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Quantitative methods for capturing processes 
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Métodos cuantitativos para el registro de procesos 
y contextos en la investigación educativa
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Abstract:
Technological and methodological advan­

ces enable new substantive research ques­
tions to be posed, and new study designs to 
be implemented, in educational research. In 
this paper I review emerging methods rele­
vant for capturing learning and teaching pro­
cesses over time —the sequences of learning 
events— which take place in multiple con­
texts.

To do so, the concepts of nomothetic and 
ideographic research are traced through the 
use of Cattell’s (1952) cube, posing persons, 
variables and time as the three key dimensions 
for determining study-designs. For education­
al research, a fourth dimension —context— 
is important to consider given the nested 
structures (e.g. student-teacher dyads, peer- 
relations, student-groups, classrooms, teach­
ers, and schools) learning and teaching oc­
curs in. Several developments of quantitative 
methods enable researchers to a) establish 
quality of measurement (e.g. factor analysis, 
item response models), b) across sequences 
of time-points (e.g. autoregressive models), 

c) in complex multilevel structures (e.g. multi­
level models, random effects models), also us­
ing estimators which are robust for small-n 
studies (e.g. Bayesian models). Educational 
researchers are encouraged to design studies 
fitting multilevel models for hierarchically and 
cross-classified data, and to think in terms of 
intraindividual learning processes.

Keywords: educational research, quantita­
tive methods, statistical models, multilevel 
model, intensive longitudinal data.

Resumen:
Los avances tecnológicos y metodológi­

cos permiten formular nuevas preguntas de 
investigación fundamentales y aplicar nue­
vos diseños de estudios en la investigación 
educativa. Este artículo revisa los métodos 
emergentes empleados para el registro de los 
procesos de aprendizaje y enseñanza en el 
tiempo —las secuencias de eventos de apren­
dizaje— que tienen lugar en contextos múl­
tiples.
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Para este fin, se emplean los conceptos de 
investigación nomotética e ideográfica utili­
zando el cubo de Cattell (1952), que identi­
fica a las personas, las variables y el tiempo 
como las tres dimensiones clave para descri­
bir diseños de estudios. En la investigación 
educativa es importante tener en cuenta 
una cuarta dimensión —el contexto— dadas 
las estructuras anidadas (p. ej. díadas alum­
no-profesor, relaciones entre pares, grupos de 
alumnos, aulas, profesores y colegios) en las 
que se produce el aprendizaje y la enseñan­
za. Existen varios métodos cuantitativos que 
permiten a los investigadores: a) determinar 
la calidad de la medición (p. ej. el análisis de 
factores, los modelos de respuesta a ítems), 

b) en secuencias de puntos temporales (p. ej. 
modelos autorregresivos), c) en estructuras 
multinivel complejas (p. ej. modelos multini­
vel, modelos de efectos aleatorios), empleando 
también estimadores sólidos en estudios de n 
pequeña (p. ej. modelos bayesianos). Se invita 
a los investigadores en educación a diseñar 
estudios apropiados para modelos multinivel 
con datos clasificados jerárquicamente o con 
clasificación cruzada, y a pensar en términos 
de procesos de aprendizaje intraindividuales.

Descriptores: investigación educativa, mé­
todos cuantitativos, modelos estadísticos, 
modelo multinivel, datos longitudinales in­
tensivos.

1.  Introduction
One key aim of educational research is 

to investigate how students learn, and how 
their learning can be supported. Learning 
occurs in processes, that is in sequences of 
learning situations. In these learning situ­
ations individuals experience different lev­
els of challenge, expectations, engagement, 
understanding, and positive and negative 
affect. Appropriately collecting and ana­
lysing process data (cf. micro-longitudinal, 
intensive longitudinal, intraindividual 
data) that captures such sequences of sit­
uations, gives insights into the shape and 
form of students’ learning experiences. Af­
ter establishing the shape, form and varia­
tion of the processes, researchers can then 
investigate how instruction contributes to 
the learning process (Schmitz, 2006). In­
struction is complex, constituted by mul­
tiple forms of interaction with learning 
contents and instructional formats when 

studying solo, and through student-teach­
er and student-peers interactions. The in­
teractions are also shaped depending on 
the organisation of student-groups, class­
rooms, teachers, and schools the learning 
and teaching occurs in. The aim of this pa­
per is to provide an overview of emerging 
quantitative methods for the analysis of 
processes in contexts.

