
Baker 1 33rd Annual AIAA/USU
 Conference on Small Satellites

SSC19-IX-01

Amazon Web Services (AWS) Cloud Platform for Satellite Data Processing

Richard Baker, Peter MacHarrie, Hieu Phung, Jonathan Hansford, Jakku Reddy, Stephen Causey, John Sobanski,
Steven Walsh, Ronald Niemann, Daniel Beall

Solers, Inc.
7474 Greenway Center Dr., Suite 400, Greenbelt, MD 20770; (240) 790-3338

richard.baker@solers.com

ABSTRACT
As part of NOAA’s Environmental Satellite Processing and Distribution System (ESPDS) program, Solers created a
cloud platform for satellite data management and processing. It consists of Enterprise Data Management (EDM)
and Enterprise Product Generation (EPG) services, hosted in an Amazon Web Services (AWS) cloud environment,
leveraging AWS cloud services and existing NOAA product generation algorithms. While this cloud platform was
developed in the context of NOAA/NESDIS satellite data management and processing requirements, it also has
tremendous applicability and cost effectiveness for small satellite data management and processing needs. An
attractive method for ingesting data from small satellites is the AWS Ground Station. This can help small satellite
operators save on costs of real estate, hardware/software, and labor to deploy and operate their own ground stations.
The data is ingested via AWS-managed antennas, and made available for further processing in the AWS cloud using
COTS RF/ baseband over IP transport services. Once this data has been ingested and made available, the flexible
REST APIs from the EDM and EPG services in the AWS cloud make it easy and cost-effective for small satellite
operators to catalog and process the data into consumable products, and make them available for access to end users.

INTRODUCTION

NDE Proving Ground (NPG)
The NOAA Data Exploitation (NDE) Proving Ground
(NPG) is a public cloud prototype hosted in the
Amazon Web Services (AWS) cloud that implements
recommendations from the National Oceanic and
Atmospheric Administration (NOAA) / National
Environmental Satellite, Data, and Information Service
(NESDIS) Office of Satellite Ground Services (OSGS)
study, Enhanced/Enterprise Product Generation
Framework Study and Analysis Report.1 The study
focused on a proposed architecture using EDM and
EPG components capable of generating both level one
(L1) and higher products and of integrating all products
from multiple ground systems. The study proposed that
L0/L1 producers (Sensor Data Systems) within the
NESDIS Enterprise deliver data directly to Enterprise
Data Management. An Interface Systems component
accepts and delivers data to systems that are external to
the “NESDIS enterprise.”

Figure 1: NOAA/NESDIS OSGS
Enhanced/Enterprise Product Generation Study

Proposed Architecture

The NPG project has developed an AWS cloud-native
EDM/EPG prototype that is executing all of NOAA’s
operational algorithms currently available in the on-
premise operational ESPDS NDE system, and is
providing web services interfaces to operational
equivalent GOES-16, GCOM-W, and JPSS products.

The project has developed and studied the feasibility
and cost of an operations-scale EDM/EPG system that
integrates and executes the current (January 2019)
NESDIS operational product release technical baseline
(PRT), in an AWS cloud environment.

Development of the NPG started in January 2018. The
project established an AWS cloud environment in
February 2018. EDM and EPG service development
completed in February 2019.

Baker 2 33rd Annual AIAA/USU
 Conference on Small Satellites

The NPG ran a 21 day operational load scenario in
March 2019.

AWS Ground Station2
AWS Ground Station is a fully managed AWS cloud
service (“Ground Station as a Service”) that allows
satellite operators to control satellite communications,
process data, and scale operations without building or
managing their own ground station infrastructure. AWS
Ground Station provides a fully managed network of
ground station antennas located around the world in
close proximity to AWS infrastructure regions.
Satellites are used for a wide variety of use cases,
including weather forecasting, surface imaging,
communications, and video broadcasts. Ground stations
form the core of global satellite networks. These
facilities provide communications between the ground
and the satellites in space. Today, satellite operators
must either build their own ground stations, or obtain
long-term contracts with ground station providers, often
in multiple countries to provide enough opportunities to
contact the satellites as they orbit the globe. Once all
the data is downloaded, a variety of additional
infrastructure including servers, storage, and
networking in close proximity to the antennas are
required in order to process, store, and transport the
data from the satellites.

AWS Ground Station provides direct access to other
AWS services and the AWS Global Infrastructure
including a low-latency global fiber network located
where the satellite data is downlinked into the AWS
Ground Station. This enables satellite operators to
easily control satellite communications, quickly ingest
and process the satellite data, and rapidly integrate that
data with other applications and other services that are
running in the AWS cloud. For example, satellite
operators can use AWS S3 to store the downloaded
data, AWS Kinesis Data Streams for managing data
ingestion from satellites, and AWS SageMaker for
building custom machine learning applications that
apply to the satellite data sets. AWS Ground Station can
help satellite operators save up to 80% on the cost of
ground station operations by allowing them to pay only
for the actual antenna time used, and relying on the
AWS global footprint of ground stations to download
data when and where they need it, instead of building
and operating their own global ground station
infrastructure. There are no long-term commitments,
and satellite operators gain the ability to rapidly scale
their satellite communications on-demand as required.

