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Abstract. In this paper, we present optimal fourth order methods for
finding multiple roots of non-linear equations, where the multiplicity is
known in advance. These methods are based on the third order method
given by Weerakoon and Fernando for simple roots. The dynamical be-
havior of these methods around multiple roots is studied using basin
of attraction in complex plane. We also present numerical examples to
confirm our theoretical results.
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1. Introduction

Solving non linear equations has always been an important task in all branches
of science and engineering, in particular, in mathematical sciences. To find
the exact roots of such equations is not always easy. In such situations, itera-
tive methods are employed which give approximate roots. The task becomes
more tedious if the desired root has multiplicity more than 1. This paper is
devoted to finding approximate roots of higher multiplicity.

The most widely used iterative method for finding a simple root of a
non-linear equation f(x) = 0 is the Newton method given by

xn+1 = xn −
f(xn)

f ′(xn)
(1.1)
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which is quadratically convergent. However, for multiple roots, this method is
only linearly convergent. To retain the quadratic convergence of the method
one of the ideas is to replace f by f

f ′ so that (1.1) becomes

xn+1 = xn −
f(xn)f ′(xn)

f ′(xn)2 − f(xn)f ′′(xn)
.

This method is known to be of order 2, but at the expense of involving second
derivative. Alternatively, if the multiplicity of the root is known, say m, then
(1.1) is modified as

xn+1 = xn −m
f(xn)

f ′(xn)
(1.2)

which is again known to be of order 2 and yet does not involve second deriv-
ative.

With the aim of increasing the order of Newton method, Weerakoon
and Fernando [13] gave the following method

yn = xn − f(xn)
f ′(xn)

,

xn+1 = xn − 2f(xn)
f ′(xn)+f ′(yn)

,
(1.3)

for finding simple roots. This is a cubically convergent method. It can be
checked that for multiple roots, the method (1.3) is only linearly convergent.
The first aim of this paper is to derive a method of the type (1.3) for multiple
roots which is of order 3.

In [7], Kung and Traub conjectured that the method is optimal if its
order is p = 2n−1, where n is the number of function evaluations per iteration.
In that sense, neither the method (1.3) nor the one we propose is optimal
. In this paper, we improve our own method having order 4 and requires 3
functions evaluations per iteration which makes the method optimal. We also
present another optimal fourth order method involving weight functions.

Let us mention that recently, some different fourth order methods have
been obtained for finding multiple roots of non-linear equations. In this di-
rection, Chun and Neta obtained the following method:

xn+1 = xn −
2m2f(xn)f ′′(xn)

m(m− 3)f(xn)f ′′(xn) + (m− 1)2f ′(xn)2
f(xn)

f ′(xn)
. (1.4)

Also, Zhou and Liu in [8], proposed a fourth order method for obtaining
multiple roots

yn = xn −m f(xn)
f ′(xn)

,

wn =
(
f ′′(yn)
f ′(xn)

)1/(m−1)
,

G(wn) = wn + 2m
m−1w

2
n,

xn+1 = yn −mG(wn) f(xn)
f ′(xn)

.

(1.5)

In 2010, Sharma and Sharma [10], presented a fourth order method for
computing multiple roots which is based on Jaratt’s method given by:

xn+1 = xn − a1w1(xn)− a2w2(xn)− a3
w2

2(xn)

w1(xn)
, (1.6)
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where

w1(xn) = f(xn)
f ′(xn)

, w2(xn) = f(xn)
f ′(yn)

, yn = xn + βw1(xn),

a1 = 1
8m
(
m3 − 4m+ 8

)
, a2 = 1

4 (−m)(m− 1)(m+ 2)2
(

m
m+2

)m
,

a3 = 1
8m(m+ 2)3

(
m
m+2

)2m
, β = − 2m

m+2 .

We shall compare the methods (1.4), (1.5), and (1.6) with the new
methods obtained in this paper.

The novelty of this paper is that we shall study the dynamical behaviour
of our methods with the help of basin of attraction. A lot of literature is
available concerning the study of dynamics of Newton type method for simple
roots. However, for multiple roots such study is very rarely seen.

