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ABSTRACT 

 

 

Ecosystem Functioning of Great Salt Lake Wetlands 

 

 

by 

 

 

Maya Cassidy Pendleton, Master of Science 

 

Utah State University, 2019 

 

 

Major Professor: Dr. Trisha Atwood  

Department: Watershed Sciences 

 

 

Great Salt Lake (GSL) wetlands account for ~80% of Utah wetlands and are 

critical habitat for birds migrating along the Pacific and Central Flyways. Like many 

wetlands worldwide, natural GSL wetlands have been declining because of 

anthropogenic effects and the spread of invasive species. The functioning of GSL 

wetland habitats and the services they provide, however, have not been well documented. 

This knowledge gap hinders our ability to predict the effects of species loss and our 

ability to undertake science-based restoration and revegetation practices. 

To better understand how the loss of different habitat types in GSL wetlands 

affects the provisioning of ecosystem services, we quantified and compared eight 

ecosystem functions and multifunctionality across seven primary wetland habitat types 

(Bolboschoenus maritimus, Schoenoplectus acutus, S. americanus, Typha latifolia, 

Salicornia rubra, Phragmites australis—or unvegetated playa) within the Bear River 

Migratory Bird Refuge (BRMBR) and The Nature Conservancy Great Salt Lake 

Shorelands Preserve. Specifically, I studied eight ecosystem functions that support 
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important ecosystem services such as climate mitigation, water quality, primary 

production, and habitat provisioning for wildlife. I quantified individual functions and 

modeled the relationship between habitat types and functions using linear mixed effects 

models as well as created two different measurements of multifunctionality.  

 In this study, I show that maintaining habitat diversity will be critical for 

maintaining multifunctionality in GSL wetlands. In general, habitats varied greatly in 

their ability to perform functions at a high level, and no single habitat type could support 

all eight functions even at the 20% threshold. I found that Typha latifolia and 

Schoenoplectus acutus had the highest functional values of any native species. In 

addition, I found that despite being an invasive species, P. australis also had high 

functional levels, although it performed poorly for providing bird habitat. Despite that T. 

latifolia, S. acutus and P. australis had high functioning, we found that a diversity of 

habitats are required to maintain multiple ecosystem services  This study supports the 

idea that habitat heterogeneity is critical in supporting a multifunctional environment and 

diversity loss may cause a reduction in functioning and the ecosystem services provided 

by GSL wetlands. 

(65 pages) 
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PUBLIC ABSTRACT 

 

 

Ecosystem Function of Great Salt Lake Wetlands 

 

Maya Pendleton 

 

 The Great Salt Lake (GSL) wetlands account for ~75% of all Utah wetlands and 

provide not only critical habitat for millions of migratory birds, but also provide valuable 

ecosystem functions and services as well as economic benefits to Utahns. However, these 

wetlands are facing an aggressive invader, Phragmites australis, that has spreading 

across the GSL wetlands and replacing native wetland habitats. Wetland managers have 

spent countless resources and time trying to control the spread of P. australis and restore 

GSL wetlands. However, we do not fully understand how these wetlands functions and 

services are being altered with this habitat homogenization because functional data for 

our wetland species have not been well documented. This lack of knowledge may hinder 

wetland restoration efforts. 

 To create baseline functional data for the GSL wetland species and better 

understand how the spread of P. australis might be affecting the overall health of the 

system, I measured eight individual ecosystem functions for seven dominant habitat types 

found across the GSL wetlands. I compared these individual functions across habitat 

types as well as created two different multifunctionality indices using an averaging and a 

thresholds approach. With these comparisons, I was able to determine the distinct 

functional strengths of different wetland habitat types and their overall functional 

abilities.  

 I found that functional abilities varied greatly by habitat type and that not one 

single habitat could support every function even at the lowest threshold measured. I 
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found that Typha latifolia, Schoenoplectus acutus, and P. australis, had the highest 

multifunctional values. However, I also found that some habitats offered unique 

functions, such as Salicornia rubra and playa, and that these functions were lacking in 

other habitats, including the most multifunctional habitats. These findings suggest that 

maintaining habitat heterogeneity will be critical in ensuring a fully functioning wetland 

system that can provide a multitude of ecosystems services that benefit both humans and 

wildlife. The findings of this study will supply wetland managers with a better 

understanding of the functional strengths of different wetland habitats. This data will aid 

in ongoing restoration efforts by enabling managers to target certain functions and create 

more efficient and effective management plans. 
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INTRODUCTION 

 

 

Ecosystem functioning can be defined as the collective activities of plants, 

animals, and microbes and the effects these activities have on different biotic, chemical, 

and physical conditions in the environment (Naeem et al., 1999). These activities allow 

an ecosystem to perform various functions such as nutrient cycling and sequestration, 

primary production, soil retention, and habitat provisioning. Furthermore, many of these 

functions have been deemed valuable to humans (i.e., ecosystem services) providing 

services such as climate mitigation and water purification (Wall & Nielsen, 2012). As 

humans impact the environment through land development, climate change, habitat 

degradation, and the introduction of invasive species, there have been several changes 

and losses in ecosystem functioning, and thus the ability of ecosystems to provide 

ecosystem services (Naeem et al., 1999). Restoring and understanding ecosystem 

functioning has become increasingly important as we develop our understanding of the 

importance of natural systems for human wellbeing (Cardinale et al., 2012).  

Research has suggested that biodiversity is positively related to ecosystem 

functioning  (Hector & Bagchi, 2007; Maestre et al., 2012; Lefcheck et al., 2015a; 

Alsterberg et al., 2017). There are two main mechanisms driving the effect of increased 

biodiversity on higher functioning—complementarity and a sampling effect. The 

complementarity effect suggests that species occupy different niche spaces and that 

species can facilitate each other in ways that enhance functioning more than what would 

be expected for a monoculture (Loreau & Hector, 2001; Cardinale et al., 2007).  The 

sampling effect states that ecosystem functions may be provided by one or a couple of 

dominant species within the community and that this dominance arises from certain 
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factors like interspecific competition, species interactions, and resource use (Tilman, 

Lehman, & Thomson, 1997; Loreau & Hector, 2001). Higher diversity (often quantified 

as species richness or functional diversity) in an area increases the probability of these 

functionally dominant species being present (Huston, 1997; Wardle, 1999; Loreau & 

Hector, 2001). However, it is also known that sampling effects and complementarity are 

not necessarily independent and their relative importance may be dependent on the spatial 

scale that diversity is being measured (Fargione & Tilman, 2005; Zhu et al., 2015). 

Furthering our understanding of how complementarity and sampling effects influence 

biodiversity and ecosystem functioning will allow us to better determine the types of 

management and conservation strategies we need to incorporate into our landscapes. 

 Most of the research on biodiversity-ecosystem functioning has been focused on a 

single function such as primary productivity. However, this focus does not take into 

account important trade-offs and synergies between species and functions (Byrnes et al., 

2014). Also, few ecosystems are managed for a single ecosystem function or service. 

Rather, society often values an ecosystem for multiple, sometimes conflicting ecosystem 

functions and services (Cardinale et al., 2012). As a result, recent biodiversity-ecosystem 

functioning research has focused on the relationship between biodiversity and 

multifunctionality, or the ability of an ecosystem to support different functions and 

services simultaneously (Manning et al., 2018).  

