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ABSTRACT 
The traditional Monte Carlo based approaches to Verification & Validation (V&V) of Guidance Navigation and 
Control (GN&C) algorithms suffers from drawbacks, including typically requiring a significant amount of 
computational resources to guarantee a candidate algorithm’s appropriateness. Formal approaches to V&V of 
GN&C algorithms can help address these is-sues as they are not based on simulation. Therefore, we are 
investigating and developing an innovative formal V&V algorithm for spacecraft GN&C, specifically in the 
determination of safety of maneuvers for satellite Remote Proximity Operations and Docking (RPOD). Formal V&V 
methods could provide rigorous and quantifiable assurances of safety for a given satellite maneuver without the need 
to perform extensive simulations, enhancing the autonomous decision-making capability of a spacecraft with limited 
computational resources. The research leverages a novel approach to the forward stochastic reachability analysis 
problem utilizing Fourier transforms. Initial results indicate quantifiable assurance of safety for a maneuvering 
satellite reach and reach-avoid problem can be achieved that match (sometimes conservatively) the Monte Carlo 
runs but use up to three or more orders of magnitude less computation resources.  

INTRODUCTION 
The spacecraft RPOD problem has been actively 
studied going back to the days of the NASA Gemini 
program. Missions include human and cargo transport, 
satellite repair, refueling, inspection, anomaly root 
cause analysis, space debris disposal, and international 
agreement compliance monitoring. The proliferation of 
small satellites with ever greater yet still limited sensor 
and computational capability has opened the possibility 
of robustly performing these operations with small 
satellites at a much lower cost than in the past.  

However, the current approach to V&V of Guidance 
Navigation and Control (GN&C) algorithms typically 
involves making computationally expensive Monte 
Carlo simulation runs to expose the software to as many 
different and representative conditions as possible 
under normal operation, as well as presenting the 
different types of disruptions and error case scenarios it 
may encounter on-orbit. While low-level controllers are 
typically designed to assure robustness (through 
frequency domain analysis, linear covariance analysis, 
etc.), unanticipated interactions between low-level 
functionalities can create unexpected behaviors. Hence 

V&V provides an additional layer of robustness, at a 
systems level.  

Traditional V&V suffers from drawbacks: firstly, it 
typically requires a significant amount of computational 
resources to be able to guarantee a candidate 
algorithm’s appropriateness to GN&C requirements and 
secondly, there is always the possibility that some 
spacecraft states or environment conditions have not 
been tested and are susceptible to difficult to detect 
disruptions.   

Formal approaches to V&V of GN&C algorithms can 
help address the former issue as they are not based on 
simulation, and potentially the latter issue with further 
robustness analyses. Therefore, an innovative formal 
V&V algorithm for spacecraft GN&C, specifically in 
the de-termination of safety of maneuvers in satellite 
RPOD was investigated and developed. Formal V&V 
methods can, under certain conditions, provide rigorous 
and quantifiable assurances of safety for a given 
satellite maneuver without the need to perform 
extensive simulations, enhancing the autonomy 
capability of a spacecraft with limited onboard 
computational resources. 
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METHODS, ASSUMPTIONS AND PROCEDURES 

Local Vertical Local Horizontal (LVLH) Reference 
Frame 
The reference frame described throughout much of this 
paper is known as the Local-Vertical Local-Horizontal 
frame (LVLH). The origin of this frame is typically 
centered at the ‘chief’ spacecraft (in literature 
sometimes referred to as the ‘Target Spacecraft’, 
‘Resident Space Object’, or ‘RSO’). The X axis (also 
referred to as the “local vertical,” “radial,” or “rbar” 
direction) always points directly away from the center 
of the earth and thus rotates once per orbit, making this 
a non-inertial frame. The Z axis (also referred to as the 
“cross-track” or “out-of-plane” direction) points in the 
direction of the chief spacecraft’s angular momentum 
vector. The Y axis (also referred to as the “local 
horizontal,” “in-track,” or “vbar” direction) is 
orthogonal to both the X and Z axes, following the 
right-hand rule, and will be identical to the direction of 
the velocity vector in a circular orbit. The location of 
the ‘deputy’ spacecraft (sometimes in literature referred 
to as the “chaser”) is given with respect to the origin. 
The LVLH frame is illustrated in Figure 1. 

 

Figure 1: LVLH Reference Frame. 