2. Development of Methods and Convergence Analysis

Recall that Weerakoon and Fernando’s method (1.3) has cubic convergence
for simple roots. In case of multiple roots, this method looses its order of
convergence and its error equation, in this case, can be obtained as

en+1 =

(
1− 2(m− 1)

m
(
m
(
m−1
m

)m
+m− 1

)) en +O(e2n)

which indicates that this method is linearly convergent. To this end, we pro-
pose the following method:

yn = xn − 2m
m+2

f(xn)
f ′(xn)

,

xn+1 = xn − 2f(xn)
a1f ′(xn)+a2f ′(yn)

,
(2.1)

where a1 and a2 are the parameters to be chosen suitably.

Theorem 2.1. Let f be a sufficiently differentiable function and α be a root
of f(x) = 0 of multiplicity m. If x0 is sufficiently close to α, then the method
(2.1) has order of convergence three provided

a1 = −1 + 2
m −

m
2 , a2 = 1

2m
1−m(2 +m)m.

Proof. Let en and dn be the errors, respectively, in xn and yn. Using Taylor
series, we have

f(xn) =
f (m)(α)

m!
emn [1 + C1en + C2e

2
n + C3e

3
n + C4e

4
n +O(e5n)], (2.2)

and

f ′(xn) = f(m)(α)
(m)! em−1n [m+ (1 +m)C1en + (2 +m)C2e

2
n

+ (3 +m)C3e
3
n + (4 +m)C4e

4
n +O(e5n)],

(2.3)
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where Cj =
m!

(m+ j)!

f (m+j)(α)

f (m)(α)
, j = 1, 2, . . .. Therefore, the first step of (2.1)

gives

dn = m en
2+m + 2C1

m(m+2)e
2
n +

(−2(1+m)C2
1+4mC2)

m2(2+m) e3n

+
2((1+m)2C3

1−m(4+3m)C1C2+3m2C3)
m3(2+m) +O(e5n).

(2.4)

Using (2.4) and Taylor series, we get

f ′(yn) = f(m)(α)
(m)! dm−1n [m+ (1 +m)C1dn + (2 +m)C2d

2
n

+ (3 +m)C3d
3
n + (4 +m)C4d

4
n +O(d5n)],

(2.5)

so that by using (2.2), (2.3) and (2.5) in (2.1), we obtain the error equation
of (2.1) as

en+1 = en

(
1− 2

a1m+a2mm(m+2)1−m

)
+

2c1e
2
n(a1m2+a2(m(m+2)−4)( m

m+2 )
m

)
m2(a1m+a2mm(m+2)1−m)2

−Ae3n +O(e4n), (2.6)

where

A = 1
m3(a1m+a2mm(m+2)1−m)3

2
(
a21m

3
(
C2

1 (m+ 1)− 2C2m
)

+ 2a1a2

(
m
m+2

)m (
C2

1

(
m4 + 3m3 − 2m− 4

)
− 2C2m

2(m(m+ 2)− 2)
)

+ a22

(
m
m+2

)2m (
C2

1 (m(m(m+ 1)(m+ 4)− 8)− 16)

− 2C2m
(
m2(m+ 4)− 8

)) )
.

(2.7)
Thus, for

a1 = −1 + 2
m −

m
2 , a2 = 1

2m
1−m(2 +m)m,

then (2.6) reduces to

en+1 =
C2

1 (m− 2)

m3
e3n +O(e4n) (2.8)

and the assertion follows. �

Remark 2.2. Observe that, if we put m = 2 in (2.8), the coefficient of e3n
becomes zero and therefore, the method (2.1) becomes of order four. In that
case a1 = −1 and a2 = 4. The corresponding fourth order method reads as

yn = xn − f(xn)
f ′(xn)

,

xn+1 = xn − f(xn)
4f ′(yn)−f(xn)

.
(2.9)

In the sense of Kung Traub, the method (2.9) is optimal as it requires 3
functions evaluation per iterations.

