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ABSTRACT

Change in The Leading Mode of North America’s Wintertime Stationary Eddies

by

Yu-Tang Chien, Master of Science

Utah State University, 2019

Major Professor: Simon Wang, Ph.D.
Department: Plants, Soils and Climate

In recent years, extreme winter weather events in North America have become more

frequent and increasingly destructive. The 2012-2015 wintertime California drought has

been linked to the abnormal atmospheric high-pressure ridge, while the eastern U.S. undergo

the cold anomaly event, forming an atmospheric pattern referred to as the North America

winter Dipole. Several studies have demonstrated that the Dipole may have amplified and

this amplification could be linked to anthropogenic warming. In this study, we utilized

multiple global reanalysis datasets and empirical orthogonal function (EOF) analysis to

(1) explore whether the long-wave pattern in the Northern Hemisphere during wintertime

has changed and (2) better understand about the Dipole pattern in the present, past and

future by analyzing the Dipole structure. In the first portion of this study, we compared

between pre- and post- 1980 periods to identify the change of the circulation based on the

EOF analysis and examined the air-sea interaction by the correlation analysis between the

Principle component (PC) and the sea surface temperature. It was found that the leading

EOF pattern of the winter circulation over North America has changed since the late 1980’s,

from the Pacific-North America (PNA) mode to the Dipole mode. Neither mode is a new

climate pattern, but their “switch” in the variance explained has not been documented.

In the second portion of this study, we tested multiple global reanalysis datasets to derive
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the Dipole index and showed that the Dipole variance has undergone a pronounced low-

frequency fluctuation. We further used all available teleconnection indices to identify their

changing association with the Dipole pattern. Moreover, we investigated the Dipole index

behavior under the paleoclimate and the double CO2 future scenario.

(39 pages)



v

PUBLIC ABSTRACT

Change in The Leading Mode of North America’s Wintertime Stationary Eddies

Yu-Tang Chien

Extreme winter weather events in North America have become more frequent and

increasingly destructive. This phenomenon was linked to a jet stream pattern that generates

abnormally warm conditions in the west and cold conditions in the east, referred to as the

North American Winter Dipole. Studies have shown that the Dipole may have amplified

and this amplification could be linked to global warming. By analyzing the atmospheric and

oceanic data worldwide, the wintertime circulation in the Northern Hemisphere shows signs

of a persistent change after the 1980s. In the first part of this study, we examine how the

ocean has changed in correspondence to the Dipole and the evolution of the pattern change.

In the second part of this study, we use multiple global reanalysis datasets to construct the

Dipole index. The result validates the reported Dipole variation during the modern period.

We also use the Dipole variance to investigate the Dipole’s behavior in the paleoclimate

and future warming conditions. Overall, we sought to better understand how the Dipole

pattern evolves and how it may link to the different forcing, as a way to anticipate future

change in North America’s winter.
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CHAPTER 1

INTRODUCTION

According to the National Centers for Environmental Information report (NOAA 2019),

during 1985-2005, Florida was the only state suffering billion-dollar losses related to freeze

events in the eastern U.S. After 2006, the number of eastern states affected by these

costly freeze-related disasters has doubled, along with a marked increase in the number

of billion-dollar disasters caused by drought in western states. In the winter of 2013-

2014, the exceptionally dry conditions in the West coast were accompanied by a persistent

geopotential ridge located in the North Pacific. This ridge pushed storm tracks further

north, resulting in wetter than normal conditions over the northwest of the United States

and substantial drying over the southwest. Some studies showed that the striking division

of the drought in the west and cold-snaps in the east have resulted from an atmospheric

pattern referred to as the “North American Winter Temperature Dipole” (Singh et. al.

2016) or the “North American Winter Dipole” (Wang et. al. 2015), hereafter Dipole.

The polarity and location of this Dipole coincide with the wintertime stationary waves

over North America, which feature a high-pressure ridge in the west and a low-pressure

trough in the east. Oscillating in sync with the stationary waves, the positive-phase Dipole

is associated with an anomalous ridge over the Gulf of Alaska and a deepened trough near

the Great Lakes, thereby enhancing the east-west temperature contrast in North America

(Voelker et al. 2019). Past studies suggested that the ridge in western U.S. (Swain et

al. 2014) and the Dipole itself have amplified (Singh et. al. 2016), owing to internal and

external variabilities, such as tropical Pacific heating (Hartmann 2015; Schulte and Lee

2017) and Arctic warming (Francis and Varus 2012; Overland et al. 2016). The intense

Dipole reversal seen in the winter of 2016-17 suggests that the variation amplitude also

increases, accompanying the wet winter in California (Wang et al. 2017; Swain et al.

2018). These observations imply a change in the atmospheric circulation regime over North
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America, which is examined herein.

