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ABSTRACT 
Selected by NASA for an Astrophysics Science SmallSat study, The Virtual Telescope for X-Ray Observations 
(VTXO) is a small satellite mission being developed by NASA’s Goddard Space Flight Center (GSFC) and New 
Mexico State University (NMSU). VTXO will perform X-ray observations with an angular resolution around 50 milli-
arcseconds, an order of magnitude better than is achievable by current state of the art X-ray telescopes. VTXO’s fine 
angular resolution enables measuring the environments closer to the central engines in compact X-ray sources. This 
resolution will be achieved by the use of Phased Fresnel Lenses (PFLs) optics which provide near diffraction-limited 
imaging in the X-ray band. However, PFLs require long focal lengths in order to realize their imaging performance, 
for VTXO this dictates that the telescope’s optics and the camera will have a separation of 1 km. As it is not realistic 
to build a structure this large in space, the solution being adapted for VTXO is to place the camera, and the optics on 
two separate spacecraft and fly them in formation with the necessary spacing. This requires centimeter level control, 
and sub-millimeter level knowledge of the two spacecraft’s relative transverse position. This paper will present 
VTXO’s current baseline, with particular emphasis on the mission’s flight dynamics design.  

INTRODUCTION 
The Virtual Telescope for X-Ray Observations (VTXO) 
is a new Phase Fresnel Lens (PFL) based X-ray telescope 
which will perform X-ray observations with an angular 
resolution around 50 milli-arcseconds. This is an order 
of magnitude improvement over Chandra, the current 
state of the art X-ray telescope. PFL optics can generate 
nearly diffraction-limited imaging using current 
manufacturing technologies, such as MEMS. However, 
in order to do so the PFL requires an extremely long 
focal length on the order of 1 km; even with the modest 
few centimeter lenses being used on VTXO. As this 
design can’t be achieved with traditional rigid telescope 

structures, the VTXO mission will use a formation flying 
scheme that has been developed where two spacecraft, 
one with PFL optics and the second with an X-ray 
camera are flown in a formation which approximates a 
rigid structure. The VTXO mission has recently 
undergone a Mission Planning Lab (MPL) at NASA’s 
Wallops Flight Facility. Development work on the 
VTXO mission is ongoing and will result in a mission 
proposal in the near future. Beyond VTXO, the 
formation flying technology being developed for the 
mission should be expandable to be used for future 
precision formation flying missions, such as a distributed 
aperture telescope. 
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PHASE FRESNEL LENS 
Phase Fresnel Lenses (PFLs) provides an opportunity to 
exceed the performance in imaging preformance of 
conventional Wolter type-1 X-ray optics used in X-ray 
telescopes such as Chandra by utilizing an entirely new 
form of optics.3 PFLs work on principles of diffraction, 
effectively modifying the phase of the light into the 
lenses focal point.4,5 In theory this results in an lens with 
100% efficiency.  In testing, a prototype lens achived 
near diffraction-limited imaging in the X-ray with 
efficiencies of ~30% or better A 3 cm diameter PFL is 

estimated to have an X-ray sensitivity  to brighter X-ray 
sources in the imaging band around 4.5 keV.8,9 

 

SCIENCE MISSION 
X-ray observations are a crucial part of astronomical 
observations, permitting imaging of some of the most 
energetic phenomena in the universe. The location of 
these environments are associated with massive compact 
objects such as black holes, neutron stats, and super 
novae. Furthermore, X-rays are often associated with 
stellar flares, both on the surface of the sun and other 
stars.  

With its modest size lens, VTXO is limited to imaging 
relatively bright sources. Nonetheless given VTXO’s 
order of magnitude improvement in angular resolution 
compared to what has been achieved to date in X-ray 
measurements, numerous targets within VTXO’s 
capabilities have been identified which provide a 
substantial scientific return. Table 1 lists the preliminary 
targets that have been selected for the VTXO mission.  

Table 1: Table 1: Baseline ability of VTXO to collect 
1000 photons from bright compact X-ray sources 

assuming a 150 eV FWHM energy resolution 
around 45.54 keV and a 3cm diameter PFL with 

40% efficacy. G is the spectral index and the flux is 
that reported in the energy range of ~2 – 10 keV. 