Multifunctionality, like individual functions, is thought to be positively related to 

biodiversity because of dynamic interactions between species that drive ecosystem 

processes (Maestre et al., 2012a; Lefcheck et al., 2015). Studies that focused on 

individual functions found that although biodiversity had an overall positive effect on the 
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function being measured, the effects became saturated at a certain level of species 

richness (Hooper et al., 2005). When considering multiple functions, however, higher 

levels of biodiversity were needed compared to individual functions, and there was no 

saturation point. Multiple studies across different taxa, functions, and ecosystems ( 

Maestre et al., 2012a; Gamfeldt et al., 2013; Lefcheck et al., 2015) have found that 

increased levels of species richness allows for the provisioning of more functions (Hector 

& Bagchi, 2007; Gamfeldt, Hillebrand, & Jonsson, 2008; Zavaleta et al., 2010; Byrnes et 

al., 2014). Maintaining higher biodiversity is thought to be important for maintaining 

multiple functions because it is unlikely that one species can maximize all functions 

(Gamfeldt & Roger, 2017). Species may have functional trade-offs or synergies that 

allow them to excel in some functions while lacking in others (Zavaleta et al., 2010; 

Gamfeldt et al., 2013). This means that in order to maintain many functions at high levels 

across an ecosystem, a diversity of species that provide various functions need to be 

present (Hector & Bagchi, 2007; Isbell et al., 2011; Meyer et al., 2018).  

Not only has most of the biodiversity-ecosystem functioning literature focused on 

the effects of this relationship on single ecosystem functions, but most of the studies, 

even multifunctionality studies, have also been conducted at small spatial scales (e.g., 1 

m2 plot-level) (Hector & Bagchi, 2007; Zavaleta et al., 2010; Isbell et al., 2011). 

Although landscape-level multifunctionality studies are rare, those that exist have found 

that maintaining habitat and community level biodiversity increases a landscapes 

multifunctionality (Pasari et al., 2013; Alsterberg et al., 2017; Hautier et al., 2018). 

Looking at functions across a landscape and across different ecosystems may alter the 

significance of complementarity and sampling effects. As the scale of an area increases, 



4 

 

complementarity may have less of an effect upon ecosystem function because the 

distance between species may be so great that facilitation is not possible. For example, 

the presence of a nitrogen-fixing plant will increase nitrogen availability for species in 

the direct vicinity of the nitrogen-fixer, but it is unlikely to increase nitrogen availability 

for plants that are kilometers away. Landscape-level diversity may be especially 

important in systems that contain large monotypic stands of species, such as wetlands and 

heavily managed landscapes. A recent study found that for heavily managed forests in 

Europe, maintaining landscape-level diversity was critical for providing 

multifunctionality (Van der Plas et al., 2016). Different forestry species performed certain 

functions and higher landscape diversity ensured that the different functions were present 

in at least one area across the landscape (Van der Plas et al., 2016).  Results from this 

study and others suggest that at the landscape-scale, the inclusion of multiple functional 

dominants (i.e. sampling effect) is important for increasing multifunctionality, especially 

in landscapes that typically contain monotypic stands. However, further research is 

needed to understand how the relationship between biodiversity and ecosystem 

functioning is affected by spatial scale and the number of functions studied.  

 

CHAPTER INTRODUCTION 

  

 

Wetlands cover only ~ 5% of the earth, yet they contribute nearly 40% of the 

ecosystem services and functions provided by natural lands (Zedler & Kercher, 2005). 

Despite their importance to society, wetlands are some of the most endangered 

ecosystems. We have lost at least 50% of wetlands worldwide, and most of this loss is 

attributed to either urbanization or agriculture (Zedler & Kercher, 2005). This loss paired 
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with the economic and functional value of wetlands inspired the U.S Government to 

create a no-net-loss of wetlands policy under the Bush administration, as well as a global 

wetland protection treaty at the Ramsar Convention (Mitsch & Gosselink, 2000). 

However, current wetland restoration and mitigation practices often fail to produce 

wetlands that provide functions and services similar to natural wetlands (Zedler & 

Callaway 1999; Moreno-Mateos, et al., 2012). Our inability to mimic or maintain natural 

levels of wetland functioning may be because we do not fully understand how 

biodiversity influences functions (Zedler, 2000; Meli et al., 2014). This lack of 

understanding may hinder successful wetland restoration. 

 The Great Salt Lake (GSL) and its wetlands are both internationally and locally 

important ecosystems. Each year millions of birds traveling along the Pacific and Central 

flyways use the GSL wetlands for resting, foraging, and breeding (Paul & Manning, 

2002; Aldrich & Paul, 2002). In addition, GSL wetlands may help mitigate climate 

through carbon storage and sequester heavy metals and nutrients from runoff (Zedler & 

Kercher, 2003; Rai, 2008). Overall, the ecosystem services provided by the GSL bring in 

millions of dollars for the state annually (Bioeconomics, I. 2012). However, the functions 

and services of these wetlands may be threatened. In 1983, flooding of the GSL disturbed 

the native wetland vegetation and caused Phragmites australis, an aggressive invasive 

species from Eurasia, to spread across the landscape (Kettenring, de Blois, & Hauber, 

2012). Phragmites australis differs from native GSL wetland plants because of its 

broader environmental tolerance such that it can grow in a diversity of physiochemical 

conditions (salinity, hydrology) (Lissner &Schierup, 1997; Ailstock & Center, 2000). In 

comparison, native plants grow in stratified monotypic stands according to their 
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physiological tolerance, creating high habitat-level diversity. P. australis already covers 

~ 92 km2 of GSL (Long et al., 2017) and its ability to out-compete native plants is 

homogenizing the landscape, which in turn is greatly reducing habitat-level biodiversity 

(Chambers, Meyerson, & Saltonstall, 1999).  

 Over the past decade, the eastern United States and the Intermountain West have 

spent significant resources trying to control the spread of P. australis and to restore 

native vegetation (Rohal et al., 2018). However, many of these restoration projects, 

especially along the GSL, have seen low success rates. Low success rates have been 

linked to limited recolonization of native communities following the removal of P. 

australis (Rohal, Cranney, & Kettenring, 2019 ). Revegetation of native species after the 

removal of invasive species is now considered extremely important for the successful 

restoration of these wetlands (Kettenring & Adams, 2011; Rohal et al., 2018). Despite the 

multitude of other wetland plants, revegetation efforts in GSL wetlands have almost 

solely focused on three native species of bulrush (Bolboschoenus maritimus, 

Schoenoplectus acutus, and S. americanus) due to manager preference (Rohal et al., 

2018). This focus on bulrushes has largely been attributed to the fact that these species 

are perceived to be the primary provider of cover, nesting sites, and food resources for 

avian species of recreational interest (Olson, Lindsey, & Hirschboeck, 2004; Petrie, Vest, 

& Smith, 2013; Roberts, 2013; Manning et al., 2018). However, this focus does not take 

into account the multitude of other functions that should be considered during 

revegetation efforts and the role that other dominant habitat types may be playing in 

supporting important ecosystem functions at a landscape level.  
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 Revegetation efforts may do well to focus on a variety of plant species because 

over the past few decades, research has suggested that there is a positive relationship 

between biodiversity (species, genetic, and habitat) and ecosystem functioning (Hector & 

Bagchi, 2007; Maestre et al., 2012a; Lefcheck et al., 2015; Alsterberg et al., 2017). 

Furthermore, Lefcheck et al., (2015) and many others have found that higher biodiversity 

also supports ecosystem multifunctionality or the ability of an ecosystem to 

simultaneously provide multiple functions and services. These studies suggest that habitat 

diversity in the GSL may be important for the provisioning of critical ecosystem 

functions that underlie ecosystem services.  To date, however, no studies have compared 

the provisioning of different functions across GSL’s dominant wetland plant species. 

Thus, we do not understand how ecosystem functioning may be changing because of the 

invasion of P. australis and management efforts to control it.  

