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Abstract 

Environmental modelers rely on a variety of computational models to make predictions, test 

hypotheses, and address specific problems related to environmental science and natural resource 

management. Scientists and engineers must devote significant effort to preparing these 

computational models. While significant attention has been devoted to sharing and reusing 

environmental data, less attention has been devoted to sharing and reusing environmental models. 

A first step toward increasing environmental model sharing and reuse is to define a general 

metadata framework for models that is flexible and, therefore, applicable across the wide variety 

of models used by environmental modelers. This paper proposes a general approach for 

representing environmental model metadata that extends the Dublin Core metadata framework. 

The framework is implemented within the HydroShare system and applied for a hydrologic model 

sharing use case. This example application demonstrates how the metadata framework 

implemented within HydroShare can assist in model sharing, publication, reuse, and 

reproducibility.  
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Software Availability: 

 The software created in this research is free and open source as part of the larger 

HydroShare software repository. The HydroShare software respository is managed through 

GitHub and is available at https://github.com/hydroshare/hydroshare.   

https://github.com/hydroshare/hydroshare
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1. Introduction 

A large variety of environmental models exists, with each model tailored to address 

specific challenges related to environmental science and natural resource management (Singh and 

Woolhiser, 2002; Singh et al., 2006).. These models have grown in complexity, with many 

simulating increasingly detailed processes occurring within environmental systems. When 

scientists and engineers use models, they must devote significant effort to collect data, construct 

model inputs, and calibrate and validate model parameters. Many environmental models also 

require sophisticated data pre-processing routines, often with many manual steps (e.g., Billah et 

al., 2016). For this reason, many models come with supporting applications such as Geographic 

Information System (GIS) interfaces, calibration tools, visualization software, and other utility 

software systems to assist in the data preparation process (e.g., Winchell et al., 2007). These data 

pre-processing steps must be repeated each time a new model is created to simulate a system. This 

introduces a number of challenges. From a pragmatic perspective, it is an inefficient use of 

scientists’ time. Perhaps more importantly, it inhibits scientists’ ability to reproduce studies that 

have a significant computational modeling component (David et al., 2016; Essawy et al., 2016; 

Gil et al., 2016).  

One way to begin to address these challenges is through better approaches for sharing and 

reusing models built by others. Just as there has been a major push to make better use of data 

collected and maintained by others, the scientific community can benefit from a similar push to 

make better use of models built by others. Data sharing and reuse has been strengthened through 

the adoption of agreed-on metadata frameworks. Geospatial data, in particular, has benefited from 

widely used metadata frameworks that allow scientists and engineers to more easily reuse data 

collected by others (e.g., ISO, 2003; 2011). More recently, hydrologic time series data have also 
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benefited from the adoption of commonly used metadata frameworks (e.g., Taylor et al., 2014). 

While many metadata frameworks exist, none specifically addresses computational environmental 

models. Thus, the objective of this research was to design and implement such a metadata 

framework for environmental models. 

Designing a metadata framework for environmental models poses unique challenges 

compared to other data types. First, the data required for models are heterogeneous and, in the case 

of environmental models, input for a single simulation can include dozens, if not hundreds, of data 

files. These files describe properties of the modeling elements, parameters, forcing functions, 

boundary conditions, and other data needed to execute the model for a given system. Each model 

largely adopts its own structure and semantics for storing data, making it difficult to standardize 

across models. Second, environmental modelers make use of a large and diverse set of 

computational models; Singh and Woolhiser (2002) cataloged over 65 models focusing on 

watershed hydrology alone. Environmental modelers will likely continue to make use of a broad 

range of models because each model is tailored for a given application. As a result, each model 

adopts unique data structures and semantics for both input and output data. A model metadata 

framework, therefore, must not force all models into a fixed structure, but rather be flexible and 

able to accommodate this diversity of models.  

Some studies have begun to address the problem of designing a metadata framework for 

computational models. The Content Standard for Computational Models (Hill et al., 2001) was 

one of the first attempts at providing detailed metadata about a numerical model that includes the 

input and output data for model scenarios. Wosniok and Lehfeldt (2013) provide a concept for 

metadata-driven architecture for computational fluid dynamics simulations and a way to integrate 

model descriptions into spatial data infrastructures. The Community Surface Dynamics Modeling 
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System (CSDMS) created a metadata framework and used it to describe over 180 geoscience 

models, including over 50 hydrologic models within its model catalog (see 

http://csdms.colorado.edu). The CSDMS model category focuses on the software for executing a 

model, what we refer to in this paper as a model program. It does not extend to the input files for 

a specific model simulation, or what we refer to in this paper as a model instance. The metadata 

included in CSDMS also do not follow higher-level metadata standards like Dublin Core.  

Much of the past research on model metadata has focused on component-based modeling 

systems. Component-based modeling systems are a tool for integrated environmental modeling 

where model applications are constructed from a set of “plug-and-play” model components that 

can be interchanged for different applications (Argent, 2004; Laniak et al., 2013). Metadata 

frameworks have been proposed for model components generally (Elag and Goodall, 2013), the 

component interfaces (Gregersen et al., 2007; Peckham et al., 2013), and the variables passed 

between linked components (Peckham, 2014). Recently, Harpham and Danovaro (2015) designed 

an un-encoded metadata framework supporting the description of environmental numerical models 

giving more attention to the construction of model compositions by interfacing model components. 