This study explores the wintertime leading pattern evolution in North America and

diagnoses forcing sources. While the 2013/2014 extreme event has been extensively studied,

the role of large-scale climate variability has not been satisfactorily addressed. Understanding

the major wintertime circulation pattern evolution over Northern America, as well as

the dipole index variance from the paleoclimate to the future projection, can allow us

to better predict future. In the first portion of this study (Chapter 2), the overarching

goal was to examine the dominant patterns during the recent decades and to compare with

the known climate pattern: Pacific-North American (PNA) and Dipole pattern. In this

study, geopotential height at 250 hPa is the main component we analyzed. By removing

the zonal average and focus only on the November to January monthly data, Empirical

Orthogonal Function (EOF) analysis gave us the major circulation pattern of the North

Hemisphere. Furthermore, spacial correlation analysis was applied to compare the EOF

results and the other patterns in order to capture the leading pattern feature. In the

second portion of this study (Chapter 3), we use multiple global reanalysis datasets to

derive dipole index and its variance to verify whether the variation of the Dipole index is

consistent during the analysis period. This portion of the study also explored the correlation

between the teleconnection indices based on literature review as well as dipole variability

under the paleoclimate data and the Community Earth System Model (CESM) simulation

with Representative Concentration Pathways (RCP) 8.5 ”high emission” future scenarios.

Combined, we anticipate to investigate the potential forcing and whether the Dipole pattern

will last. This analysis gives us a better point of view about the future of wintertime extreme

events.



CHAPTER 2

CHANGE IN THE LEADING CIRCULATION PATTERNS

2.1 Introduction

This study explores the wintertime leading pattern evolution in North America through

the perspective of the long-term time scale. The most well-studied teleconnection pattern

which affects North America is arguably the Pacific-North American (PNA) pattern. The

PNA is a low-frequency variability mode in the Northern Hemisphere, which influences

regional weather by affecting the strength and location of the East Asian jet stream, and

subsequently, the weather it channels to North America. The PNA involves changes in

atmospheric pressure between the Aleutian Low and the high pressure over the Rocky

Mountains. This situation increases the likelihood of above-average temperatures over

western Canada and the western states of the U.S., and below-average temperatures across

south-central and southeastern states. The PNA can impact crop production and the

growing season. In winter, the positive-phase PNA is associated with below-average precipit-

ation in the Pacific Northwest and across the eastern half of the United States. Although

the PNA pattern is an internal mode of climate variability, it is also strongly influenced by

the El Nino/ Southern Oscillation (ENSO) phenomenon. The positive phase of the PNA

tends to be associated with ENSO warm episodes (El Nino), and the negative phase tends

to be associated with ENSO cold episodes (La Nina).

The division of western U.S. drought and eastern U.S. cold-snaps have resulted from

an atmospheric pattern referred to as the “North American Winter Temperature Dipole”

mainly from the perspective of the surface temperature (Singh et. al. 2016) and the “North

American Winter Dipole” from the perspective of the 250 hPa geopotential height (Wang

et. al. 2015). Interestingly, the intense Dipole reversal seen in 2016-17 winter suggests that

the variation amplitude also increases, leading to extreme conditions such as wet winters
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in California (Wang et al. 2017; Swain et al. 2018). Therefore, we examine the change in

climate circulation characteristics and their role in the North America winter through the

angle of variation in the North America circulation.

2.2 Data and methods

2.2.1 Reanalysis data

The primary dataset used to study the atmospheric circulation features of interest is the

NCEP–NCAR re-analysis (Kalnay et al. 1996) from 1948-present. The re-analysis project

provided global gridded fields produced with a comprehensive objective analysis system with

a large input database (including data available after the operational cutoff time). Although

the satellite data was lacking before 1979, the temporal coverage of this re-analysis is longer

than newer re-analysis that inquests satellite data. Thus, when interpreting the early 20th-

century climate, we need to be cautious to avoid over-interpretation. We also used the

National Oceanic and Atmospheric Administration (NOAA) Extended Reconstructed Sea

Surface Temperature (ERSST) V4 dataset, starting in 1854 with a 2◦ spatial resolution

(Huang et al. 2014), and the European Centre for Medium-Range Weather Forecasts

(ECMWF) interim reanalysis (ERA-Interim; Dee et al., 2011) from 1979 to 2015 and

extend back to 1958 by concatenating with ERA-40 (Uppala et al., 2005). Additionally,

we used a retrospective reanalysis dataset to depict the global atmospheric circulation:

the ECMWF global reanalysis products for the twentieth century (ERA-20C) (Poli et al.

2016) from 1871–2012. Based on large ensembles, 20CR (ERA-20C) utilized a coupled

Atmosphere/Land-surface/Ocean model to assimilate surface observations of sea level pre-

ssure (surface pressure) to produce the atmospheric conditions. It should be noticed that

the 20CR dataset is developed from the model simulation forced by surface conditions only,

therefore, it is not a full re-analysis. In this study, we mainly utilized by the monthly mean

North Hemisphere geopotential height from November to February that are available on a

2.5 times 2.5 long grid.
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2.2.2 EOF Analysis

The Empirical orthogonal function (EOF) and Principal Component analysis (PCA)

are the main analysis technique for this study. According to Jolliffe (2002, p 1), the central

idea of EOF/PCA is to reduce the dimensionality of a data set consisting of a large number of

interrelated variables while retaining as much as possible of the variation present in the data

set. This is achieved by transforming to a new set of variables, the principal components,

which are uncorrelated, and which are ordered so that the first few retain most of the

variation present in all of the original variables. In its simplest formulation, EOFs are

eigenvectors of the data covariance matrix. The eigenvectors are commonly referred to as

modes. Suppose the data are arranged in a matrix with ‘time’ being column dimension and

‘space’ being the row dimension. Then covariance can be computed over time as is typically

done for time series data. It can be shown that the eigenvectors of the covariance matrix

are related to the eigenvalues of the data matrix.

