
1 

 

A tool for downscaling weather data from large-grid reanalysis products to finer spatial 

scales for distributed hydrological applications 

 

Avirup Sen Gupta1 and David G. Tarboton2 

 

[1] Research and Modeling, AIR Worldwide, Boston, MA 02116. USA 

[2] Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, 

USA 

 

 

 

 

Corresponding Author: 

Avirup Sen Gupta 

AIR Worldwide 

131 Dartmouth Street 

Boston, MA 02116. USA 

Email: avirup.sengupta@aggiemail.usu.edu 

 

 

This is the accepted version of the following article: 

Sen Gupta, A. and D. G. Tarboton, (2016), "A tool for downscaling weather data from large-grid 

reanalysis products to finer spatial scales for distributed hydrological applications," 

Environmental Modelling & Software, 84: 50-69, 

http://dx.doi.org/10.1016/j.envsoft.2016.06.014.  

  

mailto:avirup.sengupta@aggiemail.usu.edu
http://dx.doi.org/10.1016/j.envsoft.2016.06.014


2 

 

Abstract (150 words) 

A downscaling tool was developed to provide sub-daily high spatial resolution surfaces of 

weather variables for distributed hydrologic modeling from NASA Modern Era Retrospective-

Analysis for Research and Applications reanalysis products. The tool uses spatial interpolation 

and physically based relationships between the weather variables and elevation to provide inputs 

at the scale of a gridded hydrologic model, typically smaller (~100m) than the scale of weather 

reanalysis data (~20 to 200 km). Nash-Sutcliffe efficiency (NSE) measures greater than 0.70 

were obtained for direct tests of downscaled daily temperature and monthly precipitation at 173 

SNOTEL sites.  In an integrated test driving the Utah Energy Balance (UEB) snowmelt model, 

80% of these sites gave NSE > 0.6 for snow water equivalent.  These findings motivate use of 

this tool in data sparse regions where ground based observations are not available and 

downscaled global reanalysis products may be the only option for model inputs. 
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Software Availability 

 

Name of software: MERRA Spatial Downscaling for Hydrology (MSDH) 

Developers: Avirup Sen Gupta and David Tarboton 

Contact address:  

Avirup Sen Gupta 

AIR Worldwide 

131 Dartmouth Street 

Boston, MA 02116. USA 

Email: avirup.sengupta@aggiemail.usu.edu 

 

Year first available:  2013 

Hardware:  PC running Microsoft Windows 

Availability:  Free and open source under the GNU General Public License version 3, 

http://www.gnu.org/licenses/gpl-3.0.html from https://bitbucket.org/AvirupSenGupta/msdh.usu/ 

Dependencies:  netCDF Operators (http://nco.sourceforge.net/), Climate Data Operators 

(https://code.zmaw.de/projects/cdo), GTK+ (http://www.gtk.org/), R (http://www.r-project.org/)   

Program language: R 

 

Highlights 

• Tool to generate downscaled hydrologic model inputs from NASA MERRA reanalyses. 

• Tested directly at 173 SNOTEL sites across the western US (NSE > 0.70). 

• Tested as integrated input to an energy balance snowmelt model (NSE > 0.6).  

• Open source R implementation with user friendly graphical interface. 

• Useful in data sparse regions where ground based observations are not available.  
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1. Introduction 

 

High resolution weather data are increasingly used in distributed hydrologic modeling 

studies to simulate hydrological responses in heterogeneous areas. The outcomes of these studies 

are critical for water resources management decisions related to agricultural water supply, 

ecosystem services and hydropower production. While computer models in hydrology vary 

widely in purpose, complexity and spatial-temporal scale, physically based distributed models 

require as input continuous and complete time-varying weather data at each grid point or model 

element (Jeffrey et al., 2001). Moreover, physically based energy balance models often require 

incoming radiation fluxes and wind speed, which are not measured at all weather stations, 

especially in developing countries. Globally available climate reanalysis data provides an option 

for obtaining hydrologic model inputs where surface observations are limited or not available.  

However climate reanalysis data is often at a scale that is much coarser, typically 20 to 200 km, 

than the grid scale of physically based distributed hydrologic models, 100 m or less, derived 

from digital elevation models and scaled to represent topographic variability.  There is thus a 

need for tools to produce inputs at the scale of hydrologic models from climate reanalysis data.   

In this study, we developed a spatial downscaling tool for generating 3-hourly grid 

surfaces of weather data over a complex terrain using reanalysis and satellite based precipitation 

data. The tool was developed to address the problem of obtaining sufficiently accurate input data 

to apply the Utah Energy Balance Snowmelt Model (UEB) to the melting of glaciers in the 

Himalaya region (Brown et al., 2014; Sen Gupta, 2014; Sen Gupta et al., 2015; Sen Gupta and 

Tarboton, 2013).  The tool was designed to take inputs from large-grid reanalysis products such 

as NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) 

(Rienecker et al., 2011), and NOAA's Rainfall Estimation (RFE2) (Bajracharya et al., 2014; 

2015; Shrestha et al., 2013; Xie and Arkin, 1996; Xie et al., 2002) products.  UEB is an energy 

and mass balance snowmelt model designed for distributed application over a watershed at a grid 

scale fine enough to quantify topographic and vegetation variability including the variability in 

elevation, slope and aspect that are important for radiation inputs (Luce and Tarboton, 2010; 

Mahat and Tarboton, 2012; Tarboton and Luce, 1996).  Typically the scale is chosen based on 

the scale of a digital elevation model (30 to 100 m), a scale we refer to as the hydrological scale.  

UEB requires inputs of precipitation, air temperature, downwelling long and short wave 
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radiation, air humidity and wind speed at the scale and elevation of its grid cells.  UEB inputs 

include slope and aspect and it adjusts internally for the effect of these on radiation, but 

adjustments due to processes in the atmosphere above the surface are not modeled within UEB 

and should be accounted for in inputs provided to UEB.  These include adjustments in 

temperature and humidity due to lapse rates and the differences in elevation between the 

observation sites or nominal elevation of a meteorological model or reanalysis input.  

Precipitation, radiation and wind are also elevation dependent.  This paper addresses the 

hydrometeorological downscaling required to adjust inputs from the scale of a meteorological 

model or reanalysis to the scale of the hydrological grid.  Hydrometeorological downscaling is 

not unique to the application of UEB.  It is required for any fine scale (DEM scale) hydrological 

model.  It is distinct from the statistical or dynamical downscaling (e.g. Weather Research and 

Forecasting Model, nested within a General Circulation Model) used to go from climate model 

scale (~ 0.5 to 2 degree) to regional model scale (~ 2 to 100 km) (Benestad, 2004; Fowler et al., 

2007; Wilby et al., 2002; Xu, 1999).  Existing approaches for hydrometeorological downscaling 

include MTCLIM (Hungerford et al., 1989), Integrated Runoff Model Bultot (IRMB, Gellens et 

al., 2000), Daymet (Thornton et al., 2012), MicroMet (Liston and Elder, 2006) and TopoSCALE 

(Fiddes and Gruber, 2014). 

Sparse meteorological data in the Himalayan region motivated developing a methodology 

for driving UEB using downscaled globally available reanalysis data.  However there was 

insufficient data there to evaluate and validate the downscaling approaches described here. 

Instead, the methodology was evaluated at sites in the Western US where there is more data 

available.  Precipitation and temperature were directly compared at 173 SNOTEL sites in Utah, 

Nevada, Idaho and California.  Radiation and wind downscaling, data for which is less widely 

available, was tested using data from the Utah State University Doc Daniel site (NRCS, 2014) in 

the Logan River watershed from October 2009 to June 2010 where we had access to additional 

detailed field observations. The downscaled data were also used in an integrated test to drive the 

UEB snowmelt model to simulate the spatial and temporal variability of Snow Water Equivalent 

(SWE) at these SNOTEL sites.  This tests the integral effect of downscaled inputs in the context 

of the UEB model.  Results do depend on the sensitivity of the model to inputs, and thus this test 

may not reveal discrepancies in inputs to which the model is less sensitive, but ultimately it is the 
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performance of the model that we are interested in, so discrepancies in these variables are less 

important in this context.    

The code for the tool we developed, called MERRA Spatial Downscaling for Hydrology 

(MSDH), is open source and available in a public bitbucket repository 

(https://bitbucket.org/AvirupSenGupta/msdh.usu/). In developing the tool described here we 

drew upon ideas in prior work (Fiddes and Gruber, 2014; Hungerford et al., 1989; Liston and 

Elder, 2006; Thornton et al., 2012), but new code was developed and made open source as we 

needed a tool that can produce hydrologic model inputs from globally available climate 

reanalysis data, and that can be freely distributed and is easy to use. Micromet (Liston and Elder, 

2006) incorporates much, but not all of the physics we wanted, but operates on point data and the 

code for MicroMet is only available for a fee.  The recent Fiddes and Gruber (2014) article has 

elements in common with our approach, but does not report on code availability and appeared 

after we had substantially developed MSDH.  The contributions of this paper include the 

physically based hydrometeorological downscaling methodology, open source R code 

implementation and graphical user interface software that embeds direct access to MERRA and 

RFE2 data sources used as input. 

In this paper we next give background on reanalysis data available from climate models 

(section 2.1), notably the NASA Modern-Era Retrospective Analysis for Research and 

Applications (MERRA) model used in our study and review current hydrometeorological 

approaches for the generation of gridded data from point observations that provide the 

foundation for our approach (section 2.2).  Section 2.3 describes the UEB snow and glacier melt 

model. We then describe the hydrometeorological downscaling methodology (section 3) and 

software implementation of the downscaling tool (section 4). We then describe the data from the 

western US (sections 5.1 to 5.3) and results (section 5.4) from evaluation of the methodology. 

Sections 6 and 7 give discussions and conclusions respectively. Technical model details are 

given in appendix A. 