NPG SYSTEM DESCRIPTION
The NPG is an AWS cloud hosted, operations-scale
EDM/EPG system that is compatible with existing

NESDIS operational product generation capabilities
provided by NOAA’s on-premise operational ESPDS
NDE system. It provides all existing interfaces that
support algorithm and product integration while
providing several additional enhancements.

NPG Capabilities

Figure 2: NDE Proving Ground (NPG)
The NPG integrates product software (i.e., Science
Algorithms) and Ground System provided inputs to
generate all current (as of March 2019) products that
are currently being generated by NOAA’s on-premise
operational ESPDS NDE system. The NPG also
provides substantial scaling capabilities and application
interfaces that provide access to products and to on-
demand job services. A Python client library has been
developed to assist with utilization of the APIs.
Example applications have been built to demonstrate
the EPG and EDM interfaces.

NPG Architecture
The NPG is composed of both custom-developed
application and cloud provider services. Its major
components are EDM, EPG, and Data Transport. AWS
provided services are used extensively by each major
component.

Figure 3: NPG High Level Architecture

Baker 3 33rd Annual AIAA/USU
 Conference on Small Satellites

The NPG integrates custom application software
developed during the prototype project with AWS
cloud services to implement ESPDS-compatible Data
and Product Generation services in a public cloud
environment. The NPG is fully compatible with the
existing Product Integration capabilities of ESPDS
NDE and the NESDIS Delivered Algorithm Package
(DAP) standard for delivery of NESDIS Product
Algorithm Software. The current NPG is configured to
ingest data from NOAA’s on-premise ESPDS Product
Distribution and Access (PDA) Integration & Test
(I&T) Environment at the NOAA Satellite Operations
Facility (NSOF) in Suitland, MD; the NOAA National
Centers for Environmental Information (NCEI) Big
Data Project’s AWS S3 bucket; and various ancillary
and other data providers.

While the NPG is compatible with NOAA’s on-premise
operational ESPDS NDE system, it extends the current
ESPDS NDE software integration, data access, and
product generation capabilities with a RESTful API
implementation.

The NPG uses the AWS cloud services identified in
Table 1.

Table 1: NPG AWS Cloud Services

AWS Cloud Service Function

API Gateway Scalable RESTful APIs integrated
with backend services

CloudWatch Monitoring, logging, and
management services

DynamoDB Scalable noSQL database

Elastic Block Store
(EBS)

Persistent block storage for EC2
instances

Elastic Cloud Compute
(EC2) Compute resources

Elastic File System (EFS) Shared Linux-based, elastic file
system

Elasticsearch Service Scalable full text (metadata) search

Relational Database
Service (RDS) -
PostgreSQL

Managed PostgreSQL RDBMS

Simple Notification
Service (SNS) Publish/subscribe messaging service

Simple Queue Service
(SQS) Message queueing service

Simple Storage Service
(S3) Global object storage

Virtual Private Cloud
(VPC)

Logical isolation of privately
networked components

Cloud Formation
Cloud service resource description
and provisioning. (i.e.,
“infrastructure as code”)

Identity and Access
Management (IAM)

Authorization and access
management for both users and
services

Lambda
“Serverless” Function as a Service
(FaaS) application deployment and
run-time environment

Cloud9 Cloud-based integrated development
environment (IDE)

The major components of the NPG are Enterprise
Product Generation (EPG), Enterprise Data
Management (EDM) and Data Transport.

NPG Enterprise Product Generation (EPG)
EPG is composed of the following components: product
software integration and work flow configuration, job
scheduling (factory), and resource and workload
management. Additionally, the EPG provides on-
demand APIs that can be used for various product
generation scenarios.

Baker 4 33rd Annual AIAA/USU
 Conference on Small Satellites

Figure 4: NPG Enterprise Product Generation
(EPG) High Level Architecture

The EPG component provides the following
capabilities.

ESPDS NDE Compatible Capabilities:

• Product Software Integration
• Job Factory Service (Job Creation and

Queueing)
• Run-time environment, load and resource

management (Scaling)
Extended Services:

• Integration and Scheduling for External
Product Generation Systems

• On-Demand Job and Tailoring Invocation
EPG Product Software Integration

The EPG component provides a facility for integrating
product software (algorithms) with other NPG
components. The software is integrated using Amazon
Machine Images (AMI) within AWS EC2. The
workflow of the product software is implemented using
JSON specifications via RESTful web service API
calls.

EPG Job Factory

The EPG Job Factory responds to the arrival of inputs
by creating an incomplete job specification using
production rules created by the product integration
services. The EPG Job Factory monitors incomplete job
specifications and the EDM’s data holdings to
determine when/if a job specification has completed
and whether to enqueue a production job.

EPG Load and Resource Management

The EPG component distributes production jobs to
computation and storage resources based upon the job
priority (KPP, High, Medium, and Low) and job class

(Small, Medium, Large, etc.) values set in a job’s
production rule.

The EPG component utilizes AWS EC2 services to
manage the resource necessary to meet work load
requirements. The basic workload components are:

• AMI – Virtual machine (VM) templates
containing operating system (OS), product
software, node manager, boot and shutdown
scripts, initial storage configuration.

• Launch Configuration – Maps AMI to an
AWS EC2 Instance Type. The instance types
provide compute, input/output (I/O), memory,
and network capacity of the desired compute
node.

• Auto Scale Group – Identifies how many
AWS EC2 instances to run at any given time.