In the view of Remark 2.2, the method (2.9) is fourth order and optimal.
However, it has a limitation that the multiplicity of the targeted root should
be 2. By using weight functions, we modify (2.1) (and consequently (2.9))
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and propose the following method which is fourth order optimal method for
any multiplicity m:

yn = xn − 2m
m+2

f(xn)
f ′(xn)

,

xn+1 = xn −
(

2b2f(xn)
b1f ′(xn)+f ′(yn)

)(
1 + b3

f ′(yn)
f ′(xn)

)
,

(2.10)

where b1, b2 and b3 are the parameters to be chosen suitably. The following
theorem proves the convergence of the method (2.10).

Theorem 2.3. Let f be a sufficiently differentiable function in a neighbourhood
of α which is a multiple root of f(x) = 0 of multiplicity m. If x0is sufficiently
close to α then the method (2.10) is of order four if

b1 = −µm, b2 = 1
4m

2µm, b3 = − (m−2)µ−m

m , (2.11)

where µ = m
m+2 .

Proof. Using Taylor’s expansion around α, (2.2), (2.3) and (2.5), we obtain
the error equation of the method (2.10). The error equation is given by

en+1 = A1en +A2e
2
n +A3e

3
n +A4e

4
n +O(e5n), (2.12)

where

A1 = 1− 2b2(2b3µ
m+b3mµ

m+m)
mM ,

A2 =
2b2C1[4b3MµmM+m(b1m2+(m2+2m−4)µm)(b3µm−1+1)]

m3M2 ,

A3 = 2b2
m5M3

[
−4b3µ

mMC2
1

(
b1m

2 +
(
m2 + 2m− 4

)
µm
)
− 4b3µ

mM2

×
(
C2

1

(
m2 + 2

)
− 2C2m

2
)
−m (2b3µ

m + b3mµ
m +m)

×
([
b21m

3(m+ 1) + 2b1
(
m4 + 3m3 − 2m− 4

)
µm

+ µ2m
(
m4 + 5m3 + 4m2 − 8m− 16

)]
C2

1

− 2m
(
b21m

3 + 2b1m
(
m2 + 2m− 2

)
µm + µ2m(m3 + 4m2 − 8)

)
C2

)]
,

A4 = 2b2
3m7M4

[
12b3µ

mM2
(
b1m

2 + µm(−4 + 2m+m2)
)
C1

(
C2

1

(
m2 + 2

)
− 2C2m

2
)

+ 12C1b3m
m+1(m+ 2)−mM

((
b21m

3(m+ 1) + 2b1
×
(
m4 + 3m3 − 2m− 4

)
µm + µ2m

(
m4 + 5m3 + 4m2 − 8m− 16

))
C2

1

− 2m
(
b21m

3 + 2b1m
(
m2 + 2m− 2

)
µm + µ2m

(
m3 + 4m2 − 8

))
C2

)
+8b3m

m(m+ 2)−m−2M3
(
C3

1 (m+ 2)2
(
m4 −m3 + 5m2 +m+ 6

)
−3C1C2m

2(m+ 2)2
(
m2 + 4

)
+ 3C3m

4
(
m2 + 6m+ 6

))
+ 1

(m+2)2

×m (2b3µ
m + b3mµ

m +m) (m+ 2)2
(
3b31m

5(m+ 1)2 + b21mµ
m

×
(
9m6 + 36m5 + 37m4 + 2m3 − 52m2 − 32m− 48

)
+ b1mµ

2m

×
(
9m6 + 54m5 + 101m4 + 44m3 − 132m2 − 176m− 176

)
+ µ3m

×
(
3m7 + 24m6 + 67m5 + 66m4 − 64m3 − 184m2 − 144m− 32

))
C3

1

−3m2(m+ 2)2
(
b31m

4(3m+ 4) + b21m
(
9m4 + 30m3 + 16m2

− 16m− 32)µm + µ3m
(
3m5 + 22m4 + 52m3 + 24m2 − 96m− 128

)
+b1µ

2m
(
9m5 + 48m4 + 68m3 − 16m2 − 128m− 64

))
C1C2

+3C3m
3M2

(
3b1m

2(m+ 2)2

+
(
3m4 + 18m3 + 28m2 − 24m− 48

)
µm
)]
,

and M = b1m + µm(2 + m). Now, in order to get the order of convergence
four, we must have A1 = A2 = A3 = 0, which is true when b1, b2, b3 are
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given by (2.11). Consequently (2.12) reduces to

en+1 =
((2+m)C1((−2+m(2+m(2+m)))C2

1−3m
3C2)+3m5C3)