Clohessy-Wiltshire-Hill Equations 
We consider a model of the relative motion of the 
deputy spacecraft with respect to a chief given by the 

in-plane Clohessy-Wiltshire-Hill (CWH) equations, 
namely, 

 

�̈�𝑥 − 2𝑛𝑛�̇�𝑦 − 3𝑛𝑛2𝑥𝑥 =
𝐹𝐹𝑥𝑥
𝑚𝑚𝑐𝑐

 
 

 

�̈�𝑦 + 2𝑛𝑛�̇�𝑥                =
𝐹𝐹𝑦𝑦
𝑚𝑚𝑐𝑐

 
                                          (1) 

 

�̈�𝑧 + 𝑛𝑛2𝑧𝑧               =
𝐹𝐹𝑧𝑧
𝑚𝑚𝑐𝑐

 
 

 

where (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ∈ ℝ3 and (�̇�𝑥, �̇�𝑦, �̇�𝑧) ∈ ℝ3 are the position 
and velocity, respectively, 𝐹𝐹𝑥𝑥 ∈ ℝ,  𝐹𝐹𝑦𝑦 ∈ ℝ, 𝐹𝐹𝑧𝑧 ∈ ℝ   are 
the control forces in the x, y, and z directions, 
respectively, md the mass of the deputy, and n is the 
mean motion of the chief. For this paper the chief 
spacecraft is assumed to be located at (x,y,z) = (0,0,0). 
The state-space representation of Eq. (1) is given by 

�̇�𝜂 = 𝐴𝐴𝜂𝜂 + 𝐵𝐵𝐵𝐵                                                           (2)  

where 𝜂𝜂 ≔ [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥𝑥 ̇  𝑦𝑦 ̇  𝑧𝑧 ̇ ]Τ ∈ ℝ6 is the state vector, 
𝐵𝐵 ≔ [𝐹𝐹𝑥𝑥  𝐹𝐹𝑦𝑦𝐹𝐹𝑧𝑧]Τ ∈ ℝ3   is the input vector, and Eq. (3), 
is the state and input matrices. 

  (3)
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Stochastic Reachability V&V Problem Outline 
Most of the algorithms employed were derived by 
Vinod et. al. [1], which proposes a scalable method for 
forward stochastic reachability analysis for 
uncontrolled linear systems with affine disturbance. 
The method uses Fourier transforms to efficiently 
compute the forward stochastic reach probability 
measure (FSRPM) and the forward stochastic reach 
(FSR) set. The method is applicable to systems with 
bounded or unbounded disturbance sets. While 
traditional approaches provide approximations, the 
method used here provides exact analytical expressions 
for the densities and probability of reaching the target 
set for linear time invariant (LTI) systems. 

Reachability analysis of discrete-time dynamical 
systems with stochastic disturbance input is an 
established tool to provide probabilistic assurances of 
safety or performance and has been applied in several 
domains, including motion planning in robotics [2,3], 
spacecraft docking [4], fishery management and 
mathematical finance [5], and autonomous surveillance 
[6]. The computation of stochastic reachable and viable 
sets has been formulated within a dynamic 
programming framework [7], that generalizes to 
discrete-time stochastic hybrid systems, and suffers 
from the well-known curse of dimensionality [8].  

A scalable method is presented to perform forward 
stochastic reachability analysis of LTI systems with 
stochastic dynamics, that is, a method to compute the 
FSR set as well as its FSRPM. It is shown that Fourier 
transforms can be used to provide exact reachability 
analysis, for systems with bounded or unbounded 
disturbances. The authors in Ref. [1] provides 
analytical expressions for the probability density and 
shows that explicit expressions can be derived in some 
cases.  

Figure 2 provides an example of a forward stochastic 
reachability problem, in this case shown in a simple 2 
degree-of-freedom system. The problem can be stated 
as “What is the probability of being in the reach set (red 
area) at a predetermined time t1 when starting from 
known initial conditions (or initial distribution) at time 
t0?’’. We seek a method which can consider a single 
point initial condition or a normally distributed initial 
condition and calculate the future stochastic 
distribution at an arbitrary time t1. The likelihood of 
being in the target set at the final time is seen visually 
as the ‘overlap’ of the probability distribution with the 
reach set.  

It is shown that for a discrete time LTI system with 
independent and identically distributed (i.i.d.) 

