
STATISTICAL ANALYSIS OF A CHANNEL EMULATOR FOR NOISY GRADIENT

DESCENT LOW DENSITY PARITY CHECK DECODER

Approved:

Chris Winstead, Ph.D.

Major Professor

Jonathan Phillips, Ph.D.

Committee Member

by

Rakin Muhammad Shadab

A thesis submitted in partial fulfillment

of the requirements for the degree

of

MASTER OF SCIENCE

in

Electrical Engineering

Jacob Gunther, Ph.D.

Committee Member

Richard S. Inouye, Ph.D.

Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY

Logan, Utah

2019

ii

Copyright c© Rakin Muhammad Shadab 2019

All Rights Reserved

iii

ABSTRACT

Statistical Analysis of a Channel Emulator for Noisy Gradient Descent Low Density

Parity Check Decoder

by

Rakin Muhammad Shadab, Master of Science

Utah State University, 2019

Major Professor: Chris Winstead, Ph.D.
Department: Electrical and Computer Engineering

The Statistical accuracy of a channel emulator is crucial for the proper evaluation of the

performance of an error-correcting decoder. Large deviations from the supposed probability

distribution of a channel might result in incorrect Bit Error Rate (BER) and Frame Error

Rate (FER) estimations. This work investigates the confidence on the statistical analysis

of a SystemC based hardware Gaussian channel emulator and its subsequent effect on a

Low Density Parity Check (LDPC) decoder based on Noisy Gradient Descent Bit Flipping

(NGDBF) algorithm. The examination of channel emulator includes testing the distribution

on the extreme tails and checking for correlations with initial seed values for the channel.

Both the channel emulator and the decoder are implemented on Xilinx Virtex VCU118

Field Programmable Gate Array (FPGA) hardware platform. The emulator itself is tested

separately on Xilinx Virtex-7 VCU707 FPGA device.

(75 pages)

iv

PUBLIC ABSTRACT

Statistical Analysis of a Channel Emulator for Noisy Gradient Descent Low Density

Parity Check Decoder

Rakin Muhammad Shadab

The purpose of a channel emulator is to emulate a communication channel in real-life

use case scenario. These emulators are often used in the domains of research in digital and

wireless communication. One such area is error correction coding, where transmitted data

bits over a channel are decoded and corrected to prevent data loss. A channel emulator that

does not follow the properties of the channel it is intended to replicate can lead to mistakes

while analyzing the performance of an error-correcting decoder. Hence, it is crucial to

validate an emulator for a particular communication channel. This work delves into the

statistics of a channel emulator and analyzes its effects on a particular decoder.

v

To my family and all the teachers I’ve had so far in life

vi

ACKNOWLEDGMENTS

I am indebted to my major advisor, Dr. Chris Winstead for letting me in his research

group and familiarizing me with the concepts of error-correcting codes. As a newbie in

this domain, I was overwhelmed by the complexity and vastness of the contents. But Dr.

Winstead’s encouragement and helpful bits of advice gradually made me confident. His

mentoring, training and financial supports were invaluable to me. I shall always remain

thankful for the time and patience that he invested in me to groom me as a researcher. I

learned a great deal about digital system design on FPGA platform while serving as a TA

in one of his courses, ECE 3700. His generous company and timely guidance kept me on

track for this thesis. This work would never have been possible without him.

I have also been helped and supported by many faculty members in the ECE depart-

ment. Thanks to Dr. Sanghamitra Roy for the initial funding offer that helped me to come

to the USU in the first place. I am grateful to Dr. Todd Moon for his outstanding teaching

and all the help in his courses. Also thanks to Dr. Jake Gunther and Dr. Jonathan Phillips

for useful suggestions and for serving in my committee. To Dr. Zhang for all his advices and

time. My sincere gratitude goes to Dr. Moon and Dr. Phillips for their recommendations

that helped me get admission in a good Ph.D. program. Also, thanks to the ECE depart-

ment for supporting me financially that allowed me to complete my research work. The

trio of awesome ladies in the administrative side of the department - Tricia Brandenburg,

Diane Buist and Kathy Phippen - deserve special mentions from me for their helpfulness

and kindness.

I would like to convey my thankfulness to the fellow lab members at Low Energy

Fault-Tolerant Systems Lab - Dr. Tasnuva Tithi and Rejoy Mathews - for their continued

support and good friendship. Rejoy, in particular, has been a source of mental strength for

me throughout this journey and I can’t thank him enough for that. I appreciate all the

helps I received from Dr. Mehedi Hasan and Dr. Asaduzzaman Towfiq with critical concepts

in various coursework. I would also like to give a shout-out to my friends - Mohammad

vii

Abdullah Al Sarfin, Md Munibun Billah, Md Ferdous Pervej, Abrar Zahin, Nazmus Sakib,

Sanat Kumar Saha & Shaju Saha - for their selfless supports and inspirations on countless

occasions, for the fun times together, for being family members to me over the course of

this degree. The Bangladeshi community in Logan also deserves a special mention for all

the parties, potlucks, tours and adventures we had together.

Lastly, I am highly obliged to my parents, my brother, my relatives, friends and family

back at home. I wouldn’t be here today without their well wishes and constant backing.

Rakin Muhammad Shadab

viii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

ACRONYMS . xiii

1 INTRODUCTION . 1
1.1 Chapter Organization . 3

2 RELATED WORK . 5

3 VERIFICATION METHODOLOGY . 7
3.1 Shapiro-Wilk Test & Its Extensions . 9
3.2 Kolmogorov-Smirnov Test . 10
3.3 A Common Pattern for Test Methodology 11
3.4 Test Procedure - MATLAB Models . 13
3.5 Test Procedure - Testbench Simulation . 13
3.6 Test Procedure - Hardware Implementation of Channel Emulator 14
3.7 Bit Error Rate Tester (BERT) Design . 16

4 RESULTS & ANALYSIS . 22
4.1 Results from Statistical Tests . 22
4.2 Q-Q Plots for Statistical Analysis . 24
4.3 Results from MATLAB Models . 25
4.4 Results from Testbench Simulation & Hardware Implementation 28
4.5 Checking the Dependency on Initial Seed Value 34
4.6 Verifying Reset Functionality . 39
4.7 Analyzing the results of Decoder Implementation 41

5 CONCLUSIONS & FUTURE WORK . 59

REFERENCES . 61

ix

LIST OF TABLES

Table Page

4.1 Sapiro-Wilk Test results on MATLAB & R platform 22

4.2 Kolmogorov-Smirnov Test results on MATLAB & R platform 23

4.3 Results for original BERT design at different SNRs & a channel seed value
of 180 & a noise seed value of 120 . 43

4.4 Results for original BERT design at constant noise SNR & different channel
SNR with varying seed values . 45

4.5 Results for original BERT design at constant noise SNR & same initial chan-
nel seed with different channel SNR and noise seed values 46

4.6 Results for original BERT design at constant noise SNR & same initial noise
seed with different channel SNR and channel seed values 47

x

LIST OF FIGURES

Figure Page

1.1 FER results from a sparse LDPC code ((155,64) Tanner Code) using basic
NGDBF algorithm with zero noise . 2

3.1 Xilinx Virtex-7 VC707 FPGA platform . 8

3.2 Xilinx Virtex VCU118 FPGA platform . 9

3.3 Flow chart of verification steps to test channel emulator 12

3.4 Block Diagram for Microblaze Embedded System to Test Channel Emulator 14

3.5 Hierarchy of the test platform design to validate channel emulator 16

3.6 Simplified BERT architecture . 17

3.7 Block Diagram for BERT design with Microblaze Embedded System 19

3.8 State machine of the BERT module . 20

4.1 Q-Q plot for 100k samples . 25

4.2 Histogram plot generated by MATLAB model 1 26

4.3 Semilog plot generated by MATLAB model 1 26

4.4 Histogram plot generated by MATLAB model 2 27

4.5 Semilog plot generated by MATLAB model 2 28

4.6 Histogram plot generated by AWGN design simulation 29

4.7 Semilog plot generated by AWGN design simulation 29

4.8 Histogram plot generated by synthesizable RTL design simulation 31

4.9 Semilog plot generated by synthesizable RTL design simulation 31

4.10 Comparison of RTL simulation against MATLAB reference models 32

4.11 Histogram plot generated from VC707 hardware platform 32

xi

4.12 Semilog plot generated from VC707 hardware platform 33

4.13 Comparison of hardware results against MATLAB reference models 33

4.14 Histogram plot for seed value 0 . 34

4.15 Semilog plot for seed value 0 . 35

4.16 Histogram plot for seed value 50 . 35

4.17 Semilog plot for seed value 50 . 36

4.18 Histogram plot for seed value 100 . 36

4.19 Semilog plot for seed value 100 . 37

4.20 Histogram plot for seed value 200 . 37

4.21 Semilog plot for seed value 200 . 38

4.22 Comparison of seed outputs . 38

4.23 A zoomed-in view for the seed comparisons 39

4.24 Q-Q plot for seed 123 . 40

4.25 Q-Q plot for seed 221 after first reset . 40

4.26 Q-Q plot for seed 123 after second reset . 41

4.27 Bit errors with all noise seeds at index value of 17 for channel and 18 for
noise with a fixed channel seed value of 180 48

4.28 Semilog plot for bit errors with all noise seeds at index value of 17 for channel
and 18 for noise with a fixed channel seed value of 180 48

4.29 Frame errors with all noise seeds at index value of 17 for channel and 18 for
noise with a fixed channel seed value of 180 49