We live in times where statistical de­
velopments are rampant, freeware are 
mushrooming, datasets are growing lar­
ger, computers are getting faster, and ar­
tificial intelligence outperforms humans 
on narrowly defined tasks. Methodolog­
ical advances spur us to pose new re­
search questions, come up with new study 
designs, or revisit existing research ques­
tions with revitalized energy. Research 
questions which are difficult to answer 
with existing methods spur further 
methodological development.
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This codependence between findings 
appropriate methods for unanswered 
questions, and revisiting old findings with 
new methodological tools provides oppor­
tunities for methodological-substantive 
synergies (Marsh & Hau, 2007). I provide 
an illustration of state-of-the art quanti­
tative methods which enable investiga­
tions of process in contexts. But why pro­
cess? Why context?

2.  Persons, variables, occasions, 
and contexts

Going back to the turn of the 20th cen­
tury, Windelband in 1894 defined nomo­
thetic research as the search for «what al­
ways is», that is generalizable knowledge 
(Lamiell, 1998, p. 27). This knowledge 
included general laws, as in the natural 
sciences, and its applications in medicine 
and psychiatry. Research in natural sci­
ences is often designed at the research­
ers desk (e.g. derivations of equations), 
and are later put to the empirical test. 
Case-studies, particularly in medicine 
and psychiatry, have long informed the 
search of generalizable knowledge. The 
term ideographic was used in the search 
of «what once was» as in the humanities 
(Lamiell, 1998, p. 27). These were the 
study of singular events that would not 
necessarily be repeated. Following the 
work of Galton, Pearson,  Fisher, Allport 
and other large-sample survey research­
ers, the pursuit of the average (aggregate 
or the «general») was perceived as the 
norm (see Lamiell, 1998, p. 32). The cri­
tique against nomothetic studies was that 

the aggregate is not always true of what 
applies in general. Ideographic research 
came to be equivalent with small sam­
ple intraindividual research. The schism 
between the two has been fueled also by 
discussions of distinctions between quali­
tative and quantitative. It is time to move 
beyond such false dichotomies.

For research designs Cattell (1952) 
devised his three-dimensional cube, con­
sisting of three axes to represent three 
key dimensions of research designs: per­
sons, variables and time-points (see top 
of Graph 1). The balance between these 
three dimensions depend on the type of 
study that is designed. The (1) original 
cube (on top) has been transformed to il­
lustrate (2) a cross-sectional design (i.e. 
multiple variables of multiple persons at 
one time point). The face of the resulting 
rectangular block on the occasion-axis for 
this design is relatively slim, as there is 
only one time-point, but wide on the per­
son-axis. (3) A longer term longitudinal 
study here with three time-points is de­
picted as three relatively slim occasions, 
and relatively fewer persons than in the 
cross-sectional design. (4) The intensive 
longitudinal design has relatively more 
time-points per person than a longitudi­
nal study, but data are collected within 
a relatively shorter time-window and of 
fewer persons. (5) The single case case-
study is the narrowest type of design we 
can pose, one participant providing rel­
atively little information at each time, 
but for a relatively large number of time-
points.
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Graph 1.  Modern designs in educational research following 
Cattell’s (1952) original cube. The three dimensions in the original (top) 
were x = persons, y = variables, and z = occasions. Multilevel structures 

are included on the person-axis for modern designs, in cubes 6-8.
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Context can be incorporated in the 
cube in two ways. The first option is to 
include variables that capture the con­
text (or experience of the context) at each 
occasion; for example, a student’s per­
ception of the teacher, the level of sup­
port he or she receives, or task difficulty. 
The second option is to consider the nes­
ted nature of institutionalized education 
as a 4th dimension in the cube, namely 
«context». Today’s trends in research de­
signs are a mixture of number of individ­
uals, variables, time-points and contexts. 