 

2. Background 

2.1. Literature Review on Climate Reanalysis Data  

 

https://bitbucket.org/AvirupSenGupta/msdh.usu/
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Climate reanalysis datasets are commonly used to complement a limited observational 

record. Climate reanalysis data is produced by re-analyzing historic observations using a climate 

model that has unchanging parameters and equations based on known physics.  They assimilate 

measurements of different atmospheric variables (temperature, pressure, precipitation etc.) from 

many sources to produce spatially complete, gridded meteorological variables at a continental or 

global scale (Kucera et al., 2013; Rienecker et al., 2011). Most reanalysis data are also 

temporally complete during the satellite era (1979 to present) and are typically generated at a 

resolution (hourly, 3-hourly and 6-hourly) sufficient to capture the diurnal variability (Rienecker 

et al., 2011). There are a number of reanalysis datasets available including from European Centre 

for Medium-Range Weather (Dee et al., 2011), NOAA/NCEP (Kanamitsu et al., 2002), Japanese 

55-year Reanalysis (Ebita et al., 2011) and NASA Modern-Era Retrospective Analysis for 

Research and Applications (MERRA) (Rienecker et al., 2011). These datasets have proven to be 

valuable research tools in meteorology, climatology, and ecology (Rienecker et al., 2011) and an 

important source  for obtaining forcing variables to drive hydrological models in data scarce 

regions such as the Himalayas in South Asia (Xie et al., 2007) and the Blue Nile Basin in Africa 

(Dile and Srinivasan, 2014). However, reanalysis precipitation and surface fluxes contain 

uncertainty because of model biases in long term climatology and limitations in reproducing the 

diurnal cycle. A recent study by Kishore et al. (2013) shows that the mean difference between 

the seasonal precipitation from various reanalysis datasets in the Western Himalayas can be as 

high as 86% from the observed value. This study also shows that the performance of reanalysis 

precipitation substantially varies over different seasons and regions in India. Thus, the accuracy 

of the reanalysis data must be taken into account before using them in hydrologic applications. 

This need motivated us to evaluate the accuracy of downscaled meteorological data in the 

context of it being used to drive an energy balance snow melt model. 

This work was done as part of a NASA applications project (Brown et al., 2014; Sen 

Gupta, 2014; Sen Gupta et al., 2015) whose goal was to evaluate and apply NASA technology in 

the developing Himalayan region.  This dictated the use of MERRA and RFE2 (Southern Asia 

Daily Rainfall Estimate) products as primary data sources for the downscaling and hydrologic 

modeling.   

MERRA is a near-real-time global climate reanalysis product developed by NASA’s 

Global Modeling and Assimilation Office providing data covering the satellite era (1979 to 
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present).  MERRA is derived from the Goddard Earth Observing System version 5 (GEOS-5), 

NASA general circulation model (Rienecker et al., 2011; Suarez et al., 2008) and National 

Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) analysis 

(Wu et al., 2002). Hourly temperature, wind speed, and relative humidity are available at a 

spatial resolution of 2/3˚ longitude by 1/2˚ latitude, and 3-hourly incoming shortwave and 

longwave radiation are available at a coarser resolution of 1.0˚ by 1.25˚ (Lucchesi, 2012).  

Assimilation of satellite precipitation and in-situ information reduces the uncertainty in climate 

variable fields in MERRA and makes the data more useful for a variety of applications including 

flood and drought studies (Kucera et al., 2013).  

Given shortcomings in MERRA precipitation fields, RFE2 is an alternative source for 

precipitation data.  The merits of precipitation data from these two datasets (i.e. RFE2 and 

MERRA) are discussed by Shrestha et al. (2008) and Reichle et al. (2011), respectively. RFE2 

was favored in our Himalayan application due to its adoption by our regional collaborators 

(Shrestha et al., 2013).  RFE2 is a NOAA high resolution (0.1° × 0.1°) daily observation-based 

precipitation product over South Asia (Bajracharya et al., 2014; 2015; Shrestha et al., 2013; Xie 

and Arkin, 1996; Xie et al., 2002).  Rainfall Estimation (RFE2) daily total precipitation estimates 

are constructed using four observational input data sources: approximately 280 GTS stations, 

geostationary infrared cloud top temperature fields, polar orbiting satellite precipitation estimate 

data from SSM/I, and AMSU-B microwave sensors (Xie et al., 2002). Near real-time daily 

rainfall estimations are available for the Southern Asian domain (70˚-110˚ East; 5˚-35˚ North) at 

a spatial resolution of 0.1˚ by 0.1˚ beginning on May 01, 2001.  

 

2.2. Literature Review on Hydrometeorological Downscaling  

 

The Parameter-elevation Regressions on Independent Slopes Model (PRISM) is a widely 

used approach to produce high-resolution climate data in North America. PRISM generates 

gridded estimates of annual, monthly, and event-based climatic variables such as maximum and 

minimum temperature, precipitation, and humidity using observational data at point locations, 

DEM, other spatial data, and local information (Daly et al., 1994; 1997; 2000; 2008). Variables 

at a target site are calculated by using linear regression, with regression weighting factors 

estimated based on elevation, terrain aspect, coastal proximity, and vertical air mass layering 
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(Hunter and Meentemeyer, 2005).  The spatial scale of PRISM outputs can be as fine as 800 m, 

reducing the adjustments required for application at the hydrological scale (~100 m).  PRISM 

was not considered for this study, due to its products being limited to the US.  We nevertheless 

anticipate that the methodology developed in this paper for MERRA and RFE2 data could be 

used with PRISM data to produce model inputs at the hydrologic scale within the US. 

Physically based hydrometeorological downscaling techniques such as MTCLIM 

(Hungerford et al., 1989), DAYMET (Thornton et al., 2012), MicroMet (Liston and Elder, 2006) 

and TopoSCALE (Fiddes and Gruber, 2014) distribute point-measured information over a 

modeling domain or downscale from either regional or global information to a distributed local 

modeling domain.  MTCLIM  provides algorithms for extrapolating meteorological forcing 

variables such as daily air temperature, precipitation, solar radiation, and relative humidity at a 

location of interest by using point measurements at weather stations (Zimmermann and Roberts, 

2001). This approach constructs climate data at any elevation by adjusting the observed data 

collected at lower elevation climate stations. Meteorological variables are adjusted for elevation 

difference between the weather station and target site, slope, aspect, east-west orientation and 

leaf area index (LAI). The main objective of developing MTCLIM was to provide inputs to an 

ecological model for simulating plant growth in mountainous regions where observed data is 

sparse. DAYMET extends MTCLIM algorithms to produce gridded daily meteorological 

variables by interpolating observations at multiple sites across larger regions (Thornton et al., 

1997; Thornton et al., 2012; Zimmermann and Roberts, 2001). MicroMet is a quasi-physically 

based spatial and temporal downscaling model capable of producing high-resolution (30 to 1000 

m) climate data over a wide range of landscapes (Liston and Elder, 2006). Using ground-based 

observations of air temperature, precipitation, relative humidity, wind speed, and direction within 

or near the area of interest, MicroMet calculates high-resolution gridded air temperature, 

precipitation, pressure, relative humidity, wind speed and direction, and shortwave and longwave 

radiation. Spatial interpolations use the Barnes objective analysis scheme (Barnes, 1964) and 

adjustments are made for elevation, topography, and cloudiness (Liston and Elder, 2006). The 

TopoScale model (Fiddes and Gruber, 2014) does not use point observations as input.  Instead it 

takes input from ERA-Interim gridded data (Dee et al., 2011) using interpolation of pressure 

level data according to a high-resolution DEM elevation.  The physical concepts in TopoScale 

are quite similar to those of MicroMet, and those that we implemented here, but an important 
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idea introduced with TopoScale is the quantification of lapse rates from information at higher 

levels in the reanalysis data, rather than relying on climatological averages or values estimated 

from ground stations.  This allows lapse rate adjustments to be time varying based on re-

analyzed atmospheric conditions at each time step. 

 

2.3. Utah Energy Balance Snow and Glacier Melt Model 

 

The Utah Energy Balance model is a spatially distributed model that uses energy balance 

formulations to simulate the snowmelt and SWE over a watershed, driven by gridded weather 

inputs (Luce and Tarboton, 2010; Mahat and Tarboton, 2012; Tarboton et al., 1995; Tarboton 

and Luce, 1996; You, 2004). UEB is physically-based and tracks point energy and mass balances 

to model snow accumulation and melt. UEB has four state variables: surface snow water 

equivalent, WS (m); surface snow and substrate energy content, US (kJ m-2 hr-1); the 

dimensionless age of the snow surface η; and the snow water equivalent of canopy intercepted 

snow, WC, (m). The model is driven by time-varying air temperature, precipitation, wind speed, 

relative humidity, and incoming shortwave and longwave radiation at time steps sufficient to 

resolve the diurnal cycle. Sen Gupta et al. (2015) provides a detailed description of the 

distributed version of UEB. 

 

3. Downscaling Methodology 

 

MSDH was developed to generate 3-hourly grid surfaces of temperature, precipitation, 

relative humidity, wind speed, and shortwave and longwave radiation over a complex terrain 

watershed using MERRA and RFE2 reanalysis inputs and a high-resolution digital elevation 

model (DEM) of the target area or watershed. The choice of DEM resolution is left to the user 

based on the watershed area, source of the DEM, availability of computer disk space, resource 

constraints, and use of the data. Our choice of a 3-hourly time step was largely influenced by the 

need for the input variables in a physically based energy balance snowmelt model to quantify the 

diurnal cycle.  This is a common requirement in the computation of surface energy balance so we 

anticipate that this approach has broad applicability.  The model is capable of producing spatially 

distributed weather data without requiring any ground-based observations, which makes it 
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suitable for use in data scarce watersheds. However, when observed data is available it can be 

used to derive location specific precipitation and/or lapse rate adjustment coefficients and bias 

correction factors that improve the quality of the downscaled data. Post processing bias 

correction adjustments can also be applied to other variables when there is data available to 

support such adjustments. While developing the tool, we considered the following criteria. 

(1) Given the target application in data scarce remote locations, often in developing 

countries, the tool should be based on a free and open source software solution.  

(2) The tool should have an easy-to-use graphical user interface to hide internal codes and 

file-folder complexity and to provide an intuitive visual environment.  

(3) The data should be stored in a standard file format that can be accessed by readily 

available software tools.  

(4) The computational complexity should be limited so that the software tool can be used on 

a personal computer (PC) 

 

The MERRA variables used in this study are listed in Table 1 and can be accessed and 

downloaded from NASA’s Goddard Earth Science Data and Information Services Center 

website. RFE2 data are available in gridded binary format via NOAA’s National Centers for 

Environmental Protection (NCEP) ftp website (ftp://ftp.cpc.ncep.noaa.gov/fews/S.Asia/).  

