “optimal” outcome or

solution. Presented below are two well-known optimization problems from the field of graph

theory. The first problem is known as “graph coloring” and is a quintessential example of

optimization, often introduced in entry level graph theory and combinatorics courses. Many

believe that the coloring problem kick-started the entire field of graph theory. It is included

here to demonstrate the usefulness of integer programming and linear programming in

furthering the understanding and study of even the most cherished problems.

The second example provided is that of biclique covering numbers. This example

highlights a deficiency in integer programming and combinatorial methods that can be

overcome by the use of linear programming and fractional techniques.

2.2.1 Graph Coloring

A coloring of a graph G is an assignment of labels, referred to as colors, to the vertices

of G. If the colors are assigned so that adjacent vertices get different colors, the coloring is

a proper coloring.

Example 5. Consider the following proper colorings of planar representations of the cube.

Note that on the left, three colors are used, while on the right only two colors are used.

The optimization question then becomes, what is the least number of colors needed to

properly color a graph G? This least number is referred to as the chromatic number of G,

notated as χ(G).

Obviously, a graph G = (V, E) may be properly colored by assigning every vertex a

different color, so 1 ≤ χ(G) ≤ |V |. In general, it is very difficult to determine the chromatic
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Blue

Green Purple

Green

Blue

Red Blue

Red

Blue

Red Blue

Red

Blue

Red Blue

Red

Fig. 2.4: Two colorings of the cube.

number of a graph. If χ(G) is determined, the typical proof demonstrates a coloring with

χ(G) colors and provides a proof as to why χ(G) − 1 colors is insufficient.

Proposition 1. The cube H in Example 5 has χ(H) = 2.

Proof. Since the graph is connected, χ(H) > 1, and the second coloring from Figure 2.4

demonstrates a coloring using two colors; therefore χ(H) = 2.

Proposition 2. The complete graph on n vertices, Kn, is the only graph on n vertices with

χ = n.

Proof. Note that the degree of any vertex in Kn is n − 1, thus n colors are necessary and

sufficient for coloring the graph. So χ(Kn) = n. For any graph H on n vertices that is

not complete, there are at least two vertices that are not adjacent that can be assigned the

same color. Thus, χ(H) ≤ n− 1.

A bipartite graph is a nonempty graph (i.e., a graph with edges) in which its vertices

can be partitioned into two nonempty sets so that any two vertices in the same partite set

are not adjacent.

Proposition 3. A graph H is a bipartite graph if and only if χ(H) = 2.

Proof. Let H be a bipartite graph with parts P1 and P2. Assign all vertices in P1 color 1

and all vertices in part P2 color 2. This coloring is clearly proper since all vertices with

color 1 are nonadjacent as are those vertices with color 2.
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Conversely, let H satisfy χ(H) = 2. Then H has edges and is hence nonempty. All

vertices with color 1 are nonadjacent and may be regarded as comprising a partite set;

similarly all vertices with color 2 may comprise a partite set.

The study of graph coloring originated in the 1800s while cartographers attempted

to color maps. It was conjectured that four colors was sufficient to color a map so that

bordering regions were assigned different colors. A South African mathematician, Francis

Guthrie, is credited with postulating this problem, eventually referred to as “The Four

Color Problem.”

A map of this type is equivalent to a planar graph, a graph that has an embedding in

the plane with no edges crossing.

Conjecture 1 (The Four Color Problem). A planar graph has χ ≤ 4.

For the next 150 years the question remained unsolved, except for a brief stint in the late

1800s in which Alfred Kempe published a proof, only to have it discredited a decade later.

The conjecture was eventually proved to be true in the 1970s by mathematicians Kenneth

Appel and Wolfgang Haken [1]. To prove the conjecture, Appel and Haken supposed that a

planar graph exists with χ = 5 with the minimum number of vertices that such graphs ever

have. From this assumption they deduce a set of 1,482 unavoidable forbidden subgraphs

for the hypothetical graph, proving that no minimal planar graph with χ = 5 exists, so no

planar graph has χ = 5.

The proof is extraordinary in more ways than one. Aside from solving a famous un-

solved problem, the proof was one of the first to take advantage of computational power

in a major way. In fact, the authors even remarked on the reception of the proof in their

paper.

...mathematicians...who were not aware of the developments leading to the proof

are rather dismayed by the result because the proof made unprecedented use of

computers; the computations of the proof make it longer than has traditionally

been considered acceptable.
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Indeed, the proof of the Four Color Problem was a great achievement, but one would

be shortsighted to overlook ingenuity and techniques applied in attempts to solve the Four

Color Problem. Although most were unsuccessful, they still had a large influence on the

study of graph theory, particularly in computer-aided techniques and algorithms.

In 1889, when Kempe’s proof was discredited, Heawood took the opportunity to use

the technique to prove what is now called the Five Color Theorem [7].

Theorem 1 (Five Color Theorem, Heawood 1890). Every planar graph has χ ≤ 5.

It would take over 100 years for this result to be improved. [13]

2.2.2 Biclique Covering

A biclique is a graph whose vertices can be partitioned into two bipartite sets, P1 and

P2, such that no vertices in the same bipartite set are adjacent, but every pair of vertices

from different bipartite sets are adjacent. A biclique cover of a graph G is a collection of

bicliques such that every edge of G is contained in atleast one biclique.

The biclique cover number of a graph G, notated bc(G) is the smallest integer k such

that there is a biclique cover of G with k bicliques.

2.3 Fractional Graph Theory

A linear program (LP) is an optimization problem expressed in the form:

min~cT~x, subject to A~x ≥ ~b

or

max~cT~x, subject to A~x ≤ ~b

where A~x ≥ ~b is used to mean that each component of A~x is greater than or equal to its

corresponding component in ~b and A~x ≤ ~b is used to mean that each component of A~x is

less than or equal to its corresponding component in ~b. An integer program (IP) is a linear

program with the additional restraint that the components ~x are integral.
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It is common to notate linear programs using summations instead of inner products of

vectors and systems of inequalities rather than arrays. The indexing set of these summations

will be elements of sets which satisfy certain properties. Consider the following integer

programming interpretations of the graph coloring and biclique covering problems presented

previously.

2.3.1 Coloring Graphs via Integer Programming

We now show that the computation of the chromatic number of a graph can be viewed

as computing the optimal solution to a certain integer program (IP).

A graph G is said to have a proper k-coloring if χ(G) ≥ k. Let G = (V, E) be a graph

with χ(G) ≤ k and f : V → {1, 2, ..., k} a proper k-coloring; define sets C1, ..., Ck where

Ci = {v ∈ V | f(v) = i} for each 1 ≤ i ≤ k. We refer to each Ci as a color class. Since f

corresponds to a proper coloring, the proposed color classes partition V. Furthermore, each

Ci represents an independent set of vertices in G, since no two adjacent vertices receive the

same color assignment under the proper coloring f.

Let A be the set of all independent sets in G and let w : A → {0, 1}. Consider the

following IP:

min
∑
X∈A

w(X)

s.t.
∑
X:v∈X

w(X) ≥ 1 for all v ∈ V

We argue, via Propositions 4 and 5 below, that the optimal solution to the IP is the

chromatic number of G. Essentially, think of w as a selection function with w(x) = 1 if

independent set x is to be selected. The constraint ensures that each vertex v in the graph

is contained in at least one of the independent sets selected by w. Therefore, the solution

to the IP identifies a minimally weighted cover of the vertices of G by independent sets.

