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The health of livestock, humans, and environments is tied to plant diversity—and

associated phytochemical richness—across landscapes. Health is enhanced when

livestock forage on phytochemically rich landscapes, is reduced when livestock forage

on simple mixture or monoculture pastures or consume high-grain rations in feedlots,

and is greatly reduced for people who eat highly processed diets. Circumstantial

evidence supports the hypothesis that phytochemical richness of herbivore diets

enhances biochemical richness of meat and dairy, which is linked with human and

environmental health. Among many roles they play in health, phytochemicals in herbivore

diets protect meat and dairy from protein oxidation and lipid peroxidation that cause

low-grade systemic inflammation implicated in heart disease and cancer in humans.

Yet, epidemiological and ecological studies critical of red meat consumption do not

discriminate among meats from livestock fed high-grain rations as opposed to livestock

foraging on landscapes of increasing phytochemical richness. The global shift away

from phytochemically and biochemically rich wholesome foods to highly processed

diets enabled 2.1 billion people to become overweight or obese and increased the

incidence of type II diabetes, heart disease, and cancer. Unimpeded, these trends

will add to a projected substantial increase in greenhouse gas emissions (GHGE)

from producing food and clearing land by 2050. While agriculture contributes one

quarter of GHGE, livestock can play a sizable role in climate mitigation. Of 80 ways to

alleviate climate change, regenerative agriculture—managed grazing, silvopasture, tree

intercropping, conservation agriculture, and farmland restoration—jointly rank number

one as ways to sequester GHG. Mitigating the impacts of people in the Anthropocene

can be enabled through diet to improve human and environmental health, but that will

require profound changes in society. People will have to learn we are members of nature’s

communities. What we do to them, we do to ourselves. Only by nurturing them can we

nurture ourselves.
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THE ROLE OF LIVESTOCK IN HUMAN AND
ENVIRONMENTAL HEALTH

Palates link the health of soil and plants with animals
and biophysical environments. A palate attuned to a
landscape enables herbivores and humans to meet needs
for nutrients and to self-medicate (1). That evolves from three
interrelated processes: biochemically mediated flavor-feedback
associations where cells and organ systems, including the
microbiome, alter liking for wholesome foods as a function of
needs; accessibility to phytochemically and biochemically rich
foods; and learning in utero and early in life to eat wholesome
combinations of foods (2). That occurs when wild or domestic
herbivores forage on phytochemically rich landscapes, is reduced
when livestock forage on simple mixture or monoculture
pastures or consume high-grain rations in feedlots, and is greatly
reduced for people who eat highly processed foods obtained in
contemporary food outlets (Figure 1).

Diets affect human and environmental health. The global shift
to highly processed diets has enabled 2.1 billion people to become
overweight or obese and increased incidence of type II diabetes,
heart disease, and cancer (3–6). These trends have been amplified
by primary health strategies focused on treating symptoms rather
than preventing disease by promoting healthy diets and lifestyles
(7). Unimpeded, these trends will add substantially to a projected
80% increase by 2050 in greenhouse gas emissions (GHGE) from
food production (8).

Industrial agriculture uses for crops or pastures nearly half
of the ice-free land on Earth, contaminates fresh and marine
waters with nutrients and biocides, and contributes roughly one-
quarter of the total GHGE from all economic activities (9). The
input is larger in developing countries where agriculture and
related land use activities can be more than half of total emissions
(10). Growing human populations and demand for meat are
increasing GHGE by agricultural practices dependent on fossil
fuels and by converting tropical forests, savannas, and grasslands
to crop and pasture lands, threatening many plant and animal
species with extinction (11–13).

Some contend grain-based livestock finishing systems have
less environmental impacts than forage-based grazing systems
(14). While ruminant livestock begin their lives on pastures,
nursing from their mothers and eating forages, only 4% of young
animals continue to forage on pastures while the other 96% go to
feedlots in the U.S. (15). Feedlots are characterized by controlled
production practices that combine genetics, animal husbandry,
and “nutritionally optimized” feeds to yield fat animals in less
time than with grazing systems. That combination accelerates
growth and enables more meat to be produced per unit area
of land. Thus, Poore and Nemecek (16) claim for key metrics,
such as land use and GHGE, feedlot systems generate fewer
negative environmental impacts per unit of meat produced,
especially for beef. Compared with feedlots, some pasture-
finished beef production systems have markedly lower climate
impacts, but pasture systems that require significant synthetic
fertilization, inputs from supplemental feed, or deforestation to
create pasture have substantially greater climate impacts than
feedlot systems (17).

