

Trafford 1 33rd Annual AIAA/USU

 Conference on Small Satellites

SSC19-WKVIII-07

Wireless Bus Interconnects for Flexible and Reliable CubeSat Signal Integrations

Russell Trafford, Nicholas Gorab, Tanner Smith, Adam Fifth, John Schmalzel, Robert Krchnavek, and Sangho Shin

Henry M. Rowan College of Engineering, Rowan University

201 Mullica Hill Road, Glassboro, NJ 08028

+1(609) 972-6160, traffo17@rowan.edu

ABSTRACT

One of the largest, yet easily forgotten, aspects of constructing any complex system is the effort needed to integrate

several subsystems. One common way to do this is to standardize the interface between subsystems, whether that is a

physical standard, such as USB, or protocol standards, such as Wi-Fi and Bluetooth. In our previous implementations

of CubeSat systems and subsystems we have found the PC/104 bus to be volume and mass inefficient while allowing

too many potential conflicts to be considered a 'standard'. Our research proposes to implement a wireless, Bluetooth

based, communication interface between subsystems to minimize the physical and logistical effort required to build

CubeSat systems. By completely removing the need for physical/electrical connections between the subsystems, the

barrier to entry for making custom modules for CubeSats can be lowered dramatically. Throughout the course of this

research, the applicability of Bluetooth Low-Energy (BLE) utilizing the Generic Attribute (GATT) protocol is

investigated.

BACKGROUND

Traditional CubeSat Interconnects

CubeSats consist of multiple interconnected subsystems

which operate with regards to their own core area of the

satellite system. To truly be interconnected, these

subsystems require a means of communication to talk to

each other. Commercially, this is popularly

accomplished through the implementation of a PC/104

header [1]. This header includes physical channels for

both communication and power, leading to its adoption

as the de facto standard for Commercial Off-The-Shelf

(COTS) subsystems. While PC/104 is a recognized

standard interface, most COTS subsystems are only

using the form factor and not the signal definitions. This

in turn could lead to integration problems with multiple

COTS systems, where a single pin might be utilized for

more than one signal.

The PC/104 pin header is defined as a 4 x 26 pin header

with 2.54mm (0.1 inch) pitch. When looking at the

required landing area on a printed circuit board, this

header takes up roughly 445mm2, and this is without

considering the height of the connector or any plastic

surrounding it. The internal dimensions of a CubeSat

following CalPoly’s CubeSat standard must be less than

100mm by 100mm (total edge to edge dimension of the

completed CubeSat). If a PCB were to be made to the

maximum size of the CubeSat, this header would take up

4.45% of the available area on the board. In addition to

this, the physical stacking header for each board

measures roughly 8.5mm vertically, consuming

significant space in the satellite stack [1]. For complex

subsystems which require extensive hardware, reserving

space for a header may prove to be troublesome and

result in excessive design complications. The large size

of this header also adds subsequent mass to the CubeSat,

which may prove worrisome if the system is reaching the

target weight threshold provided by the launch provider.

While the size of these headers in the grand scheme of a

CubeSat might seem inconsequential, the inclusion of

these headers effectively limits the number of different

layers a CubeSat can have and can cause balancing

issues with the center of mass. In “larger” CubeSats such

as 3U, 6U, and 12U, this is truly not that large of an issue.

But as the standard of the CubeSat extends down to 0.5U

and the desire to make small, swarm satellites increases,

this connector becomes a problem. Routing these

headers also becomes an issue in smaller busses, leaving

very little room to route critical signals throughout the

system. The main motivation of the research is to better

implement these types of systems, reducing the mass,

volume, and PCB area requirement while maintaining

the same functionality.

CubeSat System Architectures

With all the subsystems present on a CubeSat, ensuring

proper communication is a paramount task. These

subsystems need to coordinate to ensure that data is

delivered to the correct subsystem in a timely manner.

