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ABSTRACT 

One of the largest, yet easily forgotten, aspects of constructing any complex system is the effort needed to integrate 

several subsystems. One common way to do this is to standardize the interface between subsystems, whether that is a 

physical standard, such as USB, or protocol standards, such as Wi-Fi and Bluetooth. In our previous implementations 

of CubeSat systems and subsystems we have found the PC/104 bus to be volume and mass inefficient while allowing 

too many potential conflicts to be considered a 'standard'. Our research proposes to implement a wireless, Bluetooth 

based, communication interface between subsystems to minimize the physical and logistical effort required to build 

CubeSat systems. By completely removing the need for physical/electrical connections between the subsystems, the 

barrier to entry for making custom modules for CubeSats can be lowered dramatically. Throughout the course of this 

research, the applicability of Bluetooth Low-Energy (BLE) utilizing the Generic Attribute (GATT) protocol is 

investigated.

BACKGROUND 

Traditional CubeSat Interconnects 

CubeSats consist of multiple interconnected subsystems 

which operate with regards to their own core area of the 

satellite system. To truly be interconnected, these 

subsystems require a means of communication to talk to 

each other. Commercially, this is popularly 

accomplished through the implementation of a PC/104 

header [1]. This header includes physical channels for 

both communication and power, leading to its adoption 

as the de facto standard for Commercial Off-The-Shelf 

(COTS) subsystems. While PC/104 is a recognized 

standard interface, most COTS subsystems are only 

using the form factor and not the signal definitions. This 

in turn could lead to integration problems with multiple 

COTS systems, where a single pin might be utilized for 

more than one signal. 

The PC/104 pin header is defined as a 4 x 26 pin header 

with 2.54mm (0.1 inch) pitch. When looking at the 

required landing area on a printed circuit board, this 

header takes up roughly 445mm2, and this is without 

considering the height of the connector or any plastic 

surrounding it. The internal dimensions of a CubeSat 

following CalPoly’s CubeSat standard must be less than 

100mm by 100mm (total edge to edge dimension of the 

completed CubeSat). If a PCB were to be made to the 

maximum size of the CubeSat, this header would take up 

4.45% of the available area on the board.  In addition to 

this, the physical stacking header for each board 

measures roughly 8.5mm vertically, consuming 

significant space in the satellite stack [1]. For complex 

subsystems which require extensive hardware, reserving 

space for a header may prove to be troublesome and 

result in excessive design complications. The large size 

of this header also adds subsequent mass to the CubeSat, 

which may prove worrisome if the system is reaching the 

target weight threshold provided by the launch provider. 

While the size of these headers in the grand scheme of a 

CubeSat might seem inconsequential, the inclusion of 

these headers effectively limits the number of different 

layers a CubeSat can have and can cause balancing 

issues with the center of mass. In “larger” CubeSats such 

as 3U, 6U, and 12U, this is truly not that large of an issue. 

But as the standard of the CubeSat extends down to 0.5U 

and the desire to make small, swarm satellites increases, 

this connector becomes a problem. Routing these 

headers also becomes an issue in smaller busses, leaving 

very little room to route critical signals throughout the 

system. The main motivation of the research is to better 

implement these types of systems, reducing the mass, 

volume, and PCB area requirement while maintaining 

the same functionality.  

CubeSat System Architectures 

With all the subsystems present on a CubeSat, ensuring 

proper communication is a paramount task. These 

subsystems need to coordinate to ensure that data is 

delivered to the correct subsystem in a timely manner. 

There are two main approaches used in the complex 
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systems: Centralized and Distributed architectures, as 

seen in Figure 1. Back when processing power and 

memory were limiting factors, a Centralized system 

architecture was used. This architecture utilizes a central 

controller, typically called the Command and Data 

Handling (CDH) system, to manage the communication 

between subsystems and in some cases control the 

subsystems. To reflect the dramatic decrease in cost of 

processing power, in this paper, CDH is still a central 

“brain” controlling the data flow, but each subsystem can 

have a brain of its own to better provide more local 

control. Some researchers have referred to this as a 

“Semi-Distributed” architecture. Within these 

architectures, there is no built-in method for subsystems 

to communicate with one-another outside going through 

CDH.  

 

Figure 1: Architecture overview of (a) semi-

distributed and (b) fully distributed architectures 

showing possible communication channels for each. 

An example of this is CDH issuing a command to a 

payload subsystem to run an experiment. The payload 

processor will take care of all the functions necessary for 

the experiment, and then return the data to CDH once it 

is completed. CDH is not responsible for commanding 

the payload processor through each step of the 

experiment. 