 

ftp://ftp.cpc.ncep.noaa.gov/fews/S.Asia/
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Table 1. Input MERRA variables used for downscaling 

MERRA 

Variable 
Description 

Spatial 

resolution 

(longitude × 

latitude) 

Temporal 

Resolution 

t2m Temperature at 2 m above the ground (K) 0.67˚ × 0.5˚ hourly 

v2m Northward wind at 2 m above the ground (m s-1) 0.67˚ × 0.5˚ hourly 

u2m Eastward wind at 2 m above the ground (m s-1) 0.67˚ × 0.5˚ hourly 

ps Time averaged surface pressure (Pa) 0.67˚ × 0.5˚ hourly 

qv2m Specific humidity at 2 m above the ground (kg kg-1) 0.67˚ × 0.5˚ hourly 

swgdwn Surface downward shortwave flux (W m-2) 1.25˚ × 1.0˚ 3-hourly 

t850 Temperature at 850 hPa (K) 0.67˚ × 0.5˚ hourly 

t500 Temperature at 500 hPa (K) 0.67˚ × 0.5˚ hourly 

t250 Temperature at 250 hPa (K) 0.67˚ × 0.5˚ hourly 

h850 Elevation at 850 hPa (m) 0.67˚ × 0.5˚ hourly 

h500 Elevation at 500 hPa (m) 0.67˚ × 0.5˚ hourly 

h250 Elevation at 250 hPa (m) 0.67˚ × 0.5˚ hourly 

 

To start, MSDH automatically downloads the coarse scale MERRA and RFE2 input data 

for the range of dates and spatial bounding box specified by a user.  Next, MSDH interpolates 

this data to the finer scale of the hydrologic grid.  Bilinear interpolation is used and coordinate 

transformations are done at this step.  This includes interpolation of the geo-potential height that 

is the reference elevation for re-analysis data.  Then the difference in elevation between the DEM 

and interpolated geo-potential height is used to adjust each of the variables being modeled.  For 

temperature, a lapse rate is calculated based on the MERRA surface temperature and the two 

nearest elevations above the MERRA surface elevation at each time step and grid point.  This is 

used to adjust MERRA surface temperature to the elevation of the DEM.  There is also an option 

for a user to input the lapse rate to be used, for example from nearby station data.   

For humidity, MERRA specific humidity is used to calculate the dew point temperature, 

which is then adjusted for DEM elevations using a monthly vapor pressure coefficient and 

parameters in the saturation vapor pressure function for ice, relying on the relatively linear 
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relationship between dew point temperature and elevation  We then evaluate actual vapor 

pressure from air temperature and saturated vapor pressure from dew point temperature (Liston 

and Elder, 2006). Relative humidity is quantified as the ratio of these two quantities.  

Horizontal wind speed magnitude was obtained from eastward and northward wind 

components from MERRA and was interpolated bilinearly and projected to the DEM grid 

resolution. Then, the effect of slope, aspect and curvature on wind speed was accounted for 

following Liston and Sturm (1998).  

For solar radiation, a pressure based atmospheric attenuation coefficient was calculated 

for each time step and used to adjust MERRA incoming solar-radiation to the grid DEM 

elevation. Incoming longwave radiation was estimated based on downscaled air temperature, 

cloud cover and atmospheric emissivity.  

Precipitation is adjusted, following Liston and Elder (2006) using the following non-

linear relationship between elevation and precipitation  

PRCPDEM =  PRCPMERRA [
1+ κ𝑝 (ZDEM − ZMERRA)

1− κ𝑝 (ZDEM − ZMERRA)
] (1) 

where PRCPMERRA is the MERRA or RFE2 reanalysis precipitation interpolated at DEM cell 

location, and κ𝑝 is a coefficient that quantifies how precipitation varies with elevation.  Liston 

and Elder (2006) provided a table (Table A1, Appendix A) that gives globally averaged monthly 

κ𝑝 values that we use as defaults.  We also provide the capability for users to input values fit for 

their location from observations.   

Appendix A gives full details of the downscaling methodology.   

 

4. Software Implementation 

4.1. Implementing Downscaling Algorithms in R 

 

R is a statistical software and scripting language initially developed for statistical analysis 

such as hypothesis testing, time series analysis and plotting, and linear and nonlinear modeling 

(Carslaw and Ropkins, 2012). R is also extensively used in environmental data analysis, 

visualization, and modeling. Open source, highly optimized coding functionality, extensibility, 

and simplicity contributed significantly to the large popularity of R. Users can extend its 

functionality by writing R packages, collections of well-structured reusable functions and data. 
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These packages can be distributed to the entire R user group through a single web repository 

(Horsburgh and Reeder, 2014; Pinheiro et al., 2011). In this study, we used several existing R 

packages such as utils, ncdf (Pierce, 2011), rgdal (Keitt et al., 2011), and raster (Hijmans et al., 

2013). We also used NetCDF Operators (NCO) (Zender, 2008) and Climate Data Operators 

(CDO) (Schulzweida et al., 2006) tools for efficient manipulation of netCDF files. NCO and 

CDO are both collections of operators for statistical and arithmetic processes, subsetting, 

interpolation, extrapolation, and transformation of geospatial time series data stored in netCDF 

files. The windows version of NCO and CDO program executables are called from R using the 

system() function. 

First, a R function was developed to download MERRA and RFE2 files for the variables 

listed in Table 1 for a specified spatial and temporal extent using the binary file transfer method 

provided in the function download.file() from utils package. Next, for each netCDF file, all the 

MERRA and RFE2 variables are aggregated into three hourly time steps. Hourly MERRA data, 

such as temperature, is averaged over a three-hourly time step using NCO’s ncra command. 

Then, daily RFE2 precipitation is uniformly distributed into three-hourly time steps using CDO’s 

arithmetic process capability on netCDF datasets (Schulzweida et al., 2006). 

A TIFF or image file of the DEM is read into R using rgdal’s readGDAL() function and 

converted into a RasterLayer object. A RasterLayer object is single layer of raster data described 

by a set of parameters, such as number of columns and rows, spatial resolution, the coordinates 

of its spatial extent, and map projection. The DEM RasterLayer represents the domain and 

modeling grid that is the target for the downscaling.  Then MERRA and RFE2 variables such as 

temperature and precipitation are read from netCDF files for each time step as a two-dimensional 

array. Using latitude and longitude bounding box information, the array is projected into another 

RasterLayer, then the netCDF RasterLayer is projected to the DEM RasterLayer using the 

projectRaster() function from raster package. This function of the raster package bilinearly 

interpolates the values of the netCDF RasterLayer to the extent and resolution of the DEM and 

transforms its projection to the DEM’s projection (coordinate reference system, CRS). MERRA 

Geo-potential height in netCDF files are converted to a MERRA height RasterLayer with the 

resolution and spatial extent of the DEM. The conversion of multiple two-dimensional data 

objects to a uniform RasterLayer eases the implementation of the topographical adjustment 

algorithms described in Appendix A. Once the adjustment algorithms are implemented, the final 
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RasterLayer of each output variable is converted into a two-dimensional matrix in R and 

appended onto a designated netCDF file that holds the downscaled result. 

 

4.2. Output Data Storage in netCDF 

 

The input and output gridded data used in MSDH are stored in netCDF files. NetCDF is a 

binary, multidimensional format commonly used by the oceanographic and atmospheric 

scientific communities for storing and managing scientific data. NetCDF4 (Rew et al., 2006) is a 

machine-independent format that allows direct access, shared access, visualization, and 

appending of new data to portable binary files. The output netCDF files of MSDH are always 

three-dimensional: (a) X (m), (b) Y (m) and (c) time (hours). Since the weather variables are 

produced at the surface, altitude is not a required dimension. The performance of reading the 

data from the files depends on the ordering of dimensions within the file and the programming 

language used to read the data. In MSDH we provide an option to the users to choose the order 

of the dimensions in the file. 

Each of the six weather variables is associated with six attributes, such as short name, 

long name, unit, a numeric value to represent the missing data, and a plausible range of values. 

All six variables are stored in the same netCDF file with a data array for each variable 

corresponding to the same set of dimension vectors. A large volume of data might be generated 

if the program is run for multiple years or at a very high spatial resolution or combination of 

these two. To avoid storing a large volume of data in a single netCDF file, a separate file is 

created for each month. The temporal sequence of the data between multiple files is maintained 

by incrementing the time dimension from “time of origin” or start time. The units of time 

dimension stores the start time in each file. 

 

4.3. MSDH Graphical User Interface  

 

Using R packages is a relatively straightforward task for experienced users, but it can be 

challenging, with a steep learning curve, for beginners with no prior programming experience. 

We, therefore, developed a GUI in order to create a visual environment for the users to enter 
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inputs and execute the R functions. The GUI was coded in R using the RGtk package and the R 

script runs from a C# wrapper program. Thus, the MSDH GUI hides the R code from the user 

and enables data downloading and downscaling tasks while eliminating the complexity of 

creating or editing codes, files, and folders. 

The MSDH has three main tabs: (1) data download, (2) coefficient calculations and (3) 

data downscale. The “data download” tab (Figure 1) provides an option for the users to 

download data for the variables listed in Table 1 using R’s utils package. Precipitation can be 

downloaded from either RFE2 or MERRA. MERRA data is available globally, while RFE2 

covers only the South Asian region, but with better resolution.  

The “coefficients calculations” tab performs the optional task of calculating time varying 

lapse rate and precipitation adjustment coefficient using observational data from the site network 

within the target domain or a watershed. 

The “data downscale” tab performs the four-step downscaling methodology described in 

Appendix A. The user only needs to specify a DEM of the target spatial domain (in image/TIFF 

format). The user is provided with a capability to choose the source of the precipitation 

adjustment factor from a set of options, such as (1) default specified by Liston  and Elder (2006), 

(2) calculated from the “Coefficients calculations” and (3) user input. 
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Figure 1. Graphical User Interface for MERRA Spatial Downscaling for Hydrology (MSDH). 