There are two main approaches used in the complex

Trafford 2 33rd Annual AIAA/USU

 Conference on Small Satellites

systems: Centralized and Distributed architectures, as

seen in Figure 1. Back when processing power and

memory were limiting factors, a Centralized system

architecture was used. This architecture utilizes a central

controller, typically called the Command and Data

Handling (CDH) system, to manage the communication

between subsystems and in some cases control the

subsystems. To reflect the dramatic decrease in cost of

processing power, in this paper, CDH is still a central

“brain” controlling the data flow, but each subsystem can

have a brain of its own to better provide more local

control. Some researchers have referred to this as a

“Semi-Distributed” architecture. Within these

architectures, there is no built-in method for subsystems

to communicate with one-another outside going through

CDH.

Figure 1: Architecture overview of (a) semi-

distributed and (b) fully distributed architectures

showing possible communication channels for each.

An example of this is CDH issuing a command to a

payload subsystem to run an experiment. The payload

processor will take care of all the functions necessary for

the experiment, and then return the data to CDH once it

is completed. CDH is not responsible for commanding

the payload processor through each step of the

experiment.

Distributed architectures are usually more complicated

when compared to the semi-distributed ones. Instead of

having a central brain of the satellite, each subsystem in

a distributed architecture can perform tasks without

intervention from a master device. Each subsystem

possesses the ability to talk to any other subsystem on

the satellite, removing the need for a CDH ‘brain’. This

requires each subsystem to act as both a slave and a

master, as it can be receiving information and sending it

depending on the state of the system. A major

technicality of this system is developing a hierarchy of

importance when dealing with communication. For

example, a message informing a subsystem that the

battery is critically low should be considered more

important than experimental data and take precedence

when being read.

Requirements for a CubeSat Communications Bus

Through this discussion so far, the PC/104 connector

provides the main means for communication and power

delivery within the system. For many reasons it is clear

why a connector such as this would become the de facto

standard within CubeSat COTS systems, but the

question is how “one-size-fits-all” is this connector and

what downsides could be improved. For a suitable

replacement to be determined, a proposed

communication and power delivery bus would need to:

• Provide a means for a CDH based central

architecture to communicate and control other

subsystems;

• Allow for multiple subsystems to communicate

with one another in a distributed architecture;

• Provide power to multiple subsystems; and

• Have built-in flexibility to fit system designer's

needs.

This would all also have to be done while reducing the

amount of mass, volume, and overall hardware

integration complexity required by using the PC/104

connector. In a typical COTS power supply system, there

are typically only around 10-12 pins out of the 104

available pins. This research seeks to ideally replace as

many of the remaining 90 pins with a wireless interface

that has a minimum viable communications bus to fall

back on.

WIRELESS INTERCONNECT MODEL

To circumvent these prevalent issues with traditional

wired CubeSat interconnects, a wireless interconnect

model is proposed. This is realized by removing all

physical wire-based interconnects from the satellite and

implementing a small, wireless communication device

on each subsystem. The only remaining physical

connections on the board should be for power and

structure purposes. A simple redundant hardware

communication channel may also be implemented in this

design. This wireless model allows for all necessary

communication channels to exist but removes the need

for the large volume and mass inefficient PC/104 header.

System Considerations

For this wireless model to be applicable to modern

CubeSat designs, it needs to recognize certain

considerations for the system to be realized as a potential

alternative to the physical interconnect model. These

include the following concerns:

Trafford 3 33rd Annual AIAA/USU

 Conference on Small Satellites

Physical Volume

As previously mentioned, the PC/104 header takes up

considerable volume per subsystem PCB. As this is a

significant detraction for the physical header, a wireless

interface needs to be realized in a way which consumes

less space in both two and three dimensions. This

reduction in volume will allow subsystems to be stacked

closer together, increasing the density of the satellite and

providing more room for hardware [2].