Source G Flux 
(erg/s/cm2) 

Collection Time 
(hr) 

Sco X-1 -2.1 2 x 10-7 0.2 

Cyg X-1 Soft -1.5 3 x 10-8 1.2 

Cyg X-1 
Hard 

-2.1 1 x 10-8 3.4 

Cyg X-3 Soft -1.5 2 x 10-8 1.7 

Cyg X-3 
Hard 

-2.1 8 x 10-9 4.6 

GX 5-1 -4.7 5 x 10-8 1.4 

Crab Pulsar -2.1 2 x 10-9 16 

gCas -1.7 3 x 10-10 115 

The VTXO science mission is continuing to evolve 
alongside the VTXO spacecraft as the capabilities of the 
telescope continue to evolve and be better understood. 

BASELINE SPACECRAFT DESIGN 
VTXO is an X-ray telescope consisting of two 
spacecraft, the Optics Spacecraft (OSC) a 6U CubeSat 
carrying Phase Fresnel Lenses (PFLs), and the detector 
spacecraft (DSC) an ESPA-class small-sat with an X-ray 
camera. These two spacecrafts will fly in a formation 
approximating a rigid telescope at 1 km separation. 
During formation flying, the OSC will fly along a natural 
orbit trajectory, while the DSC will maneuver in a sudo-
orbit to maintain a rigid formation with the OSC. The 
DSC will have a relative navigation sensor based on a 
star tracker to track a beacon located on the OSC. Range 

Figure 2: SEM image of a prototype PFL.8 

Figure 1 (a) Fresnel Zone Plate, (b) Phase Zone 
Plate, (c) Phase Fresnel Lens.2 
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will then be determined by using radio ranging over an 
intersatellite radio link. 

Detector Space Craft 
The DSC is an ESPA-class spacecraft with an estimated 
wet mass of ~100 kg. This spacecraft caries a 100 m/s 
cold gas propulsion system, a star tracker based relative 
navigation sensor, along with the X-ray camera, and 
radiation hardened avionics. 

 

Figure 3: Image of the DSC 

Optics Space Craft 
The OSC is a 6U CubeSat, with ~10 kg wet mass. The 
OSC carries the PFLs, and a cold gas propulsion system 
to provide an initial perigee raise and provide orbit 
maintenance maneuvers. The OSC deploys from a 
standard 6U canister and contains a radiation tolerant 
avionics system.  

 

 
CONCEPT OF OPERATIONS 

 

The two spacecraft launch on a common rideshare to a 
highly elliptical super synchronous transfer orbit. Once 
deployed, the they will perform a checkout procedure 
after which the two spacecraft will perform a series of 
maneuvers to bring the two spacecraft back together. At 
that point, VTXO is ready to begin performing the 
science phase of the mission. During the science phase, 
all observations will be performed near apogee where the 
relative gravity gradient is minimal which minimizes 
fuel consumption. As the vehicles approach perigee, they 
will be brought into a close formation with around 20 m 
separation which will reduce fuel consumption as they 
pass through perigee. After going through perigee, the 
two vehicles will then be maneuvered back out to the 1 
km separation for the observation portion of the orbit. 
The observation portion of the orbit will be conducted 
for approximately ±5 h on either side of apogee, giving 
10 hours of observation time during each orbit. 

RELATIVE NAVIGATION SENSORS 

 

Figure 4: Image of the OSC 

Figure 5: Representation of VTXO orbit. The red 
portion is the observation portion of the orbit. 

Graphic not to scale. 

Figure 6: Description of relative navigation sensor. 17 
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The VTXO navigation system is based around three 
sensors, a radio crosslink with ranging, a GPS, and a star 
tracker based relative navigation camera. The basis of 
the navigation system is the NISTEX-II star tracker 
mounted on the DSC. This camera is capable of 
determining the bearing to the OSC with accuracies of 
better than 100 milli-arcseconds. The NISTEX-II will 
work as shown in Figure 6 by comparing the location of 
a beacon on the OSC with the background starfield. This 
will provide two axis relative position knowledge; the 
third axis will be provided by a radio ranging system, 
which provides ranging on the order of a meter.16 In 
addition to these relative navigation sensors, a GPS 
system on each spacecraft will be used for orbit 
determination, and for the reacquisition of the OSC if 
NISTEX-II loses track.  