Because of this technique is a decomposition of a signal or data set in terms of

orthogonal basis functions and seeks spatiotemporally-coordinated structures that explain

maximum variance, which is determined from the data construction, this study was subjected

the monthly anomalies of geopotential height (Z) at 250 hPa from November through

February, with the zonal mean removed to depict the stationary eddies (herein MZE250).

Considering the grid data in the high latitude has higher resolution, we emphasize the

signal in tropical region by the cosine weight as a function of latitude. By doing so, we

can balance the signal from the tropical and from the polar region. The month-by-month

arrangement of MZE250 reflects the strong sub-seasonal variability of winter climate over

North America (Higgins et al. 2000). The EOF/PC analysis provides simple representations

of the spatial state of atmospheric circulations, which do not evolve with time. This restricts

the EOF/PC technique for investigating trends presented as shifts of or changes in spatial

pattern. Therefore, the running time window strategy from Zhang et al. (2008), called the

Running-EOF analysis, was conducted. In this way, we use running 30-year period, each

EOF analysis contains 120 realizations (30 years × 4 months).
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2.2.3 Spatial correlation analysis

Spatial correlation falls into two types: auto-correlation and cross-correlation. The

former reflects a relation between one measure and itself, while the latter reflects a relation-

ship between one measure and another measure. To illustrate further the relationship

between EOF results and the Pacific North America/Dipole pattern, a linear spatial cross-

correlation function is adopted. The aim of this technique is simply to get the accuracy/simi-

larity of spatial patterns between two variables over an X-Y domain.

2.2.4 Wave Activity Flux Analysis

The wave-activity flux is a useful diagnostic tool for illustrating a “snapshot” of a

propagating packet of stationary or migratory Quasi-Geostrophic (QG) Rossby wave distur-

bances and thereby for inferring where the wave packet is emitted and absorbed. We use

the source code derived by Takaya and Nakamura (2001, JAS: TN01) in GrADS.

2.3 Results

2.3.1 Evolution of the change

We use multiple global reanalysis data sets, including NCEP–NCAR reanalysis (Kalnay

et al. 1996) from 1948-present, European Centre for Medium-Range Weather Forecasts

(ECMWF) interim re-analysis (ERA-Interim; Dee et al., 2011) from 1979 to 2015 and extend

back to 1958 by concatenating with ERA-40 (Uppala et al., 2005), and a retrospective

reanalysis datasets to depict the global atmospheric circulation: the ECMWF global re-

analysis products for the twentieth century (ERA-20C) (Poli et al. 2016) from 1871–2012.

To examine the evolution in which the leading mode of MZE250 started to change, we

adopted the running-EOF method (Zhang et al. 2008). A series of EOF analysis was

conducted in the 30-year window and repeated every five years. The leading EOFs are then

subject to a spatial correlation analysis with the PNA pattern and the Dipole pattern,

which is delivered from the EOF 1 results of the 1950-1980 geopotential height based

on the Climate Prediction Center, and from 2013/2014 wintertime circulation based on
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the definition of Dipole by Wang, et al. (2015) respectively. Through this process, the

results formed a series of correlation coefficients with each 30-year period. This analysis

was performed on three reanalysis datasets: ECMWF 20-Century Reanalysis (ERA20C),

the ERA-Interim, and NCEP-NCAR reanalysis I. As shown in Fig. 2.1, the running-EOF

results illustrate a decreasing trend in the correlation between EOF1 and PNA from 1970

to 2000. Meanwhile, the correlation increases between EOF1 and the Dipole, computed

from the MZE250 of the 2013-2014 winter (Wang et al. 2014). Correspondingly, sliding

correlations of the second running-EOF (EOF2) with the PNA show an opposite trend

(Fig. 2.1 b), suggesting that the Dipole used to be the second mode, but it has intensified

while overtaking EOF1 during the 1990s.

Fig. 2.1: Spatial correlation coefficients between the PNA/Dipole pattern and (a) EOF
1, during 1948-1979 (b) EOF 2, during 1980-2017 of MZE250. This analysis is repeated
throughout a 30-year Running-EOF window done every 5 years using three different
reanalysis data sets as indicated on top of (b).
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The mechanism behind this decadal shift in the prevailing modes of variation is manifold.

Previous studies proposed that the ENSO-forced PNA would move eastward in response to

the spatial shift of the mean SST warming (Zhou et al. 2014). Interdecadal variability of

the North Pacific sea level pressure can induce a shift in the PNA (Johnson and Feldstein

2010). Moreover, one could relate the Dipole to the maintenance of wintertime stationary

waves (e.g., Chang 2009). The western ridge of the North American stationary waves is

primarily linked to the orographic forcing of the Tibetan Plateau on the jet stream, while

the Rocky Mountains amplify the eastern/downwind trough. Diabatic heating from the

Western Pacific and North Pacific further enhances and shapes this ridge-trough pattern.