Others contend regenerative agriculture can reduce GHGE
and sequester GHG, with added benefits that include enhanced
biodiversity and ecological function. That occurs as damage to
soil—from tillage, inorganic fertilizers, and biocides—is rectified
with plant cover and animal manure that continually nurture
soil in ways not possible with conventional production of crops
grown to feed livestock in feedlots (18–23). Plant diversity and
grazing are vital for maintaining healthy soil to sustainably grow
grains in rotation with pastures on farmland (22, 24). Integrating
livestock and perennial plants with food crops can restore soil and
ecosystem health and increase yields (25). Moreover, farmlands
can be managed to enhance biodiversity from microbes in soil to
plants, insects, fish, birds, and mammals including livestock that
contribute to production of wholesome foods, healthy soils, clean
water, and sequestering GHG (26).

Managed grazing is a vital part of regenerative agriculture.
At the highest level of sophistication, a skilled shepherd is
an “ecological doctor” who has learned to use grazing to
produce meat or milk and to create environmental health
(27, 28). The herd in his or her hands is a living organism,
biological and ecological “tools” for creating health of soil,
plants, wild and domestic animals, and humans. Managed
grazing can moderate climate change, an outcome that
challenges the view of feedlots as the best way to reduce
GHGE from livestock (29, 30). Collectively, managed grazing
and other regenerative agricultural practices—silvopasture,
tree intercropping, conservation agriculture, and farmland
restoration—rank number one as ways to sequester GHG (31).

As opposed to pastures with few plant species and feedlots,
health is enhanced when animals graze phytochemically rich
mixtures of grasses, forbs, shrubs, and trees (32–37). Diverse
plant communities are nutrition centers and pharmacies that
enable health prophylactically and therapeutically (1). They
are thus etiologic in the health of herbivores, omnivores,
and carnivores above and below ground. Animals foraging on
phytochemically diverse pastures require less anthelmintics and
antibiotics than animals foraging on monoculture pastures or
in feedlots. Overuse of antibiotics in feedlots adds to antibiotic
resistance, a global health challenge (38, 39).

Yet, during the past 70 years, people have confined livestock
in feedlots under conditions that violate the five freedoms of
animal welfare (40, 41). They are moved from familiar social and
biophysical environments (home) to unfamiliar environments
(feedlots), which violates their freedom from fear and distress.
Animals in feedlots are fed total-mixed rations high in grain with
little chance to self-select their own diets, which violates their
freedom to maintain individual health and vigor and produces
changes in blood cortisol and behavioral parameters indicative
of stress (42, 43). Individuals vary markedly in their preferences
for different foods due to past experiences and individuality
in morphology and physiology, which differentially affects their
abilities to tolerate excesses and deficits of nutrients in their
diets (44, 45). Animals acquire aversions to foods eaten too
often or in excessive amounts (46, 47), and large numbers of
animals confined and fed only total-mixed rations high in grain
experience stress and malaise (nausea) (48), which violates their
freedom from discomfort. To deal with cumulative effects on
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FIGURE 1 | The health of life in soils, plants, herbivores, humans, and environments (land, water, and air) is tied to plant diversity—phytochemical richness—across

landscapes.

morbidity and mortality (49), animals are given antibiotics to
counter illness from phytochemically impoverished diets and
crowded conditions, which together violate their freedom from
pain, injury, and disease.

Collectively, these practices, which have been scaled so
people can afford to eat large amounts of grain-fed meat and
dairy products, can be harmful for herbivores, humans, and
environments (50–55). People in the U.S. eat meat and dairy
at nearly three times the global average (56). Reducing intake
of meat from feedlots, while increasing intake of meat from
livestock finished on phytochemically rich landscapes, could
reduce what some consider excessive intake of meat and increase
intake of biochemically rich meat arguably of better quality, a key
point not considered in the Eat-Lancet report (57).

While most livestock are fattened in feedlots in the U.S., and
increasingly in other countries, those patterns are changing. In
the U.S., for example, retail sales of pasture-finished beef have
risen from $17 million in 2012 to $272 million in 2016 (15). That
is 4% of beef sold and a market for pasture-finished beef that has
grown at 100% annually for 4 years. People are also buying more
dairy products produced from pasture (58). Interest in forage-fed
meat and dairy is due to benefits for animal-welfare, consumer
and environmental health, as well as authentication, terroir and
geographical origin status.