Distributed architectures are usually more complicated 

when compared to the semi-distributed ones. Instead of 

having a central brain of the satellite, each subsystem in 

a distributed architecture can perform tasks without 

intervention from a master device. Each subsystem 

possesses the ability to talk to any other subsystem on 

the satellite, removing the need for a CDH ‘brain’. This 

requires each subsystem to act as both a slave and a 

master, as it can be receiving information and sending it 

depending on the state of the system. A major 

technicality of this system is developing a hierarchy of 

importance when dealing with communication. For 

example, a message informing a subsystem that the 

battery is critically low should be considered more 

important than experimental data and take precedence 

when being read.  

Requirements for a CubeSat Communications Bus 

Through this discussion so far, the PC/104 connector 

provides the main means for communication and power 

delivery within the system. For many reasons it is clear 

why a connector such as this would become the de facto 

standard within CubeSat COTS systems, but the 

question is how “one-size-fits-all” is this connector and 

what downsides could be improved. For a suitable 

replacement to be determined, a proposed 

communication and power delivery bus would need to: 

• Provide a means for a CDH based central 

architecture to communicate and control other 

subsystems; 

• Allow for multiple subsystems to communicate 

with one another in a distributed architecture;  

• Provide power to multiple subsystems; and 

• Have built-in flexibility to fit system designer's 

needs. 

This would all also have to be done while reducing the 

amount of mass, volume, and overall hardware 

integration complexity required by using the PC/104 

connector. In a typical COTS power supply system, there 

are typically only around 10-12 pins out of the 104 

available pins. This research seeks to ideally replace as 

many of the remaining 90 pins with a wireless interface 

that has a minimum viable communications bus to fall 

back on.  

WIRELESS INTERCONNECT MODEL 

To circumvent these prevalent issues with traditional 

wired CubeSat interconnects, a wireless interconnect 

model is proposed. This is realized by removing all 

physical wire-based interconnects from the satellite and 

implementing a small, wireless communication device 

on each subsystem. The only remaining physical 

connections on the board should be for power and 

structure purposes. A simple redundant hardware 

communication channel may also be implemented in this 

design. This wireless model allows for all necessary 

communication channels to exist but removes the need 

for the large volume and mass inefficient PC/104 header. 

System Considerations 

For this wireless model to be applicable to modern 

CubeSat designs, it needs to recognize certain 

considerations for the system to be realized as a potential 

alternative to the physical interconnect model. These 

include the following concerns: 
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Physical Volume 

As previously mentioned, the PC/104 header takes up 

considerable volume per subsystem PCB. As this is a 

significant detraction for the physical header, a wireless 

interface needs to be realized in a way which consumes 

less space in both two and three dimensions. This 

reduction in volume will allow subsystems to be stacked 

closer together, increasing the density of the satellite and 

providing more room for hardware [2]. 

Power Consumption 

Introduction of a wireless interconnect system 

intrinsically consumes more power when compared to a 

traditional physical interconnect system. To ensure that 

a wireless interconnect system is possible, it must meet 

the CubeSat's power budget. Trade-offs with this extra 

power consumption need to be analyzed, along with 

preliminary power consumption data for the wireless 

technology selected. 

Antenna Requirements 

To communicate, some wireless modules will require an 

antenna to ensure proper communication. To remain 

physically smaller than the physical header, the footprint 

of the antenna needs to be identified. With different 

wireless technologies utilizing different sizes of 

antennas, this needs to be considered when designing the 

wireless interconnect system [2]. 

Cost 

CubeSats are becoming increasingly popular for small 

institutions and Universities for testing and research. 

One of the major factors limiting these satellites from 

being launched is their prohibitive cost. Naturally, 

wireless communication will be more expensive when 

compared to traditional interconnects so the trade-off 

between price and functionality needs to be assessed. 

Additionally, the price will vary with different wireless 

communication methods, so this becomes a point of 

consideration when designing the system. 

Redundancy Features 

CubeSats are complex systems which require extensive 

redundant features to provide a long and successful 

lifespan [2]. Introducing a wireless communication 

method into this design adds a significant amount of 

complexity and provides more points of failure which 

can ultimately lead to a premature end of mission. To 

combat this, redundancies need to be built into this 

wireless model to ensure that failures can be accounted 

for and circumvented. This also includes the 

implementation of a bare-bones hardware backup 

communication line which is to be used in case of radio 

failure. 