This metadata framework was designed to facilitate the description and communication between 

loosely coupled components of a larger model chain. The framework enables the output from one 

model component (e.g., a meteorological model) to be used as an input for another model 

component (e.g., a hydrological draingage model). This work used the ISO 19115 metadata 

standard as a starting point and expanded the spatial characteristics, temporal characteristics, and 

environmental parameters to enable models to be discovered and reused.  

Our work is different in that we focus on standalone model programs instead of component-

based modeling systems. Standalone model programs can execute a model simulation and generate 
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output, while a model component requires a modeling framework in order to be executed. Model 

components can be loosely coupled using a modeling framework with other model components, 

while a model program does not provide this loose coupling capability. We take this focus because, 

while the adoption of component-based modeling systems is growing, we believe that the vast 

majority of ongoing studies are using standalone model applications and a metadata framework is 

needed to enhance the sharing of these standalone model instances. Also, this work could later be 

merged with past work on model component metadata to create an overarching model metadata 

framework. 

A motivating factor for this research is the design and development of a new system called 

HydroShare (https://www.hydroshare.org). The goal of HydroShare is to advance hydrologic 

science by enabling the scientific community to more easily and freely share products resulting 

from their research – not just the scientific publication summarizing a study, but also the data and 

models used to create the scientific publication (Horsburgh et al., 2015; Tarboton et al., 2014a, 

2014b). HydroShare is a web-based collaborative system developed with the goal of sharing, 

accessing, and discovering hydrologic data and models (Tarboton et al., 2014a, 2014b ). It was 

designed and built by the authors, along with a larger team of researchers, in collaboration with 

the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI).  

The basic unit of digital content in HydroShare is called a “resource.” One of the key steps 

in designing HydroShare was defining metadata for different resource types (Horsburgh et al., 

2015; Tarboton et al., 2014a, 2014b). While users can upload any digital content as a “generic 

resource” within HydroShare, these generic resources only support basic metadata elements 

defined by the Dublin Core metadata framework that are applicable to any data type. Specific 

resource types in HydroShare can extend this Dublin Core metadata to provide new metadata 
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elements that support functionality specific to common hydrologic datasets (Horsburgh et al., 

2015). For example, the time series resource types support additional metadata elements relevant 

to a time series, and the system can automatically plot time series resources because of this 

metadata (Sadler et al., 2015). Because a model metadata framework like this did not exist for 

environmental models, we first had to design one. Then, we used the model metadata framework 

we designed in HydroShare to implement new resource types specific to the needs of 

environmental models. While the HydroShare implementation motivated the design of the model 

metadata framework, it is important to emphasize that the metadata framework described here is 

general and can be adopted for environment models more broadly.  

The remainder of the paper is organized as follows. First, a Methodology section is 

presented discussing the design of the model metadata framework and describing an example use 

case where the design implemented in HydroShare was used to share results from a hydrologic 

modeling study. Next, the Results section presents the implemented software and the results from 

the example use case. Finally, the paper concludes with a summary discussion of the proposed 

approach and steps that could be taken to further advance this work.   

 

2. Methodology 

2.1. Metadata framework design 

The metadata framework design considers a computational model as two distinct concepts: 

1) a model program resource, which includes software for executing a model simulation and 

generating outputs, and 2) a model instance resource, which includes the input files and, 

optionally, the output files for a specific simulation. Having model programs and instances as 

separate resources allows a specific version of a program to be linked to several instances. If model 
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programs and instances were stored together as one resource, the same model program would be 

stored with each model instance executed by that model program. Additionally, with instances and 

programs combined, the metadata describing the model program would be repeated with each 

model instance. This would result in redundant data about the same model program that would 

need to be entered every time the user uploads an instance for sharing. This may lead to 

opportunities for inconsistent metadata entry by users for the same model program included in 

multiple resources. In order to avoid redundantly storing the same program and its metadata with 

each related model instance, we separated model programs and instances as distinct resource types 

and implemented an “ExecutedBy” relation as a many-to-one to link between any number of 

instances and the program used for execution.  

The Resource Description Framework (RDF) is used for formally encoding concepts and 

their associated metadata using a subject, predicate, and object structure 

(http://www.w3.org/RDF). As a simple example, this basic structure can be used to show that a 

model instance (subject) is executed by (predicate) a model program (object) (Fig. 1). Each 

resource has core metadata defined by the Dublin Core metadata framework and extended 

metadata designed through this research that is encoded and stored on disk using RDF-XML. 

Details of the metadata for model programs and model instances are described in the following 

subsections.  
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Fig. 1. Key components of the model program and model instance resources. 

2.1.1. Model program resource metadata 

The model program resource encapsulates all of the software and files necessary to 

identify, install, and run a given environmental model. The model program includes a model 

engine, which is the core mathematical modeling logic for the model (Morsy et al., 2014). This 

model engine is often, but not always, embedded within a larger application that includes 

visualization, typically using a graphical user interface (GUI), and other utility software. It is not 

uncommon for multiple model programs to use the same or similar model engine; for example, 

there are multiple model programs with different user interfaces that all use the Storm Water 

Management Model (SWMM) as its model engine. A key design decision was to link a model 

program with a model instance, rather than a model engine with a model instance. This was done 

because developers may make subtle but important changes to publically available model engines 

within their own model programs. Thus, it is difficult to guarantee that two independent model 

programs, both making use of the same original model engine, will produce the exact same output.  