Power Consumption

Introduction of a wireless interconnect system

intrinsically consumes more power when compared to a

traditional physical interconnect system. To ensure that

a wireless interconnect system is possible, it must meet

the CubeSat's power budget. Trade-offs with this extra

power consumption need to be analyzed, along with

preliminary power consumption data for the wireless

technology selected.

Antenna Requirements

To communicate, some wireless modules will require an

antenna to ensure proper communication. To remain

physically smaller than the physical header, the footprint

of the antenna needs to be identified. With different

wireless technologies utilizing different sizes of

antennas, this needs to be considered when designing the

wireless interconnect system [2].

Cost

CubeSats are becoming increasingly popular for small

institutions and Universities for testing and research.

One of the major factors limiting these satellites from

being launched is their prohibitive cost. Naturally,

wireless communication will be more expensive when

compared to traditional interconnects so the trade-off

between price and functionality needs to be assessed.

Additionally, the price will vary with different wireless

communication methods, so this becomes a point of

consideration when designing the system.

Redundancy Features

CubeSats are complex systems which require extensive

redundant features to provide a long and successful

lifespan [2]. Introducing a wireless communication

method into this design adds a significant amount of

complexity and provides more points of failure which

can ultimately lead to a premature end of mission. To

combat this, redundancies need to be built into this

wireless model to ensure that failures can be accounted

for and circumvented. This also includes the

implementation of a bare-bones hardware backup

communication line which is to be used in case of radio

failure.

Benefits

The implementation of a wireless interconnect model

possesses many benefits for both commercial and

research CubeSats. The removal of the PC/104 header

allows each PCB to be more subsystem-oriented, i.e. the

elements on the board do not need to take into

consideration the location of traces and the consumed

volume which is prevalent when using the PC/104. The

footprint of these wireless devices is significantly

smaller than that of traditional interconnects, so more

hardware can be placed on the board while maintaining

the same CubeSat form factor.

This removal of the traditional interconnect system also

increases the total modularity of the CubeSat system,

allowing for a more flexible architecture. Wireless

devices may scan through all available connections on-

board the satellite to determine which subsystems are

present, and then act accordingly by issuing certain

commands to ascertain more subsystem specific

information. This process promotes a hot swap

methodology of constructing a CubeSat where

subsystems can be interchanged rapidly during

development without any major changes needed in the

overall framework of the system. With this

methodology, significant operational testing can be

performed on the system without the need to physically

connect subsystems. If issues arise in the design, this also

prevents the potentially damaging process of

deconstructing the CubeSat stack to access each

individual subsystem. Wireless interconnects also allow

the satellite to maintain a much denser design when

compared to traditional CubeSats. The physical PC/104

header acts as a potentially wasteful spacer between

subsystems, consuming roughly 8.5mm of vertical space

per PCB. This causes the header to become the

prominent constraint when considering subsystem

selection, limiting a 1U CubeSat to roughly 4-6

subsystems. Removal of this header will allow

subsystems to be placed much closer together,

eliminating empty space on the satellite while at the

same time providing a means to increase the capability

of the system.

Drawbacks

One of the biggest drawbacks with any wireless system

is the possibility of interruptions. There is a certain

reliability that is intrinsic to using copper to connect

different systems. It typically takes some sort of

mechanical event to disconnect a wire in a satellite,

although corrosion can be caused from different sources.

Trafford 4 33rd Annual AIAA/USU

 Conference on Small Satellites

Depending on the protocol selected, the bandwidth

required, and the quality of the components used, there

are many sources of error which could arise. For

example, since the transceiver which is located on each

PCB plane is made of silicon, there is now an increased

sensitivity to radiation environments. Other issues such

as thermal sensitivity in the oscillators and other

components could lead to radio failure. In some

terrestrial systems, resetting a radio or working around

this failure could be done. In a space system; however,

having just one component in a system aimed to connect

the subsystems could easily lead to a total system failure

and loss of mission.