3m4(2+m)2 e4n
+ O(e5n),

and the assertion follows. �

3. Numerical Results

In this section, we compare our methods (2.1) and (2.10) with Newton’s
method (MN), Chun and Neta’s method (MCN), Liu et. al method (ML)
and Sharma and Sharma method (MSS) referenced in Section 1. All com-
putations have been done using MATHEMATICA. The functions used to
test the methods and compare the results are given in Table 1, where the
multiplicity m and the root α are pointed.

Table 1. Test functions for analyzing the iterative methods.

f(x) m α
f1 = (x2 − ex − 3x+ 2)6 6 0.2575302854398607
f2 = (x3 + 4x2 − 10)3 3 1.3652300134140968
f3 = (1 + cosx)(ex − 2)2 2 0.6931471805599453

f4 = (ex
2+7x−30 − 1)6 6 3.0000000000000000

f5 = (log x+
√
x− 5)5 5 8.3094326942315717

Tables 2-3 show the performance of the aforementioned methods. It
includes the number of iterations (n) required such that |f(x)| < 10−30. In
Tables 2-3, a(b) denotes a× 10−b.

Table 2. Numerical results of the methods MN, MCN and
(2.1) applied on the test functions of Table 1.

MN MCN (2.1)
f(x) x0 n f(xn) n f(xn) n f(xn)
f1 -7 5 1.50(37) 4 2.12(88) 3 3.19(51)

1.4 3 1.13(37) 3 7.58(76) 2 1.88(31)
f2 3.5 6 7.00(43) 4 7.00(43) 3 2.84(34)

0.4 7 0 16 4.48(44) 12 5.6(42)
f3 0.2 5 0 4 0 3 0

1.5 5 0 4 0 3 0
f4 3.2 6 8.08(39) 4 1.95(61) 3 4.41(75)

4 18 5.92(57) 11 6.00(81) 6 2.83(52)
f5 1.5 5 3.39(56) 3 1.77(74) 4 8.13(68)

10 3 4.39(43) 2 9.51(64) 2 2.29(54)
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Table 3. Numerical results of the methods ML, MSS and
(2.10) applied on the test functions of Table 1.

ML MSS (2.10)
f(x) x0 n f(xn) n f(xn) n f(xn)
f1 -7 3 1.49(48) 3 1.52(76) 3 1.14(84)

1.4 2 5.9(65) 2 9.67(41) 2 1.17(40)
f2 3.5 4 0 3 4.34(35) 3 1.25(36)

0.4 16 0 12 1.23(31) 5 3.59(43)
f3 0.2 4 0 3 1.39(30) 3 0

1.5 3 0 3 1.39(30) 3 0
f4 3.2 4 4.29(64) 3 2.16(33) 3 8.72(35)

4 11 2.42(30) 9 2.12(33) 9 1.74(40)
f5 1.5 3 9.86(64) 2 1.51(48) 2 1.44(50)

10 3 0 2 2.90(68) 2 1.77(74)

From the tables 2-3, we can conclude that our methods (2.1) and (2.10)
are competitive with the other methods in terms of number of iterations
required.

4. Dynamics of the Methods

In this section, we study the dynamical behavior of the methods. In par-
ticular, we analyze the fixed points, critical points, basins of attraction and
stability of the methods presented in this paper. For this, we apply the meth-
ods on complex polynomials p(z) with degrees two and three having different
multiplicities. It is well known that the fixed points and the critical points of
any method play important role in the understanding of the dynamics of the
corresponding method. We study the affect of order, degree of the polyno-
mial and multiplicity on the number of extraneous points. Further, stability
of the method is shown visually with the help of basins of attraction of the
attracting fixed points. For more details of the complex dynamics of ratio-
nal functions (or operators), one may refer to [1], [2], [3], [6] and references
therein.