• EPG Compute Node – Active instance of an
AWS EC2 EPG compute node.

Figure 5: EPG AWS Scaling Service Components
The NPG project developed multiple types of EPG load
management:

• Static Configuration
• Auto Scale by Orbit Schedule
• Auto Scale Under Backlog

Figure 6: EPG Orbit-Based Auto Scaling
EPG job prioritization is implemented using AWS SNS
and AWS SQS to route and prioritize jobs to EPG
compute resources. The configuration provides
preference to NOAA’s key performance products
(KPPs) and products with shorter latency requirements
over products that have longer latency requirements.

Baker 5 33rd Annual AIAA/USU
 Conference on Small Satellites

Figure 7: EPG Job and Workload Management
EPG Extended PG Services

The EPG APIs provides access to algorithm/workflow
registration and on-demand job invocation services.
The NPG project developed an example GUI to
demonstrate the capability. The GUI requests an on-
demand job which matches GOES Mesoscale products
with Local Storm Reports and returns an animated
output product.

Figure 8: NPG Example EPG Job Service API
Utilization

EPG Federated Product Generation

The NPG project integrated the University of
Wisconsin Space Science and Engineering Center
(SSEC)’s Community Satellite Processing Package
(CSPP) Geo Algorithm Integration Team Framework
(AITF) software package to demonstrate the capability
of running an algorithm in a federated product
generation mode utilizing AWS SNS subscriptions.

The CSPP Geo package processes Level 1B data from
the Advanced Baseline Imager (ABI) instrument on
NOAA’s GOES-16 satellite, and creates Level 2
derived geophysical products. The CSPP Geo software
produces output files in netCDF4 format and also

contains a program to create “quicklook” images, plots
of select variables from the netCDF4 output files in
PNG format.

The CSPP Geo package was provided as a set of pre-
compiled binaries intended to run on CentOS 6. The
NPG project developed a driver script to launch the
algorithm in a manner consistent with the DAP
standards, along with the necessary suite of product,
algorithm, and production rule definitions. The
production rule definitions were assigned a “Boutique”
job class, which was used to route the EPG Production
Job AWS SNS messages related to this algorithm to
separate AWS SQS queues from the ones used by the
rest of the enterprise, allowing the CSPP Geo algorithm
to be run on AWS EC2 instances dedicated to it. A
Python script separate from the aforementioned driver
script was written to handle de-queuing jobs from those
AWS SQS queues as they became available, obtaining
the input files from the inventory, and making the
output available to ingest.

EPG Services API

Both EPG and EDM use an AWS API Gateway as the
entry point into the system from end clients. The AWS
API Gateway sits between the client and the system and
is responsible for request routing, composition, and
protocol translation. Without an AWS API Gateway,
clients would need to send requests directly to different
services, which can lead to tight coupling, extraneous
requests, and security issues.

Figure 9: NPG APIs Services Stack
In the NPG, the AWS API Gateway invokes AWS
Lambda functions, passing the request parameters from
the clients. The AWS Lambda functions in the NPG are
written in Python and they interact with AWS RDS,
AWS Elasticsearch Service, and other AWS services
(such as AWS SNS) to fulfill the clients’ requests.

The EPG Services API provides access to Algorithm,
Production Rule, and Production Job related functions
by exposing the following operations to end clients.

Job / Workload Prioritization

Compute

Nodes

Node Mgr

SNS Topic

Production Job

Job Factory

SQS (Job Qs):

Large-Any

Regular-High

Regular-KPP

Regular-Low

Regular-Medium

Sequential

Small-High

Small-KPP

Small-Low

Small-Medium

VeryLarge-Any

HighMemory-Any

Job Message contains

Attributes, algorithmName,

productionRuleName,

jobClass, jobPriority, etc.)

Subscriptions route

Job Messages to an

SQS Queue based on

message attributes.

A node manager runs

on a compute node

and is configured to

poll Job queues in a

prioritized order. (i.e.

KPP first, High second,

Medium third, etc.)

Qs follow the format:

(JobClass-JobPriority)

Example Customer Application

EPG

On-Demand
Job RESTful
Services:
Create
Status
Cancel

Create Job

EDM
S3: External Job Output

EDM
RESTful Services:Get Metadata

On-Demand
EC2
Compute
Nodes:

Job Output

Job Data Job

Products
O

utput

EPG

On-Demand Job
RESTful
Services:

Create

Status

Cancel

Create Job

EDM

S3: External Job Output

EDM

 RESTful Services:
Get Metadata

On-Demand
EC2 Compute
Nodes:

Job Output

Job Data Job

Baker 6 33rd Annual AIAA/USU
 Conference on Small Satellites

Table 2: EPG Services API

Operation Description

EPG Product Software Integration Service API

Register/Update
Algorithm

Registers a new Algorithm definition
in both AWS RDS and AWS
Elasticsearch Service. If the
Algorithm definition exists, it will be
updated.

Get Algorithm List
Returns a list of all the registered
Algorithms with basic information
for each one: id, name, version, type.

Get Algorithm

Returns the full details for a
specified Algorithm. These details
are equivalent to the input of
Register/Update Algorithm.

Register/Update
Production Rule

Registers a new Production Rule
definition in both AWS RDS and
AWS Elasticsearch Service. If the
rule definition exists, it will be
updated.