4.30 Semilog plot for frame errors with all noise seeds at index value of 17 for
channel and 18 for noise with a fixed channel seed value of 180 49

4.31 Bit errors with all channel seeds at index value of 17 for channel and 18 for
noise with a fixed noise seed value of 70 . 50

4.32 Semilog plot for bit errors with all channel seeds at index value of 17 for
channel and 18 for noise with a fixed noise seed value of 70 50

xii

4.33 Frame errors with all channel seeds at index value of 17 for channel and 18
for noise with a fixed noise seed value of 70 51

4.34 Semilog plot for frame errors with all channel seeds at index value of 17 for
channel and 18 for noise with a fixed noise seed value of 70 51

4.35 Bit errors for varying channel seeds at index value of 17 for channel and 18
for noise with a fixed noise seed value of 47 52

4.36 Frame errors for varying channel seeds at index value of 17 for channel and
18 for noise with a fixed noise value seed of 47 52

4.37 Bit errors for varying channel seeds at index value of 18 for channel and 18
for noise with a fixed noise seed of 47 . 53

4.38 Frame errors for varying channel seeds at index value of 18 for channel and
18 for noise with a fixed noise seed of 47 . 53

4.39 Bit errors for varying channel seeds at index value of 17 for channel and 18
for noise with a fixed noise seed of 241 . 54

4.40 Frame errors for varying channel seeds at index value of 17 for channel and
18 for noise with a fixed noise seed of 241 54

4.41 Bit errors for varying channel seeds at index value of 18 for channel and 18
for noise with a fixed noise seed of 241 . 55

4.42 Frame errors for varying channel seeds at index value of 18 for channel and
18 for noise with a fixed noise seed of 241 55

4.43 Bit errors for varying channel seeds at index value of 17 for channel and 18
for noise with a fixed noise seed of 123 . 56

4.44 Frame errors for varying channel seeds at index value of 17 for channel and
18 for noise with a fixed noise seed of 123 56

4.45 Bit errors for varying channel seeds at index value of 18 for channel and 18
for noise with a fixed noise seed of 123 . 57

4.46 Frame errors for varying channel seeds at index value of 18 for channel and
18 for noise with a fixed noise seed of 123 57

xiii

ACRONYMS

ASIC application specific integrated circuit

AWGN additive white Gaussian noise

AXI advanced extensible interface

BER bit error rate

BERT bit error rate tester

CDF cumulative distribution function

dB decibels

DUT design under test

FER frame error rate

FPGA field programmable gate array

HDCE hardware discrete channel emulator

HDL hardware description language

IP intellectual property

LDPC low density parity check

MSB most significant bit

NGDBF noisy gradient descent bit-flip

PDF probability density function

Q-Q quantile-quantile

RTL register transfer logic

UART universal asynchronous receiver-transmitter

CHAPTER 1

INTRODUCTION

Low Density Parity Check (LDPC) codes are one of the most commonly used coding

schemes in Error-Correction Coding. This particular type of code was first theorized by

Robert Gallager in 1963 [1]. According to [1], an (n, j, k) LDPC code is characterized by a

block length of n and a matrix with fixed j number of 1’s along each row and fixed j number

of 1’s along each column. This matrix is called a parity-check matrix and the number of

0’s in a parity check matrix is comparatively larger than the number of 1’s [1].

The curve representing the performance of an LDPC code shows a steady decrease of

Frame Error Rate (FER) or Bit Error Rate (BER) against the increase in Signal to Noise

Ratio (SNR) [2]. However, as mentioned in [2], the curve deviates from a steady decline after

a certain point. The area where the curve exhibits this characteristic is known as error-floor

region [2]. According to [2], determining the error floors especially at low SNR levels can

be very tricky using software simulators because of the significantly long simulation time.

Mackay and Postol were the first to find out the error-floor region from a “weakness” in

the Margulis construction of regular (3,6) Gallager LDPC codes [3]. The error-floors are

the result of the presence of “near-codewords” that are termed as “trapping sets” [4]. The

term “absorbing sets” which can be considered as a special subclass of trapping sets, is

used to illustrate the failures in decoding for different message-passing algorithms with the

convergence to distinct non-codeword states [5]. Very few pieces of literature have explored

the confidence in statistical tests while determining the BER with the use of a specific

communication channel. Rice et al. compared the outcomes of binomial and negative

binomial tests for estimating BER [6]. Mazzeo et al. proposed the notion of a confidence

interval estimator using two negative binomial tests [7].

Hardware-based emulations on Field Programmable Gate Array (FPGA) platforms

have been used to accurately figure out error floors for LDPC codes with much faster

2

0 2 4 6 8
10

-3

10
-2

10
-1

10
0

Eb/N0

F
E

R

Fig. 1.1: FER results from a sparse LDPC code ((155,64) Tanner Code) using basic NGDBF
algorithm with zero noise

execution time compared to software-based approach [8]. Similar emulations have been

used for the encoder side, especially to simulate the properties of a noisy communication

channel with Gaussian noise at low BER on FPGA platform [9]. Boutillon et al. designed

a fast channel emulator named Hardware Discrete Channel Emulator (HDCE) that can be

used with LDPC decoders [10].

The focus of this work is on the statistical quality analysis of a hardware-based SystemC

derived Gaussian channel emulator and its effect on the performance of an LDPC decoder

based on Noisy Gradient Descent Bit-Flip (NGDBF) algorithm in the error floor region.

NGDBF is an efficient decoding technique for LDPC codes, proposed by Sundarajan et

al. [11]. The SystemC model for the channel emulator was developed by Dr. Bertrand Le

3

Gal, a professor at Bordeaux INP in France. A series of previous research on the hardware

implementation of NGDBF decoder with the aforementioned channel emulator resulted in

observations of some randomly anomalous BER outcomes at very high SNR in the error

floor region. That discovery suggested the possibility of the anomaly being related to either

an inherent feature of the decoder or an artifact in the channel emulator. It also highlighted

the importance of independent testing of the emulator in question and thus motivated this

research work greatly. For the test purposes related to the investigations of this thesis,

Xilinx Virtex-7 VC707 FPGA platform is used to test the channel emulator separately and

Xilinx Virtex VCU118 FPGA platform is used to inspect the combination of decoder design

along with the emulator. The scope of this work includes but is not limited to:

I Proposing a common sequence of steps that can be used to test similar hardware-based

channel emulators.

II Testing the accuracy of statistical distribution for the aforementioned channel emula-

tor.

III Inspecting the quality of Gaussian distribution on extreme tail regions.

IV Evaluating the confidence in the measurement of statistical tests.

V Investigating dependency of the output of Gaussian noise generator on the seed.

VI Analyzing the changes in frame errors for the NGDBF decoder in error-floor region

with this channel emulator.

1.1 Chapter Organization

The following parts of this thesis are organized as below:

• Related Work: An overview of the contemporary research on hardware based channel

emulators and random noise generators is provided in the second chapter. These works

are explored to validate the necessity of the approach for the testing methodology used

in this research.

4

• Verification Methodology: The third chapter includes an in-depth look of the test

platforms and the verification steps used to generate and analyze the test results for

the systemC based channel emulator. A general order of steps to validate the emulator

is proposed in this case.

• Results & Analysis: All the test outputs are observed and scrutinized to complete the

research objectives. An analysis of the decoder performance in the error-floor region

is also conducted and the anomalies from expected outcomes are inspected.

• Conclusions & Future Work: The chapter summarizes the contributions of this thesis

and the outcomes from it. It also highlights the possible premises of any future

research endeavor that would extend this work.

5

CHAPTER 2

RELATED WORK

Different hardware implementations for random Gaussian noise generation were de-

scribed in past works of literature. Producing stochastic noise on a hardware platform

is advantageous while using a hardware-based error-correcting decoder as in that case, a

software-based approach is not needed to generate noise and then port it over to the hard-

ware. Boutillon et al. used a combination of a quantized version of the Box-Muller method

with the central limit theorem to convert a uniform distribution to Additive White Gaus-

sian noise (AWGN) and implemented it on FPGA platform [12]. Later on, Fang et al. used

this as the basis for their Application Specific Integrated Circuit (ASIC) design of a channel

emulator [13]. However, in both of these works, the quality of the generated noise sample

was not satisfactory and hence Lee et al. proposed a design that uses better function eval-

uation techniques and produces noise samples with notable improvements in quality [14].

Later on, this design was improved with more efficient hardware, better noise samples and

better noise quality in the tails region while getting rid of the central limit theorem [15].

The literature on similar hardware-based noise generators from Lee et al. and Zhang et al.

using Wallace and Ziggurat methods respectively are also available [16,17]. HDCE, on the

other hand, was developed using the alias method [10]. Prior works on HDCE were focused

on the complexity, performance and accuracy of the platform but there was no analysis on

the reliability of error-floor measurements for error-correcting decoders [10]. The noticeable

fact about all the aforementioned literatures is that none of them contains the description

of hardware design implementation on respective test platforms in great detail. Therefore,

making a direct comparison between the test results might be very difficult.

The work in this scope will emphasize on different statistical tests performed on the

previously mentioned SystemC based channel emulator, especially in the extreme regions

of the tails. Prior research efforts on this emulator focused on its implementation in com-

6

bination with NGDBF decoder where large deviations in the number of erroneous bits for

some specific initial seeds and much fewer variations for other seed values in the error floor

analysis were observed. As the reason behind this anomaly was not explored before, this

work aspires to look into it to identify whether the deviations are caused by the channel

emulator, the design of test platform or the algorithm of the decoder. To the best of my

knowledge, this is the first work to investigate the evaluation of the measurements of several

statistical tests on this particular channel emulator, the emulator’s dependency on different

initial seeds and the confidence on test statistics.