4.1. Some basics

Let Ĉ = C ∪ (∞) denote the extended complex plane. Let p : Ĉ → Ĉ be a

function. A point z0 ∈ Ĉ is called a fixed point of p if p(z0) = z0. A fixed point
z0 of p(z) is called attracting, super-attracting or repelling if, respectively,
0 <| p′(z0) |< 1, p′(z0) = 0 or | p′(z0) |> 1. It is noted that z = ∞ is a
super-attracting fixed point for any polynomial with degree n ≥ 2.

Orbit of a point z0 ∈ Ĉ of the mapping p(z) is given by

Orbit(z0) = {zo, p(z0), p2(z0), ......}
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The basin of attraction of an attracting (or super-attracting) fixed point z0
of p(z) is the set of all points whose orbits converge to z0.

Consider for example the mapping p(z) = z2. It can be checked that 0
and ∞ are super-attracting fixed points while 1 is a repelling fixed point for
p(z). Also, the basins of attraction for 0 and ∞ are, respectively {z :| z |<
1}and {z :| z |> 1}.

Corresponding to the function p(z), define a transform

Mp(z) = z − φp(z),

where φp(z) is such that p(z) = 0 ⇒ φp(z) = 0. When φp(z) = p(z)
p′(z) , then

the corresponding transform Mp(z) is the well known Newton’s transform.
Clearly, the roots of p(z) = 0 are the fixed points of Mp(z). However, there
may be fixed points of Mp(z) which need not be the roots of p(z) = 0.
Such points are called extraneous fixed points. Consider, for example, p(z) =
z2 − 3z + 2 and

Mp(z) = z − z2 − 3z + 2

2z − 3
(z2 − 3z + 3).

Here z = 1, 2 are the roots of p(z) = 0 and therefore fixed points of Mp(z).

The points z = 3±i
√
3

2 are not the roots of p(z) = 0 but are fixed points of
Mp(z) and therefore are the extraneous fixed points of Mp(z).

4.2. Fixed and critical points of the methods

Let p(z) be a polynomial having multiple roots defined on Ĉ. Corresponding

to the methods (2.2) and (2.10), we define the operators M3(z),M4(z) ∈ Ĉ
as follows:

y(z) = z − 2m

m+ 2

p(z)

p′(z)
,

M3(z) = z − 2p(z)

a1p′(z) + a2p′(y(z))
,

M4(z) = z − 2b2p(z)

b1p′(z) + p′(y(z))

(
1 + b3

p′(y(z))

p′(z)

)
.

From now on, we are analyzing the dynamical behavior of these meth-
ods when they are applied on two polynomials of second degree and two
polynomials of third degree, both of them with multiplicities 3 and 4.

4.2.1. Dynamical analysis of the methodM3(z). When the polynomial p1(z) =
(z2 + 1)3 is applied on M3(z), the resulting fixed point operator is

M31(z) = M3(z)|p1(z) =
z + 28z3 + 278z5 − 49z7

1 + 28z2 + 128z4 − 199z6
. (4.1)

Solving M31(z) = z results in three different fixed points: z∗1 = −i and z∗2 = i
are the roots of the polynomial p1(z), but zF3 = 0 is a strange fixed point.
Both roots of the polynomial are superattracting fixed points, and zF3 is
an indifferent fixed point, since |M ′31(zF3 )| = 1. Moreover, z∗∞ = ∞ is an
attracting fixed point.
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The critical points are obtained from solving M ′31(z) = 0. There are 10
different critical points: z∗1,2, zC3−6 = ±0.0793± i0.1556, zC7,8 = ±1.2809, and

zC9,10 = ±0.2593. Let us remark that only z∗1,2 match with the roots of p1(z),
so the number of free critical points is 8.

Applying p2(z) = (z2 + 1)4 on M3(z) results in the fixed point operator

M32(z) = M3(z)|p2(z) =
z
(
1 + 70z2 + 1500z4 + 13162z6 − 2093z8

)
1 + 70z2 + 1500z4 + 6250z6 − 9005z8

.

The fixed points match with those of M32(z). Regarding to the critical points,
the number of points has increased to 14: z∗1,2, zC3,4 = ±i1.4423, zC5,6 =

±i0.2331, zC7,8 = ±i0.1239, zC9,10 = ±i0.1854 and z11−14 = ±0.0968± i0.1430.
Note that there are 12 free critical points.