Get Production Rule List

Returns a list of all the registered
Production Rules with basic
information for each one: id, name,
type, active flag.

Get Production Rule

Returns the full details for a
specified Production Rule. These
details are equivalent to the input of
Register/Update Production Rule.

Toggle Production Rule Updates the PR Active Flag attribute
for a Production Rule.

EPG On-Demand Job Service API

Create Job Creates an on-demand Production
Job (including Job Specification).

Get Jobs Summary

Returns a list of on-demand
Production Jobs with basic
information, grouped by Algorithm
name and by Job Status.

Get Job Details

Returns the current details for an on-
demand Production Job, including its
status and outputs (when the Job is
COMPLETE).

Update Job
Updates the attributes of a specific
on-demand Production Job
(currently only job Status).

Search Job

Allows for searching of on-demand
Production Jobs. Query parameters
can include job Status, algorithm,
enqueueTime, startTime,
completionTime. Optionally, results
can be sorted or limited.

Table 3: EPG Services API CRUD Matrix

Operation Create Read Update

EPG Product Software Integration Service API

Register/Update Algorithm X X

Get Algorithm List X

Get Algorithm X

Register/Update Production X X

Rule

Get Production Rule List X

Get Production Rule X

Toggle Production Rule X

EPG On-Demand Job Service API

Create Job X

Get Jobs Summary X

Get Job Details X

Update Job X

Search Job X

* Delete operations through the EPG Services API were not essential
for the NPG.

NPG Enterprise Data Management (EDM)
EDM is composed of the following components:
product integration services, data catalog and storage
services, data access services. A primary goal of the
EDM is to extend some of the data access capabilities
currently available only within NOAA’s on-premise
operational ESPDS NDE system across missions.

Figure 10: EDM High Level Architecture
EDM Product Integration

The EDM provides RESTful services that define
products and the product’s data structures for use by
other EDM services. For example, data product
definitions are used by the EPG services to describe
algorithm inputs and outputs.

EDM Ingest

The EDM Ingest service provides a single RESTful
interface for product catalog, storage, and notification
services. The EDM Ingest service:

• Validates and processes incoming data via
AWS Lambda functions and Docker
containers (NOTE: some ingested files exceed
the storage capacity of AWS Lambda
functions).

Baker 7 33rd Annual AIAA/USU
 Conference on Small Satellites

• Stores product data (i.e., HDF5, netCDF,
BUFR, etc. files) in AWS S3.

• Extracts and stores metadata in AWS
Elasticsearch Service and in AWS RDS.

• Provides a notification of new data using AWS
SNS.

Figure 11: EDM Ingest Service
The EDM Ingest service extracts and makes available,
all internal product metadata for selected formats. (e.g.,
HDF5, netCDF4). The metadata is converted to a JSON
document containing two major divisions:

• EDM Core Metadata: Metadata attributes
common among all mission products.

• Object Metadata: Metadata attributes specific
to the file’s internal structure and content.

The metadata derived by the EDM Ingest service
provides information about the internal structures (e.g.,
dimensions and arrays) of the products managed by the
EDM, and this information is used by the EDM services
as described below.
EDM Data Access

EDM provides several data access capabilities: file
search and access, internal array content access (i.e.,
subsetting by direct resource path), and data selection
service query.

The NPG has developed a GUI application to
demonstrate EDM data access capabilities.

EDM Search

Full text, metadata attribute, and spatial search
capabilities are provided in a public RESTful API
across the EDM data holdings. An example search and
data access GUI (application) is part of the prototype.

Figure 12: EDM Search API Demonstration GUI
The search API can accept a wide variety of search
inputs, and provides several levels of detail and sort
options. EDM Search uses AWS Elasticsearch Service
for field and full-text searches and AWS RDS for
spatial searches, and manages the combination of
search results between the two backend databases.

EDM File Access

In additional to metadata content, the science data
contents of EDM are accessible via its RESTful API.
Data is accessible at multiple levels including File,
Array, and Data Cube.

An example of the File access level is the icon on
the EDM File Access Demonstration GUI. Clicking the
icon will download the file via an HTTPS GET request
to the file resource in AWS S3.

Figure 13: EDM File Access Demonstration GUI
EDM Data Access intermediates between the external
data consumer’s system and EDM’s isolated S3 bucket.
When accessed, an EDM file’s URL, creates and then
returns a signed certificate to the file’s S3 bucket
address with an http redirect directive to the requesting
client. The signed certificate is valid for a limited time
period and the data is obtained using the temporary
redirected URL.

Baker 8 33rd Annual AIAA/USU
 Conference on Small Satellites

EDM Array Access

Internal arrays of data/metadata within individual files
are accessible via EMD’s /file/array resource URL.
This interface invokes an AWS Lambda function that
extracts the requested internal array from the file and
returns the array as a binary file or as a byte stream.
Figure 14 shows an example of extracting of the
BrightnessTemperature array from a VIIRS-I4-IMG-
EDR file listed in Figure 13.

Figure 14: EDM Array (aka Subset) Access API
Demonstration GUI

The EDM Array Access API can additionally be used
to load the EDM array into a client application
program’s memory using the EDM Client library.