 

disturbance, analytical expressions for the probability 
density function (pdf) can be found at any time τ, by 
exploiting the properties of the characteristic function 
of the pdf [1]. Furthermore, for systems with Gaussian 
disturbance, explicit expressions of mean and 
covariance of the pdf at time τ can be obtained as a 
function of the controllability matrix (expressed by 
script C symbol, C ), initial conditions 0 and 
disturbance mean and covariance. The pdf can then be 
integrated across the target set to obtain the FSRPM, 
providing a guaranteed probabilistic likelihood of 
reaching the target set. The methodology can be 
expanded to linear time varying (LTV) systems by 
considering time-varying A(t) and B(t) at each 
timestep. 

 

Figure 2: Example of Forward Stochastic Reach 
Problem 

Forward Stochastic Reachability Problem 
Formulation 
We exploit the approach in Ref. [1]. Given a discrete 
time LTI with disturbance w(t): 

                             (4) 
 

The probability of being in the set of states we want to 
reach, S, at some final time t2, is dependent on the pdf 
ψ(x). The existence of FSRPD for systems of the form 
of Eq. (4) has been demonstrated [9]. For any τ ∈ [1,t2], 
the probability of the state reaching a set S ∈ σ(X) at 
time τ starting at 0 is defined using the FSRPM . 

 (5) 
 

The forward stochastic reach (FSR) set is defined as all 
states that have a non-zero probability of being reached 
at time, (τ), given initial condition (x0). 
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 (6) 
(4) 

For any time instant τ = [1,T] and an initial state x0, the 
pdf ψx(.,τ,x0) of Eq. (6) is given by: 

(7) 
 

    (8)  

 
 

 is the inverse Fourier transform and where 

 (9)  

is the controllability matrix. If we are given A, B,  𝜇𝜇𝑤𝑤���� , 
we can solve for 𝜇𝜇𝜏𝜏���  and Στ. These can in turn be used 
to solve for ΨW by; 

 (10) 

 

this can then be fed into Eq. (7), the result of which is 
fed into Eq. (8), which is the FSRPD ψ(x). This result 
is fed into Eq. (11) to solve for the probability of being 
in the reach set at time τ. 

   (11) 

 

Application to Systems with Gaussian Disturbance 

It is further shown in Ref. [1] that when the disturbance 
w is Gaussian, the state trajectory of the LTI system 
with initial condition �̅�𝑥   0 and noise process w ~ N(μ, Σ) 

P follows a Gaussian distribution of the form 

                                (12) 
 

Where τ = [1,T] and 

            (13) 

 

    (14)  

The operation builds out a matrix of a size that is 
linearly dependent on the number of timesteps, τ. Note 
⊗  is the tensor product. Finding the mean and 
covariance of a Gaussian distribution fully describes 
the probability density function at time τ and with 
initial condition �̅�𝑥   0 by: 

        (15) 

 

Software-In-The-Loop (SITL) Simulation 
Environment  
A forward stochastic reachability toolbox (FSR 
toolbox) was developed in Matlab programming 
environment [1].  The V&V FSR toolbox results were 
compared with Monte Carlos run in a high-fidelity 
SITL simulation environment. The SITL testbed uses 
the L3 ADS Spacecraft Design Tool (SDT) to provide a 
faster-than-real-time, 6 degree-of-freedom dynamic 
model of the spacecraft including relevant orbital 
perturbations, physical environment effects, and 
individual hardware and software components. L3 ADS 
uses SDT-SITL to test the GNC FSW in a faster-than-
real-time flight-representative environment, where 
realistic messaging interfaces are used to interact with 
the system, and other spacecraft subsystems are 
emulated by SDT, including sensor components and 
actuators. Starting with the same initial conditions 
scenarios were run in SDT-SITL using the FSW 
implementation of previously developed Hybrid 
Control Code (HCC). 

RESULTS AND DISCUSSION 
The FSR code was initially compared to a Matlab 
Monte Carlo simulation in order to validate the overall 
approach for solving the reach avoid RPOD problem 
using a simplified dynamics model and spacecraft 
architecture. The complexity of the model was 
increased and tested. 

Controlled LTI system with Gaussian Disturbance 
A known disturbance was added to the FSR toolbox 
with a linear quadratic regulator (LQR-1) controller. A 
corresponding simulation was set up in the Matlab 
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HCC. The simulation was set up with the conditions 
outlined below, as illustrated in Figure 3. 

• Begin at +0.1 km x, -2 km y, +0.1 km z from 
origin with -0.5 m/s y initial perturbation 

• Target set is a 10x10x10 meter box located 
~1.5 km from the chief, centered at 
undisturbed end position after 2110 seconds 
propagation 

• Arbitrary velocity disturbance with: mean = 0, 
km/sec, covariance = diag([0, 0, 0, 2e-14, 2e-
14, 2e-14]), (km/sec)2 

 

 

 

Figure 3: Simulation Setup for controlled disturbed 
LTI system with LQR-1 for FSR toolbox and 

Matlab HCC (Left- zoomed out, Right-Zoomed in to 
target set). 