7

CHAPTER 3

VERIFICATION METHODOLOGY

The primary scope of this thesis is to analyze the statistical accuracy of a high-level

synthesized channel emulator implemented on a Xilinx Virtex-7 VC707 FPGA up to ex-

treme tail regions, have an approximation of the confidence on these statistics and test the

effects of these results on the performance of NGDBF decoder. For this purpose, differ-

ent statistical tests are going to be conducted on the channel samples. Shapiro-Wilk test

and Kolmogorov-Smirnov test are two such tests where the reference distribution from the

channel emulator is compared against a null distribution (In this case, the null distribu-

tion is standard Gaussian Probability Density Function (PDF)). These tests are carried out

on MATLAB & R platform. On R platform, the functions ’shapiro.test’ & ’ks.test’ are

used. On the other hand, built-in function ’kstest2’ & a custom function ’swtest’ written

by Ahmed Ben Säıda (Department of Finance, Accounting & Management, University of

Sousse, Tunisia) are used for MATLAB analysis. Quantile-Quantile (Q-Q) plots are also

used as they can be a good indicator of how closely the pdf under test follows the null

distribution. The outcomes of all these tests, in turn, will be particularly useful to verify if

the channel emulator is following a Normal distribution. But since the overall emphasis is

to investigate the quality of distribution on extreme tails, there should be additional tests

besides the aforementioned ones as those tests are highly sensitive to the tail regions while

testing normality for a very large number of samples.

Moreover, further tests are required to determine if the use of different initial seeds

has any significant impact on the distribution of channel emulator. The dependency of the

statistics on these seed values is needed to be as little as possible for the distribution to be

close to that of a standard Gaussian one.

8

Fig. 3.1: Xilinx Virtex-7 VC707 FPGA platform

A convenient way to measure the quality of a huge number of random quantized channel

samples coming out of the emulator is to represent the occurrence of different threshold levels

by a histogram. In this case, the histogram data is taken out of a testbench simulation

while also being reported from a hardware-level implementation. Both the simulation and

the hardware implementation work in identical ways to achieve these results. The results

are then compared against the outputs from two reference models in MATLAB.

The Hardware setup for the emulator includes the use of Microbalze soft-core processor-

based design. An Advanced Extensible Interface (AXI) for Universal Asynchronous Receiver-

Transmitter (UART) peripheral module is used to test the output of the channel emulator

with different 8-bit seed values. The outputs for 256 distinct seed values are analyzed and

the correlation between a particular initial seed and its corresponding channel samples is

determined. If any of the seed values exhibit some specific influence on the distribution of

the channel, that value will be ignored for further analysis.

Past works of research contributed to a design that combines the relevant channel

emulator with NGDBF decoder and it is implemented on Xilinx Virtex VCU118 FPGA

9

platform to analyze decoder output with respect to the emulator. This work will explore

the relationship of channel emulator with the performance of decoder in the error floor

region. In regards to the anomalies in the result observed in previous research, the focus

would be to inspect and test the Register Transfer Logic (RTL) design to try to replicate

the anomalies and figure out their nature.

The first two sections of this chapter focus on the background of Shapiro-Wilk &

Kolmogorov-Smirnov tests. The third section elaborates on proposing a common pattern

of steps that can be used to validate similar hardware-based channel emulators. After that,

the following sections describe the test methodology in detail. The last section suggests

a new state machine design to modify the existing RTL design for Bit Error Rate Tester

(BERT) module.

Fig. 3.2: Xilinx Virtex VCU118 FPGA platform

3.1 Shapiro-Wilk Test & Its Extensions

In 1965, Shapiro and Wilk [18] proposed a normality test where the test statistic W

can be represented as :

10

W = (

n∑
i=1

aiyi)
2/

n∑
i=1

(yi − ȳ2) (3.1)

Here yi is random observation (i = 1, 2, ..., n) and the coefficients (a1, a2, ..., an) are

determined by:

(a1, ..., an) = (m′V −1)/(m′V −1V −1m)1/2 (3.2)

where m′ = (m1,m2, ...mn) are the reference values for standard normal distribution

and V = (νij) is an nXn covariance matrix that corresponds to those values [18]. However,

the approximations were developed to account for sample size of up to 50 samples in this

case and later on, Shapiro & Francia presented a modification of this test for larger sample

size [19]. In 1997, Rahman & Govindarajulu modified the test statistic to extend the sample

size up to 5000 [20].

3.2 Kolmogorov-Smirnov Test

Kolmogorov-Smirnov test can be used to compare any test samples against a standard

distribution (In this case, Normal distribution). In 1933, Andrey Kolmogorov theorized

the details of Kolmogorov-Smirnov test statistic [21]. A table for the related empirical

distribution of the test was provided by Smirnov in 1948 [22]. According to Kolmogorov &

Smirnov [21,22], If (X1, X2, ...Xn) are independent variables with Cumulative Distribution

Function (CDF) F (x) then the empirical distribution can be defined as

F ∗n = N(z)/n (3.3)

Where N(z) is the number of observations less than z. From [22], the maximum

difference between F ∗n(z) and F (z) is

Dn = max|F ∗n(z)− F (z)| (3.4)

The CDF that limits the random variable Dn [22] is

11

L(z) = n1/2Dn (3.5)

Unlike Shapiro-Wilk test, the Kolmogorov-Smirnov test does not appear to have a real

theoretical limit on its test sample size.

3.3 A Common Pattern for Test Methodology

Since the hardware implementation of different channel emulators can vary widely,

establishing a common test and verification pattern would be useful. A sequence of steps

to validate a hardware-based channel emulator is proposed in Fig. 3.3.

The design under test is the input in this scenario. The verification process starts with

the statistical tests mentioned in the previous sections. As a follow-up, a high-level golden

reference model is developed to simulate ideal behavior for an AWGN channel emulator.

The results from the testbench simulation and hardware platform are then compared against

the results of the reference model. If there is a mismatch, the design for test setup needs

to be reviewed. In case of consistent results, the next logical step would be to check if

the outputs are particularly dependent on any parameter (for example, dependence on the

initial random seed) and whether the channel emulator is experiencing a proper reset after

every operation. The test platform will be required to go through another review process

if the results are anomalous. Finally, if all the tests return favorable outcomes, the channel

emulator is validated. Otherwise the inference would be the assumption that there are

major issues with the design of the emulator.

12

Start

Input: Design of Test Platform

Verify with Statistical Tests

Develop a Golden Reference Model

Results from Simulation

Results from Hardware

Results Match?

Check Dependencies & Reset Conditions

Design Review

Any Anomaly? Design Review

Output: State of Validation

Stop

yes

no

no

yes

Fig. 3.3: Flow chart of verification steps to test channel emulator

13

3.4 Test Procedure - MATLAB Models

Keeping in touch with the steps proposed in the last section, two MATLAB reference

models are created to validate the testbench and hardware results. The first model takes

in non-quantized fractional-integer data from testbench simulation and then performs 5-

bit quantization on the output. It takes in 21-bit samples and extracts the fractional

part and 2’s complement part from each of them. It then calculates the magnitude for

every sample from this information and scales it by a scaling factor. The scaled value of

magnitude is 42 bits wide and it is truncated to a 32-bit value called intsample. The value

of intsample is then shifted by delta which is a value based on the flipping threshold of

NGDBF algorithm. The channel samples are quantized to 5 bits depending on the value

of shifted intsample where the Most Significant Bit (MSB) is sign bit and the other 4 bits

represent the magnitude. These quantized samples depict 32 separate threshold levels. In

the end, the first model generates histogram results with these threshold values. The second

model imports non-quantized random sample values ranging in between 0 to 1 from RTL

simulation and generates a data set with normal distribution using the mean and variance of

testbench data with normrnd function. It then quantizes that set of data into 5-bit samples

with similar quantization method used in the first model. It also outputs the results in

a histogram format. If the outcomes from testbench and FPGA line up with the results

produced by these reference models, those outputs can be assumed to be valid.

3.5 Test Procedure - Testbench Simulation

Simulation of four different Hardware Description Language (HDL) testbenches is used

for the test purposes. The first testbench for the channel emulator generates non-quantized

sample values both in general and in fractional-integer format. The common format is a

set of floating-point random numbers that has a span in between 0 to 1. In fractional-

integer format, the samples are 21 bits in size where the first bit or the MSB is a sign bit,

followed by 5 bits in 2’s complement format to represent integer part. The remaining 16

bits are always positive and constitute the fractional part of the sample. These samples are

generated with a mean value of +1. The non-quantized results in the output are suitable for

14

the previously mentioned normality tests. However, the outcome of those tests still won’t

have conclusive results on the probability distribution in the tail region for a large number of

samples. Hence, the aforementioned testbench is used to also produce 5-bit quantized sign-

magnitude values using a quantization technique identical to the ones used in the MATLAB

models. A histogram format then portrays the distribution of these channel samples and the

repetition of particular quantization levels. A second testbench is used to log the bin values

for the histogram. Another testbench simulation is employed to test if the emulator is reset

properly after a change in the initial seed. Finally, another Verilog testbench instantiates

the entire design of the test platform with the quantization and histogram generation being

done in the design level.