 

5. Evaluation using Western US SNOTEL sites 

5.1. SNOTEL Data Sources 

  

To test the downscaling methodology, software implementation, and test that the GUI 

functioned as intended, MSDH was run for one water year starting from October 2009 to 

September 2010 over the an area between 36.15° to 43.23° N latitude and 108.90° to 121.92° W 

longitude (Figure 2) at 120 m resolution. 173 U.S. Department of Agriculture snowpack 

telemetry (SNOTEL) sites are located within the study area (Appendix B). The elevation of the 

sites ranges from 1777 m to 3816 m, with an average elevation of 2537 m. Daily historical 

minimum, mean, and maximum temperature; daily precipitation; snow depth; and SWE data 

available at these sites was used to test the downscaling. Along with daily temperature and 

precipitation, hourly temperature, precipitation, wind speed, relative humidity, and incoming 
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shortwave radiation were available at the USU Doc Daniel site (Appendix B) from October 2009 

to June 2010 from a separate study by Mahat and Tarboton (2012; 2013) and Mahat et al. (2013). 

This data was used to compare the downscaled relative humidity, solar radiation and wind speed 

data, and to conduct a sensitivity analysis. 

 

 

Figure 2. Locations of the SNOTEL sites used in this study. Blue lines indicate state 

boundaries and red dots symbolize the SNOTEL sites. Utah State University Doc Daniel site is 

shown as a blue dot and 8 sites that are reported in figure 7 and table 4 are shown by their station 

ID number. The Digital Elevation Model (DEM) from the National Elevation Model dataset 

shows the variability in terrain surface elevation (meters)4.2. Evaluation of Downscaling 
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The DEM of the Western United States was divided into a number of small regions to 

prevent MSDH output files from becoming too large. Figure 3 shows the downscaling steps for 

the Logan River watershed in Utah where six SNOTEL sites are located. MERRA temperature 

data was downloaded for the contiguous United States (Figure 3 (a)) and the four grid cells 

spanning the Logan River watershed (Figure 3 (b)) were used in bilinear interpolation to obtain 

gridded temperature at the scale of the DEM (Figure 3 (c)). This involved using R’s raster library 

projection transformation capability to transform the data into the DEM’s Universal Transverse 

Mercator (UTM) projection system and clip it to the extent of the DEM. This raster layer 

contains bilinearly resampled temperature data, while its spatial domain, resolution, and number 

of rows and columns are exactly the same as the DEM. Next, temperature was adjusted using the 

lapse rate and the difference between MERRA elevation and DEM elevation using the 

methodology described in Section 3.1 and Appendix A. This procedure was repeated for all time 

steps and grid cells. Other variables, such as incoming shortwave radiation and wind speed, were 

also downscaled to the DEM spatial scale using the physically based methodology described in 

Section 3.1.  Precipitation was adjusted using equation (1) and bias corrected using equation A18 

using the average of SNOTEL stations within each MERRA grid cell. 
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Figure 3. Downscaled MERRA temperature (o C) for the Logan River watershed 18:00 UTC on 

Dec 24, 2009 (a) temperature reported in MERRA for Contiguous USA; (b) MERRA grid cells 

spanning Logan River watershed and surrounding areas and (c) downscaled temperature at DEM 

grid resolution. 

 

Nash-Sutcliffe Efficiency (NSE), Root Mean Squared Error (RMSE) and bias (BIAS) 

were used to compare the downscaled variables with observations.  These are defined as follows:   

NSE = 1 −  
∑ (Obst−Simt)2n

t=1

∑ (Obst−Obsmean)2n
t=1

 (2) 
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RMSE =  √
∑ (Obst−Simt)2n

t=1

n
 (3) 

BIAS =
1

n
∑ (Simt − Obst)n

t=1   (4) 

 

where Obst and Simt are observed and simulated values at any time step t, Obsmean is the mean 

of observed values and n is the number of observations.  NSE is a dimensionless metric 

quantifying error relative to variability, while RMSE and BIAS have the units of the quantity 

being evaluated and is representative of the scale of the error.  NSE ranges from 1 for 

observations equal to simulations to 0 if simulations are no better than just picking the mean and 

may extend into negative values for even worse performance.  Guidance on the interpretation of 

NSE is variable, but it is common practice to interpret the ranges < 0.5 as poor, 0.5 to 0.65 

satisfactory, 0.65 to 0.75 good, and > 0.75 as very good  (e.g. Kalra and Ahmad, 2012; Moriasi 

et al., 2007). 

 

5.2. Detailed Evaluation at USU Doc Daniel Site 

 

All five downscaled variables were compared with observations at the USU Doc Daniel 

site for the period October 2009 to June 2010 (Table 2, Figure 4).  

 

Table 2. Nash-Sutcliffe Efficiency (NSE), Root Mean Squared Error (RMSE) and bias (BIAS) 

metrics at USU Doc Daniel site. 

 

Variable Name NSE RMSE  BIAS 

Temperature (°C) 0.87 2.44 0.07 

Shortwave radiation (Wm-2) 0.65 209 17.07 

Wind speed (m/s) 0.16 0.85 -0.06 

Relative Humidity 0.64 0.12 -0.02 

Precipitation (mm/day) 0.28 5.23 -0.171 
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Figure 4 shows that the downscaled data captures the seasonal pattern of low 

temperatures in December and high temperatures in June quite successfully. The very good NSE 

of 0.87 reflects this and demonstrates the model’s capability to successfully reproduce observed 

temperature. Both downscaled incoming shortwave radiation and relative humidity capture the 

seasonal cycle of the observed data reasonably well; however, they fail to reproduce some short 

term changes and appear to fluctuate at smaller amplitude than the observations at short time 

scales for some months.  This is reflected in their somewhat lower NSE (Table 2). Nevertheless, 

the NSE values obtained indicate the method's capability to reproduce these two variables at a 

“satisfactory” level. Compared to these variables, wind speed and precipitation perform rather 

poorly (i.e., precipitation NSE = 0.28 and wind speed NSE = 0.16). The wind discrepancies 

likely reflect the challenge in representing local (DEM grid scale) wind variability from regional 

information, while precipitation discrepancies originate both in the driving MERRA data and 

downscaling. Although 96% of precipitation events were simulated successfully by MERRA, it 

produces a considerable number of non-observed rainfall events with low magnitudes and fails to 

simulate the magnitude of observed rainfall events (Figure 4, bottom right panel). Less intense 

precipitation events are often overestimated, and moderately heavy events are underestimated. 

Note that in an earlier implementation version (Sen Gupta, 2014) we used linear 

regression between the mean monthly temperature gauge data and gauge elevation to calculate 

the monthly lapse rate. Precipitation adjustments used the same adjustment factor everywhere 

based on a single fitting of gauge precipitation and elevation.  Here we have extended the 

methodology to use atmospheric profile information from MERRA at each time step for 

calculation the lapse rate. The monthly precipitation adjustment factor was calculated for each 

gauge as a nonlinear function of observed precipitation at a gauging stations and their respective 

elevation (compared to the MERRA grid elevation) at the grid cell in which the site is located. 

Quantitatively, the NSE for temperature remained about the same, while the precipitation NSE 

improved indicating the merit in this approach. 
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Figure 4. Comparison of downscaled daily mean temperature, incoming shortwave radiation, 

wind speed, relative humidity, and precipitation with respect to measured data at the USU Doc 

Daniel SNOTEL site. A time series plot (left) and scatter plot (right) of observed and downscaled 

data are shown for each variable. 
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5.3. Broad Evaluation Across SNOTEL Sites 

 

Downscaling of daily maximum, minimum and mean air temperature (Tmax, Tmin, 

Tmean), and daily and monthly precipitation was evaluated at SNOTEL sites for water year 2010. 

Figure 5 gives scatter plots of observed data at SNOTEL sites and downscaled data at DEM grid 

cells where those sites are located. Table 3 shows NSE, RMSE and BIAS between the observed 

and downscaled data for all the sites. Table 3 also reports these statistics between the observed 

and bilinearly interpolated MERRA data, without elevation adjustments.  The difference reflects 

the value added due to application of the downscaling using high resolution topography data.  In 

each variable, the downscaled data performed better which illustrates the added value of the 

downscaling approach over simple bilinear interpolation. Both daily Tmax and Tmean show NSE of 

about 0.85. MSDH downscaling methods improve the daily Tmax simulation by NSE of 0.63 and 

RMSE by 5.79. For Daily Tmin and Tmean the improvements from the downscaling are relatively 

small. Downscaled Tmin shows slightly lower NSE (0.74) compared to daily Tmax and Tmean, 

indicating slightly lower performance in reproducing daily minimum temperature. Monthly 

aggregated downscaled precipitation also performs well against the observed SNOTEL 

measurements with NSE of 0.72 and RMSE of 23.83 mm.  However, at daily time steps, 

precipitation simulation incorporates moderate to high uncertainty, especially during the late 

winter and early spring season. The relatively low NSE value (0.44) for daily precipitation 

(Table 3) indicates high uncertainty in precipitation downscaling at shorter time step. However, 
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the performance improvement is significant when compared with the bilinearly interpolated 

MERRA precipitation, both at daily and monthly scale (table 3). 

 

Figure 5. Comparison of the downscaled data (y-axis) for daily mean, minimum and maximum 

temperature, daily and monthly precipitation with observed data (x-axis) at 173 SNOTEL sites 

for water year 2010 (Oct 01 2009 - Sep 30 2010). The straight line at 45 degrees indicates 

complete agreement between the observed and simulated data. 

 

Table 3. Comparison between the bilinearly interpolated MERRA and downscaled daily mean, 

minimum and maximum temperature and daily and monthly precipitation at the NRCS SNOTEL 
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sites. Nash-Sutcliffe Efficiency (NSE), BIAS and RMSE are used as performance evaluation 

statistics for the comparison. 