What this all means is that in a satellite system, there

should still be some copper connecting these subsystems

somewhere. But this does not mean there needs to be 104

of them. There needs to be some sort of backup system

in place to minimize the chance of total system failure.

This would also allow for a subsystem to opt to turn its

radio off in the case that it might get stuck in a transmit

mode or some unknown state. This does present much

more of a software complexity as well since this priority

system will need to be put into place. However, this still

could be implemented in a way to reduce the integration

issues and requirements posed by the 104-pin connector.

IMPLEMENTATION

Bluetooth Low-Energy (BLE)

After careful consideration of multiple wireless

communication methods, BLE was chosen for further

analysis. This communication method, designed by the

Bluetooth Special Interest Group, is based on traditional

Bluetooth but is geared more towards power-conscious

designs. Since a wireless communication bus will

require power to operate from what could already be a

tight power budget, the Low Energy version of Bluetooth

is more ideal for operation on CubeSats [4].

Generic Attribute Protocol

The Generic Attribute (GATT) protocol can be used

extensively in CubeSat applications. This protocol is

designed to send small packets of data between a single

client and multiple server nodes. The GATT protocol

contains a hierarchy of information, starting with a single

profile that contains multiple services consisting of

characteristics [3]. GATT characteristics store specific

information relating to the service using the following

attributes: characteristic value, characteristic

declaration, client characteristic configuration and

characteristic user description. Each attribute for a

characteristic also contains the following properties:

handle, type and permissions. For clarification, a general

architecture for the GATT protocol can be seen in Figure

2.

Figure 2: Overview of the GATT Protocol

Architecture [4]

A single device will consist of a profile, with each of the

areas of interest being considered a service. Each of the

services can contain multiple characteristics, which are

data being collected through the system. One key low-

power element of this architecture is the ability for each

characteristic to notify the master device when is it

updated, allowing the master to be in a sleeping state

until something happens. With all these considerations

in mind, BLE and GATT will be applicable for low-

power close range communication systems [3].

Hardware wise, a BLE IC has an extremely small

footprint for integration onto PCBs, and due to the close-

range communication distance, little is needed for

antennas. Additionally, there are existing modules which

contain all the components needed for a complete BLE

package. This often consists of a powerful processor,

integrated antenna, and dedicated driver software. All of

this allows for simple integration and rapid prototyping

of these BLE devices. An example of this Characteristic

Architecture can be seen in Figure 3.

Figure 3 GATT Characteristic Architecture for an

example CubeSat.

Trafford 5 33rd Annual AIAA/USU

 Conference on Small Satellites

Overall, the GATT protocol offers system-wide benefits

while decreasing power consumption, freeing up more

space for other operations and improving the efficiency

of the system. This protocol capitalizes on the benefits

that come with BLE implementation while providing

performance that meets, if not exceeds, traditional

hardware interconnects.

ESP32

For the initial testing of this concept, the Espressif

ESP32 was chosen as the main development platform.

This module contains an 80MHz dual-core ARM

processor, and on-board peripherals including a full

2.4GHz and 5GHz Wi-Fi system and BLE capable

Bluetooth Radio. While this module is available as a

board mounted package, as seen in Figure 4, a

development board with included FTDI serial converter

and 5V regulator was used. This device can be

programmed to be either a BLE Master or Slave device

and contains enough CPU power to possibly run

subsystems on its own.

Figure 4: ESP32 WROOM Bluetooth and Wi-Fi

Module

The size of this module is 18mm by 25mm (450mm2),

excluding any area required for antenna clearance or

placement. This is smaller than the area required by the

PC/104 header, but the height of the module is only

3.1mm, making the volume required extremely small. If

this module could help reduce the need for the tall

headers typically used, this could lead to much denser

CubeSat configurations. It should be noted, however,

that since this and any other module with an on-board

antenna will most likely need a cooper keep-out around

the device, there is board and routing space lost on both

sides of the PCB.