Despite their alleged benefits, research has not elucidated
linkages among plant diversity in herbivore diets and human
health for either feedlot or pasture-based livestock production.
Nor is plant diversity reflected in the generic label “grassfed,”
which is why the flavors and biochemical characteristics of
“grassfed” beef differ (59–61). In the absence of studies, we review
circumstantial evidence that grazing systems have unrecognized

benefits for health by addressing four questions: (1) Are specific
compounds (e.g., omega-3 fatty acids) etiologic in human health?
(2) Does the phytochemical richness of herbivore diets influence
the biochemical richness of meat and dairy, and if so, does that
affect the flavor and satiating characteristics of meat and dairy?
(3) Does biochemical richness of meat and dairy affect human
health? (4) How do diets of herbivores and humans influence
environmental health?

BIOCHEMICAL COMPLEXITY AND HUMAN
HEALTH

Diet influences fatty acid profiles of animal tissues, and people
often promote the health benefits of grassfed meat and dairy
products based on improved ratios of omega-6 to omega-
3 fatty acids (62, 63). Compared with diets high in cereal
grains fed in intensive feeding systems, herbivore diets that
are high in plants yield animal products that have higher
levels of omega-3 fatty acids. Some scientists, medical doctors,
nutritionists, and fitness advocates believe a healthy diet should
have no more than 1–4 times more omega-6 than omega-
3 fatty acids, but people who eat a diet high in processed
foods consume a far higher ratio of omega-6 to omega-3
fatty acids (64). This imbalance is hypothesized to explain the
increased incidence of heart disease, cancer, rheumatoid arthritis,
autoimmune, and neurodegenerative diseases thought to stem
from inflammation (65).

Increasingly in many nations, intake of the omega-6 linoleic
acid comes from vegetable oils processed in ways that remove
healthful components such as fiber, micronutrients, and many
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other phytochemicals present in unprocessed vegetables and
seeds (66). Concentrated sources of linoleic acid are widely used
as oils for cooking and added to processed and packaged foods.
If these sources of linoleic acid are considered as supplements,
people who eat diets high in processed foods are taking an
equivalent of 11, 1-g capsules of linoleic acid daily over and
above intake from wholesome foods. Yet, people who eat a
processed diet, and ostensibly might benefit from less omega-6s,
are unlikely to consume enough grassfed meat or dairy to offset
their intake of omega-6s in other dietary items (67, 68).

Moreover, the benefits of consuming more omega-3 fatty
acids and less omega-6 fatty acids are questionable. Historically,
omega-6s were considered pro-inflammatory, but that was not
the case in a review of randomized controlled clinical trials of
the effects of the omega-6 linoleic acid on inflammation (69).
Indeed, some studies attribute lower inflammatory markers to
omega-6s (70). In an analysis of 20 prospective cohort studies
from 10 countries, linoleic acid was associated with benefits for
preventing type 2 diabetes and the omega-6 arachidonic acid was
not harmful (71).

Interest in omega-3 fatty acids began with reports that
Greenland Inuits, who ate a diet of oily fish and seal high
in omega-3s, had low rates of cardiovascular disease (72, 73).
Some researchers have questioned these findings because Bang
et al. studied the diets of Inuits and only speculated that
eating marine fats reduced cardiovascular disease (74). Other
researchers emphasize Inuits had a prevalence of cardiovascular
disease similar to non-Inuits; they had high mortality from
cerebrovascular strokes; their general death rate was double that
of non-Inuit peoples; and their life expectancy was roughly 10
years less than theDanish people Bang et al. used for comparisons
(75). Nonetheless, reports by Bang et al. kindled great interest.
Over 5,000 scientific papers—cited as evidence for the cardio-
protective effect of the “Inuit Diet”—have explored the effects on
health of omega-3s (75). Nutrition guidelines encourage people
to eat fatty fish at least twice a week and to take supplemental
omega-3s. Sales of omega-3 supplements are now a billion dollar
industry and a marketing label for grassfed meat and dairy.