The goal when identifying metadata for a model program was to sufficiently describe a 

specific version of the software, its computer system compatibility, and its proper and intended 

use. To foster interoperability, this metadata consists of a basic description of the resource using 
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elements from the Dublin Core metadata standard (shown in Fig. 2 using the “dc” and “dcterms” 

prefixes). The basic Dublin Core metadata framework is then extended with resource specific 

metadata (Fig. 2; Table 1). These extended metadata elements are given names with the “hsterms” 

prefix, indicating that their names belong to a namespace of terms defined by HydroShare, and are 

subdivided into content-related and resource-related categories. Content-related metadata includes 

items such as modelEngine, modelSoftware, modelReleaseNotes, and modelDocumentation to 

describe the content that should accompany a model program resource. A model program is 

required to include a model engine, while the other content-related metadata items are optional.   

The resource-related metadata describe characteristics of a model program using high-level 

terminology with the aim of clearly defining and distinguishing between similar model program 

resources. These include modelReleaseDate, modelWebsite, modelVerson, 

modelProgramLanguage, modelCodeRepository, and modelOperatingSystem metadata. The 

modelReleaseDate element provides general information about the environmental model to aid in 

version identification, while the modelWebsite element is intended to provide users additional 

model-specific information. The remaining elements describe the software attributes and system 

compatibility of the model program as shown in Table 1. The contents of these metadata elements 

can serve many different uses, including enhanced search and discovery across a large collection 

of model program resources. They also aim to support reproducibility by capturing the exact model 

program used to execute a particular model instance. Some of these metadata elements (e.g., 

modelOperatingSystem and modelProgramLanguage) could eventually include and benefit from 

controlled vocabularies. 
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Fig. 2. Model program resource metadata elements expressed as RDF triples. The # prefix 

signifies an attribute that can be populated when implementing the metadata framework for a 

given model program. 
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Table 1. Model program extended metadata element definitions. 

Metadata Term Cardinality Definition 
hsterms:modelVersion 1..1 Unique model version and/or build number  
hsterms:modelProgramLanguage 0..* The programming language(s) used to write the 

model program 

hsterms:modelOperatingSystem 0..* Compatible operating system(s) to setup and run the 
model program   

hsterms:modelReleaseDate 0..1 The date that this version of the model program was 
released 

hsterms:modelReleaseNotes 0..* Notes regarding the model program release 
hsterms:modelWebsite 0..1 A URL to the website maintained by the model 

developers 

hsterms:modelCodeRepository 0..* A URL to the source code repository (Github, 
Bitbucket, etc.) 

hsterms:modelDocumentation 0..* Documentation related to the model (User manual, 
theoretical manual, reports, etc.) 

hsterms:modelSoftware 0..* The archive containing model software (executable, 
installer, utilities, etc.) 

hsterms:modelEngine 0..* The archive containing the model computational 
engine (source code, binary, etc.) 

 

2.1.2. Model instance resource metadata 

 The model instance resource describes the input files used for execution by a model 

program. A model instance resource may optionally include the output files resulting after 

execution. Output for some models can be large. Given that these files can be recreated by 

executing the model, we made including output files optional. The design for metadata associated 

with a model instance was intended to capture the aspects required to define and distinguish 

between different model instances across the wide variety of environmental models. To 

accomplish this, the design first includes a generic model instance. This generic model instance 

has metadata elements applicable to any model program instance. The design is extensible 

including specific model instances that inherit the properties of a generic model instance and add 

new properties that are relevant to one or more model programs. This pattern is illustrated in Fig. 
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3. In this figure, some specific model instance resources are listed as examples, with the idea that 

this list can be extended to include other environmental models as well. This design, therefore, 

provides two ways to capture metadata for a model instance. The default option would be to use a 

generic model instance resource type. However, if available, a specific model instance resource 

type should be used to take advantage of enhanced functionality and metadata capture.  

 

Fig. 3. Generic model instance and specific model instance hierarchy. Model program, generic 

model instance, SWAT model instance, and MODFLOW model instance metadata have already 

been designed, while metadata for the other specific model instances are either in development 

or planned for the near future. 

Fig. 4 presents the metadata for a generic model instance. Because the generic model 

instance extends the Dublin Core metadata framework, it inherits the metadata elements defined 

by Dublin Core (with names shown using the “dc” and “dcterms” prefix). One metadata element 

defined in Dublin Core that is particularly important for model instances is the coverage element. 

This metadata element defines the temporal and spatial extent of a resource. For a model instance 

resource, the temporal coverage provides the start and end date/time for the simulation; the spatial 
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coverage provides a place name and geographic coordinates for the model instance. The spatial 

coverage can be represented by a point (e.g., the centroid of the modeling domain) or a box (e.g., 

the bounding box of the modeling domain). This coverage element does not represent the exact 

shape of the model instance, but rather its geographic location or extent. 

