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ABSTRACT

Interval-Valued Kriging Models with Applications in Design Ground Snow Load Prediction

by

Brennan L. Bean, Doctor of Philosophy

Utah State University, 2019

Major Professor: Yan Sun, Ph.D.
Department: Mathematics and Statistics

Design snow loads in the western United States are largely undefined due to complex

geography and climates, leaving the individual states to publish detailed studies for their

regions. These state-level studies vary widely in methodology, yet little has been written to

compare the quality of their results. This dissertation begins such a comparison through a

cross validation analysis of several common geostatistical mapping techniques as applied to

design ground snow load prediction in Utah and Idaho. This analysis shows that regression-

kriging models and our adaptation of PRISM have lower errors than Idaho and Utah’s current

methods across three independently developed datasets. However, the accuracy results in this

analysis are based upon design snow loads that are estimates subject to uncertainty. These

estimates are better characterized as intervals rather than single values. Despite the utility

of interval-valued data in this and other contexts, most geostatistical mapping techniques

are not equipped to handle interval-valued inputs. In response to this need, this dissertation

proposes and develops interval-valued kriging models based on the theory of random sets

and a generalized L2 distance. Previous developments of interval-valued kriging employed an

intractable interval-valued covariance, which led to unnecessary complexities and limitations

for the models. This work extends the mathematical advancements made in interval-valued

regression to a spatial framework by providing a well-defined, real valued notion of spatial
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covariance between intervals. This notion of covariance allows for increased flexibility in

interval-valued inputs by allowing for negative weights and predictions in certain contexts.

Numerical implementation of our interval-valued kriging is provided using a penalty-based

constrained optimization algorithm as part of the intkrige package. This package formalizes

the interval spatial data workflow in conjunction with these interval-valued kriging models.

The methodology is used to predict interval-valued design snow loads in Utah and the results

are compared to predictions made using traditional (point-valued) kriging. This application

demonstrates the advantages of our interval-valued kriging in climate research, and motivates

further developments of interval-valued kriging and other spatial methods.

(146 pages)
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PUBLIC ABSTRACT

Interval-Valued Kriging Models with Applications in Design Ground Snow Load Prediction

Brennan L. Bean

One critical consideration in the design of buildings constructed in the western United

States is the weight of settled snow on the roof of the structure. Engineers are tasked with

selecting a design snow load that ensures that the building is safe and reliable, without

making the construction overly expensive. Western states use historical snow records at

weather stations scattered throughout the region to estimate appropriate design snow loads.

Various mapping techniques are then used to predict design snow loads between the weather

stations. Each state uses different mapping techniques to create their snow load requirements,

yet these different techniques have never been compared. In addition, none of the current

mapping techniques can account for the uncertainty in the design snow load estimates.

We address both issues by formally comparing the existing mapping techniques, as well

as creating a new mapping technique that allows the estimated design snow loads to be

represented as an interval of values, rather than a single value. In the process, we have

improved upon existing methods for creating design snow load requirements and have

produced a new tool capable of handling uncertain climate data.
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CHAPTER 1

INTRODUCTION

1 Nearly all buildings in the United States (U.S.) are designed to strike a crucial balance

between safety and economy: a building must reasonably withstand the anthropogenic and

environmental forces induced upon it throughout its lifetime, yet use materials and designs

that are realistically affordable to the future occupants. The need for safe, yet economical

structures has given rise to state, local, and national building codes, which specify design

load requirements for the various forces borne by a structure during its lifetime. These load

requirements are then used in a Load Resistance Factor Design (LRFD), which treats the

resistance (R) of a structure and various loads induced on a structure (Qi, i = 1, · · ·n) as

random variables. The implication of the LRFD design is that a structure whose loads

exceed its resistance results in building collapse. Consequently, a structure is then designed

to ensure that the resistance of the structure will exceed the load i.e.

G = R−
∑
i

Qi

)
≥ 0

for an acceptable probability level (Nowak and Collins, 2012).

The term “acceptable” may seem puzzling in this context, as the probability of structure

collapse would ideally be zero. However, as mentioned previously, practical economic

constraints make the creation of perfectly safe structures impossible. As articulated by Nowak

and Collins (2012): “Conceptually, we can design [a] structure to reduce the probability of

failure, but increasing the safety... beyond a certain optimum level is not always economical.”

The use of overly conservative load requirements unnecessarily burdens construction costs,
1 Portions of Chapters 1-3 are adapted from papers published in the Journal of Structural Engineering

(Bean et al., 2017) and the Journal of Cold Regions Engineering (Bean et al., 2019). These articles were both
co-authored by Dr. Marc Maguire and Dr. Yan Sun and available at the following links:

• https://ascelibrary.org/doi/10.1061/%28ASCE%29ST.1943-541X.0001870
• https://ascelibrary.org/doi/full/10.1061/(ASCE)CR.1943-5495.0000190

https://ascelibrary.org/doi/10.1061/%28ASCE%29ST.1943-541X.0001870
https://ascelibrary.org/doi/full/10.1061/(ASCE)CR.1943-5495.0000190
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which is particularly problematic in states like Utah with persistent housing shortages and

declining housing affordability (Wood, 2019). Surely a structure built using reasonable load

requirements will do a better job protecting its inhabitants than the designs of a “perfectly”

safe structure that is too expensive to build.

In an attempt to achieve the necessary balance between safety and economy, the

Structural Engineering Institute of the American Society of Civil Engineers (ASCE) oversees

the publication of the consensus design load standard “Minimum Design Loads for Buildings

and Other Structures’ (ASCE 7). This standard was first released in 1988 and is updated

on a six-year cycle through a series of committees and sub-committees (Goupil, 2013). State

and local building officials adopt the ASCE 7 standards into building codes that largely

govern the design and construction of nearly all inhabitable buildings in the U.S.

One load of particular interest to mountainous and northern states is the force induced

by settled snow on the roof of a structure (qs). This force is commonly referred to as the

snow load with a corresponding design snow load specified in the building code. A design

snow load (q∗s) is typically derived from a 50 year ground snow load event, which is the weight

of settled snow on the ground expected to occur once every 50 years at a given location.

Supposing that these ground snow loads at a particular location are characterized by a

probability distribution, a 50 year event corresponds to the 98th percentile. This approach

to defining design ground snow loads is referred to as a uniform hazard approach. An

alternative approach to defining these load requirements is through a uniform risk approach

as is used in the most recent Colorado snow load study (DeBock et al., 2017; Liel et al.,

2017). This dissertation focuses on methodologies for snow loads defined using the uniform

hazard approach.

The U.S. has a long and unfortunate history of structure failure and damage due to

snow. A Travelers Insurance report identified the weight of snow and ice as the second most

common cause of insurance claims in the northeast U.S. (Business Wire, 2016). The states

of Connecticut, Massachusetts, New York, and Rhode Island reported 382 full or partial

building collapses due to snow in the 2010-2011 winter (O’Rourke, 2013). More recently,
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heavy snowstorms in the winter of 2017 filled local newspapers across the western U.S. with

reports of snow related building collapses and fatalities (Associated Press, 2017; Fisicaro,

2017; Glover, 2017; Kato and Florio, 2017; Lafferty, 2017; Mieure, 2017). These snow-related

failures can be catastrophic to local economies, like the recent $100 million in losses incurred

by Idaho/Oregon’s onion industry (Ellis, 2017). In a separate study, Strobel and Liel (2013)

reported an average cost of $166 per square meter and 122 days of business interruption

for repairs in 40 snow-induced building failures across the U.S. Snow-related damages can

extend beyond building repairs, as Geis et al. (2011) reported more than 300 fatalities

in 1,100 domestic and international snow-induced building failures. Few details are made

public about the true causes of the above damages, as they could be agricultural buildings

not designed to code or even suffer from construction error, but these reports and articles

provide a sample of the serious consequences associated with design snow load prediction.

However, recall that subtler costs are also associated with overly conservative design

snow loads. The following two examples demonstrate this point by exploring the relationship

between design snow loads and roof construction costs. Roof costs are selected for these

illustrations as they are likely the aspect of a structure most sensitive to snow load design.

The first example is found in the 2017 Craftsman National Building Cost Manual,

which includes a table of estimated roof costs for manufactured homes rated for different

snow loads. In this manual, a doubling of the roof snow load requirement from 1.44 to 2.88

kilopascals (kPa) results in an approximate threefold increase in the estimated cost per unit

meter of roof ($11 to $36) (Moselle, 2016). The second example comes from roof joist costs

provided to the authors by Vulcraft Utah (Brothersen and Fisher, 2018). These roof-only

designs assume varying snow loads with the constant depths, typical joist spacings and a

L/240 deflection limit, as indicated in Figure 1.1. These costs do not include the effects of

the snow and larger roof components on the remainder of the gravity or seismic systems’

cost. For this system, doubling the roof snow load requirement from 1.44 to 2.88 kPa leads

to a 40-90% increase in the cost of the joists.

These two examples may represent highly sensitive situations with respect to cost
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Fig. 1.1: Cost-to-snow load comparison for five different roof joist types. Data provided to
the authors by Vulcraft Utah (Brigham City, Utah) in January 2018.

and snow load. Other systems and components would likely not experience such dramatic

cost increases. Regardless, the potential economic burdens created by overly conservative

requirements likely explain recently amended ground snow load requirements in Rich County,

Utah, where a new requirement of 2.73 kPa for major communities in the county (Utah

Legislature, 2016) are less than half the 6.3-7.2 kPa dictated previously by the Structural

Engineers Association of Utah (SEAU, 1992) .

Defining snow load requirements for the western U.S. is particularly challenging given

the complex geography. As a result, ASCE 7 requirements have historically remained

unspecified for this region (ASCE, 2017). Western states have responded by defining design

ground snow load requirements for their jurisdictions in state-specific studies (Sack, 2015),

usually under the direction of the state Structural Engineers Associations. Many of these

reports (or portions of them) are freely available to the public (Al Hatailah et al., 2015;

NACSE, 2012; SEAU, 1992; Theisen et al., 2004; Torrents et al., 2016) and provide a wealth

of information on dataset development, model predictions, and implications for building

design. Each state employs a unique approach for defining snow load requirements, though

all follow the same general workflow visualized in Figure 1.2. Note that the focus of this

workflow is on determining design ground snow loads. Appropriate conversions from ground
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Snow Depth or Load Measurements

Depth? Estimate Load

Quality Assurance Checks

Define 50 Year Events

Final Data Set
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Fig. 1.2: Basic workflow for creating region-level design ground snow load requirements.
Dashed, red arrows indicate steps where estimation uncertainty is introduced into the
workflow.

snow loads to roof snow loads are provided in ASCE 7. For this reason, the terms “ground

snow load” and “snow load” will be used interchangeably throughout this dissertation.

We demonstrate the details of this workflow by creating a new design snow load dataset

for Utah in Chapter 2. For convenience, the main steps of this process are also summarized

here:

• Collect measurements of snow depth (SNWD) and water equivalent of

snow on the ground (WESD): Whenever possible, use direct measurements of

WESD to determine snow load, as measured in kilopascals (kPa). When WESD

measurements are not available, estimate the snow load from snow depth.

• Estimate design (50 year) loads from annual maximum load measurements:
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This is typically accomplished by fitting the annual maximum snow loads to a right-

skewed probability distribution and determining the 98th percentile.

• Predict/Interpolate design snow loads between measurement locations:

Various mapping techniques are used to create continuous maps of design snow loads

by predicting loads between measurement locations.

The western states may follow the same general workflow for defining the snow loads,

but the methodologies at each particular step vary widely. Sack (2015) and Sack et al.

(2016) discuss differences between state methodologies and acknowledge discrepancies these

methodologies create along state boundaries. Despite these acknowledged differences, no

formal comparison of design snow load prediction methods is found in the literature. A lack

of accuracy comparisons makes it difficult to reconcile these inter-state differences in snow

load requirements. Further, a lack of an established and reproducible method for estimating

design snow loads makes it difficult to regularly revise and update snow load requirements

as new data becomes available. The serious societal costs incurred by inadequate snow

load design, coupled with increased uncertainty in snow patterns across the county due to

climate change, motivates the need for reproducible, scalable, statistically-based approaches

to defining design snow load requirements in the U.S.

There is also the need for new methods better equipped to handle the inherent im-

precision in the design snow load estimates. This measurement imprecision should be a

important consideration in the ensuing reliability analysis as load adjustments in areas with

imprecise design snow load estimates should be larger than load adjustments in areas with

precise estimates. Current mapping techniques treat all design snow load estimates as precise

“observations” when predicting loads between regions. This approach robs the design snow

load estimates of critical context in the subsequent reliability adjustments, which motivates

the need for mapping techniques designed to handle imprecise inputs.

This dissertation address the methods and shortcomings of each of the major steps

outlined in the Figure 1.2 workflow, with a focus on comparing mapping techniques for design

snow loads. The result of our analyses is a rigorous set of comparisons between different
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interpolation techniques, the definition of a new set of design snow load requirements for

the state of Utah, and the creation of an interval-valued kriging which accommodates the

imprecision in design snow load estimates when creating snow load maps. The remainder of

this dissertation is organized as follows: Chapter 2 summarizes the independently created

datasets used in cross validation, as well as the various spatial mapping techniques that

we adapted to design snow load prediction. Chapter 3 conducts a rigorous comparison

of these methods across multiple datasets and discusses considerations and implications

for each approach. Chapter 4 introduces our interval-valued kriging models, which are

designed to address the imprecision inherent in the design snow load estimation problem.

Finally, Chapter 5 formalizes the process for analyzing interval-valued spatial data through

a demonstration of the intkrige package. We discuss the conclusions and implications of

our findings in Chapter 6 and provide links to R packages associated with this research.

The appendix provides an excerpt from the unpublished Washington snow load study that

illustrates our continual improvements to the design snow load estimation process.
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CHAPTER 2

DATA AND METHODS

A formal comparison of design snow load prediction methodologies necessarily requires

the adaptation of multiple methods across multiple datasets. This chapter is devoted to

summarizing the various datasets and methods used in the cross validation comparisons

provided in Chapter 3. Some of these datasets and methods were created in conjunction

with the 2018 Utah Snow Load Report (Bean et al., 2018), while others were obtained from

other snow load studies in Utah (SEAU, 1992) and Idaho (Al Hatailah et al., 2015).

The use of cross validation is limited to replicable methods that are separable from the

input observations. For example, snow load predictions in Colorado involve a contour map of

input parameter values that includes allowed discontinuities along mountain ridges (Liel et al.,

2017; Torrents et al., 2016). These contours and discontinuities are inextricably connected to

the measurement location observations and thus eliminate the option to use cross validation.

In addition, the Montana and Oregon snow load reports do not include enough details to

replicate their methods on new datasets (NACSE, 2012; Theisen et al., 2004). For this

reason, our comparisons in Chapter 3 focus on the current methodologies being used in

Utah and Idaho, as well as a suite of commonly used spatial mapping techniques that can

be readily applied to design snow load prediction. The following subsections describe the

datasets and methods we use in our comparisons.

2.1 Data

The three datasets used in the cross validation comparisons are the new Utah dataset

(UT-2017), the 1992 Utah snow load report dataset (UT-1992) and the 2015 Idaho snow

load report dataset (ID-2015). Table 2.1 provides an overview of each dataset. The variable

of interest in each dataset is the design snow load. These readily available datasets were

selected to compare the effectiveness of various spatial methods in predicting design snow
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loads for different climates, terrain, and measurement location coverage. In addition, the

main mapping techniques considered in this chapter are all associated with one of these

datasets, including the current Utah snow load equations (UT-1992), Idaho’s normalized

design snow loads based on inverse distance weighting (ID-2015), kriging (UT-2017) and

PRISM (UT-2017). The consideration of these three independently developed data sources

ensures that the cross validation comparisons provided in Chapter 3 are not limited to one

isolated dataset.

Each of these datasets use observations from Natural Resources Conservation Service

(NRCS) Snowpack Telemetry (SNOTEL) and Snow Course (SC) weather stations, as well

as data from the National Weather Service (NWS) cooperative observer network (COOP)

weather stations. Daily data from these sources can be conveniently obtained from the

National Oceanic and Atmospheric Administration’s (NOAA) global historical climatological

network (GHCN) as maintained by the National Centers for Environmental Information

(NCEI) (Menne et al., 2018). Many SNOTEL stations were installed to replace discontinued

SC stations, thus creating situations where two separate stations have the same geographical

location. Identical decimal degree locations for two distinct stations creates singularity issues

in many spatial interpolation methods. We resolve this issue in each dataset by adding

an arbitrarily small number r, (|r| < .001) to the decimal degree locations to create well

defined but negligible spatial separation between such stations. In the appendix, stations

with nearly identical geographical locations and elevations are combined to create a single

record. For this reason, we often refer to weather stations more generally as “measurement

locations” throughout the remainder of this dissertation.

Figure 2.1 reveals the distinct log-linear relationship between measurement location

design snow load estimates and elevation for each dataset. These scatterplots include lines

representing ordinary and generalized least squares regression estimates of this log-linear

relationship (using elevation as the predictor). The development of these regression lines

will be discussed further in Section 2.2. In addition, marginal densities along the bottom of

each plot visualize the different elevation profiles of the three datasets. For example, the
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Table 2.1: Summary of the three design snow load datasets used in method comparisons.
Dataset Measurement Depth-to-Load Distribution

Locations Conversions
UT-2017 415 Sturm’s Equation log-normal
UT-1992 413 RMCD log-Pearson Type III
ID-2015 651 RMCD log-Pearson Type III
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Fig. 2.1: Measurement location elevation plotted against design snow loads on a log-scale for
each dataset. The lines represent the ordinary (OLS) and generalized (GLS) least squares
model estimates using elevation as the sole predictor. Marginal measurement location
densities across elevation are provided at the bottom of each plot.

density of measurement locations decreases sharply for elevations above 2500 meters (m)

and slowly for elevations below 1400 m in the Idaho dataset, but such density trends are

exactly opposite in both Utah datasets. The cross validation results of Chapter 3 must be

interpreted in the context of measurement location elevation, as higher elevations relative to

the dataset of interest tend to have higher snow loads and consequently more variability in

predictive accuracy. Further, the areas of most importance in any snow load study are the

populated locations typically located at elevations below 2500 m.

2.1.1 The new Utah dataset (UT-2017)

The new Utah dataset was created in conjunction with the 2018 Utah Snow Load

Report (Bean et al., 2018) and a copy of this dataset can be found at this reference. This

dataset was created with the intention of creating a reproducible data processing framework
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that could be easily updated on a regular basis. Details regarding the development of this

dataset are given in the following subsections.

Collection

Data were obtained primarily from the GHCN and supplemented by a handful of

additional NRCS SNOTEL stations. We originally processed and visualized these raw

measurements in R 3.3.0 (R Core Team, 2016), with with the help of several ancillary packages

to R (Bivand et al., 2018; Douglas Nychka et al., 2015; Hijmans, 2016; Neuwirth, 2014;

Wickham, 2011). This dataset contains 279 (192 COOP, 87 SNOTEL) Utah measurement

locations with an additional 136 measurement (103 COOP, 33 SNOTEL), all located within

100 kilometers (km) of the Utah border. Figure 2.2 shows that most of the SNOTEL stations

are concentrated in the Wasatch mountains, while most COOP stations occur in populated

locations along the Wasatch front. We considered snow measurements for years 1970 to 2017.

This range focuses on years where SNOTEL station measurements are available, as the

earliest available measurements from active SNOTEL stations in Utah is 1978 (NRCS, 2017).

SNOTEL stations are known for providing reliable real time WESD measurements in remote,

high elevation areas where human access is difficult. COOP stations, while commonly used

in design snow load estimates (Sack, 2015), do not provide the unprecedented precision

and coverage of SNOTEL stations, often leaving users to estimate WESD from snow depth

readings. Despite the inferior measurements, such stations are necessary for any appropriate

estimations at low lying elevations in the state as observed in Figure 2.2. As such, lower

elevation COOP data is required for a legitimate analysis, even if such measurements are of

lower quality than SNOTEL readings.

Estimating Loads

Many COOP stations only provide snow depth readings, requiring the estimation of

snow load from snow depth. Snow load is a function of snow depth and density, which are

both highly variable and time dependent. The average depth-to-water ratio of freshly fallen

snow is around 0.13 (Baxter et al., 2005) with a ratio as high as 0.5 for end of season, settled
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Fig. 2.2: Map of measurement location types in UT-2017. SNOTEL stations provide direct
measurements of WESD.

snowpack. The western states have a history of using several different methods to convert

snow depths to snow loads. Colorado converts snow depth to snow load using two non-linear

curves, one created by Tobiasson and Greatorex (1996) and another developed by DeBock

et al. (2017). These curves are defined as

qs = g1(h,A(x)) = p(A(x)) ∗ f (1)(h) + (1− p(A(x))) ∗ f (2)(h)

with

f (1) = (0.0479)(0.279)
(

h

2.54

)1.36
f (2) = (0.0479)(0.584)

(
h

2.54

)1.15

where h is the snow depth measured in centimeters (cm). The load parameter p ∈ [0, 1]

reaches its lower and upper limits for elevations (A) of around 1800 m and 2600 m respectively.

Idaho uses the Rocky Mountain Conversion Density (RMCD) redefined for metric units

as

qs(h) = g2(h) =


0.017h h < 55.88cm

0.0445h− 1.5274 h ≥ 55.88cm
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Table 2.2: Climate specific parameters for Sturm’s equation.
Class ρmax ρ0 k1 k2
Alpine 0.5975 0.2237 0.0012 0.0038
Maritime 0.5979 0.2578 0.0010 0.0038
Prairie 0.5940 0.2332 0.016 0.0031
Tundra 0.3630 0.2425 0.0029 0.0049
Taiga 0.2170 0.2170 0.0000 0.0000

where h represents snow depth (cm) (Sack and Sheikh-Taheri, 1986).

For UT-2017, we elect to use a method developed by Sturm et al. (2010). This method

models snow load with the equation

qs = g3(h, d) = 0.0981h [(ρmax − ρ0) [1− exp (−k1h− k2d)] + ρ0]

where d represents day of the snow season starting on October 1st (-92) and ending June

30th (181) with no zero value. Additionally, ρo, ρmax, k1, and k2 are parameters specific

to a particular climate class defined in Table 4 of Sturm et al. (2010) and provided for

convenience in Table 2.2 of this chapter. For convenience, this method is referred to hereafter

as “Sturm’s equation.”