EDM Data Cube Access

EDM provides an aggregated view (known as a “data
cube”) of science data that shares the same geo-
temporal footprints. The data cubes can be queried to
provide common tailoring services. Figure 15 provides
an example of aggregation, re-projection, and imaging
of VIIRS radiances. The data selection service provides
subsetting, subsampling, filtering, aggregation, re-
projection, and formatting of science data. Figure 15
shows a limited sample interface to the EDM Data
Cube Access API. Results of the sample query are
shown in Figure 16. The EDM Data Cube Access query
is submitted as an on-demand job to the EPG services.
Like a file’s URL, job outputs are accessible via a
signed-certificate to the job’s output location within an
AWS S3 bucket.

Figure 15: EDM Data Cube Access API
Demonstration GUI

Figure 16: EDM Data Cube Access API View
Output Demonstration GUI

The image in Figure 16 is a project image of data from
the VIIRS-I4-IMG-EDR product from NOAA’s JPSS-1
satellite captured on 11 April 2019 17:23:20Z –
17:30:54Z.

EDM Services API

The EDM Services API provides access to Product,
File, and Data Cube related functions by exposing the
following operations.

Baker 9 33rd Annual AIAA/USU
 Conference on Small Satellites

Table 4: EDM Services API

Operation Description

EDM Product Software Integration Service API

Register/Update Product

Registers a new Product definition in
both AWS RDS and AWS
Elasticsearch Service. If the Product
definition exists, it will be updated.

Get Product List

Returns a list of all the registered
Product with basic information for
each one: id, short name, description,
platform

Get Product

Returns the full details for a
specified Product. These details are
equivalent to the input of
Register/Update Product.

Search Product Searches for Products given a
productFilenamePattern.

EDM Data Ingest Service API

Ingest File

Given an AWS S3 bucket and key
referring to a file, ingests a file by
performing validation, metadata
extraction, and catalog of the file.

EDM Data Access Service API

Get File Sends a requested file to the client
via an AWS S3 pre-signed URL.

Search File

Allows for searching of files. Query
parameters can include full Text,
productShortNames, fileIds
fileNames, timeRange (startTime
and endTime), spatialArea,
orbitRange (beginOrbit and endOrbit
number), fileDayNightFlag,
fileAscDescIndicator, and any other
internal group attributes. Optionally,
result fields can be specified and
results can be sorted or limited.

Get File Metadata Returns a JSON string of a file’s
internal metadata structure.

Get File Array
Returns the specified binary data
(array) of a file via an AWS S3 pre-
signed URL.

Get Data Cube List

Returns a listing of all data cubes
with information for each one: name,
productShortNames included in the
data cube, count of the measures
represented by the data cube.

Get Data Cube Metadata
Returns the metadata content for a
specified data cube’s structure: id,
name, dimensions, measures

Get Data Cube Select

Invokes the EDM Data Cube Access
Service given a “select” query. EDM
will create a Data Cube Access job
that will create the output (i.e.,
netCDF4, PNG, etc.) specified in the
query. The output can be retrieved
using the EPG Get Job Details API.

Table 5: EDM Services API CRUD Matrix

Operation Create Read Update

EDM Product Software Integration Service API

Register/Update Product X X

Get Product List X

Get Product X

Search Product X

EDM Data Ingest Service API

Ingest File X

EDM Data Access Service API

Get File X

Search File X

Get File Metadata X

Get File Array X

Get Data Cube List X

Get Data Cube Metadata X

Get Data Cube Select X

* Delete operations through the EDM Services API were not essential
for the NPG.

NPG Data Transport
Data transport provides external interface services to
data providers external to the NPG. The NPG project
implemented the following interfaces for the prototype:

• NOAA’s On-Premise ESPDS PDA I&T
System: Continuous polling and pulling of
Suomi National Polar Partnership (S-NPP),
JPSS-1, and Global Change Observation
Mission – Water (GCOM-W) satellite data
files via FTPS.

• NOAA’s NCEI Big Data Project AWS S3
Bucket: AWS SNS notifications, and pulling
of GOES-16 satellite data files via HTTPS.

• Ancillary and Other Data Providers: Periodic
polling and pulling of ancillary and other data
files needed for product generation via FTP,
FTPS, and HTTPS.

NPG API Client Libraries
The NPG project has developed a Python client library
that encapsulates the EPG and EDM RESTful APIs into
more easily understandable function calls. A tutorial of
the client libraries is available at:
https://jupyterhub.ndepg-
jupyter.com/user/nde/notebooks/Use_Case_Scenarios/.

NPG Monitoring
Monitoring of the NPG is accomplished using the AWS
CloudWatch service. AWS CloudWatch provides
metrics collection and reporting of most AWS services.
An AWS CloudWatch graphing example is show in
Figure 17.

Baker 10 33rd Annual AIAA/USU
 Conference on Small Satellites

Figure 17: NPG Monitoring and Graphing in AWS
CloudWatch

Additionally, NPG uses AWS CloudWatch to monitor
application events and metrics related to data ingest and
product generation, as shown in Figure 18.

Figure 18: NPG Monitoring of Application Events
and Metrics in AWS CloudWatch

NPG Design and Implementation Trades
The following trades occurred during the development
phase of the NPG project.