Benefits 

The implementation of a wireless interconnect model 

possesses many benefits for both commercial and 

research CubeSats. The removal of the PC/104 header 

allows each PCB to be more subsystem-oriented, i.e. the 

elements on the board do not need to take into 

consideration the location of traces and the consumed 

volume which is prevalent when using the PC/104. The 

footprint of these wireless devices is significantly 

smaller than that of traditional interconnects, so more 

hardware can be placed on the board while maintaining 

the same CubeSat form factor. 

This removal of the traditional interconnect system also 

increases the total modularity of the CubeSat system, 

allowing for a more flexible architecture. Wireless 

devices may scan through all available connections on-

board the satellite to determine which subsystems are 

present, and then act accordingly by issuing certain 

commands to ascertain more subsystem specific 

information. This process promotes a hot swap 

methodology of constructing a CubeSat where 

subsystems can be interchanged rapidly during 

development without any major changes needed in the 

overall framework of the system. With this 

methodology, significant operational testing can be 

performed on the system without the need to physically 

connect subsystems. If issues arise in the design, this also 

prevents the potentially damaging process of 

deconstructing the CubeSat stack to access each 

individual subsystem. Wireless interconnects also allow 

the satellite to maintain a much denser design when 

compared to traditional CubeSats. The physical PC/104 

header acts as a potentially wasteful spacer between 

subsystems, consuming roughly 8.5mm of vertical space 

per PCB. This causes the header to become the 

prominent constraint when considering subsystem 

selection, limiting a 1U CubeSat to roughly 4-6 

subsystems. Removal of this header will allow 

subsystems to be placed much closer together, 

eliminating empty space on the satellite while at the 

same time providing a means to increase the capability 

of the system. 

Drawbacks 

One of the biggest drawbacks with any wireless system 

is the possibility of interruptions. There is a certain 

reliability that is intrinsic to using copper to connect 

different systems. It typically takes some sort of 

mechanical event to disconnect a wire in a satellite, 

although corrosion can be caused from different sources. 
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Depending on the protocol selected, the bandwidth 

required, and the quality of the components used, there 

are many sources of error which could arise. For 

example, since the transceiver which is located on each 

PCB plane is made of silicon, there is now an increased 

sensitivity to radiation environments. Other issues such 

as thermal sensitivity in the oscillators and other 

components could lead to radio failure. In some 

terrestrial systems, resetting a radio or working around 

this failure could be done. In a space system; however, 

having just one component in a system aimed to connect 

the subsystems could easily lead to a total system failure 

and loss of mission.  

What this all means is that in a satellite system, there 

should still be some copper connecting these subsystems 

somewhere. But this does not mean there needs to be 104 

of them. There needs to be some sort of backup system 

in place to minimize the chance of total system failure. 

This would also allow for a subsystem to opt to turn its 

radio off in the case that it might get stuck in a transmit 

mode or some unknown state. This does present much 

more of a software complexity as well since this priority 

system will need to be put into place. However, this still 

could be implemented in a way to reduce the integration 

issues and requirements posed by the 104-pin connector. 

 

IMPLEMENTATION 

Bluetooth Low-Energy (BLE) 

After careful consideration of multiple wireless 

communication methods, BLE was chosen for further 

analysis. This communication method, designed by the 

Bluetooth Special Interest Group, is based on traditional 

Bluetooth but is geared more towards power-conscious 

designs. Since a wireless communication bus will 

require power to operate from what could already be a 

tight power budget, the Low Energy version of Bluetooth 

is more ideal for operation on CubeSats [4]. 

Generic Attribute Protocol 

The Generic Attribute (GATT) protocol can be used 

extensively in CubeSat applications. This protocol is 

designed to send small packets of data between a single 

client and multiple server nodes. The GATT protocol 

contains a hierarchy of information, starting with a single 

profile that contains multiple services consisting of 

characteristics [3]. GATT characteristics store specific 

information relating to the service using the following 

attributes: characteristic value, characteristic 

declaration, client characteristic configuration and 

characteristic user description. Each attribute for a 

characteristic also contains the following properties: 

handle, type and permissions. For clarification, a general 

architecture for the GATT protocol can be seen in Figure 

2. 

 

Figure 2: Overview of the GATT Protocol 

Architecture [4] 

A single device will consist of a profile, with each of the 

areas of interest being considered a service. Each of the 

services can contain multiple characteristics, which are 

data being collected through the system. One key low-

power element of this architecture is the ability for each 

characteristic to notify the master device when is it 

updated, allowing the master to be in a sleeping state 

until something happens. With all these considerations 

in mind, BLE and GATT will be applicable for low-

power close range communication systems [3]. 