This is illustrated by (6) a multilevel 
cross-sectional study, in which persons 
are nested within contexts, here stu­
dents in schools. This is illustrated with 
students grouped in sub-sections of the 
original cube, i.e. «Group 1» to «Group j». 
Likewise (7) longitudinal and (8) inten­
sive longitudinal studies are depicted to 
be nested within groups. The single-case 
case-study (cube 5) can be expanded to a 
multiple-case design by adding more per­
sons (not depicted). As will be discussed 
shortly, this simple multilevel structures 
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can be expanded to include higher levels 
(e.g. students in schools in countries), 
or more complex structures. Examples 
of more complex structures are when 
persons belong to multiple contexts si­
multaneously (e.g. students belonging 
to both schools and neighbourhoods) or 
cross-classified (e.g. students belonging 
to different student groups for different 
school subjects). What about experimen­
tal designs then?

In educational research we distinguish 
between non-experimental and experi­
mental designs. The experimental design 
is essentially repeated measures designs 
with an experimental intervention bet­
ween at least two of the time-points. 
This design can be thought of as a classi­
cal longitudinal design (cube 3 in Graph 
1) with two groups, but can be designed 
as an intensive longitudinal study (cube 
4) or single-case interventions (cube 5). 
Real-world experimental and interven­
tion designs can incorporate all features of 
multilevel longitudinal or intensive longi­
tudinal designs. The multilevel nature of 
both experimental and non-experimental 
designs has important implications for our 
statistical toolbox, for power calculations 
and estimation of effects at higher levels 
in the hierarchical structure. Advances in 
quantitative methods are being made for 
all designs depicted in cubes 5-8. For the 
purpose of investigating processes in con­
text, we can learn much from methodolo­
gies which have been developed in large-
scale multilevel cross-sectional designs 
(cube 6), particularly on making inference 
to the underlying populations data stem 
from, and for quality of measurement. 
Longitudinal (cube 3) and multilevel lon­

gitudinal (cube 7) designs can inform us 
on methods which take repeated measures 
into account, as well as quality of mea­
surement. Intensive longitudinal (cube 4) 
and multilevel intensive longitudinal de­
signs (cube 8) inform us about models for 
time-points nested in persons, and the role 
of conceptualization of time. Single and 
multiple-case case-study designs (cube 5) 
inform us about methods which are partic­
ularly well suited for small-n designs with 
rich occasion data.

3.  Contextual and random effects 
and hierarchical structures

Multilevel strategies have evolved 
rapidly within the traditions spurred 
by Robinson’s studies of contextual ef­
fects (Robinson, 1950), and Henderson’s 
random effects between parents and off­
spring (Henderson, 1982) (see section on 
intraindividual research). A key issue in 
the 1950s was how contexts had an effect 
on the individual, and how to account for 
this in statistical models, so that infer­
ences could be made at the appropriate 
level to avoid individual fallacies (i.e. at­
tributing a contextual effect to the indi­
vidual) and ecological fallacies (i.e. attrib­
uting an individual effect to the context). 
The multilevel model was rapidly devel­
oped based on the general linear model 
(GLM), which made school effectiveness 
research blossom. The baseline school 
effectiveness study includes a sufficient 
number of schools for drawing inference 
about the effects of schools on individuals. 
The models then estimate the gain in stu­
dents’ achievements by including concur­
rent achievement as outcome controlling 
for prior achievement (for an overview 
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see Goldstein, 1997). Other modern stud­
ies apply the logic of hierarchically nes­
ted structures to both data-collection and 
analyses.

More and more countries join inter­
national comparisons. In 2015, for exam­
ple, more than half a million students in 
72 countries took part in the science-test 
of the Program for International Student 
Assessment (PISA). The international 
comparison programmes have developed 
multi-stage sampling procedure and 
advanced procedures for weighting the 
data for drawing inference for results 
at the country level (i.e. comparisons of 
country-means and differential effects of 
various covariates). A debate about the 
methodological advances on how to best 
establish structural validity of both test-
scores and self-reported constructs (e.g. 
motivation) is in motion, particularly on 
how to establish cross-national compati­
bility of the measures accounting for the 
multilevel structure.