Minimum Viable Communication Network

To develop a working framework a minimum viable

network needs to be created. This system shall consist of

the absolute minimum required software and hardware

necessary for the system to operate effectively. Using

BLE as a basis for wireless communication, this

minimum viable communication network must include

at least one BLE-enabled radio per subsystem. This basic

inclusion ensures that each subsystem will be able to

connect to the master device remotely.

For the initial development of the BLE based

communication bus a Semi-Distributed architecture was

chosen. Three ESP32s were used to represent the CDH,

Ground Communications and Payload subsystem. Each

subsystem had local processing, but inter-subsystem

communication was coordinated through CDH. This can

be seen in Figure 5.

Figure 5: Experimental setup for initial

implementation.

EXPERIMENTAL RESULTS

Initial Experiment

As a proof of concept, this initial experiment aimed to

demonstrate this system’s capability to transmit

messages across multiple wireless devices, mimicking

the traditional wired interconnect system. To do this,

multiple facets of a fully-fledged CubeSat mission

needed to be simplified for rapid implementation into the

simulated space. To mimic a ground station, a serial

connection between a laptop and the designated Comms

ESP32 was established to emulate a more powerful

transceiver typically found on flight ready CubeSats.

Additionally, very basic services were implemented for

each subsystem to provide a simple but effective means

of testing system functionality. For example, the Comms

subsystem had a “new message” service while the

payload subsystem had an “LED status” service.

To ensure proper connectivity between all the devices

utilized in this experiment, each ESP32 system was

initialized with a specific Device ID and name which the

CDH subsystem could easily recognize. The experiment

Trafford 6 33rd Annual AIAA/USU

 Conference on Small Satellites

began with CDH powering on and searching for potential

server devices to pair with. Subsequently, the Comms

and Payload subsystems were initialized to begin

broadcasting a signal informing other devices they are

ready to be paired with. CDH then proceeded to scan

through the available BLE devices until one is

recognized. When a known device was found, CDH

would initiate pairing and then the two devices would

begin transmitting information. This experimental setup

can be seen in Figure 6.

Figure 6: Block Diagram of system connectivity for

initial experiment

To demonstrate that the system is operating as expected,

a characteristic was established on the Payload

subsystem which controlled a single on-board LED. The

goal of the experiment is to manipulate the state of the

LED with access limited to the ground station laptop.

During testing, a serial command was sent from the

laptop to the Comms subsystem as a mock radio

transmission. From there, the Comms system updating a

service pertaining to incoming information, populating it

with the newly received message. Upon updating this

value, the CDH subsystem was notified and was able to

access and read the transmitted message. Following the

commands issued in the message, the CDH accessed a

characteristic possessed by the Payload subsystem

controlling the LED. Once CDH updated this

characteristic, the Payload subsystem was notified and

acted on this change, toggling the state of the LED. The

responses of the subsystems can be seen in Figure 7.

Figure 7: Debug terminal for COMMS module

communicating to the CDH and Payload.

Although this demonstration was simple; it effectively

demonstrated the basic capabilities of a wireless

interface. The flow of communications found in this test

are almost identical to that of a fully realized satellite,

with the most major difference being that the profiles

found on a flight-ready model will encompass much

more information about the subsystem.

DISCUSSION AND FUTURE WORK

Expanding and Implementing the Wireless

Communication Bus

One of the benefits of using a communication protocol

like Bluetooth is the ability for plug-and-play devices. At

a high-level, if the GATT protocol is standardized for the

subsystems, then there should not be an issue in

expanding the network. This does require further

development on standardizing the interface, which

should be done regardless of the medium used (wired or

wireless). While in a simple example presented in this

paper may seem simple to establish, once more

subsystems are introduced, there will need to be some

conformity to allow them to talk to one another.