Therefore, the observed Dipole amplification could be related to the combination of such

forces, i.e. jet stream-terrain interactions and diabatic heating.

2.3.2 Change in leading patterns

By setting 1980 as the dividing year to distinguish the circulation pattern change, the

first EOF mode of MZE250 during the earlier period of 1948-1979 is shown in Figure 2.2.

Explaining 18.6% of the variance, this leading EOF features a wave train emanating from

the central Pacific to the U.S., coincident with the Pacific-North American (PNA) pattern.

By superimposing the PNA contours, which was produced by correlating MZE250 with the

PNA index from the NOAA Climate Prediction Center, the two patterns of EOF1 and

PNA are in-phase. By comparison, the post-1980 EOF1 (Fig. 2.2b) shows a similar wave

train but the wave centers are shifted from the PNA pattern by about a quarter phase.

It appears that the post-1980 EOF1 becomes phase coincident with the Dipole centers

(marked with × and + in North America). This result suggests that the leading mode of

MZE250 variability has changed from a PNA-like pattern to one that resembles the Dipole.

However, by repeating the EOF analysis with seasonal means instead of monthly intervals,

the leading pattern of the latter period would still be PNA, whereas the Dipole remains

secondary (Fig. 2.3 a, Fig. 2.3 b). These results imply that the observed reversal from PNA

to Dipole is mainly related to the sub-seasonal variability, an emerging subject of intense

research nowadays.
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Fig. 2.2: First EOF mode of monthly MZE250 during (a)1948-1979 and (b) 1980-2017
winters (EOF1 shading), superimposed with the PNA pattern (contour) and the Dipole
centers (marked with × and +) in North America. The correlation maps between monthly
SST anomalies and the first principle component (PC1) are shown for the (c) 1948-1979
and (d) 1980-2017 periods. Hatched areas indicate significant values (p < 0.01). Percentage
explains the variance of EOF result.
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Fig. 2.3: First EOF mode of seasonal mean (NDJF) MZE250 during (a)1948-1979 and
(b) 1980-2017 winters (shading) and Second EOF mode of seasonal mean (c) and (d).
Superimposed with the PNA pattern (contour) and the Dipole centers (marked with × and
+) in North America as in Fig. 2.2. Percentage explains the variance of EOF result.

To understand the air-sea interaction, we correlated the first principal component

(PC1) time series with the monthly SST anomalies (Nov-Feb). The pre-1980 EOF1 cor-

responds to a La Niña-like pattern resembling the cold-phase Pacific Decadal Oscillation

(PDO) (Fig. 2.2 c), which supports the associated PNA atmospheric wave train (Fig. 2.2

a). After 1980, the SST correlation map with respect to EOF1 changed dramatically and

is absent of the PDO alongside most tropical signatures (Fig. 2.2 d). This post-1980 SST

pattern corresponding to EOF1 reveals the oceanic “Blob” along the West coast (Kintisch

2015), as well as robust negative anomalies in the Western North Pacific and the Bay of

Bengal. This latter SST feature coincides with an ENSO precursor, called the Western
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North Pacific pattern (WNP), that saw amplification in recent decades (Wang et al. 2013).

These results also echo the study by Kirtman et al. (2001), that sub-seasonal SST anomaly

variability has a significant impact on North American climate anomalies. The marked

difference between these SST patterns accompanying EOF1(MZE250) of two eras implicates

two very different modes of sub-seasonal variability influencing North American winter.

To clarify the change of the circulation, we conducted Wave Activity Flux (WAF)

analysis (Takaya and Nakamura, 2001) on the U and V wind field at 250 hPa which has

regressed with PC1 and PC2 from the previous results. A wave-like structure in the upper

troposphere can be seen (Fig. 2.4). The horizontal wave activity flux has suggested two

distinct forcing sources emanated from the tropics during the pre-1980 period and from the

subtropics during the post-1980 period. Figure 2.4 illustrated that the wave train appears

to originate from East Asia in the first period, conveys the energy from the tropics to

the extratropics, which enhances the ridge over the Aleutian Islands. The response of the

downstream wave separates into two directions, the major one toward the East coast of

North America and the minor one through the southeast. The southeast US branch of

wave activity flux appears to regenerate another wave train toward Europe. The post-1980

circulation has a different pattern, in which the forcing source shifted and expended to the

north and Japan. The consequence of the source shifting is the change of the downstream

wave activity flux. The ridge over the Aleutian region moved eastward to the Gulf of Alaska,

and the wave train propagated northeastern North America. Notably, this wave train stays

in North America without re-generating another trans-Atlantic wave train. This difference

of the wave activity flux implies that, through the enhancement of the PNA wave train,

ENSO can impact Europe, wheras the Dipole only affects North America.
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Fig. 2.4: The regressed NDJF monthly 250-hPa Streamfunction during (a)1948-1979 and (b)

1980-2017 for polar projection and (c) (d) for Mercator projection [gray contour; contour

interval (CI) = 1*106] associated horizontal component of the wave activity flux (arrow;

unit: m2 s−2).