 

 

 

 

Statistical 

Criteria 

Daily mean 

temperature 

(oC) 

Daily 

minimum 

temperature 

(oC) 

Daily 

maximum 

temperature 

(oC) 

Daily 

Precipitation 

(mm/day) 

Monthly 

Precipitation 

(mm/month) 
B

il
in

ea
rl

y
 

in
te

rp
o
la

te
d

 

D
o
w

n
sc

al
ed

 

B
il

in
ea

rl
y
 

in
te

rp
o
la

te
d

 

D
o
w

n
sc

al
ed

 

B
il

in
ea

rl
y
 

in
te

rp
o
la

te
d

 

D
o
w

n
sc

al
ed

 

B
il

in
ea

rl
y
 

in
te

rp
o
la

te
d

 

D
o
w

n
sc

al
ed

 

B
il

in
ea

rl
y
 

in
te

rp
o
la

te
d

 

D
o
w

n
sc

al
ed

 

NSE 0.83 0.84 0.71 0.74 0.23 0.86 < 0 0.44 0.11 0.72 

RMSE 4.12 3.98 4.90 4.72 9.99 4.20 4.11 3.73 41.54 23.83 

BIAS -2.92 -1.18 2.94 -1.86 -9.96 -0.52 -0.81 0.008 -24.41 0.21 
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Figure 6. Taylor diagram statistical comparison between the observations and downscaled 

estimates of daily mean, minimum and maximum temperature (Tmean, Tmin, Tmax) and 

precipitation and monthly precipitation (mm/month) at 173 SNOTEL sites. 

 

Figure 6 further complements figure 5 and table 3 for model evaluation. The Taylor diagram provides a 

visual representation of multiple statistics quantifying the correspondence between the observed and 

modeled variables. Taylor diagrams in Figure 6 (a-e) summarize model performance at each site for daily 

Tmean, Tmin, Tmax, precipitation and monthly precipitation, respectively. Each point (red dot) on the polar 

style graph represents three statistics: normalized standard deviation, normalized centered root mean 

square error (CRMS, equation 5) and correlation between the observed and modeled values at a SNOTEL 

station. The linear distance from the origin (0, 0) to any given point is the ratio of the modeled standard 

deviation to the observed standard deviation. The azimuthal position of a point shows the correlation 

coefficient between the observation and modeled data. The distance from each point to the point (1, 0) on 

the x-axis is the normalized CRMS for that point.  The normalization is done with respect to the standard 

deviation of the observations. Together, these statistics are an easy and powerful way to depict the overall 

correspondence (how close to point 1 on x-axis), correlation and reproduction of variability (nearness to 

arc at radius 1 from the origin) for any given variable. 

CRMS =  
√∑ ((Obst − Obsmean) − (Simt − Simmean))2n

t=1

𝑛
 (5) 

For Tmean, Tmin, Tmax, correlation is usually higher than 0.9, normalized CRMS is lower 

than 0.6 and modeled standard deviation is little higher than (up to 1.5 times) the observed 

standard deviation at most sites. The model’s performance for daily and monthly precipitation 

varies widely from one site to another. A majority of sites show correlation of 0.6 or higher with 

the observations. However, normalized standard deviation less than 1.0 indicates under-

dispersion of downscaled precipitation (both daily and monthly scale) compared to observed 

values for a majority of SNOTEL sites. Also, high normalized CRMS indicates lower precision 

of the model for precipitation. 

 

5.4. Integrated Evaluation Using UEB Snowmelt Model 

 

The Utah Energy Balance (UEB) snowmelt model was run using the downscaled data at 

153 of the SNOTEL sites where SWE data was available to evaluate the simulation of snow 
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accumulation and melt variability. The NSE and other statistics were evaluated and reported for 

the sites with best and worst NSE as well as sites ranked at 10th, 25th, 40th, 60th, 75th and 90th 

percentiles over the range of NSE obtained (Figure 7, Table 4).  Relative difference in peak 

SWE, P𝐷𝑖𝑓𝑓, (equation 6), peak day difference, Δt, (equation 7) and volume ratio, V𝑟𝑎𝑡𝑖𝑜, 

(equation 8) were also evaluated.   

P𝐷𝑖𝑓𝑓 =  
[Max (𝑆𝑊𝐸𝑜𝑏𝑠)−Max (𝑆𝑊𝐸𝑠𝑖𝑚)]

Max (𝑆𝑊𝐸𝑜𝑏𝑠)
            (6) 

where Max(𝑆𝑊𝐸𝑠𝑖𝑚) is the modeled peak SWE, and Max(𝑆𝑊𝐸𝑜𝑏𝑠) is the observed peak SWE.  

Δt =  t(Max(SWE𝑜𝑏𝑠)) −  t(Max(SWE𝑠𝑖𝑚))           (7) 

where t(Max(SWE𝑜𝑏𝑠)) is the date of the observed peak SWE and t(Max(SWE𝑠𝑖𝑚)) is the date 

of the modeled peak SWE. Δt = 0 indicates peak SWE occurred on the same day for the 

observed and modeled SWE while a positive Δt indicates peak modeled SWE occurred earlier 

than the observed peak SWE and a negative Δt indicates peak modeled SWE occurred later than 

the observed peak SWE.  

V𝑟𝑎𝑡𝑖𝑜 =  
∑ Modt

n
t=1

∑ Obst
n
t=1

               (8) 

where Modt and Obst are modeled and observed daily SWE respectively.  The model SWE is 

produced at 3 hour time steps, and the value at noon was used for comparison with daily 

observations.  V𝑟𝑎𝑡𝑖𝑜 compares the integral under the modeled and observed SWE curve; a value 

greater than 1 indicates that the model generally overestimates the SWE while a value less than 1 

indicates the model generally underestimates the SWE over a snow season. 

In table 4, the absolute value of peak difference (P𝐷𝑖𝑓𝑓) and peak day difference decreases 

(Δt) from the top to bottom as the NSE values increase, while volume ratio (V𝑟𝑎𝑡𝑖𝑜) is more than 

double at Spratt Creek, but it is close to 1 for the best site, Parrish Creek.  

At about 61% of sites integral volume and SWE peaks are underestimated reflecting 

either over prediction of melt or under prediction of snow precipitation.  The model predicts the 

peak date very well (± 5 days) at 48% of the sites. Only about 22% of the sites have a 

discrepancy more than 20 days in SWE peak date. Nearly 80% of the sites have NSE higher than 

0.6 and volume discrepancy less than 35%. 
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Table 4. Site metadata and performance statistics (NSE, R-squared, percent bias, peak difference, 

peak day difference and volume difference) of observed and modeled SWE at eight selected 

sites. 
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Spratt Creek 778 CA 1864 < 0 0.12 -0.79 -7 2.24 

Sonora Pass 771 CA 2690 0.35 0.20 -0.18 -38 1.45 

Dorsey Basin 453 NV 2469 0.65 0.08 0.30 -3 0.67 

Camp Jackson 383 UT 2733 0.72 0.11 0.34 10 0.64 

Garden City Summit 1114 UT 2348 0.82 0.04 0.11 0 1.09 

Red Pine Ridge 714 UT 2746 0.88 0.03 0.05 3 1.13 

Chalk Creek #2 393 UT 2487 0.92 0.03 0.12 2 0.94 

Parrish Creek 971 UT 2359 0.98 0.02 0.08 2 0.96 
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Figure 7. Comparison between observed SWE and Utah Energy Balance (UEB) simulated SWE 

for water year 2010 (Oct 01 2009 - Sep 30 2010) at eight selected SNOTEL sites. 

 

At the USU Doc Daniel SNOTEL site where we had observed temperature, precipitation, 

relative humidity, wind speed, shortwave and longwave radiation we ran the model driven only 
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by observations.  Then, for each input in turn we replaced the observed data by the downscaled 

data to study the error introduced by each input separately (Figure 8).  

The SWE simulation using the observed data matches the seasonal accumulation and 

ablation pattern reasonably (Figure 8 a) with small underestimation of the SWE during the 

accumulation period and overestimation of the SWE during the melting season.  The seasonal 

pattern and RMSE did not change significantly when observed temperature, wind speed and 

relative humidity data were replaced by downscaled data (Figures 8 b, d and e). However, the 

performance decreased when precipitation and solar radiation downscaled data were used for the 

simulation (Figure 8 c and f).  For precipitation this is not surprising as precipitation statistics are 

poorly reproduced (Figure 4, table 2) a problem common with reanalysis data (Kucera et al., 

2013) and indicating the sensitivity of UEB to precipitation inputs.  For solar radiation this 

finding is a bit surprising as it was reasonably well downscaled (Table 2, Figure 4).  Nevertheless 

close examination reveals that there is a small positive bias in modeled solar radiation (Table 2).  

This is more so in the early season and manifests in the snow accumulation starting late and 

being underestimated. This reflects the sensitivity of UEB simulations to solar radiation inputs 

and underscores the importance of reducing solar radiation errors wherever possible.   

We examined the sensitivity of the model to percentage changes in the two variables 

(shortwave radiation and precipitation) where the effects of downscaling are largest.  In these 

sensitivity runs we increased each variable by 10% from the observed values.  For shortwave 

radiation this increased the melt and thus reduced the SWE below observations increasing the 

RMSE by 0.034 m.  This is consistent with the sensitivity to downscaled solar radiation (Figure 8 

f).  For precipitation a 10% increase, increased the SWE generally and reduced RMSE by 0.007 

m, indicating the smaller general sensitivity to precipitation than solar radiation. 
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Figure 8. Comparison between the observed and UEB simulated snow water equivalent (SWE) at 

the USU Doc Daniel SNOTEL site using (a) observed temperature, precipitation, wind speed, 

relative humidity and shortwave radiation, (b) downscaled temperature with observed data of 

other variables, (c) downscaled precipitation with observed data of other variables, (d) 

downscaled wind speed with observed data of other variables, (e) downscaled relative humidity 

with observed data of other variables, (f) downscaled shortwave radiation with observed data of 

other variables. 
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6. Discussion 

 

While developing MSDH, we recognized a number of limitations in downscaling 

methodologies and input data. As described by Liston and Elder (2006), this is a one-way 

approach where the vertical feedback between the near-land surface and atmosphere is ignored. 

While surface conditions such as presence of the canopy, soil moisture, and proximity to the 

water can have substantial impact on the local climate, MSDH adjusts the variables based on 

elevation alone.   

In general, the interpolation of GCM outputs increases the spatial precision of the data, 

though often at a cost of increased uncertainty (Skelly and Henderson-Sellers, 1996).  However, 

here the hydrometeorological downscaling approach has been designed to add value by adjusting 

to the local terrain and correcting some bias.  Nevertheless the uncertainty of the original data 

may persist or increase when downscaling is performed. To evaluate this we compared both 

direct bilinearly interpolated and downscaled data against observations and found that 

downscaled temperature and precipitation data were always closer to observations than direct 

bilinear interpolations, evidencing the value of this hydrometeorological downscaling.  