As with the model program, the generic model instance metadata is extended from the 

Dublin Core elements with the names of additional metadata elements having the “hsterms” prefix 

(Fig. 4; Table 2). These metadata elements are subdivided into two main classes: ModelOutput 

and ExecutedBy. ModelOutput includes information about the output data generated by the model 

after it is executed. Only one element was deemed necessary in the initial design for describing 

the model output, although more elements could be added later. The element included is 

includesModelOutput, which allows users to indicate if the output files are included along with the 

input files as part of the model instance resource. The ExecutedBy element links the model instance 

resource with the model program resource that is used for execution. ExecutedBy includes two 

sub-metadata elements: modelProgramName and modelProgramIdentifier. The 

modelProgramName element stores the name of the linked model program resource, while 

modelProgramIdentifier stores its unique identifier. By linking a model instance to a model 

program resource, the ExecutedBy metadata element facilitates later reproducibility of the model 

results.  
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Fig. 4. Generic model instance resource metadata elements expressed as RDF triples. 

Table 2. Generic model instance extended metadata element definitions. 

Metadata Term Cardinality Definition 
hsterms:modelOutput 

 
A class used for describing output for an 
executed model instance 

    hsterms:includesModelOutput 1..1 A boolean value that indicates if the output 
files are included with the model instance 

hsterms:executedBy 
 

A class that describes the model program 
that executes the model instance 

    hsterms:modelProgramName 0..1 The name of the model program that 
executes the model instance 

    hsterms:modelProgramIdentifier 0..1 The identifier for the model program that 
executes the model instance 
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 As an example of a specific model instance, consider an extension to the generic model 

instance designed to add metadata specific to an instance of the Soil and Water Assessment Tool 

(SWAT). This SWAT model instance offers extended metadata elements that more fully describe 

SWAT model instances, but that are not directly applicable to other environmental models. The 

SWAT model instance was designed to be compatible with the SWATShare application, which is 

an interactive Web tool used to run, visualize, and interact with SWAT model instances (Rajib et 

al., 2016). The extended metadata elements for a SWAT model instance are shown in Fig. 5, and 

the extended metadata elements are defined in Table 3. While these elements are specific and 

extensive, many of them are optional so the barrier to entry is still low. Also, through future work, 

many of the metadata elements could be extracted automatically from model instance 

configuration files. Unlike the generic model instance, the SWAT model instance introduces 

controlled vocabularies for some SWAT model metadata elements including modelObjective, 

simulationType, and simulationTimeStepType. These controlled vocabularies are compatible with 

the controlled vocabularies used by SWATShare. For example, simulationType has a controlled 

vocabulary consisting of three choices: normal simulation, sensitivity analysis, and auto-

calibration. 
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Fig. 5. SWAT model instance metadata expressed as RDF triples. 
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Table 2. SWAT model instance extended metadata element definitions. 

Metadata Term Cardinality Definition 

hsterms:modelObjective 1..* The objective of the model (hydrology, water quality, 
BMPs, climate / landuse change, etc.) 

hsterms:simulationType 0..1 The type of the simulation used (i.e., normal simulation, 
sensitivity analysis, and auto-calibration) 

hsterms:modelInput 
 

Class for describing the model instance input files 
    hsterms:warm-upPeriodType 0..1 The warm-up period type (always years) 
    hsterms:warm-upPeriodValue 0..1 The numeric value of the warm-up period in years 
    hsterms:rainfallTimeStepType 0..1 The type of time step used in the simulation for input 

rainfall data (i.e., daily or sub-hourly) 
    hsterms:rainfallTimeStepValue 0..1 The time step value associated with the rainfall data 
    hsterms:routingTimeStepType 0..1 The type of time step used in the simulation for river 

routing calculations (i.e., daily or hourly) 
    hsterms:routingTimeStepValue 0..1 The time step value used for the river routing 

calculations 
    hsterms:simulationTimeStepType 0..1 The type of time step type used for model simulation 

(i.e., annual, monthly, daily, or hourly) 
    hsterms:simulationTimeStepValue 0..1 The time step value used for simulation 
    hsterms:watershedArea 0..1 The watershed area in km² 
    hsterms:numberOfSubbasins 0..1 The number of subbasins within the watershed 
    hsterms:numberOfHRUs 0..1 The number of hydrologic response units (HRUs) within 

the watershed 
    hsterms:DEMResolution 0..1 The resolution of the digital elevation model (DEM) in 

meters 
    hsterms:DEMSourceName 0..1 The name of the DEM provider 
    hsterms:DEMSourceURL 0..1 The URL of the DEM 
    hsterms:landUseDataSourceName 0..1 The name for the land use / land cover (LULC) dataset 

provider 
    hsterms:landUseDataSourceURL 0..1 The URL for the LULC dataset 
    hsterms:soilDataSourceName 0..1 The name for soil dataset provider 
    hsterms:soilDataSourceURL 0..1 The URL for Soil dataset  
hsterms:modelMethod 

 
Class that describes the model methods used in the 
simulation 

    hsterms:runoffCalculationMethod 0..1 The runoff calculation method used 
    hsterms:flowRoutingMethod 0..1 The flow routing method used 
    hsterms:PETEstimationMethod 0..1 The Potential EvapoTranspiration (PET) estimation 

method used 
    hsterms:modelParameter 0..* The parameters used in the model (crop rotation, title 

drainage, point source, fertilizer, tilage operation, inlet 
of draining watershed, irrigation operation, etc.) 