2.4 Conclusion

In this study, we compared the wintertime leading circulation in North America during

the pre- and post- 1980 by EOF analysis. We found that the pre-1980 dominant pattern

is PNA-like while the post-1980 era resembles the Dipole pattern in terms of sub-seasonal

variability. Further comparison of EOF1/EOF2 with PNA/Dipole pattern with spatial

correlation reveals that the leading mode had changed over the analysis time. The PNA

pattern changed from being the first leading mode to the second, while Dipole became from
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the second mode to the first leading pattern. The mechanism of the pattern changing

is unclear, which certain studies have argued about the feasible forcing source and/or

theory (Johnson and Feldstein 2010; Chang 2009). The results portray a consistent pattern

switching in three reanalysis datasets, suggesting that this change in the leading modes

of wintertime North Hemisphere circulations is reliable. The underlying dynamics of the

Dipole pattern enhancement is further examined with paleo and projection simulation in

the next chapter.



CHAPTER 3

PRE-INDUSTRIAL AND FUTURE PERSPECTIVES

3.1 Introduction

In section 2, it was suggested that the North America wintertime circulation variability

has evolved since the 1980s to one that is dominated by the Dipole pattern from that of

the PNA pattern. This phenomenon was observed in three different datasets, revealing

a decreasing PNA variance accompanied by an increasing Dipole variance during recent

decades. Regarding external forcing, we also tested the sea surface temperature (SST)

anomalies associated with the stationary wave patterns and showed that the SST anomaly

pattern forcing the teleconnections has changed. However, recent modeling studies indicate

that pre-industrial droughts were driven by internal variability, with SST playing a secondary

role (Coats et al., 2015; Stevenson et al., 2015).

To the knowledge of this author, only a few studies have investigated the linkage

of drought event in the pre-industrial and paleoclimate era associated with the Dipole

pattern. Cook et al. (2014) analyzed the last millennium drought and mentioned that the

temperature and the 500hPa geopotential height anomalies pattern in the 1933-1934 winter

is similar to the persistent circulation anomaly that dominated North American climate

during the winter of 2013–2014. Therefore, it would be of special interest to examine the

variability of the winter stationary wave in the pre-instrumental era.

Previous studies have mentioned that some teleconnection patterns may link to the

2013/14 drought, i.e., tropical Northern Hemisphere (TNH) (Marinaro et al., 2015), and

Blob index (Bond et al. 2015). We include a number of teleconnection indices in this study

examinate the Dipole variation’s association with the various forcing sources. Meanwhile,

a large and growing body of literature has investigated the interaction between the Arctic

and mid-latitudes weather, linking the Arctic amplification (AA) to the changed circulation
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over North America, despite some inconsistency. For example, Overland and Wang (2015)

suggested that the Arctic influence will reinforce the regional geopotential height pattern

and impact subarctic severe weather. Screen and Simmonds (2010) used the Fourier de-

composition method to examines the large-scale changes over North Hemisphere. They

point out that changes in meridional amplitude over recent decades are relatively small

compared to the year-to-year variability. Also, they argue that the AA only affects the

near surface temperature, and is weaker at 500 hPa. Although these studies show such

a discrepancy of interpreting the AA impact and the response circulation, it implies the

importance of the Arctic dynamics to North America. In this study, we also apply the AO

index to represent the impact of the Arctic for the preliminary investigation.

3.2 Data and Methods

3.2.1 Additional Reanalysis Data

We applied additional datasets from Chaper 2, including (1) The Community Earth

System Model (CESM) Large-Ensemble Project with 40 members (Kay et al. 2015) from

1950 to 2005 for the historical period and from 2040 to 2080 for the projected perspectives

driven by Representative Concentration Pathways (RCP) 8.5 scenario; (2) the 21,000 year-

long Paleoclimate simulation from 21,000 years before present into the pre-industrial era

with the model ECBilt-CLIO which forced with the time-dependent ice-sheet topography,

orbital forcing, and greenhouse gas forcing. In the model simulation, it includes the

prognostic vorticity equation and the thermodynamic equation with a set of physical para-

meterizations of diabatic processes and coupled with an ocean model. The simulation

started from a 2000 year-long Last Glacial Maximum equilibrium simulation. In this way, we

could be able to validate the observed Dipole variation across all the datasets in the extended

analysis period back to 21,000 B.P and into 2090 A.D. This global atmospheric model is

based on a quasi-geostrophic adiabatic core with T21 resolution (64 points for longitude

and 32 points for latitude) and three vertical layers: 200mb, 500mb, 800mb. Geopotential

height data only available on 500mb with wintertime (DJF) mean. First year corresponds
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to year 21,000 B.P. (Before Present: 1950 A.D.); the last year is to be interpreted as year

1 B.P. but with pre-industrial greenhouse gases. Although the paleoclimate measurements

are limited, the simulation based on the atmospheric physics process can provide a decent

dataset of the past.

3.2.2 Dipole and Climate Index

In Chapter 2, we refer the first mode of post-1980 EOF as the Dipole and use the

corresponding PC as the index. Here, Dipole index was constructed by subtracting the

MZE250 values between the ridge and trough centers from the 5◦ × 5◦ averaged centered

at (53◦W,54◦N) and (103◦W,63◦N), respectively. Wang et. al. (2014) used this Dipole

index to illustrate the record event in the 2013–2014 winter. The mid-latitude weather and

climate are induced by the trough-ridge system through the upper-level baroclinic process.