Many methods for establishing the 
test-scores (e.g. literacy, numeracy, 
science) have been proposed; for ex­
ample, «plausible values» (von Davier, 
González, & Mislevy, 2009), based on the 
Rasch-model, that is, the one parameter 
logistic model (1PL). Additional models 
are the 2PL (which includes an item dis­
crimination parameter) and the 3PL mod­
el (which corrects for guessing). There 
are difficulties to establish cross-nation­
al equivalence of test-scores and self-re­
port constructs. Models in which factor 
structures have the same factor loadings 
across nations (i.e. weak invariance) typ­
ically fit better than models in which the 
same mean-structure is imposed (i.e. 

strong invariance). Whether it is the mod­
els or our assumptions about invariance 
that are too strict is also argued. For ex­
ample (Scherer, Nilsen, & Jansen, 2016), 
demonstrated that strict invariance (i.e. 
equal factor loadings, means and resid­
uals) was possible to achieve among the 
Anglosaxon countries but not in all coun­
tries of the PISA studies. Marsh and col­
leagues proposed the extended alignment 
method for multi-group analysis (Marsh 
et al., 2017).

In addition to large-scale international 
comparisons and school effectiveness 
studies, other studies investigate the 
proximal structures students are embed­
ded in their daily learning. Using mod­
els for dyad-analysis (e.g. parent-child, 
husband-wife, actor-partner) Mainhard 
and colleagues went beyond a model in 
which students are nested in teachers, 
to inspecting how teachers vary across 
student-groups they teach, at the same 
time as student-groups have different 
composition with their different teachers 
(Mainhard, Oudman, Hornstra, Bosker, 
& Goetz, 2018). They found considerable 
variance in student-teacher relationships 
and teacher-student-group relationships. 
So far such models have been carried out 
using manifest variables.

There is a growing number of software 
that can accommodate multilevel designs 
(i.e. students nested in schools nested in 
countries). MLWin (e.g. Rasbash, Steele, 
Goldstein, & Browne, 2017) has long 
been able to handle multilevel structures 
for three or more levels, and complex 
cross-classified structures. The more com­
plex structures are enabled thanks to the 
Multiple Chain Monte Carlo (MCMC) al­
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gorithm. MLWin also enables interaction 
with the R, using the R2MLwiN pack­
age. For modelling of latent constructs 
in such complex structures, Mplus can 
handle three levels of multilevel analysis 
(or two levels and one cross-classification, 
Muthén, 1994 and xxM even more (Meh­
ta, 2013). When modelling two-level data 
(or more) there are three common ways 
of treating the effects at multiple levels. 
First, when there are enough units at the 
higher level of data —more units than 
parameters we want to estimate— the 
higher level can be modelled efficiently 
(see e.g. Morin, Marsh, Nagengast, & Sca­
las, 2014). Second, the standard errors of 
the parameter estimates are adjusted for 
the nested structure of the data. Third, 
many researchers opt to go for a Bayes­
ian estimation (e.g. Praetorius, Koch, 
Scheunpflug, Zeinz, & Dresel, 2017), as a 
sparser number of higher-level units can 
still be sufficient for robust estimates.

4.  Longitudinal designs
Longitudinal educational research 

converges with the study of human devel­
opment. Researchers painstakingly col­
lect follow-up data in cohort studies (e.g. 
a birth-cohort study follows up a repre­
sentative sample of newborns a number of 
times, usually spaced in years), prospec­
tive longitudinal designs (e.g., one group 
followed up over time), or cross-sequential 
or accelerated designs (e.g. two or more 
cohorts are followed up over time). Many 
such designs are timed to start prior to an 
educational transition and end after such 
a transition (e.g. transition from kinder­
garten to primary, or primary to second­
ary school). The number of time-points at 

which individuals are followed up varies 
once a year, twice a year (e.g. in autumn 
and spring; e.g. Skinner, Zimmer-Gem­
beck, & Connell, 1998) or more often.