Sturm et al. (1995) classifies nearly all of Utah as a “Prairie” climate type. However,

the coarse resolution of their classification (50 km by 50 km) makes it reasonable to believe

that high elevation locations in Utah would likely be considered “alpine” if the grid was

finer. Thus, we performed depth-to-load conversions for “prairie” and “alpine” terrains using

the equation

qs =


0.0981h [.3608 ∗ (1− exp (−.0016h− .0031d)) + .2332] A < 2113.6m

0.0981h [.3738 ∗ (1− exp (−.0012h− .0038d)) + .2237] A >= 2113.6m.

Such a method assumes a continuous increase in snow density throughout the snow season,

perhaps overestimating the snow density of late season storms in low lying areas not subject

to continuous snow accumulation. As such, Sturm’s equation generally leads to larger design

snow load estimates than similar estimates made with the RMCD. On average the resulting
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design snow load estimates using Sturm’s equation are nearly 50% larger than those made

with the RMCD for UT-2017. The discrepancies between these methods are largely irrelevant

whenever the predicted load falls below Utah’s mandated minimum design snow load of

approximately 1 kPa. For loads above this threshold, the more conservative load estimates

offered by Sturm’s equation are acceptable and perhaps desirable in the context of building

design.

Quality Control

UT-2017 assumes all yearly maximums at a particular station come from the same

log-normal distribution. Any false maximums due to faulty daily measurements or missing

readings tend to artificially inflate the standard deviation estimate for right-skewed probabil-

ity distributions, resulting in an severe overestimate of the 98th percentile. This is especially

true of measurement locations with small sample sizes.

Coverage Filters

Coverage filters seek to remove artificially low annual snow load maximums from the

data without throwing out excessive amounts of information. The spread of measurements

across the period of the snow season in which a maximum is most likely to occur is more

important the actual number of measurements in a given snow season. The low springtime

temperatures at high elevations allow for consistent snow pack accumulation into April or

May, while warmer, lower elevation locations will see a peak in snow accumulation much

earlier in the season, as observed in Figure 2.3.

The observed difference in peak snow pack occurrence between low and high elevations

in Figure2.3 prompts a two level coverage filter. All measurement locations above 2115 m

(which roughly corresponds to 3rd quantile of the unfiltered set of measurement location

elevations) must have at least one observation in every month from March to May in order

to be considered. Measurement locations below 2115 m must have at least one observation

in every month from December to March of the water year to be considered. We retain all

annual maximums strictly greater than the median max at a given measurement location

regardless of the yearly coverage. This exception ensures that true annual maximums are
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Fig. 2.3: Yearly maximum design snow loads from measurement locations with coverage in
every month of the snow season as separated by elevation.

not inadvertently thrown out by the coverage filter.

In addition to this coverage filter, we remove the lowest 10% of maximums at each

measurement location prior to distribution fitting. This removal is a practical solution to

a systematic problem and the selection of 10% is somewhat arbitrary. The 10% threshold

helps us remove low outliers that passed the coverage filters without throwing out excessive

amounts of data. The effect of this coverage filter approach is illustrated in Figure 2.4.

These quantile-quantile plots show the improved log-normal distribution fit that occurs at

Levan, Utah after all screening measures are applied. The effect of this improved fit is a

reduction in the estimated design snow load. This example illustrates the importance of

screening for artificially low annual snow load maximums prior to estimating design snow

loads.

Misreported Values

Retaining only the annual maximums makes the distribution fitting process particularly

susceptible to high outliers. Fortunately, the NCEI provides a suite of data measurement and

quality control flags to detect such outliers (Durre et al., 2010; NOAA, 2016). We removed

all measurements that failed any of the NCEI quality assurance flags prior to analysis. We
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Fig. 2.4: Theoretical log-normal distribution quantiles vs empirical (observed) quantiles for
annual maximum snow loads at Levan, Utah with and without coverage filters applied. The
coverage filters result in the reduction of the estimated standard deviation from 0.69 to 0.33.

also conducted a manual search for additional outliers by flagging all sets of three consecutive

measurements where the estimated design snow load varied by more than 1.44 kPa in a 10

day period. These arbitrary thresholds allowed us to determine candidate outlier points,

from which we removed 16 observations at nine measurement locations. Given the millions

of observations in the raw data, we felt the number of observations removed was modest.

Metadata Anomalies

Many measurement locations experience small changes in their latitude, longitude,

and elevation over time. To handle such cases, we use a measurement location’s median

latitude, longitude, and elevation values as long as the maximum difference among recorded

elevations for the same measurement location is less than 100 meters and the maximum

geographic distance between coordinates is less than 10 km. Three stations in Kanosh, Utah,

Bright Angel Ranger Station, Arizona, and Colorado National Monument, Colorado, all had

measurement locations with elevations varying more than 100 meters during their periods of

record. In each case, measurements at the anomalous elevation were treated as a separate

measurement location.

Zero Values

Even after applying quality assurance filters, there were still measurement locations in

Southern Utah, Northern Arizona and Southern Nevada with zero-valued annual maximum

loads. For data to follow a log-normal distribution, all values observations must be strictly
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positive. We initially tried to assign arbitrary small values to non-snow years to satisfy

log-normal distribution requirements. However, these attempts caused measurement location

maximums to no longer follow a log-normal distribution, which produced poor estimates of

the distribution’s upper tail. This in mind, we required all measurement locations to have at

least five years of non-zero maximums and only used non-zero maximums when fitting the

log-normal distribution. Section A.6 describes an alternative method of fitting a log-normal

distribution that still considers zero-valued loads.

Estimating 50 Year Recurrence Intervals

The fitdistrplus package (Delignette-Muller and Dutang, 2015) is used to fit a

log-normal distribution to the yearly maximum values at each measurement location via

maximum likelihood (ML) estimation. The estimated distribution parameters are then used

to determine the 98th percentile of the distribution, which is defined as the design (i.e. 50

year) snow load for that measurement location. The use of the log-normal distribution

to describe the probabilities of maximum snow events is well established and used in the

snow load reports of Colorado, Montana, Oregon, and New Mexico (Sack, 2015). Other

right-skewed probability distributions have also been used, such as the log-Pearson III in

SEAU (1992) and Al Hatailah et al. (2015). The use of formal goodness of fit tests to select

distributions are not helpful and perhaps detrimental in this context, as a “good” fit of the

bulk of the data in no way guarantees an appropriate fit for the extreme right tail of the

distribution.

In an effort to guard against invalid design load estimates, we only include measurement

locations with at least 12 years of record prior to removing the lowest 10% of maximums.

This minimum sample size is similar to the thresholds used in Idaho (Al Hatailah et al., 2015)

and Colorado (DeBock et al., 2017). These relatively small thresholds for the distribution

fitting process reflect practical efforts on the part of researchers to produce reasonable 50

year estimates without excluding measurement locations with moderate periods of record.

However, these thresholds also mean that we are often trying to predict snow accumulation

events larger than has ever been recorded at the measurement location. This extrapolation,
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coupled with known sensitivity issues in the distribution fitting process, reminds us that the

50 year estimates are at best, “. . . one[s] of good faith and not statistical in nature” (Scholz,

1995). See Section 3.4.3 for an expanded discussion of the limitations of 50 year estimates.

2.1.2 The 1992 Utah Dataset (UT-1992)

These data consist of 413 measurement locations (210 SC, 203 COOP), all located in

Utah. The method used to calculate the log-Pearson type III parameters is not specified.

Depth-to-load conversions using the RMCD were occasionally adjusted when the resulting

snow water equivalents exceeded the measurement location’s winter cumulative precipitation.

SEAU (1992) provides a copy of these data but does not provide precise measurement

location information. Since 1979, many of the SC stations used in this report have been

discontinued and precise location information is unavailable. Measurement location informa-

tion was determined for all but seven locations through a combination of station number

matching in NRCS and NOAA station databases, as well as personal contact with Randall

Julander at the Utah Snow Survey Office in Salt Lake City. Locations for the seven remaining

measurement locations were approximated using Google Earth to determine approximate

coordinates given information from the Utah Snow Survey Office and county information

given in SEAU (1992).

2.1.3 The 2015 Idaho Dataset (ID-2015)

These data consist of 394 (246 SC/SNOTEL, 148 COOP) Idaho measurement locations

with an additional 257 (222 SC/SNOTEL, 35 COOP) measurement locations near the

Idaho border. Log-Pearson type III distribution parameter estimates were determined using

the method of moments. Al Hatailah (2015) provides these data as well as further details

regarding their approach to estimating design snow loads.

2.2 Methods

Each of the following methods predict design snow loads at a state level using design

snow loads at surrounding measurement locations as input. These methods were selected due
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to their ability to be easily applied to datasets of varying size and location, an important pre-

requisite for calculating the cross validated errors discussed in Chapter 3. For comparative

convenience, the primary methods of consideration are defined using a common set of

notation. Let qs(x) denote the design snow load at a location x (with q∗s representing the

estimated design snow load) and let A(x) denote location elevation. Further, let xα represent

a measurement location α (α = 1, · · · , N) and let D(xi,xj) represent the geographic distance

between locations xi and xj .

The defining feature of each method is in the way that elevation is accounted for in the

design snow load predictions. With the exception of the design snow load equations in SEAU

(1992), each of the considered methods use normalized design snow loads (NGSL) or some

variant of linear regression. NGSL are calculated as design snow load divided by elevation(
q∗
s (xα)
A(xα)

)
. They “appear to mask out the effects of the environment on the snow-making

mechanism” and “reduce the entire area to a common base elevation” (Sack et al., 2016).

NGSL have a long history of use in western state snow load studies, including the current

snow load reports of Idaho, Montana and Washington (Sack et al., 2016).

On the other hand, regression based estimators seek to characterize the log-linear

relationship between design snow loads and elevation observed in Figure 2.1. This relationship

can be characterized using simple linear regression (LR) defined as

log(q∗s(x)) = β0 + β1A(x) (2.1)

where β0 and β1 are calculated using ordinary least squares regression. The cross validated

results in the following section show that differences in method accuracy can be largely

attributed to differences in the characterization of the elevation/snow load relationship.

2.2.1 Current Utah Law (SNLW)
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Table 2.3: Explanation of coefficients used in SNLW.
Coefficient Description Value
P0 Base design snow load at a given elevation 1.4-4.1 kPa
S Rate at which design snow load changes with elevation 9.896 kPa/km
A Elevation above sea level at location km
A0 Base design snow load elevation 1.25-2.13 km

The 1992 Utah snow load report defined design snow load requirements using the

equation referred to hereafter as the “Utah snow law” (SNLW):

q∗s(x) =


(
P 2

0 + S2 (A(x)−A0)2
) 1

2 A(x) > A0

P0 A(x) ≤ A0

where the coefficients A, A0, and P0 are county specific parameters (SEAU, 1992). Expla-

nations and ranges (as converted from the original English units) for the county specific

parameters are given in Table 2.2.1.

Load observations by building officials and others since the formation of these equations

prompted the Utah legislature to release updated snow load requirements for select cities in

the state (Utah Legislature, 2016), generally resulting in a reduction of design snow load

requirements at these locations. Further discussion regarded these amended requirements is

provided in Section 3.1.

The county specific coefficients attempt to address the highly diverse climate of Utah.

However, these varying coefficients can, at times, lead to significant discrepancies in snow

load predictions along county borders, particularly at high elevations. A great example of

this can be found along the border of Cache and Box Elder counties at the point US highway

89 crosses between counties (1800 m in elevation). A structure built in Cache County at

this point would have a snow load requirement of
(
2.3942 + 9.8962 (1.8− 1.372)2

)0.5
= 4.87

kPa, while a structure built in Box Elder County would have a snow load requirement of(
2.05942 + 9.8962 (1.8− 1.585)2

)0.5
= 2.96 kPa, approximately 40 percent lower than the

Cache county requirement. Discrepancies like this are one of the reasons the state of Utah
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chose to update their snow load requirements in 2018 (Bean et al., 2018).

2.2.2 Parameter-elevation Regressions on Independent Slopes Model (PRISM)

PRISM was originally developed by Chris Daly in the early 1990’s to produce comput-

erized climate maps as a satisfactory replacement to maps hand made by climate experts.

Unlike traditional interpolation methods which only account for measurements of the primary

(and perhaps one secondary) variable, PRISM is designed to think like a climatologist expert:

taking into account a variety of climatic factors known to influence the variable of interest

(Daly and Bryant, 2013).

Framework

In order to create a continuous map of design snow load requirements, we must use

surrounding measurement location data to predict design snow loads between measurement

locations. Such data would confirm that a rise in elevation tends to be associated with a

rise in design snow loads. However, a model that only uses elevation to predict design snow

loads fails to account for other important climate factors. This in mind, PRISM fits a unique

linear model to each area of interest, giving measurement locations most relevant to the area

of interest higher influence during model fitting through a series of user-defined weights.

The use of PRISM to predict precipitation and temperature is well established (see

prism.oregonstate.edu) and is used as part of Oregon’s most recent snow load report, made

in partnership with the Northwest Alliance for Computational Science and Engineering

(NACSE, 2012). The Oregon report generates 30 year mean snowfall predictions with PRISM

and uses these predictions to estimate design snow loads. We alternatively use PRISM to

directly predict design snow loads. In addition, recall from Figure 2.1 that design snow loads

share a log-linear relationship with elevation. For this reason we make PRISM predictions

on a log-scale and exponentiate predictions for final load estimates.

Weights

prism.oregonstate.edu
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Weights provide a way to account for additional factors influencing snow loads beyond

elevation in a particular region. Daly et al. (2008) defines the PRISM weighting scheme as

w = wc
[
Fdw

2
d + Fzw

2
z

] 1
2 wpwfwlwtwe, (2.2)

where wc, wd, and wz represent the cluster, distance, and elevation weights. Fd and

Fz are scalars defining the importance of the distance and elevation weights and must

sum to one. The additional weights wp,wf ,wl,wt, and we represent the coastal proximity,

topographic facet, vertical layer, topographic position, and effective terrain weights.

We use an adaptation of (2.2) defined as

w = wc
[
Fdw

2
d + Fzw

2
z

] 1
2 wb,

where wb represents a basin weighting factor. Each weighting vector must individually and

collectively sum to one. We provide summaries of each weight as follows:

Distance Weighting

The closer a measurement location lies to the area of interest, the more weight that

measurement location receives. Measurement locations within a user minimum radius of

influence (rm) receive full weight, while measurement locations outside the radius of influence

receive a weight inversely proportional to their geographic distance (d) to the area of interest.

This is represented as

wd =


1 d− rm ≤ 0

1
(d−rm)a d− rm > 0

where (a) allows the user to adjust the shape of the distance function (Daly et al., 2008).

Elevation Weighting

Measurement locations are given more weight if their elevation is similar to the elevation

of the area of interest. A measurement location’s absolute elevation difference (∆z) is

compared to user specified minimum (∆zm) and maximum (∆zx) elevation thresholds. This
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is represented as

wz =



1
∆zbm

∆z ≤ ∆zm

1
∆zb ∆zm < ∆z < ∆zx

0 ∆z ≥ ∆zx

where (b) is an weighting factor that allows the user to adjust the shape of the elevation

function (Daly et al., 2002).

Cluster Weighting

“Cluster weighting seeks to limit the influence of stations that are clustered with other

nearby stations, which can lead to over-representation in the regression function” (Daly

et al., 2008). This weight is defined as

wc = 1
1 + sc

with

sc =
n∑
j=1

hijvij

where (hij) and (vij) represent the horizontal and vertical cluster factors between measure-

ment locations i and j respectively.

Any pair of measurement locations i and j that have a geographic distance (dij)

between them that is within 20% of the minimum radius of influence (rm) will have a

non-zero horizontal cluster factor, i.e.

hij =


0 dij > .2rm

.2rm−dij
.2rm 0 ≤ dij ≤ .2rm

.

Any pair of measurement locations i and j that have an absolute elevation difference

(eij) between them that is within a user-defined elevation precision (p) will have a non-zero
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Fig. 2.5: Comparison of design snow loads vs elevation in the two major water basins of
Utah, illustrating how the elevation/snow load relationship changes across water basins.

vertical cluster factor, i.e.

vij =


0 (eij − p) > p

2p−eij
p (eij − p) ≤ p

Basin Weighting

Most PRISM implementations have a set of weights devoted to handling the influence

of mountainous terrain on climate patterns. Mountain ranges ultimately govern the flow of

water and a map of watershed boundaries is a quick way to identify the major mountains and

valleys of a region. Watershed data is readily available through the U.S. Geological Survey

(USGS, 2019b) and defined by a series of Hydrologic Unit Codes (HUC). These HUCs define

a hierarchy of water basins using up to 12 digits, with each pair of two digits identifying a

sub-basin within the previous two-digits (reading left to right). Justification for these basin

weights is demonstrated by the observable difference in design snow load/elevation profiles

of the Great Basin Watershed (West of the Wasatch Front) and Upper Colorado Basin

Watershed (East of the Wasatch Front) as observed in Figure 2.5. This figure shows (as

modeled by a linear loess smoothing curve) that measurement locations on the west side of

the Wasatch Front have a more drastic increase in design snow loads as elevation increases.

This observation highlights the need to weight measurement locations according to the

similarity of their watersheds to the area of interest. We therefore create a water basin
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Fig. 2.6: Illustration of PRISM predictions at select locations in Utah.

weight with equation

wbi =
(
si + 1

5

)c
,

where s represents the number of common watersheds (four levels ranging from HUC 2

through 8) shared by measurement location i and the target grid cell and c is a user-defined

weighting factor that changes the shape of the weighting function.

Illustration

Figure 2.6 illustrates PRISM predictions at four locations in Utah. Notice that that

slope of the linear model changes at each location to best fit highest weighted points. This

reaffirms the important idea that each PRISM prediction uses a different linear model. These

models can be heavily influenced by the combination of parameters selected for each of the

weighting functions. Approaches and implications for PRISM weighting parameter selection

are discussed further in Chapter 3.

2.2.3 Idaho’s NGSL Based on Inverse Distance Weighting (IDW)

In IDW, the predicted design snow load at a particular location is a weighted average

of the NGSL of surrounding measurement locations, multiplied by the location’s elevation.

Adapting the original notation given by Shepard (1968), this method is defined for snow
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load prediction as

q∗s(x) = A(x)∑N
α=1D (xα,x)−c

n∑
α=1

[
D (xα,x)−c q

∗
s(xα)
A(xα)

]
.

The variable c > 0 allows for adjustments to the weighting factor, with larger values of c

accelerating the weight decay as distance increases. This method is an exact interpolator,

meaning if a prediction location exactly matches a measurement location (i.e. D (xα,x) = 0),

the IDW method will simply predict using the NGSL of the matching measurement location.

Idaho’s implementation of IDW separates the state and measurement locations into two

layers above and below 1,219 m. Predictions in the lower layer use c1 = 2 and predictions in

the upper layer use c2 = 6 (Al Hatailah et al., 2015). One difference in our implementation

is the use of geographic distances rather than euclidean distances from the Idaho Transverse

Mercator Projection (Al Hatailah, 2015). The use of geographic distances eliminates the

spatial distortion that may occur when applying a euclidean based map projection to a

larger geographical area.

2.2.4 Linear Triangulation Interpolation (TRI)

The TRI method partitions the area of interest into a set of non-intersecting triangles

with vertices at each measurement location. Predictions use a weighted average of the NGSL

at the three measurement locations forming the triangle overlaying the point of interest

(Akima, 1978). The R implementation of this strategy creates a grid of predicted values

within the convex hull of the given data points (Akima and Gebhardt, 2015)). This leads to

missing value predictions at outer locations that do not fall within the convex hull. These

missing values are ignored when computing cross validated errors in Chapter 3.

2.2.5 Kriging (SKLM and UK)

The gstat R package (Gräler et al., 2016) provides a numerical implementation of

many kriging variations. Details regarding these family of estimators are given in Goovaerts

(1997). One kriging extension of (2.1) is called simple kriging with varying local means



27

(SKLM) (Goovaerts, 2000) defined symbolically as

log(q∗s(x)) = β0 + β1A(x) +
N∑
α=1

λα(x)r(xα).

This method proceeds in three steps. First, a linear model is calculated identical to

Equation 2.1. Then, simple kriging uses the residuals of the linear model to predict a residual

value at the location of interest. Finally, this residual value is used to update the original

linear model prediction. The simple kriging coefficients (λα(x)) are calculated by solving

the kriging system

N∑
α=1

λβ(x)CR (D(xα,xβ)) = CR (D(xα,x)) β = 1, · · · , n.

where CR represents the covariance between any two observations and is assumed to be

a function of distance. More often, this system is solved using semi-variances γ(h) =

C(0)−C(h), assuming the covariance exists. Semi-variances are typically preferred as semi-

variances can be well defined even in cases where the covariance is not. These semi-variances

are modeled using variograms. A theoretical variogram is often used to approximate the

empirical variogram defined as

γ̂(h) = 1
2Nh1

Nh∑
αh=1

[
r(xαh1

)− r(xαh2
)
]2

(2.3)

where
[
r(xαh1

), r(xαh2
)
]
represents each pair of regression model residuals located ||h||

distance away from each other (Goovaerts, 1997). Figure 2.7 provides an example of the

empirical and associated theoretical variograms for each dataset.

An alternative method for accounting for elevation in kriging predictions is through

universal kriging (UK), or kriging with an external drift, which calculates the trend implicitly

within the kriging system, rather than separately as in SKLM (Goovaerts, 1997). When
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Fig. 2.8: Illustration of UK predictions at select locations in Utah.

elevation is the only trend coefficient, the universal kriging estimates are equivalent to

log(q∗s(x)) = β∗0 + β∗1A(x) +
N∑
α=1

λα(x)r(xα)

where β∗0 and β∗1 are calculated using generalized least squares regression based on the

assumed spatial covariances. Figure 2.1 showed the difference in the trend lines resulting

from SKLM and UK, while Figure 2.8 shows an example of the UK predictions at the same

four locations used in the PRISM example. Notice that the linear model is identical for each

location, yet the final predictions do not reside on the line as they did in PRISM.
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Kriging predictions provide theoretical estimates of the prediction error uncertainty

(often called kriging variance) (Moral, 2010). This kriging variance is based upon the distribu-

tion of data in space and is higher for prediction locations with few surrounding measurement

locations. This kriging variance can be used to identify areas lacking measurement location

density. This is different from the uncertainty inherent in the design snow load estimates at

the measurement locations. The contrast between kriging variance and input precision is

discussed further in Chapter 4.