3.6 Test Procedure - Hardware Implementation of Channel Emulator

Even though the simulation results would represent an accurate picture of the emulator

characteristics, these would not be very reliable for the bin values in the tail regions because

the simulation would only be able to generate thousands of samples within a considerable

amount of time.

Fig. 3.4: Block Diagram for Microblaze Embedded System to Test Channel Emulator

The hardware implementation of the channel emulator goes through similar 5-bit quan-

tization compared to the simulation. However, the FPGA platform is capable of generating

15

billions of samples within a very short duration whereas the testbench simulation would be

limited to a much smaller data set. To obtain these values from the hardware, the required

modifications are done at the top level of the design. Packaging the channel emulator de-

sign into an Intellectual Property (IP) and connecting it with a Microblaze processor-based

system using the AXI UART interface helps the serial communication with FPGA device.

Microblaze is a soft-core processor system exclusive to Xilinx FPGA platforms. As shown

in Fig. 3.4, the Microblaze processor system comprises of a clocking wizard, a reset module,

a local memory block, a debug module, an AXI peripheral block and the processor itself.

An AXI timer is part of the design to control the time delay in the communication interface.

This setup is also very reliable for the analysis of the impact of different initial seed values

on the channel samples for a particular SNR.

A representation of the design hierarchy of the test platform is seen in Fig. 3.5. As

evident in Fig. 3.5, the custom AXI peripheral IP, AXI 2015 0 is where the RTL code

base for the channel emulator lies in. AXI 2015 v1 0.v is the top module of that IP and

it instantiates AXI 2015 v1 0 S00 AXI.v which contains the design and handshaking oper-

ations for Microblaze slave registers. AXI 2015 v1 0 S00 AXI.v makes an instantiation of

custom IP channel top 0 that contains the Design Under Test (DUT). The top module of

channel top 0 is a SystemVerilog design, channel top.sv that performs 5-bit quantiza-

tion on the data coming from DUT module, sc awgn.vhd and generates histogram for the

quantized data.

16

Microblaze Processor System

AXI 2015 0 (Custom IP)

AXI 2015 v1 0.v

AXI 2015 v1 0 S00 AXI.v

channel top 0 (Custom IP)

channel top.sv

sc awgn.vhd (Design Under Test)

Fig. 3.5: Hierarchy of the test platform design to validate channel emulator

3.7 Bit Error Rate Tester (BERT) Design

Previous research merged the NGDBF decoder design with the channel emulator and

it was implemented on a separate test setup. The hardware implementation of NGDBF

decoder contains six Bit Error Rate Tester (BERT) modules. Each of the BERT mod-

ules contains a channel emulator (In this case, the high-level synthesized channel emulator

described in previous sections) that simulates transmission of bits in an Additive White

Gaussian Noise (AWGN) channel. Every BERT block also contains a noise generator which

produces a pseudo-random sequence of threshold perturbations used in the NGDBF decod-

ing algorithm. The noise emulator and channel emulator each produce one pseudorandom

sample per clock cycle. On the channel emulator side, samples are loaded serially into a

shift register until a complete frame comprising of 2048 samples is acquired. Once the de-

coder is initialized, the full frame of channel samples is loaded in parallel into a different

17

set of registers. The NGDBF decoder operates on this fixed frame of channel samples until

decoding is done. The BERT then samples the decoder output, counts error events, and

re-initializes the decoder with a fresh frame of channel samples.

In case of the noise generator, the noise samples are loaded serially into a shift register.

After each clock cycle, the noise samples are provided directly to the decoder in parallel

and are shifted serially in each clock cycle. Hence, each bit-flipping processor is provided

with a fresh noise sample at each clock cycle.

. . .

. . .

. . .

. . .

Channel Emulator

Noise Generator

decoderx0

q0(`)

y0

x1

q1(`)

y1

x2

q2(`)

y2

xN−1

qN−1(`)

yN−1

Fig. 3.6: Simplified BERT architecture

Inside the NGDBF decoder, there is one bit-flipping processor for every bit in the

frame, for a total of 2048 processors. In addition, there is a set of parity-check modules

that detect parity violations in the code by performing XOR operations. Every bit in a

frame is associated with six parity checks, and the parity-check outputs are termed sj , with

the condition 0 ≤ j < 6. At iteration `, the bit-flipping processors compute a version of the

NGDBF decoding rule:

Flip bit i if xiyi +
5∑

j=0

sj < θ + qi(`),

where xi ∈ {+1,−1} is the bipolar bit decision at position i, yi is the corresponding channel

sample, θ is a global flipping threshold parameter, and qi(`) is a noise perturbation for

processor i at iteration ` [11]. The purpose of qi(`) is to perturb the flipping threshold,

which empirically improves decoding performance. At present, there is no explicit theory

18

for constructing good perturbation sequences, so pseudorandom noise samples are used for

the qi(`) sequence. The qi(`) values are called “noise samples,” but randomness is not

necessarily a mandatory feature of these samples. A simplified architecture of the BERT

design is shown in Fig. 3.7.

The actual hardware design is highlighted in Fig. 3.7. It uses 802.3 an LDPC code [23].This

design, just like the other one, includes a Microblaze processor system. The decoder test

configuration, as mentioned before, has six identical Bit Error Rate Tester (BERT) modules

in addition to the processor system. The BERT blocks operate in parallel for determination

of the total number of bits and frames with errors to calculate BER & FER for different

test parameters. In the context of this work, the design in question will be explored to

investigate the influence of channel emulator on decoder outcomes in the error floor region.

In the case of the channel emulator being validated, the source of the anomaly is likely to be

the design of BERT modules or even the algorithm of NGDBF decoder. The state machine

incorporated in the existing BERT design is represented in Fig. 3.8.

19

axi_NGDBF_BERT_throttle_0

axi_NGDBF_BERT_throttle_v1.0 (Pre-Production)

S00_AXI

s00_axi_aclk

s00_axi_aresetn

axi_NGDBF_BERT_throttle_1

axi_NGDBF_BERT_throttle_v1.0 (Pre-Production)

S00_AXI

s00_axi_aclk

s00_axi_aresetn

axi_NGDBF_BERT_throttle_2

axi_NGDBF_BERT_throttle_v1.0 (Pre-Production)

S00_AXI

s00_axi_aclk

s00_axi_aresetn

axi_NGDBF_BERT_throttle_3

axi_NGDBF_BERT_throttle_v1.0 (Pre-Production)

S00_AXI

s00_axi_aclk

s00_axi_aresetn

axi_NGDBF_BERT_throttle_4

axi_NGDBF_BERT_throttle_v1.0 (Pre-Production)

S00_AXI

s00_axi_aclk

s00_axi_aresetn

axi_NGDBF_BERT_throttle_5

axi_NGDBF_BERT_throttle_v1.0 (Pre-Production)

S00_AXI

s00_axi_aclk

s00_axi_aresetn

axi_timer_0

AXI Timer (Pre-Production)

S_AXI

capturetrig0

capturetrig1

generateout0

generateout1

pwm0

interrupt

freeze

s_axi_aclk

s_axi_aresetn

axi_uartlite_0

AXI Uartlite (Pre-Production)

S_AXI
UART

s_axi_aclk

s_axi_aresetn
interrupt

clk_wiz_1

Clocking Wizard (Pre-Production)

CLK_IN1_D clk_out1

diff_clock_rtl

mdm_1

MicroBlaze Debug Module (MDM) (Pre-Production)

MBDEBUG_0

Debug_SYS_Rst

microblaze_0

MicroBlaze (Pre-Production)

INTERRUPT
DLMB

ILMB

M_AXI_DP

DEBUG

Clk

Reset

microblaze_0_axi_periph

AXI Interconnect (Pre-Production)

S00_AXI

M00_AXI

M01_AXI

M02_AXI

M03_AXI

M04_AXI

M05_AXI

M06_AXI

M07_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

M02_ACLK

M02_ARESETN

M03_ACLK

M03_ARESETN

M04_ACLK

M04_ARESETN

M05_ACLK

M05_ARESETN

M06_ACLK

M06_ARESETN

M07_ACLK

M07_ARESETN

microblaze_0_local_memory

DLMB

ILMB

LMB_Clk

SYS_Rst

reset_rtl_0

rst_clk_wiz_1_100M

Processor System Reset (Pre-Production)

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

uart_rtl

Fig. 3.7: Block Diagram for BERT design with Microblaze Embedded System

20

1.Initialize Reset

2.Start Decoder4.Error Count

3.Start Frame

∼ powerup decoder, initialized, start,∼ done

∼ initialize decoder,∼ counted,∼ decoder donedecoder done

Fig. 3.8: State machine of the BERT module

The first state performs reset and then initializes all the parameters before the start

of decoding. When the handshaking signals powerup decoder & initialized are asserted

low and high respectively- indicating the initialization is complete, depending on the high

value of start and a low value of done, the system transitions to the next state. Then

the NGDBF decoder gets started in the second state. A zero value of initialize decoder

indicates that the decoder is ready to start decoding and a low value the flag signal counted

(indicating that next frame is yet to be decoded) & decoder done (signaling that the state

of decode operation has not changed) at the same time takes the system to the following

state. The third state depicts the beginning of the decode operation on an incoming frame

of samples. Once a frame is decoded, decoder done is set high and a transition to the

fourth state takes place. The following state counts the total number of erroneous bits and

21

frames and reports the error count. Then the system goes back to the initial state. After

that, the state transitions keep repeating to decode next incoming frames until the total

number of frames is reached.