The propositions below argue that this cover corresponds to a partition into independent

sets that is minimal.
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Proposition 4. If w is a feasible solution to the IP that does not correspond to a proper

coloring, then either w is equivalent to a solution w ′ that corresponds to a proper coloring

or w is not optimal.

Proof. Let w be a feasible solution to the IP that does not correspond to a proper coloring.

Case 1: For some set X ∈ A with w(X) = 1, there exists a proper subset X0 ⊂ X such that

w(X0) = 1.

Define an assignment function w ′ : A → {0, 1} such that if Y is a proper subset of some

X ∈ A such that w(X) = 1 then w ′(Y) = 0, else w ′(Y) = w(Y). Then w ′ is a feasible

solution such that
∑
X∈Aw

′(X) <
∑
X∈Aw(X). Thus, w is not optimal.

Case 2: For all X, Y ∈ A such that w(X) = w(Y) = 1 neither X nor Y are proper subsets of

the other, but for some X1, Y1 ∈ A with w(X1) = w(Y1) = 1, X1 ∩ Y1 6= ∅.

Let v ∈ X1∩Y1 where w(X1) = w(Y1) = 1. Since Y1\{v} is a proper subset of Y1, w(Y1\{v}) =

0. Define a new assignment function w ′ : A→ {0, 1} such that w ′(Y1) = 0, w
′(Y1\ {v}) = 1,

and w ′(X) = w(X) for all X 6= Y1. Note that
∑
X∈Aw

′(X) =
∑
X∈Aw(X). This process

can be iterated for any vertex in the intersection of any two independent sets chosen until

all pairwise intersections are empty. The resultant function w(n) is a feasible solution such

that
∑
X∈Aw

(n)(X) =
∑
X∈Aw(X) and corresponds to a proper coloring of the graph G.

Proposition 5. If z is the minimal value of the IP, then χ(G) = z.

Proof. Suppose z is the minimal value of the IP and let χ(G) = y. Clearly y ≤ z since z

corresponds to a proper coloring of the graph G. If y < z, then y corresponds to a solution

of the IP that assigns exactly y independent sets a value of 1, contradicting that z is the

minimal value. Thus, z = y = χ(G) as proposed.

2.3.2 Biclique Coverings via Integer Programming

Let B be the set of all bicliques in a graph G. We can associate a biclique cover with

an assignment function w : B → {0, 1} where the output signifies if the biclique is included
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in the cover (value 1) or the biclique is excluded from the cover (value 0). We can formulate

an IP as follows:

min
∑
B∈B

w(B)

s.t.
∑
B:e∈B

w(B) ≥ 1 for all e ∈ E.

We minimize the number of bicliques included in the cover with |E| constraints ensuring

that each edge e ∈ E is included in at least one chosen biclique.

Proposition 6. A function w is a feasible solution to the IP if and only if its corresponding

set of bicliques covers G.

Proof. (⇒) Suppose w : B → {0, 1} is a feasible solution to the IP and define the set

A = {B ∈ B | w(B) = 1}. For each e ∈ E, the constraints require that there exists some

biclique Be ∈ A such that e ∈ Be. Thus, every edge of G is contained in a biclique, making

A a biclique cover of G.

(⇐) Let B be the set of all bicliques of a graph G and A be a biclique cover of G. Consider

the weighting function w : B → {0, 1} given by

w(B) =


1 B ∈ A

0 B /∈ A
.

Note that for every e ∈ E, there exists an Ae ∈ A such that e ∈ Ae andw(Ae) = 1. It follows

that all |E| constraints are satisfied and w is a feasible solution to the IP as proposed.

2.3.3 Optimality in Integer and Linear Programming

An optimization problem has the form

min f0(~x)

s.t. fi(~x) ≤ bi, i = 1, ...,m
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where the vector ~x = (x1, ..., xn) is the optimization variable of the problem, the func-

tion f0 : Rn → R is the objective function, the functions fi : Rn → R, i = 1, ...,m are

the inequality constraint functions, and the constants b1, ..., bm are the limits for the con-

straints. A vector ~x∗ is called optimal if it has the smallest objective value among all vectors

that satisfy the constraints. The optimization problem is an abstraction of the problem of

making the best possible choice of a vector in Rn from a set of candidates and has applica-

tions in many different areas including engineering, electronic design automation, automatic

control systems, and optimal design problems arising in various fields of engineering. Op-

timization is also widely used in the areas of finance, network design and operation, and

scheduling.

In general, solving many kinds of optimization problems is still a very daunting task,

however there exist some promising approaches for linear programs in particular. These

approaches as well as further theory in the area of linear programming can be found in

Convex Optimization and Combinatorial Optimization: Algorithms and Complexity [ [3],

[11]]. One popular method relies on the concept of duality.

Given a linear program of the form

max~cT~x, subject to A~x ≤ b

we refer to this LP as the primal LP and define its dual as the LP given by

min~bT~y, subject to AT~y ≥ c.

The properties of a primal LP and its dual LP have been studied extensively. For a

more in-depth look at their behavior and methods for finding solutions I recommend [11].

The principles of weak vs. strong duality are covered in the recommended literature and

will be useful in our study of the fractional chromatic number and fractional biclique cover

number below. Linear programs satisfy the principle of strong duality; that is, if the primal

LP is bounded from above, then the dual LP is bounded from below and the optimal
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solution to the dual LP will be equal to the optimal value of the primal LP and vice versa.

However, in the case of an integer program, strong duality may not hold, in which case the

dual IP does not always have an equal optimal value to the primal LP. This gap, referred to

as the duality gap, is difficult to classify or calculate, and thus the dual of a graph property

cannot necessarily be used to determine the optimal primal quantity. These calculations

are not completely useless though, the principle of weak duality dictates that dual problems

place a bound on their primal counterparts. Thus, relaxing the constraints of our initial

integer programs to consider linear programs can allow for a more in depth study of their

optimal values by allowing more flexibility in the study of their duals and other properties

and methods.

2.3.4 Fractional Graph Coloring

The study of fractional graph theory considers the effects of relaxing constraints, such

as those proposed in the two previous integer programs, to allow for real-valued values.

The fractional chromatic number is commonly used to demonstrate the usefulness of such

a relaxation.

Consider a situation in which n committees regularly meet for one hour on the first of

each month, but some individuals are members of multiple committees. A schedule must be

created where each committee meets for one hour with all of their members. This problem

can be visualized as a conflict graph where a vertex represents a committee and vertices

are adjacent if they have a common member. If we let our colors represent time slots, a

proper coloring of this graph G corresponds to an acceptable schedule. Therefore, χ(G) is

the fewest number of one hour time-slots needed to accommodate all of the committees.

Consider a set of five committees {A,B,C,D, E} with a cyclical conflict graph shown

below.
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This conflict graph may coincide with a schedule such as the following.