2.3 Reflections

This chapter has outlined a standardized method for creating a design snow load dataset.

This process highlighted the need for data filtering beyond those automatically provided by

the NCEI in order to ensure practical design snow load estimates at measurement locations.

We have continued to refine this data processing workflow as illustrated in the (unpublished)

Washington snow load study. Portions of this study describing our improved data processing

techniques are provided in the Appendix.

It was shown that design snow loads experienced a log-linear relationship with elevation.

It is likely that this observed log-linear relationship does not hold outside of the range

of observed data. This is particularly true at mountain peaks exceeding 3500 m, where

exposure to the wind and sun could result in these peaks having less settled snow than the

measurement locations tucked away at slightly lower elevations. Regardless, it is clear that

elevation is a defining characteristic of design snow loads. The following chapter discusses

how the proper treatment of elevation in design snow load mapping affects the accuracy of

the mapping predictions.
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CHAPTER 3

COMPARISONS AND CONSIDERATIONS

This chapter is devoted to comparisons and considerations of the data and methods

described in Chapter 2. We first compare maps of PRISM and SNLW to visualize the recent

updates to Utah’s design snow load requirements. We also compare these recently updated

requirements to the current design snow load requirements in Idaho and Colorado. Next, we

compare the accuracy of all the methods introduced in Chapter 2 through a cross validation

analysis on UT-2017, UT-1992, and ID-2015. Finally, we discuss important cautions and

considerations for estimating design snow loads.

3.1 Comparing PRISM to SNLW

Figure 3.1 compares PRISM to SNLW. This comparison is particularly important as

these PRISM predictions replace the SNLW predictions in the Utah building code. The

PRISM predictions are bounded below by the state minimum design snow load requirement

(≈1 kPa) and above by the highest design snow load in UT-2017 (≈ 21 kPa). This figure

demonstrates that the PRISM predictions are lower than SNLW predictions for the majority

of the state, particularly along the Wasatch front. There are a few areas where PRISM

predictions are higher than SNLW predictions, including higher elevation areas in the Uintah

Basin and in the mountains immediately north of St. George, Utah. Figure 3.2 provides a

comprehensive comparison of PRISM, UK, and IDW predictions at cities in Utah with recently

amended design snow load requirements (Utah Legislature, 2016). While the motivation

for these amendments is not entirely clear, it is assumed that the amendments resulted

from site-specific studies intended to improve upon the SNLW requirements. The sensitivity

of the considered mapping techniques is illustrated by making separate predictions using

UT-2017 and UT-1992. In nearly every case using both datasets, the amended requirements

are more consistent with the PRISM and UK predictions than the SNLW predictions. This
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Fig. 3.1: Maps comparing design snow load predictions using PRISM and SNLW.

general agreement of PRISM and UK with the amended requirements provides evidence

that these load requirements are an improvement from those outlined by SNLW.

We are most interested in instances in Figure 3.2 where the amended snow load

requirements differ greatly from PRISM estimates. For example, PRISM estimates in

Coalville (elevation 1,700 m) and Kamas (1,977 m) are nearly half those required in the

amendments (2.11 vs 4.12 kPa and 2.68 vs 5.46 kPa). However, there is a consensus among

the various mapping techniques that the design loads for these locations should be reduced.

This consensus suggests that the previous design snow load requirements in Summit County

are intentional over-predictions as explained further in Section 3.3.2.

Monticello, Utah is another interesting location as it is the only city for which each

method predicts higher design snow loads than both the original and amended requirements.

Monticello sits at the base of the Abajo Mountains at an elevation of 2150 m, nearly 300 m

higher than its closest neighbor Blanding, Utah (1860 m) 30 km south. Both measurement

locations have nearby measurement locations and the Monticello measurement location has

a much higher design load (4.4 vs 2 kPa). It is difficult to determine if this drastic difference

in design loads is legitimate given the sparsity of data in the region. This in mind, the

available information in light of this data scarcity justify increases in the predicted design
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Fig. 3.3: Comparisons of Utah design snow load requirements along the Colorado and Idaho
borders.

loads using PRISM or UK (approximately 3.2 kPa instead of 2.39 kPa).

3.2 Border Comparisons

We also compare our design snow load estimates to the estimates made by Colorado

and Utah. Colorado snow load values were obtained using the contour map and snow

load equation included in the Colorado snow load report (Torrents et al., 2016). Idaho

predictions were obtained using our implementation of IDW with ID-2015 data. PRISM

and UK estimates using UT-2017 had mean absolute differences of only 0.29 and 0.42 kPa

respectively when compared to Colorado predictions. Predictions along the Idaho border

did not share the same level of agreement, with mean absolute differences of 1.42 kPa and

1.22 kPa respectively. Figure 3.3 confirms that the Idaho predictions share less agreement

with PRISM and UK than the Colorado predictions.

3.3 Cross Validation

Recall that each state uses their own mapping technique to predict design snow loads
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between measurement locations. Because these techniques were independently developed,

there has been no formal comparison of accuracy between methods. Cross validation is a

common tool used for model selection and refinement in many disciplines (Arlot and Celisse,

2010), including structural engineering (Chang et al., 2017). We use 10-fold cross validation

to compare the methods described in Chapter 2 using the datasets described in this same

chapter. Cross validated errors are defined as

Err(xα) = qs(xα)− q̂s(xα)

where qs(xα) and q̂s(xα) are the actual and predicted design snow loads at measurement

location xα respectively. Defined in this way, a positive error indicates under-predictions

and a negative error indicates over-predictions.

Cross validated comparisons of a single model are often performed using the scale

of the modeled response variable. Thus, if a log-transformation has been applied to the

response, the cross validated errors would be reported on the log-scale. In this setting, we

are comparing multiple models with different transformations of the design snow load (i.e.

the response variable). For this reason, all cross validated errors in this section are reported

in the original scale. Given the exponential nature of snow, these cross validated errors

are heteroscedastic and occasionally very large at higher elevations. Figure 3.4 shows an

example of these heteroscedastic errors on UT-2017.

We use the mean absolute error (MAE) and mean error (ME) as the primary means of

summarizing errors. These are defined (similar to Maguire et al. (2014)) as

MAE = 1
N

N∑
α=1
|Err(xα)|

ME = 1
N

N∑
α=1

Err(xα)

where N represents the total number of measurement locations with design snow load

measurements and q̂s(xα) represents model predictions for each measurement location xα.

Given the inherent skewness in the errors. We also consider the median absolute error
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Fig. 3.4: Scatterplot of cross validated errors for select methods on UT-2017, highlighting
the heteroscedasticity of the errors on the original scale.

(medAE) and the root mean squared error (RMSE) defined as

medAE = {|Err(xk)| : P (|Err(xα)| ≤ |Err(xk)|) ≤ 0.5}

RMSE =

√√√√ 1
N

N∑
α=1

Err(xα)2.

The medAE is less sensitive than the MAE to large errors, while the RMSE more sensitive.

Reporting each measure allows us to determine how the heteroscedasticity influences in the

final model comparisons. We also perform cross validation 100 times in order to measure

the sensitivity of each measure to the random separation into the 10 groups.

3.3.1 Parameter Selection

Many of the model parameters described in Chapter 3 must be specified prior to

prediction. Some of these parameters are physically based and could be selected using

prior experience or expert opinion. This heuristic approach seems to guide the selection of

parameters in the Idaho Snow Load Study (Al Hatailah, 2015). For this reason, we elect
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Table 3.1: Weight parameters used for final predictions in Utah.
Parameter Description Final Recommended
Fd Distance weighting importance .8 .8
rm Minimum radius of influence 50km 30-100km
a Distance weighting exponent 2 2
b Elevation weighting exponent 1 1
zm Minimum elevation threshold 100m 100-300m
zx Maximum elevation threshold 1500m 500-2500m
p Elevation precision 100m* n/a
d Basin weighting exponent 2 (2) n/a
* assumed p = zm

to use identical parameters for IDW on each considered dataset. One alternative approach

would be to select parameters via cross validation. For example, PRISM parameters in Bean

et al. (2017) were selected using an eight-dimensional grid search, looking for the combination

or parameters that minimized or nearly minimized the MAE. This eight-dimensional grid

search was eventually reduced to four dimensions in Bean et al. (2018) by fixing parameters

for which Daly et al. (2002) suggested only one value. The final parameters selected for the

Utah Snow Load study are provided alongside the recommended values from Daly et al.

(2002) in Table 3.3.1

Note that the tuning of PRISM in Bean et al. (2017) was performed prior to reporting

the cross validation results. When the number of parameter combinations in the grid search

is large, the cross validation tuning approach has the potential to over-fit the dataset of

interest and produce smaller cross validation errors than would be seen on new data. To

avoid over-fitting, Bean et al. (2019) used the same set of tuned parameters obtained in

Bean et al. (2017) when making comparisons on UT-1992 and UT-2015. We alternatively

tune PRISM as part of the cross validation process, selecting a new set of parameters when

predicting for each fold of the data. The numerical implementation of this auto-tuning

approach minimizes the MAE on the available data using the scale of the response variable.

Thus, unlike the original parameter tuning, the auto-tuning minimizes the MAE for the

log-transformation of design snow load predictions. Table 3.2 shows that the MAE using

PRISM is fairly insensitive to our selection of parameters, although the range and values
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Table 3.2: Comparison of the minimum (min), median (med) and maximum (max) MAE
obtained from 100 iterations of cross validation with PRISM using the auto-tuning method,
vs the original single-tune method.

UT-2017 UT-1992 ID-2015
min med max min med max min med max

Single Tune 0.886 0.927 1.014 1.159 1.212 1.268 1.631 1.679 1.743
Auto Tune 0.891 0.942 1.015 1.207 1.273 1.505 1.539 1.625 1.939

of the MAE tend to be slightly larger with the auto-tuning approach. This insensitivity

is partially due to the fact that the original parameters were partially determined using

recommendations from Daly et al. (2002), rather than using a strict model tuning. The

slight increase in MAE observed in Table 3.2 can be attributed to two sources. First, the

auto-tuning approach selects the best combination of parameters for the MAE of the log-scale

predictions. The log-transformation reduces the influence that large errors at high elevations

have on the final results. Thus the “best” combination of parameters on the log-scale might

not be the best parameters on the raw scale. Second, the auto-tuning approach only uses the

available portion of the dataset at any step in cross validation, while the original single-tune

approach used all observations. We expect a tuning method using all observations to be

more robust than a tuning method using only a subset of observations. Tuning within cross

validation provides a more realistic estimate of the model error as the chance for over-fitting

the available data is reduced.

A similar approach could be applied to the variogram fitting required in UK and SKLM.

The most recent implementation of these two models allows for an automatic fitting of the

variogram at each stage of cross validation. However, Bean et al. (2019) demonstrated that

the MAE is likewise fairly insensitive to modest changes in the variogram parameters. For

example, the average MAE (over 100 iterations of cross validation) for ID-2015 and UT-1992

using the dataset-specific variograms in Figure 2.7 are within 0.01 kPa of the MAE using

the UT-2017 variogram.

3.3.2 Error and Elevation

The locally weighted regression (loess) (Cleveland and Devlin, 1988) curves in Figure



38

3.5 reveal the elevation dependent structure of the error scatter-plots previously shown in

Figure 3.4. These curves compute local weighted averages of raw and absolute measurement

location errors across elevation and map these local averages as smooth polynomial curves.

The gray tick marks drawn between each set of plots represent the elevations of the individual

measurement locations. These tick marks help to visualize measurement location density

across elevation. This characterization of density gives context to plotted curves, as the loess

estimates will be more reliable at elevations with a higher density of measurement locations.

Figure 3.5 shows that PRISM, SKLM, and UK are fairly unbiased at low elevations

(2000 meters or less) and tend to under-predict at higher elevations (2000 - 3000 meters).

The errors of all methods are very unstable in ID-2015 at high elevations. The sinusoidal

shape of the ME curves for IDW reveal the tendency of this method to over-predict design

snow loads at low elevations and under-predict at high elevations. This behavior is a result

of the correlation between NGSL and elevation discussed further in Section 3.4.2. Finally,

Figure 3.5 shows the strong tendency of SNLW to over-predict design snow loads. In terms

of relative errors, the Utah equations on average predict design snow loads 34% higher

than measurement location design snow load estimates from UT-2017 and 57% higher than

estimates from UT-1992 (with median relative errors of 25% and 41% respectively). Recall

that Equation 2.2.1 was intentionally designed to over-predict design snow loads and it is

no surprise that this method would have higher cross validated errors when compared to

models designed to minimize error. However, these accuracy comparisons are still useful as

they quantify the magnitude of the over-prediction of design snow loads using SNLW. Such

over-predictions are understandable when considering the consequences of under-predictions

discussed in Chapter 1. However, we agree with Nowak and Collins (2012) that load estimates

should be as accurate and reliable as possible, with conservative adjustments being made to

load predictions through the selection of load factors from a proper reliability analysis.

3.3.3 Accuracy Comparisons

Figure 3.6 compares the ME, medAE, MAE, and RMSE for each method over each

dataset. Error measures for SNLW on ID-2015 are excluded as SNLW predictions are Utah
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Fig. 3.5: Smoothed errors and absolute errors for each considered dataset. The gray tick
marks plotted along the x-axis of the three upper figures denote the individual measurement
location elevations.

specific. The points represent the median measure from the 100 iterations of cross validation,

while the whiskers represent the range. In terms of MAE, Figure 3.6 shows that PRISM,

SKLM and UK notably outperform all other methods on both Utah datasets, with an MAE

approximately 40-45% lower than SNLW and IDW on UT-2017. These improvements are

not as pronounced for ID-2015, likely due to the less pronounced log-linear relationship

between design snow loads and elevation. Likewise, differences in RMSE across methods

is also not as drastic as the MAE results, illustrating the difficulty that all methods have

at appropriately predicting snow loads at high elevations. The very large range of RMSE

measures for PRISM on UT-1992 and ID-2015 reveal the sensitivity of this method to very

poor predictions at a small subset of locations. These sensitivities are further explained

in Section 3.4.1. Further, the relatively poor performance of IDW on the Utah datasets is

largely due to the inability of NGSL to account for the effect of elevation on Utah snow

loads, as explained in Section 3.4.2.

UK has a noticeably lower medAE, MAE, and RMSE than all other methods on ID-

2015. The competitive errors obtained by UK across all considered datasets are even more
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errors (MAE) and root mean square errors (RMSE) of spatial prediction methods on each
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compelling given the very little tuning required to implement UK on new data. This in

mind, we recommend UK as the best considered mapping technique in terms of its ability to

fit the input data.

3.4 Practical Limitations

It is critical that these design snow load predictions and accuracy comparisons be placed

in the context of observational limitations. Each mapping technique relies on accurate

estimates of design snow loads within each dataset, which are subject to various sources

of uncertainty. These datasets also contain a disproportionate number at elevations high

above most populated locations in each state. Future research will likely involve adaptations

to traditional cross validation measures that emphasize accuracy in the areas of greatest

concern. Further, it is not clear if the best methods for mountainous terrain will be the best

for design snow load predictions in other terrains. The following subsections discuss some

notable limitations associated with predicting design snow loads.

3.4.1 Limitations of Regression-Based Estimators
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There are extrapolation issues for the regression based estimators (PRISM, SKLM, UK,

and LR) when attempting to predict snow loads at locations with elevations far exceeding

all nearby measurement location elevations. In Utah, these situations most often occur

at mountain peaks lacking measurement locations. In such cases, these estimators begin

to predict unreasonably high snow load values, exceeding all observed snow load values

in the dataset. This issue is resolved by restricting the regression-based predictions to

extend no higher than the largest design snow load in the input dataset. In addition, the

prediction of the global trend (as used in SKLM, UK, and LR) is not allowed to extend

beyond the predicted trend for the highest elevation measurement location in the dataset.

Such constraints are only imposed when creating design snow load maps and are not imposed

for the cross validation results presented in this paper.

Further, the alarming RMSE range for PRISM on ID-2015 in Figure 3.6 reveal that

certain combinations of PRISM weights create instances of local extrapolation. This

illustrated by way of example at Robinson Lake, Nevada in Figure 3.7, which is one of six

locations in ID-2015 where severe over-predictions were observed during cross validation.

If this measurement location is removed from the data and the auto-tune method were to

select the maximum possible basin weight parameter of five, PRISM assigns virtually all

weight to only two measurement locations in ID-2015. These two measurement locations

are less than 10 km apart with similar elevations, yet have very different design snow loads.

This drastic difference is likely a result of the distribution fitting process, or a measurement

bias at one of the locations, rather than a true difference in loads. Robinson Lake has an

elevation higher than these two measurement locations and the local extrapolation results

in a severe over-prediction. This issue can be avoided by reducing the basin weighting

exponent or shifting all snow load values by 1 kPa prior to taking the log-transformation.

This arbitrary shift has the effect of moderating the calculated slopes and thus reducing

the severity of the extrapolation, yet is difficult to justify. Ekwaru and Veugelers (2018)

explore ways in which an optimal shift could be selected empirically, but such an approach

adds yet another parameter for the user to estimate. Future work will involve exploring
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Fig. 3.7: Example of a severe over-prediction using PRISM at Robinson Lake, Nevada.

optimal transformations for regression predictions, as well as non-parametric alternatives to

regression based estimators. Most importantly, the described scenario illustrates a potential

shortcoming of PRISM for inappropriate combinations of weight parameters.

3.4.2 Limitations of NGSL-Based Estimators

Figure 3.8 reveals an unintended consequence of using NGSL in IDW predictions at

several locations in Utah. The large difference between the PRISM and IDW predictions in

each case is explored in detail at Farmington, Utah (elevation 1316 meters). As observed in

Table 3.3, three of the four measurement locations nearest to Farmington are all located

at elevations above 2000 meters with NGSL much higher than the NGSL of the lone,

low elevation measurement location. This results in a likely over-prediction of the design

snow load at Farmington. This shortcoming is due to the strong positive correlation

between elevation and NGSL at measurement locations above the separating elevation

of 1219 m in Utah as observed on a log-scale in Figure 3.9. This correlation explains

the sinusoidal error patterns for IDW observed previously in Figure 3.5. NGSL should

be independent of elevation with a non-significant correlation coefficient. However, the

Spearman correlation coefficient for NGSL and elevation at measurement locations above

1219 m on UT-2017 is 0.63, which is highly statistically significant (p < 0.0001). The

overall Spearman correlation between elevation and NGSL on ID-2015 for elevations above

1219 m is only 0.14, yet still highly significant (p = .0009). While the separating elevation
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Fig. 3.8: Comparisons of spatial prediction methods using UT-2017 and UT-1992 that
illustrate instances where NGSL predicts exceptionally high design snow loads.

seems to produce non-significant correlations between elevation and NGSL in the lower

elevation layer, the significant correlations in the upper elevation layer cause inappropriate

extrapolations of NGSL when the prediction location elevation is very different than the

surrounding measurement location elevations. Recalling the cost implications shown in

Figure 1.1, differences in design snow load prediction similar in magnitude to those observed

at Farmington could easily double or triple the cost of the roof of a structure at these

locations if this issue is not recognized and addressed.

One potential solution to this issue is the creation of an adaptive separating elevation

that minimizes the correlations between NGSL and elevation in the lower and upper

elevation groups. Letting ρl and ρu represent the correlation coefficient of choice (in our

case, Spearman) in the lower and upper layers, our implementation of Idaho’s method allows

the separating elevation to be selected to minimize.

|ρc| =
Nl|ρl|+Nu|ρu|

Nl +Nu
(3.1)

where Nl and Nu represent the number of measurement locations in the lower and upper
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Fig. 3.9: Plots of elevation and NGSL (log-scale) for each dataset, showing a clear and
unaccounted for relationship between NGSL and elevation. Idaho’s original separating
elevation is also compared to the separating elevation that minimizes the Spearman correlation
between NGSL and elevation.

layers respectively. The function considers elevations within the interquartile range of

the data (at 10 percentile increments) and selects the separating elevation that minimizes

|ρc|. All measurement locations are placed in the lower layer if |ρc| is not smaller than

the absolute value of the overall correlation. The dotted lines in Figure 3.9 compare the

“optimal” separating elevation to the original separating elevation used by Idaho.

This approach has the potential to make IDW predictions competitive with other

methods. For example, the automatic selection of the separating elevation reduces the

median MAE (with 100 iterations of cross validation) for IDW on UT-2017 by 25% (from

1.66 kPa to 1.25 kPa). Further improvements to IDW can be made using normalized,

log-transformed design snow loads defined as log-NGSL = log(qs(x+1))
A(x) . The +1 shift, though

arbitrary as discussed in the previous section, is necessary to avoid negative log-NGSL values.

This transformation results in a MAE on UT-2017 of 1.03, a 38% reduction in the MAE

when applying the Idaho method directly. Similar gains can be obtained across all measures

and all three datasets as observed in Table 3.4. It is important to note that the problems

and potential solutions for NGSL were only exposed through a rigorous error analysis of

IDW. This highlights the need for error analysis and model comparison in any statistical

mapping problem.
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Table 3.3: NGSL at the four measurement locations nearest to Farmington, Utah (111.884
W, 40.981 N).

ID Elevation Distance to Location NGSL
(m) (km) (kPa/m)

USC00422726 1335 5.4 0.0013
USS0011J11S 2438 5.5 0.0070
USS0011J12S 2066 6.4 0.0050
USS0011J68S 2359 8.4 0.0047

Table 3.4: Comparison of median measures of 100 iterations of cross validation for origi-
nal (Org) and adjusted (Adj) IDW predictions (using the log(x + 1) transformation and
automatically selected separating elevation) to UK and PRISM.