Yet, little evidence exists for the benefits of supplemental
omega-3 fatty acids (75, 76). Initial trials with fish oil in
Italy (77) and Japan (78) were encouraging, but subsequent
studies cast doubts on their alleged benefits (79). Except for
one trial (80), randomized, placebo controlled clinical trials
have not shown protection against coronary events (81–86).
Nor do supplemental omega-3s have any effect on the primary
prevention of cardiovascular disease in people with diabetes (87).
While they can improve heart function and reduce scarring after
a heart attack (88), taking omega-3s preventatively does not lower
risk of cardiovascular disease (89, 90), cancer (91), or all-cause
mortality (92). In a meta-analysis of 10 trials, taking marine-
derived omega-3s for an average of 4.4 years was not associated
with reduced fatal or non-fatal coronary heart disease or major
vascular events, stroke, cancer, or all-cause mortality (93). Nor
does α-linolenic acid (ALA), the plant-derived precursor to
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA),
reliably reduce risk of cardiovascular disease (94). Taking EPA-
DHA or ALA did not decrease cardiovascular events for patients

with a myocardial infarction who were receiving lipid-modifying,
antihypertensive, and antithrombotic therapies (81). Neither EPA
nor DHA retard macular degeneration (95) or slow memory loss
(96–98). Some epidemiological studies suggest DHA is associated
with less risk of Alzheimer’s disease, but a complete account will
require placing DHA in the context of the entire spectrum of
omega-3 fatty acids (99).

These findings highlight often overlooked evidence that
human health is enhanced as the biochemical richness of diets
increases from compounds such as EPA or DHA, to mixtures
of compounds such as omega-3s (100), to foods such as oily
fish that contain hundreds of compounds in addition to omega-
3 fatty acids (101), to mixtures of wholesome foods such as
oily fish, meat and milk, vegetables and fruits that contain
tens of thousands of bio-active compounds (102). Inconsistent
findings among omega-3 trials are due in part to the simplicity of
compounds—for example the simplicity of EPA, DHA, or ALA—
relative to the synergies that occur among all of the omega-3 fatty
acids (100). That is why supplements or foods with added omega-
3s do not exhibit consistent benefits, yet increased intake of fish
is associated with lower inflammatory responses in people with
metabolic syndrome (103). That is also why current advice is to
eat oily fish rather than take supplemental omega-3s (100).

Phytochemically rich diets for herbivores and biochemically
rich diets for humans include not only primary compounds—
such as energy, protein, minerals, and vitamins—but the tens of
thousands of other so-called secondary compounds—including
but not limited to phenolics, terpenoids, and alkaloids—that in
moderate amounts can have health benefits (1, 2). While any
primary or secondary compound can be toxic when ingested
in too high amounts, they have health benefits when consumed
in moderation and in combinations as part of phytochemically
diverse diets for herbivores and biochemically diverse diets
for humans (1, 45). Complementarities and synergies among
primary and secondary compounds within and among meals
promote health.

HERBIVORE DIETS LINK MEAT AND DAIRY
WITH HUMAN PALATES AND HEALTH

By providing high-quality protein and essential micronutrients
such as iron, zinc, and vitamin B12, meat is important in
human nutrition. Nevertheless, some contend people now eat
too much red meat and processed meat, which is associated in
epidemiological (prospective cohort) studies with increased risk
of cancer, cardiovascular and respiratory diseases, and type 2
diabetes (53, 104–106). Conversely, prospective cohort studies
show reduced mortality from all causes in vegetarians (9%)
and vegans (15%) compared with non-vegetarians (107), and
reduced mortality of 12–20% in vegetarians compared with non-
vegetarians (108).

These findings notwithstanding, a prospective cohort study of
people in the United Kingdom found no reduction in mortality
for vegetarians compared with non-vegetarians (109). In that
study, both vegetarians and non-vegetarians had lower rates
of mortality than the national average. Meat intake among
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non-vegetarians was a modest 79 g/d in men and 67 g/d in
women, and intake of vegetables and fruit was only 20% higher
for vegetarians than non-vegetarians. Eating fruits and vegetables
with meat likely benefited the health of non-vegetarians.

Some contend eating too much red meat promotes oxidative
stress and low-grade systemic inflammation—characterized by
elevated plasma levels of pro-inflammatory markers such as C-
reactive protein, serum amyloid A, tumor necrosis factor alpha,
and interleukin 6—implicated in cancer, cardiovascular disease,
metabolic syndrome, insulin resistance, and type 2 diabetes (110,
111). These diseases allegedly are due to ingesting excesses of
compounds such as heme iron in red meat and nitrate/nitrite in
processed meat (53, 112–115).

Inferring the health impacts of dietary patterns from
epidemiological studies is problematical due to multiple
confounding factors, many of which are not known or taken
into account (116), including how the phytochemical diversity
of herbivore diets affects the biochemical characteristics of meat
and milk. Epidemiological studies that find inverse associations
between eating red meat and health do not distinguish between
meat from livestock fed high-grain diets in feedlots and livestock
foraging on phytochemically rich mixtures of plants. Nor do they
address how herbs, spices, vegetables, and fruits eaten in a meal
with meat can enhance health.