 

The FSR toolbox was applied and the results compared 
with 1500 Monte Carlo simulations using the Matlab 
HCC. Results of the Monte Carlo simulations from the 
HCC are shown in Figure 4. Table 1 compares the 
results of the FSR toolbox with the HCC Monte Carlo 
simulations results. The results match closely between 
the two methods: Monte Carlo runs predict 63.87% will 
be contained within the target set while the FSR code 

predicts the outcome as 63.94%, which is within the 
margin of error of the Monte Carlo simulations (+/-
2.4% for a 95% confidence factor). The Monte Carlo 
simulations took 2.8 hours while the FSR Code runs in 
~7 seconds, about 0.07% the computation compared to 
Monte Carlo simulations, which demonstrates the 
utility of using this method for finding solutions at a 
reduced computational cost. 

 

Figure 4: HCC results for controlled, disturbed 
system, LQR-1 (zoomed in). 

 
Table 1: FSR toolbox and HCC Monte Carlo 

simulation results for LQR1 controlled, disturbed 
system. 

 

Additionally, a second controller (LQR-2) and scenario 
setup was analyzed using the FSR toolbox. A 
corresponding simulation was set up in the Matlab 
HCC. The simulation was set up with the following 
conditions. 

• Begin at -2 km x, -0.3 km y, +0.2 km z origin 
with -0.5 m/s y initial perturbation 

• Target set is a 10x10x10 meter box located ~2 
km from the start position, centered at 
undisturbed end position after 180 seconds 
propagation 

• Arbitrary velocity disturbance with: mean = 0, 
km/sec, covariance = diag([0, 0, 0, 2e-11, 2e-
11, 2e-11]), (km/sec)2 

The FSR toolbox was applied and the results compared 
with 1500 Monte Carlo simulations using the Matlab 
HCC. Results of the Monte Carlo simulations from the 
HCC are shown in Figure 5. Table 2 compares the 
results of the FSR toolbox with the HCC Monte Carlo 
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simulations results. The results match closely between 
the two methods: Monte Carlo runs predict 66.73% will 
be contained within the target set while the FSR code 
predicts the outcome as 66.39%, which is within the 
margin of error of the Monte Carlo simulations (+/-
2.4% for 95% confidence factor). Additionally, we can 
see that the Monte Carlo simulations took 18 minutes 
while the FSR Code runs in 0.3 seconds, about 0.03% 
the computation time. This again demonstrates the 
potential of using this method for finding solutions at a 
reduced computational cost. 

 

Figure 5: HCC results for controlled, disturbed 
system, LQR-2 (zoomed in). 

 

  Table 2: FSR toolbox and HCC Monte Carlo 
simulation results for LQR2 controlled, disturbed 

system. 

 

Expanding to Reach-Avoid Problem 
For the stochastic reach-avoid problem, the goal is to 
find the likelihood of getting into a given target set at a 
given time t1, while remaining within the safe set at all 
time from t0 to t1. The FSR toolbox was modified to 
enable reach avoid analysis. 

A simulation was set up with the following conditions, 
as illustrated in Figure 6. 

• Begin at +0.1 km x, -2 km y, +0.1 km z origin 
with -0.5 m/s y initial perturbation 

• Propagate 1000 seconds with LQR-1 
controller on 

• Target set is a 5x5x5 meter box 
• The safe set is all locations and velocities 

where y position is > -2.15 km. 

Arbitrary velocity disturbance with: mean = 0 km/sec, 
covariance = diag([0, 0, 0, 2e-14, 2e-14, 2e-14]) 
(km/sec)2. 

 

Figure 6: Simulation Setup for verifying Reach-
Avoid Problem (safe set). 