Committee Meeting Time

A, C (Blue) 9:00 - 10:00

B, D (Red) 10:00 - 11:00

E (Gray) 11:00 - 12:00

Note that the conference rooms are being utilized for three hours, but one room sits

empty while committee E is meeting. If we allow the meetings to be broken up into two

halves, we can use this space more efficiently. This can be represented as a fractional coloring

of the conflict graph where each vertex is assigned two colors and no adjacent vertices have

colors in common. An example of such a coloring is given here.

This graph may correspond to a schedule like so:



17

Committee Meeting Time

A, D (Blue) 9:00 - 9:30

A, C (Red) 9:30 - 10:00

E, C (Teal) 10:00 - 10:30

E, B (Orange) 10:30 - 11:00

D, B (Green) 11:00 - 11:30

Here, committees A, B, C, and E are given hour long time slots with no interruption

and committee D has an hour time slot with a break from 9:30 to 11:00. In this scenario

the conference rooms are both being used at all times for two and a half hours, the optimal

solution.

This fractional chromatic number example provides a very accessible example of the

usefulness of studying fractional properties of graphs. Now that we have a general idea of

why this study might be useful to us, let’s take a look under the hood at the mechanics of

relaxing these integer constraints.

Allowing the committees meetings to split into two halves is analogous to relaxing

the integer constraint on w in the integer program presented in Section 2.3.1 to obtain a

fractional weighting function wf : A→ [0, 1] and the following linear program:

min
∑
X∈A

wf(X)

s.t.
∑
X:v∈X

wf(X) ≥ 1 for all v ∈ V.

This linear program certainly has some inconvenient aspects. For one, it assigns values

to independent sets of vertices, which may be hard to enumerate in some larger or irregular

graphs. To overcome these hardships, we will investigate the dual linear program. Let

df : V → [0, 1] be a weighting function and consider the dual LP given by

max
∑
v∈V

df(v)
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s.t.
∑
v:v∈X

df(v) ≤ 1 for all X ∈ A

where v : v ∈ X indicates that one should sum over all vertices v ∈ V that are in

some independent set X. Here each independent set contributes a constraint, as opposed

to each vertex contributing a constraint in the primal LP. Also, the dual LP assigns values

to vertices instead of independent sets, which alleviates much of the hardship found in the

primal LP. As an example, we study the fractional chromatic number of Cn, the cycle on n

vertices.

Lemma 1. The largest independent set in a Cn has n
2 vertices if n is even and n−1

2 if n is

odd.

Proof. Consider the case where n is even. Take every other vertex along the path to be

part of the independent set. This is done without loss of generality since the cycle is vertex

transitive. Note that the size of this chosen set is n
2 and the addition of any other vertex

would yield the set not independent. Thus, the set is maximal. When n is odd, consider

Cn+1 (where n + 1 is even by assumption of n odd) and find its maximal independent

set. This set will have size n+1
2 . Delete one vertex in the independent set and make their

neighbors adjacent. These neighbors were not in the independent set, so the remaining

n+1
2 − 1 = n−1

2 vertices form a maximal independent set.

Proposition 7. The fractional chromatic number for Cn is given by

χf(Cn) =


2 n is even

2n
n−1 n is odd

.

Proof. Let z be the optimal solution to the fractional dual LP. By the principle of strong

duality for linear programs, χf(Cn) = z. Since Cn is vertex transitive, the weighting function

df : V → [0, 1] is a constant function, say df(v) = α for every v ∈ V. Now each independent
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set imposes a constraint on the system and we have for each independent set X a constraint

of the form ∑
v:v∈X

df(v) =
∑
v:v∈X

α = |X|α ≥ 1.

Since the dual LP is a maximization of the sums of df values, the optimal solution will

be the independent set with the most vertices, hence the above lemma. Thus, let

α =


2 n is even

2n
n−1 n is odd

.

These α values are maximal and satisfy all constraints imposed by independent sets

and it follows that

χf(Cn) = z =
∑
v∈V

df(v) =
∑
v∈V

α = nα =


2 n is even

2n
n−1 n is odd

as proposed.

Note that a cycle on an even number of vertices is a bipartite graph, and this result is

consistent with the previous finding on bipartite graphs. Also, this result is consistent with

our committee meeting example when n = 5.

2.3.5 Fractional Biclique Coverings

Similarly, we can investigate the fractional relaxation of the biclique cover number

introduced earlier. The natural fractional analog can be obtained by relaxing the constraint

that w : B → {0, 1} to wf : B → [0, 1]. Thus we allow the fractional inclusion of bicliques in

the cover with the restraint that the total weight of the bicliques covering any edge in the

graph must be at least one. This generates an LP

min
∑
B∈B

wf(B)
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s.t.
∑
B:e∈B

wf(B) ≥ 1 for all e ∈ E.

Unfortunately, the set B of all bicliques of a graph has proven to be a very difficult

set to determine given a graph, yielding the above LP rather impractical. To sidestep this

issue, we will investigate the dual LP. To prepare, it is helpful to reformulate the original or

primal LP in vector form. Since G is finite, the set B of all biclique subgraphs of G is finite.

Let |B| = n. Without loss of generality, index the bicliques in B with the values 1, 2, ..., n.

Also, let |E(G)| = m and index the edges of G with the values 1, 2, ...,m. Define ~wf as a

vector with n components where the ith component is the value of the ith biclique under

the assignment function wf.

Construct the matrix Am×n where entry aij =


1 ei ∈ Bj

0 ei /∈ Bj
. Note that each row of A

corresponds to an edge of G, so we can reformulate our primal LP as

min~1T ~wf

s.t. A ~wf ≥ 1.

The dual LP is then given by

max~1T ~df

s.t. A ~df ≤ 1.

Note that AT is an n×m matrix, thus ~df is an m× 1 column vector. Consider the ith

entry of ~df to be the value assigned to the ith edge via the function df, df(ei) = ~dfi. With

this interpretation, each row of A corresponds to a biclique, so each biclique contributes a

constraint. So, we can write df : E→ [0, 1] and the following reformulated dual LP

max
∑
e∈E

df(e)
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s.t.
∑
e:e∈B

df(e) ≤ 1 for all B ∈ B.

This dual LP is more practical since it allows us to weight edges instead of bicliques and

in general this is an easier task as there are usually fewer edges than bicliques to consider.

To demonstrate the usefulness of this approach, we will calculate the fractional biclique

cover number of the complete graph on n vertices.

Observation. A complete bipartite graph Ka,b has ab edges.

Lemma 2. Kn contains all possible biclique subgraphs Ka,b where a+ b ≤ n.

Proof. Let a + b ≤ n. Choose a vertices of the Kn and b of the remaining vertices to be

the vertex set of a subgraph K ′n. Let the edge set of K ′n be all edges connecting one of the a

vertices to one of the b vertices. Note that since Kn is complete, each of the a vertices are

connected to every one of the b vertices and vice versa. Also, no edges between two of the

a vertices or between two of the b vertices was included, making K ′n a complete bipartite

graph, Ka,b.

Fact. The number of edges in a Kn is n(n−1)
2 .

Proposition 8. The fractional biclique cover number of the complete graph on n vertices

is given by

bcf(Kn) =


2(n−1)
n n is even

2n
n+1 n is odd

.