 

While SWAT is used to provide an example of a specific model instance, similar metadata 

and corresponding controlled vocabularies could be developed for other models. The design goal 

of this work, however, was not to capture metadata relevant to all environmental models, as doing 

so would be impractical. Rather, our goal was to design a framework that has a common core and 
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a clear methodology for extending this core for specific environmental models. We plan to provide 

examples, like the SWAT example, that third party developers can follow to create their own 

specific model instance metadata. By providing a common foundation for metadata and resource-

structure across models, there will be a level of standardization that will aid in interoperability 

across software systems. Specific model metadata acknowledges the diversity among 

environmental models and does not force conformity to a single set of metadata elements. The 

design also allows for changes in the future. For example, if additional common model metadata 

elements are identified across environmental models, then they can be added to the generic model 

instance class and inherited by all specific model instances.  

 

2.2. Experimental use case  

To demonstrate the metadata design, we used the application of a SWMM model used to study 

flooding in an urban watershed (Morsy et al., 2016) as a use case. We wish to publish the resulting 

model instances online. There are many motivating factors for doing this. First, we believe that a 

model instance, like the journal paper, is an important product from the research and should stand 

on its own as a citable product. Second, we want to foster ways for other scientists to build from 

or reuse our model to address their own scientific research questions. Third, we want to ensure that 

the model program used in our study, including the model engine, utility software, and 

documentation, is captured within a single online resource. This is important because, after some 

time, the model program developers may not provide this particular version of the software on 

their website. Lastly, this is a way of meeting the research sponsor’s data management obligations. 

While this use case is specific to scientific research, a similar use case could be followed for 

consulting or industrial modeling activities. While such model applications may not result in 
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journal publications, there is still significant value in descriptive metadata for internal cataloging 

and archiving purposes. Additionally, in such cases models can be shared privately within 

HydroShare allowing collaboration among specific users while keeping the data, model, and 

results confidential.  

The objective of this prior modeling study was to better understand the potential of rain 

gardens as distributed stormwater controls for flood mitigation within an urbanized watershed 

(Morsy et al., 2016). The specific study area of the research was the Rocky Branch watershed, 

which is located in downtown Columbia, South Carolina, USA. Because a significant portion of 

the watershed is developed, high intensity storms that typically occur during the summertime result 

in flooding at different locations within the watershed. For this study, two different model 

instances were created (Fig. 6). The first model instance is a well-calibrated and evaluated model 

that simulates flooding events in the Rocky Branch watershed. The second model instance builds 

from the first model instance and includes additional, hypothetical rain gardens as stormwater 

controls to test if their addition mitigates flooding in the watershed for storm events with different 

return periods.  
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Fig. 6. Use case implementation as a model program and two model instance resource types. 

The metadata framework was implemented within HydroShare and used to share the model 

program and model instance resources for the example application. HydroShare, as introduced 

earlier, is an online system for managing resources adhering to a Resource Data Model (Horsburgh 

et al., 2015; Tarboton et al., 2014a). The HydroShare architecture organized as shown in Fig. 7 

(Heard et al., 2014) consists of open source components including Django, a web application 

platform, Mezzanine, a content management system meta-framework, and the Integrated Rule-

Oriented Data System (iRODS), an enterprise storage management middleware (Rajasekar et al., 

2010). Results detailing the technical aspects of the software implementation are presented in 

Section 3.1.  
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Fig. 7. HydroShare’s general architecture emphasizing the connections between the user, 

HydroShare, iRODS, and third party applications.  

Although a SWMM-specific model instance resource type could have been designed and 

implemented within HydroShare, we used the generic model instance resource type when 

implementing the use case to provide an example applicable to any environmental model. A 

SWMM-specific model instance would have allowed for the capture of additional metadata 

relevant only to SWMM models. Software extensions to HydroShare could then provide custom 

functionality and applications able to operate specifically on SWMM-model instances. Using the 

generic model instance offers broad use across environmental models, but it lacks the potential for 

customization that becomes possible when targeting a specific model instance resource type.  
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3. Results  

3.1. Results for software implementation within HydroShare 

Fig. 8 shows the class structure for the new model resource types implemented within 

HydroShare based on the metadata framework design. Each resource type consists of three main 

categories of classes: the resource data type class, the classes for the individual extended metadata 

elements, and the container class that groups all metadata elements. For example, the classes in 

the three categories for the model instance resource type are 1) ModelInstanceResource, which is 

the resource data type class, 2) ModelOutput and ExecutedBy, which are the classes representing 

the extended metadata elements, and 3) ModelInstanceMetaData, which is the class that contains 

all the metadata elements. The resource type classes for model instance and model program inherit 

from the BaseResource class, which, in turn, inherits from the Abstract Resource class. This 

structure allows the model resource type to inherit the Dublin Core metadata elements. Specific 

model instance metadata, like that for the SWAT model instance resource type, inherits from the 

generic model instance resource type class. The diagram shown in Fig. 8, therefore, could be 

extended for other specific model instance metadata.  
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Fig. 8. Metadata classes for model resources implemented within HydroShare. 

Each Model resource type extends the BaseResource class by representing specific 

metadata elements as individual classes. These extended metadata classes inherit from the 

AbstractMetaDataElement class. In this class, there is one required attribute: term. Other attributes 

needed for further description can be added. For example, the extended metadata class ExecutedBy 

for the ModelInstance resource has the model_name, and model_program_fk attributes. The 

specific metadata elements are grouped in the CoreMetaData class. The ModelProgramMetaData, 

and ModelInstanceMetaData classes inherit from the CoreMetaData class, which is the metadata 
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container that includes the common metadata element objects. These classes are the link between 

the ModelProgramResource, the ModelInstanceResource classes, and their extended metadata 

classes. One-to-one relationships are made between ModelProgramMetaData and 

ModelInstanceMetaData classes and each of their respective extended metadata classes. These 

extended metadata classes are then included as supported metadata elements for their related 

resources (ModelProgram or ModelInstance resources) where they could be used to create, update, 

and delete class instances associated with these resource types. 