Hardware wise, a BLE IC has an extremely small 

footprint for integration onto PCBs, and due to the close-

range communication distance, little is needed for 

antennas. Additionally, there are existing modules which 

contain all the components needed for a complete BLE 

package. This often consists of a powerful processor, 

integrated antenna, and dedicated driver software. All of 

this allows for simple integration and rapid prototyping 

of these BLE devices. An example of this Characteristic 

Architecture can be seen in Figure 3. 

 

Figure 3 GATT Characteristic Architecture for an 

example CubeSat. 
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Overall, the GATT protocol offers system-wide benefits 

while decreasing power consumption, freeing up more 

space for other operations and improving the efficiency 

of the system. This protocol capitalizes on the benefits 

that come with BLE implementation while providing 

performance that meets, if not exceeds, traditional 

hardware interconnects.  

ESP32 

For the initial testing of this concept, the Espressif 

ESP32 was chosen as the main development platform. 

This module contains an 80MHz dual-core ARM 

processor, and on-board peripherals including a full 

2.4GHz and 5GHz Wi-Fi system and BLE capable 

Bluetooth Radio. While this module is available as a 

board mounted package, as seen in Figure 4, a 

development board with included FTDI serial converter 

and 5V regulator was used. This device can be 

programmed to be either a BLE Master or Slave device 

and contains enough CPU power to possibly run 

subsystems on its own. 

 

Figure 4: ESP32 WROOM Bluetooth and Wi-Fi 

Module 

The size of this module is 18mm by 25mm (450mm2), 

excluding any area required for antenna clearance or 

placement. This is smaller than the area required by the 

PC/104 header, but the height of the module is only 

3.1mm, making the volume required extremely small. If 

this module could help reduce the need for the tall 

headers typically used, this could lead to much denser 

CubeSat configurations. It should be noted, however, 

that since this and any other module with an on-board 

antenna will most likely need a cooper keep-out around 

the device, there is board and routing space lost on both 

sides of the PCB.  

Minimum Viable Communication Network 

To develop a working framework a minimum viable 

network needs to be created. This system shall consist of 

the absolute minimum required software and hardware 

necessary for the system to operate effectively. Using 

BLE as a basis for wireless communication, this 

minimum viable communication network must include 

at least one BLE-enabled radio per subsystem. This basic 

inclusion ensures that each subsystem will be able to 

connect to the master device remotely. 

For the initial development of the BLE based 

communication bus a Semi-Distributed architecture was 

chosen. Three ESP32s were used to represent the CDH, 

Ground Communications and Payload subsystem. Each 

subsystem had local processing, but inter-subsystem 

communication was coordinated through CDH. This can 

be seen in Figure 5.  

 

Figure 5: Experimental setup for initial 

implementation. 

 

EXPERIMENTAL RESULTS 

Initial Experiment 

As a proof of concept, this initial experiment aimed to 

demonstrate this system’s capability to transmit 

messages across multiple wireless devices, mimicking 

the traditional wired interconnect system. To do this, 

multiple facets of a fully-fledged CubeSat mission 

needed to be simplified for rapid implementation into the 

simulated space. To mimic a ground station, a serial 

connection between a laptop and the designated Comms 

ESP32 was established to emulate a more powerful 

transceiver typically found on flight ready CubeSats. 

Additionally, very basic services were implemented for 

each subsystem to provide a simple but effective means 

of testing system functionality. For example, the Comms 

subsystem had a “new message” service while the 

payload subsystem had an “LED status” service.  

To ensure proper connectivity between all the devices 

utilized in this experiment, each ESP32 system was 

initialized with a specific Device ID and name which the 

CDH subsystem could easily recognize. The experiment 
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began with CDH powering on and searching for potential 

server devices to pair with. Subsequently, the Comms 

and Payload subsystems were initialized to begin 

broadcasting a signal informing other devices they are 

ready to be paired with. CDH then proceeded to scan 

through the available BLE devices until one is 

recognized. When a known device was found, CDH 

would initiate pairing and then the two devices would 

begin transmitting information. This experimental setup 

can be seen in Figure 6. 

 

Figure 6: Block Diagram of system connectivity for 

initial experiment 

To demonstrate that the system is operating as expected, 

a characteristic was established on the Payload 

subsystem which controlled a single on-board LED. The 

goal of the experiment is to manipulate the state of the 

LED with access limited to the ground station laptop. 