Proof. By the strong duality principle of linear programs, if z is the optimal solution to the

fractional dual we developed, then bcf(Kn) = z. It suffices to find the optimal solution to

the dual fractional linear program proposed above. Since Kn is edge transitive, the function

df : A→ [0, 1] must assign the same weight to each edge, say df(e) = α for all e ∈ E(Kn).

Note that in the dual LP there is a restriction for each biclique of Kn. By the lemma

above, we know that for any a and b such that a + b ≤ n, Ka,b is a biclique subgraph of

Kn with ab edges. Therefore we have the constraint,
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∑
e:e∈Ka,b

df(e) =
∑

e:e∈Ka,b

α = (ab)α ≤ 1. (2.1)

By the lemma, if n is even, then Kn
2
,n
2

is a biclique of Kn and if n is odd then Kn+1
2
,n−1

2
is

a biclique and these are both maximal since they both contain all n vertices. Furthermore,

they maximize ab such that a+b = n. By Equation 2.1, if n is even we have the constraint(
n
2

) (
n
2

)
α = n2

4 α ≤ 1. Similarly, if n is odd we have the constraint
(
n+1
2

) (
n−1
2

)
α = n2−1

4 α ≤

1. The optimal solution maximizes α, hence the optimal solution is

α =


4
n2 n is even

4
n2−1

n is odd

. (2.2)

It follows then from the above fact that,

bcf(Kn) = z =
∑
e∈E

df(e) =
∑
e∈E

α =
n(n− 1)

2
α =


2(n−1)
n n is even

2n
n+1 n is odd

.

2.4 Degree and Score Sequences

2.4.1 Relevant Theorems and Results

A nonincreasing sequence of nonnegative integers is called graphic if it is the degree

sequence of at least one graph. The following two well-known results provide necessary and

sufficient conditions for a nonincreasing sequence of nonnegative integers to be graphic.

Theorem 2 (Erdős - Gallai 60 [4]). A nonincreasing sequence of nonnegative integers

S : d1, d2, ..., dp with p ≥ 2 is graphic if and only if for every k in 1 ≤ k ≤ n

k∑
i=1

di ≤ k(k− 1) +
p∑

i=k+1

min(di, k)
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and
∑p
i=1 di is even.

Theorem 3 (Havel 55 [6] and Hakimi 62 [5]). A nonincreasing sequence of nonnegative

integers S : d1, ..., dp with p ≥ 2 is graphical if and only if the sequence S ′ : d2−1, ..., dd1+1−

1, dd1+2, ..., dp is graphical.

Proof. (⇐) If a sequence S ′ : d2 − 1, ..., dd1+1 − 1, dd1+2, ..., dp is graphic and G ′ is a graph

that realizes S ′, label the vertices of G ′ so that d(v2) = d2−1, d(v3) = d3−1, ..., d(vd1+1) =

dd1+1 − 1, d(vd1+2) = dd1+2, ..., and d(vp) = dp. Then the graph G obtained by taking the

graph G ′ and appending a vertex v1 adjacent to the first d1 vertices in order of the labeling

is a graph with degree sequence S = d1, ..., dp, making S graphic.

(⇒) Suppose S = d1, ..., dp is a graphic sequence. Among all graph with degree se-

quence S choose the graph G such that

1. V(G) = {v1, ..., vp} and d(vi) = di for 1 ≤ i ≤ p and

2. the sum of the vertex degree of vertices adjacent to v1 is maximum.

If v1 is adjacent to the vertices of degree d2, ..., dd1+1 then the induced subgraph G ′

obtained by removing vertex v1 is a graph with degree sequence S ′ and the statement holds.

Otherwise, suppose there exist two vertices vi and vj such that dj > di where v1vi ∈ E(G)

but v1vj /∈ E(G). Since dj > di, there must exist a vertex vk such that vjvk ∈ E(G) but

vivk /∈ E(G). Performing a two switch (deleting the edges v1vi and vjvk and adding the

edges v1vj and vivk creates a new graph G ′ with degree sequence S. However, in G ′ the

sum of the vertex degrees of the vertices adjacent to v1 is greater than in G, contradicting

the maximum condition imposed in the choice. Thus, v1 must be adjacent to the vertices

of degree d2, ..., dd1+1 and the statement holds.

If G is a graph that has degree sequence d, then G is called a realization of the graphic

degree sequence d.

Landau’s Theorem provides necessary and sufficient conditions for a sequence of non-

decreasing integers to be the score sequence of some tournament. The following proof can

be found in [10]
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Theorem 4 (Landau 53 [8]). A score sequence −→s = (s1, s2, ..., sn) with s1 ≤ s2 ≤ · · · ≤ sn

is the score vector of some tournament Tn if and only if

k∑
i=1

si ≥
(
k

2

)
, (2.3)

for k = 1, 2, ..., n with equality holding when k = n.

Proof. Any k nodes of a tournament are joined by
(
k
2

)
arcs, by definition. Consequently,

the sum of the scores of any k nodes of a tournament must be at least
(
k
2

)
. This shows the

necessity of (2.3).

The sufficiency of (2.3) when n = 1 is obvious. The proof for the general case will be by

induction. Let j and k be the smallest and largest indices less than n such that sj = ssn = sk.

Consider the set of integers (s ′1, s
′
2, ..., s

′
n−1) defined as follows

s ′i = si if i = 1, 2, ..., j− 1 or

i = k− (sn − j), ..., k− 1, k;

s ′i = si − 1 if i = j, j+ 1, ..., k− (sn − j) − 1 or

i = k+ 1, k+ 2, ..., n− 1.

From this definition, it follows that

s ′1 ≤ s ′2 ≤ · · · ≤ s ′n−1,

that s ′1 = si for sn values of i, and that s ′i = si−1 for (n−1)−sn values of i. Consequently,

n−1∑
i=1

s ′i =

n∑
i=1

si − (n− 1) =

(
n− 1

2

)
.

If there exists a tournament Tn−1 with score vector (s ′1, s
′
2, ..., s

′
n−1), then there certainly

exists a tournament Tn with score vector (s1, s2, ..., sn); namely, the tournament consisting
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of Tn−1 plus the node pn, where pn dominates the sn nodes pi such that s ′i = si and is

dominated by the remaining nodes. Therefore, we need only show that the inequality

h∑
i=1

s ′i <

(
h

2

)
(2.4)

is impossible for every integer h such that 1 < h < n−1 in order to complete the proof

by induction.

Consider the smallest value of h for which inequality (2.4) holds, if it ever holds. Since

h−1∑
i=1

s ′i ≥
(
h− 1

2

)
,

it follows that sh ≤ h. Furthermore, j ≤ h, since the first j − 1 scores were unchanged.

Hence,

sh = sh+1 = · · · = sf

if we let f = max(h, k).

Let t denote the number of values of i not exceeding h such that s ′i = si − 1. Then it

must be that

sn ≤ f− t. (2.5)

Therefore,

(
n

2

)
=

h∑
i=1

s ′i +

f∑
i=h+1

si +

n−1∑
i=f+1

si + sn + t

<

(
h

2

)
+ (f− h)sh +

n−1∑
i=f+1

si + f

≤
(
h

2

)
+ h(f− h) +

n−1∑
i=f+1

si + f

≤
(
f

2

)
+ f(n− f)

≤
(
n

2

)
.
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Consequently, inequality (2.4) cannot hold and the theorem is proved.