Rienecker et al. (2011) explained many limitations of MERRA data including: (1) poor 

performance in capturing the diurnal temperature pattern by underestimating daily maximum and 

overestimating daily minimum temperature, (2) deviation of 3˚C or more from observations for 

daily temperature estimates, (3) short heavy precipitation events often simulated as precipitation 

drizzles and, (4) low solar radiation during daytime precipitation events often over estimated. 

These inaccuracies in MERRA are directly translated into the downscaled data and are 

responsible for some of the discrepancies found in Section 4.2.  

The hydrometeorological downscaling evaluated here does depend on lapse rates for 

temperature and humidity as well as physical relationships of other variables (such as solar 

radiation) with elevation.  Uncertainty in these input lapse rates may be a further source of error 

in the results.  For temperature, we followed the approach of Fiddes et al., (2014) in using values 

higher up in the re-analyzed atmosphere profile to obtain a lapse rate specific for each time step 

and downscaled location.  This is an advance over the more common approach of using 

climatological lapse rates.  There is also an opportunity to do this for humidity or dew points; 
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however some complexities are involved due to humidity being bounded by saturation.  Our 

implementation thus retains a climatological dew point lapse adjustment following Liston and 

Elder (2006).  Improvement of this approach using re-analyzed atmospheric profile information 

is left open for future research. 

From this study it was apparent that reproduction of precipitation with a reasonable 

accuracy at a daily scale, or even at a monthly scale, was a challenge as manifested by the NSE 

values of 0.44 at daily and 0.72 at monthly scale. We also noted a small, but meaningful positive 

bias in solar radiation.  When the only downscaled variable used as input to the model was solar 

radiation (Figure 8 f) the start of snow accumulation is delayed and overall there is an under 

simulation of accumulation.  From this we infer that even though the NSE for incoming solar 

radiation is relatively good overall (i.e., NSE = 0.65), and that discrepancies in Figure 4 are hard 

to discern, the cumulative discrepancy in downscaled incoming solar radiation results in 

erroneous melting too early and hence under simulation of the peak snow water equivalent.  

Interestingly, sensitivity analysis of downscaled variables at USU Doc Daniel SNOTEL site 

revealed that despite discrepancies in precipitation (i.e., NSE = 0.28), better reconstruction of 

snow water equivalent was obtained with downscaled precipitation inputs and other observed 

inputs (Figure 8 c) than for solar radiation. UEB appears to be capable of producing good 

reconstruction of seasonal-scale SWE as long as the aggregated precipitation matches with the 

observation during the accumulation season, regardless of the precise timing. This indicates a 

need to examine ways to improve incoming solar radiation downscaling in addition to 

precipitation downscaling.  

Despite all the limitations, Nash-Sutcliffe efficiency (NSE) measures were greater than 

0.70 for direct comparison of downscaled daily temperature and monthly precipitation at 173 

SNOTEL sites.  In an integrated test driving the Utah Energy Balance (UEB) snowmelt model 

80% of these sites gave NSE > 0.6 for snow water equivalent.  These findings motivate use of 

this tool in data sparse regions where ground based observations are not available and 

downscaled global reanalysis products may be the only option for model inputs. 

Computational performance is another consideration to evaluate associated with 

hydrometeorological downscaling. The MSDH program’s run time varied significantly 

depending on the number of rows and columns in the DEM raster file, as the process that takes 

the majority of runtime is interpolation of variables from MERRA to DEM resolution. The 



35 

 

Logan River watershed used here consisted of 420 × 254 grid cells. Constructing data for six 

variables at 3-hourly time steps for a single month on this grid takes about an hour on a common 

commodity workstation (Dell Optiplex 780, with Intel Q9650 processor @ 3.0 GhZ and 8 GB 

RAM). 

 

7. Conclusions 

 

We have developed spatial hydrometeorological downscaling methods that adapt 

approaches from the MicroMet, DAYMET and MTCLIM to address the problem of downscaling 

climate reanalysis data for application on a fine resolution (30 to 100 m) grid over a watershed. 

This has general application in distributed hydrologic modeling, and was evaluated here for the 

generation of inputs to the Utah Energy Balance (UEB) snowmelt model.  Variables downscaled 

include: temperature, precipitation, wind speed, relative humidity, shortwave and longwave 

radiation.  The model produces 3-hourly, high resolution, gridded weather data for input to a 

spatially distributed hydrologic model. NASA Modern-Era Retrospective Analysis for Research 

and Applications (MERRA) climate products and Southern Asia Daily Rainfall estimate (RFE2) 

data are the major inputs to the program. In the first step of a two-step downscaling approach, we 

bilinearly interpolate RFE2 or MERRA reanalysis data to a high resolution digital elevation 

model (DEM) grid. In the second step, we make topographic adjustments using well-established 

relationships of elevation, slope, aspect, curvature, and cloudiness with the selected variables. 

The methods developed here are not limited to MERRA, and could be extended to any GCM, 

reanalysis, or regional climate model output or forecast that produced the same input quantities 

used by MSDH (Table 1), although use of other product inputs should be supported by further 

evaluation, as we have presented here for MERRA.   

Development of MSDH was necessary for constructing topographically adjusted high 

resolution meteorological data to drive hydrological models in data scarce regions. Reanalysis 

data such as MERRA were developed to analyze the earth system at global or continental scales, 

whereas hydrological decision making for water availability and flood forecasting, for example, 

are studied at the watershed level. MSDH can be used as a tool to bridge the gap between the 

spatial scales of data and used in these two scientific domains. MSDH is capable of producing 

data at any grid resolution specified in an input DEM.  The example application of the system 
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produced the gridded surface of six variables at 120 m resolution and 3-hourly time steps for the 

Logan River watershed for 1 year starting on October 1, 2009. The data was then used to drive 

the Utah Energy Balance (UEB) snowmelt model to simulate one year of snow accumulation and 

melt. Daily temperature, shortwave radiation, relative humidity and monthly precipitation and 

UEB simulated SWE showed reasonably good agreement with the observations, indicating 

MSDH’s capability to making estimates of good quality high resolution climate data using very 

limited observational data. 

This study showed that it is possible to obtain the input variables required to drive the 

UEB model entirely from climate reanalysis data extending its applicability to data scarce 

regions of the world.  The discrepancies that result due to errors in the reanalysis data and 

downscaling model were quantified for a location in the US where there is detailed data 

available. Comparison between SNOTEL observations and the Utah Energy Balance Snowmelt 

Model-simulated snow water equivalent indicates the degree (i.e., mean Nash-Sutcliffe 

efficiency = 0.67) to which this method is effective.  Sources of discrepancies, in terms of 

precipitation, and solar radiation uncertainty were identified and motivate opportunities for 

future research to reduce uncertainty and improve simulations.  These discrepancies need to be 

factored into the use of simulations driven by downscaled results for hydrological modeling and 

analysis.  

The tool was developed using open source, freely available scripting language and 

programs. The R code is publically available in bitbucket 

(https://bitbucket.org/AvirupSenGupta/msdh.usu) so that the user community outside the initial 

development team can participate in future improvements of the software by integrating new 

approaches and analysis techniques. The program has a graphical user interface (GUI) to make it 

accessible to users unfamiliar with R. Downscaled data is saved in CF-convention compatible 

three dimensional self-describing netCDF format, which makes the data portable across 

operating systems and accessible and displayable in a number of freely available software tools 

such as ncdump, ncBrowse, and Integrated Data Viewer (IDV; 

http://www.unidata.ucar.edu/downloads/idv).  

The application demonstrated in this paper was successfully run on a PC with the 

Windows operating system. This is particularly advantageous for developing countries where 

students, engineers, or even researchers may not have access to the latest model high 

https://bitbucket.org/AvirupSenGupta/msdh.usu
http://www.unidata.ucar.edu/downloads/idv
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performance computing systems. Presently, MDSH has only been tested on Windows-based 

systems. The availability of R and all other required programs, such as NCO and CDO in 

UNIX/Linux operating systems suggests that the program could be ported to UNIX/Linux based 

computers with little code modification.  
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Appendix A: Downscaling methodology used in MSDH 

 

Variables listed in Table 1 correspond to the elevations that are specified by geopotential 

height in MERRA’s NASA general circulation model (Rienecker et al., 2011). Geopotential 

height is reported at the same spatial resolution with the corresponding variable and is constant 

over time. MSDH downscaling techniques follow a four-step procedure: (1) perform temporal 

averaging of MERRA hourly temperature, precipitation, eastward and northward wind speed, 

specific humidity, and pressure in three hour blocks, (2) project MERRA data to the spatial 

projection of the DEM, (3) distribute the MERRA elevations and meteorological variables from 

MERRA resolution to DEM resolution using bilinear interpolation and (4) use known 

relationships between climate variables with elevation, slope, aspect, curvature and cloudiness to 

parameterize the effect of topography. RFE2 precipitation is reported as total daily values; thus, 

to obtain 3-hourly precipitation, we distribute the daily precipitation equally, assuming uniform 

precipitation throughout the day. In the third step, bilinear interpolation at any point on the DEM 

grid uses four surrounding MERRA grid cells to apply linear interpolation. The values of the 

interpolated surface at any grid cell at DEM resolution always remains within the minimum and 

maximum range of surrounding MERRA grid points, resulting in smoother high resolution 

MERRA data. In the following sections, where we describe the procedures implemented to 

adjust the selected variables, bilinearly interpolated high resolution MERRA data are subscripted 

as “MERRA” and physically (e.g., topographical) adjusted climate variables at DEM resolution 

are subscripted as “DEM”. 

 

Temperature 

We calculated the temperature at DEM resolution using MERRA elevation and pressure 

obtained at 850, 500, and 250 hPa pressure levels at each time step with the following equation.  

TDEM = TMERRA −  Γ (zDEM − zMERRA) (A1) 

where TDEM is topographically adjusted temperature at DEM resolution, TMERRA is the 

interpolated MERRA temperature at DEM resolution, zDEM is DEM elevation, zMERRA is the 

elevation from MERRA geopotential height interpolated to DEM resolution and Γ is the lapse 

rate calculated based on the MERRA surface temperature and the two nearest elevations above 

the MERRA surface elevation.  
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Shortwave Radiation 

First, we evaluate top of the atmosphere solar radiation (SWtop) for the three hour interval 

based on solar constant (S∗), and the zenith angle (Z) of the sun, which is a function of latitude, 

date, and time (Dingman, 2002). A single value was assumed for the whole domain based on a 

central latitude and longitude. 