An important method of the CoreMetaData, ModelProgramMetaData, 

ModelInstanceMetaData, and SWATModelInstanceMetaData is get_xml. This method converts 

the stored metadata into an RDF-XML format. The CoreMetaData.get_xml method extracts the 

generic metadata elements, while the get_xml method for each specific resource extracts the 

related extended metadata elements. For example, for a ModelInstance resource, the 

CoreMetaData.get_xml method is used to extract the Dublin Core standard metadata elements, 

while the ModelInstanceMetaData.get_xml method is used to extract the extended metadata 

elements. 

 

3.2. Results from the example use case 

Fig. 9 illustrates the metadata that can be captured for the example use case using the 

generic model instance and model program resources. Each resource has a title, creator, and other 

metadata that follow the Dublin Core metadata standard. In addition, extended metadata elements 

for each resource (with names shown using the “hsterms” prefix) help to more fully describe the 

model instance and corresponding model program used for executing the model instance. Fig. 9 

also shows how the model program resource type, in this case the SWMM model (Rossman et al., 
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2016), and the model instance resource type, in this case a Rocky Branch watershed simulation, 

are connected using the ExecutedBy relationship.  

Fig. 10 is an activity diagram showing the steps used to create new model resources on 

hydroshare.org. Three resources were created in this example: a model program resource for the 

EPA-SWMM model version 5.1.009 (Rossman et al., 2016) and two model instance resources for 

the Rocky Branch watershed simulations (e.g., Morsy, 2015). Fig. 11 shows the Graphical User 

Interface (GUI) for how a user selects a model resource type within HydroShare. In the current 

implementation, the model resource types are grouped together under the modeling title. Once the 

user selects the desired resource type, adds a title, and uploads the related files, the new resource 

is created in HydroShare and the user sees the landing page for this newly created resource. At this 

point, a unique identifier specific to the HydroShare system has been automatically assigned to the 

resource. Later, if the user decides to formally publish the resource in HydroShare, a more formal 

digital object identifier (DOI) would be assigned to the resource. After a resource is formally 

published and a DOI is assigned, the user can no longer make changes to the resource metadata or 

the uploaded files. Prior to formal publication, authorized users can make changes to the resource 

at any time.  
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Fig. 9. Results of populating the model instance and model program metadata for the example 

use case.   
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Fig. 10. Activity diagram describing the steps required to create a new model instance resource 

within HydroShare. Step 11 is highlighted to indicate that only model instances require coverage 

and not model programs. 
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Fig. 11. Screen shot showing model resource types currently implemented on hydroshare.org. 

Fig. 12 and 13 show the resource specific metadata for the model program resource and 

the generic model instance resource types, respectively, on their landing pages in HydroShare. 

These figures show HydroShare’s metadata “edit” mode to illustrate all of the available metadata 

elements, as HydroShare’s default is to hide metadata elements for which there are no values in 

regular “view” mode. Note that the model instance is linked to the model program used for 

execution (Fig. 13). Under the “Model Program used for execution” heading on the generic model 

instance landing page, there is a dropdown list that collects all the available public model program 

resources in HydroShare. The user chooses the model program resource used to execute the model 

instance resource from the dropdown list (or creates a new model program resource if it is not 

already available). Once the user chooses the desired model program resource, a summary of the 

model program metadata is displayed to aid the user in confirming that the correct model program 

was selected. 
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Another important aspect of the model instance resource is the coverage metadata. Fig. 14 

shows how the coverage metadata appears in the resource’s landing page in edit mode. As 

explained above, there are two types of coverage metadata elements: spatial and temporal. All of 

the spatial metadata is expressed in World Geodetic System (WGS) 84 coordinates, which is used 

throughout HydroShare. This allows standard web tools to search the metadata easily without full 

GIS functionality. However, users must be aware that errors can be introduced if the spatial data 

is transformed from another coordinate system to WGS 84. For the use case, the spatial metadata 

was entered for this model instance as a two-dimensional bounding box (rather than an XY point). 

Once the user inserts the bounding coordinates, the box will appear on the map so that the user can 

confirm the spatial coverage extent. The user can also specify the coverage by clicking a point on 

the map or dragging a box on the map. The temporal coverage metadata consists of start and end 

dates and times for the model instance. This is implemented in the data model based on the W3C-

DTF scheme, which by default enables full specification of a date/time string, including a time 

zone. Currently, as seen in Fig. 14, the HydroShare interface supports only the entry of dates 

without times or timezone specifications. HydroShare uses this coverage metadata to support both 

spatial (e.g., map-based) and temporal searches to identify relevant resources.  
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Fig. 12. Model program resource specific metadata on the resource’s landing page on 

hydroshare.org (shown in edit mode). 
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Fig. 13. Generic model instance resource specific metadata on the resource’s landing page on 

hydroshare.org (shown in edit mode). 
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Fig. 14. Model instance resource type coverage metadata on the resource’s landing page (shown 

in edit mode) on hydroshare.org. 