2.4.2 Polytopes

A polytope is a generalization of a polygon. The following introduction to polytopes

is extracted from [11]. An affine subspace of Rd of dimension d− 1 is called a hyperplane.

Alternatively, a hyperplane is a set of points x satisfying

a1x1 + a2x2 + · · ·+ adxd = b

where not all ai are zero.

A hyperplane determines two halfspaces, namely the sets of points satisfying, respec-

tively,

a1x1 + a2x2 + · · ·+ adxd ≤ b

a1x1 + a2x2 + · · ·+ adxd ≥ b.

The bounded and nonempty intersection of a finite number of halfspaces is called a

polytope. Note that halfspaces are convex, thus a polytope is convex as the intersection of

finitely many convex sets.

The extreme points of a polytope are known as vertices. A vertex is the unique point

satisfying at least
(
n
2

)
of the constraints (hyperplane equations).

For the linear programs of interest in this paper the inequality constraints define a

feasible region of solutions. This feasible region is the intersection of halfspaces determined

by these inequality constraints, thus forming a polytope.

Typically in the study of linear programming, one would attempt to optimize an objec-

tive function over the feasible region defined by the constraints of a linear program. Opti-

mization techniques, such as the simplex method, have been a rich field of study, especially

with the help of technological advances. An overview of various methods for optimization

over convex polytopes can be found in [3].
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For our purposes, we will simply be investigating the structure and properties of the

feasible region of the polytopes constructed, foregoing the optimization of some objective

function.

2.4.3 Fractional Graph Degree Sequences

In [2] a realization of a degree sequence, d, is associated with a solution to the linear

program ∑
i

xij = dj, 1 ≤ j ≤ n

xij ∈ {0, 1} , 1 ≤ i ≤ j ≤ n,

where xij = 1 is interpreted to mean the edge ij is present in the graph and xij = 0 otherwise.

This integer program is then relaxed to a linear program by allowing xij ∈ [0, 1] seen below.

∑
i

xij = dj, 1 ≤ j ≤ n

0 ≤ xij ≤ 1, 1 ≤ i < j ≤ n.

We say that these conditions describe “fractional” realizations of degree sequences.

A polytope, P(d) consisting of all vectors (xij) whose coordinates are lexicographically

indexed that satisfy the above conditions for a given degree sequence is defined. Given a

point x in the polytope P(D), the fractional realization of d corresponding to x is defined

to be the labeling of the edges of the complete graph on n vertices such that the edge

ij receives the label xij for all pairs i, j of distinct elements in {1, ..., n}. This point x is

sometimes referred to as the characteristic vector of the fractional realization. Consider the

following fractional realizations of the degree sequence d = (1, 1, 1, 1, 1, 1).

Barrus notes that the extreme points of this polytope are, in some sense, generalizations

of the realizations of d. Note that each integral point in P(D) ( in other words a 0/1-point)

is a vertex of the polytope since it satisfies
(
n
2

)
of the conditions of the linear program with

equality. For some degree sequences however, there may exist non-integral vertices in the
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Fig. 2.5: Fractional realizations of (1,1,1,1,1,1).

polytope P(D). For example, for the degree sequence d = (1, 1, 1, 1, 1, 1), the characteristic

vector for the realization in Figure 2.5(b) is a non-integral vertex of the polytope P(D).

Thus, the vertices of P(D) may or may not correspond to simple graph realizations of d.

The following result characterizing the vertices of the polytope P(D) is proven.

Theorem 5 (Barrus 13 [2]). Given a graphic list d, let h be a point of P(d),and let H be the

fractional realization of d corresponding to h. The point h is a vertex of P(D) if and only

if the edges of H labeled with nonintegral coordinates of h form vertex disjoint odd cycles.

Furthermore, there are an even number of these cycles. and the nonintegral coordinates of

h all equal 1/2.

It is noted that fractional realizations of a degree sequence form a special case in the

study of b-matchings of a graph. The theorem above is essentially a reformation of some

previous known results from the study of fractional perfect b-matchings into the language

of degree sequences.

A sequence is said to be decisive if P(D) is a 0/1-polytope. The remaining results of [2]

are dedicated to characterizing the decisive sequences and graphs via a number of different

techniques including the development of a set of 70 minimal forbidden induced subgraphs

for decisive graphs.

The first characterization presented focuses on a particular pattern of adjacencies and

non-adjacencies referred to as a (3,3)-blossom.

Theorem 6 (Barrus 13 [2]). For a graphic sequence d, the following are equivalent:
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(1) d is a decisive sequence;

(2) No integral realization of d contains an integral (k, `)-blossom for any odd k, ` ≥ 3;

(3) No integral realization of d contains an integral (3,3)-blossom.

The second characterization focuses on 70 potential induced subgraphs and being able

to partition the vertex set of a graph into three sets that satisfy certain adjacency properties.

The third characterization does so in terms of the numerical values of the terms in the

degree sequence and draws inspiration from the Erdős-Gallai conditions.

Theorem 7 (Barrus 13 [2]). Let d = (d1, ..., dn) be a graphic list in weakly decreasing

order. Let k be the largest integer such that d satisfies the kth Erdős-Gallai inequality with

equality. The list d is a decisive sequence if and only if one of the following is true:

(1) k = max {i : di ≥ i− 1};

(2) the number ` = max {i : di ≥ k and i > k} exists and satisfies one of

(i) `− k ≤ 5;

(ii) (dk+1 − k, ..., d` − k) is one of

(4, 2, 2, 2, 2, 2), (3, 3, 3, 3, 3, 1), (m, 1(m+2)), ((m+ 1)m+2, 2)

where m ≥ 3.

It is also observed that if d is a threshold sequence, then d has a unique fractional

realization.



CHAPTER 3

DIRECTED ANALOGUES TO FRACTIONAL GRAPH THEORY

3.1 Fractional Directed Graphs

Define a fractional directed graph as an ordered quadruple (V,A,ψ,ψα) consisting of a

vertex set V with |V | = n, arc set A with |A| = 2
(
n
2

)
, an incidence bijection ψ : A→ V ./ V,

and a weighting function ψα : A → [0, 1] with the restriction that if ψ(ai) = vkvl and

ψ(aj) = vlvk then ψα(ai) +ψα(aj) = 1. For clarity of notation, if ψ(ai) = vkvl, we refer to

ψα(ai) as αkl. Thus, αkl + αlk = 1 for all k 6= l ∈ [n].

α13

α31 = 1 − α13

α12

α21

α23

α32

v2

v1 v3

Fig. 3.1: A fractional directed graph.

Let −→α ′ ∈ [0, 1]2(
n
2) be a list of all αij associated with a fractional directed graph. Since

αij + αji = 1 for all i 6= j ∈ [n], all of the information in −→α ′ can be coded into a vector

−→α ∈ [0, 1](
n
2) where the weightings are indexed lexicographically. This can significantly

simplify the representative figures of the graphs as in Example 6.