Additional testing with the BlueNRG 2

Another benefit of using Bluetooth is the abundance of

BLE-enabled ICs and SoCs, allowing multiple

subsystems to have different radios without sacrificing

communicability. For example, the ESP32 provides a

powerful and adaptable solution for a Wireless CubeSat

bus, but it comes at the cost of PCB area and power.

Other modules exist to be integrated into systems which

may already have a CPU and are much smaller footprint.

An example of the is the BlueNRG 2 by Texas

Instruments. This BLE SoC can handle the required

GATT protocol while being the size of a QFN 32 or 48

package [5]. This could lead to a further reduction of

PCB area compared to the PC/104 header to almost less

than 5% of the original. Depending on the module or

SoC chosen, there may have to be implemented an

antenna or some other elements outside the chip.

Backup Communication Bus

The wireless implementation of the communication bus

within the CubeSat did provide the plug-and-play utility

desired while supplementing the need for a dense

interconnect. There are, however, certain aspects which

could not be replaced. Power still must be delivered to

the subsystems which still requires some form of

common header to be placed or wires to be manually

added. To help accommodate for a soft or hard failure in

the radio, there needs to be a backup hardwired

communication bus which can connect CDH to other

critical systems. The implementation and requirements

of this bus would change based on the architecture of the

satellite.

Trafford 7 33rd Annual AIAA/USU

 Conference on Small Satellites

In a Centralized or Semi-Distributed architecture, CDH

would need to be able to communicate to each subsystem

and could act as a Master on the bus. This lends itself to

a protocol such as SPI, I2C, or CAN. CAN would

provide noise resilience due to the differential topology

used and is robust against connected devices failing. SPI

and I2C would provide an interface more commonly

found in processor peripherals and would provide an

addressing scheme. However, in SPI the number of pins

required would have to vary based on the number of

planes attempting to be connected, where I2C would

have to very carefully have its Addresses managed. The

analysis of each of the communication buses in a space

environment is another area of research which could be

done.

CONCLUSION

The PC/104 connector, which has become the de facto

standard in many CubeSat COTS subsystems, consumes

a significant amount of space within a CubeSat system,

and has proven to be both mass and volume inefficient.

By providing a wireless interface for a considerable

portion of connections between subsystems, most pins

used in the PC/104 header can be omitted from a design.

This paper outlined a proof of concept experiment where

an ESP32, acting as a CDH module, paired with and

managed COMMS and Payload subsystems. Operating

in a simulated launch environment, a mock ground

station was able to send Payload commands to Comms

and have the wireless subsystems communicate

effectively to achieve the optimal outcome. These results

show that there is a path forward for the use of a wireless

module to replace many of the connector pins and

provide an opportunity for more interoperable COTS

systems.

Acknowledgments

This work was sponsored in part by the NJSGC grant

(no. 5860) and the NSF GAANN Fellowship.

References

1. J. Bouwmeester, M. Langer, and E. Gill, “Survey

on the implementation and reliability of CubeSat

electrical bus interfaces,” CEAS Sp. J., vol. 9, no.

2, pp. 163–173, Jun. 2017.

2. W. Lan, “The CubeSat Program, Cal Poly SLO

CubeSat Design Specification (CDS) REV 13

Document Classification X Public Domain ITAR

Controlled Internal Only.”

3. Texas Instruments, “Generic Attribute Profile

(GATT) — BLE-Stack User’s Guide for

Bluetooth 4.2 3.01.00.05 documentation,” 2016.

[Online]. Available:

http://dev.ti.com/tirex/content/simplelink_cc2640

r2_sdk_1_40_00_45/docs/blestack/ble_user_guid

e/html/ble-stack-3.x/gatt.html. [Accessed: 11-Jun-

2019].

4. K. Townsend, “Introduction to Bluetooth Low

Energy.” Adafruit Industries, p. 8, 2019.

5. STMicroelectronics, “BlueNRG-2 Bluetooth low

energy stack,” no. STMicroelectronics, p. 175,

June 2018.