4. Discussion 

The metadata framework proposed in this study was designed to provide a balance between 

simplicity and complexity; simplicity to encourage to sharing of models by model producers, and 

complexity by providing a sufficient level of information to enable discovery and use of the model 

by potential consumers. One of the most difficult design decisions in this work was to separate 

model programs and model instances into two different resources rather than a single combined 

resource. The design decision was made for the following reasons. First, it allows the model 

program metadata to be entered only once within the system. Second, it simplifies the task of 

identifying all model instances executed by a given model program stored within the system. 

Third, it provides a path for online execution of many model instances that are linked to a single 
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model program. We felt these benefits outweighed the added complexity and management needs 

introduced by separating the model program and model instance concepts into different resources 

types. We acknowledge that some use cases require incremental changes to a model program’s 

source code, and we are considering options for capturing these incremental changes to model 

programs without the need to create a completely new resource every time a model program’s 

source code has been changed. That said, users are not restricted from uploading a model program 

within a model instance, if desired. If this becomes common practice, we are considering allowing 

a model instance resource’s ExecutedBy field to point to itself. This would signify to a user that 

the model program, whether it be a complied binary file or the source code, is located within the 

model instance resource.  

Another key design decision was to allow a model instance resource to be linked to only 

one model program resource. We realize that it is possible for a model instance to be executed 

successfully by multiple model program resources (e.g., two model programs with different 

versions but compatible with the same model instance). However, allowing a model instance to be 

linked to more than one model program would introduce uncertainty about what program was used 

to execute the instance for a given study. Reproducibility could be compromised as a result, 

because executing the model instance with a different model program may return slightly different 

results. For this reason, the design requires a model instance to be linked to only one model 

program. 

We encountered through the use case application the important issue of how to handle the 

case where the person uploading a resource into HydroShare, what HydroShare refers to as the 

resource’s owner, is not the author of that resource. HydroShare separates intellectual credit 

attribution from access control and management of content. The Dublin Core vocabulary term 
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"Creator" is used in HydroShare metadata for the intellectual originator of the content. This is 

displayed as Author on landing pages and used in citations. The term "Owner" is used in access 

control and management of content and is typically the HydroShare user responsible for uploading 

the content (although ownership can be transferred after uploading, and others can be assigned 

permissions to edit and upload content). In the SWMM model program resource example, the 

EPA-SWMM model was authored by researchers at the United States Environmental Protection 

Agency (EPA) but was uploaded to HydroShare by the modeler, one of the authors of this paper. 

The original authors of SWMM were entered as authors for the resource and the relationship 

“isCopiedFrom” was added to the resource pointing to the website from which the model program 

was obtained. With this added relationship, the HydroShare system automatically generates and 

displays a citation on the resource’s landing page that shows that the resource in HydroShare was 

replicated from an external source, as shown below. The user that uploaded the resource into 

HydroShare, but did not author the resource, remains the resource owner but rightly does not 

receive authorship credit for this resource within the citation.  

 

Rossman, L., T.Schade, D.Sullivan, R.Dickinson, C.Chan, E.Burgess (2016). Storm Water Management Model 

(SWMM), Version 5.1.010 with Low Impact Development (LID) Controls, http://www2.epa.gov/water-

research/storm-water-management-model-swmm, accessed 4/4/2016, replicated in HydroShare 

at:http://www.hydroshare.org/resource/2cddae40e9594c21b947fdbbe4225439 

 

A limitation of this work at its current stage is the ability to scale-up to support dozens of 

different specific model instance resource types. Ideally, the creation of new HydroShare resource 

types would be simple enough that it could be done by the broader community of model 

developers. Currently, however, the process of creating a new resource type within HydroShare is 

http://www2.epa.gov/water-research/storm-water-management-model-swmm
http://www2.epa.gov/water-research/storm-water-management-model-swmm
http://www.hydroshare.org/resource/2cddae40e9594c21b947fdbbe4225439
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time consuming and requires advanced knowledge of the HydroShare system and architecture. 

One approach to address this would be to focus on simplifying the process for creating new 

resource types. Another possibility would be to alter the approach described in this paper so that 

specific model instances are not implemented as new resource types, but still can have extended 

metadata for specific model programs. In this case, all model instances would be uploaded using 

a single resource type, but there would be a mechanism to filter the metadata fields available to 

the user once the user or system identifies the uploaded model instance as being a specific and 

known type (e.g., a SWAT model instance). More research is needed to test these alternative 

options in terms of their practicality, usability, and scalability within HydroShare.  

Discovery is an important use case that model metadata must support. In HydroShare, the 

metadata model for all resources was designed to support discovery. However, the search interface 

design that exposes metadata elements within the existing data model is still under active 

developement. Currently, users can discover HydroShare resources by searching and filtering 

model resources using many of the Dublin Core metadata elements implemented in the 

HydroShare data model (i.e., the generic resource metadata). For example, resources can be 

discovered by model authors (dc:creator), model resource type (dc:type), model keywords 

(dc:subject), full text search of a model resource descriptions (dc:description/dcterms:abstract), 

model spatial locations (dc:coverage/dcterms:box or dcterms:point), and model temporal duration 

(dc:coverage/dcterms:period). Other Dublin core elements (e.g., dc:language) have not yet been 

exposed as discovery facets.  