Example 6. Let V = {v1, v2, v3, v4}, A = {a1, ..., a12},
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ψ(a1) = v1v2, ψ(a2) = v2v1, ψ(a3) = v1v3, ψ(a4) = v3v1,

ψ(a5) = v1v4, ψ(a6) = v4v1, ψ(a7) = v2v3, ψ(a8) = v3v2,

ψ(a9) = v2v4, ψ(a10) = v4v2, ψ(a11) = v3v4, ψ(a12) = v4v3

and

ψα(a1) = α12 =
3

4
, ψα(a2) = α21 =

1

4
, ψα(a3) = α13 =

1

4
, ψα(a4) = α31 =

3

4
,

ψα(a5) = α14 = 0, ψα(a6) = α41 = 1, ψα(a7) = α23 = 0, ψα(a8) = α32 = 1,

ψα(a9) = α24 =
3

4
, ψα(a10) = α42 =

1

4
, ψα(a11) = α34 =

1

4
, ψα(a12) = α43 =

3

4
.

The −→α =
(
3
4 ,
1
4 , 0, 0,

3
4 ,
1
4

)
and we can represent this fractional digraph as follows.

3/4

1/4

0 0

3/4

1/4

v1

v4 v3

v2

Define the fractional score of a vertex, vi, of a fractional directed graph to be the sum

of the arc weights of outgoing arcs, sfi =
∑
j:j 6=i

αij. We analogously define a fractional score

sequence to be a sequence −→s f = (sf1, s
f
2, ..., s

f
n) of n nonnegative real values in nondecreasing

order for which there exists at least one fractional digraph on n vertices such that the score

of vertex vi = s
f
i for all i ∈ [n].

3.2 Fractional Tournaments and Fractional Score Sequences

Associate an integer realization of a tournament score sequence with a solution to an
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integer programming problem as follows: Let −→s be a score sequence of length n and consider

a vertex set of size n. We associate a value αij ∈ {0, 1} to each unordered pair (vi, vj) of

distinct vertices. We interpret αij = 1 to mean that the arc originating at vertex vi ending

at vertex vj is present in the tournament. If the arc from vertex vi to vertex vj is not present

in the tournament, then αij = 0 and it must be that αji = 1. We can associate realizations

of −→s with vector solutions to the integer program:

∑
j:i6=j

αij = si, 1 ≤ i ≤ n

αij + αji = 1 1 ≤ i, j ≤ n, i 6= j

αij ∈ {0, 1} 1 ≤ i, j ≤ n, i 6= j.



CHAPTER 4

FRACTIONAL REALIZATIONS OF SCORE SEQUENCES

A fractional analogue is constructed by relaxing the constraints to allow αij to be a real

number between 0 and 1. Consider a complete loopless digraph on n vertices. We associate

a nonnegative weighting αij to the arc originating at vi terminating at vj as presented

previously. Due to the close relationship of αij and αji, it suffices to consider (and show)

only the arcs associated with the αij whose coordinates are lexicographically indexed with

i < j.

The points −→α = (αij) ∈ R(
n
2) of arc weightings whose coordinates are lexicographically

indexed and their related digraphs that satisfy the following equations for a specific score

sequence −→s are fractional realizations of the score sequence −→s .

∑
j:i<j

αij +
∑
j:i>j

(1− αji) = si 1 ≤ i ≤ n

0 ≤ αij ≤ 1 1 ≤ i < j ≤ n

(4.1)

4.1 The Polytope Frac~α(~s)

Define the polytope Frac−→α (−→s ) to be the points −→α that satisfy Equation 4.1 for a given

sequence −→s .

All −→α ∈ Frac−→α (−→s ) are fractional realizations of the score sequence −→s . We refer to the

complete loopless digraph with arc weightings defined by −→α as the fractional realization of

−→s corresponding to −→α .

For clarity, we will refer to a realization in the traditional sense, where −→α ∈ {0, 1}(
n
2) as

an integer realization. Notice that integer realizations of the score sequence −→s correspond

to fractional realizations of −→s where either αij or αji is 1.

We will also use the following notion throughout the paper.
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3
4

1
4

0 0

3
4

1
4

v1

v4 v3

v2

(a) D1: A fractional realization of −→s
corresponding to −→α = (3

4
, 1
4
, 0, 0, 3

4
, 1
4
)

1
3

1
3

1
3 0

1
3

1
3

v1

v4 v3

v2

(b) D2: A fractional realization of −→s
corresponding to −→α = (1

3
, 1
3
, 1
3
, 0, 1

3
, 1
3
)

Fig. 4.1: Two distinct fractional realizations of ~s = (1, 1, 2, 2)

Definition. A fractional tournament matrix A is a nonnegative matrix that satisfies A +

AT = J − I where J is the all ones matrix and I is the identity matrix. In the case that all

entries are either 0 or 1, we refer to the matrix A as simply a tournament matrix.

Given a score sequence −→s , we consider vectors −→α which satisfy the linear program (1)

to be points of the polytope Fracα(
−→s ), thus Fracα(

−→s ) ⊂ R(
n
2). We can view solutions of

this linear program as a matrix problem. A possible vector −→α would have to satisfy the

following matrix equation



1 . . . 1 0 . . . 0

1 . . . 1 0 . . . 0

1 . . . 0

−In−1
...

−In−2 . . . 1

−1





α12
...

α1,n

α2,3
...

αn−1,n


+



0

1

2

...

n− 2

n− 1



=



s1

s2
...

sn



where

D1
−→α + b1 =

∑
j>1

α1j = s1
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D2
−→α + b2 =

∑
j>2

α2j + (−α12) + 1 = s2

...

Dk
−→α + bk =

∑
j>k

αkj +

−
∑
j<k

αjk

+ (k− 1) = sk

...

Dn
−→α + bn =

−
∑
j<n

αjn

+ n− 1 = sn.

Example 7. Consider the first fractional realization of the score sequence −→s = (1, 1, 2, 2)

in Figure 4.1. Note that the alpha vector corresponding to this fractional realization is

−→α = (α12, α13, α14, α23, α24, α34) = (34 ,
1
4 , 0, 0,

3
4 ,
1
4). Then we have,



1 1 1 0 0 0

−1 0 0 1 1 0

0 −1 0 −1 0 1

0 0 −1 0 −1 −1





3
4

1
4

0

0

3
4

1
4


+



0

1

2

3


=



1

1

2

2


.

In a first attempt to understand the polytopes, observations were made about rather

basic digraphs. The following are some of the findings.

Theorem 8. If a score sequence −→s is of the form (0, 1, 2, ..., n − 1), there is only one

fractional realization of the score vector which is an integer realization.

Proof. The theorem will be proved via the principle of mathematical induction. Consider

the case where −→s = (0, 1, 2). Without loss of generality say s(v1) = 0, s(v2) = 1, and

s(v3) = 2. Since v1 has score 0, α12 = 0 and α13 = 0 and it follows that α21 = 1 and

α31 = 1. Then, since v2 has score 1 and α21 = 1, the remaining arc α23 must be zero and it

follows that α32 = 1. Thus, for −→s = (0, 1, 2) the realization −→α = (0, 0, 0) is forced and the

statement holds when n = 3.
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We proceed by induction on the number of vertices with the induction hypothesis that

for any m < n, the score sequence −→s = (0, 1, 2, ...,m− 1) has a unique realization.