Data Transport Interface Implementation

While the Data Transport capability of pulling data
from partner AWS S3 buckets is desirable, (NOAA’s
NCEI GOES-16 and pending JPSS CGS), pulling data
from NOAA’s on-premise ESPDS PDA system is a
sub-optimal approach. A preferred approach is for
NOAA’s on-premise ESPDS PDA system to push data
directly to the NPG’s AWS S3 bucket. However, that
capability would have required a change to NOAA’s
on-premise ESPDS PDA system’s baseline. That
change was considered undesirable until the outcome of
the study is understood.

Distribution was not included within the domain of the
NPG project’s area of study.

Scaling and Interoperability Implementation

One of the initial purposes of the NPG project was to
evaluate Red Hat JBoss Fuse as a replacement to Red

Hat JBoss SOA-P, which is used by NOAA’s on-
premise operational ESPDS NDE system for scaling
and interoperability, and has reached end of life. Initial
versions of the NPG prototype were implemented with
Red Hat JBoss Fuse. However, during the NPG
prototype effort, it became understood that the Red Hat
JBoss Fuse licensing policy was incompatible with the
product’s use on the EPG compute nodes (priced per
core). The bulk of the compute power on EPG compute
nodes is utilized by algorithms, not by the Red Hat
JBoss Fuse node manager. An implementation of the
node manager functionality using Python was
developed and appears to be a viable, lighter weight,
and lower cost alternative.

Red Hat JBoss Fuse was also used for initial Data
Transport, EDM Ingest, and EPG Job Factory
implementations. Data Transport has since been
replaced by a Python implementation. EDM Ingest and
EPG Job Factory have been refactored to use AWS
services, which provide the necessary scaling and
interoperability capabilities of Red Hat JBoss Fuse,
without the additional licensing cost.

RESTful APIs Implementation

The RESTful APIs of the NPG could have been
implemented using a vast number of products.
However, the ability to implement an interface as
reliable, scalable, and available as the AWS API
Gateway, given the project’s limited schedule and
resources, would have been difficult to accomplish.

A noteworthy aspect of the AWS API Gateway is that it
forces a separation of the API’s implementation from
the back-end services. In general, during software
development, there is often a drift of front-end API
logic to the back-end service and of the service to the
front-end API logic that complicates RESTful service
development and maintenance. Forcing a separation of
the API’s implementation from the back-end services
helps to prevent these complications.

NoSQL Database Implementation

AWS Elasticsearch Service was available as a managed
cloud service at the beginning of the prototype and was
selected primarily for that reason. AWS subsequently
released a compatible MongoDB service in January
2019, which has not been evaluated as part of the NPG
project.

The NoSQL databases have been found to have a
specific disadvantage for near-real-time transaction
applications. For applications that have a large number
simultaneous transactions (e.g., ingest metadata
updates) the transactions must be grouped into batches

Baker 11 33rd Annual AIAA/USU
 Conference on Small Satellites

to achieve effective throughput rates that keep up with
latency requirements. AWS provides this type of
batching service (AWS Kinesis Firehose), but the
specific implementation causes an increase in ingest
latency of up to one minute and requires a schema
change that can impose significant changes in an
application.

NPG continued with the use of AWS Elasticsearch
Service, but wrote a custom batching mechanism to
ensure latency requirements are met.

Algorithm Implementation

NPG implements the current form of NOAA’s product
algorithms as executables, but based on containerized
algorithms that were delivered on 1 April 2019, NPG
could easily integrate algorithm containers.

Other implementations are possible, but not as the
majority of NOAA’s product algorithms are currently
developed. For example, AWS Lambda functions have
been proposed as alternative implementations of
algorithms. However, AWS Lambda functions are
currently restricted to a maximum of 3 GB memory, 15
minutes runtime duration, 0.5 GB storage, and 250 MB
deployment package. The implementation of algorithms
as “micro-services” will require changes not just to the
algorithms themselves but also to how data is stored
and managed. This is what the NOAA/NESDIS OSGS
Enhanced/Enterprise Product Generation Framework
Study and Analysis Report referred to as “Products-as-
BigData”, “Algorithms-as-Services”.1

The containerized implementation of algorithms is
highly desirable, especially for cloud-based
implementations. However, the conversion of NOAA’s
existing product algorithm software to containerized
algorithms is a labor-intensive effort, not only with
implementation but especially regarding validation of
the resulting products.

The NPG project received two containerized NOAA
product algorithms after completion of the 21 day test.
The containerized algorithms were compared to stand-
alone executable versions. The average run-time
durations are provided in Table 6.

Table 6: Executable vs. Containerized NOAA
Product Algorithm Run Times

Unit Name
Executable

Mean Runtime
(seconds)

Container
Mean Runtime

(seconds)

Differe
nce %

VPW PRODUCT
JPSS1 241.03 243.99 1.23%

Cloud Mask
JPSS1 258.93 267.58 3.34%

Cloud Mask NPP 256.73 270.56 5.39%

VPW REMAP
NPP 131.92 146.09 10.74%

VPW PRODUCT
NPP 355.31 358.02 0.76%

VPW REMAP
JPSS1 128.56 139.61 8.59%

NPG Process, Performance, and Costs
Data Ingest Cycle

The NPG continuously receives all input data necessary
to produce the current operational products and in
response generates products at a rate that meets or
exceeds current requirements. Figure 19 depicts the rate
at which data that is used as input to the NPG is
ingested from data providers in terms of number of files
over time.

Figure 19: NPG Data Ingest Cycle
Table 7 provides the daily data ingest count and
volume.