UT-2017 UT-1992 ID-2015
medAE MAE RMSE medAE MAE RMSE medAE MAE RMSE

Org 0.85 1.66 2.55 1.43 1.87 2.51 1.46 1.98 2.65
Adj 0.5 1.03 1.79 0.83 1.33 1.92 1.16 1.67 2.55
PRISM 0.47 0.94 1.61 0.7 1.27 2.01 1.06 1.63 2.67
UK 0.46 0.92 1.58 0.68 1.2 1.85 0.93 1.36 2.01

3.4.3 Limitations of Design Snow Load Estimates

Even with an “adequate” sample size, the inherently messy nature of real data (outliers,

missing values, inaccurate measurements, and poor estimates of snow load from snow

depth) adds uncertainty to 50 year (i.e. design) snow load estimates resulting from the

distribution fitting process. In addition, potential violations of two assumptions inherent to

the distribution fitting process add additional uncertainty to design snow load estimates. The

first assumption is that the yearly maximums at each measurement location all come from

the same distribution, implying that the conditions at each measurement location remain

constant over time. However, Julander and Bricco (2006) document changes in measurement

tools, sampling site conditions, and human influence at measurement locations that bring

this assumption into doubt. The second assumption is that the yearly maximums are

statistically independent, implying that snow measurements at each measurement location

are uncorrelated across time. However, there is a wealth of evidence that suggests that time

cannot be ignored when measuring climatic events. Gillies et al. (2012) claims that the

proportion of precipitation falling as snow in Utah has declined by nine percent over the
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last half century, accompanied by long term decreases in overall snow cover. This agrees

with multiple sources indicating that yearly snow packs are declining across the Pacific

Northwest (Mote, 2006; Scott and Kaiser, 2004). These sources indicate that the assumption

of independence between yearly maximums is likely violated. Consequences resulting from

these violations of assumptions will inevitably become more prevalent when trying to predict

recurrence intervals beyond 50 years, such as those explored in DeBock et al. (2017). Future

efforts to predict extreme snow load events should account for long-term, time-dependent

trends in the snowpack. Such attempts could leverage advancements in snowpack forecasting

made by Rhoades et al. (2016, 2018), which project significant declines in the snowpack of

western state mountains through the end of the century.

One way to illustrate the effect of these uncertainties is through a comparison of

estimated design snow loads for COOP station USC00109638 in Weiser, Idaho (NOAA,

2017). This station was selected due to the series of snow related collapses occurring in Weiser

during the winter of 2017, where design snow loads were estimated to be as high as 1.89 kPa

(Arcement, 2017). The reader should be cautioned that the reported collapses could be due

to any number of factors (design, construction, etc.), not just design snow load prediction.

We can not comment on the safety of those structures, only to illustrate the uncertainty in

design snow loads based on the selected distribution and depth-to-load prediction. Station

records at this location extend as far back as 1912. Data from this station were processed

using the same procedures and filters used in the creation of UT-2017, resulting in a sample

size of 73 yearly maximum snow loads. The normal, log-normal, Gumbel and generalized

extreme value distributions each predict the design snow load estimate at this location, the

latter two distributions being fit using the extRemes package (Gilleland and Katz, 2016).

Efforts to fit a log-Pearson type III distribution via ML estimation were non-convergent

and thus were excluded from the comparison. Each distribution was fit twice: once using

Sturm’s equation to convert snow depths to loads and again using the RMCD. Table 3.5

compares each of the resulting estimates to the 0.81 kPa design snow load estimate from the

Idaho snow load report (Al Hatailah et al., 2015).
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Table 3.5: Design snow load estimates for Weiser, Idaho using a variety of distributions.
Design Load (kPa)

Method Sturm RMCD
Log-Normal 1.64 1.04
Normal 1.54 1.07
Gumbel 1.55 0.99
GEV 2.34 1.25
Idaho Report 0.81

Table 3.5 shows that different distributions can provide notably different estimates of 50

year events. The differences in distribution estimates shown in Table 3.5 are relatively larger

than distribution comparisons at the Denver-Stapleton, Colorado snow site provided in

DeBock et al. (2017). This is likely due to Colorado’s approach of fitting only the upper third

of all maximums, which seems to reduce differences in the distribution tail approximations.

Perhaps more important, however, is the difference in design snow load predictions resulting

from changes to the depth-to-load conversion method. Table 3.5 shows that, using the

same distribution, design snow loads using Sturm’s equation results are more than 44%

higher than design snow loads using the RMCD. Differences of this magnitude are not

unique to this particular station, but are most pronounced at low elevation locations such

as Weiser. Table 3.6 shows the median absolute relative difference of 50 year estimates

for 261 measurement locations on UT-2017 relative to the original log-normal distribution

estimates. Of the 415 measurement locations, 120 were excluded as they did not require any

depth-to-load conversions and 21 were excluded for not having stable generalized extreme

value 50 year estimates. These results suggest that differences in depth-to-load conversion

methods are generally more influential on design snow loads than differences in distribution

selection. These large differences reinforce the need for increased scrutiny in the process

used to estimate design snow loads.

3.5 Reflections

Cross validation showed that UK was the most accurate across all three datasets and is

our current top recommendation for mapping design snow loads. In addition, the relative
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Table 3.6: Median absolute relative difference in design snow load estimates as compared to
the original log-normal distribution estimates.

Absolute Relative difference (%)
Method Sturm RMCD
log-Normal 35%
Normal 13% 42%
Gumbel 8% 40%
GEV 21% 29%

ease of implementing UK and PRISM on new data demonstrate the feasibility of making

predictions for multi-state regions. In addition, these prediction methods readily lend

themselves to other water resource mapping problems. For example, we have used PRISM

to visualize changes in the water content of Utah’s April 1st snowpack from 1930-2015.

This chapter also discussed the limitations underlying the current distribution based

methods for estimating design snow loads (or similar variants) at measurement locations.

Comparisons of various distributions and snow load conversion methods in Tables 3.5 and 3.6

revealed that estimated design snow loads are very sensitive to changes in the depth-to-load

conversion method.

This in mind, the following conclusions can be made:

• Changes in design snow loads up to a factor of nearly 290% in the Weiser, Idaho

case study and more than 40% on average in UT-2017 occur based on changes in the

selected probability distribution and depth-to-load conversion method.

• The best methods (in terms of MAE) account for log-linear relationship between design

snow loads and elevation. The improvements in cross validated accuracy using these

methods was as much as 45% on UT-2017 when compared to the current prediction

methods used in Idaho and Utah.

• NGSL do not always adequately account for the elevation effect in design snow load

prediction. The consequence is a tendency for IDW to over-predict snow loads at low

elevations and under-predict at high elevations. The problems with NGSL can be
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fixed by log-transforming snow loads prior to the NGSL calculation and adjusting the

separating elevation.

• UK was similar in accuracy to PRISM on UT-2017 (MAE ≈ 0.9kPa) and UT-1992

(MAE ≈ 1.2kPa) and more accurate on ID-2015 (MAE ≈ 1.4kPa vs MAE ≈ 1.7kPa).

Given its relative simplicity, well defined prediction variance, and robustness to

differences in input data, we recommend universal kriging as the optimal method for

predicting design snow loads in Utah and Idaho.

It is imperative to remember that these cross validation results are based on design

snow loads which are estimates themselves, subject to uncertainty. Each mapping technique

ignores this uncertainty by treating the design snow loads at measurement locations as exact

observations. These approaches rob the design snow loads of crucial context, treating each

measurement location as equally reliable in the spatial mapping technique. It may be more

appropriate in these cases to characterize design snow loads as intervals expressing a range of

possible design snow loads. This introduction of imprecision to the model inputs is discussed

further in Chapter 4.
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CHAPTER 4

INTERVAL-VALUED KRIGING

4.1 Introduction
1 Recall that design snow loads are estimates subject to uncertainty. This uncertainty

is effectively ignored by states when mapping design snow loads between measurement

locations. The consequence of ignoring the imprecision in the model inputs is a set of

outputs that lack context, as all model inputs (i.e. snow loads at measurement locations)

are treated as equally certain. A reliability analysis considers both the magnitude and

variability of anticipated loads for a structure. Treating uncertain loads as precise values

robs the reliability analysis of crucial information about load variability. There is therefore

a great need to develop interpolation methods that better characterize the input uncertainty

to improve the ensuing reliability analysis.

For addressing the geographical mapping problems such as the aforementioned design

snow loads, geostatistics and the associated kriging models are at the center of the current

state-of-art science. It continues to be widely applied in many geosciences and related fields

(Jin et al., 2018; Mao et al., 2018; Shtiliyanova et al., 2017). Entire textbooks have been

devoted to explaining the many variations of kriging with virtually countless applications

(Goovaerts, 1997). In particular, Bean et al. (2019) demonstrated that regression-kriging

is significantly superior than a series of existing methods in predicting design snow loads

for the state of Utah. Despite this variety and prevalence, increases in the availability and

complexity of spatial data prompt discussions as to how kriging can better accommodate

new data sources. New measurement technologies are more pervasive, yet many lack the

precision of traditional measurements subject to human oversight. In addition, summaries

of data across time or space create another layer of uncertainty, regardless of the precision
1 This chapter is an adaptation of a manuscript submitted to the Annals of Applied Statistics. This

manuscript was co-authored by Dr. Yan Sun and Dr. Marc Maguire.
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of the individual measurements. There are several attempts in the literature to address

uncertainties in the inputs (see Goovaerts (1997) for an outline), which typically create

variants of kriging that handle the uncertainty indirectly. For example, one such method

involves the use of indicator functions to characterize a set of response variable thresholds

(Hohn, 1998). The kriging output in this case is a series of probability predictions, rather

than a direct prediction on the response variable.

In a different framework, uncertainty is directly characterized by the data itself. This is

done by expressing the data as intervals, as opposed to single numbers, which means that

the true value is somewhere in the interval but not precisely known. Imprecise geostatistics

models that aim at handling such uncertain inputs were originally studied in the late

1980s. (See Loquin and Dubois (2010) for a relatively comprehensive review.) The earliest

attempt was probably the interval-valued kriging by Diamond (1988), which takes interval

input and produces interval output. This model is a direct extension of the point-valued

kriging (Matheron, 1963, 1971) with an interval-valued random function and a proposed

covariance structure for intervals. The methodology was extended to a fuzzy kriging in

Diamond (1989), intended for fuzzy interval input to allow membership degrees for each

interval. At about the same time, Bardossy et al. (1990a,b) separately developed another

type of fuzzy kriging by considering uncertainties in the variograms whose parameters are

fuzzy intervals. Despite the well-justified theoretical foundations, these models did not gain

popularity, largely due to a lack of consensus regarding the notion of covariance between

intervals and the computational limitations of the time. Recently, Loquin and Dubois (2012)

proposed an algorithmic extension to the Bardossy’s fuzzy kriging, which effectively solved

the computational issue in the original model and potentially improved its applicability.

Additionally, Bandemer and Gebhardt (2000) proposed a Bayesian extension of Diamond’s

fuzzy kriging with an associated numerical implementation.

This chapter focuses on uncertain kriging with real (non-fuzzy) interval inputs. As

reviewed above, Diamond’s interval-valued kriging (Diamond, 1988) provided an initial

solution to this problem. However, the definitions of covariance and stationarity underlying
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this model may have been questionable, leading to an over complicated formulation and

computation. In this chapter, we propose a modification to Diamond’s interval-valued kriging

based on the recent developments of the random set theory and a generalized L2 distance.

These models overcome many of the mathematical and computational difficulties of previous

interval-valued kriging attempts through the use of a well-established real-valued covariance

between intervals. The numerical implementations of these models in R 3.5.1 (R Core Team,

2018) leverage existing geospatial workflows in the sp and gstat packages (Bivand et al.,

2013; Gräler et al., 2016; Pebesma, 2004; Pebesma and Bivand, 2005) described further

in Chapter 5. Using these implementations, we apply our interval-valued kriging to the

design snow load prediction problem. The analysis includes the creation of an interval-valued

design snow load dataset that characterizes traditionally ignored sources of uncertainty in

the design snow load estimation process.

The rest of the chapter proceeds as follows. Section 4.2 reviews the random sets

framework underlying the proposed interval-valued kriging. Section 4.3 introduces our

interval-valued kriging models and discusses the associated properties. Section 4.4 reviews

the details of the numerical implementation of the algorithm while Section 4.5 demonstrates

the empirical convergence of the numerical implementation through a series of simulations.

Section 4.6 presents the application of our interval-valued kriging to predicting design snow

loads in Utah. We give concluding remarks in Section 4.7. Technical proofs are deferred to

Section 4.8.

4.2 Random sets preliminaries

Denote by K
(
Rd
)
or K the collection of all non-empty compact subsets of Rd. The

Hausdorff metric ρH

ρH (A,B) = max
(

sup
a∈A

ρ (a,B) , sup
b∈B

ρ (b, A)
)
, ∀A,B ∈ K,

where ρ denotes the Euclidean metric, defines a natural metric in K. As a metric space,

(K, ρH) is complete and separable (Debreu, 1967). In the space K, a linear structure can be
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defined by Minkowski addition and scalar multiplication as

A+B = {a+ b : a ∈ A, b ∈ B} , λA = {λa : a ∈ A} , ∀A,B ∈ K, λ ∈ R.

Note however that K is not a linear space (or vector space) as there is no inverse element of

addition. Let (Ω,L, P ) be a probability space. A random compact set is a Borel measurable

function A : Ω→ K, K being equipped with the Borel σ-algebra induced by the Hausdorff

metric. If A(ω) is convex almost surely, then A is called a random compact convex set

(Molchanov, 2005). The collection of all compact convex subsets of Rd is denoted by KC
(
Rd
)

or KC .

Particularly, KC(R) contains all the non-empty bounded closed intervals in R and a

measurable function that maps Ω to KC (R) is called a random interval. From now on, an

element in KC(R) will be denoted by [x], whose lower/upper bounds and center/radius are

denoted by xL/xU and xC/xR, respectively. Bold letters denote vectors and random versions

are denoted by capital letters. For example, [x] = [[x1], · · · , [xp]]T denotes a p-dimensional

hyper interval and its random version is denoted by [X]. The expectation of a random

compact convex random set A is defined by the Aumann integral of set-valued function

(Artstein and Vitale, 1975; Aumann, 1965) as E (A) = {Eξ : ξ ∈ A almost surely}, which

for a random interval [X] is E ([X]) = [E
(
XL

)
, E
(
XU

)
].

For interval-valued data analysis, the measure of distance is a critical issue. According

to the embedding theorems (Hörmander, 1954; Rådström, 1952), KC can be embedded

isometrically into the Banach space C(S) of continuous functions on the unit sphere Sd−1,

which are realized by the support function of X ∈ KC. Therefore, a compact convex set

can be represented by its support function sX and ρ2 (X,Y ) := ‖sX − sY ‖2, ∀X,Y ∈ KC,

defines an L2 metric on KC. It is known that ρH and ρ2 are equivalent metrics, but

ρ2 is more preferred for statistical inference, due to many of its established properties

(Körner, 1995, 1997). The ρ2-metric for an interval [x] has the particularly simple form

‖[x]‖22 = 1
2

(
xL
)2

+ 1
2

(
xU
)2

=
(
xC
)2

+
(
xR
)2

and the ρ2-distance between two intervals
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is ρ2 ([x], [y]) =
[

1
2

(
xL − yL

)2
+ 1

2

(
xU − yU

)2
] 1

2
=
[(
xC − yC

)2
+
(
xR − yR

)2
] 1

2
. A more

general metric for KC(R) was proposed Gil et al. (2001) which essentially takes form

ρ2
W ([x], [y]) =

(
xC − yC

)2
+
(
xR − yR

)2 ∫
[0,1]

(2λ− 1)2 dW (λ),

where W is any non-degenerate symmetric measure on [0, 1]. This allows for weighting

between the center and radius. Separately, for a more general space, Körner and Näther

(2001) proposed another L2 metric, which when restricted to KC(R) is

ρ2
K([x], [y]) =

∑
(u,v)∈S0×S0

(
s[x](u)− s[y](u)

) (
s[x](v)− s[y](v)

)
K(u, v),

where K is a symmetric positive definite kernel. It can be represented by the upper/lower

bounds as

ρ2
K([x], [y]) =

(
xU − yU

)2
K(1, 1) +

(
xL − yL

)2
K(−1,−1)

−
(
xU − yU

) (
xL − yL

)
[K(1,−1) +K(−1, 1)] ,

or equivalently in the center-radius form as

ρ2
K([x], [y]) = A11(xC − yC)2 +A22(xR − yR)2 + 2A12(xC − yC)(xR − yR),

where

A11 = K(1, 1) +K(−1,−1)− [K(1,−1) +K(−1, 1)] ,

A22 = K(1, 1) +K(−1,−1) + [K(1,−1) +K(−1, 1)] ,

A12 = A21 = K(1, 1)−K(−1,−1).

Apparently, when K is symmetric positive definite, so is A. Thus the essence of ρK lies in

its further generalization of ρW that takes into account the interaction between the center
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and the radius.

4.3 The interval-valued kriging

The key to developing interval-valued kriging is to define a proper second-order structure

for the interval-valued random function [Z(x)] = [ZL(x), ZU (x)]. Diamond’s approach used

an interval-valued covariance as

[C(x,h)] = E [Z(x)Z(x+ h)]− E [Z(x)]E [Z(x+ h)] . (4.1)

This definition is only conceptual, because there is no inverse element in the space KC(R)

and thus the subtraction of intervals is not defined. In addition, it requires the multiplication

of intervals, which is complicated in general. For simplification purposes, Diamond restricted

considerations to positive intervals, i.e., intervals that contain only positive numbers. Under

this restriction, the multiplication is seen to be

[Z(x+ h)] [Z(x)] =
[
Z(x+ h)LZ(x)L, Z(x+ h)UZ(x)U

]
.

Diamond’s notion of second-order stationarity was subsequently defined only for positive

intervals with conditions:

1. E [Z(x)] = [m] exists and is independent of x;

2. E [Z(x)Z(x+ h)] = [C(x,h)]+[m]2 exists and is independent of x, assuming [C(x,h)]

is a positive interval.

There are several mathematical difficulties in this framework. First, as mentioned above,

there is no well-defined subtraction operation for intervals and therefore the interval-valued

covariance [C(x,h)] cannot be determined by (4.1). Notice how the covariance stationarity

(condition 2) is stated indirectly by E [Z(x)Z(x+ h)], instead of by the covariance [C(x,h)]

itself. While one can theoretically impose a covariance structure by assumption, in practice

it is not obvious how the covariance can be estimated from the data, which limits its

applicability. The second difficulty is with regard to the mathematical coherence of the
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variance and covariance, that is, the covariance of two identical quantities should be the

same as the variance. However, it can be seen that Var [Z(x)] 6= C(x,0). In fact, the

former is real-valued and the latter is an interval. Lastly, to ensure the non-negativity of the

prediction variance, all of the interpolation weights are assumed to be non-negative, which

makes the model even more restrictive.

According to the recent development of set-valued statistics (e.g., Körner (1997); Körner

and Näther (1998)), the covariance of random intervals, and in general random sets, should be

defined as real-valued. This could be the potential solution to the aforementioned problems

in Diamond’s formulation. Motivated by this, we propose to re-construct the second-order

structure based on the random sets theory to modify Diamond’s interval-valued kriging into

a more rigorous and more computationally feasible method. To this, the notion of variance

of a random set (Körner, 1995, 1997; Lyashenko, 1982; Näther, 1997) plays the key role.

Given a metric ρ in the space K, the variance of a random compact set A is defined as

Varρ(A) = Eρ2[A,E(A)]. Now if we restrict to KC , according to the embedding, a random

compact convex set X can be represented by its support function sX and the space KC is

equipped with an L2 metric ρ2. Considering < ·, · > as the inner product in the Hilbert

space L2(Sd−1), the variance is defined as

Var(X) = E
∥∥∥sX − sE(X)

∥∥∥2

2
= E

∫
Sd−1

[sX − sE(X)]2µd(u) = E < sX − sE(X), sX − sE(X) > .

This leads to the natural extension to the covariance function for X,Y ∈ KC(Rd) as

Cov(X,Y ) = E < sX − sE(X), sY − sE(Y ) >= E

∫
Sd−1

[sX − sE(X)][sY − sE(Y )]µd(u).

Such a definition of covariance has been shown to be very favorable for statistical analysis

(Körner, 1995, 1997). Consider random intervals [X], [Y ] ∈ KC(R) and the general metric

ρK . The variance is seen to be

Var([X]) = E
{
ρ2
K([X], E([X]))

}
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= E
[
A11

(
XC − E(XC)

)2
+A22

(
XR − E(XR)

)2

+2A12
(
XC − E(XC)

) (
XR − E(XR)

) ]
= A11Var(XC) +A22Var(XR) + 2A12Cov(XC , XR), (4.2)

The covariance is a little more complex. We notice that the inner product associated with

the ρK metric is

< sX − sE(X), sY − sE(Y ) > =
(
XU − E(XU )

) (
Y U − E(Y U )

)
K(1, 1)

+
(
XL − E(XL)

) (
Y L − E(Y L)

)
K(−1,−1)

−
(
XU − E(XU )

) (
Y L − E(Y L)

)
K(1,−1)

−
(
XL − E(XL)

) (
Y U − E(Y U )

)
K(−1, 1),

which can be rewritten in terms of the center and radius as

< sX − sE(X), sY − sE(Y ) > = B11
(
XC − E(XC)

) (
Y C − E(Y C)

)
+B22

(
XR − E(XR)

) (
Y R − E(Y R)

)
+B12

(
XC − E(XC)

) (
Y R − E(Y R)

)
+B21

(
XR − E(XR)

) (
Y C − E(Y C)

)
,

where B is a symmetric positive definite matrix uniquely determined by K. The covariance

is consequently defined as

Cov([X], [Y ]) = E
{
< sX − sE(X), sY − sE(Y ) >

}
= B11Cov(XC , Y C) +B22Cov(XR, Y R)

+B12Cov(XC , XR) +B21Cov(XR, XC).

We are now ready to introduce our interval-valued kriging and the definition of sta-

tionarity. Recall that [Z(x)] = [ZL(x), ZU (x)] denotes the interval-valued random function,
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which can be alternatively represented by the center function ZC(x) and the radius function

ZR(x). As in Diamond (1988), our interval-valued kriging interpolator is defined as

[̂Z](x∗) =
n∑
i=1

λi[Z](xi),

according to the Minkowski addition and scalar multiplication. It can be expressed equiva-

lently in the center-radius form as

ẐC(x∗) =
n∑
i=1

λiZ
C(xi), ẐR(x∗) =

n∑
i=1
|λi|ZC(xi).

Given the preceding discussion of the second-order structure of random intervals, the

stationarity of [Z(x)] is derived from a natural extension of the stationarity for point-valued

random function. We formally state it in the following.