This study aimed to further our understanding of GSL wetlands and the 

provisioning of ecosystem functions by different habitat types by addressing the 

following objectives: 1) Determine how independent ecosystem functions vary across 

different wetland habitat types within the GSL. 2)  Determine how multifunctionality, as 

measured by a multifunctionality index (MI), varies across different wetland habitat 

types. To meet these objectives, we chose to focus on eight ecosystem functions that 

support ecosystem services of climate mitigation, water quality, primary production, and 

habitat provisioning for wildlife (Table 1). These functions include below- and above-

ground carbon storage, below- and above-ground nitrogen storage, above-ground 

biomass (a proxy for primary production), heavy metal accumulation, seed nutritional 

value, and avian diversity, richness, and presence/absence.   
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METHODS 

 

 

Study Area 

 

This study focused on wetlands in the Bear River Migratory Bird Refuge 

(BRMBR) and The Nature Conservancy Great Salt Lake Shorelands Preserve (GSLSP) 

both located on the eastern side of the GSL (Fig. 1). The BRMBR lies at the mouth of the 

Bear River and contains nearly 323 km2 of habitat. It is part of the federal National 

Wildlife Refuge system and because of its extreme hemispheric importance to avian 

species, it has been designated as a Western Hemisphere Shorebird Reserve Network site 

(Western Hemisphere Shorebird Reserve Network, 2018). The BRMBR is a heavily 

managed refuge that is impounded in many areas and contains a variety of upland and 

wetland habitats (Downard, Endter-Wada, & Kettenring, 2014). The GSLSP property 

was purchased by The Nature Conservancy in 1994 and covers roughly 18 km2. GSLSP 

actively manages the vegetation and avian species on the preserve; however, these 

wetlands lack the impoundments found within the BRMBR location. BRMBR and 

GSLSP were selected for this study because they contain large stands of both native and 

non-native wetland plants. Within these two locations, we characterized ecosystem 

functions on five native vegetated habitat types: broad-leaf cattail (Typha latifolia), alkali 

bulrush (B. maritimus), three-square bulrush (S. americanus), hardstem bulrush (S. 

acutus), and pickleweed (Salicornia rubra), one non-native vegetated habitat type (P. 

australis), and one unvegetated habitat type (playa). These represent some of the most 

dominant habitat types across the GSL wetland landscape (Downard et al., 2017). 
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 Using field surveys, we identified areas > 400 m2 of continuous, unmixed 

vegetation for each for the seven habitat types. This plot size was selected to reduce any 

interactive effects on functions from neighboring plant species.  In total we had 68 plots: 

T. latifolia (8 plots), B. maritimus (10 plots), S. americanus (10 plots), S. acutus (9 plots), 

S. rubra (10 plots), P. australis (10 plots), and playa (11 plots).  

 

Individual Function Measurements 

 

Below-ground carbon and nitrogen storage 

 

Below-ground carbon and nitrogen stocks were quantified using methods from 

Howard et al., (2014). We collected one, 30 cm composite soil core from the center of 

each plot and transported them to the lab in an upright position (to reduce nutrient mixing 

within the core) where they were immediately processed or frozen. Because of different 

soil types and soil moisture we used two types of corers to extract sediments: a PVC push 

corer (5 cm diameter * 30 cm height) and an AMS brand push corer (2.2 cm * 30 cm 

height). When possible, soil samples were taken to a depth of 30 cm. However, several 

playa S. rubra sites had a shallower soil matrix. In these sites, soil cores were taken to the 

maximum depth possible (0-15 cm). Soils were subsampled from each core at 5 cm 

intervals, dried to a constant weight, and homogenized into a fine powder. Soil samples 

were analyzed for percent carbon and nitrogen content at the University of Hawaii at 

Hilo’s analytical lab using a Costech elemental analyzer.   

 We calculated below-ground carbon and nitrogen stocks by combining percent 

content with bulk density. To calculate bulk density, we multiplied the sample dry weight 

by the core volume. We used the following equation to calculate below-ground carbon 

and nitrogen stocks for each plot: Mg carbon ha-1 or Mg nitrogen ha-1 = 10,000* 
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subsection thickness (m)*bulk density*(% carbon or nitrogen/100). All subsections 

within each plot were summed to determine the total carbon/nitrogen stock per hectare of 

habitat. Carbon and nitrogen stocks were standardized to 30 cm or the maximum core 

depth for sites with more shallow soil matrixes.   

 

Above-ground biomass and above-ground carbon and nitrogen storage 

We collected plant biomass as a proxy for primary production (above-ground 

biomass production m-2). We collected plant biomass using established methods for 

herbaceous wetland species (Howard et al., 2014). Plant biomass samples were collected 

during August and September 2018, when biomass had reached its peak. Within each 

vegetated plot, we randomly established three, 0.5 m2 subplots using a PVC frame. 

Within each subplot, we destructively harvested all rooted material (i.e. not wrack) that 

was both living and dead by cutting the plant at the soil-atmosphere interface. Plant 

samples were dried to a constant weight at 60o C and weighed.  

We used subsamples from our above-ground biomass samples to analyze the 

percent carbon and nitrogen of stems and leaves. Samples were dried at 60o C to a 

constant weight (~ 72 hours) and homogenized to a fine powder. Percent carbon and 

nitrogen were analyzed at the University of Hawaii at Hilo’s analytical lab using a 

Costech elemental analyzer. The percent carbon and nitrogen content for each species 

were averaged across plots to develop a carbon and nitrogen conversion factor for each 

species (Table A1). Above-ground carbon and nitrogen stocks were calculated by 

multiplying the carbon or nitrogen content by the above-ground biomass estimates (see 

methods above) for each plot.    
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Heavy metal accumulation in above-ground biomass 

An undergraduate researcher who ran a project concurrently with my thesis work 

collected data on heavy metal accumulation by plants in all my vegetated plots. Within 

each vegetated plot, we collected 5 grams of stem biomass. We chose stems because S. 

rubra has highly modified leaves and the leaves of S. americanus and S. acutus are often 

highly reduced  and we wanted to standardize the structure of the plant that was collected 

as heavy metal distributions within plant structures can vary (Stoltz & Greger, 2002). 

Plant samples were dried to a constant weight, ground to a fine powder, and analyzed for 

copper, arsenic, selenium, lead, mercury, and cadmium at the University of Hawaii at 

Hilo’s analytical lab using a Vairan Vista MPX ICP-OES Spectrometer. Heavy metal 

extractions were done using methods from Hu et al. (2000). Heavy metal uptake by each 

plant species per m2 was calculated by multiplying the concentration of each metal by the 

plot above-ground biomass (see methods above).    

 

Seed nutritive value 

We calculated the amount of seed nutrition per m2 by multiplying seed mass by 

the seed nutrition for each plant species. Seeds were collected from our plots after seeds 

had ripened: June–July for S. acutus and S. americanus, late August–September for B. 

maritimus, September for T. latifolia, late September–October for P. australis, and 

October for S. rubra. Following this collection, we used slightly different methods to 

determine seed densities for the bulrush species P. australis, T. latifolia, and S. rubra. For 

the bulrushes, we first counted the total number of seed heads in each subplot. We then 

collected 3 seed heads from each subplot for a total of 90 seed heads from each species of 

bulrush. In the lab, we counted the number of seeds in 15-20 seed heads and developed 
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an allometric equation that described the species-specific relationship between seed head 

weight and the number of seeds per seed head (Table A2). We then weighed our 

remaining seed heads, applied the allometric equation to each head that was not hand-

counted, and then averaged all 90 seed heads to determine the average number of seeds 

per seed head. To calculate the seed density in each subplot, we multiplied the average 

number of seeds per head by the total number of seed heads counted in each subplot.  

Finally, we calculated the total dry mass of seeds per plot for each species by multiplying 

the seed density by the average dry weight of an individual seed. For P. australis and T. 

latifolia, because counting the total number of seeds per seed head was not practical due 

to the thousands of seeds, we made three subsections of each seed head and counted the 

number of seeds per subsection. We then developed species-specific allometric equations 

that described the relationship between seed abundance and seed head weight (Table A2) 

and used this equation to estimate the number of seeds per seed head for P. australis and 

T. latifolia. We then used the same methods as for the bulrush species to calculated total 

seed density and total dry seed mass for each plot of P. australis and T. latifolia. S. rubra 

does not produce easily identifiable flowering heads and the seeds germinate within the 

parent plant.  Because no established methods for collecting seeds from S. rubra exist and 

several species of birds are known to consume the fleshy tips of S. rubra (Zedler, 1982), 

we estimated the nutritional value by weighing the entire stem-free above-ground 

biomass within each subplot.  