SWtop =  S∗ cos(Z)  (A2) 

We then evaluate attenuation of solar radiation as the ratio of MERRA shortwave 

radiation (SWMERRA) to the top of the atmosphere solar radiation (SWtop), expressed as a 

transmission factor, TFMERRA. 

TFMERRA =
SWMERRA

SWtop
 (A3) 

We parameterize the attenuation of solar radiation using Beer’s atmospheric transmission 

law assuming that the optical thickness above a point is based on the atmospheric pressure.   

𝑆𝑊(P) = SWtop e−k∙P (A4) 

where k is the atmospheric attenuation coefficient, P atmospheric pressure and SW shortwave 

radiation at a height with atmospheric pressure P.  The following standard atmospheric pressure 

versus elevation function is used to relate pressure to elevation: 

𝑃(𝑧) = Po (
To + z λ 

To
)

−
g

 Rλ
 (A5) 

where Po is standard sea level pressure (101,325 Pa), To is standard sea level temperature (288.15 

K), g is earth gravitational acceleration (9.81 m s-2),  R is the gas constant for dry air (287.04 J 

kg-1 K-1) and λ the lapse rate calculated by MSDH or provided by the user. The atmospheric 

attenuation coefficient is determined by solving equation A6 for k at MERRA elevation and 

using the transmission factor evaluated in equation A3. 

k =
− log  (TFMERRA)  

𝑃(𝑧𝑀𝐸𝑅𝑅𝐴) 
 (A6) 

Then equation A4 is used with 𝑃(𝑧𝐷𝐸𝑀) to obtain downscaled shortwave radiation. 
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Relative Humidity 

MERRA specific humidity is used to calculate actual vapor pressure at MERRA 

elevations that are specified by geo-potential height.  

eMERRA =
qMERRA ∗ PMERRA

(0.622 + qMERRA)
 (A7) 

where qMERRA is interpolated MERRA specific humidity at DEM resolution,  PMERRA is 

interpolated MERRA pressure at DEM resolution and eMERRA is actual air vapor pressure at 

DEM resolution.  This is then used to evaluate dew point temperature at MERRA elevation 

(Td−MERRA). 

Td−MERRA =
c ln[

eMERRA
a

]

b − ln [
eMERRA

a
]
 (A8) 

where for ice/snow, a = 611.21 Pa, b = 22.452 and c = 272.55 ˚C.  Dew point is then adjusted for 

DEM elevation using a monthly vapor pressure coefficient λ (m-1) provided by Liston and Elder, 

Table 1, (2006). 

Td−DEM = Td−MERRA + (zDEM − zMERRA) λ 
c

b
 (A9) 

where Td−MERRA and Td−DEM are dew point temperature at MERRA elevation and DEM grid 

elevation, respectively. The following saturation vapor pressure and temperature function:  

es(T) = a exp (
b T

c + T
) (A10) 

is then used to evaluate relative humidity as the ratio of actual and saturated air vapor pressure 

from dew point and air temperatures at DEM elevation. 

RHDEM =
es(Td−DEM)

es(TDEM)
 (A11) 

Wind Speed 

MERRA eastward, E-W (UMERRA), and northward, N-S (VMERRA) wind components are 

combined using Pythagoras’ equation (A12) to obtain the horizontal wind speed magnitude. 

WMERRA = √(UMERRA
2 +  VMERRA

2) (A12) 

Wind direction, terrain slope and terrain aspect are calculated using equations (A13), 

(A14) and (A15) (Liston and Sturm, 1998). 

θ =
3π

2
−  tan−1 (

VMERRA

UMERRA
) (A13) 

β =  tan−1 √[(
Δzx

Δx
)

2

+  (
Δzy

Δy
)

2

] (A14) 
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γ =  
3π

2
− tan−1

(
Δz

Δy
)

(
Δz

Δx
)
 (A15) 

Both slope and aspect are computed using the “Four nearest” method where Δzx and Δzy 

are the elevation differences between the two nearest cells of the target cell in horizontal and 

vertical directions, respectively.  

Equation (A16) parameterizes the effect of the terrain slope and curvature on the 

MERRA wind speed (WMERRA) (Liston and Elder, 2006).  

WDEM = WMERRA (1 + γsΩs +  γcΩc) (A16) 

where Ωc  (equation A17) and Ωs (equation A18) are the curvature and slope in the direction of 

the wind, respectively.  

Ωc =
1

4
 [

z − 0.5 (zw+ ze)

2η
+

z − 0.5 (zs+ zn)

2η
+  

z−0.5 (zsw+ zne)

2√2η
+

z−0.5 (znw+ zse)

2√2η
] (A17) 

Ωs = β cos(θ −  γ) (A18) 

Here ze, zw, zn, zs, zsw, zne, znw, zse are the elevations at eight possible neighboring cells in the 

east, west, north and south, south-west, north-east, north-west and south-east direction from the 

target cell and η is the distance between the center of two neighboring cells. Note that the 

denominator in A17 includes η, not η2 as would be the case for a conventional Laplacian finite 

difference approximation of curvature.  The use of η only follows Liston and Elder (2006) and 

we interpret this to be Laplacian curvature scaled by cell size so that it is dimensionless when 

used in wind speed adjustments (equation A16).  In equation A16, γc and γs are weight factors 

that adjust wind magnitude based on curvature and slope respectively. Liston and Elder (2006) 

suggested that the valid range of  γc and γs is between 0 to 1 such that γc +  γs = 1.0. In MSDH, 

we approximated both of these quantities as 0.5 assuming equal weight for slope and curvature 

adjustments. 

Precipitation 

After the reanalysis precipitation is interpolated over the domain distributed at DEM 

spatial resolution, topographical adjustments are made using equation 1. Default monthly 

precipitation adjustment factor from table 1 of Liston and Elder (2006) is encoded (Table A1), 

though users may also provide their own precipitation adjustment factors based on local data.  To 

correct for bias in precipitation inputs users may also use the tool to compute a bias adjustment 
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coefficient based on nearby station values.  Bc is the ratio of the observed data at a precipitation 

measuring site and the downscaled data at the grid cell in which the site is located.  

Bc =
PRCPo 

 PRCPd 
 (A19) 

where PRCPo and  PRCPd are mean annual observed precipitation (mm) and downscaled 

precipitation (mm), respectively.  If multiple sites are located in or near the target spatial domain, 

Bc is calculated for each site, and an average value is taken. Downscaled data is corrected by 

multiplying by the bias coefficient (Bc). 

Table A1. Monthly adjustment factor for each month from table 1 of Liston and Elder (2006) 

month Precipitation Adjustment Factor, κ𝑝  (km-1)   

January 0.35 

February 0.35 

March 0.35 

April 0.3 

May 0.25 

June 0.2 

July 0.2 

August 0.2 

September 0.2 

October 0.25 

November 0.3 

December 0.35 

 

Longwave Radiation 

We estimated incoming longwave radiation based on downscaled air temperature 

following the methods of Liston and Elder (2006). First we evaluate the elevation at 700 hPa 

using linear interpolation of MERRA pressure and elevation information. Then air and dew point 

temperatures are evaluated at this elevation using (A1) and (A9), and relative humidity is 

evaluated at this elevation using (A11). 

Implied cloud fraction σc and then emissivity ɛ is parameterized by Walcek (1994) using 

equation (A20) and by Iziomon et al. (2003) using equation (A21), respectively. 
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𝜎𝑐 = 0.832 𝑒𝑥𝑝 (
𝑅𝐻700 − 100

41.6
) (A20) 

ɛ = 𝜅ɛ (1 + 𝑍𝑠𝜎𝑐
2) (1 − 𝑋𝑠 𝑒𝑥𝑝 (

−𝑌𝑠 𝑒𝐷𝐸𝑀

𝑇𝐷𝐸𝑀
) ) (A21) 

where eDEM is the atmospheric vapor pressure at DEM resolution and 𝜅ɛ is 1.08 (Liston and 

Elder, 2006). XS, YS and ZS are coefficients that vary depending on elevation. At elevations 

below 200 m, XS, YS and ZS are 0.35, 0.1 K Pa-1 and 0.224, respectively. XS, YS and ZS are 0.51, 

0.13 K Pa-1 and 1.1, respectively, at elevations above 3000 m. These coefficients vary linearly 

between these values for elevations from 200 to 3000 m. We then calculate incoming longwave 

radiation using the Stefan-Boltzmann equation. 

𝑄𝑙𝑖−𝐷𝐸𝑀 = ɛ 𝜎 (𝑇𝐷𝐸𝑀)4 (A22) 

where σ is the Stefan-Boltzmann constant (5.670373 × 10-8 kg s-3 K-4). 

The downscaling parameterizations detailed above have been drawn from the literature or 

developed in this study based on physical principles for downscaling from the relatively coarse 

grid scale of MERRA variables at the MERRA geopotential height to the elevation associated 

with the fine scale grid used by a distributed hydrologic model. 