The HydroShare system does not yet allow for discovering resources using the specific 

metadata designed for each resource type. Using the resource specific metadata defined for model 

instances and programs in this research, however, will further enhance and improve the discovery 
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capabilities. For example, if a user would like to discover all model instance resources within 

HydroShare that include output files along with model input files, the system could use the 

metadata element ModelOutput/includesModelOutput. If a user would like to discover all the 

model instance resource types that are executed by a specific model program available in the 

HydroShare system, the system could use the metadata element  ExecutedBy/modelProgramName. 

Also, if a user would like to discover all model program resources that are compatible with a 

specific operating system, the system could use the metadata element modelOperatingSystem. 

As HydroShare continutes to evolve, the types of searches users wish to complete will help 

to guide future expansions of the metadata framework. There are many example use cases one 

could imagine for enhanced discovery. For example, a user may wish to identify model programs 

that have the ability to execute using a hot start file, which may be required for a specific 

application like flood forecast modeling. In the current system, users can specifiy such details in 

the resource abstract as free text and/or as keywords. This reduces the metadata complexity, but if 

certain queries like this become a common occurence within the system, then a new metadata 

element (or elements) might be needed to describe this property more precisely. Doing so, users 

would have the capability to more easily search and discover these resources without having to 

rely on free text searches of the generic metadata fields (e.g., dc:description/dcterms:abstract). 

Therefore, as the system becomes more widely used, searches can be tracked, which will help 

guide future exapansions of the metadata to better support common queries. 

A longer-term goal of this work is to provide server-side execution of model instances 

directly through HydroShare. By knowing and storing the exact model program used to execute a 

model instance within HydroShare, it should be possible to install the model program onto server-

side computational resources and execute a model instance using these resources. The updated 
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model instance including the newly generated output files could be automatically added to 

HydroShare via HydroShare’s existing web service application programming interface (API), 

updating the original resource. Research on methods for achieving this goal, given the complexities 

of server-side model execution including the potential for large model instance sizes and long 

model execution times, has begun. Being able to execute a model instance directly through 

HydroShare could offer significant benefits including model reproducibility where a model run is 

performed in a controlled environment preconfigured with all required software dependencies.  

 

5. Conclusions 

This work presents a model metadata framework to support discovery, sharing and 

interpretation of environmental models. Key features of the framework are (1) that the model 

program and model instance are separate concepts with a one-to-many relationship (a single model 

program may be linked to many model instances), (2) that metadata for these concepts extend the 

well recognized and commonly used Dublin core metadata, and (3) that the model instance concept 

is a hierarchy with a generic parent class implementable for any model program, and a more 

specific level tailored for certain model programs.  

A key challenge in this or any other metadata framework design is providing the right 

balance between rich metadata for adequately describing details of resources and minimal 

metadata that is critical and can be easily populated. The growing number of generic data 

repositories available to environmental modelers (e.g., figshare.com, zenodo.org, institutional 

repositories, etc.) largely adopt a minimal metadata approach. These systems provide metadata 

roughly equivalent to the metadata used to describe a generic resource in the HydroShare system. 

While this generic metadata could be used to describe, share, and discover model programs and 
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model instances, it misses many other properties of these resources that could be leveraged for 

improved search, discovery, and use of model resources. Although these properties are generally 

included in the configuration files of the model, each model has unique configurations files, 

making it difficult, if not impossible, for interested users and/or an automated system to extract 

the pertinent metadata across models. The purpose of the metadata analysis and design presented 

here is to provide a more thorough, detailed metadata approach for model programs and instances. 

We expect to improve this metadata design over time as lessons are learned from its use, and as 

progress is made within the broader metadata and scientific modeling communities. 

With the growing number of systems that serve a role within the larger cyberinfrastructure 

being built to support science, interoperability between these systems is becoming a more pressing 

need. If these systems are built from an agreed upon metadata framework, then it simplifies the 

transfer of resources between the systems. This would encourage each system to specialize in 

selected use cases while relying on external systems to handle other use cases outside of its scope. 

For example, in this work HydroShare specializes in model metadata, resource sharing, and 

resource publication. In ongoing research, we are building interoperability with the external 

SWATShare system that focuses on SWAT model execution and visualization (Rajib et al., 2016). 

By adopting the same metadata and resource file structure for a SWAT model instance, these 

model instance resources can be more easily transferred between the two systems, and users can 

benefit from the functionality and strengths of both applications. 

Future work will be aimed at improving the usability of the model program and model 

instance resources within HydroShare. For example, to reduce the time spent manually completing 

metadata fields, new functionality is planned to automate metadata extraction when a resource is 

uploaded and the metadata are already present within files uploaded with the resource. This would 
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be especially effective for specific model instances whose input files already contain rich metadata. 

Model instances, for example, often include input files containing information on spatial and 

temporal coverage. The system should read these files, extract whatever metadata it can, and 

request only missing metadata fields from the user. Automatic metadata extraction, along with the 

increased use of controlled vocabularies, would increase the usability of the system from both 

sharing and discovery use cases. This approach is difficult, however, given the diversity among 

environmental models; extracting metadata directly from model input files may require a 

significant amount of custom code. One potential long term benefit of this work would be for all 

model developers to add functionality that outputs a standard metadata file that can be read by 

HydroShare and other systems. Ideally, this would be done within the model program source code 

itself, but it could also be implemented as an external utility program. HydroShare and other 

systems could then read this file for automatic metadata extraction. 
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