Definition 1. The interval-valued random function [Z(·)] is second-order stationary if it

satisfies

1. (Mean Stationarity) E([Z(x)]) = [m], for some fixed interval [m] independent of x,

i.e. E(ZC(x)) = mC and E(ZR(x)) = mR ≥ 0 independent of x;

2. (Covariance Stationarity) Cov([Z(x+ h)], [Z(x)]) ,h ∈ Rn is a function of h only,

i.e., the four covariance functions Cov
(
ZI(x+ h), ZJ(x)

)
= CI,J(h), I, J ∈ {C,R},

are all independent of x.

As a remark on the covariance stationary, CR,C is completely determined by CC,R in

that CR,C(h) = CC,R(−h), so only three covariance functions, i.e., CC,C(h), CR,R(h), and

CC,R(h) are needed to define stationarity. Under the assumption of second-order stationarity,

the prediction variance of the kriging estimator is calculated in the following Theorem 1.

Theorem 1. Up to an additive constant, the prediction variance of the interval-valued

kriging interpolator is equal to

E
[
ρ2

K

(
[Ẑ(x∗)], [Z(x∗)]

)]
= A11

∑
i

∑
j

λiλjC
C,C(xi − xj)− 2

∑
i

λiC
C,C(xi − x∗)
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+A22

∑
i

∑
j

|λiλj |CR,R(xi − xj)− 2
∑

i

|λi|CR,R(xi − x∗)


+2A12

∑
i

∑
j

λi|λi|CC,R(xi − xj)


−2A12

[∑
i

|λi|CC,R(x∗ − xi) +
∑

i

λiC
C,R(xi − x∗)

]
. (4.3)

4.3.1 Simple Kriging (SK)

Assume E ([Z(x)]) = [m] for a known fixed interval [m]. We can replace [Z] by [Z]−mC

(and add mC back after the model is fitted) so that the center function has a constant mean

of zero. Then, ẐC(x∗) is automatically unbiased and the unbiasedness of ẐR(x∗) implies∑n
i=1 |λi| = 1.

Hence, the interval-valued SK estimator is defined as the minimizer of the prediction

variance under the unbiasedness constraint, i.e.,

[ẐSK(x∗)] = arg minE
[
ρ2
K

(
[Ẑ(x∗)], [Z(x∗)]

)]
, subject to

n∑
i=1
|λi| = 1. (4.4)

4.3.2 Ordinary Kriging (OK)

OK still assumes that E ([Z(x)]) = [m], but the interval-valued mean [m] is unknown.

Thus, we can no longer demean the center and instead have to impose the additional

condition
∑n
i=1 λi = 1 to ensure that the center prediction is unbiased. This together with

the condition
∑n
i=1 |λi| = 1 implies that the weights need to be all non-negative. Therefore,

the interval-valued OK estimator is defined as

[ẐOK(x∗)] = arg minE
[
ρ2
K

(
[Ẑ(x∗)], [Z(x∗)]

)]
,

subject to
n∑
i=1

λi = 1, λi ≥ 0, i = 1, · · · , n. (4.5)

4.3.3 The Variogram

In a slightly different situation, instead of assuming Z(x) is stationary, it is assumed

that the increment Z(x+ h)− Z(x) is stationary. A point-valued random function that is
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second-order increment stationary is defined such that the first two moments of the increment

are both independent of x, i.e.,

E [Z(x+ h)− Z(x)] = m (h) ;

Var [Z(x+ h)− Z(x)] = 2γ (h) ,

where γ(h) is called the semi-variogram. Usually the function m(h) is assumed to be

constantly zero, namely, Z(x) has a constant mean. Increment stationarity is a slightly

weaker condition than stationarity, mainly because it allows the variance of Z(·) to be infinite.

For interval-valued random function [Z(x)], it is difficult to define “increment” as in the point-

valued case, because there is no inverse element of addition in the space KC(R). Nevertheless,

the assumptions for increment stationarity can be equivalently specified for interval-valued

process through an interval-valued drift function and a real-valued semi-variogram as follows:

Definition 2. The interval-valued random function [Z(·)] is increment stationary if it

satisfies

1. (Mean Stationarity) E ([Z(x)]) = [m], for some fixed interval [m] independent of x;

2. (Variogram Stationarity) Eρ2
K ([Z(x+ h)], [Z(x)]) = 2γ(h), h ∈ Rn, independent of

x.

According to the definition of variance (4.2), the semi-variogram γ(h) breaks down into

the center, radius, and center-radius semi-variograms as

γ(h) = A11γ
C(h) +A22γ

R(h) + 2A12γ
C,R(h),

where

γC(h) = 1
2Var

(
ZC(x+ h)− ZC(x)

)
,

γR(h) = 1
2Var

(
ZR(x+ h)− ZR(x)

)
,

γC,R(h) = 1
2Cov

(
ZC(x+ h)− ZC(x), ZR(x+ h)− ZR(x)

)
.



61

Thus, variogram stationarity means that all of the semi-variograms γC , γR, and γC,R, are

independent of x. In practice, their forms can be chosen by the corresponding sample

estimates. If the covariance functions exist, they are related to the semi-variograms by the

following equations:

γC(h) = CC,C(0)− CC,C(h),

γR(h) = CR,R(0)− CR,R(h),

γC,R(h) = CC,R(0)− 1
2
[
CC,R(h) + CR,C(h)

]
,

= CC,R(0)− 1
2
[
CC,R(h) + CC,R(−h)

]
.

Theorem 2. Under the unbiasedness constraints
∑n
i=1 λi = 1 and

∑n
i=1 |λi| = 1, i =

1, · · · , n, the prediction variance is equal to

E
[
ρ2
K

(
[Ẑ(x∗)], [Z(x∗)]

)]
= A11

−∑
i

∑
j

λiλjγ
C(xi − xj) + 2

∑
i

λiγ
C(xi − x∗)


+ A22

−∑
i

∑
j

λiλjγ
R(xi − xj) + 2

∑
i

λiγ
C(xi − x∗)


+ 2A12

−∑
i 6=j

λiλjγ
C,R(xi − xj) + 2

∑
i

λiγ
C,R(xi − x∗)

 .
4.4 Numerical implementation

Implementation of the proposed SK and OK models amounts to minimizing the pre-

diction variance subject to certain constraints. If the covariance functions exist, which

implies that the variograms also exist, the prediction variance can be expressed either by

(4.3) or (4.6). Otherwise, under a weaker assumption when the covariance functions do

not exist but the variograms exist, the prediction variance is given by (4.6). In either case,

direct differentiation is impossible due to the involvement of |λ|. In addition, the inequality

constraints associated with the OK in (4.5) are a form of the Karush-Kuhn-Tucker conditions,

for which an analytical solution usually does not exist. Considering all these, to implement
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the interval-valued kriging models, we propose a penalized approximate Newton-Raphson

(PANR) algorithm that finds a numerical solution to the constrained optimization problem.

4.4.1 The penalty method for constraints

Denote the prediction variance by

V (λ) = E
[
ρ2
K

(
[Ẑ(x∗)], [Z(x∗)]

)]
.

Recall from (4.4) and (4.5) that SK minimizes V (λ) subject to
∑n
i=1 |λi| = 1 and OK subject

to
∑n
i=1 λi = 1, λi ≥ 0, i = 1, · · · , n, respectively. We employ a penalty method to

account for these optimization constraints. (See, e.g., Jensen and Bard (2003) for a review

of algorithms for constrained optimization.) The idea is to approximate the constrained

optimization problem by an unconstrained problem formulated as

arg min {V (λ) + P (λ, c)} ,

where P (λ, c) is a continuous penalty function that equals to zero if and only if the constraints

are satisfied and c is a positive constant controlling the magnitude of the penalty function.

With an appropriately chosen penalty function, the solution of (4.4.1) is approximately the

same as the constrained minimizer of the original objective function V (λ). Corresponding

to the equality constraint
∑n
i=1 |λi| = 1 for SK, the most natural penalty is the quadratic

loss penalty

PSK(λ, c) = c

(
1−

n∑
i=1
|λi|

)2

.

When c is large enough, any violation of the constraint will result in a heavy cost from

the penalty and thus minimizing the penalized objective function will yield a feasible

solution. For OK, there are an equality constraint
∑n
i=1 λi = 1 and inequality constraints

λi ≥ 0, i = 1, · · · , n. To tackle such a problem, the most common strategy is to employ
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the logarithmic-quadratic loss function

POK(λ, c) = −c
n∑
i=1

ln (λi) + 1
c

(
1−

n∑
i=1
|λi|

)2

,

where the logarithmic terms take care of the inequality constraints. Similar to the pure

quadratic loss penalty, small values of c will lead to a solution within the feasible region. A

simple straightforward strategy to implement the penalty method is known as the sequential

unconstrained minimization technique (SUMT) (Jensen and Bard, 2003). It starts with an

initial value of the penalty parameter c0 and iteratively updates it until the convergence

criterion is satisfied. It was shown in Fiacco and McCormick (1968) that for a sequence of

monotonically increasing (or decreasing depending on the nature of the problem) {ck}, the

SUMT converges to the penalized objective within the feasible region. A small issue with

this algorithm is that values of c that are too large (or too small) will create ill-behaved

surfaces for which gradient and Hessian calculations will be unstable. Therefore, slowly

changing the values of c balances the influence of the penalty term with the rest of the

objective function and is the key to the success.

For SK, the penalty parameter c needs to strictly increase to a large enough value. So

we implement the SUMT algorithm as follows:

1. (Initialization) Set the initial parameter c0 = 0 and determine an initial value λ(0).

Let k = 0.

2. (Minimization) Minimize V (λ) + PSK(λ, ck) to obtain λ(k+1). Let k = k + 1.

3. (Check Constraint) Compute pk = 1−
∑n
i=1 |λ

(1)
i |. If |pk| < tolp, where tolp is a user

defined tolerance for the constraint, end the iteration. Otherwise, go to Step 4.

4. (Update Parameter) Set ck+1 = ηck, with η > 1 being a user defined growth parameter

(η > 1), and repeat Step 2 and 3.

For OK, the nonnegative constraints are ensured through the use of a barrier (loga-

rithmic) penalty that slowly allows entries in λ to approach the boundaries of the feasible
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region by shrinking an initially large penalty parameter. We therefore implement the SUMT

algorithm as follows:

1. (Initialization) Set a relatively large value for c0 (we use c0 = 100) and determine an

initial value λ(0).

2. (Minimization) Minimize V (λ) + POK(λ, ck) to obtain λ(k+1). Let k = k + 1.

3. (Check Constraints) Check that min(λ(k)) ≥ 0. Also, compute pk = 1 −
∑n
i=1 |λ

(k)
i |

and check if |pk| < tolp. If both criteria are satisfied, end the iteration. Otherwise, go

to Step 4.

4. (Update Parameter) Set ck+1 = ηck, with η < 1 being a user defined shrinkage

parameter, and repeat Step 2 and 3. The shrinkage parameter η must be close enough

to 1 to ensure that min(λ(zt)) ≥ 0 until |pk| < tolp is satisfied.

For both SK and OK, the algorithm is terminated if the minimization (Step 2) fails for

the final value of ck after a user-specified maximum number of iterations (maxq), or the

constraints are not satisfied within the maximum number of penalty iterations (maxp).

4.4.2 Approximation of |λ|

The key step of the aforementioned SUMT algorithm is the minimization of the penalized

prediction variance

Q(λ) = V (λ) + P (λ, c). (4.6)

Numerically, this can be carried out by the PANR algorithm. In order to guarantee conver-

gence, the objective function must be second-order continuously differentiable. However, the

absolute value |λ| in the prediction variance is not differentiable at λ = 0. To address this

issue, we propose to approximate the absolute value by a local quadratic function. Consider

the Taylor expansion of |λ| at λ0 6= 0:

|λ| = |λ0|+ |λ|′(λ0) (λ− λ0) + o
(
|λ− λ0|2

)
, λ ≈ λ0.
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Replacing the derivative |λ|′(λ0) = sgn(λ0) by λ
|λ0| , |λ| is approximated by a quadratic

function as

|λ| ≈ |λ0|+ (λ− λ0) λ

|λ0|
, λ0 6= 0. (4.7)

Under this approximation, the gradient G and Hessian H of Q(λ) are defined as

G = ∇Q(λ),

H = ∇2Q(λ).

and the iteration of the PANR algorithm is given by

λ(m+1) = λ(m) −H−1
(
λ(m)

)
∗G

(
λ(m)

)
.

where λ(m) is the value of λ from the mth iteration. In the Theorem 3 below, the gradient

and Hessiann of Q(λ) are explicitly calculated for both SK and OK.

Theorem 3. Consider minimizing the penalized prediction variance Q(λ) defined in (4.4.1)

and (4.6) using Newton-Raphson algorithm. Let |λ| be approximated by (4.7), where λ0 is

an approximated value of λ such that λ0 6= 0. Define

fR,R(λ, λk) =
[∑

i

|λi|
[
CR,R(xi − xk) + CR,R(xk − xi)

]
− 2CR,R(xk − x∗)

]
.

Then the gradient G and Hessian H of Q(λ) for SK are

Gk = A11

[∑
i

λi
[
CC,C(xi − xk) + CC,C(xk − xi)

]
− 2CC,C(xk − x∗)

]

+A22

[
λk
|λk0|

fR,R(λ, λk)
]

+2A12

[∑
i

[
|λi|CC,R(xk − xi) + λk

|λk0|
λiC

C,R(xi − xk)
]]

−2A12

[
λk
|λk0|

CR,C(xk − x∗) + CC,R(xk − x∗)
]

−2cλk
|λk0|

(
1−

∑
i

|λi|
)

k = 1, · · · , n;
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Hk,l = A11
[
CC,C(xl − xk) + CC,C(xk − xl)

]
+A22

[
λkλl
|λk0λl0|

[
CR,R(xl − xk) + CR,R(xk − xl)

]
+
I{k=l}(λ)
|λk0|

fR,R (λ, λk)
]

+2A12

[
λl
|λl0|

CC,R(xk − xl) + λk
|λk0|

CC,R(xl − xk)
]

+
2A12I{k=l}(λ)

|λk0|

[∑
i

λiC
C,R(xi − xk)− CR,C(xk − x∗)

]

+ 2cλkλl
|λk0||λl0|

− I{k=l}(λ)
[

2c
|λk0|

(
1−

∑
i

|λi|
)]

k, l = 1, · · · , n.

For OK,

Gk = A11

[∑
i

λi
[
CC,C(xi − xk) + CC,C(xk − xi)

]
− 2CC,C(xk − x∗)

]

+A22

[∑
i

λi
[
CR,R(xi − xk) + CR,R(xk − xi)

]
− 2CR,R(xk − x∗)

]

+2A12

[∑
i

λi
[
CC,R(xk − xi) + CC,R(xi − xk)

]]
−2A12

[
CR,C(xk − x∗) + CC,R(xk − x∗)

]
−2
c

(
1−

∑
i

λi

)
− c

λk
k = 1, · · · , n;

Hk,l = A11
[
CC,C(xl − xk) + CC,C(xk − xl)

]
+A22

[
CR,R(xl − xk) + CR,R(xk − xl)

]
+A12

[
CC,R(xk − xl) + CC,R(xl − xk)

]
+2
c

+ c

λ2
k

I{k=l}(λ) k, l = 1, · · · , n.

4.4.3 Adjustments for effective zero weights

The assumption for approximation (4.7) to work is that λi0 6= 0, (i = 1, · · · , n). Thus,

zero estimates are not allowed. Also, the calculation of ln (λi) gets very unstable when λi is

close to zero. To guard against zero estimates, a natural strategy is to set small values to

zero and exclude them from the next iteration. Such a strategy reduces the dimension of

the gradient and Hessian and in some instances greatly speeds the computation. However, it
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suffers from a big drawback that once a weight parameter is set to zero, it remains zero in

the ensuing iterations. This is potentially problematic, for example, in the event that some

parameters are close to zero initially but would tend away from zero as the penalty iterates.

To avoid this problem, instead of sub-setting the parameter vector at each iteration, we

propose adjustments to the penalties, which still allow the λi’s to approach zero using the

tolerance criteria described previously, yet initially prevents movement to zero.

For SK, we simply add a barrier function that prohibits the λi’s from approaching zero.

This leads to the following new penalty:

P̃SK(λ, c) = − c

n2

∑
i

ln
(
λ2
i

)
+ (1−

∑
i |λi|)

2

c
. (4.8)

Dividing the barrier penalty parameter by n2 ensures a balance between the penalty terms

so that one does not dominate the other. Now that the estimates are guarded against zero,

the approximation of the absolute value function is no longer needed. Thus, the gradient

and Hessian associated with the new penalty have the following simplified forms.

Theorem 4. The gradient G and Hessian H of Q(λ) for SK with the new penalty P̃SK

defined in (4.8) are given as

G̃SK = A11

[∑
i

λi
[
CC,C(xi − xk) + CC,C(xk − xi)

]
− 2CC,C(xk − x∗)

]

+A22

[
sgn(λk)fR,R(λ, λk)

]

+2A12

[∑
i

[
|λi|CC,R(xk − xi) + sgn(λk)λiCC,R(xi − xk)

]]
−2A12

[
CR,C(xk − x∗) + CC,R(xk − x∗)

]
− 2c
n2λk

− 2 sgnλk
c

(
1−

∑
i

|λi|
)

k = 1, · · · , n;

H̃SK = A11
[
CC,C(xl − xk) + CC,C(xk − xl)

]
+A22

[
sgn(λkλl)

[
CR,R(xl − xk) + CR,R(xk − xl)

]]
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+2A12
[
sgn(λl)CC,R(xk − xl) + sgn(λk)CC,R(xl − xk)

]
+2 sgn(λkλl)

c
+ I{k=l}(λ) 2c

(nλk)2 k, l = 1, · · · , n.

For OK, in the current version of the penalty, the cost of reaching the zero-valued

boundary is too high relative to the equality constraint. As a result, the algorithm tends to

produce a non-zero weight for each lambda and predictions very close to the global average.

Therefore, we add a small tolerance to the logarithmic penalty, which shifts the boundary of

the penalty slightly below zero to allow λi to reach zero without leaving the feasible region.

In the mean time, any value that effectively dips below zero will be set equal to zero before

the next iteration. In addition, we divide the weight of the quadratic penalty by n to ensure

that growth of the equality constraint (as c decreases) does not outpace the corresponding

decrease in the n inequality constraints. With these adjustments, the new penalty is given as

P̃OK = −c
∑
i

ln (λi + tolz) + (1−
∑
i λi)

2

c ∗ n
.

4.5 Simulation

A simulation study is carried out to demonstrate the finite sample performances of the

numerical implementation of the proposed interval-valued kriging models. This simulation

and the ensuing application to design snow load prediction make use of several ancillary

packages to R (Bivand et al., 2018, 2013; Douglas Nychka et al., 2015; Hijmans, 2016; Kahle

and Wickham, 2013; Neuwirth, 2014; Pebesma and Bivand, 2005; Wickham, 2017). The

experimental design of choice is a Gaussian random field with an exponential covariance

structure for both center and radius spanning a R = [0, 2] × [0, 2] square. In the first

scenario, we simulate a random field with no center-radius interaction. Let X(x) and Y (x)

be independent standard normal random functions of location x ∈ R. The center and radius

functions are generated by

ZC(x) = X(x), (4.9)

ZR(x) = θrY (x) + z0, (4.10)
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where θr and z0 are the scale and shift parameters respectively. The shift parameter is used

to ensure that all of the simulated values of the radius remain positive. The covariance

functions for this field are defined as

CC,C(h) = exp
{
−||h||24

}
, (4.11)

CR,R(h) = θ2
r exp

{
−||h||25

}
, (4.12)

CC,R(h) = CR,C(h) = 0. (4.13)

The second scenario assumes a strong interaction between the center and radius. We

simulate this with

ZR(x) = θrZ
C(x) + z0 + ε

where ε ∼ N(0, θ2
ε ) and ZC(x) is defined identical to (4.9). The covariance for the centers are

defined identical to (4.11), while the covariance for the radii and center/radius interaction

are seen to be

CR,R(h) = θ2
r exp

{
−||h||24

}
+ θ2

ε ,

CC,R(h) = θr exp
{
−||h||24

}
.

In both scenarios, the simulations of the radii are re-run whenever min
(
ZR(x)

)
< 0.

We generate n = {50, 100, 150, 200, 300, 400, 500, 600} measurement locations in the

random field from a complete spatial random process. Interval-valued SK and OK models

are fit to these measurements to make predictions at q = 100 randomly selected locations

on a regular 10 × 10 grid. The only difference between the SK and OK kriging models

in this process is that SK assumes a known mean (which is set to zero), while OK makes

no such assumption. Figure 4.1 shows an illustration of simulated data for both scenarios

when n = 100, θr = {1
5 ,

1
3 , 1}, and θε = 1

10 . The data values are displayed by the degrees

of darkness in the color maps, with darker colors implying larger values. Figure 4.2 plots

the empirical variograms obtained from the simulated data for both scenarios visualized in
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Figure 4.1 and compares them to the theoretical variograms. We can see that the empirical

variograms overall match the theoretical ones fairly well, except for a few large deviations

for some cases, which is expected due to randomness.

The matrix A of the ρK metric is selected as the sample covariance matrix between

center and radius, i.e.

 1
n−1

∑
x∗

(
ZC(x∗)− Z̄C

)2 1
n−1

∑
x∗

(
ZC(x∗)− Z̄C

) (
ZR(x∗)− Z̄R

)
1

n−1
∑
x∗

(
ZC(x∗)− Z̄C

) (
ZR(x∗)− Z̄R

)
1

n−1
∑
x∗

(
ZR(x∗)− Z̄R

)2



where Z̄C and Z̄R are the sample mean for the sample interval centers and radii respectively.

In theory, this matrix is known to be positive semidefinite and thus qualifies for use in ρK .

Simulations and estimations for each sample size are repeated 10 times independently

and each time we record the RMSE for q = 100 prediction locations with respect to the ρK

metric defined as:

RMSE =
√

1
q

∑
x∗
ρ2
k

(
[Ẑ(x∗)], [Z(x∗)]

)
where the values of A correspond to the theoretical covariance matrix between interval

centers and radii. We also record the RMSE’s for the centers (C) and radii (R) individually

defined as

RMSE(C) =
√

1
q

∑
x∗

(
Ẑ(x∗)C − Z(x∗)C

)2

RMSE(R) =
√

1
q

∑
x∗

(
Ẑ(x∗)R − Z(x∗)R

)2
.