Herbivore diets influence the flavor and biochemical
richness of meat and dairy such that laboratory analyses can
distinguish animals eating diets of increasing phytochemical
richness, ranging from cereal grains to grain-pasture mixes
to pastures (117). Among many other compounds, phenolics,
carotenoids, and terpenoids in herbivore diets can enhance
the flavor and biochemical characteristics of meat, fat, milk,
and cheese (118). For example, tannins in herbivore diets
improve the flavor of meat by reducing rumen bacteria that
produce “off-flavors” from skatole, a mildly toxic organic
compound produced from tryptophan in the mammalian
digestive tract; tannins also affect rumen biohydrogenation of
polyunsaturated fatty acids, which changes fatty acid profiles
in meat (119). Adding garlic or essential oils from juniper,
rosemary, or clove to the diets of lambs and calves improves
the flavor of their meat and each of these plants contains
a host of secondary metabolites that can benefit human
health (120–122).

Phytochemical richness may be one reason why people have
decidedly lower post-prandial inflammatory responses when
they eat the meat of kangaroos foraging on diverse mixtures
of native plants (a traditional hunter-gatherer meat meal) than
when they the eat meat of wagyu cattle fed high-grain diets in
feedlots (a modern meat meal) (123). Eating any food causes a
transient post-prandial inflammatory response (124–126), and
when people eat meat and fat, protein oxidation and lipid
peroxidation cause inflammation (127). Yet, when herbivores
eat phytochemically rich diets, compounds in their diets protect
meat and dairy from the protein oxidation and lipid peroxidation
that cause inflammation (128–130). In the study of kangaroos
and wagyu cattle by Arya et al. (123), diet and animal were
confounded and no studies have assessed how the phytochemical
richness of forages herbivores eat affects the biochemical

richness and flavor of their meat and fat and how that might
affect inflammation.

Hunter-gatherers are noteworthy for their metabolic and
cardiovascular health (131). They have less heart disease, cancer,
diabetes, and osteoporosis than people who eat diets high in
processed foods, and that is not because hunter-gatherers die
before they develop these diseases (132). Although their diets
are high in red meat, fat, and milk, the Maasai in southeastern
Africa have less heart disease and cancer than do people who eat
a diet high in processed foods (133). Nor are the diets of hunter-
gatherers necessarily low in carbohydrates, as is often argued:
the Hadza diet includes 16–20% honey, which is roughly 15% of
their energy intake (131). Their low incidence of cardiovascular
disease and obesity can be attributed in part by their higher
levels of physical activity compared with people who eat diets
high in processed foods (134, 135). The Maasai also add up
to 28 herbs to meat-based soups and 12 herbs to milk (133).
Diets of hunter-gatherers are also less energy dense and richer in
fiber, micronutrients, and phytochemicals than processed diets.
Findings from clinical trials and prospective cohort studies show
relatively high intakes of dietary fiber and whole grains are
complementary, and the prominent dose-response relationships
with non-communicable diseases suggest the responses are
causal (136).

Historically, Native Americans used wild berries—including
but not limited to serviceberry (Amelanchier alnifolia),
highbush cranberry (Viburnum trilobum), chokecherry (Prunus
virginiana), and silver buffaloberry (Shepherdia argentea)—
for food and medicine. Dried meat and fat were combined
with berries to make pemmican, thus enabling use of dried
berries during fall and winter. Berries contain rich arrays
of phytochemicals that protect against metabolic syndrome,
diabetes, diabetic microvascular complications, hyperglycemia,
and pro-inflammatory gene expression (137). Compounds
in berries improve metabolic syndrome by modulating lipid
metabolism and energy expenditure. Berries contain polar
compounds—proanthocyanidins, anthocyanins, and phenolic
acids—that are hypoglycemic agents whose activities strongly
inhibit IL-1β and COX-2 gene expression. Berries also contain
non-polar compounds such as carotenoids that inhibit aldose
reductase, an enzyme involved in diabetic microvascular
complications. Eating fruits (and vegetables) reduces risks of
type 2 diabetes, cardiovascular disease, cancer, and all-cause
mortality (138, 139).