Table 7: NPG Daily Data Ingest Volume

Satellite
Ingested

Data
Types

Ingested Data
Volume

(Files per Day)

Ingested Data
Volume

(MB per Day)

GCOM-W 1 14 1,756

GOES-16 64 52,224 136,084

JPSS-1 65 77,756 907,447

S-NPP 73 84,256 909,847

Product Generation Cycle

Baker 12 33rd Annual AIAA/USU
 Conference on Small Satellites

In response to the arrival data, the NPG generates
products using operationally delivered product software
(algorithms and tailoring) in a work flow and resource
configuration that exceeds existing latency
requirements. Specifically, the NPG is meeting primary
sensor latency requirements for both S-NPP and JPSS-1
generated products. Figure 20 depicts the rate at which
the NPG generates products in terms of number of files
over time.

Figure 20: NPG Product Generation Cycle
Table 8 provides the NPG daily generated product
count and volume.

Table 8: NPG Daily Product Generation Volume

Satellite
Generated

Product
Types

Generated
Product Volume
(Files per Day)

Generated
Product Volume

(MB per Day)

GCOM-W 32 457 31,892

GOES-16 240 181,877 940,301

JPSS-1 250 137,552 1,966,206

S-NPP 303 164,103 2,066,359

Table 9 provides the estimated average yearly compute
and storage costs to continuously ingest data and
generate products using NOAA’s product algorithms
that were integrated into the NPG (operational
scenario). In each case, the portion of the costs that is
for storage is very low (less than 10%), with compute
being the majority of the costs.

Table 9: NPG Estimated Yearly Compute and
Storage Costs

Satellite Estimated Yearly Compute and Storage Costs

GCOM-W $2,171.37

GOES-16 $79,690.10

JPSS-1 $59.483.85

S-NPP $59,483.85

AWS GROUND STATION SYSTEM
DESCRIPTION2
AWS Ground Station enables satellite operators to
control and ingest data from orbiting satellites without
having to buy or build satellite ground station
infrastructure. AWS Ground Station does this by
integrating the ground station equipment like antennas,
digitizers, and modems into the AWS regions around
the world. Satellite operators can simply onboard their
satellites and schedule time to communicate with them
using AWS Ground Station. Satellite operators have the
option of conducting all of their satellite operations
within the AWS cloud, including the storing and
processing of the satellite data and delivering products
using AWS services, or use AWS Ground Station just
to downlink the satellite data and transport it to their
own processing center.

AWS Ground Station Features
Schedule Satellites and Download Data Using AWS
Services

Satellite operators can use the AWS Ground Station
console to identify the satellites they need to
communicate with and schedule “Contacts” with each
satellite, where each Contact consists of a selected
satellite, start and end time, and the ground location.
After scheduling their Contacts, satellite operators can
launch Amazon EC2 instances to run each portion of
the Contact. They can launch a Command EC2 instance
to receive operational telemetry from their satellite and
transmit commands up to the satellite to schedule future
activities. They can also launch a Downlink EC2
instance to receive bulk mission data from their
satellite. These EC2 instances will communicate with
AWS Ground Station’s antenna gateway over an elastic
network interface (ENI) connection in AWS VPC that
exists for the duration of the contact.

Fully Managed Global Ground Station Network
Integrated with AWS Global Infrastructure

AWS Ground Station antennas are located within fully
managed AWS ground station locations, and are
interconnected via Amazon’s low-latency, highly
reliable, scalable and secure global network backbone.

Baker 13 33rd Annual AIAA/USU
 Conference on Small Satellites

Data downlinked and stored in one AWS region can be
sent to other AWS regions over the global network, so
it can be further processed.

Graphical AWS Ground Station Console

AWS Ground Station provides an easy to use graphical
console that allows you to reserve contacts and antenna
time for your satellite communications. You can
review, cancel, and reschedule contact reservations up
to 15 minutes prior to scheduled antenna times.

Direct Access to AWS Services

AWS Ground Station provides their satellite antennas
direct access to AWS services for faster, simpler and
more cost-effective storage and processing of
downloaded data. This allows satellite operators to
reduce data processing and analysis times for use cases
like weather prediction or natural disaster imagery from
hours to minutes or seconds. This also enables satellite
operators to quickly create business rules and
workflows to organize, structure, route the satellite data
before it can be analyzed and incorporated into key
applications such as imaging analysis and weather
forecasting. Key AWS services include AWS EC2,
AWS S3, AWS VPC, AWS Rekognition, AWS
SageMaker, and AWS Kinesis Data Streams.

Supports Most Common Satellites and Communication
Frequencies

AWS Ground Station antennas can connect with any
satellite in Low Earth Orbit (LEO) and Medium Earth
Orbit (MEO) operating in X-band and S-band
frequencies, including: S-band uplink and downlink, X-
band narrowband and wideband downlink.

Pay-Per-Minute Pricing

Satellite operators can schedule access to AWS Ground
Station antennas on a per-minute basis and pay only for
the scheduled time. They can access any antenna in the
ground station network, and there are no long-term
commitments.

AWS Ground Station Benefits
Ground Station as a Service

AWS Ground Station provides a global network of
ground stations in close proximity to the global network
of AWS infrastructure regions. With AWS Ground
Station, satellite operators no longer need to worry
about buying, leasing, building, scaling or managing
their own satellite ground stations.