Thus, the Dipole index which computed from 250 hPa geopotential height is adopted to

reflect the standing circulation pattern. Note that the Dipole index in the paleoclimate

data set was different from the reanalysis because of the discrepancy of the vertical level. In

order to make it comparable, we used the least squares regression, where the dipole index

from the 20CR reanalysis dataset is the independent variable, the dipole index from the

paleoclimate data set is the dependent variable, with the time period is from 1981 to 1950

which is the overlapping period amount two data set.

Additional climate indices were used and these are provided by the Climate Prediction

Center’s climate monitoring website. In this study, we included various teleconnection

indices includning: Western Pacific pattern (WP), Northern Oscillation index (NOI); Atmo-

sphere index: Arctic Oscillation (AO), Northern Hemisphere pattern (TNH); ENSO index:

Nino 4; Sea Surface Temperature index: Blob Index, Western North Pacific (WNP); Surface

Temperature index: North American Winter Temperature Dipole (NAWTD), which Singh

et al. (2016) used East-West coast surface temperature difference as an index.

https://www.esrl.noaa.gov/psd/data/climateindices/list/
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3.2.3 Statistical Analysis

Dipole index was compared to the aforementioned climate indices for the years 1950-

2016 using reanalysis datasets and 1851-2013 for retrospective re-analysis datasets. The

30-year running window variance and correlations were separately computed for Dipole

index and each climate variable. The one-tailed approximate t-test was applied as well as

Pearson’s correlation coefficients were calculated to estimate statistical significance.

3.3 Results

3.3.1 Dipole Variance

The transition between the leading and secondary modes of atmospheric circulation

during the 1980s, as we show in Chapter 2, suggests that the Dipole variance has increased

(Singh et. al, 2016; Wang et al. 2015). To put the Dipole variances into historical and

projected perspectives, we examined the CESM Large-Ensemble Project with 40 members

and ECBilt-CLIO model for the paleoclimate simulation. By calculating the 30-year running

variance of the Dipole index, we found that the Dipole variance has undergone a pronounced

low-frequency fluctuation. As shown in Fig. 3.1 (a), an inter-decadal variation on the order

of 60 years is observed, evidenced in the longer-term re-analysis data. Both the NCEP-

NCAR and ERA-Interim re-analysis indicate that the Dipole variance was largest in the

early 21st century. We further tested PNA 30-year running variance with both NCEP-

NCAR re-analysis I and 20CR datasets. To gain more insight into the relationship between

the PNA and Dipole, we focus on the PNA/Dipole variance’s contribution by comparing

their respective percentages from the total variance. Fig. 3.1 (b) shows the anti-correlation

between PNA and Dipole, a result that leads support to the sliding EOF analysis in Fig. 2.1

about the lead mode change.

A similar analysis of the CESM ensemble means to reveal the flucuation in Dipole

variance during the historical period (up to 2005 with increasing greenhouse gas) shows

that the Dipole variance is projected to continue increasing under the high-emission (RCP

8.5) scenario (Fig 3.1 a). However, the projected ensemble-mean variance starts to decline
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after 2050, despite an increase in the ensemble spread; this suggests a rather uncertain

future concerning the Dipole fluctuation. At this point, we can only attribute this late-21st

century decline to the low-frequency natural variability as observed.
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Fig. 3.1: (a) The 30-years running variance of the Dipole index derived from Wang et al.

(2014) using multiple reanalysis data sets as indicated at upper left. Gray shaded represents

the spread of CESM 40-member ensemble calculated from two standard deviations above

and below the ensemble mean. (b) The 30-years running variance ratio of the PNA and the

Dipole index, which were computed from NCEP-NCAR I and 20CR re-analysis data.
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We use the same approach to compute the Dipole index from the paleoclimate data,

albeit with a coarse spatial resolution. In addition, considering the much longer paleoclimate

time scale, the running variance analysis has a 100-year period with 10-year intervals. The

result of the Dipole index time series from the paleoclimate model data is one order larger

than the Dipole index from the 20CR DJF mean. Different from the re-analysis data,

the paleoclimate simulation is not a product of data assimilation, which may lead to such a

discrepancy. However, the time series from both datasets has a similar fluctuation during the

overlapping year from 1851 to 1950. In order to make the analysis comparable, least-squares

regression method was applied. Figure 3.2 illustrates the reconstructive paleoclimate Dipole

index series (blue line) and the global surface temperature mean (green line) superimposed

with the 20CR wintertime Dipole 100-year running variance (red dot).

Fig. 3.2: The 100-years running variance of the Dipole index (DJF mean, 500 hPa) derived

using paleoclimate and 20CR dataset as indicated at upper left. Green line represents the

global temperature mean and light green for North Hemisphere temperature mean, and the

historical events were noted.
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Throughout the paleoclimate, we can see that the Younger Dryer event appears to be a

“turning period”. Before the Younger Dryer event, the global temperature is cooler and the

Dipole index variance is relatively low and stable. After the Younger Dryer event, the global

temperature decreased and lasted for about 1,200 years. The well-known hypothesis of the

Younger Dryer event is that the thermohaline circulation changes, causing global cooling.