Eating antioxidant-rich fruits and vegetables with a high-
fat meal improves vascular function and thwarts the negative
effects of fat on endothelial function (140–142). Most plasma-
borne markers of inflammation are not reliably raised after
a high-fat meal, but they are reduced in many studies when
meals include vegetables (143).While beneficial effects are related
to antioxidant and anti-inflammatory properties, polyphenolic
compounds also modulate cellular lipid metabolism and thus
mitigate atherosclerotic plaque formation (144). People who eat
polyphenol-rich foods, vitamin E, and calcium have less risk
of colon cancer, evidently because these compounds protect
against excess heme iron in red meat (145). Phytochemicals can
reverse epimutations and counter all of the hallmarks of cancer
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(146, 147). Collectively, these studies suggest eating vegetables
and fruits, along withmeat, enhances health through biochemical
interactions that occur within the body during a meal—with
one caveat. People who eat large amounts of vegetables high in
nitrates—such as beets, celery, lettuce, radishes, and spinach—
along with processed meats high in nitrates may have greater
risks of disease (53), though some contend the body of evidence
suggests foods enriched in nitrate and nitrite provide health
benefits with little risk (148).

Cooking hamburger can generate reactive oxygen species
such as malondialdehyde (MDA), a marker for oxidative
stress and inflammation (149). However, adding polyphenol-
rich antioxidant spices to hamburger enhances flavor while
reducing meat, plasma, and urine MDA levels (150). Herbs
such as rosemary and oregano enhance flavor and inhibit lipid
peroxidation (151). Postprandial plasma levels of MDA rise by 3-
fold after a meal of redmeat cutlets, but drinking polyphenol-rich
red wine along with cutlets reduces levels of MDA by 75% (152).
That is one reason why red wine and red meat complement one
another. Polyphenols also counteract endothelial dysfunction in
people fed a high-fat diet (153). Polyphenols added to a red-
meat diet fed to rats prevents lipid peroxidation in the gut and
absorption of MDA into the plasma (154).

While people must eat large amounts of food to meet needs
for energy and protein, phytochemically rich herbs and spices
added in trifling amounts to foods enhance palatability, satiation
(when a meal ends), and satiety (length of time between meals)
because herbs and spices are good for health (155, 156). People
eat less when food provides more sensory pleasure than they do
of a blander version of the food (157). For example, people prefer
the flavor and satiate more rapidly when soup is spiced with
chili compared to the base soup (158, 159). These flavor-feedback
relationships occur as cells and organ systems, including the
microbiome, respond to primary and secondary compounds in
foods (1). Nevertheless, no research has assessed how palatability,
satiation, and satiety are affected by the biochemical richness of
meat or dairy.

Herbivore diets influence the flavors of milk and cheese
(58). For example, cattle fed diets high in lipids produce sweet,
raspberry-flavored γ-dodecalactone from oleic acid and sweet,
raspberry-flavored γ-dodec-cis-6-enolactone from linoleic acid;
cattle fed diets low in lipids produce milk fat high in cheesy-
flavored fatty acids and precursors of the blue-cheese-flavored
methyl ketones and coconut-peachy-flavored δ-lactones (160).
Among many other compounds in forages, carotenoids impart
a yellow color and they positively influence the flavor of milk and
cheese. Terpenes also positively influence flavor of milk and dairy
products derived from native pastures with diverse species of
grasses, forbs, and shrubs that produce many more terpenes than
do monocultures of grasses. Plant diversity also affects phenolics
in cheeses such as L’Etivaz and Gruyere (161, 162).

When dairy cows graze botanically diverse swards, rather than
a total-mixed ration of cultivated forages and grains, both the
flavor and biochemical richness of their milk and cheese are
greatly enhanced, and local peoples prefer the flavors of milk and
cheese from dairy cows grazing on the botanically diverse swards
(163, 164). Consumers in countries such as Italy and France

select cheeses based on season of production and the related
mix of plants in particular landscapes—for example, cheese
made from high elevation summer pastures in the Alps—their
palates linked locally with soil, plant diversity, and herbivore diets
(165). Compared with trained evaluators, untrained evaluators,
who typify naïve consumers, are less able to distinguish and
savor differences in milk and cheese, which illustrates how past
experiences influence palatability. More research is required to
elucidate how herbivore diets affect biochemical richness and
palatability of milk and cheese (58).

As with milk and cheese, people prefer meat they are
accustomed to eating (166). When Spanish milk/concentrate-
fed lambs and British grassfed lambs were assessed by Spanish
and British taste panels, both panels found British lamb
had higher flavor intensity, but the Spanish panel preferred
milk/concentrate-fed lambs, while the British panel preferred
grassfed lambs (167). Families in Mediterranean and Northern
European countries—Greece, Italy, Spain, France, UK, and
Iceland—also differ in their preferences for meat depending on
whether they are accustomed to eating lambs fattened on grain
or on pastures (168). Most Americans are conceived and raised
eating grain-fed beef, so taste panels of consumers, as well as
experts trained to evaluate sensory features of meat, typically
find grain-finished beef more palatable than grass-finished beef
(169–171). Inconsistent ratings for grass-finished beef in studies
reflect differing past experiences of consumers and differences in
how animals are finished. Collectively, these studies show why
the generic label “grassfed” tells a consumer little about how the
phytochemical richness of the diet contributes to flavor or health
(59–61, 172, 173).