To complete nutritional analysis of the seeds, mass amounts of each seed type was 

collected from 5 plots for each species. Seeds were cleaned to ~95% pure seed. In the 

case of S. rubra, where seeds were not collected, the tips of the plants were used for 
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nutritional analyses. Seeds and S. rubra tips were sent to the Bar Diamond Lab in Parma, 

Idaho for analysis of apparent metabolizable energy (AME) for waterfowl. AME was 

used instead of TME (true metabolizable energy) because TME calculations involve 

lengthy feeding trials with live birds which were resources we did not have. Also, AME 

has been widely used in quantifying the energy of feed stuffs for birds (Miller & 

Reinecke, 1984). In addition to AME, the lab also provided information on crude protein, 

crude fat, ash, acid detergent fiber, neutral detergent fiber, and gross energy which are 

available in Table A3. Total AME per m2 of habitat (kcal/m2) was calculated by 

multiplying the average AME for each seed species by the total dry seed biomass or 

stem-free above-ground biomass for S. rubra for each plot.  

 

Avian diversity, richness and presence/absence 

We calculated seasonal and overall bird diversity (Shannon-Weiner diversity), 

species richness, and species presence/absence for each habitat type using point counts. 

Point counts were conducted from the center point of each plot. Point counts were chosen 

because they have been used in other wetland surveys to link avian species with habitat 

use and are effective in dense vegetation such as P. australis and T. latifolia (Benoit & 

Askins, 1999). Surveys started at sunrise and were concluded 3 hours after sunrise. 

Surveys were conducted during Spring, Summer, and Fall of 2018 to capture the diversity 

of bird communities across the year. Surveys within each plot lasted 5 minutes. All birds 

seen and heard up to a maximum distance of 300 m from the center of the plot were 

counted. However, we excluded fly-overs that were not specifically using a habitat type.  

Birds that were flushed from the area when approaching the point were also counted. 
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Following the five-minute counting period, we played the calls of two secretive marsh 

birds, the Virginia Rail, and the Sora, to detect their possible presence.  

Diversity data were compiled in two ways. First, we grouped all bird sightings 

purely by habitat type, which we called “compiled bird data” or CBD. For example, if we 

were standing in a B. maritimus plot doing a survey, we may have also recorded a bird 

that was in a neighboring T. latifolia stand and that observation would have been 

included in the T. latifolia diversity analysis, even though it was not directly attached to a 

plot. This method gave us a single diversity and richness metric across seasons, as well as 

an annual metric for each habitat type which is a common method used in other bird 

habitat studies (Harris, Milligan, & Fewless, 1983; Bibi & Ali, 2013). For 

multifunctionality (see below for methods) and presence/absence analysis, we needed to 

retain a plot level structure so that we could have replicates for each habitat type, this 

data structure is referred to as “truncated bird data” or TBD throughout the rest of the 

thesis. In this data structure, only birds occupying that specific habitat plot were counted 

and recorded, and all bird observations outside of the plot were disregarded. We 

calculated avian species richness by using the maximum number of species observed in 

each habitat type. Shannon-Weiner diversity scores and avian richness were calculated 

using the “vegan” package in R version 3.4.4. To supplement this study further, we also 

investigated the presence/absence of specific functional guilds of birds in each habitat 

type. Here we used the TBD and pooled our observations across the seasons. For this 

analysis, we grouped all birds into 5 functional guilds: shorebirds (American Avocets, 

White-faced Ibis, etc.), marsh birds (Virginia Rail, American Bittern, etc.), waterfowl 
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(Cinnamon Teal, Mallard, etc.), songbirds (Common Yellow-throat, Red-Winged 

Blackbirds, etc.), and water birds (Double-crested Cormorant, Forster’s Tern, etc.). 

 

Multifunctionality Measurements 

 

To evaluate the level of multifunctionality within each habitat type, we used two 

methods. The first is known as the "averaging" approach (Byrnes et al., 2014). Using the 

individual functional data collected, we developed a multifunctionality index (MI) for 

each of the seven habitat types. We calculated an MI by first taking the mean and 

standard deviation of each ecosystem function to create a Z-score (standardized deviate) 

for each observation of that function (Maestre et al., 2012). For functions that were 

measured in subplots, the values were averaged together to create one value per plot, 

which was then Z-transformed. Z-scores are a common method for standardizing 

functions that have been measured in different, non-comparable units (Byrnes et al., 

2014). We weighted all functions equally by adjusting the Z-scores of functions that 

contained multiple independent measures of that function. For example, heavy metal 

accumulation is a single function, however, we measured the accumulation of six 

different metals, which would up-weight this function if we included a Z-score for each 

metal independently in our MI. To equally weight our functions, we calculated a Z-score 

for each independent measure of that function and then took the average Z-score as the 

final score. To calculate the overall MI of each plot, we averaged the weighted Z-scores 

for all the functions  (Byrnes et al., 2014), with a higher MI indicating a higher level of 

multifunctionality. 

 In addition to the average MI, we also evaluated multifunctionality performance 

using the "threshold" approach (Byrnes et al., 2014). This approach allowed for the 
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investigation of how many functions are being maintained above a set of desired 

thresholds (Byrnes et al., 2014; Gamfeldt, Hillebrand & Jonsson, 2008; Zavaleta et al., 

2010). For this approach, the threshold was based upon the averaged maximum observed 

value for each function. This maximum observed value was calculated by averaging the 

top eight scores [this averaging number was determined by using the smallest sample size 

of the functions measured (Byrnes et al., 2014)]. For bird diversity, we used only the 

overall annual Shannon-Weiner diversity index as opposed to individual season indices. 

Since habitat types varied in their ability to store different metals, we included each 

independent metal in our threshold approach. Because we did not combine the metals, we 

indicated the average number of metals contributing to each habitat’s threshold score 

(Fig. 9) to visualize if metal accumulation was driving high threshold scores. 

After calculating maximum values for each function, we used a sensitivity 

analysis by setting thresholds at 20%, 40%, 60%, and 80% of the calculated maximum 

value for each function to determine functional performance. The number of functions 

reaching each threshold was summed for each plot, with a higher sum indicating that 

more functions were being provided at that threshold. 

 

Data Analysis 

 

We investigated the effect of habitat type on below-ground carbon and nitrogen 

stocks, using an analysis of variance (ANOVA). Differences among habitat types for 

below-ground carbon and nitrogen stocks were analyzed using Tukey’s post-hoc test. All 

analyses were done using the “stats” “lme4” and “multcomp” packages in R version 

3.4.4. To determine the effect of habitat type on above-ground carbon and nitrogen 

stocks, heavy metal accumulation, plant biomass, seed AME, MI and MI thresholds, we 
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used a linear mixed-effect model (LME) with subplots as the random effect.  An LME 

was chosen over a linear model to account for the variation that may have occurred 

among the subplots.  All analyses were done using the “lme4” and “multcomp” packages 

in R version 3.4.4. Differences between habitat types for all ecosystem functions were 

further analyzed using Tukey’s post-hoc test. 

 To examine the effect of habitat type on avian presence/absence, a bias reduced 

binomial-response generalized linear model using the R package “brglm” was used. A 

Chi-test between the model and a null model was used to determine overall model 

significance. An uncorrected Tukey’s post-hoc test was done to determine differences 

between habitat types. 

 

RESULTS 

 

 

Carbon storage 

  There was a significant difference between habitat types in below-ground carbon 

stocks (Fig. 2a; P < 0.001). Post-hoc Tukey’s analyses indicated that playa and S. rubra 

had significantly lower below-ground carbon stocks, 32-46% less, compared to B. 

maritimus, T. latifolia, and S. acutus, but was not significantly different from S. 

americanus and P. australis. There was no significant difference in below-ground carbon 

stocks between B. maritimus, T. latifolia, S. acutus, S. rubra, S. americanus, and P. 

australis (all P > 0.05).  