 

Appendix B: NRCS SNOTEL sites in the study area 

 

Site Name Site Number State Latitude Longitude Elevation (m) 

Ben Lomond Trail 333 UT 41.38 -111.92 1777 

Sheldon 750 NV 41.9 -119.44 1786 

Lamance Creek 569 NV 41.52 -117.63 1829 

Lost Creek Resv 1118 UT 41.22 -111.36 1854 

Little Grassy 583 UT 37.49 -113.85 1859 

Spratt Creek 778 CA 38.67 -119.82 1864 

Taylor Canyon 811 NV 41.23 -116.03 1890 

Fallen Leaf 473 CA 38.93 -120.05 1901 

Tony Grove Rs 1113 UT 41.89 -111.57 1930 

Independence Creek 540 CA 39.49 -120.28 1968 

Disaster Peak 445 NV 41.97 -118.19 1981 

Truckee #2 834 CA 39.3 -120.18 1984 
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Little Bear 582 UT 41.41 -111.83 1995 

Golconda 1195 NV 40.88 -117.59 2010 

Ward Creek #3 848 CA 39.14 -120.22 2028 

Laurel Draw 573 NV 41.78 -116.03 2041 

Big Bend 336 NV 41.76 -115.69 2042 

Louis Meadow 972 UT 40.83 -111.76 2042 

Gutz Peak 1065 UT 37.5 -113.94 2061 

Farmington Lower 1054 UT 40.99 -111.82 2066 

Tahoe City Cross 809 CA 39.17 -120.15 2072 

Css Lab 428 CA 39.33 -120.37 2089 

Buckskin Lower 373 NV 41.75 -117.53 2108 

Fawn Creek 476 NV 41.82 -116.1 2134 

Independence Camp 539 CA 39.45 -120.29 2135 

Dry Fork 906 UT 40.57 -112.17 2162 

Seventysix Creek 746 NV 41.74 -115.47 2164 

Leavitt Meadows 575 CA 38.3 -119.55 2194 

Draw Creek 454 NV 41.66 -115.32 2195 

Kilfoil Creek 1145 UT 41.25 -111.41 2201 

Hardscrabble 896 UT 40.87 -111.72 2210 

Jack Creek Upper 548 NV 41.55 -116.01 2210 

Klondike Narrows 1115 UT 41.97 -111.6 2210 

Lewis Peak 1006 NV 40.36 -116.86 2256 

Vernon Creek 844 UT 39.94 -112.41 2256 

Temple Fork 1013 UT 41.79 -111.55 2257 

Long Valley Jct 593 UT 37.49 -112.51 2275 

Bird Creek 1155 NV 39.46 -114.65 2286 

Parley's Summit 684 UT 40.76 -111.63 2286 

Smith & Morehouse 763 UT 40.79 -111.12 2316 

Summit Lake 1194 NV 41.49 -119 2319 

Clear Creek #2 400 UT 39.89 -111.25 2334 
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Echo Peak 463 CA 38.85 -120.08 2338 

Rubicon #2 724 CA 39 -120.13 2344 

Lamoille #3 570 NV 40.65 -115.38 2347 

Toe Jam 1136 NV 41.32 -116.34 2347 

Garden City Summit 1114 UT 41.92 -111.47 2348 

Poison Flat 697 CA 38.51 -119.63 2358 

Parrish Creek 971 UT 40.93 -111.81 2359 

Kalamazoo 1150 NV 39.56 -114.63 2360 

Cascade Mountain 1039 UT 40.28 -111.61 2370 

Hagan's Meadow 508 CA 38.85 -119.94 2370 

Harris Flat 514 UT 37.49 -112.58 2377 

Vaccaro Springs 1137 NV 39.45 -115.98 2388 

Oak Creek 1146 UT 39.35 -112.19 2393 

Marlette Lake 615 NV 39.16 -119.9 2402 

Rock Creek 720 UT 40.55 -110.69 2405 

Hole-in-mountain 527 NV 40.94 -115.1 2408 

Rainbow Canyon 1110 NV 36.25 -115.63 2414 

Bug Lake 374 UT 41.68 -111.42 2423 

Gooseberry R.s. 495 UT 38.8 -111.68 2423 

Beaver Dams 329 UT 39.14 -111.56 2435 

Ben Lomond Peak 332 UT 41.38 -111.94 2438 

Burts-miller Ranch 1135 UT 40.98 -11085 2438 

Currant Creek 432 UT 40.36 -111.09 2438 

Farmington 474 UT 40.97 -111.81 2438 

Green Mountain 503 NV 40.38 -115.53 2438 

Long Flat 592 UT 37.51 -113.4 2438 

Forestdale Creek 1049 CA 38.68 -119.96 2444 

Squaw Valley G.c. 784 CA 39.19 -120.26 2447 

Diamond Peak 443 NV 39.56 -115.84 2448 

Daniels-strawberry 435 UT 40.3 -111.26 2450 
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Blue Lakes 356 CA 38.61 -119.92 2456 

Payson R.s. 686 UT 39.93 -111.63 2459 

Franklin Basin 484 ID 42.05 -111.6 2464 

Dorsey Basin 453 NV 40.89 -115.2 2469 

Strawberry Divide 795 UT 40.16 -111.21 2476 

Burnside Lake 1051 CA 38.72 -119.89 2478 

Timpanogos Divide 820 UT 40.43 -111.62 2481 

Chalk Creek #2 393 UT 40.89 -111.07 2487 

Horse Ridge 533 UT 41.31 -111.45 2487 

Lookout Peak 596 UT 40.84 -111.71 2499 

Lightning Ridge 1056 UT 41.36 -111.49 2504 

Mining Fork 631 UT 40.49 -112.61 2506 

Big Meadow 340 NV 39.46 -119.94 2514 

USU Doc Daniel 1098 UT 41.86 -111.51 2521 

Beaver Divide 330 UT 40.61 -111.1 2524 

East Willow Creek 461 UT 39.31 -109.53 2530 

Monitor Pass 633 CA 38.67 -119.61 2533 

Gardner Peak 1066 UT 37.4 -113.46 2537 

Dry Bread Pond 455 UT 41.41 -111.54 2545 

Independence Lake 541 CA 39.43 -120.31 2546 

Carson Pass 1067 CA 38.69 -119.99 2546 

Gooseberry Upper 1184 UT 38.79 -111.69 2560 

Jacks Peak 549 NV 41.53 -116.01 2566 

Lakefork #3 1116 UT 40.55 -110.35 2580 

Tony Grove Lake 823 UT 41.9 -111.63 2583 

Corral Canyon 417 NV 40.28 -115.53 2591 

Granite Peak 498 NV 41.67 -117.57 2604 

Horse Meadow 1050 CA 38.84 -119.89 2608 

Heavenly Valley 518 CA 38.92 -119.92 2616 

Lee Canyon 1112 NV 36.31 -115.68 2629 
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White River #1 864 UT 39.96 -110.99 2634 

Big Creek Sum 337 NV 39.29 -117.11 2650 

Merchant Valley 621 UT 38.3 -112.44 2653 

King's Cabin 559 UT 40.72 -109.54 2659 

Mammoth-cottonwood 612 UT 39.68 -111.32 2660 

Timberline 1097 UT 39.68 -110.43 2663 

Brighton 366 UT 40.6 -111.58 2667 

Ebbetts Pass 462 CA 38.55 -119.8 2672 

Bear River Rs 992 UT 40.89 -110.83 2675 

Pine Creek 694 UT 38.88 -112.25 2679 

Fish Lake Utah 1149 UT 38.5 -111.77 2682 

Mt Rose Ski Area 652 NV 39.32 -119.89 2683 

Sonora Pass 771 CA 38.31 -119.6 2690 

Blacks Fork Jct 1162 UT 40.96 -110.58 2704 

Agua Canyon 907 UT 37.52 -112.27 2713 

Rocky Basin-settleme 723 UT 40.44 -112.24 2713 

Clear Creek #1 399 UT 39.87 -111.28 2715 

Monte Cristo 634 UT 41.47 -111.5 2731 

Mill-d North 628 UT 40.66 -111.64 2733 

Camp Jackson 383 UT 37.81 -109.49 2733 

Bristlecone Trail 1111 NV 36.32 -115.7 2737 

Chalk Creek #1 392 UT 40.85 -111.05 2741 

George Creek 1151 UT 41.92 -113.41 2745 

Red Pine Ridge 714 UT 39.45 -111.27 2746 

Berry Creek 334 NV 39.32 -114.62 2774 

Squaw Springs 1156 UT 38.5 -112.01 2775 

Kimberly Mine 557 UT 38.48 -112.39 2783 

Hickerson Park 522 UT 40.91 -109.96 2787 

Hole-in-rock 528 UT 40.92 -110.19 2789 

Lily Lake 579 UT 40.86 -110.8 2791 



48 

 

Indian Canyon 543 UT 39.89 -110.75 2797 

Dill's Camp 444 UT 39.05 -111.47 2799 

Ward Mountain 849 NV 39.13 -114.96 2804 

Webster Flat 853 UT 37.58 -112.9 2805 

Kolob 561 UT 37.53 -113.05 2806 

Hayden Fork 517 UT 40.8 -110.88 2808 

Thaynes Canyon 814 UT 40.62 -111.53 2813 

Lobdell Lake 587 CA 38.44 -119.37 2814 

Summit Meadow 1052 CA 38.4 -119.54 2839 

Ef Blacks Fork Gs 1163 UT 40.88 -110.54 2853 

Buck Flat 371 UT 39.13 -111.44 2874 

Virginia Lakes Ridge  846 CA 38.07 -119.23 2879 

Black Flat-u.m. Ck 348 UT 38.68 -111.6 2884 

Mosby Mtn. 643 UT 40.61 -109.89 2899 

Trout Creek 833 UT 40.74 -109.67 2901 

Hewinta 521 UT 40.95 -110.48 2901 

Lasal Mountain 572 UT 38.48 -109.27 2914 

Castle Valley 390 UT 37.66 -112.74 2920 

Pickle Keg 691 UT 39.01 -111.58 2926 

Leavitt Lake 574 CA 38.28 -119.61 2931 

Snowbird 766 UT 40.56 -111.66 2938 

Widtsoe #3 865 UT 37.84 -111.88 2938 

Farnsworth Lake 475 UT 38.77 -111.68 2951 

Jones Corral 1099 UT 38.07 -112.17 2971 

Donkey Reservoir 452 UT 38.21 -111.48 2987 

Midway Valley 626 UT 37.57 -112.84 2987 

Box Creek 364 UT 38.51 -112.02 2996 

Seeley Creek 742 UT 39.31 -111.43 3021 

Brian Head 1154 UT 37.68 -112.86 3039 

Trial Lake 828 UT 40.68 -110.95 3046 
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Clayton Springs 983 UT 37.97 -111.83 3063 

Wheeler Peak 1147 NV 39.01 -114.31 3085 

Steel Creek Park 790 UT 40.91 -110.5 3109 

Spirit Lk 1117 UT 40.84 -110.01 3120 

Big Flat 339 UT 38.3 -112.36 3154 

Lakefork #1 566 UT 40.6 -110.43 3174 

Cave Mountain 1152 NV 39.16 -114.61 3226 

Chepeta 396 UT 40.77 -110.01 3228 

Brown Duck 368 UT 40.58 -110.59 3231 

Five Points Lake 481 UT 40.72 -110.47 3335 

Lakefork Basin 567 UT 40.74 -110.62 3342 
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