Let −→s = (0, 1, 2, ..., n − 1) where s(v1) = 0, s(v2) = 1, ..., s(vn) = n − 1 and consider

the sequence of the induced subgraph gained by removing vertex vn in a realization of

−→s . The sequence for the remaining sequence is −→s ′ = (0, 1, 2, ..., n − 2) since αin = 0 for

all 1 ≤ i ≤ n − 1 which is a sequence of the desired form for n − 1 vertices. Thus, by

the induction hypothesis, there exists a unique realization of −→s ′, call it S ′. Now consider

the fractional graph S = S ′ ∪ {vn}. Since αin = 0 for all 1 ≤ i ≤ n − 1, αni = 1 for all

1 ≤ i ≤ n − 1. So, the score sequence for S is −→s = (0, 1, 2, ..., n − 1) and is determined

uniquely and the theorem is proved by the principle of mathematical induction.

Theorem 9. If −→α is a point in the polytope Frac−→α (~s) for some integral score sequence −→s ,

then −→α is a vertex of the polytope if and only if −→α ∈ {0, 1}(
n
2) .

Proof. Let −→α be a vertex of Frac−→α (−→s ). Since Frac−→α (−→s ) is in
(
n
2

)
space, −→α must be the

unique solution to
(
n
2

)
hyperplane conditions. Thus, −→α could be written as the unique

solution to a matrix equation Aα = b.

Define a simple undirected multigraph H−→α by V(H−→α ) = V(D−→α ) and

E(H−→α ) = {eij | αij ∈ (0, 1)} . Let G−→α be the subgraph induced by the edges of H−→α .

If E(G−→α ) is empty, then all αij ∈ −→α are integers and the statement holds. Suppose

E(G−→α ) is nonempty. Then there exist at least two vertices vi, vj ∈ V(G−→α ) such that vivj ∈

E(G−→α ), implying that the arc vivj ∈ A(D−→α ) has nonintegral weighting αij ∈ (0, 1). Since

αij + αji = 1, αji is also nonintegral, so vjvi ∈ E(G−→α ). Thus, there exist two edges between

vi and vj in G−→α . Also, since −→α ∈ Frac−→α (−→s ) and the entries of −→s are integers, the score

of any vertex in D−→α must be integral. So if vivj ∈ E(G−→α ), implying vi is the initial point

of an arc with a nonintegral weighting, there must exist another vertex vk such that vivk is

an arc with a nonintegral weighting, αik, implying vivk ∈ E(G−→α ) so vi is adjacent to vk in

G−→α . So, any vertex in V(G−→α ) is incident to at least two distinct vertices in V(G−→α ). Thus,

G−→α consists of two-connected components.
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Consider one of these two-connected components. This component necessarily contains

some cycle C. Without loss of generality, relabel the vertices so that C consists of vertices

v1, v2, ..., vt. Note that by the above argument, consecutive vertices are connected by two

edges and each edge vivj in G−→α corresponds to the arc vivj with weighting αij in D−→α .

Let γ be the minimum weighting αij such that vivj is an edge in C. Define a vector

−→α ′ ∈ R(
n
2) componentwise by

α ′ij =


αij + γ vivj is an edge in C, i (mod t) < j (mod t)

αij − γ vivj is an edge in C, i (mod t) > j (mod t)

αij vivj /∈ C.

Let D−→α ′ be a digraph corresponding to −→α ′. Note that by construction, the score of

vertex vi ∈ D−→α ′ is the same as the score of vertex vi in D−→α for all 1 ≤ i ≤ n, thus

−→α ′ ∈ Frac−→α (−→s ). Also, −→α ′ satisfies the same hyperplane conditions as −→α . Thus, −→α ′ is

also a solution to the matrix equation presented above, A−→α = A−→α ′ = b, contradicting our

assumption that −→α is the unique solution to this matrix equation. Thus, E(G−→α ) must be

empty, implying that all arc weightings in Dα are integral.

Assume that −→α ∈ {0, 1}(
n
2). Each αij ∈ −→α satisfies a constraint either of the form

αij ≤ 1 or αij ≥ 0 with equality. So, −→α satisfies
(
n
2

)
boundary conditions. These

(
n
2

)
boundary conditions are equations specifying each component of a vector, thus any vector

satisfying all
(
n
2

)
boundary conditions has the same components as −→α . Therefore, −→α is the

unique solution to these
(
n
2

)
equations, making −→α a vertex of Frac−→α (−→s ) as proposed.

4.2 The Polytope Frac~x(n)

Theorem 10. Let Frac~x(n) be the polytope of vectors ~x such that some fractional tour-

nament realizes ~x. Then the vector −→s f is a vertex of Frac~x(n) if and only if −→s f is a

permutation of (0, 1, 2, ..., n− 1).
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Proof. The vectors ~x in question are those that satisfy Landau’s conditions

∑
i∈Sk

xi ≥
(
k

2

)
, 1 ≤ k ≤ n

for every subset Sk of size k of [n], and with equality for k = n.

Suppose that −→s f is a vertex of Frac~x(n). Then −→s f is the intersection of n hyperplanes

of the form ∑
i∈Sk

sfi =

(
k

2

)
.

Let R1, R2, ..., Rn be the defining sets of each of these hyperplanes, where the subscript

doesn’t necessarily correspond to the size of the set. Now suppose that two of the sets are

the same size, say r = |Rj| = |Rl| for some j, l ∈ [n], and let t = |Rj ∪ Rl|.

Then ∑
i∈Rj

sfi =
∑
i∈Rl

sfi =

(
r

2

)
,

which implies that

(
t

2

)
≤
∑

i∈Rj∪Rl

sfi

which can be expanded via the Principle of Inclusion Exclusion to

=
∑
i∈Rj

sfi +
∑
i∈Rl

sfi −
∑

i∈Rj∩Rl

sfi

≤ 2
(
r

2

)
−

(
|Rj ∩ Rl|
2

)
.

Note that by the principle of inclusion exclusion, we have t = |Rj∪Rl| = |Rj|+ |Rl|− |Rj∩Rl| =

r+ r− |Rj ∩ Rl|. Thus, |Rj ∩ Rl| = 2r− t and we have

= 2

(
r

2

)
−

(
2r− t

2

)
= r(r− 1) −

(2r− t)(2r− t− 1)

2
.
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= −r2 + 2rt−
t2 − t

2
.

Completing the square yields,

= −(t− r)2 +
t2 − t

2

=
t(t− 1)

2
− (t− r)2

=

(
t

2

)
− (t− r)2.

We have
(
t
2

)
≤
(
t
2

)
− (t− r)2 which implies that (t− r)2 = 0. Therefore, t = |Rj ∪ Rl| =

|Rj| = |Rl| = r, so Rj = Rl and j = l.

In other words, R1, R2, ..., Rn are all distinct sizes, namely 1, ..., n. Therefore, there

exists exactly one i1 such that sfi1 = 0, and consequently, exactly one i2 such that sfi2 = 1,

and so on inductively. That is, −→s f is a permutation of (0, 1, 2, ..., n− 1) as claimed.

Conversely, any permutation of (0, 1, 2, ..., n− 1) will be in one hyperplane of the form

∑
i∈Sk

sfi =

(
k

2

)

for each k ∈ [n]. Also, as discussed above, this is the unique vector in the intersection of

those n hyperplanes, and is thus a vertex of Frac~x(n).