  

The FSR toolbox was applied and the results compared 
with 1500 Monte Carlo Simulations using the 
previously developed HCC. Results of the Monte Carlo 
simulations from the HCC are shown in Figure 7. Table 
3 compares the results of the FSR toolbox with the 
HCC Monte Carlo simulations results. The results 
match closely between the two methods: Monte Carlo 
runs predict 92.40% will be contained within the target 
set while remaining within the safe set. The FSR code 
predicts the outcome as 87.52%, which is outside the 
margin of error of the Monte Carlo simulations (+/-
1.3% for 95% confidence factor). This is not 
unexpected, due to the fact the reach-avoid problem 
approach contains several conservative approximations 
within it, i.e. the FSR code reach avoid function is 
guaranteed to underestimate the probability of safety of 
a given maneuver. The Monte Carlo simulations took 
82 minutes to run while the FSR Code runs in 8 
minutes, less than 10% the computation time. The 
reach-avoid problem requires significantly more 
computational resources compared to the reach only 
problem yet is still significantly less than that of Monte 
Carlo runs. 
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Figure 7: HCC Monte Carlo results for controlled, 
disturbed system, LQR-1 control reach-avoid 

problem (zoomed in). 

 

Table 3: FSR toolbox and HCC Monte Carlo results 
for controlled, disturbed system, LQR-1 control 

reach-avoid problem 

 

Expand to Linear Time Varying Systems 
The Fourier transform-based stochastic reachability 
code was updated from LTI only systems to also 
include linear time varying (LTV) systems. An 
‘LTVSystem’ class was added to the FSR toolbox to 
handle generic LTV systems. A model based on the 
Broucke State Transition matrix [10] was used to verify 
the ability to process an LTV system. The Broucke 
STM model is based upon LTV Tschauner-Hempel 
dynamics, where the eccentricity of the chief spacecraft 
is accounted for.  A simulation was performed with the 
following initial conditions and compared to the CWH 
based FSR results. Note the chief eccentricity was set to 
0, which is the condition where the Broucke STM and 
CWH models should match. The simulation was set up 
with the following conditions: (a) Begin at 0 km x, -2 
km y, 0 km z origin with -0.5 m/s y initial perturbation 
and (b) No controller, disturbance, or chief eccentricity 
present. As expected, the results of the two models 
match almost exactly, to within machine precision as 
shown in Figure 8. 

 

Figure 8: Broucke STM LTV system verification. 

Comparison to High Fidelity SDT testbed 
A single impulse burn maneuver was simulated with a 
Gaussian ΔV uncertainty distribution.  The simulation 
was set up with the following conditions. 

• Begin at origin with -0.5 m/s y initial 
perturbation with 0.05 m/s 1 sigma disturbance 

• Propagate 500 seconds 
• Target set is a 50x50x50 meter box 
• Safe set (m or m/s) is all locations and 

velocities where y position is > -2.15 km (all 
other constraint boundaries set to very large 
values). 

• Arbitrary velocity disturbance with: mean = 0 
km/sec, covariance = diag([0, 0, 0, 2e-14, 2e-
14, 2e-14]) (km/sec)2 

The FSR toolbox was applied and the results compared 
with 600 Monte Carlo Simulations using the SDT high 
fidelity simulation testbed. Results of the Monte Carlo 
simulations from SDT are shown in Figure 9. Table 4 
compares the results of the FSR toolbox with the HCC 
Monte Carlo simulations results. The results match 
closely between the two methods: SDT Monte Carlo 
runs predict 87.4% will be contained within the target 
set. The FSR code predicts the outcome as 86.7%, 
which is within the margin of error of the Monte Carlo 
simulations (+/-2.7% for 95% confidence factor). 
Additionally, we can see that the Monte Carlo 
simulations took approximately 27 hours of runtime 
while the FSR Code runs in 31 seconds or about 0.03% 
the computation time. This once again demonstrates the 
potential of using this method for finding solutions at a 
reduced computational cost. 
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Figure 9: SDT simulation testbed Monte Carlo 
trajectories for uncertain burn scenario (Left- 

zoomed out, Right-Zoomed in to target set). 
 

Table 4: FSR toolbox and HCC Monte Carlo results 
for uncertain burn scenario. 

 

CONCLUSION 
This work successfully demonstrated the feasibility and 
performance of using a formal V&V algorithm for 
assessing safety objectives. This work may serve as a 
stepping stone on the path to increasing autonomy for 
small satellite RPOD. FSR toolbox results were 
obtained and compared to Monte Carlo runs in Matlab, 
and in a high-fidelity simulation environment. The 
approach was expanded from the reach to the reach-
avoid problem, and from LTI to LTV systems.   

Results indicate the FSR toolbox can provide Stochastic 
reachability analysis and rigorous assurances of 
probabilistic safety in a computationally inexpensive 
way as compared to Monte Carlo simulations under 
certain conditions. We specifically focused on the 

RPOD scenarios here, though the FSR 
toolbox/approach could in theory be expanded to any 
system that can be accurately characterized by an LTI 
or LTV system with Gaussian disturbance. 
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