Trusted Security

Security is AWS’s highest priority. Satellite operators
will benefit from the AWS facility and network
architecture built to meet the requirements of the most
security-sensitive organizations. AWS Ground Station
provides premium data security and physical security
without any additional costs.

Pay-As-You-Go

With AWS Ground Station, satellite operators only pay
for the actual antenna time they use. There are no long-
term contracts, or hidden fees. With a single price, they
can use any antenna in the global AWS Ground Station
network.

Fast Data Downloads

With two antennas installed at each AWS Ground
Station location, satellite operators can download
satellite data to AWS Ground Station antennas
worldwide and use it rapidly. With AWS Ground
Station’s global network of antennas, and easy and
simple satellite scheduling on-demand, satellite
operators can download their satellite data much faster
and when they need it, without significant delays due to
antenna scheduling delays and conflicts.

Immediate Data Processing

AWS Ground Station provides satellite antennas in
close proximity to AWS infrastructure regions, giving
satellite operators low-latency and low-cost access to
AWS services to store and process the satellite data.
This allows satellite operators to reduce data processing
and analysis times for use cases like weather prediction
or natural disaster imagery from hours to minutes or
seconds.

Self-Service Scheduling

Satellite operators can easily schedule Contacts with
their satellite(s) using the AWS Management Console
and APIs. Once reserved, Contacts can be rescheduled
or cancelled up to 15 minutes prior to start.

INTEGRATED AWS CLOUD PLATFORM FOR
SATELLITE DATA PROCESSING
Using a combination of AWS Ground Station with a
cloud-based EDM and EPG services framework as was
prototyped for Solers’ NPG project, satellite operators
can create a fully integrated AWS cloud platform that is
capable not only of command and control, but also of
downloading the satellite data into AWS services along
with processing, analyzing, and generating user-
consumable products based upon the satellite, without
requiring any additional infrastructure or facilities.
Small satellites would make a great use case for this

Baker 14 33rd Annual AIAA/USU
 Conference on Small Satellites

kind of a framework, as it would provide a very
flexible, scalable, and low-cost capability to fully
command/control the satellites as well as manage and
process the downloaded satellite data, with no
infrastructure or facilities overhead.

A very straightforward integration of these 2
capabilities would be to have AWS Ground Station
download the satellite data as files into an AWS S3
bucket, and leverage AWS SNS notifications from the
AWS S3 bucket to trigger a data ingest process as part
of the EDM services. This AWS S3 and AWS SNS
data ingest capability was successfully proven as a
viable and even preferred data ingest option during the
NPG prototype effort (for ingest of NOAA’s GOES-16
satellite data). The NPG prototype effort proved the
EDM and EPG services framework as capable of
efficiently managing data and products from multiple
satellites simultaneously, so a single instance of the
EDM and EPG services framework for a particular
satellite operator would allow them to manage the data
and products for a single satellite, or for multiple
satellites.

Once satellite data downloaded from AWS Ground
Station is ingested into the EDM services, it will be
available for search/discovery and access by
trusted/authorized data consumers leveraging the
RESTful EDM Services API, with the ability to control
access permissions using native AWS security
services/constructs such as AWS IAM roles and
policies. If providing data consumers with access to the
raw downloaded satellite data is all that is required by a
particular satellite operator, then data ingest into the
EDM services is all that would be required. However if
additional processing and generation of user-
consumable products leveraging the downloaded
satellite data is also required by a particular satellite
operator, then the EPG services can also be leveraged.
The EPG services provide a flexible, scalable, and cost-
efficient mechanism to integrate and execute algorithms
that perform the necessary processing and product
generation, fully accessible and configurable using the
RESTful EPG Services API. Using this API, satellite
operators and other trusted/authorized users can
configure a set of scheduled production rules that will
result in the routine generation of products based upon
the ingest/arrival of required input data via the EDM
services. They can also use this API to generate
products on-demand, in order to meet ad-hoc types of
product generation use cases that do not fit into a
regularly scheduled scenario. All generated products
will also be made available to data consumers via the
RESTful EDM Services API.

Representing data processing and product generation
algorithms as “micro-services” is recommended
especially for “new” small satellite data and product use
cases. Keeping the algorithm package as small and
lightweight as possible will ease its portability and
configuration management, and maximize the
efficiency of managing its execution within the EPG
services. Provided that the processing logic fits within
the AWS-enforced restrictions, representing data
processing and product generation algorithms as AWS
Lambda functions would be the most efficient and cost-
effective mechanism of integrating algorithms into the
EPG services. In cases where this is not possible, then
implementing and integrating the algorithms as
containers would be the next recommended method to
preserve the “micro-services” concept, maximize the
algorithm’s portability, and ease the algorithm’s
configuration management. Only in cases where an
existing legacy code base or application must be used
for an algorithm that cannot be easily or cost-effectively
converted into an AWS Lambda function or a
container, would it be recommended to integrate it as a
standalone executable that runs directly on an AWS
EC2 EPG compute node.

REFERENCES
1. Solers, Inc., [SE 16] Enhanced/Enterprise

Product Generation Framework Study and
Analysis Report, NOAA/NESDIS OSGS, 26
January 2018.

2. Amazon Web Services, Inc., AWS Ground
Station, https://aws.amazon.com/ground-station,
2019.