Similar to below-ground carbon stocks, there was a significant difference between 

habitat types in above-ground carbon stocks. Tukey’s tests indicated that P. australis and 

T. latifolia stored significantly more above-ground carbon than the other habitat types (P 
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< 0.01) with the exception of S. acutus which was not significantly different from T. 

latifolia (P = 0.89) but was less than P. australis (P = 0.007). B. maritimus, S. rubra, and 

S. americanus had significantly lower above-ground carbon stocks compared to all other 

habitat types (P < 0.01) and stored 66-96% less above-ground carbon than P. australis 

and T. latifolia but were not significantly different than one another (Fig. 2b). 

 

Nitrogen storage 

We found a significant difference among habitat type and below-ground nitrogen 

stocks (Fig. 3a; P < 0.001).  T. latifolia, S. acutus, and S. americanus all stored 

significantly more below-ground nitrogen than the other habitats (all P < 0.001). P. 

australis stored an intermediate amount of below-ground nitrogen and was not 

significantly different from B. maritimus or T. latifolia (Fig. 3a). B. maritimus, S. rubra, 

and playa had significantly lower below-ground nitrogen stocks compared to all the other 

habitat types, with 57-74% less nitrogen than the highest storing species, T. latifolia, S. 

acutus, and S. americanus.  

Above-ground nitrogen stocks also significantly differed among habitat types 

(Fig. 3b; P < 0.001). However, the patterns in above-ground nitrogen stocks varied 

greatly from below-ground nitrogen stocks. P. australis stored significantly more above-

ground nitrogen than all other habitat types (P < 0.01). S. acutus stored the second most 

above-ground nitrogen and was significantly different from all other habitat types (all P < 

0.01). B. maritimus, S. rubra, T. latifolia, and S. americanus stored 77-97% less above-

ground nitrogen than P. australis but were not significantly different from each other 

(Fig. 3b). 
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Above-ground biomass 

Our results indicate that P. australis had significantly more above-ground 

biomass than all other habitat types (Fig. 4; all P < 0.001), with the exception of T. 

latifolia (P = 0.09). S. acutus was not significantly different than T. latifolia (P = 0.92). B. 

maritimus, S. rubra, and S. americanus had 66-93% less biomass than P. australis, T. 

latifolia, and S. acutus, but were not significantly different from each other.  

 

Heavy metal accumulation in above-ground biomass 

With the exception of arsenic (Fig. 5b; P = 0.052), metal accumulation differed 

significantly among habitat types (all P < 0.05). However, the patterns in metal 

accumulation among the different habitat types varied depending on the metal analyzed.  

For copper, P. australis stored significantly more copper than the other habitats (Fig. 5a; 

P < 0.05) with the exception of T. latifolia and S. americanus. However, T. latifolia and 

S. americanus did not differ significantly from B. maritimus, S. rubra, or S. acutus (all P 

> 0.05). P. australis also stored significantly more mercury compared to the other habitat 

types (Fig. 5e; all P < 0.05).  S. acutus stored significantly more selenium (up to 67% 

more) and lead (up to 70% more) compared to any other habitat type (Figs 5c and 5d; all 

P < 0.01). None of the other habitat types significantly differed from one another in 

selenium or lead storage (all P > 0.05). Finally, S. rubra stored up to 90% more cadmium 

than any other habitat types (Fig. 5f; all P < 0.001).  T. latifolia, S. americanus, P. 

australis, and S. acutus did not differ from one another in cadmium storage (all P > 0.05). 
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Seed nutritional value  

We found a significant difference in seed nutritional value among habitat types 

(Fig. 6; P < 0.001). A post-hoc Tukey’s analysis revealed that T. latifolia greatly 

exceeded (> 60%) the nutritional value per area compared to all other species (P < 0.001). 

No other habitats were significantly different from each other. 

 

Avian species diversity 

The Shannon-Weiner diversity indices (DI) for habitat type varied by season 

(Table 2). S. acutus had the highest diversity index score in spring (DI = 2.472463), T. 

latifolia had the highest index score in fall (DI = 2.079416), and B. maritimus had the 

highest score in summer, as well as the combined season score (DI = 2.021678; DI = 

2.582014). P. australis had the lowest diversity scores across all categories with the 

exception of fall. 

 

Avian species richness 

Bird species richness (R) also varied by season (Table 2). S. rubra has the highest 

richness in the spring (R = 19), T. latifolia had the highest richness in the fall (R = 14), 

and B. maritimus had the highest richness in the summer, as well as combined across the 

seasons (R = 21; R = 29). S. americanus had the lowest richness across all categories. 

 

Avian guild presence/absence 

There was a significant difference in the occurrences of shorebirds in the different 

habitat types (Fig. 7a; P < 0.001). There were significantly more shorebirds observed in 

B. maritimus than in any other habitat (P < 0.05) with the exception of S. rubra (P = 0.1) 

and playa (P = 0.08), which did not significantly differ from B. maritimus. We also 
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observed significantly more shorebirds in S. rubra and playa compared to P. australis 

(both P < 0.05). Although we did not observe any shorebirds in P. australis, the 

occurrence of shorebirds in P. australis did not significantly differ from S. acutus, T. 

latifolia, or S. americanus (all P > 0.05).  

We also found a significant difference in the occurrences of marsh birds among 

the different habitat types (Fig. 7b; P = 0.0003). Significantly more marsh birds were 

observed in T. latifolia compared to playa, S. rubra, S. americanus, B. maritimus, and S. 

acutus (all P < 0.05). However, S. acutus and P. australis were not significantly different 

from T. latifolia (P = 0.12 and P = 0.28, respectively) and were not significantly different 

from each other (P= 0.54) or from B. maritimus and S. americanus (all P > 0.1). We 

observed more marsh birds in P. australis compared to S. rubra and playa (P < 0.05). S. 

rubra, playa, S. americanus, B. maritimus, and S. acutus were not significantly different 

from each other, despite that no marsh birds were observed in playa. 

There was a significant difference in the occurrences of songbirds among the 

different habitat types (Fig. 7d; P < 0.0001). Significantly fewer songbirds were observed 

in playa (P < 0.05). We found no other significant differences between the habitat types. 

There was also a significant difference in the occurrence of water birds among the 

different habitats (Fig. 7e; P < 0.006). We observed significantly more water birds in S. 

rubra and playa compared to S. americanus (P = 0.02 and P = 0.03, respectively) and P. 

australis (P = 0.05). No other significant differences were observed between the habitats 

for water birds (all P > 0.05). Finally, we found no significant differences in the 

occurrences of waterfowl (Fig. 7c; all P = 0.2446). 

 

 



22 

 

Multifunctionality averaging approach 

There was a significant difference in the multifunctionality of the different habitat 

types when analyzed using the standardized averaging approach (Fig. 8; P < 0.001). T. 

latifolia, P. australis, and S. acutus all had a multifunctionality index 1.5-2X higher than 

all other habitats (P < 0.001) but were not significantly different from each other. B. 

maritimus, S. rubra, and playa were not significantly different from each other. S. 

americanus, while not significantly different from B. maritimus or playa, was 

significantly higher than S. rubra (P = 0.018).  