Tables 4.1 and 4.2 list the average values of the RMSE over 10 independent repetitions

for each scenario and sample size combination when θr = 1
3 . These values are likewise

visualized for all considered values of θr in Figure 4.3. The SK results include errors using

the original (SK-Fast) and adjusted (SK-Full) penalty functions described in Section 4.4.3.

In all cases, the average prediction error for each interval-valued implementation decreases

as sample size increases, demonstrating the empirical convergence of our method to th’e

optimal kriging solution. Further, for sample sizes greater than 50, the errors for the full
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and fast implementations of SK are nearly identical to OK. In fact, when variance of the

interval centers and radii are roughly equal, the fast implementation outperforms the full

method when the sample size is 500 or more. The out-performance of SK (Fast) in this

instance demonstrates the difficulty of preventing zero-valued kriging weights when the

sample size is large. Finally, all kriging models are compared to the sample mean as the

benchmark predictor. In each instance, the kriging predictions result in a 50% improvement

when compared to the global mean predictions for sample sizes of 300 or greater. These

results demonstrate the empirical convergence of our interval-valued kriging models to the

optimal solution using the ρ2
k metric.

Table 4.1: Average RMSE from 10 simulations of an interval-valued random field with no
radius/center interaction and θr = 1

3 .
sample size (n)

Model 50 100 150 200 300 400 500 600

SK-Full
RMSE 0.81 0.74 0.64 0.6 0.55 0.52 0.5 0.46
RMSE(C) 0.77 0.7 0.6 0.56 0.51 0.49 0.46 0.43
RMSE(R) 0.27 0.24 0.22 0.21 0.19 0.17 0.17 0.17

SK-Fast
RMSE 0.88 0.75 0.64 0.6 0.55 0.52 0.5 0.46
RMSE(C) 0.82 0.72 0.6 0.56 0.51 0.49 0.46 0.43
RMSE(R) 0.32 0.24 0.22 0.21 0.19 0.17 0.17 0.17

OK
RMSE 0.82 0.74 0.65 0.6 0.55 0.53 0.5 0.47
RMSE(C) 0.77 0.7 0.61 0.57 0.52 0.5 0.47 0.44
RMSE(R) 0.28 0.24 0.22 0.21 0.2 0.18 0.17 0.17

Mean
RMSE 0.99 1.01 1.03 1.02 1.08 1.04 0.97 1.01
RMSE(C) 0.93 0.95 0.98 0.96 1.03 0.99 0.91 0.95
RMSE(R) 0.34 0.33 0.32 0.32 0.33 0.32 0.32 0.33

4.6 Design snow load predictions for Utah

In this section, we demonstrate an application of our interval-valued kriging models to

predict design snow loads in Utah. We create an interval-valued design snow load dataset

with the same daily data used to create UT-2017. The final intervals account for various

uncertainties in the design load estimation process outlined in Figure 1.2. These imprecise

estimates of design snow load are then used as input to interval-valued kriging. Lastly, the
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Fig. 4.1: Maps of simulated data for both scenarios with 100 sample and prediction locations
(θr = 1, z0 = 5, and θε = 1

10).
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Table 4.2: Average RMSE from 10 simulations of an interval-valued random field with a
radius/center interaction, θr = 1

3 , and θε = 1
10 .

sample size (n)
Model 50 100 150 200 300 400 500 600

SK-Full
RMSE 0.82 0.72 0.65 0.61 0.56 0.53 0.51 0.47
RMSE(C) 0.77 0.67 0.61 0.56 0.52 0.49 0.47 0.44
RMSE(R) 0.28 0.25 0.23 0.23 0.2 0.2 0.19 0.18

SK-Fast
RMSE 0.86 0.72 0.65 0.61 0.56 0.53 0.51 0.47
RMSE(C) 0.81 0.68 0.61 0.56 0.52 0.49 0.47 0.44
RMSE(R) 0.29 0.25 0.24 0.23 0.2 0.2 0.19 0.18

OK
RMSE 0.81 0.72 0.66 0.61 0.57 0.54 0.51 0.48
RMSE(C) 0.76 0.68 0.61 0.57 0.53 0.5 0.47 0.44
RMSE(R) 0.28 0.25 0.23 0.23 0.21 0.2 0.19 0.18

Mean
RMSE 1.05 1.05 1.03 1.04 1.04 1.02 1.04 0.99
RMSE(C) 0.99 1 0.97 0.98 0.98 0.96 0.98 0.93
RMSE(R) 0.35 0.35 0.34 0.35 0.34 0.34 0.34 0.33
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comparisons of the RMSE for the center and radius, for several interval-valued kriging models.
Results are calculated for each model using various values of θr at q = 100 prediction locations
on a regular grid.

resulting interval-valued predictions are compared to estimates from SKLM, which is the

most similar point-valued method.

4.6.1 Defining the interval-valued data

We define interval-valued design snow loads ([q∗s(xα)]) through the following process.

This process combines multiple sources of uncertainty in the design snow load estimation

process into a single interval. The resulting interval-valued data are then used as input into

our interval-valued kriging in the subsequent analyses.

1. Create daily snow load intervals using various depth-to-load conversion methods.

Recall that many measurement locations do not measure the load of settled snow

directly, thus requiring an estimate from snow depth. Chapter 2 summarized the

various methods used by western states estimate snow load from snow depth. Figure

4.4 compares depth-to-load prediction methods for various snow depths on different

days of the year. This figure shows that load predictions can vary widely depending
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Fig. 4.4: Comparisons of the different depth-to-load conversion methods for various depths
and days of the year.

on the selected conversion method. In order to capture the imprecision induced

when a depth-to-load conversion is required, we characterize these predictions using

the interval [qs(xα)] = [min(g),max(g)] for each recorded measurement, where g

represents the vector of all considered depth-to-load predictions. This interval is

graphically characterized as the envelope of depth-to-weight conversions observed in

Figure 4.4. Under this definition, direct measurements of snow load are characterized

as intervals of length zero.

2. Create lower and upper annual maximums snow loads using daily interval-valued data.

We create two sets of annual maximum snow loads through separate considerations of

the upper and lower endpoints of the daily snow load intervals created in Step 1. Using

this strategy, the upper and lower maximum snow load for any given snow season need

not occur on the same day.

3. Account for uncertainty from distribution fitting.
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The American Society of Civil Engineers (ASCE) conventionally assumes a log-normal

distribution for the annual maximum snow loads at a given station and the design snow

load is defined as the associated 98th percentile (ASCE, 2017). However, very often

in practice, this assumption is not appropriate and can lead to inaccurate estimates

of the design snow load. We seek a more robust estimate of the design snow load by

considering five distinct probability distributions: log-normal, gamma, and extreme

value distributions types I, II, and III. Each distribution is characterized by its location

ψ and scale θ parameters, whose values are estimated via ML.

Assume that the upper and lower annual maximum snow load from the previous

step each follows one of the five distributions denoted by Fk(·), k = 1, · · · , 5. The

ML estimates of the parameters are (ψ̂k, θ̂k), which are asymptotically normal under

the hypothesized i.i.d. assumption. To account for the uncertainty of fitting, we

estimate the 98th percentile of each distribution using all values of ψ̂ and θ̂ in their

95% asymptotic confidence interval and calculate the interval that contains all the

estimates.

4. Create final interval-valued design snow load estimates.

The above process generates two intervals for each of the five distributions fit to the

upper/lower annual maximums resulting from Step 2. The final interval is created by

considering the five upper endpoints of the intervals created with the upper annual

maximums and the five lower endpoints of the intervals created with the lower annual

maximums. It is very likely that at least one of the five probability distributions used

in the previous step will provide a poor fit for at least one of these endpoints. To

guard against poor fits, the final design snow load interval is created using only the

median upper and lower endpoints of each interval. This means that the median of

the five upper endpoints from the upper annual maximum intervals is selected as the

final upper endpoint and the median of the five lower endpoints from the lower annual

maximum intervals is selected as the final lower endpoint. This median-based strategy

is a practical method for ensuring that the final intervals have a realistic range.
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4.6.2 Analyses and results

Denote the final design snow load intervals by [qLs (x), qUs (x)]. All ensuing analyses use

these intervals on the log-scale, i.e.

[log(qLs (x)), log(qUs (x))] = [lCs (x)− lRs (x), lCs (x) + lRs (x)].

Figure 4.5 compares lCs (x) to the original point-valued data (log(qPs (xα))) across space and

elevation. To achieve stationarity, we need to remove the elevation effect in both interval

center and radius (shown in Figure 4.5) prior to input into the kriging model. The elevation

trends for both cases are modeled as

lCs (x) = β0 + β1A(x) +RC(x), (4.14)

lRs (x) = RR(x) ∗
(

c

A(x)

)
, (4.15)

where c is a scaling factor, which in this case is set as the median elevation value in the snow

load dataset. It is the residual intervals,
[
RC −RR, RC +RR

]
, that are used as input in

interval-valued kriging.

Figure 4.6 shows the empirical variograms of the interval data alongside an interval-

valued design snow load prediction map. The variograms reveal a spatial relationship between

the centers, radii, and centers/radii interaction. In practice, these empirical variograms are

used to define the theoretical variograms shown as dotted lines in this same figure (Bivand

et al., 2013). We selected spherical models for both the center and radius variograms and

a Gaussian model for the center/radius interaction. (See Goovaerts (1997) for a summary

of other commonly used variograms.) Each model includes a nugget effect and parameters

are selected using a weighted least squares fitting algorithm in the gstat package. Their
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Fig. 4.5: (Clockwise from top left): (1) A map comparing interval-centers to the original
point predictions on the log-scale. Purple diamonds indicate places where the centers of the
log-intervals are less than the log-transformation of the point value predictions. (2) Interval
centers (log-scale) across elevation. (3) Interval radii (log-scale) across elevation.

mathematical definitions are given as

γC(||h||) =



0 ||h|| = 0,

0.21
[
1.5 ||h||193 − 0.5

(
||h||
193

)3
]

+ 0.09 0 < ||h|| ≤ 193,

0.3 ||h|| > 193;

γR(||h||) =



0 ||h|| = 0,

0.03
[
1.5 ||h||139 − 0.5

(
||h||
139

)3
]

+ 0.03 0 < ||h|| ≤ 139,

0.06 ||h|| > 139;

γCR =


0 ||h|| = 0,

−0.05
[
1− exp{−3||h||2

1872 }
]
− 0.01 ||h|| > 0.

We elected to use the SK model because RC(·) has, both in theory and practice, a
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known mean of zero. The resulting kriging predictions are input into (4.14) and (4.15) and

exponentiated for final load predictions. An interval map of these final predictions shown in

Figure 4.6 is intended for simultaneous visualizations of center and radius. The darkness of

the grid indicates the interval center while the size of the circle within each grid represents

the interval radius. The size of the circle is scaled so that the grid cell with the largest radius

will have a circle exactly circumscribed within the cell. It is important to distinguish the

predicted interval radius from the prediction variance. Recall that the prediction variance

defined in (4.3) relies on the stationarity assumptions outlined in Definition 1. One of

these assumptions is that the covariances that comprise the prediction variance are solely

a function of the difference between locations. This essentially makes the kriging variance

a measure of data quantity across space. In contrast, the interval radius measures the

imprecision of the surrounding measurements used in predictions. The kriging variance

and the interval radii measure different aspects of uncertainty in the prediction and need

not be related. A comparison between the predicted radius and the kriging variance using

interval-valued simple kriging is visualized in Figure 4.7. Kriging radii are taken directly

from the interval predictions while kriging variance is calculated directly as in (4.3). The

overall correlation between these two maps is 0.57, but there is certainly no one-to-one

correspondence and the difference can be quite large at certain locations. For example, the

two rectangles in this figure highlight two areas where the spatial patterns of the radii and

kriging variances differ greatly. In the northern rectangle, the lowest variances occur in the

eastern portion while the smallest interval radii occur in the western portion. This is because

the highest concentration of measurements occur in the eastern portion of the rectangle,

while the most precise design snow load estimates are located in the western portion of

this rectangle. Similar conclusions can be drawn from spatial pattern differences in the

southern rectangle. Thus, the interval-valued kriging allows for simultaneous measures of

data quantity and quality, both of which are essential to evaluating the certainty of the

model predictions.
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4.6.3 Discussion

Figure 4.8 compares the predicted intervals to the original point predictions. In the

map, orange color represents areas where the point predictions are relatively higher than

the interval centers and purple color represents the contrary. Generally, the interval centers

are consistently lower along the Wasatch mountain range (running north to south through

the middle of the state) and consistently higher in lower-elevation regions of the state. The

strong effect of elevation on final design snow load predictions makes it difficult to compare

the interval-valued and point-valued results at high elevation locations. At these locations,

the effect of the kriging prediction is marginal compared to the regression prediction based

on elevation. This results in small differences between the interval centers and original point

valued predictions at high elevation locations. Rather, we focus on low-elevation areas where

the original point-valued predictions are below the 40% quantile of the interval. These areas

tend to have low population densities and nearly all receive less snow than is typical for the

state. As such, the few measurement locations that do exist in these regions tend to have less
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consistent measurements of snow. This creates region-wide data precision issues evidenced

by the relatively large interval radii occurring at nearby measurement locations. Large radii

on the log-scale, when exponentiated back to the original scale, disproportionately inflate

the upper endpoints of the final intervals and leave the point predictions in the lower portion

of the intervals.

In the right of plot Figure 4.8, we picked a few locations to show their point predictions

directly on the interval predictions. These locations were selected to adequately represent

the diverse geography and climates of populated locations in the state. Some of them

demonstrate very interesting comparative results. For example, the original point predictions

for St. George and Moab, Utah were almost identical, yet the interval length for St. George is

roughly twice the length of Moab’s. When looking at the measurement locations surrounding

St. George and Moab, we found that the average data interval length for the top five

measurement locations (in terms of kriging weights) for St. George is more than double the

average for the top five measurement locations for Moab (3.4 kPa vs 1.6 kPa, as calculated

on a log-scale after removing the effect of elevation). Snow accumulation is not typically

of interest for the warm climate of St. George. For this reason, there is a general lack of

recorded observations at measurement locations near St. George, which manifests itself in

less precise (i.e. larger interval-radii) estimates of design snow load.

It is important that data imprecision is not confused with data coverage, which is

measured by the kriging variance. For example, St. George has a less precise prediction

than Wendover, Utah, as indicated by the interval lengths. Yet Wendover has a much

larger kriging prediction variance than St. George (0.21 vs 0.14, as calculated on a log-scale

after removing the effect of elevation). Thus the prediction at St. George is uncertain due

to imprecise measurements at surrounding locations, while the prediction at Wendover is

uncertain due to a lack of surrounding measurement locations.

Finally, the patterns observed in the left plot of Figure 4.8 show some interesting

similarities with Colorado’s reliability-based snow load study: locations with higher relative

uncertainty in the 50 year estimates tend to have higher design snow load predictions. The
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Colorado study used Monte-Carlo simulations of several load factors in light of existing

resistance factors to determine the design snow load that would satisfy a desired reliability

index. Load and resistance factors are partial safety factors which rationally increase the

predicted loading and reduce the predicted resistance simultaneously. The goal of the

Colorado study was to select snow loads that would result in a constant risk, in light of

the observed differences in uncertainty across the state. Snow loads were simulated using

a log-normal distribution estimated from the upper third of all annual maximums at each

measurement location. This simulation-based strategy accounts for some of the year-to-year

variability in observed design snow loads when determining appropriate reliability-based

design snow loads. Using this strategy, mountainous locations had reliability-based snow

loads about 90% of the typical 50 year load while the eastern Colorado plains region had

reliability-based loads as much as double the 50 year loads (Liel et al., 2017).

The Colorado methodology represents an important step forward in the design snow

load prediction problem by characterizing loads as distributions rather than single values.

However, the strategy does not consider uncertainty in the depth-to-load conversions or the

distribution fitting process. In addition, their ensuing spatial interpolation is still based on

point-valued snow loads derived from fixed load factors. This again robs predictions between

measurement locations of proper context, as it is unclear if the high predicted values are

due to surrounding measurement locations with large means, or distributions with heavy

tails. Preserving context through intervals opens the possibility for defining location specific

load factors as a function of the relative variability of each interval. In addition to design

snow load prediction, other models based on this framework could easily be constructed for

similar predictions of other extreme climatic events where the data inputs are inherently

imprecise.

4.7 Reflections

The primary contribution of this chapter is the development of a mathematically

tractable, numerically feasible set of interval-valued kriging models. These models leverage

the many advancements in set-valued statistics over the past 30 years to provide a well-
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established notion of spatial covariance between intervals, which simplifies and clarifies the

earlier development in Diamond (1988). The new models inherit much of their mathematical

foundation from their point-valued counterparts and offer a natural interval-valued extension

to anyone familiar with the kriging paradigm. We demonstrated the numerical feasibility

of these models through a series of simulations on interval-valued stationary random fields,

which showed the finite sample performance and empirical convergence of our numerical

implementations.

Another important contribution of this chapter from the applied perspective is a novel

approach suitable for estimating design loads as part of a reliability analysis where spatial

variability is desired for the snow load, or other environmental load, prediction problems.

This approach includes a new method that characterizes the uncertainties of the design

load estimation process as interval-valued observations. This interval-valued dataset was

used in a regression-kriging framework to make interval-valued design snow load prediction

maps for the state of Utah. We also provided unique spatial visualizations of intervals that
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allow for simultaneous comparisons of interval center and radius in a single figure. The

comparison to the original point valued predictions revealed a systematic pattern: locations

with imprecise estimates of design load tend to have interval centers larger than the point

valued predictions. This phenomenon is consistent with the aims of any reliability analysis,

where increased uncertainty in a process is ultimately balanced with higher load requirements,

(i.e. load factors). The implications of these interval-predictions extend well beyond this

initial comparison. In particular, the interval length (or the center/radius ratio) could be

used to calculate location-specific reliability indices for design predictions rather simply

relying on theoretical norms.

Although the center is a natural measure of level for an interval, it is not necessarily so

in general. More rigorously, one needs to consider weighting within the interval and compute

the level by means of an integral, e.g.,
∫

[0,1]

[
λsL + (1− λ)sU

]
ν(dλ), where ν is a normalized

measure on [0, 1] characterizing the weighting. Future work on our interval-valued kriging

models will include the development of such methods for computing the level, which is

usually of great interest in practice. We also anticipate adjustments to the optimization

algorithm that will allow for direct use of the variogram in the numerical implementation,

rather than assuming the existence of C(0). In addition, considerations of uncertainty in

the theoretical variogram parameters, similar to Loquin and Dubois (2012), would be worth

further investigation. Indeed, one of the crucial products of this chapter are the many

future considerations made possible by a new mathematical foundation and computationally

feasible implementation of interval-valued kriging. We conclude that our interval-valued

kriging models provide a practical and important alternative for researchers looking to extend

their kriging applications to accommodate interval-valued inputs. These accommodations

of imprecise inputs are imperative to ensuring that the spatial models we create today can

meet the data challenges of tomorrow. The following chapter outlines a generalized approach

for handling imprecise spatial data.

4.8 Proofs
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4.8.1 Proof of Theorem 1

Proof. The prediction variance is defined as

E
[
ρ2
K

(
[Ẑ(x∗)], [Z(x∗)]

)]
= E

[
A11

(
ẐC(x∗)− ZC(x∗)

)2
+A22

(
ẐR(x∗)− ZR(x∗)

)2
+

2A12
(
ẐC(x∗)− ZC(x∗)

) (
ẐR(x∗)− ZR(x∗)

) ]
:= A11I +A22II + 2A12III. (4.16)

First of all, by the unbiasedness of ẐC(·),

I = E
(
ẐC(x∗)− ZC(x∗)

)2

= Var
(
ẐC(x∗)− ZC(x∗)

)
= Var

(∑
λiZ

C(xi)
)

+ Var
(
ZC
)
− 2Cov

(∑
λiZ

C(xi), ZC(x∗)
)

=
∑
i

∑
j

λiλjCov
(
ZC(xi), ZC(xj)

)
− 2

∑
i

λiCov
(
ZC(xi), ZC

)
+ Var

(
ZC(x∗)

)
=

∑
i

∑
j

λiλjC
C,C(xi − xj)− 2

∑
i

λiC
C,C(xi − x∗) + CC,C(0). (4.17)

Second, in the similar fashion,

II = E
(
ẐR(x∗)− ZR(x∗)

)2

=
∑
i

∑
j

|λiλj |CR,R(xi − xj)− 2
∑
i

|λi|CR,R(xi − x∗) + CR,R(0). (4.18)

Finally,

III = E
(
ẐC(x∗)− ZC(x∗)

) (
ẐR(x∗)− ZR(x∗)

)
= Cov

(
ẐC(x∗)− ZC(x∗), ẐR(x∗)− ZR(x∗)

)
= Cov

(∑
λiZ

C(xi),
∑
|λj |ZR(xj)

)
− Cov

(
ZC(x∗),

∑
|λi|ZR(xi)

)
−Cov

(∑
λiZ

C(xi), ZR(x∗)
)

+ Cov
(
ZC(x∗), ZR(x∗)

)
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=
∑
i

∑
j

λi|λj |CC,R(xi − xj)−
∑
i

|λi|CR,C(xi − x∗)

−
∑
i

λiC
C,R(xi − x∗) + CC,R(0). (4.19)

Plugging (4.17)-(4.19) into (4.16) completes the proof.