CONTROL SYSTEM 
VTXO operates in a nearly linear control 
environment.17 This is a well understood environment, 
with broad industry experience in linear control systems 
such as PID controllers dating back decades. Providing 
an actuator with a sufficiently low minimum impulse bit 
is used, and adequate position knowledge is available, 
linear control for this system is relatively simple. Given 
that the control requirements are nearly an order of 
magnitude lower than the knowledge requirements on 
VTXO, it is not anticipated that there will be any 
problem with position knowledge. 

PROPULSION 
The baseline VTXO design calls for cold gas propulsion. 
While somewhat limiting in terms of total mission life, 
cold gas has proven flight heritage. The baselined cold 
gas system is based on the unit flown on JPL’s MarCo 
mission.19 and as such the unit has demonstrated flight 
heritage. Both mono-prop, and electrospray propulsion 
continue to be evaluated as alternatives for the mission. 
Both these options would both provide significant 
increases in mission life, and in the case of electrospray 
a substantial reduction in minimum impulse bit, with a 
corresponding improvement in control precision. 
However, these advantages will continue to be evaluated 
relative to the system’s TRL level. Table 2 shows the 
capabilities of VTXO’s baseline cold gas propulsion 
system. 

Table 2: VTXO propulsion system baseline 

 Dry Mass Prop Mass Isp Total Delta V  

OSC 13.06 kg 1.92 kg 40 s 53.8 m/s 

DSC 102.5 kg 33.9 kg 40 s 111.9 m/s 

FORMATION FLIGHT DYNAMICS 
VTXO utilizes a leader follower dynamic with the OSC 
traveling on a natural trajectory, the DSC then flies along 
a sudo orbit with a constant offset from the OSC. In this 
sudo orbit, the DSC will continuously use its propulsion 
system to maintain the desired position relative to the 
OSC in the relative frame, this is necessary because the 
DSC is not on a natural orbit trajectory.15 Figure 8 
shows the position of the DSC in an ICRF aligned frame 
centered on the OSC as it moves through the orbit 
between the observation, and the perigee sections of the 
orbit.  

 

Figure 7 shows the estimated DSC delta V usage over 
two orbits using a specific GN&C control algorithm The 
2-norm value assumes that the thrusters are pointed in 
the ideal direction, while the 1 norm value calculates the 
Delta V for the baseline DSC thruster layout where the 
thrusters are not necessarily in the optimal orientation.  

 

Figure 7: Plot of the position of the 
DSC in the relative frame over two 

orbits 

Perigee Perigee 

Apogee Apogee Apogee 

Figure 8: DSC Delta V over two orbits 
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As can be seen in Figure 9 the acceleration required by 
the propulsion system to maintain formation is orders of 
magnitude greater as the spacecraft passes through 
perigee, as compared to apogee. This shows why the 
DSC is pulled into a close formation with the OSC as the 
two-spacecraft pass through perigee.  

 

Current lifetime estimates are based on the 100 m/s Delta 
V assuming 0.95 m/s per orbit is approximately 150 
days. 

Table 3: VTXO Delta V Budget 

Maneuver OSC DSC 

Attitude Control 2 m/s (22 N-s 
calculated value) 

1 m/s (40 N-s 
calculated value) 

Perigee Raise 20 m/s 10 m/s 

Orbit Maintenance 10 m/s 20 m/s 

Science Observation 0 65m/s 

Contingency 10 m/s 15 m/s 

Total 42 m/s 111 m/s 

 
CONCLUSION 
VTXO is a viable mission which is that is capable of 
numerous scientific observations. The mission is capable 
of delivering X-ray imaging with more than an order of 
magnitude improvement in angular resolution over 
current state of the art X-ray telescopes. This high, 
resolution imagining gives VTXO the potential to 
significantly improve the understanding of high-energy 
phenomenon, and other X-ray sources. Finally, the 
formation flying technology being developed for VTXO 
should be expandable to enable future distributed 
aperture telescope missions, a key technology for future 
high angular resolution astronomical observations. 
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