 

Thresholds approach 

We found a significant difference between habitat multifunctionality at all four 

(20%, 40%, 60% and 80%) functional thresholds (all P< 0.001; Fig. 9). Typha latifolia, 

P. australis, and S. acutus could maintain more functions at the 20%, 40%, and 60% 

thresholds compared to the other habitats (all P < 0.001), with the exception of S. 

americanus which was not significantly different from the three habitats at the 20% 

threshold. Typha latifolia, P. australis, and S. acutus still maintained more than B. 

maritimus, S. rubra, S. americanus, and playa (all P < 0.05) at every threshold. Finally, at 

the 80% threshold, S. acutus and P. australis maintained the greatest number of functions 

(~3). Typha latifolia could perform ~2 functions about the 80% threshold and was not 

significantly different from any habitat type while the remaining habitats were only 

capable of maintaining a single function at 80% of the maximum and were significantly 

different from S. acutus and P. australis (P < 0.05).    
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CHAPTER DISCUSSION 

 

 

In this study, we tested the ability of different GSL wetland habitat types to 

provide a variety of independent ecosystem functions, as well as multiple ecosystem 

functions simultaneously relating to carbon storage, nitrogen storage, primary production, 

heavy metal accumulation, and avian habitat. We found that the different habitat types 

varied in their abilities to support independent ecosystem functions and 

multifunctionality. Considering that wetland plants along the GSL and elsewhere grow in 

large monotypic stands, our results indicate that habitat-level diversity is important for 

maintaining a wide range of ecosystem functions. Our results are consistent with another 

study that focused on multifunctionality at a landscape-level within highly managed, 

monotypic stands of forests (van der Plas et al., 2016), and those from smaller-scale 

studies (Pasari et al., 2013; van der Plas et al., 2016).  

We found that no single wetland species can support all eight of the ecosystem 

functions measured. In fact, not a single species can support all eight functions even at 

the 20% threshold. Of all the habitat types, in terms of individual functions, T. latifolia 

performed the best (Table 3), supporting the highest level of functioning for seven of the 

functions measured (including all six metals as their own function). T. latifolia did 

particularly well for functions related to carbon and nitrogen storage, primary production, 

and some aspects of bird habitat provisioning. The invasive plant, P. australis was the 

second-best performing species (Table 3), with high levels of functioning for functions 

related to above-ground biomass, such as primary production, above-ground nitrogen, 

and carbon storage. However, it performed poorly in terms of bird habitat, which is the 
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primary focus of management efforts at BRMBR (Rohal et al., 2018). Schoenoplectus 

acutus came in third and performed well for sequestering below-ground carbon and 

nitrogen as well as selenium and lead (Table 3). The lowest performing habitats were 

playa and S. rubra, likely due to their lack of above-ground biomass, an important 

characteristic for many of the ecosystem functions we focused on in this study. Although 

S. rubra was also low scoring in most functions, it was the only habitat that accumulated 

the heavy metal cadmium. In fact, metal accumulation required the largest diversity of 

habitat types, with copper primarily accumulating in S. americanus, P. australis, and T. 

latifolia, selenium and lead primarily accumulating in S. acutus, mercury primarily 

accumulating in P. australis, cadmium primarily accumulating in S. rubra, and arsenic 

accumulating in all plant species equally. These results reinforce the idea that habitat 

heterogeneity is needed to support a diversity of ecosystem functions (Pasari et al., 2013; 

van der Plas et al., 2016; Alsterberg et al., 2017).  

We investigated the ability of different GSL wetland habitat types to provide not 

only individual functions but also their multifunctional abilities. We found that the 

habitats differed in their multifunctional abilities, as well as their ability to perform 

multiple functions above certain thresholds. At the 80% threshold, only S. acutus, T. 

latifolia and P. australis were able to provide more than a single function, however S. 

acutus’s high threshold score was largely the result of its ability to accumulate several 

types of metals. We also found that T. latifolia, S. acutus and P. australis, provided the 

highest level of multifunctionality through the averaging approach. The high levels of 

multifunctionality offered by P. australis suggests that this aggressive invasive is capable 

of supporting multiple services related to nutrient storage and heavy metal uptake, which 
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supports its current use in many constructed wetlands for remediation (Calheiros, Rangel, 

& Castro, 2009) and a more nuanced view of this plant for its provisioning of ecosystem 

services more generally (Kiviat 2013). Unfortunately, P. australis’ ability to support 

nutrient storage and heavy metal uptake appears to come at the cost of providing bird 

habitat for GSL avian fauna. However, native T. latifolia and S. acutus also had 

comparable multifunctional capabilities to P. australis and provide better bird habitat, 

suggesting that a trade-off between functions that support bird habitat and those that 

support nutrient and heavy metal accumulation may not be necessary.   

The three bulrush species are the focus of most of the restoration efforts for the 

GSL (Marty, 2016; Marty & Kettenring, 2017; Rohal et al., 2018).  S. acutus performed 

the most individual functions of the three bulrush species and had one of the highest 

multifunctionality indices of any wetland species. Specifically, S. acutus had high below-

ground carbon and nitrogen storage, and also high lead and selenium accumulation. B. 

maritimus generally performed poorly for heavy metal accumulation and nutrient storage, 

with the exception of below-ground carbon, and it had one of the lowest 

multifunctionality indices. However, B. maritimus had some of the highest bird diversity 

of any of the habitats.  S. americanus also had a low multifunctionality index but 

performed well for below-ground nitrogen storage. Despite that bulrush seeds are thought 

to be an important component of the diet of migrating waterfowl in GSL (Petrie et al., 

2013), they had similar or lower AME compared to the other wetland species, 

particularly T. latifolia. However, the seeds of all these species tend to ripen at different 

times of the year and may be chosen by different types of birds (generalists vs. 

specialists) and may have different seasonal importance in avian diets throughout the 
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year. Overall, these results suggest that in order to maintain a diversity of functions in the 

GSL, wetland restorations should focus on maintaining a high level of habitat diversity.   

Although T. latifolia and P. australis showed high multifunctionality, a more 

thorough examination of these species and our results is warranted for wetland managers. 

First, it should be noted that both T. latifolia and P. australis are considered aggressive 

and spread rapidly. Planting these species or reducing the control of them in wetlands 

may cause further habitat degradation through habitat homogenization, which would be 

detrimental to the overall functioning and health of the ecosystem as functions unique to 

other habitats would be lost. For example, playa and S. rubra, and B. maritimus are 

critical habitat for migratory shorebirds (a major priority for BRMBR) and this function 

cannot be replaced or mitigated with other, more multifunctional, habitats such as T. 

latifolia. Second, although playa, S. rubra, and B. maritimus had low multifunctionality, 

this was in part due to the fact that the functions chosen to be measured in this study 

heavy relied on aboveground biomass. Playa, S. rubra, and B. maritimus had the lowest 

above-ground biomass which would naturally give them lower values for heavy metal 

accumulation, aboveground biomass, and primary production. Third, it is also important 

to remember that each species grows best in different physiological conditions (i.e. water 

levels and salinities) and these differences likely play into their unique functional roles in 

the ecosystem. When focusing on revegetating and restoring wetlands, different factors 

including unique functional abilities, multifunctionality, and growth characteristics of 

different habitats need to be considered and understood to best develop effective 

management plans.  
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Certain limitations arose from this study because the BRMBR and GSLSP are 

highly disturbed wetlands. Also, some aspects of wetland management techniques may 

have had an impact on our results. One large obstacle these wetlands face is a lack of 

senior water rights (Frank et al., 2016). Because these wetlands are located at the bottom 

of the watershed, they are not always supplied with adequate water to support plant 

growth (Downard et al., 2014). The water received is diverted and heavily controlled by 

wetland managers who decide which areas to flood or drain (Downard et al., 2014). This 

kind of water manipulation could have affected several of our ecosystem functions such 

as plant biomass and seed production. These wetland systems are also exposed to cattle 

grazing to remove P. australis (Duncan 2019). Although none of the areas were actively 

grazed during the collection of the ecosystem functions for this study, historical grazing 

could have resulted in legacy effects on some of our functions. It is well known that 

grazing can influence below-ground carbon stocks through compaction of the soil 

(Davidson et al., 2017). Finally, in some areas of BRMBR, P. australis was heavily 

treated with herbicides, which could have had legacy effects on its biomass and seed 

production. Although these limitations and disturbances may have affected the expression 

of our ecosystem functions, many wetlands across the USA and elsewhere are heavily 

managed and have similar management practices and disturbances to those in BRMBR 

and GSLSP (Brinson & Malvárez, 2002). 