22

CHAPTER 4

RESULTS & ANALYSIS

This chapter starts with the outcomes obtained from Shapiro-Wilk & Kolmogorov-

Smirnov tests. In the second section. the acquired sets of data from the simulation are used

to draw some Q-Q plots. Then the results of the reference MATLAB models are explained

in detail in the following section. After that, the focus shifts towards the pictorial repre-

sentation of the histogram data from testbench simulation and hardware implementation.

Finally, there are some insights on the significance of these results on the performance of

NGDBF decoder in the error floor region and an investigation of the error floor results both

with the original and modified BERT design.

4.1 Results from Statistical Tests

The extended Shapiro-Wilk Test results are valid only up to 5000 test samples. How-

ever, even with this relatively small sample size, this should be a good starting point for the

comparison against a standard Gaussian distribution. The following results are obtained at

a significance level of 5%.

Output Parameters

MATLAB R

Test Statistic, W P-value Test Statistic, W P-value

0.9996 0.3075 0.99955 0.3075

Table 4.1: Sapiro-Wilk Test results on MATLAB & R platform

As shown in Tab. 4.1, Sapiro-Wilk test statistic, W is very close to 1 and p-value

is greater than 0.05 which suggests that the pdf of channel emulator is extremely similar

to that of a Gaussian Normal. It strongly indicates that the distribution from which the

23

samples are drawn is indeed a Normal distribution. But the limited number of samples

implies that these results are far from conclusive.

Kolmogorov-Smirnov test is usually valid for a representation of the distribution with

much larger sample size. The test statistic, Dn is a good representative of how much the test

data deviates from the null hypothesis. In this case, the hypothesis under test is compared

against a randomly generated Gaussian data set with the mean and variance of original

data.

Number Output Parameters

of MATLAB R

Samples
Test Statistic,
Dn

Accept/Reject
Null Hypoth-
esis

Test Statistic,
Dn

Accept/Reject
Null Hypoth-
esis

5k 0.0140 Accept 0.0104 Accept

10k 0.0195 Accept 0.0116 Accept

20k 0.0064 Accept 0.0092 Accept

50k 0.0042 Accept 0.00468 Accept

100k 0.0031 Accept 0.00352 Accept

Table 4.2: Kolmogorov-Smirnov Test results on MATLAB & R platform

In Tab. 4.2, As the number of samples goes up, the value of Dn approaches zero.

It implies more and more confidence in the acceptance of the null hypothesis with larger

test vectors. However, these tests alone are not enough to infer if the samples come from

a normal distribution. Some visual representation like Q-Q plot might help in this case.

The following section is based on empirical Q-Q plot analysis on the samples used in the

aforementioned tests.

24

4.2 Q-Q Plots for Statistical Analysis

A Q-Q plot compares a pdf with another distribution by plotting quantiles where the

coordinates of the points on the plot correspond to the same quantiles from each distribu-

tion [24]. In this case, the quantiles from the test samples are compared against a set of

normally distributed data generated using the mean and covariance of those samples. In

theory, this type of plot should be linear apart from some stochastic fluctuations of the data

in reference distribution [25]. Any significant deviation from the linear pattern would imply

that the data being tested do not follow the Normal distribution [25]. If the samples being

tested and the null hypothesis both have the same distribution, then the points of Q-Q plot

should approximately be on a straight line that goes towards the origin.

Fig. 4.1 depicts a Q-Q plot for 100k test samples. As shown in Fig. 4.1, the outcome

is almost linear with some small outliers towards both ends of the range, suggesting minor

deviations in the extreme parts of the tail. This phenomenon might be a case of not

having enough samples in the tail regions. The deviations are less pronounced with larger

sample counts. These results provide sound evidence in support of the argument that the

distributions are similar in nature. However, as one of the main objectives of this work

is to focus on the quality of distribution on extreme tails, the test set obtained from the

simulation is not going to be adequate for full analysis. There needs to be additional testing

especially with hardware generated, extremely large test vectors to put emphasis on the tail

region. The next section focuses specifically on the MATLAB analysis of quantized data

samples.

25

Fig. 4.1: Q-Q plot for 100k samples

4.3 Results from MATLAB Models

The first model takes in non-quantized samples generated by the channel emulator

from the testbench simulation and performs 5-bit quantization to produce results in sign-

magnitude format. Then it generates a histogram based on the quantized output depicting

the number of samples in each of the 32 threshold levels. The second model imports the test

samples in floating-point format ranging in between 0 to 1 from the RTL simulation and

generates a set of random Gaussian distributed samples using the statistical information

of the test vector. This data set then goes through a similar 5-bit quantization process to

generate another histogram. In both cases, the testbench simulation is done with an SNR

value of 4 decibels (dB) and an initial seed of 123. The SNR is calculated as the ratio of

energy per bit (Eb) and noise (No), Eb/No.

26

-5 0 5 10 15 20 25 30 35

Threshold Levels

0

200

400

600

800

1000

1200

1400

1600

1800

S
am

pl
e

C
ou

nt

Fig. 4.2: Histogram plot generated by MATLAB model 1

0 5 10 15 20 25 30 35

Threshold Levels

100

101

102

103

104

S
am

pl
e

C
ou

nt
 in

 L
og

 S
ca

le

Fig. 4.3: Semilog plot generated by MATLAB model 1

27

The comparative study of Fig. 4.2 & 4.4 reveals that both the models generate very

similar outputs. Fig. 4.4 shows a standard Gaussian distribution in a sign-magnitude format

where the first 16 threshold levels display positive half of the distribution starting from the

peak to the positive tail whereas the threshold levels 17-32 represent the negative side of

the distribution. The histogram from model 1 displays the same format. This implies that

the quantized channel emulator samples from the first model fall in line with the output

from the second model. In other words, the channel emulator samples follow Gaussian

distribution closely. In both the outputs, there is a very small number of samples on the

tails due to the limited size of the data set. However, the pattern of these results provides a

base for an expected outcome from the FPGA implementation. The pattern is also visible

in semilog plots in figures 4.3 & 4.5.

-5 0 5 10 15 20 25 30 35

Threshold Levels

0

200

400

600

800

1000

1200

1400

1600

1800

S
am

pl
e

C
ou

nt

Fig. 4.4: Histogram plot generated by MATLAB model 2

28

0 5 10 15 20 25 30 35

Threshold Levels

100

101

102

103

104

S
am

pl
e

C
ou

nt
 in

 L
og

 S
ca

le

Fig. 4.5: Semilog plot generated by MATLAB model 2

4.4 Results from Testbench Simulation & Hardware Implementation

Two Verilog testbenches for the channel emulator generate histogram data for quan-

tized samples. One of them instantiates top RTL design module, thereby simulating the

entire design whereas the other one simulates a lower level design (the AWGN generator

design module that generates non-quantized sample values using random number genera-

tion) and does the quantization separately. As similar techniques are used, both of the

simulations should produce identical results. Comparison of these outputs with the results

from reference MATLAB models should be an effective way to check the validity of the

quantization process.

29

-5 0 5 10 15 20 25 30 35

Threshold Levels

0

200

400

600

800

1000

1200

1400

1600

1800

S
am

pl
e

C
ou

nt

Fig. 4.6: Histogram plot generated by AWGN design simulation

0 5 10 15 20 25 30 35

Threshold Levels

100

101

102

103

104

S
am

pl
e

C
ou

nt
 in

 L
og

 S
ca

le

Fig. 4.7: Semilog plot generated by AWGN design simulation

30

Scrutiny on Fig. 4.6 & 4.8 reveals that both of them are very similar apart from the

difference in the number of samples. The evidence from semilog plots of Fig. 4.7 & 4.9

also points to identical outputs. A plot pitting both of these testbench simulations against

the MATLAB reference models are shown in Fig. 4.10. Fig. 4.10 confirms that all these

results are also coherent with the outcomes of reference MATLAB models. Therefore, the

simulation results are validated.

The results obtained from VC707 FPGA platform in figures 4.11 & 4.12 also fall in

line with the same pattern as previous outputs. In this case, the number of samples in both

the tail regions is very high and it increases the confidence on the outcome of these tests,

even though the sample count in the peak is significantly larger for the samples to properly

show up in the tail region of the histogram plot. The semilog plot in 4.12 reveals that there

are more than thousands of samples even in the extreme tails. Similar to the comparisons

with RTL simulation, Fig. 4.13 illustrates how the hardware results stack up against the

MATLAB reference models. As apparent from Fig. 4.13, the FPGA outcomes are very

similar to the reference model results. The takeaway from all these investigations is that

the distribution of the channel emulator properly follows that of standard Gaussian even in

the extreme parts of both the tails.