BIOCHEMICALLY RICH DIETS AND
ENVIRONMENTAL HEALTH

As humans transitioned from hunter-gatherers to farmers,
ranchers, and urbanites, our diets shifted to include more
highly processed foods, refined sugars and fats, and meat. How
we produce food is adversely affecting food quality, both the
phytochemical richness of herbs, spices, vegetables, and fruits and
the biochemical richness of meats (1, 172), In turn, the foods
we consume are adversely affecting health, as illustrated when
researchers compared four diets (8): (1) Vegetarian—vegetables,
fruits, grains, sugars, oils, eggs and dairy, and normally not
over one serving a month of meat or seafood; (2) Pescetarian—
vegetarian diet with seafood; (3) Mediterranean—vegetables,
fruit, seafood, grains, sugars, oils, eggs, dairy and modest
amounts of poultry, pork, lamb, and beef; and (4) Omnivorous—
includes all food groups, for example the 2009 global-average
diet and the income-dependent diet projected for 2050, which
is essentially a diet that includes many processed foods high in
refined carbohydrates, refined fats, oils, and meats.

Compared to the omnivore diet, the other three diets had a
lower incidence of type II diabetes, (16–41%), cancer (7–13%),
mortality from coronary heart disease (20–26%), and mortality
from all causes combined (0–18%) (8). When a projected
population increase to 9.7 billion people is combined with a
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projected increase of 32% in per person emissions from shifts to
an omnivore diet, the net effect is an estimated 80% increase in
global GHGE from food production by 2050. Alternatively, net
GHGE from food production would not increase if the global
diet was vegetarian, pescetarian, or Mediterranean. These diets
could ostensibly reduce GHGE below those of the projected 2050
income-dependent diet, with reductions of 55, 45, and 30% for
vegetarian, pescetarian, and Mediterranean diets, respectively.
These findings are similar to other systematic reviews that
assessed the impacts of diets on GHGE, land use, water use, and
health (174).

Life cycle assessments suggest plant foods have less GHGE
than do animal foods, and ruminant meats have greater GHGE
per gram of protein than poultry, pork, eggs, dairy, non-
trawling seafood, and traditional aquaculture (16, 175). Yet,
those assessments generally do not address nuanced relationships
among the health of soil, plants, herbivores, and humans (57,
176).When the environmental footprint—expressed both as land
use for production and as GHGE—of plant and animal foods is
calculated to consider essential amino acids in required amounts,
animal foods are similar to most plant foods due to the higher
quality of animal proteins (177). Grass-finished livestock can also
promote nutrient cycling, soil carbon sequestration, and clean
water and support food security (178–180).

Worldwide, agriculture involves 570 million farms and
ranches—over 90% of them managed by a family and reliant
on family labor—that produce 80% of the world’s food (181).
Agriculture employs over 1.3 billion people, nearly 40% of
the global workforce (181). In nearly 50 countries, agriculture
provides work for 50% of the population, up to 75% in poorer
nations. Production of meat and dairy from cattle, sheep, and
goats provides job security and food from animals that graze land
unsuitable for farming and eat crop residues (179, 180). Livestock
convert more than 432 billion kg of food/fiber byproducts
inedible by humans into human-edible food, pet food, industrial
products, and 4 billion kg of N fertilizer (182). In the U.S., 2.2
million farms and ranches cover 922 million acres; agriculture
employs 1.6 million people and produces $31.8 billion in exports;
and animal-derived foods provide considerable energy (24%),
essential fatty acids (23–100%), protein (48%), and amino acids
for people (34–67%) (182).