CHAPTER 5

EXPECTED OUTCOME TOURNAMENTS

Let D = (V,A) be a fractional realization of a score sequence −→s . Associate D with

a tournament T = (V,A) where V(T) = V(D) and an arc aij is included in A(T) if αij =

1−αji <
1
2 in D. In the case that some αij =

1
2 , we associate D with two tournaments, one

in which arc aij is included, and one where arc aji is included. We refer to T as an expected

outcome tournament of D.

Example 8. A fractional realization of the score sequence −→s = (1, 1, 2, 2) (left) and its

associated expected outcome tournament (right).

3/4

1/4

0 0

3/4

1/4

v1

v4 v3

v2

−→ v1

v4 v3

v2

Example 9. A fractional realization of the score vector −→s = (2, 2, 2, 2, 2) and two expected

outcome tournaments.

3
4

1
4

1
43

4

1
2

1
41

3
4

0

1
4

v1

v5

v2

v3

v4

−→
v1

v5

v2

v3

v4

v1

v5

v2

v3

v4
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Let D be a fractional realization of a score sequence −→s and T be an expected outcome

tournament of D. The score sequence ~s ′ of T is called an effective score sequence of −→s .

We say that −→s probabilizes ~s ′. A given score sequence −→s may probabilize many distinct

sequences, as in the following example.

Example 10. Two distinct fractional realizations of the score sequence −→s = (1, 1, 2, 2) and

their associated effective outcome tournaments.

3/4

1/4

0 0

3/4

1/4

v1

v4 v3

v2 v1

v4 v3

v2
1/3

1/3

1
3 0

1/3

1/3

v1

v4 v3

v2 v1

v4 v3

v2

We would then say that−→s = (1, 1, 2, 2) probabilizes the score sequences−→s 1 = (1, 1, 2, 2)

and −→s 2 = (0, 1, 2, 3). Equivalently, it could be said that −→s 1 = (1, 1, 2, 2) and −→s 2 =

(0, 1, 2, 3) are effective score sequences of −→s = (1, 1, 2, 2).

Alternatively, we could say that a score vector ~x probabilizes a score sequence −→s if

there exists some tournament matrix A and some fractional tournament matrix Af such

that

A~1 = −→s Af~1 = ~x Aij =


1 Afij >

1
2

0 Afij <
1
2

where ~1 is the all ones vector.

5.1 The Polytope Prob~x(~s)

Define the polytope Prob~x(
−→s ) to be the set of all vectors ~x that probabilize a score

sequence −→s .

Theorem 11. For any score sequence −→s , the vertices of Prob~x(
−→s ) are located at 1

2(
−→s +~t)

for each permutation ~t of (0, 1, 2, ..., n − 1). Furthermore, ~x ∈ Prob~x(
−→s ) if and only if

2~x−−→s satisfies Landau’s conditions.
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Proof. For a given n ∈ N, the set of vectors in Frac~x(n) can be thought of as the set

Frac~x(n) =
{
D−→α + ~b | −→α ∈ [0, 1](

n
2)
}

where

D =



1 . . . 1 0 . . . 0

1 . . . 1 0 . . . 0

1 . . . 0

−In−1
...

−In−2 . . . 1

−1



and b =



0

1

2

...

n− 2

n− 1



.

Similarly, for a given sequence −→s , we claim that

Prob~x(
−→s ) = {1

2
D(−→α + ~β) + ~b

∣∣∣∣ −→α ∈ [0, 1](
n
2), β ∈ Frac−→α (−→s ) ∩ {0, 1}(

n
2)
}
.

It follows that

Prob~x(
−→s ) = {1

2
D(−→α + ~β) + ~b | −→α ∈ [0, 1](

n
2), β ∈ Frac−→α (−→s ) ∩ {0, 1}(

n
2)
}

=

{
1

2

(
D−→α +D~β+ 2~b

)}
.

Since ~β ∈ Frac−→α (−→s ), D−→α + ~b = −→s . So we have,

=

{
1

2

(−→s +D−→α + ~b
)}

=

{
1

2

(−→s +~r
)
| ~r ∈ Frac~x(n)

}
.
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By Theorem 10, the vertices of Frac~x(n) are permutations of the transitive sequence

(0, 1, 2, .., n− 1). Thus, the vertex set of Prob~x(
−→s ) is given by

{
1

2

(−→s +~t
) ∣∣∣∣ ~t is a permutation of (0, 1, 2, ..., n− 1)

}
.

Suppose ~x ∈ Prob~x(
−→s ) for some −→s with length n. Then ~x = 1

2(
−→s + ~r) for some

r ∈ Frac~x(n) and it follows that ~r = 2~x − −→s ∈ Frac~x(n). Thus, 2~x − −→s satisfies Landau’s

conditions as claimed.

Conversely, if ~r = 2~x−−→s ∈ Frac~x(n). Then ~x = 1
2(~r+

−→s ) ∈ Prob~x(
−→s ).
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FUTURE DIRECTIONS

The work presented here lends itself to a myriad of research directions. We have

generalized the work of Barrus in the context of complete directed graphs (tournaments);

we believe that the work may be generalized further to all directed graphs. In the study of

fractional realizations of tournament score sequences, our work focused on investigating the

feasible region of the linear program presented. While a characterization of the vertices of

such a polytope is included here, there are other properties of the feasible region that may

be of interest. For instance, given a vertex of a polytope Frac−→α (−→s ) for some score sequence

−→s , is there a way to measure which other vertices are ‘closest’ to the given vertex and is

there a systematic way to traverse the edges of the polytope to reach another vertex? Along

the same lines, is there a meaningful way to partition this polytope to identify vertices with

certain graph structures? This idea came about after pondering about the 1/2 cases in our

arc weightings, which seemed to represent some sort of tipping or critical point.

Theorem 8 proves that for a sequence ~s of the form (0, 1, 2, ..., n − 1), the polytope

Frac−→α (−→s ) is a single point, meaning there is a unique fractional realization of the score

sequence. Given a score sequence ~s, can one determine the dimension of the polytope

Frac−→α (−→s ) and interpret this in a meaningful way?

Theorem 9 proves that if an objective function attains an optimal value over the poly-

tope Frac−→α (−→s ), it will be attained at one of the vertices which correspond to tournaments

with all integral weightings. It may be the case that the optimization of certain objective

functions over this polytope may provide an interesting way to rank players in a tournament

or gain information about tournament structures.

The notation and vocabulary of expected outcome tournaments, effective score se-

quence, and probabilizations serves to facilitate much further research. In particular, in the

study of expected outcome tournaments, among multiple fractional tournaments with the



45

same expected outcome tournament is one of the fractional tournaments ‘more likely’ to

yield the expected outcome tournament? Is there a way to associate some sort of ‘confidence

score’ with expected outcome tournaments based on the arc weightings of the fractional tour-

nament? During our research, we noted that a score sequence of the form (0, 1, 2, ..., n− 1)

has the property that its only effective score sequence is itself, which begs the question: Are

there other sequences −→s such that the set
{
~x | ~x is an effective score sequence of −→s } only

contains the vector ~s?
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