Therefore, it can be inferred that SST and the thermal wind dynamics may be an important

factor of the Dipole variance. In the era of Holocene, when the climate warmed again, the

Dipole variance gradually increased until the average value which is about 5500 m2, with a

greater fluctuation. The 8.2 kiloyear event was a sudden decrease in global temperatures,

which also related to the changes in the thermohaline circulation. The temperature changes

were milder than the Younger Dryer event but was more severe than the Little Ice Age.

Accrodingly, Dipole variance is likely associated with the global temperature: During the

Pleistocene era, the global temperature is lower and the Dipole variance is smaller and less

fluctuated; Since the Holocene with the increasing global temperature, the Dipole variance

grew and became more fluctuated.

3.3.2 Forcing to Dipole

We next considered a number of climate indices which were shown to link with the

signficant 2013/14 and 2014/15 events. Western Pacific pattern (WP), which represents a

primary mode of low-frequency variability over the North Pacific, describes the anticyclonic

anomaly over the Gulf of Alaska-Bering Sea and a cyclonic anomaly downstream over

North America (Yu and Zhang, 2015); Western North Pacific (WNP) is defined as a

specific SSTA pattern, forms one year before a full-fledged El Nino/La Nina, which has

a growing connection between the WNP pattern and the development of ENSO in the

following year since 1960 (Pegion and Selman 2017); and Niño 4, an index for the ENSO

event since Dipole index was suggested to correspond with Niño 4 index in the following

year (denoted as Nino4 (Y+1)) (Wang et al., 2014); Blob index, an anomalous high-

pressure system induces clockwise surface wind anomalies that work against the prevailing

surface westerlies to reduce local surface evaporation and weaken cold ocean advection in
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the Northeast Pacific, giving rise to the Pacific warm blob during the 2014/15 California

drought event (Bond et al. 2015); Northern Oscillation index (NOI) provides a superior

covariate of interannual precipitation variability in Northern California (Mariza, 2016);

tropical Northern Hemisphere pattern (TNH), which affects central U.S. winter temperature

and storm track, affected the interior by cold-air outbreaks and the persistent western U.S.

high-pressure that helped to establish extreme drought over California (Marinaro et al.,

2015).

Arctic influence was also considered in 2013-2014, the Arctic Oscillation (AO) reached a

strong positive phase, which allows further southward penetration of Arctic cold air masses

and increases storminess into the mid-latitudes. For the surface temperature indicator,

Singh et al. (2016) define North American Winter Temperature Dipole (hereby NAWTD),

which directed from the difference of surface temperature of west and east coasts. Those

indices were found to be connected with the 2013-2014 event, represting many processes

that involve air-sea interaction and internal variability.

Recall in Figure 2.4 that the circulation pattern associated with the leading mode of

winter circulation variations has significantly changed. Therefore, exploring the relationship

between Dipole index and teleconnection indices can help us understand the relationship

within those patterns. Here, all the aforementioned Climate indices were used to calculate

the 30-year running correlation with Dipole index. The analysis included the NCEP re-

analysis I (solid and dot lines) and 20CR dataset (long dash lines) datasets.

Figure 3.3 shows that only the Blob, Niño 4 (Y+1) and WNP indices have exceeded the

significant level (0.46) in their 30-year running correlation analysis, which implies that the

Dipole is linked to local SST anomalies in the Northeast and Northwest Pacific. This result is

consistent with the previous study, suggesting that an ENSO precursor can form the Dipole

through a teleconnection emanating from the WNP (Wang et. al, 2014). As mentioned

in the last section, the Pacific warm Blob is induced by an anomalous high-pressure,

allowing the excess solar radiation to warm up the surface sea temperature throughout the

stable condition. This high-pressure could be linked to the abnormal ridge of the Dipole
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pattern. Therefore, when the Dipole pattern developed, it would accompany the warmer

SST underneath. Figure 3.3 shows that increasing high correlation between the Blob index

and the Dipole index formed in the mid-20th century since 1960. The correlation between

PNA and Dipole index is consisteatly low (0.2) during most of the analysis period, given

their quater phase shift. In the post-1980 period, the Dipole correlation with the PNA index

shows a steeply decreasing trend, while the correlations with NAWTD, TNH, Niño 4 (Y+1)

indices shown an increasing trend after the mid-1970s, especially the AO. It infers that

those indices combined could be a compounding mechanism that forms the Dipole pattern;

this echoes the observation by Lee et al. (2014) that multiple factors from the tropics to

high latitudes contributed to the abnormal amplification of the 2013/14 winter circulations.

Preliminary results presented here suggested that investigating in air-sea interaction would

be instrumental in understanding the dynamics of Dipole fluctuation.