Due to low yields of beef from extensive grazing, people
in Brazil are considering converting pastures to cropland for
soybeans or to sugarcane for ethanol, but intensifying grazing
can help meet projected 80% increases in demand for beef by
2050. Compared with crops, intensifying grazing management
produces greater ecological benefits, including enhanced soil
health and carbon sequestration (18, 55). Some nuances of
these relationships are illustrated by comparing biological type
of cattle—small (3) or large (5) frame sizes—and nutritional
regime. Cook et al. (183) found that large-frame steers ate
more forage, gained weight more rapidly, and were heavier at
slaughter than small-framed animals when they were finished in
feedlots, but when they were finished on forages, small-framed
animals were in better body condition. Outcomes depended
on nutritional regimen—finished in feedlots; fed native range
(short-grass prairie in eastern Colorado) yearlong; fed native

range complemented by crested wheatgrass in spring; fed native
range accompanied by crested wheatgrass in spring and forage
sorghum in late summer and winter. Grazing complementary
forages increased beef production per hectare by 53% compared
with grazing only native range. During a 97-day finishing period
in feedlots, feed efficiency (kg feed/kg gain) and weight gain
declined significantly during the last 31 days, a time when weight
gain was mainly fat and little protein. Energy inputs lost in
producing carcasses with excessive cut-away fat were important,
as roughly 91% of the energy for feedlot finishing was for feed
production. Compared with forages, feeding concentrates was
expensive. The opportunity is to create grazing-based livestock-
production systems based on phytochemically diverse forages for
specific ecoregions at temporal and spatial scales that enhance
livestock production and ecological services (184).

Of 80 ways to mitigate climate change, regenerative
agriculture—managed grazing, silvopasture, tree intercropping,
conservation agriculture, and farmland restoration—jointly rank
number one as ways to sequester GHG. Silvopasture systems
that combine growing trees with managed grazing rank ninth
while managed grazing ranks nineteenth (31). The impacts
of managed grazing are due to benefits that accrue through
enhanced plant health and diversity over vast grazing lands
(20, 185). Long-term storage of carbon in soil with silvopasture
can be five times more than with managed grazing alone, not
including carbon stored in trees (186–188). Silvopasture delivers
efficient feed conversion, enhanced biodiversity, improved
connectivity among habitats, and enhanced animal welfare (19).
Grasses, forbs, and shrubs add resilience to silvopasture systems
in the face of rising temperatures, drought, and fires, which are
causing some forests, unable to cope with changing climates, to
die and transform from carbon sinks to carbon sources (189).
In addition to sequestering carbon, emissions of methane and
nitrogen can be reduced when ruminant diets contain tannins
and saponins common in forbs, shrubs, and trees (190–192).
The notion that regenerative agricultural practices can markedly
influence climate is consistent with evidence that carbon uptake
from the atmosphere by native plants, which invaded abandoned
farms following massive depopulation of the Americas following
European arrival, contributed to global cooling during the Little
Ice Age (193).

UPSHOT

Circumstantial evidence supports the hypothesis that plant
diversity—manifest as phytochemical richness of landscapes—
affects the biochemical richness of meat and dairy as well
as human and environmental health. Future studies should
elucidate how plant diversity influences flavor and biochemical
richness of meat and dairy; how phytochemically rich herbs,
spices, vegetables, and fruits complement meals that contain
meat; and how the aforementioned affect the health of people
and the planet. Findings from these studies can achieve three
ends. First, they can reveal relationships among liking for the
flavor of meat and dairy; the ability of phytochemically and
biochemically rich meals that contain meat and dairy products
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to satiate; and the value to cells and organ systems, including the
microbiome, of phytochemically and biochemically rich foods
for humans. Second, they will underscore why more money
and effort ought to be spent creating human and environmental
health by growing and eating wholesome foods and less effort
spent treating symptoms of diet-related diseases. Finally, they
will help people appreciate how the foods we eat reflect our
relationships with land, water, and air, enabled by plant diversity
across landscapes, thus revealing how palates link soil and plants
with animals and environments.

While the Anthropocene is a curse for the havoc it is reeking
globally on populations of plants and animals, including humans,
it is a blessing because Homo sapiens may finally come to
appreciate the crux of Aldo Leopold’s land ethic (194). We
are members of natural communities: what we do to them,
we do to ourselves. Only by nurturing them can we nurture
ourselves. Palates link cultures with landscapes and moderating
the impacts of palates on human and environmental health will
require changes in the kinds of foods we produce and consume,
how we produce food, and how we reduce food waste, which
is 40% of food produced annually and a major contributor

to GHGE (31, 195–197). That will necessitate collaboration
among food producers, food industry, nutritionists, ecologists,
health professionals, educators, and policy makers with support
of consumers. Forsaking diets high in processed foods will be
challenging, but that can be facilitated if consumers appreciate
the influence of diet on human and environmental health (16).
These transformations can occur socially, economically, and
ecologically by growing wholesome foods—plants and animals—
as the basis for meals that nourish the health of people and the
planet (1, 21, 22, 24).
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