4.8.2 Proof of Theorem 2

Proof. Recall (4.16) in the proof of Theorem 1 that

E
[
ρ2
K

(
[Ẑ(x∗)], [Z(x∗)]

)]
= A11I +A22II + 2A12III. (4.20)

From (4.6)-(4.6), we have

CC,C(h) = CC,C(0)− γC(h), (4.21)

CR,R(h) = CR,R(0)− γR(h), (4.22)

CC,R(h) + CC,R(−h) = 2
[
CC,R(0)− γC,R(h)

]
. (4.23)

Plugging (4.21) in (4.17) and by the unbiasedness constraints, we obtain

I = −
∑
i

∑
j

λiλjγ
C(xi − xj) + 2

∑
i

λiγ
C(xi − x∗). (4.24)

Similarly, by plugging (4.22) in (4.18), we get

II = −
∑
i

∑
j

λiλjγ
R(xi − xj) + 2

∑
i

λiγ
C(xi − x∗). (4.25)

Finally, the last term can be rewritten as

III =
(∑

i

λ2
i

)
CC,R(0) +

∑
i<j

λiλj
[
CC,R(xi − xj) + CC,R (−(xi − xj))

]
−
∑
i

λi
[
CC,R(xi − x∗) + CC,R (−(xi − x∗))

]
+ CC,R(0). (4.26)



88

Plugging (4.23) in (4.26), we get

III =
(∑

i

λ2
i

)
CC,R(0) + 2

∑
i<j

λiλj
[
CC,R(0)− γC,R(xi − xj)

]
−2
∑
i

λi
[
CC,R(0)− γC,R(xi − x∗)

]
+ CC,R(0)

= CC,R(0)− 2
∑
i<j

λiλjγ
C,R(xi − xj)− 2CC,R(0) + 2

∑
i

λiγ
C,R(xi − x∗) + CC,R(0)

= −
∑
i 6=j

λiλjγ
C,R(xi − xj) + 2

∑
i

λiγ
C,R(xi − x∗). (4.27)

Plugging (4.24), (4.25), and (4.27) in (4.20) completes the proof.

4.8.3 Proof of Theorem 3

Proof. Define

V C,C(λ) =
∑
i

∑
j

λiλjC
C,C(xi − xj)− 2

∑
i

λiC
C,C(xi − x∗), (4.28)

V R,R(λ) =
∑
i

∑
j

|λiλj |CR,R(xi − xj)− 2
∑
i

|λi|CR,R(xi − x∗), (4.29)

V C,R(λ) =
∑
i

∑
j

λi|λj |CC,R(xi − xj)−
∑
i

|λi|CR,C(xi − x∗)

−
∑
i

λiC
C,R(xi − x∗). (4.30)

The prediction variance is then rewritten as

E
[
ρ2
K

(
[Ẑ(x∗)], [Z(x∗)]

)]
= A11V

C,C(λ) +A22V
R,R(λ) + 2A12V

C,R(λ).

It follows that

Q(λ) = A11V
C,C(λ) +A22V

R,R(λ) + 2A12V
C,R(λ) + P (λ, c), (4.31)
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and

G = ∇Q(λ) = A11
∂

∂λk
V C,C(λ) +A22

∂

∂λk
V R,R(λ) + 2A12

∂

∂λk
V C,R(λ)

+ ∂

∂λk
P (λ, c) (k = 1, . . . , n) (4.32)

H = ∇2Q(λ) = A11
∂2

∂λkλl
V C,C(λ) +A22

∂2

∂λkλl
V R,R(λ) + 2A12

∂2

∂λkλl
V C,R(λ)

+ ∂2

∂λkλl
P (λ, c) (k, l = 1, . . . , n). (4.33)

For SK, we use the quadratic approximation in (4.7) to handle the non-differentiability

of |λ|, which amounts to

d

dλ
|λ| = λ

λ0
,

d2

dλ2 |λ| =
1
λ0
, for λ ≈ λ0 6= 0.

Then, the components of ∇Q are calculated as

∂

∂λk
V C,C =

∑
i

λi
[
CC,C(xi − xk) + CC,C(xk − xi)

]
− 2CC,C(xk − x∗),

∂

∂λk
V R,R = λk

|λk0|

[∑
i

|λi|
[
CR,R(xi − xk) + CR,R(xk − xi)

]
− 2CR,R(xk − x∗)

]

= λk
|λk0|

fR,R (λ, λk) ,

∂

∂λk
V C,R =

∑
i

[
|λi|CC,R(xk − xi) + λk

|λk0|
λiC

C,R(xi − xk)
]

− λk
|λk0|

CR,C(xk − x∗)− CC,R(xk − x∗),

∂

∂λk
P (λ, c) = −2cλk

|λk0|

(
1−

∑
i

|λi|
)
.

Similarly, the components of ∇2Q are

∂2

∂λkλl
V C,C = CC,C(xl − xk) + CC,C(xk − xl),

∂2

∂λkλl
V R,R =


1
|λk0|f

R,R (λ, λk) + 2CR,R(0)
(

λk
|λk0|

)2
k = l

λkλl
|λk0λl0|

[
CR,R(xl − xk) + CR,R(xk − xl)

]
k 6= l

,
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∂2

∂λkλl
V C,R =


2λk
|λk0|C

C,R(0) + 1
|λk0|

[∑
i λiC

C,R(xi − xk)− CR,C(xk − x∗)
]

k = l

λl
|λl0|C

C,R(xk − xl) + λk
|λk0|C

C,R(xl − xk) k 6= l

,

∂2

∂λkλl
P (λ, c) =


2c
(

λk
|λk0|

)2
− 2c
|λk0| (1−

∑
i |λi|) k = l

2cλkλl
|λk0||λl0| k 6= l

.

Plugging these derivations into (4.31 - 4.33) completes the SK case.

For OK, under the constraint that λi ≥ 0, we have |λi| = λi and Q(λ) is a quadratic

function, so no approximation is needed. The components of the gradient and Hessian are

calculated straightforwardly as

∂

∂λk
V C,C =

∑
i

λi
[
CC,C(xi − xk) + CC,C(xk − xi)

]
− 2CC,C(xk − x∗),

∂

∂λk
V R,R =

∑
i

λi
[
CR,R(xi − xk) + CR,R(xk − xi)

]
− 2CR,R(xk − x∗),

∂

∂λk
V C,R =

∑
i

λi
[
CC,R(xk − xi) + CC,R(xi − xk)

]
−CR,C(xk − x∗)− CC,R(xk − x∗),

∂

∂λk
P (λ, c) = −2

c

(
1−

∑
i

λi

)
− c

λk
,

∂2

∂λkλl
V C,C = CC,C(xl − xk) + CC,C(xk − xl),

∂2

∂λkλl
V R,R = CR,R(xl − xk) + CR,R(xk − xl),

∂2

∂λkλl
V C,R = CC,R(xk − xl) + CC,R(xl − xk),

∂2

∂λkλl
P (λ, c) = 2

c
+ c

λ2
k

I(k=l).

Plugging these results into (4.31 - 4.33) completes the OK case.

4.8.4 Proof of Theorem 4

Proof. Recall the components of V (λ) defined in (4.28 - 4.30). Because P̃SK(λ, c) (as defined
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in (4.8)) now ensures that min |λ| > 0, we can now directly use derivatives of |λ| expressed

as

d

dλ
|λ| = sgn(λ), d2

dλ2 |λ| = 0.

This, in turn, simplifies the partial derivative calculations to become

∂V C,C(λ)
∂λk

=
∑
i

λi
[
CC,C(xi − xk) + CC,C(xk − xi)

]
− 2CC,C(xk − x∗)

∂V R,R(λ)
∂λk

= sgn(λk)fR,R(λ, λk)]

∂V C,R(λ)
∂λk

=
∑
i

[
|λi|CC,R(xk − xi) + sgn(λk)λiCC,R(xi − xk)

]
−CR,C(xk − x∗)− CC,R(xk − x∗)

∂P̃SK(λ, c)
∂λk

= − 2c
n2λk

− 2 sgnλk
c

(
1−

∑
i

|λi|
)

k = 1, · · · , n;

∂2V C,C(λ)
∂λk∂λl

= CC,C(xl − xk) + CC,C(xk − xl)

∂2V R,R(λ)
∂λk∂λl

= sgn(λkλl)
[
CR,R(xl − xk) + CR,R(xk − xl)

]
∂2V C,R(λ)
∂λk∂λl

= sgn(λl)CC,R(xk − xl) + sgn(λk)CC,R(xl − xk)

∂2P̃SK(λ, c)
∂λk∂λl

= 2 sgn(λkλl)
c

+ I{k=l}(λ) 2c
(nλk)2 k, l = 1, · · · , n.

Plugging these results into (4.31 - 4.33) completes this alternative SK case.
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CHAPTER 5

ANALYZING INTERVAL-VALUED SPATIAL DATA

Now that our interval-valued kriging models have been formally defined and introduced,

there remains the need to make interval-valued spatial data analysis accessible to the public.

This is accomplished in the intkrige R software package through a series of functions

designed to simplify the process for analyzing and exploring interval-valued spatial data.

This process is demonstrated through interval-valued temperature predictions in the Ohio

River basin.

5.1 Predicting interval-valued temperatures in the Ohio River Basin

Millions of Americans take interest in the forecasts of minimum and maximum temper-

ature when deciding how to dress each day. DeGaetano and Belcher (2007) used various

interpolation approaches to create minimum and maximum temperature maps of the north-

eastern United States. Their techniques treated minimum and maximum temperatures as

separate observations. In a different framework, minimum and maximum temperatures could

be considered as two elements of one and the same observation, which is daily temperature.

In other words, these daily temperature measurements create a single interval-valued obser-

vation rather than two individual observations. This holistic view of temperature motivates

the need for methods to analyze the interaction of temperature magnitude and range across

space.

The Ohio river basin includes most of the states of Ohio, West Virginia, Kentucky,

and Indiana, as well as parts of Pennsylvania, Illinois, and Tennessee. The region is

approximately 204,000 square miles and home to nearly 25 million people (Ohio River Basin

Consortium, 2019). The region was selected due its relatively homogeneous elevation profile

when compared to the western United States. We wish to map the magnitude and range

of temperatures across this region. This is done by creating intervals of the 30 year mean
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maximum and minimum daily temperatures for available measurement locations.

Measurement locations are downloaded from the GHCN (Menne et al., 2018). The 161

remaining observations in the dataset all contained at least 30 years of record with at least

300 daily observation for calendar years 1988 to 2018. Intervals were created using a 5%

trimmed 30 year mean for maximum and minimum temperatures respectively. These data

are included in the package and can be accessed with the commands

library(intkrige)

#> Loading required package: sp

#> Loading required package: gstat

#> Registered S3 method overwritten by 'xts':

#> method from

#> as.zoo.xts zoo

#> Loading required package: raster

data(ohtemp)

head(ohtemp)

#> ID NAME STATE LONGITUDE LATITUDE ELEVATION

#> 1 USC00111302 CARMI 3 IL -88.1805 38.0733 102.1

#> 2 USC00111436 CHARLESTON IL -88.1653 39.4761 213.4

#> 3 USC00112140 DANVILLE IL -87.6478 40.1392 169.2

#> 4 USC00112931 FAIRFIELD RADIO WFIW IL -88.3264 38.3806 131.1

#> 5 USC00114198 HOOPESTON IL -87.6850 40.4664 216.4

#> 6 USC00116446 OLNEY 2S IL -88.0817 38.7003 139.9

#> minm maxm

#> 1 76.11001 196.7273

#> 2 67.56999 180.6998

#> 3 57.90647 178.5897

#> 4 75.05457 197.1208

#> 5 57.97599 170.2541
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Fig. 5.1: Google map of the Ohio river basin with measurement locations overlaid.

#> 6 72.36740 191.8014

Figure 5.1 shows a map of this region with the 161 weather stations locations overlaid.

The code for this map makes use of the ggmap package (Kahle and Wickham, 2013). The

code to generate the map is not provided in this demonstration as the map rendering requires

a registered Google API account.

5.2 Interval exploration

Our goal is to create an interval-valued map of the mean maximum and minimum

temperatures across the region. Doing so allows us to simultaneously compare spatial patterns

in the magnitude and range of average temperatures. The intkrige package provides a

formal workflow for analyzing interval valued data by extending SpatialPointsDataFrame

and SpatialPixelsDataFrame objects from the sp package (Bivand et al., 2013; Pebesma

and Bivand, 2005). These objects are created using the interval() function as demonstrated

below.
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# First, create a SpatialPointsDataFrame in the usual way

sp::coordinates(ohtemp) <- c("LONGITUDE", "LATITUDE")

sp::proj4string(ohtemp) <- CRS("+proj=longlat +ellps=WGS84")

interval(ohtemp) <- c("minm", "maxm")

head(ohtemp)

#> coordinates interval ID

#> 1 (-88.1805, 38.0733) [76.11001, 196.7273] USC00111302

#> 2 (-88.1653, 39.4761) [67.56999, 180.6998] USC00111436

#> 3 (-87.6478, 40.1392) [57.90647, 178.5897] USC00112140

#> 4 (-88.3264, 38.3806) [75.05457, 197.1208] USC00112931

#> 5 (-87.685, 40.4664) [57.97599, 170.2541] USC00114198

#> 6 (-88.0817, 38.7003) [72.3674, 191.8014] USC00116446

#> NAME STATE ELEVATION

#> 1 CARMI 3 IL 102.1

#> 2 CHARLESTON IL 213.4

#> 3 DANVILLE IL 169.2

#> 4 FAIRFIELD RADIO WFIW IL 131.1

#> 5 HOOPESTON IL 216.4

#> 6 OLNEY 2S IL 139.9

This function creates either an intsp or intgrd object depending on the parent class.

Both of these objects contain an interval slot that extend their parent classes. The interval

slot is filled by specifying column names within the data frame, or specifying a two-column

matrix with the same number of rows as the data object. These two forms of specification

allow for convenient transformations of the interval slot values with the appropriate calls.

interval(ohtemp) <- log(interval(ohtemp))

head(ohtemp)
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#> coordinates interval ID

#> 1 (-88.1805, 38.0733) [4.33218, 5.281819] USC00111302

#> 2 (-88.1653, 39.4761) [4.213164, 5.196837] USC00111436

#> 3 (-87.6478, 40.1392) [4.058829, 5.185091] USC00112140

#> 4 (-88.3264, 38.3806) [4.318215, 5.283817] USC00112931

#> 5 (-87.685, 40.4664) [4.060029, 5.137292] USC00114198

#> 6 (-88.0817, 38.7003) [4.281756, 5.25646] USC00116446

#> NAME STATE ELEVATION

#> 1 CARMI 3 IL 102.1

#> 2 CHARLESTON IL 213.4

#> 3 DANVILLE IL 169.2

#> 4 FAIRFIELD RADIO WFIW IL 131.1

#> 5 HOOPESTON IL 216.4

#> 6 OLNEY 2S IL 139.9

Note that intervals must be defined by their endpoints with the lower endpoint appearing

in the first column. The interval() function will throw an error if it detects a lower endpoint

greater than its corresponding upper endpoint. The function will also throw an error if

a proposed transformation of the interval causes a lower endpoint to be greater than an

upper endpoint. Recall from Chapter 4 that intervals can be alternatively characterized by

their center and radius. It is easier to describe and characterize intervals by their endpoints,

but it is easier to visualize and analyze spatial intervals using the center and radius. Thus

interval objects must be initialized using their endpoints, but all interval-valued kriging and

variogram functions automatically determine and use the center/radius form in analysis.

The interval-valued kriging functions require variograms for the center and radius,

while a cross-variogram for the center/radius interaction is optional. The most common

way of exploring these spatial relationships is through the use of an empirical variogram,

defined previously in (2.3). The intvariogram() function provides wrappers to variogram

functionality in the gstat package (Gräler et al., 2016; Pebesma, 2004). These wrapper
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Fig. 5.2: Empricial variograms for the interval-valued data.

functions exploit the predictable structure of the interval slot in the intsp and intgrd

objects to calculate the three empirical variograms simultaneously. The output of this

function is an object of class intvariogram. This new object class distinguishes this output

from other lists of empirical variograms.

# Revert back to the standard interval

interval(ohtemp) <- exp(interval(ohtemp))

varios <- intvariogram(ohtemp, cutoff = 500)

plot(varios)

It seems from Figure 5.2 that the radius and center/radius interaction could be ap-

propriately modeled with spherical variograms while the center could be modeled with

a linear variogram. The fit.intvariogram function provides a way to fit theoretical

variograms to the three empirical variograms generated by the intvariogram function.

The fit.intvariogram function uses the existing functionality of the fit.variogram

function in the gstat package. The fit.intvariogram function only accepts objects of
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class intvariogram and is designed to be used in tandem with the intvariogram func-

tion. The intvcheck function allows for a quick evaluation of the model output from

fit.intvariogram.

varioFit <- fit.intvariogram(varios, models = gstat::vgm(c("Lin", "Sph", "Sph")))

#> Warning in gstat::fit.variogram(x_sub, model = models[[i]], ...): singular

#> model in variogram fit

varioFit

#> [[1]]

#> model psill range

#> 1 Nug 1.003235 0.0000

#> 2 Lin 361.958967 497.7719

#>

#> [[2]]

#> model psill range

#> 1 Nug 0.0000 0.00000

#> 2 Sph 23.1517 80.56012

#>

#> [[3]]

#> model psill range

#> 1 Nug -8.460132 0.000

#> 2 Sph 41.454114 470.397

intvCheck(varios, varioFit)

Note that for the observed data, the theoretical variogram models visualized in Figure

5.3 provide a decent fit to the data. However, the “singular model” warning reminds us

that well-defined covariances cannot be recovered from linear variograms. The current

interval-valued kriging models rely on the covariance equivalence of the variograms (which

is calculated using variogramLine(covariance = TRUE)). A common practice in this case

is to fit a spherical variogram with an arbitrary sill and range. These values are selected to
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Fig. 5.3: Empirical variograms plotted against theoretical variograms for the interval-valued
data.

create a spherical variogram that looks similar to the linear variogram within the viewing

window as observed in Figure 5.4.

# Replace non-convergent variogram fit with a surrogate that

# contains a reasonable range and sill.

varioFit[[1]] <- gstat::vgm(psill = 350, nugget = 4.608542,

range = 600, model = "Sph")

intvCheck(varios, varioFit)

We understand and acknowledge the shortcomings of this variogram fitting approach as

articulated in Loquin and Dubois (2010). Despite its shortcomings, this common approach

to variogram fitting works well for many spatial projects. Our substitution of a spherical

variogram for a linear one certainly would demand more attention in a rigorous analysis

of temperatures. However, for the purposes of demonstration, this model substitution is

sufficient to demonstrate the interval-valued spatial data workflow.
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5.3 Interval-valued kriging arguments

We are now ready to make temperature predictions using interval valued kriging. There

are 17 different arguments for the intkrige function, yet all but three of these arguments

have default options that allow for a quick implementation. These 17 arguments can be

separated into three general categories: data, models, and optimization. A brief description

of each group of variables is provided below:

• Data: the locations and newdata arguments define the measurement and prediction

locations respectively. The location data object should also include a well-defined

interval slot.

• Models: The models and trend arguments control the type and behavior of the

interval valued kriging model. The trend argument corresponds to the known mean

of the interval-valued centers. When specified, this argument leads the function to use

simple instead of ordinary kriging. The models argument includes the list of variogram

models used to calculate the kriging weights.
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• Optimization: Recall that interval-valued kriging amounts the minimizing (4.3). The

current numerical implementation assumes that the covariances exist and calculates

them from the variograms using variogramLine(covariance = TRUE) from the gstat

package. The A11, A12, and A22 parameters are specified with the A parameter in the

intkrige function. The default option assumes no interaction between center and

radius (i.e. A[3] = 0). A[3] is also effectively set to zero when a third variogram

model is not specified.

The eta, thresh, tolq, maxq, tolp, maxp, and r variables all directly relate to

the PANR technique used minimize E
[
ρ2
K

(
[Ẑ(x∗)], [Z(x∗)]

)]
as described in Chapter

4. The details of this optimization technique were provided in Chapter 4. These opti-

mization parameters provide the user the necessary flexibility to adjust the optimization

technique as needed to produce convergent results.

These interval-valued kriging models are designed to predict hundreds, if not thousands,

of locations in a single function call. Providing a separate initial guess for each

prediction location quickly becomes impractical in such a context. As such, the initial

guess for the kriging weights at each locations are derived from the traditional simple

kriging weights obtained using only the interval centers. It is expected that the final

weights will be close to this initial guess.

Once the user has selected proper optimization parameters, the fast,useR, and cores

variables all allow for potential speedups in the computation time. More about these

arguments are found in the function documentation.

5.4 Troubleshooting Optimization Concerns

Each new dataset brings with it a new set of considerations for the optimization

algorithm. The R version of the models (invoked when useR = TRUE, the default) will print

warnings to the screen when the optimization fails. Both the R and c++ versions will flag

troublesome predictions by setting warn = 1 in the list of return arguments.
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Determining the right optimization parameters to ensure a successful optimization for

all locations can be tricky, especially when faced with a large number of prediction locations.

It is recommended that the model first be run for a small set of prediction locations using

the function defaults. Then, adjust the optimization parameters as needed based on the

recommended guidelines in the list at the end of the section. Once the optimization is working

correctly for a subset of locations, the model can be tested on all locations. Movement to

the c++ version (via useR = FALSE) should only happen after the optimization parameters

have been appropriately tuned, as the c++ version provides less descriptive messages to the

user. Below is a list of common solutions for various optimization issues.

• In ordinary kriging (trend = NULL). The warning “left feasible region” is best handled

by increasing the value of r and/or increasing the value of eta to be closer to 1.

• In simple kriging (trend = !NULL), the warning “convergent, feasible solution not

obtained” is likely best handled by invoking the fast = TRUE option. The fast =

FALSE is intended to prevent weights from converging to zero and is only relevant when

the number of measurement locations is small (around 50 or less). In situations with

more stations, the prevention of zero valued weights can cause a failure to converge. If

this warning continues to be obtained. Consider increasing the value of eta closer to

1, or increasing the tolerance levels for the convergence criteria.

• The warning “feasible solution obtained from a non-convergent optimization step” is

likely best handled by lowering the value of eta, which controls the rate of imposition

of the penalty parameter.

5.5 Application

As previously mentioned, we can accept the default arguments for the majority of

parameters in the intkrige model for our predictions of Ohio temperatures. Because no

closed form solution exists for these interval-valued kriging models, the computational time

for fine maps can be tremendous. This is one of the reasons for the parallel processing
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option when the number of prediction locations is large. The parallel version of the model

makes use of multiple packages included in the “Suggests” field of the package description

file. Once these packages are installed, the argument cores = -1 will use all available cores

(minus 1) to make predictions at the specified locations. Alternatively, the user can explicitly

define the number of cores to use in parallel with n = <integer>. We make predictions

on a 10 by 10 grid of coordinates, defined using the bounding box of the Ohio river valley

shapefile, using the following code.