31

-5 0 5 10 15 20 25 30 35

Threshold Levels

0

200

400

600

800

1000

1200

1400

S
am

pl
e

C
ou

nt

Fig. 4.8: Histogram plot generated by synthesizable RTL design simulation

0 5 10 15 20 25 30 35

Threshold Levels

100

101

102

103

104

S
am

pl
e

C
ou

nt
 in

 L
og

 S
ca

le

Fig. 4.9: Semilog plot generated by synthesizable RTL design simulation

32

-5 0 5 10 15 20 25 30 35

Threshold Levels

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

N
or

m
al

iz
ed

 S
am

pl
e

C
ou

nt

Reference 1
Reference 2
AWGN Testbench
Synthesizable RTL

Fig. 4.10: Comparison of RTL simulation against MATLAB reference models

-5 0 5 10 15 20 25 30 35

Threshold Levels

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
am

pl
e

C
ou

nt

#107

Fig. 4.11: Histogram plot generated from VC707 hardware platform

33

0 5 10 15 20 25 30 35

Threshold Levels

104

105

106

107

108

S
am

pl
e

C
ou

nt
 in

 L
og

 S
ca

le

Fig. 4.12: Semilog plot generated from VC707 hardware platform

-5 0 5 10 15 20 25 30 35

Threshold Levels

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

N
or

m
al

iz
ed

 S
am

pl
e

C
ou

nt

Reference 1
Reference 2
Hardware

Fig. 4.13: Comparison of hardware results against MATLAB reference models

34

4.5 Checking the Dependency on Initial Seed Value

According to the steps of verifications proposed in chapter 3, the focus should now be

shifted to find the dependencies of the emulator results on some internal parameters that

are generally not supposed to have any influence on the outcome. Since in the past works,

the NGDBF decoder operating on the error-floor region produced anomalous results with

the change in seed values while using the channel emulator in concern, the next logical step

would be to investigate if the initial seed values have any impact on these outcomes. In

this case, the individual tests with all 256 different seeds generated identical results. This

finding is helpful to conclude that the initial seed values don’t have any influence on the

distribution of the noise samples from channel emulator. The Four test cases presented

in Fig. 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, 4.20 & 4.21 provide evidence to this deduction.

Two plots in Fig. 4.22 & 4.23 compare the histogram outputs obtained using all four seed

values. As shown in Fig. 4.22, all four outcomes are so identical that there is virtually no

difference. It is further confirmed with a zoomed-in view in Fig. 4.23.

-5 0 5 10 15 20 25 30 35

Threshold Levels

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
am

pl
e

C
ou

nt

#107

Fig. 4.14: Histogram plot for seed value 0

35

0 5 10 15 20 25 30 35

Threshold Levels

104

105

106

107

108

S
am

pl
e

C
ou

nt
 in

 L
og

 S
ca

le

Fig. 4.15: Semilog plot for seed value 0

-5 0 5 10 15 20 25 30 35

Threshold Levels

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
am

pl
e

C
ou

nt

#107

Fig. 4.16: Histogram plot for seed value 50

36

0 5 10 15 20 25 30 35

Threshold Levels

104

105

106

107

108

S
am

pl
e

C
ou

nt
 in

 L
og

 S
ca

le

Fig. 4.17: Semilog plot for seed value 50

-5 0 5 10 15 20 25 30 35

Threshold Levels

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
am

pl
e

C
ou

nt

#107

Fig. 4.18: Histogram plot for seed value 100

37

0 5 10 15 20 25 30 35

Threshold Levels

104

105

106

107

108

S
am

pl
e

C
ou

nt
 in

 L
og

 S
ca

le

Fig. 4.19: Semilog plot for seed value 100

-5 0 5 10 15 20 25 30 35

Threshold Levels

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
am

pl
e

C
ou

nt

#107

Fig. 4.20: Histogram plot for seed value 200

38

0 5 10 15 20 25 30 35

Threshold Levels

104

105

106

107

108

S
am

pl
e

C
ou

nt
 in

 L
og

 S
ca

le

Fig. 4.21: Semilog plot for seed value 200

-5 0 5 10 15 20 25 30 35

Threshold Levels

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

N
or

m
al

iz
ed

 S
am

pl
e

C
ou

nt

Seed 0
Seed 50
Seed 100
Seed 200

Fig. 4.22: Comparison of seed outputs

39

5.395 5.4 5.405 5.41 5.415 5.42 5.425 5.43

Threshold Levels

0.05353

0.05354

0.05355

0.05356

0.05357

0.05358

0.05359

0.0536

0.05361

N
or

m
al

iz
ed

 S
am

pl
e

C
ou

nt

Seed 0
Seed 50
Seed 100
Seed 200

Fig. 4.23: A zoomed-in view for the seed comparisons

4.6 Verifying Reset Functionality

The next step to validate the channel emulator is to check if resetting the parameters

to their original values and then changing them results in expected outputs. In other words,

this section tests the effectiveness of the reset operation. This step is done with a change

of initial seed in mind. For this purpose, the emulator is started with a random seed value.

After some time, it is reset and restarted with another random seed value. The emulator

then gets reset again after some further time delay and it now begins its operation again

with the original seed. The seed values used for this test are 123 and 221 respectively, but

it can be performed with any random seed. The idea here is to inspect whether the changes

in the seed are getting recognized after every reset. A Q-Q plot for every operation until

the next reset is used to infer if the reset is working in a proper manner. The Q-Q plots for

this operation are produced by plotting the quantiles of respective output samples against

the quantiles of a set of random samples generated using the statistical information of the

data set generated by the use of the first random seed.

40

-6 -4 -2 0 2 4 6

Quantiles from Sample Data

-6

-4

-2

0

2

4

6

Q
ua

nt
ile

s
fr

om
 S

ta
nd

ar
d

D
at

a

QQ Plot of Sample Data vs Standard Normal

Fig. 4.24: Q-Q plot for seed 123

-6 -4 -2 0 2 4 6

Quantiles from Sample Data

-6

-4

-2

0

2

4

6

Q
ua

nt
ile

s
fr

om
 S

ta
nd

ar
d

D
at

a

QQ Plot of Sample Data vs Standard Normal

Fig. 4.25: Q-Q plot for seed 221 after first reset

41

-6 -4 -2 0 2 4 6

Quantiles from Sample Data

-6

-4

-2

0

2

4

6

Q
ua

nt
ile

s
fr

om
 S

ta
nd

ar
d

D
at

a

QQ Plot of Sample Data vs Standard Normal

Fig. 4.26: Q-Q plot for seed 123 after second reset

As seen in Fig. 4.24 & 4.25, change in the overall position of the data points is evident

after the first reset. This result strongly suggests that the reset operation is erasing all the

previous statistics. The identical figures, Fig. 4.24 & 4.26 present further proof in favor

of this deduction. These outcomes lead to the interpretation that the reset function in the

RTL design of channel emulator is happening as intended. Therefore, these inferences lead

to the conclusion that the AWGN channel emulator in concern is validated.

4.7 Analyzing the results of Decoder Implementation

As the channel emulator is validated, it is fair to deduce that the preceding erratic

results observed with the NGDBF decoder derived from some faults in either the design of

test platform or the algorithm of the decoder itself. To investigate the source of this issue,

an attempt is made to reproduce the anomalous behavior in the results using BERT design

at high SNR values approaching the error-floor region.

The terminology for the parameters used here are described below:

42

• index channel: This represents the SNR value for channel emulator. The index value

is 4 times the SNR. For example, an SNR value of 4 would result in index channel

value of 4∗4 = 16.

• index noise: This parameter indicates a similar expression of SNR for random noise

generator used in decoder design.

• bitErrors: It is indicative of the total number of bits with an error.

• frameErrors: It depicts the total number of failed frames with one or more erroneous

bits.

• numFrames: This highlights the total number of frames to be decoded.

• channelSeed: This is the initial seed value for channel emulator.

• noiseSeed: This is the initial seed value for the noise generator used in NGDBF

decoder. In this implementation, the same noise generation techniques from channel

emulator are used to produce perturbation noise for decoder operation. Therefore,

it’s imperative to use different initial seeds for channel emulator and the additional

perturbed noise generation for the decoder to reduce the correlation between them.

Tab. 4.3 highlights differences in bitErrors & frameErrors with the changes in

index channel & index noise for the original BERT design. The test is operated with

index channel & index noise values ranging from 17 to 20 & 18 to 21 respectively. These

values typically correspond to high SNRs and they are selected specifically because previous

works observed exceptions from standard outputs at those SNR levels. As the SNR values

increase, the number of errors start to go down noticeably. The changes in bitErrors

& frameErrors are most drastic at index channel value of 17 with varying index noise

values. The random initial seeds are set to different values for channel and noise generator

respectively. It is worth mentioning that all the results from onwards are taken from one

particular run but similar outputs have been observed with multiple runs for each scenario.

All of these test runs are conducted with one million frames unless stated otherwise.

43

index channel index noise bitErrors frameErrors numFrames channelSeed noiseSeed

17 18 568453 5875 1000000 180 120

17 19 31447 387 1000000 180 120

17 20 2740 54 1000000 180 120

17 21 892 28 1000000 180 120

18 18 10957 116 1000000 180 120

18 19 97 2 1000000 180 120

18 20 44 4 1000000 180 120

18 21 24 6 1000000 180 120

19 18 126 2 1000000 180 120

19 19 0 0 1000000 180 120

19 20 4 1 1000000 180 120

19 21 2 1 1000000 180 120

20 18 6 1 1000000 180 120

20 19 3 1 1000000 180 120

20 20 9 1 1000000 180 120

20 21 2 1 1000000 180 120

Table 4.3: Results for original BERT design at different SNRs & a channel seed value of

180 & a noise seed value of 120

Tab. 4.4 portrays an interesting picture. This test run is performed with a fixed

index channel value of 18 while varying the index noise & seed values. The idea here is to

observe how the error count changes with respect to slightly different seeds. Theoretically,

the number of erroneous bits and frames should hover around some constant low values

at error-floor. But most of the outcomes of this run don’t conform to this hypothesis.

As before, the initial seeds for channel and noise generator start at 180 & 120 respectively.

Each BERT module increases the seed values by 1, therefore the sixth BERT block operates

with seed values 185 & 125. The results for index channel 19 & 20 are usually consistent,

but bitErrors & frameErrors produce significantly distinct results with different values

of channelSeed & noiseSeed at index channel value of 17. This trend is also visible at

index channel 18.