During testing, a serial command was sent from the 

laptop to the Comms subsystem as a mock radio 

transmission. From there, the Comms system updating a 

service pertaining to incoming information, populating it 

with the newly received message. Upon updating this 

value, the CDH subsystem was notified and was able to 

access and read the transmitted message. Following the 

commands issued in the message, the CDH accessed a 

characteristic possessed by the Payload subsystem 

controlling the LED. Once CDH updated this 

characteristic, the Payload subsystem was notified and 

acted on this change, toggling the state of the LED. The 

responses of the subsystems can be seen in Figure 7. 

 

Figure 7: Debug terminal for COMMS module 

communicating to the CDH and Payload. 

Although this demonstration was simple; it effectively 

demonstrated the basic capabilities of a wireless 

interface. The flow of communications found in this test 

are almost identical to that of a fully realized satellite, 

with the most major difference being that the profiles 

found on a flight-ready model will encompass much 

more information about the subsystem. 

DISCUSSION AND FUTURE WORK 

Expanding and Implementing the Wireless 

Communication Bus 

One of the benefits of using a communication protocol 

like Bluetooth is the ability for plug-and-play devices. At 

a high-level, if the GATT protocol is standardized for the 

subsystems, then there should not be an issue in 

expanding the network. This does require further 

development on standardizing the interface, which 

should be done regardless of the medium used (wired or 

wireless). While in a simple example presented in this 

paper may seem simple to establish, once more 

subsystems are introduced, there will need to be some 

conformity to allow them to talk to one another. 

Additional testing with the BlueNRG 2 

Another benefit of using Bluetooth is the abundance of 

BLE-enabled ICs and SoCs, allowing multiple 

subsystems to have different radios without sacrificing 

communicability. For example, the ESP32 provides a 

powerful and adaptable solution for a Wireless CubeSat 

bus, but it comes at the cost of PCB area and power. 

Other modules exist to be integrated into systems which 

may already have a CPU and are much smaller footprint. 

An example of the is the BlueNRG 2 by Texas 

Instruments. This BLE SoC can handle the required 

GATT protocol while being the size of a QFN 32 or 48 

package [5]. This could lead to a further reduction of 

PCB area compared to the PC/104 header to almost less 

than 5% of the original. Depending on the module or 

SoC chosen, there may have to be implemented an 

antenna or some other elements outside the chip.  

Backup Communication Bus 

The wireless implementation of the communication bus 

within the CubeSat did provide the plug-and-play utility 

desired while supplementing the need for a dense 

interconnect. There are, however, certain aspects which 

could not be replaced. Power still must be delivered to 

the subsystems which still requires some form of 

common header to be placed or wires to be manually 

added. To help accommodate for a soft or hard failure in 

the radio, there needs to be a backup hardwired 

communication bus which can connect CDH to other 

critical systems. The implementation and requirements 

of this bus would change based on the architecture of the 

satellite. 
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In a Centralized or Semi-Distributed architecture, CDH 

would need to be able to communicate to each subsystem 

and could act as a Master on the bus. This lends itself to 

a protocol such as SPI, I2C, or CAN. CAN would 

provide noise resilience due to the differential topology 

used and is robust against connected devices failing. SPI 

and I2C would provide an interface more commonly 

found in processor peripherals and would provide an 

addressing scheme. However, in SPI the number of pins 

required would have to vary based on the number of 

planes attempting to be connected, where I2C would 

have to very carefully have its Addresses managed. The 

analysis of each of the communication buses in a space 

environment is another area of research which could be 

done.  

CONCLUSION 

The PC/104 connector, which has become the de facto 

standard in many CubeSat COTS subsystems, consumes 

a significant amount of space within a CubeSat system, 

and has proven to be both mass and volume inefficient.   

By providing a wireless interface for a considerable 

portion of connections between subsystems, most pins 

used in the PC/104 header can be omitted from a design. 

This paper outlined a proof of concept experiment where 

an ESP32, acting as a CDH module, paired with and 

managed COMMS and Payload subsystems. Operating 

in a simulated launch environment, a mock ground 

station was able to send Payload commands to Comms 

and have the wireless subsystems communicate 

effectively to achieve the optimal outcome. These results 

show that there is a path forward for the use of a wireless 

module to replace many of the connector pins and 

provide an opportunity for more interoperable COTS 

systems. 
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