# Include the Ohio river basin shapefile

data(ohMap)

# New location data preparation

lon <- seq(-89.26637, -77.83937, length.out = 10)

lat <- seq(35.31332, 42.44983, length.out = 10)

newlocations <- expand.grid(lon, lat)

colnames(newlocations) <- c("lon", "lat")

sp::coordinates(newlocations) <- c("lon", "lat")

sp::proj4string(newlocations) <- sp::proj4string(ohtemp)

sp::gridded(newlocations) <- TRUE

# Adjust r and theta to ensure answers remain in feasible region.

preds <- intkrige(ohtemp, newlocations, varioFit,

A = c(1, 1, 0.5), r = 200, eta = 0.9, maxp = 225)

plot(preds, beside = FALSE, circleCol = "gray") +

latticeExtra::layer(sp.lines(ohMap, col = "white"))
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Fig. 5.5: Single plot method for interval-valued spatial grids. The reference circles in the
corners of the image indicate the circle size for the maximum and minimum observed radius
in the map. The range of radii are also given along the top of the plot.

plot(preds, beside = TRUE)

5.6 Analysis

Figure 5.5 visualizes the center and radius of the interval-predictions in a single image.

The reference circles in the corners of the image provide the circle sizes corresponding to

the maximum and minimum radius. The numeric values of the maximum and minimum

radius (rounded to three decimal places) are also given along the top of the plot. Figure

5.6 visualizes the components of the interval in a more traditional side-by-side plotting

approach. These side-by-side plots make use of gridArrange() in the gridExtra package

(Auguie, 2017). Both plotting approaches use the lattice package approach to plotting.

This means that the user cannot make adjustments to the plotting window using par()

from the graphics package. Both plotting styles are intended to give users a quick way to

visualize the spatial patterns in predictions.

5.7 Reflections

These default plots help us to draw some quick conclusions from the data. First, notice
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Fig. 5.6: Side-by-side plotting method for interval-valued spatial grids.

that the highest temperature magnitudes occur in the southern portion of the basin while

the largest temperature ranges occur in the eastern portion of the basin. The eastern border

of the basin runs through the Appalachian mountains and mountainous regions are notorious

for experiencing larger daily swings in temperature. Conversely, warmer temperatures are

more likely to persist throughout the night at lower elevations farther south. This likely

explains why the southern corner of the basin has higher temperature magnitudes and

smaller temperature ranges. It is also noteworthy that the smallest predicted interval radii

occur along the northern border of the basin, possibly due to the moderating effect of lake

Erie on extreme daily temperatures.

More important than the specific application provided in this chapter is the establishment

of a pattern for exploring interval-valued spatial data. This demonstration has illustrated the

use of a series of functions designed simplify and enhance interval-valued spatial analysis. We

anticipate that future iterations of the intkrige package will result in a continual increase

of functionality and applications.
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CHAPTER 6

CONCLUSION

The ever-increasing availability and complexity of spatial data necessitate future adapta-

tions, enhancements and replacements of traditional spatial methods. These methodological

advancements require new paradigms to address old problems using a diverse set of ap-

proaches. This is especially true of design ground snow loads, which will become increasingly

difficult to define as age old patterns in snow accumulation are disrupted by climate change.

We have reviewed the various data processing and mapping techniques used by western

states to predict ground snow and formally compared many of them in a cross valida-

tion analysis. This analysis revealed that regression-based mapping techniques performed

noticeably better than the current mapping techniques used in Utah and Idaho. These

results also demonstrated the shortcomings of using NGSL to predict snow loads between

measurement locations. Our findings have culminated in a new set of design snow load

requirements for Utah which have been adopted into Utah law (Article VI, Section 2 of

the Utah Constitution). The new design snow load requirements can be obtained for any

address in Utah at https://utahsnowload.usu.edu/.

Our review of the state-of-the-art methods for defining design snow load requirements

revealed several important considerations discussed in Chapter 3. One of these important

considerations is that the comparison of mapping techniques relied on the assumption that

the design snow loads at each measurement location were known, precise values. This

assumption ignores several sources of uncertainty inherent in the design snow load estimation

process, which limits the opportunity to incorporate local measurement imprecision in a

reliability analysis. The need for mapping techniques that can accommodate imprecise input

gave rise to our interval-valued kriging models, which were developed and applied to the

Utah design snow load prediction problem. The application highlighted apparent patterns

in the relative precision of surrounding measurements: high elevation locations with direct

https://utahsnowload.usu.edu/
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measurements of WESD had better relative precision than the sparse measurements of

SNWD at low elevation locations. The process of creating an interval-valued design snow

load dataset, as well as the ensuing interval-valued kriging predictions, are a crucial step

forward in defining reliability-based design snow load maps.

These interval-valued kriging models gave rise to an interval-valued spatial data analysis

workflow, which is formalized in the intkrige R software package. This workflow was

demonstrated by making interval-valued predictions of temperature in the Ohio river basin,

as well as interval-valued design snow load predictions in Utah. The intkrige package

is available to the public via the Comprehensive R Archive Network (CRAN) or at https:

//github.com/beanb2/intkrige.

Perhaps equally important to these results are the momentum they have created for

future projects. We are currently creating tools to fully automate the design snow load

estimation workflow. A preliminary version of a design snow load dataset for the entire

nation is available as part of the snowload package available at https://github.com/beanb2/

snowload. This package also includes R implementations of the mapping methods described

in Chapter 2. Other future projects include scaling the methods reviewed in this paper for

nation-wide predictions of design snow load.

Our framework for data creation, model validation, and interval-valued spatial analysis

provide a pattern for creating design snow load requirements that can be extended to

a national scale. In particular, we provided a new approach for estimating design snow

loads that accounts for imprecision at the measurement locations. This framework owes

its existence to the many researchers actively engaged in the design snow load estimation

problem. Inspiration was drawn from many of the state-level snow load reports and datasets

made available to the public and cited throughout this dissertation. Our advancements and

extensions will allow individual states, and perhaps the entire nation, to create data-driven

design snow load requirements that can be quickly updated and evaluated with little marginal

cost. Such updates will aid engineers across the U.S. as they design safe and economical

buildings for future generations.

https://github.com/beanb2/intkrige
https://github.com/beanb2/intkrige
https://github.com/beanb2/snowload
https://github.com/beanb2/snowload
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AUTOMATING THE DESIGN GROUND SNOW LOAD ESTIMATION PROCESS

The following is an excerpt from the unpublished 2018 Washington Snow Load Report.

The excerpt illustrates improvements and automations to the process for creating a design

ground snow load dataset. This process has been subsequently used to create a national

design snow load dataset as provided in the snowload package.

A.1 Washington Climate

The Western Regional Climate Center (WRCC) describes Washington as having a

western coastal climate region and an eastern semi-arid climate region as separated by the

Cascade Mountains (WRCC, 2018). Such a description is consistent with the Environmental

Protection Agency’s (EPA) designated ecoregions for the state. These ecoregions are

“areas where ecosystems (and the type, quality, and quantity of environmental resources)

are generally similar” (EPA, 2018). Further details are provided by the Commission for

Environmental Cooperation (CEC, 1997). There are five different hierarchical levels of

ecoregions defined for the United States. Figure A.1 visualizes the Level III ecoregions and

similarly colored regions share the same Level I ecoregions. This base layer of this figure is

obtained from Google’s API using the ggmap package (Kahle and Wickham, 2013). These

different ecoregions will differ in elevation, precipitation amount, and temperature and the

type and amount of snow will inevitably differ greatly between regions. Details of how these

ecoregions are used in the creation of the Washington design ground snow load dataset and

corresponding PRISM predictions are provided in the ensuing sections.

A.2 Data Development

Data are collected from the Global Historical Climatology Network (GHCN) (Menne

et al., 2018) as provided by the National Centers for Environmental Information (NCEI), a

division of the National Oceanic and Atmospheric Administration (NOAA) (Menne et al.,
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Fig. A.1: EPA level III ecoregions for the state of Washington.

2012). This network includes a variety of different stations, including the National Weather

Service (NWS) first-order stations, the Natural Resources Conversation Service (NRCS)

snowpack telemetry (SNOTEL) and snow course (SC) stations, and the NWS cooperative

observer network (COOP) stations. The raw data include millions of snow depth (SNWD)

and water equivalent of snow depth (WESD) observations at thousands of station locations

in or within 60 miles of the Washington state border. These data are conveniently stored in

“.dly” format by the NCEI as found at the following URL:

https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/.

These NOAA data are supplemented with observations taken from two British Columbia

data sources, which aid predictions made along Washington’s northern border. The Pacific

Climate Impacts Consortium (PCIC) provides daily snow depth observations from several

station networks in the province (PCIC, 2018). Additional SNOTEL data below the 50th

latitude are provided by British Columbia’s Snow Survey Network as operated by NOAA

(British Columbia, 2018). Note that these data are not subject to the same set internal

quality assurance measures provided with the NCEI “.dly” files. However, they are subject to

https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/
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Fig. A.2: Snow measurement locations overlaid on an elevation map of Washington.

the authors’ manual outlier screening described later in this section. All data manipulations

and many of the ensuing visualizations make use of R’s tidyverse (Wickham, 2017) as well

as the reshape2 package (Wickham, 2007).

The final dataset contains 50 year ground snow load estimates at 234 measurement

locations in Washington and 300 locations in surrounding states and provinces withing 60

miles of the Washington border. These data are provided in Tables 4 and 5 at the end of this

report. Figure A.2 overlays the Washington measurement locations on an elevation map of

the state. Elevations are obtained from digital elevation models (DEMs) obtained from the

United States Geological Survey’s (USGS) National Map (USGS, 2019a). Further details

regarding these DEMs are provided in the Final Predictions section. Figure A.2 reveals that

the highest concentration of measurement locations appear to be along the western slopes of

the Cascade range.

The design snow loads in this dataset are calculated by fitting the annual maximum

snow load measurements to five different probability distributions and retaining the median

98th percentile. Maximums are separated by water year rather than calendar year, so that

each water year includes all observations from October 1 of the year previous to May 31 of

the designated year. Data are only considered for water years beginning in 1967 in order to

emphasize observations from recent history at newer stations with more reliable measurement
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technologies. The ensuing subsections describe

• the clustering of stations with nearly identical locations/elevations into a single mea-

surement location,

• the process of estimating snow load from SNWD when necessary,

• the quality assurance measures taken on daily observations and annual maximums,

• the distribution fitting process and the resulting 50 year loads.

A.3 Snow Site Clustering

There are occasional instances where two or more weather stations share a nearly

identical location and elevation. This may occur when a new station is installed to replace

an older one, or when measurements at a particular location are of interest to multiple

independently-operated station networks. In many instances, combining station information

extends the period of record for a particular location and prevents large differences in design

snow load estimates over very short distances. The advantages of station combination must

be balanced against the requirement that the annual maximums at a particular location

follow the same theoretical probability distribution. Combining station measurements with

distinct snow patterns could invalidate the distribution fitting assumptions and obscure key

regional differences in snow patterns.

The Colorado Snow load report provides an example for clustering similar snow stations

into consolidated measurement locations. This report combines stations that are within

2-12 miles and 300-500 feet elevation of each other, with the stricter clustering criteria being

imposed on stations in mountainous locations (Torrents et al., 2016). This report uses the

complete linkage agglomerative clustering technique (Lattin et al., 2003, pp. 264-288) as

implemented in R 3.5.1 (R Core Team, 2018). The clustering uses a custom distance matrix

formed from a combination of scaled geographic distances and scaled elevation differences.

Each 2.5 miles of geographic separation contributes a distance equal to one, while each

165 feet of elevation separation likewise contributes a distance equal to one. The complete

linkage cluster technique requires that the farthest neighbors in an individual cluster have
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Fig. A.3: The number of stations comprising each measurement location for the Washington
snow load dataset.

a distance of two or less. This means that the maximum possible geographic separation

between stations in a cluster is five miles and the maximum possible elevation separation is

330 feet. The larger the geographic separation, the less elevation difference is tolerated and

vice versa. Also, stations located in different level III ecoregions are prevented from clustering

together regardless of their geographic or elevation separation. Figure A.3 visualizes these

measurement locations and their respective cluster sizes. Notice the high number of stations

included in or near Vancouver and Victoria, British Columbia. This concentration suggests

a larger number of snow reporting stations in the British Columbia networks with sufficient

coverage of the snow season than is found in the NOAA network. Measurement locations

are not weighted by cluster size and the sizes of the points in Figure A.3 only represent

the number of stations comprising the cluster, not the weight of the observation. Indeed,

this clustering technique prevents the large number of coastal Canadian stations from being

over-represented in the final dataset.

As in the Colorado report, when stations in a single cluster have overlapping periods of

record, preference is given to direct measurements of WESD. If the overlapping measurements

are of the same type, then only the maximum measurement is retained.
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Table A.1: Climate specific parameters for Sturm’s equation.
Class ρmax ρ0 k1 k2
Alpine 0.5975 0.2237 0.0012 0.0038
Maritime 0.5979 0.2578 0.0010 0.0038
Prairie 0.5940 0.2332 0.016 0.0031
Tundra 0.3630 0.2425 0.0029 0.0049
Taiga 0.2170 0.2170 0.0000 0.0000

A.4 Estimating Snow Load From Snow Depth

The depth-to-load conversions in the most recent Washington Snow load report make

use of the Rocky Mountain Conversion density (RMCD). This conversion equation models

snow load as a function of snow depth and was designed in conjunction with the Idaho snow

load report (Sack and Sheikh-Taheri, 1986). However, the density of snow will inevitably

vary greatly between the coastal and inland regions and the RMCD provides no mechanism

to account for these climatic differences. An alternative to the RMCD is a conversion

equation developed by Sturm et al. (2010), referred to hereafter as “Sturm’s equation”,

which estimates snow load as a function of depth, time, and climate class. This equation

adapted for English units and defined as

pg(h, d) = ((ρmax − ρ0) [1− exp (−k1 ∗ h ∗ 2.54− k2 ∗ d)] + ρ0) ∗ 2.048176 (A.1)

where h represents snow depth (in inches) and d represents day of the snow season start-

ing on October 1st (-92) and ending June 30th (181) with no zero value. Additionally,

ρo, ρmax, k1, and k2 are parameters specific to a particular climate class defined in Table 4

of Sturm et al. (2010) and provided for convenience in Table A.1 of this report. Locations

residing in an Ephemeral snow region use the average parameter values for the Alpine,

Maritime, and Prairie regions.

The climate classes are originally defined in Sturm et al. (1995) and this reference

includes a map of the climate classes of North America at a 50 km resolution. This climate

class map shows many similarities with the EPA’s level III ecoregions. Consequently, the

authors mapped each ecoregion to a particular climate class through a visual comparison
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Fig. A.4: Comparison of the various depth-to-load conversion methods used in the Washington
snow load report to the Rocky Mountain Conversion Density (RMCD).

of the climate class and ecoregion maps. In cases where the visual assignment was not

immediately obvious, ecoregions were assigned to the climate class with characteristics most

similar to the particular ecoregion according to the authors’ best judgment.

Figure A.4 compares the depth-to-load conversions using the three major climate classes

indicative of locations in Washington as compared to the RMCD predictions. This figure

shows a tendency for Sturm’s equation to estimate higher snow loads than the RMCD as

the snow season progresses.
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A.5 Quality Assurance

The proper detection of impossibly high snow load measurements is critical given that

only the highest load value from each water year is retained. These outlier values have the

effect of extending the tail of the selected probability distributions, producing artificially high

design snow loads. The NCEI provides a suite of quality assurance checks for observations in

the GHCN (Durre et al., 2010). All observations failing any of these checks were removed at

the time of download. An additional check for outlier observations is made after collecting

the annual maximum snow load measurements for each measurement location. Because

the annual maximum snow loads at a particular location are typically right skewed, the log

transformation of annual maximum snow loads should be roughly symmetric in distribution

and suitable for traditional outlier checks. One common method of detecting outliers uses

the interquartile range (IQR) to determine an outlier value threshold. The IQR is defined

as the difference between the 25th (q25) and 75th (q75) percentiles of the log-transformed

annual maximums for a given location (i.e, IQR = q75 − q25). One very common outlier

threshold is defined as q75 + 1.5 ∗ (IQR) or q75 + 3 ∗ (IQR) for “far out” observations (Tukey,

1977, pp. 43-44). Since the cost of removing a true value is much higher than failing to

remove a misreported value, this report uses the q75 + 3 ∗ (IQR) rule to screen outliers. This

threshold is calculated for each individual measurement location and all daily observations

exceeding the threshold are removed from the data prior to final analysis. One exception

to this rule is when there are five or more daily observations exceeding the threshold at a

measurement for a given water year. This exception guards against situations where the snow

load legitimately exceeds the outlier threshold as corroborated by multiple measurements.

Using this threshold, 19 observations were removed from relevant measurement locations in

Washington, 17 in British Columbia, 15 in Oregon, and 1 in Idaho.

Figure A.5 visualizes the outlier detection screening at four locations in Washington.

All values above the red line are removed prior to the final analysis. These plots show that

there are other probable outliers that are not caught by this screening method. However,

this screening method seems to strike an appropriate balance between catching the most
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Fig. A.5: Sample plot of four different outlier screens for measurement locations included in
the Washington design snow load data set.

extreme outliers, without compromising the integrity of the input data.

Artificially low snow load maximums are likewise problematic when estimating design

snow loads. These values have the effect of inflating the estimated standard deviation of

the fitted distribution and consequently produce artificially high design snow loads. These

abnormally low snow loads are usually the product of a lack of daily measurements at a station

for a given water year. To guard against the inclusion of such values, a yearly maximum is

retained only if the maximum came from a water year with at least 30 observations spanning

over at least 5 of the 8 months of the relevant snow season (October - May). This coverage

filter is ignored if the resulting maximum is in the upper half of all recorded maximums for

a given station. To further protect against artificially low maximums, all maximums at or

below the 10th percentile are removed prior to analysis. This removal only occurs if more

than 75 percent of the annual maximum snow loads are non-zero.

A.6 Distribution Estimates

ASCE 7-16 defines 50 year ground snow loads as the design ground snow load (ASCE,
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2017). A 50 year ground snow load event is the ground snow load for which there is a 2%

chance of exceeding on any given year. One common practice for defining these design

loads is to fit a probability distribution to the annual maximum snow loads and extract the

98th percentile. ASCE 7-16 uses the log-normal distribution to define 50 year loads (ASCE,

2017). Colorado also uses the log-normal distribution but only fits the distribution to the

upper third of the annual maximums (DeBock et al., 2017). Alternatively, Idaho uses the

log-Pearson type III distribution (Al Hatailah et al., 2015).

This process assumes that the annual maximum snow loads at any given location are

time-independent observations from the same probability distribution. The approach is

problematic if the selected distribution cannot appropriately characterize the observations,

or if there is a notable time-dependent trend in the annual maximums. For example, some

locations have a much higher proportion of low-snow years than would be expected under

the log-normal distribution. Fitting a log-normal distribution at such locations results in

artificially high estimates of the standard deviation which leads to an unreasonably high

estimate of the design snow load. In some cases, the design snow load estimates from the

log-normal distribution at select sites in Washington are two to three times higher than the

largest ever observed snow load at the location, which is indicative of a distribution that is

no longer representative of the data. In addition, many of these probability distributions are

not equipped to deal with measurement locations that have no-snow years. No snow years

were simply ignored in the Utah report (Bean et al., 2018) but cannot be ignored given the

high number of coastal measurement locations in Washington that record no snow during a

given year.

In order to protect against unreasonably high estimates of design snow loads resulting

from unstable distribution fits, this report fits five different distributions to the annual

maximums at each measurement location using maximum likelihood (ML) estimation. These

distributions include the log-normal (LN), gamma (GM), and extreme value distribution

types I, II, and III. Comprehensive summaries of these distributions can be found in Johnson

et al.’s two-volume Continuous Univariate Distributions (Johnson et al., 1994a, pp. 207-258;
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Table A.2: Number of times each distribution was used to determine the design load for the
522 relevant locations in the Washington snow load dataset.

Distribution n
log-normal 100
gamma 332
Type I 89
Type II 1
Type II 0

337-414; Johnson et al., 1994b, pp. 1-112). In theory, the maximum values of a random

variable should converge to one of the three extreme value distributions (Johnson et al.,

1994b). The extreme value type II distribution typically forms an upper bound of the design

load and the predicted value is often too high to be feasible for use in design. Conversely, the

extreme value type III distribution assumes observations are bounded above and typically

forms a lower bound for prediction. The design load is selected as the median value from

the five selected distributions. Figure A.6 shows examples of the distribution fitting process

at four locations in the state of Washington. The gamma distribution provides the median

value for the three cities while the log-normal distribution provides the median value for

the Stevens Pass ski area. Table A.2 shows the number of times each distribution was used

for the design ground snow load for 522 relevant measurement locations in the Washington

snow load dataset.

Note that this strategy does not use any type of goodness-of-fit measurement to

determine the selected distribution. The notion of “fit” is often vaguely defined and measures

of fit do not always guarantee that the appropriate distribution will be selected, as discussed

in the Montana snow load report (Theisen et al., 2004). Rather, this strategy guards against

situations where the ML fit for any one of the distributions are unstable.

Measurement locations with multiple years of no recorded snow are accommodated by

use of a “zero-contaminated” distribution (Johnson et al., 2005), pp. 312-313) originally

introduced in Aitchison (1955). Let θ represent the proportion of yearly maximums X equal

to 0. Assume that Xs = {x ∈ X : x > 0} ∼ FXs(x) where FXs(x) represents the cumulative

distribution function fit via ML from one of the five candidate distributions. If θ = 0, the
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Fig. A.6: The five selected probability distributions overlaid on histograms of annual yearly
maximum snow load measurements.

design snow load is defined as the value of x for which FXs(x) = 0.98. However, in situations

where θ > 0, the design snow load is defined as the value of x for which

FXs(x) = 0.98− θ
1− θ .

For example, if a measurement location receives no snow for half of its period of record

(θ = 0.5) then the design snow load will be the value of x for which FXs(x) = 0.98−0.5
1−0.5 = 0.96.

Measurement locations are required to have at least 12 viable yearly maximums (prior to

filtering the bottom 10 percent of observations) in order to be considered for the distribution

fitting process. The 12 locations with less than five non-zero yearly maximums simply use

the maximum max for the design snow load as there would not be enough observations

to justify the distribution fitting process. This distribution strategy is far from perfect as

there will always be instances where observed data do not meet the theoretical assumptions

required for distribution fitting via ML. Despite its imperfections, this process provides

reasonable estimates of design snow loads as informed by daily data.
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