When p3(z) is applied over M3(z), the fixed point operator gets into

M33(z) = M3(z)|p3(z) =
N19(z)

D18(z)
,

where N19(z) and D18(z) stand for a numerator and denominator of degrees

19 and 18, respectively. The fixed points of M33(z) are 4: z∗1,2 = − 1
2±i

√
3
2 and

z∗3 = 1, that agree with the roots of p3(z), and zF4 = 0. As usual, the three
roots are superattracting fixed points. The evaluation of |M ′33(zF4 )| points out
that zF4 is an indifferent fixed point. In addition, z∗∞ = ∞ is an attracting
fixed point. In this case, the number of critical points is 30. Every one of
them, but the roots of p3(z), are critical points.

Finally, we evaluate the application of p4(z) on M3(z), whose fixed point
operator is

M34(z) = M3(z)|p4(z) =
N25(z)

D24(z)
,

where, as mentioned in the p3(z) case, N25 and D24 are polynomials of degrees
25 and 24, respectively. The behavior of the four fixed points match with
those of M33(z). However, there are 42 critical points, 39 of them satisfying
the definition of free critical point.

Table 4 gathers the information related to the fixed and critical points
of the methods M31(z), M32(z), M33(z) and M34(z).

Table 4. Fixed and critical points of M3(z) on different polynomials

p(z) M(z)
Number of Number of strange Number of free

roots fixed points critical points
p1(z) = (z2 + 1)3 M31(z) 2 1 8
p2(z) = (z2 + 1)4 M32(z) 2 1 12
p3(z) = (z3 − 1)3 M33(z) 3 1 30
p4(z) = (z3 − 1)4 M34(z) 3 1 42

Figure 1 represents the dynamical planes of the methods. These planes
have been generated with MatlabR2017b c©, following the guidelines of [4].
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The initial guess are a set of 500×500 points in the region −3 < <{z} < 3,
−3 < ={z} < 3. Each initial guess is iterated over the fixed point operator
until the distance between the value and an attracting fixed point is closer
than 10−3, or the number of iterations has reached the value 80. Each at-
tracting fixed point is mapped with a different color. Once the successive
iterations of an initial guess has reached an attracting fixed point, the initial
guess is represented with the color of the corresponding root. The map of
colors for p1,2(z) is orange for z∗1 = −i and blue for z∗2 = i, while the map for

p3,4(z) is orange, blue and green for the roots z∗1 = − 1
2 + i

√
3
2 , z∗2 = − 1

2 − i
√
3
2

and z∗3 = 1, respectively. We have also included a color mapping for the fixed
points 0 and∞, whose corresponding colors are grey and purple, respectively.
Every fixed point is plotted with a white circle in the complex plane. More-
over, the amount of iterations needed to reach the root is also illustrated in
the dynamical planes: the lighter color, the faster convergence to the root.
Let us remark that the increase of the maximum number of iterations does
not change significantly the shape and details of the dynamical planes.
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(d) p4(z) = (z3 − 1)4

Figure 1. M3(z) dynamical planes for different polynomi-
als in the square [−3, 3]× [−3, 3].
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For every dynamical plane of the different instances of M3(z), a wide
convergence region can be found, since almost every initial guess tends to one
of the roots of the corresponding polynomial.

Since 0 is, for every case, an indifferent fixed point, its behavior can not
be determined previously, because it can operate either as an attracting or a
repelling point. If a zoom is made on the origin, a one-point convergence to
0 can be found, as shown in Fig. 2. Despite the points in its neighborhood
are black, they converge very slowly to 0.

Finally, in the analyzed region no attraction to the infinity has been
found.
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(a) p1(z) = (z2 + 1)3
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(b) p4(z) = (z3 − 1)4

Figure 2. M3(z) dynamical planes for different polynomi-
als in the square [−0.1, 0.1]× [−0.1, 0.1].

4.2.2. Dynamical analysis of the method M4(z). In order to compare the
features of the methods M3(z) and M4(z), we are performing the dynamical
analysis of M4(z) when it is applied on the same polynomials of the previous
case.