Fig. 3.3: 30-year running correlation of Dipole index and Climate indices. The solid lines

and dots lines for NCEP reanalysis I dataset; the long dash lines for 20 CR dataset. Gray

lines indicate significant value. (p<0.01)
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3.4 Conclusion

This study focuses on long-term climate variability and the corresponding factors. We

tested the Dipole variability by using multiple re-analysis and modeling datasets for the pre-

industrial period and future projection. We found that the Dipole variance has undergone

a pronounced low-frequency fluctuation. The Dipole variance in the paleoclimate suggests

that the variance is related to the global temperature variation. Historical events such as

the Younger Dryers event and the 8.2 kiloyear event, with substantial global temperature

decreases, coexist with robust changes in the Dipole variance. The Dipole variance is

relatively stable in the Holocene, which is a warmer era. In this study, the paleoclimate

data we used is a low-resolution (64*32 grids) dataset. The Dipole index we calculated might

come from a smoothed error and therefore cannot precisely depict the pattern. Although

the low-resolution data does not represent the climate at the time, sufficient long-term

climate data can give us a general idea of climate change and help us to have a preliminary

understanding of paleoclimate. However, this part of the study only uses one paleoclimate

dataset, without any comparison with other paleoclimatic simulations. Moreover, this model

lacks feedback processes in the carbon cycle, vegetation, and terrestrial ice sheets. Ice sheet

cover in our current pattern is different from the past, so the jet-terrain interaction might

have impacted the circulation as well. These aspects require more complete simulations to

reveal, which is outside the scope of this thesis.

We also tested the possible forcing by correlating the Dipole index with multiple large-

scale climate indices that were associated with the record Dipole intensity in 2013/14

winter. The correlation results show that most of the indices are randomly correlated

to the Dipole index, rarely exceeding the significant level. However, the indices related

to the ocean response such as WNP and Niño 4 (Y+1) have reached the significant level,

implying that the warming of the SST in the tropical West Pacific may provoke the changing

stationary waves. Compared with the pre-1980 era, the downstream trough of the Dipole has

intensified (Fig. 2.2), which can produce cold conditions in eastern North America. Overall,

this study examines the pre-industrial climate variability and the forcing sources and its
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result reveals that the tropical-extratropical, ocean-atmosphere, and Arctic-mid-latitude

interactions associated to the Dipole pattern, combined with the internal low-frequency

variation, can collectively alter the leading modes of North America’s winter circulation

variability.



CHAPTER 4

GENERAL CONCLUSIONS

Severe winter weather events in recent decades have become more frequent in North

America, including extreme drought conditions in the Western regions and abnormally cold

snaps in the Eastern continent. Those events can lead to resource management issues, such

as water shortage, natural gas demand, transportation problem under hazardous weather,

and even an impact on the ecosystem. The 2013-2014 California drought was particularly

serious and has gained a lot of attention. Numerous studies (e.g., Swain et al. 2014; Singh

et. al. 2016; Wang et al. 2017; Swain et al. 2018) have investigated the circulation

anomalies and the possible forcing during the events, but most of those studies did not link

the abnormality to the stationary wave maintenance dynamics. In this study, we examined

the perspective of the observed and projected changes of the wintertime stationary-wave

circulations in North America.

In chapter 2, we compared the dominant circulation pattern during the pre- and post-

1980 by the sliding EOF analysis. The diagnostics undertaken here suggest that the leading

mode of Northern Hemispheric atmospheric stationary waves underwent a notable change.

Since the 1980s, the first EOF mode of winter stationary eddies has changed from the PNA

to the Dipole. Given that the EOF describes the variance of individual patterns, this finding

also echoes the increased amplitude of the Dipole as observed. It implies that the marked

increase in severe winter weather events associated with the Dipole pattern will increase,

becoming a predominant mode than the PNA-associated precipitation and temperature

anomalies, especially in the sub-seasonal timescale.

In chapter 3, we investigated the Dipole index variance in the distant past and projected

future. The CESM large-ensemble simulations forced with increasing greenhouse gas indicate

that the Dipole variance will generally amplify alongside its low-frequency natural variability.

This result implies that the variation of the atmospheric circulations over North America,
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especially in the sub-seasonal timescale, could continue to be dominated by the Dipole

with the potential to sharpen the east-west division of temperature anomalies across North

America. The results from paleoclimate simulation suggest that the temperature and the

ocean currents may be the important internal forcing to the Dipole pattern. During the

paleoclimate era, the global temperature and the ocean current experienced a pronounced

change in the timescale of every thousand years based on the Younger Dryers event and the

8.2 kiloyear event. These events infer that the Dipole variance may be driven by the air-sea

interaction, with a low-frequency variation component.

Overall, the presented analysis allows us to explore the long-term atmospheric feature

associated with the recent change in extreme winter events. This research points out

that the leading mode of wintertime circulation variability has undergone a low-frequency

evolution from the PNA to the Dipole pattern. The change from the PNA to the Dipole

is most pronounced in the sub-seasonal timescale, rather than in the seasonal timescale.

Future studies should focus on the mechanism and the dynamic processes of sub-seasonal

variation in the wintertime stationary waves, including the Jet-terrain interactions, tropical-

extratropical interactions in terms of sub-seasonal variability. We note that the climate

pattern during the paleoclimate merits detailed study, including to verify the dataset with

different paleoclimate simulation and discuss the terrain effect in the different era.
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