GSL wetlands are highly dynamic in nature and face many threats including 

invasive species, pollution, urban encroachment, and water loss (Kettenring et al., 2012; 

Downard et al., 2014; Wurtsbaugh et al., 2017; Li, Endter-Wada, & Li, 2019). By 

developing an understanding of the different functions offered by the different wetland 
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habitats, we can make more informed decisions about restoration efforts. Our results 

suggest that if managers want to maintain a diversity of ecosystem functions relating to 

carbon storage, nitrogen storage, heavy metal accumulation, and bird habitat 

provisioning, they will need to incorporate a diversity of plant species into revegetation 

efforts. However, wetland managers are often targeting specific functions. In these cases, 

our results help managers identify potential functional synergies and trade-offs that may 

occur because of their management decisions.  The results from this study also further 

our understanding of multifunctionality at a landscape-scale and the importance of 

maintaining diversity, in this case, habitat diversity, even in relatively species-poor 

ecosystems. Although our study supports the importance of habitat diversity for 

functioning, our focus was on a single wetland system in the GSL basin. To further our 

understanding of the dynamic and complex nature of wetland multifunctionality, future 

efforts should focus on different wetland systems in multiple settings. Understanding the 

interplay between landscape-level diversity and ecosystem functioning can give us the 

tools to better manage our wetland resources, plan for future needs, and meet restoration 

goals in the face of a changing planet (Zedler 2000, Zedler and Kercher 2005, Finlayson 

et al., 2018). 

 

DISCUSSION 

 

 

This thesis investigated the individual and multifunctional abilities of different 

GSL wetland habitat types. GSL wetlands face many disturbances and issues, most 

notably, habitat homogenization due to the aggressive invader P. australis (Kettenring, de 

Blois, & Hauber, 2012). There have been many efforts to remove P. australis and restore 
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these wetlands to maintain bird habitat (Rohal et al., 2018). Despite their importance, 

very few studies have assessed the functional abilities and values of the different wetland 

habitat types in the GSL. This gap in knowledge hinders restoration efforts because we 

do not fully understand how ecosystem functions and services are changing across GSL 

because of P. australis and efforts to manage its spread. To fill this knowledge gap, we 

studied eight ecosystem functions that support climate mitigation, water quality, primary 

production, and habitat provisioning for wildlife across seven different habitat types. We 

found that there was no single habitat type that could perform every function at a high 

level. We also found that the habitats differed in their ability to provide multiple services 

simultaneously but again, no one habitat was able to support more than three functions at 

80% of the maximum functioning levels. This suggests that even in relatively species-

poor systems, species and habitat diversity are important for maintaining multiple 

functions. 

The results of this study enhance our understanding of habitat diversity-

multifunctionality relationships and support the theory that increased biodiversity is 

critical in maintaining a multi-functional ecosystem. However, our study was done in an 

ecosystem where species diversity happens at the habitat-scale because wetlands in the 

GSL form large monotypic stands of wetland species. Enhanced ecosystem functioning in 

our system as a result of increased diversity may be more related to sampling effect than 

complementarity because species are too far apart spatially to facilitate one another. This 

may suggest that the mechanisms governing the relationship between biodiversity and 

ecosystem functioning are scale dependent. 



30 

 

The findings of this study not only add to the growing field of biodiversity and 

ecosystem functioning research but also have large implications for stakeholders wishing 

to manage ecosystem functions across the GSL and other wetlands. Our results can help 

managers select wetland plant species that optimize specific individual functions or 

multifunctionality.  In our study, we found that wetland managers may be missing out on 

an opportunity to enhance several individual functions by narrowly focusing revegetation 

efforts on only a few native species, and that such a management decision is likely to lead 

to the loss of overall functioning of a wetland. Also, P. australis provided a surprising 

array of ecosystem functions, despite its invasive nature; although it provided poor 

habitat provisioning for avian fauna.  In addition, our results can help managers identify 

potential synergies and trade-offs among functions. For example, revegetation efforts that 

focus solely on B. maritimus because it supports high bird diversity may lead to negative 

effects such as eutrophication and enhanced heavy metal toxicity in wildlife because of 

this species poor ability to take up nitrogen and heavy metals. Understanding such trade-

offs are important to ensure that management actions do not lead to future degradation of 

the system and that informed decisions are being made about the management of habitats 

that provide a diversity of ecosystem services to different end-users.      

In conclusion, this study adds novel and valuable findings that further our 

understanding of the biodiversity and ecosystem functioning relationship and help 

support management decisions in GSL wetland.  Our research findings underscore the 

importance of maintaining habitat diversity in the GSL wetlands if we are to sustain a 

multifunctional ecosystem. Furthermore, our research adds to the growing field of 

landscape multifunctionality research and emphasizes the importance of future studies to 
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investigate ecosystem multifunctionality at large spatial scales. Ecosystems across the 

planet are facing many challenges and pressures such as habitat homogenization and 

climate change. To better protect and restore our valuable resources and the services they 

provide, it is critical that we more fully understand the dynamic relationship of 

biodiversity and functioning. 

 

Table 1. The wetland ecosystem functions measured in this study paired with the 

ecosystem services they represent, and the methods used to measure them. 

 

Ecosystem Function 

 

Ecosystem service 

 

Measurement 

Regulatory 

Climate Mitigation 
Above & Below-ground 

Carbon Stocks (Mg/ha) 

 

Water Purification 

 

Above & Below-ground 

Nitrogen Stocks (Mg/ha), 

Above-ground Heavy 

Metal Accumulation 

(ug/m2) 

 

Provisioning 

 

Primary Productivity 

 

Above-ground Biomass 

(g/m2) 

 

Habitat 

 

Habitat Provisioning 

 

Bird Diversity, Richness, 

Presence/Absence, 

Seed Nutrition 
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Table 2.  Shannon-Weiner diversity index scores (DI) and richness (R) calculated among 

different Great Salt Lake wetland habitat types. Calculations were done for each season 

as well as combined. (BOMA= Bolboshoenus maritimus, PHAU= Phragmites australis, 

PLAYA= playa, SARU= Salicornia rubra, SCAC= Schoenoplectus acutus, SCAM= S. 

americanus, and TYLA= Typha latifolia,). 

  Spring Summer Fall Combined 

Habitat DI R DI R DI R DI R 

BOMA 2.13 13 2.02 21 1.76 13 2.58 29 

PHAU 1.68 11 0.49 11 1.10 7 1.14 16 

PLAYA 2.14 13 1.82 9 1.16 8 2.38 23 

SARU 2.14 19 1.61 10 1.02 9 2.38 27 

SCAC 2.47 14 1.38 9 1.00 7 2.22 19 

SCAM 1.81 10 1.03 5 0.97 5 1.99 14 

TYLA 2.17 18 1.81 12 2.08 14 2.40 27 
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Table 3. A comparison of Great Salt Lake wetland habitat types and functions provided. 

Highlighted areas indicate the habitat type(s) that was the highest performer for that 

certain function. Function abbreviations: A-G C= above-ground carbon (Mg/ha), A-G N= 

above-ground nitrogen (Mg/ha), A-G Bio=above-ground biomass (g/m2), B-G C= below-

ground carbon (Mg/ha), B-G N= below-ground nitrogen (Mg/ha), Seed= apparent 

metabolic energy (kCal/m2), Div= bird diversity across all seasons, Rich= bird richness 

across all seasons, Cu= above-ground copper accumulation (mg/m2), As= above-ground 

arsenic accumulation (mg/m2), Se= above-ground selenium accumulation (mg/m2), Pb= 

above-ground lead accumulation (mg/m2), Hg= above-ground mercury accumulation 

(mg/m2), Cd= above-ground cadmium accumulation (mg/m2). (BOMA= Bolboshoenus 

maritimus, PHAU= Phragmites australis, PLAYA= playa, SARU= Salicornia rubra, 

SCAC= Schoenoplectus acutus, SCAM= S. americanus, and TYLA= Typha latifolia,).  