The fixed point operator of M4(z) on p1(z) is

M41(z) = M4(z)|p1(z) =
1 + 33z2 + 268z4 + 1641z6 − 395z8

4z + 112z3 + 512z5 − 1396z7
,

whose fixed points are z∗1,2 = ±i, zF3,4 = ±i0.2023, zF5−8 = ±0.2375± i0.3160.
Computing |M ′41(z)|, the roots z∗1,2 are attracting, while the strange fixed

points zF3−8 are repelling. The infinity is an attracting fixed point. As ex-

pected, z∗1,2 are critical points, and there are 8 free critical points: zC3,4 =

±i0.2590, zC5,6 = ±0.2781 and zC7−10 = ±0.0510± 0.1865.

Regarding to the application of M4(z) over p2(z), the fixed point oper-
ator is

M42(z) = M4(z)|p2(z) =
1 + 73z2 + 1710z4 + 10750z6 + 51217z8 − 13191z10

2z + 140z3 + 3000z5 + 12500z7 − 45658z9
.
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The fixed points of M42(z) are the roots z∗1,2 = ±i and 8 strange fixed points

zF3−6 = ±0.2504± i0.3633 and zF7−10 = ±0.0279± i0.1655. Only the roots are
superattracting, while the strange fixed points are repelling. The infinity is,
again, an attracting fixed point. There are 12 free points out of 14 critical
points, whose values are zC3,4 = ±i0.2342, zC5,6 = ±i0.1839, zC7,8 = ±0.3057,

zC9,10 = ±i0.1456 and zC11−14 = ±0.0616± i0.1621.

When M4(z) is applied on the polynomial p3(z), the fixed point operator
gets into

M43(z) = M4(z)|p3(z) =
N21(z)

D20(z)
,

where N21(z) and D20(z) are polynomials of degree 21 and 20, respectively.

The fixed points that match with the roots, z∗1,2 = − 1
2 ± i

√
3
2 and z∗3 = 1,

are superattracting points. The 18 strange fixed points are repelling, and the
infinity is an attracting fixed point. Regarding the critical points, 30 out of
33 are free.

Finally, applying M4(z) on the polynomial p4(z), the fixed point oper-
ator results

M44(z) = M4(z)|p4(z) =
N27(z)

D26(z)
,

where N27(z) and D26(z) are polynomials of degree 21 and 20, respectively.
The fixed points of M44(z) are the roots of p4(z), whose behavior is su-
perattracting, and 24 strange and repelling fixed points. The infinity is an
attracting fixed point. There are 45 critical points, 42 of them are free.

Table 5 collects the information about the number of fixed and critical
points of the previous methods. In a coarse comparison with Table 4, the
number of free critical points match between both tables.

Table 5. Fixed and critical points of M4(z) on different polynomials

p(z) M(z)
Number of Number of strange Number of free

roots fixed points critical points
p1(z) = (z2 + 1)3 M41(z) 2 6 8
p2(z) = (z2 + 1)4 M42(z) 2 8 12
p3(z) = (z3 − 1)3 M43(z) 3 18 30
p4(z) = (z3 − 1)4 M44(z) 3 24 42

For the methods M41(z), M42(z), M43(z) and M44(z), the dynamical
planes have been obtained, following the same routines than in the previous
cases. However, in this case, only the fixed attracting points have been plotted
in white circles. The dynamical planes are represented in Figure 3.

Once the dynamical planes have been represented, the main conclusion
is that every initial guess converges to a superattracting fixed point. This
fact is very important because it guarantees the stability of the iterative
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(d) p4(z) = (z3 − 1)4

Figure 3. M4(z) dynamical planes for different polynomials

method for the cases that we have already studied. The absence of strange
and attracting fixed points supports the wider basins of attraction.

The design of a non-optimal method of third order of convergence has
resulted, by dynamical analysis, in a stable method with some areas that must
be avoided. The evolution of this method, turned into an optimal method of
order four, both has increased the order of convergence and has extended the
basins of attraction, obtaining a full area of convergence for every point in
the complex plane.
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