44

As the variations in errors seem to be related to specific seed values, it is important

to observe which of the two seeds - channelSeed & noiseSeed- have the most impact on

the outputs. Tab. 4.5 & 4.6 show a reproduction of the test depicted in table 4.4, but with

different initial noiseSeed & channelSeed values respectively in the first and second case.

The inference from these runs is obvious. The error results from the aforementioned tables

show that the deviations are largely caused by changes in noiseSeed while the change in

channelSeed value has minimal effect on the output. As shown in Fig. 4.27, 4.29, 4.31 &

4.33, there is a very wide range of deviations in error counts while varying the noiseSeed

with a fixed channelSeed value but this variation is negligibly small when sweeping through

all possible values of channelSeed with a fixed noiseSeed. These phenomena are more

pronounced in the semilog plots of Fig. 4.28, 4.30, 4.32 & 4.34. As the same noise generator

from channel emulator is used to produce random perturbation noise for decoder and the

channel emulator is already validated, this outcome suggests that there needs to be further

inspection on noiseSeed values.

A run of rigorous tests with different noiseSeed values reveals that some of the seeds

reduce bitErrors & frameErrors drastically. These seeds generate significantly lower

number of bit & frame errors compared to the other one. Out of all such values, 47,

123 and 241 in particular are chosen for the following analyses as they are found to be

producing very low error counts, but it is worth mentioning that there are other seed values

that generate results close to these seeds. The effect of these seeds with the change in index

values for channel and noise is shown in Fig. 4.35, 4.36, 4.37, 4.38, 4.39, 4.40, 4.41, 4.42,

4.43, 4.44, 4.45 & 4.46. Since the outliers were mainly evident on index channel value of

17 & 18, the aforementioned analyses are done at those index levels. The bitErrors counts

are from test runs of 1 million frames whereas the frameErrors counts are from test runs

of 10 million frames.

45

index channel index noise bitErrors frameErrors numFrames channelSeed noiseSeed

17 18 568453 5875 1000000 180 120

17 18 144158 1680 1000000 181 121

17 18 236282 2608 1000000 182 122

17 18 1750 42 1000000 183 123

17 18 21792 272 1000000 184 124

17 18 306670 3464 1000000 185 125

18 18 10957 116 1000000 180 120

18 18 2322 34 1000000 181 121

18 18 4825 56 1000000 182 122

18 18 0 0 1000000 183 123

18 18 53 1 1000000 184 124

18 18 5337 65 1000000 185 125

19 18 126 2 1000000 180 120

19 18 4 2 1000000 181 121

19 18 8 2 1000000 182 122

19 18 0 0 1000000 183 123

19 18 0 0 1000000 184 124

19 18 0 0 1000000 185 125

20 18 6 1 1000000 180 120

20 18 2 1 1000000 181 121

20 18 0 0 1000000 182 122

20 18 2 1 1000000 183 123

20 18 0 0 1000000 184 124

20 18 0 0 1000000 185 125

Table 4.4: Results for original BERT design at constant noise SNR & different channel SNR

with varying seed values

46

index channel index noise bitErrors frameErrors numFrames channelSeed noiseSeed

17 18 48812 565 1000000 180 70

17 18 568566 5922 1000000 181 71

17 18 70885 761 1000000 182 72

17 18 18121 261 1000000 183 73

17 18 1201430 12648 1000000 184 74

17 18 684904 7052 1000000 185 75

18 18 444 5 1000000 180 70

18 18 11820 125 1000000 181 71

18 18 918 11 1000000 182 72

18 18 0 0 1000000 183 73

18 18 34699 392 1000000 184 74

18 18 15409 370 1000000 185 75

19 18 0 0 1000000 180 70

19 18 106 1 1000000 181 71

19 18 0 0 1000000 182 72

19 18 0 0 1000000 183 73

19 18 336 5 1000000 184 74

19 18 111 2 1000000 185 75

20 18 2 1 1000000 180 70

20 18 0 0 1000000 181 71

20 18 0 0 1000000 182 72

20 18 2 1 1000000 183 73

20 18 3 1 1000000 184 74

20 18 3 1 1000000 185 75

Table 4.5: Results for original BERT design at constant noise SNR & same initial channel

seed with different channel SNR and noise seed values

47

index channel index noise bitErrors frameErrors numFrames channelSeed noiseSeed

17 18 558005 5735 1000000 70 120

17 18 148408 1754 1000000 71 121

17 18 232697 2547 1000000 72 122

17 18 1800 40 1000000 73 123

17 18 20346 256 1000000 74 124

17 18 303001 3440 1000000 75 125

18 18 13843 144 1000000 70 120

18 18 2223 26 1000000 71 121

18 18 4952 55 1000000 72 122

18 18 118 2 1000000 73 123

18 18 0 0 1000000 74 124

18 18 4596 59 1000000 75 125

19 18 232 3 1000000 70 120

19 18 5 2 1000000 71 121

19 18 0 0 1000000 72 122

19 18 0 0 1000000 73 123

19 18 0 0 1000000 74 124

19 18 0 0 1000000 75 125

20 18 0 0 1000000 70 120

20 18 3 1 1000000 71 121

20 18 0 0 1000000 72 122

20 18 0 0 1000000 73 123

20 18 0 0 1000000 74 124

20 18 0 0 1000000 75 125

Table 4.6: Results for original BERT design at constant noise SNR & same initial noise

seed with different channel SNR and channel seed values

48

-50 0 50 100 150 200 250 300

Noise Seed

0

1

2

3

4

5

6

7

8

9

10

B
it

E
rr

or

#106

Fig. 4.27: Bit errors with all noise seeds at index value of 17 for channel and 18 for noise

with a fixed channel seed value of 180

0 50 100 150 200 250 300

Noise Seed

103

104

105

106

107

B
it

E
rr

or

Fig. 4.28: Semilog plot for bit errors with all noise seeds at index value of 17 for channel

and 18 for noise with a fixed channel seed value of 180

49

-50 0 50 100 150 200 250 300

Noise Seed

0

1

2

3

4

5

6

7

8

9

F
ra

m
e

E
rr

or

#104

Fig. 4.29: Frame errors with all noise seeds at index value of 17 for channel and 18 for noise

with a fixed channel seed value of 180

0 50 100 150 200 250 300

Noise Seed

101

102

103

104

105

F
ra

m
e

E
rr

or

Fig. 4.30: Semilog plot for frame errors with all noise seeds at index value of 17 for channel

and 18 for noise with a fixed channel seed value of 180

50

-50 0 50 100 150 200 250 300

Channel Seed

0

1

2

3

4

5

6

B
it

E
rr

or

#104

Fig. 4.31: Bit errors with all channel seeds at index value of 17 for channel and 18 for noise

with a fixed noise seed value of 70

0 50 100 150 200 250 300

Channel Seed

4.4

4.6

4.8

5

5.2

5.4

B
it

E
rr

or

#104

Fig. 4.32: Semilog plot for bit errors with all channel seeds at index value of 17 for channel

and 18 for noise with a fixed noise seed value of 70

51

-50 0 50 100 150 200 250 300

Channel Seed

0

100

200

300

400

500

600

700

F
ra

m
e

E
rr

or

Fig. 4.33: Frame errors with all channel seeds at index value of 17 for channel and 18 for

noise with a fixed noise seed value of 70

0 50 100 150 200 250 300

Channel Seed

500

520

540

560

580

600

620

F
ra

m
e

E
rr

or

Fig. 4.34: Semilog plot for frame errors with all channel seeds at index value of 17 for

channel and 18 for noise with a fixed noise seed value of 70

52

180 181 182 183 184 185

Channel Seed

0

500

1000

1500

2000

2500

B
it

E
rr

or

Fig. 4.35: Bit errors for varying channel seeds at index value of 17 for channel and 18 for

noise with a fixed noise seed value of 47

180 181 182 183 184 185

Channel Seed

0

50

100

150

200

250

300

350

400

450

F
ra

m
e

E
rr

or

Fig. 4.36: Frame errors for varying channel seeds at index value of 17 for channel and 18

for noise with a fixed noise value seed of 47

53

180 181 182 183 184 185

Channel Seed

0

10

20

30

40

50

60

B
it

E
rr

or

Fig. 4.37: Bit errors for varying channel seeds at index value of 18 for channel and 18 for

noise with a fixed noise seed of 47

180 181 182 183 184 185

Channel Seed

0

5

10

15

20

25

30

F
ra

m
e

E
rr

or

Fig. 4.38: Frame errors for varying channel seeds at index value of 18 for channel and 18

for noise with a fixed noise seed of 47

54

180 181 182 183 184 185

Channel Seed

0

500

1000

1500

2000

2500

3000

B
it

E
rr

or

Fig. 4.39: Bit errors for varying channel seeds at index value of 17 for channel and 18 for

noise with a fixed noise seed of 241

180 181 182 183 184 185

Channel Seed

0

50

100

150

200

250

300

350

400

450

500

F
ra

m
e

E
rr

or

Fig. 4.40: Frame errors for varying channel seeds at index value of 17 for channel and 18

for noise with a fixed noise seed of 241

55

180 181 182 183 184 185

Channel Seed

0

10

20

30

40

50

60

70

80

90

B
it

E
rr

or

Fig. 4.41: Bit errors for varying channel seeds at index value of 18 for channel and 18 for