Function Habitat 

 BOMA PHAU PLAYA SARU SCAC SCAM TYLA 

A-G C  X     X 

A-G N  X      

A-G Bio  X     X 

B-G C X    X  X 

B-G N     X X X 

Seed       X 

Div X       

Rich X       

Cu  X    X X 

As X X  X X X X 

Se     X   

Pb     X   

Hg  X      

Cd    X    

Total 4 6  2 5 3 7 



34 

 

 

Fig. 1. Locations of plots in this study. All plots were located on the east side of the Great 

Salt Lake in Northern Utah within the Bear River Migratory Bird Refuge and The Nature 

Conservancy. Sites are identified with a star (A).  Plot locations within the Bear River 

Migratory Bird Refuge (B). Plot locations within The Nature Conservancy Great Salt 

Lake Shorelands Preserve (C). Plots are identified with a black dot. 
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Fig. 2. Average (± s.e.) below-ground carbon stocks (Mg/ha) (A) and above-ground 

carbon stocks (Mg/ha) (B) among Great Salt Lake wetland habitat types. Letters above 

bars show significant differences between habitat types. (BOMA= Bolboshoenus 

maritimus, PHAU= Phragmites australis, PLAYA= playa, SARU= Salicornia rubra, 

SCAC= Schoenoplectus acutus, SCAM= S. americanus, and TYLA= Typha latifolia,). 
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Fig. 3. Average (± s.e.) below-ground nitrogen stocks (Mg/ha) (A) and above-ground 

nitrogen stocks (Mg/ha) (B) among Great Salt Lake wetland habitat types. Letters above 

bars show significant differences between habitat types. (BOMA= Bolboshoenus 

maritimus, PHAU= Phragmites australis, PLAYA= playa, SARU= Salicornia rubra, 

SCAC= Schoenoplectus acutus, SCAM= S. americanus, and TYLA= Typha latifolia,). 
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Fig. 4. Average (± s.e.) above-ground biomass (g m-2) among Great Salt Lake wetland 

habitat types. Letters above bars show significant differences between habitat types. 

(BOMA= Bolboshoenus maritimus, PHAU= Phragmites australis, SARU= Salicornia 

rubra, SCAC= Schoenoplectus acutus, SCAM= S. americanus, and TYLA= Typha 

latifolia,). 
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Fig. 5. Average (± s.e.) above-ground heavy metal accumulation (ug/m2) in different 

Great Salt Lake wetland habitats: copper (A), arsenic (B), selenium (C), lead (D), 

mercury (E), and cadmium (F). Letters above bars show significant differences between 

habitat types. (BOMA= Bolboshoenus maritimus, PHAU= Phragmites australis, SARU= 

Salicornia rubra, SCAC= Schoenoplectus acutus, SCAM= S. americanus, and TYLA= 

Typha latifolia,). 
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Fig. 6. Average (± s.e.) apparent metabolizable energy (kCal/m2) in different Great Salt 

Lake wetland habitats. Letters above bars show significant differences between habitat 

types. (BOMA= Bolboshoenus maritimus, PHAU= Phragmites australis, SARU= 

Salicornia rubra, SCAC= Schoenoplectus acutus, SCAM= S. americanus, and TYLA= 

Typha latifolia,). 
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Fig. 7. Average (± s.e.) occurrences (based on presence/absence surveys) of five different 

avian guilds in different Great Salt Lake wetland habitats: Shorebirds (A), Marshbirds 

(B), Waterfowl (C), Songbirds (D), and Waterbirds (E). Letters above bars show 

significant differences between habitat types. (BOMA= Bolboshoenus maritimus, 

PHAU= Phragmites australis, PLAYA= playa, SARU= Salicornia rubra, SCAC= 

Schoenoplectus acutus, SCAM= S. americanus, and TYLA= Typha latifolia,). 
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Fig. 8. Average (± s.e.) multifunctionality index (MI) score among Great Salt Lake 

wetland habitat types. Letters above bars show significant differences between the habitat 

types. (BOMA= Bolboshoenus maritimus, PHAU= Phragmites australis, PLAYA= 

playa, SARU= Salicornia rubra, SCAC= Schoenoplectus acutus, SCAM= S. americanus, 

and TYLA= Typha latifolia,). 
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Fig. 9. Average (± s.e.) number of functions being performed by different Great Salt 

Lake wetland habitats at four different thresholds of maximum functional value: 20% 

(A), 40% (B), 60% (C), and 80% (D). Letters above bars show significant differences 

between the habitat types. Black solid lines within bars indicate the average number of 

metals contributing to the threshold index. (BOMA= Bolboshoenus maritimus, PHAU= 

Phragmites australis, PLAYA= playa, SARU= Salicornia rubra, SCAC= Schoenoplectus 

acutus, SCAM= S. americanus, and TYLA= Typha latifolia). 
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Table A1. The individual carbon and nitrogen factors for each Great Salt Lake wetland 

habitat type. These conversion factors were used to determine above-ground carbon and 

nitrogen stocks in each habitat type. (BOMA= Bolboshoenus maritimus, PHAU= 

Phragmites australis, SARU= Salicornia rubra, SCAC= Schoenoplectus acutus, SCAM= 

S. americanus, and TYLA= Typha latifolia,). 

 

 

Table A2. Predictive equations used to determine the total number of seeds in a head for 

different Great Salt Lake wetland habitats. Equations were made by making an allometric 

equation based on weight and total seeds in ~15-20 seed heads of each species. (BOMA= 

Bolboshoenus maritimus, PHAU= Phragmites australis, SCAC= Schoenoplectus acutus, 

SCAM= S. americanus, and TYLA= Typha latifolia,). 

Species BOMA PHAU SCAC SCAM TYLA 

Predictive 

Equation 

y = 

328.09x - 

8.7864 

y = 3325x 

+ 10.168 

y = 

776.55x - 

85.666 

y = 532.47x - 

3.5517 

y = 13690x 

+ 12.56 

R2 value 0.9666 0.9321 0.9546 0.9636 0.9532 

 

 

 

 

 

Habitat Type Nitrogen Conversion Factor  Carbon Conversion Factor 

BOMA 0.00521 0.393209 

PHAU 0.017959 0.393966 

SARU 0.015651 0.253707 

SCAC 0.017674 0.398884 

SCAM 0.014109 0.402797 

TYLA 0.005181 0.40311 
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Table A3. Averaged nutritional composition of different Great Salt Lake wetland 

species. MC= moisture content, CP= crude protein, CF= crude fat, ADF= acid detergent 

fiber, NDF= neutral detergent fiber, GE= gross energy, and AME= apparent metabolic 

energy. (BOMA= Bolboshoenus maritimus, PHAU= Phragmites australis, SARU= 

Salicornia rubra, SCAC= Schoenoplectus acutus, SCAM= S. americanus, and TYLA= 

Typha latifolia,). 

Species BOMA PHAU SARU SCAC SCAM TYLA 

% MC 6.9 7.2 6.2 7.3 6.7 5.8 

% CP 7.9 30.1 8.2 7.2 7.2 22.2 

% CF 3.3 3.6 7.1 3.7 3.5 19.5 

% Ash 2.7 3.8 25.4 3.4 4.5 4.1 

% ADF 28.0 22.1 21.7 52.6 52.4 43.8 

% NDF 44.0 52.7 41.5 64.1 64.3 56.0 

GE 

(kcal/g) 

4.329 

 

4.656 

 

3.594 

 

4.310 

 

4.252 

 

5.414 

 

AME 

(kcal/g) 

2.848 

 

2.793 

 

2.281 

 

2.307 

 

2.491 

 

3.172 

 

AME 

(kcal/m2) 

82.510 87.224 152.14 113.57 23.027 381.60 
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Fig. A1. Average (± s.e.) soil bulk density (g/m3) among Great Salt Lake wetland habitat 

types. Letters above bars show significant differences between habitat types. (BOMA= 

Bolboshoenus maritimus, PHAU= Phragmites australis, PLAYA= playa, SARU= 

Salicornia rubra, SCAC= Schoenoplectus acutus, SCAM= S. americanus, and TYLA= 

Typha latifolia,). 

 