noise with a fixed noise seed of 241

180 181 182 183 184 185

Channel Seed

0

5

10

15

20

25

F
ra

m
e

E
rr

or

Fig. 4.42: Frame errors for varying channel seeds at index value of 18 for channel and 18

for noise with a fixed noise seed of 241

56

180 181 182 183 184 185

Channel Seed

0

500

1000

1500

2000

2500

B
it

E
rr

or

Fig. 4.43: Bit errors for varying channel seeds at index value of 17 for channel and 18 for

noise with a fixed noise seed of 123

180 181 182 183 184 185

Channel Seed

0

50

100

150

200

250

300

350

400

450

F
ra

m
e

E
rr

or

Fig. 4.44: Frame errors for varying channel seeds at index value of 17 for channel and 18

for noise with a fixed noise seed of 123

57

180 181 182 183 184 185

Channel Seed

0

5

10

15

20

25

30

35

40

45

50

B
it

E
rr

or

Fig. 4.45: Bit errors for varying channel seeds at index value of 18 for channel and 18 for

noise with a fixed noise seed of 123

180 181 182 183 184 185

Channel Seed

0

2

4

6

8

10

12

14

16

18

20

F
ra

m
e

E
rr

or

Fig. 4.46: Frame errors for varying channel seeds at index value of 18 for channel and 18

for noise with a fixed noise seed of 123

58

The results illustrate low values the bitErrors and frameErrors count with index channel

values of 17 & 18 while using noiseSeed values of 47, 241 & 123. As evident from these

figures, the variations between the number of errors with different channelSeed values are

usually small and hence they can be overlooked. Since there is no correlation between the

initial seed and the performance of channel emulator and the channelSeed value does not

have noticeable effects on the error counts of the decoder and the noiseSeed is strongly

dictating the pattern of results, the anomalies might not be related to the design of the test

platform. These outcomes strongly point that the outliers are caused by the sequence of

the generated perturbation noise samples. The two noiseSeed values that are empirically

found out to be the best suit for producing low error counts might just have a very good

random sequence. Hence, integrating any of the aforementioned two noiseSeed values in

the source design should get rid of the aberrations in error-floor analysis. Further testing

and verifications might be required in the future to find out how the random noise sequences

are actually influencing the decoder performance.

59

CHAPTER 5

CONCLUSIONS & FUTURE WORK

The work in concern emphasizes different statistical aspects of a hardware-based AWGN

channel emulator to validate its functionality. This is crucial for the operation of an error-

correcting decoder as a slight deviation of the emulator from the desired probability distri-

bution might cause significant errors in the performance analysis. The channel emulator in

question is validated following a pattern of general verification steps. First, the distribution

of the emulator is verified by the use of a couple of statistical tests and Q-Q plots. Then

two MATLAB reference models are designed and compared against testbench and hardware

results to account for the samples in extreme tails. The reset operation and dependency

on initial seeds are tested within the validation process. The final deduction from all these

tests is that the emulator is verified to be functioning as expected.

This thesis mainly focuses on some anomalous behavior of the LDPC decoder observed

previously during the analysis of error-floors with said channel emulator. Those outliers

have prompted a thorough review of the emulator in the first place. Investigating the BERT

implementation gives an obvious indication that the anomalies are primarily influenced by

seed values of the perturbation noise generator for the decoder. This phenomenon might

be linked to the particular pattern of the noise generated by that specific seed. Some of

these seeds might have a better sequence of producing noise samples than the other ones,

hence yielding lower error counts. Adding the perturbation noise is a design feature of the

NGDBF decoder and changing the initial noise seed only changes the sequence of the noise

samples generated by noise generator. Since the perturbed noise samples are not a part of

the statistical tests to validate the hardware design of the test platform, choosing a constant

noise seed value should not affect the statistical validity of the results. Therefore, the initial

noise seeds that are empirically found to be causing better results might be integrated into

the hardware design to improve the performance. Additional test runs are operated to

60

figure out the seed values that cause the lowest deviations from usual bit errors and frame

errors in the error-floor region. These values might be useful for any future modification of

the BERT module or even some new designs for the hardware-based NGDBF decoder.

There are certain scopes to further improve upon the consistency of these outputs from

NGDBF decoder. An attempt to figure out the relationships between the sequence of noise

seeds and thus formulating an algorithm to find the best possible pattern of noise generation

to help with low BER region would be a potential path to extend this work. Also employing

a better state machine, changing how the handshaking and control sequences take place or

even moving to a completely different design with the knowledge of best noise generation

pattern might be explored in the future works.

61

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IRE Trans. on information theory,
vol. 8, no. 1, pp. 21–28, 1962.

[2] W. Ryan and S. Lin, Channel codes: classical and modern. Cambridge University
Press, 2009.

[3] D. J. MacKay and M. S. Postol, “Weaknesses of Margulis and Ramanujan-Margulis
low-density parity-check codes,” Electronic Notes in Theoretical Computer Science,
vol. 74, pp. 97–104, 2003.

[4] T. Richardson, “Error floors of LDPC codes,” in Proc. of the annual Allerton conference
on communication control and computing, vol. 41, no. 3. The University; 1998, 2003,
pp. 1426–1435.

[5] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “Analysis of
absorbing sets and fully absorbing sets of array-based LDPC codes,” IEEE Transac-
tions on Information Theory, vol. 56, no. 1, pp. 181–201, 2010.

[6] M. Rice and B. Mazzeo, “On the superiority of the negative binomial test over the bi-
nomial test for estimating the bit error rate,” IEEE Transactions on Communications,
vol. 60, no. 10, pp. 2971–2981, 2012.

[7] B. A. Mazzeo and M. Rice, “Bit error rate comparison statistics and hypothesis tests
for inverse sampling (negative binomial) experiments,” IEEE Transactions on Com-
munications, vol. 64, no. 5, pp. 2192–2203, 2016.

[8] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. Wainwright, “Gen03-6:
Investigation of error floors of structured low-density parity-check codes by hardware
emulation,” in IEEE Globecom 2006. IEEE, 2006, pp. 1–6.

[9] J.-L. Danger, A. Ghazel, E. Boutillon, and H. Laamari, “Efficient FPGA implementa-
tion of Gaussian noise generator for communication channel emulation,” in Electronics,
Circuits and Systems, 2000. ICECS 2000. The 7th IEEE International Conf. on, vol. 1.
IEEE, 2000, pp. 366–369.

[10] E. Boutillon, T. Yangyang, C. Marchand, and P. Bomel, “Hardware discrete channel
emulator,” in High Performance Computing and Simulation (HPCS), 2010 Interna-
tional Conf. on, 2010, pp. 452–458.

[11] G. Sundararajan, C. Winstead, and E. Boutillon, “Noisy gradient descent bit-flip de-
coding for LDPC codes,” arXiv preprint arXiv:1402.2773, 2014.

[12] E. Boutillon, J.-L. Danger, and A. Ghazel, “Design of high speed AWGN communi-
cation channel emulator,” Analog Integrated Circuits and Signal Processing, vol. 34,
no. 2, pp. 133–142, 2003.

62

[13] E. Fung, K. Leung, N. Parimi, M. Purnaprajna, and V. C. Gaudet, “ASIC implemen-
tation of a high speed WGNG for communication channel emulation [white Gaussian
noise generator],” in Signal Processing Systems, 2004. SIPS 2004. IEEE Workshop on.
IEEE, 2004, pp. 304–309.

[14] D.-U. Lee, W. Luk, J. D. Villasenor, and P. Y. Cheung, “A Gaussian noise generator
for hardware-based simulations,” IEEE Trans. on Computers, no. 12, pp. 1523–1534,
2004.

[15] D.-U. Lee, J. D. Villasenor, W. Luk, and P. H. W. Leong, “A hardware Gaussian
noise generator using the Box-Muller method and its error analysis,” IEEE Trans. on
Computers, vol. 55, no. 6, pp. 659–671, 2006.

[16] D.-U. Lee, W. Luk, J. D. Villasenor, G. Zhang, and P. H. W. Leong, “A hardware
Gaussian noise generator using the Wallace method,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 13, no. 8, pp. 911–920, 2005.

[17] G. Zhang, P. H. W. Leong, D.-U. Lee, J. D. Villasenor, R. C. Cheung, and W. Luk,
“Ziggurat-based hardware Gaussian random number generator,” in International Conf.
on Field Programmable Logic and Applications, 2005. IEEE, 2005, pp. 275–280.

[18] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete
samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[19] S. S. Shapiro and R. Francia, “An approximate analysis of variance test for normality,”
Journal of the American Statistical Association, vol. 67, no. 337, pp. 215–216, 1972.

[20] M. M. Rahman and Z. Govindarajulu, “A modification of the test of shapiro and wilk
for normality,” Journal of Applied Statistics, vol. 24, no. 2, pp. 219–236, 1997.

[21] A. Kolmogorov, “Sulla determinazione empirica di una lgge di distribuzione,” Inst.
Ital. Attuari, Giorn., vol. 4, pp. 83–91, 1933.

[22] N. Smirnov et al., “Table for estimating the goodness of fit of empirical distributions,”
Annals of Mathematical Statistics, vol. 19, no. 2, pp. 279–281, 1948.

[23] T. T. Tithi, “Error-floors of the 802.3 an ldpc code for noise assisted decoding,” 2019.

[24] M. Biometrika19685511Wilk and R. Gnanadesikan, “Probability plotting methods for
the analysis of data,” Biometrika, vol. 55, pp. 1–17, 1968.

[25] H. C. Thode, Testing for normality. CRC press, 2002.