5.  Experimental longitudinal de-
signs

In the classical test-retest paradigm in 
experimental and intervention research, 
researchers have applied repeated mea­
sures analysis of variance (ANOVA), anal­
ysis of covariance (ANCOVA), or some ex­
tension of a general linear model (GLM). 
These models can be extended to include 
random effects in either multilevel models, 
or mixed models to accommodate multi­
level structures. Switching to a mixed 
model using long data (e.g. time-points 
nested in persons) instead of wide data 
(i.e. one row per participant), enables us 
to analyse experimental data much as we 
would analyse longitudinal data, but add­
ing a key predictor, the experimental con­
dition(s). In intervention studies where the 
randomization is at the school level, the 
nested structure can be modelled as a two 
level path-model (Rakoczy et al., 2018).

6.  Autoregressive and reciprocal 
effects

Modelling of longitudinal data can be 
done with (1) different variables (con­
structs) at different time-points, or (2) 
with the same variable (construct) repeat­
ed at each time-point. The former type of 
design would be commonplace in studies 
of early childhood education as the instru­
ments for capturing infant development 
capture qualitatively different phenom­
ena at different time-points. Modelling 
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would entail verifying the quality of mea­
surement of each construct, and then pro­
ceed with SEM models of hypothesized 
paths. When observations are nested 
in child-care centres, neighbourhoods or  
other higher-order units, such structures 
can be modelled in multilevel models.

The latter —repeated administration 
of the same measure— would be more 
commonplace for studies of changes over 
time through the primary school years. 
Researchers would first establish the 
equivalence of the factor structure of the 
psychometric constructs across the time-
points (i.e. so we know that the same 
phenomenon is measured at all three 
time-points). In case the construct is a 
measure of a phenomenon that chang­
es over time (e.g. cognition) by including 
easier items earlier on, more difficult 
items later on, and a sufficient number of 
overlapping items across the time-points 
(i.e. so called anchor items), then it is 
possible to test whether the continuum 
of cognitive growth can be established 
across the time-span of the study.

After establishing the quality of 
measurement one would then proceed 
to testing the autoregressive paths (i.e. 
the associations between the variable at 
Time T and at the preceding time-point 
T-1) (Little, 2013). These paths indicate 
the rank-order stability of individuals at 
T-1 and T, higher values indicating that 
the rank-order is maintained across the 
time-points. Lower values indicate more 
fluctuations (e.g. individuals can overtake 
each other) and developmental disconti­
nuities. After establishing the autoregres­
sive effects researchers then proceed to 
test whether one of the constructs affects 

change in the other construct over time. 
These can provide important insights 
into the directionality of the effect. Is 
for example, AT -1 more likely to predict 
change in BT controlling for BT -1, or the 
other way around?

From the change-score model of two 
time-points we can derive the growth 
model in which we can estimate changes of 
time at the group-level, and also individu­
al differences in change over time (Singer 
& Willett, 2003). In the growth model the 
researcher hypotheses what the shape 
of change will be over time, linear (i.e. a 
straight line), quadratic (i.e. a line with 
a curvature), cubic (i.e. a roller coaster 
ride), or non-linear (Ram & Grimm, 2007). 
The growth model can include also au­
toregressive parameter combining analy­
ses of both the mean-structure of the data 
and the structural relationships.

Given the complex nature of institu­
tionalized education recent studies have 
included more than two time-points (i.e. 
growth of student achievement over three 
or more time-points) and multiple cohorts 
in accelerated growth models (Ortega, 
Malmberg, & Sammons, n.d.). As schools 
(being inanimate objects) cannot actually 
do anything to students, switching focus 
to teacher-effects is a reasonable thing 
to do. Teacher effects include complex 
cross-classifications or multiple member­
ship statuses as teacher of a student can 
change over time (Ortega, Malmberg, & 
Sammons, 2018).

Other complex structures are reviewed 
in Duncan, Duncan, & Strycker, 2006, for 
example, the family-of-curves and curves-
of-a-family models.
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7.  Micro-longitudinal designs
Micro-longitudinal designs have be­

come increasingly popular given the 
relative ease at which data can be col­
lected (Hamaker & Wichers, 2017). Data- 
collection points can be set randomly as in 
experience sampling, at fixed interval as 
in ecological momentary assessments, or 
event driven (e.g. the GPS recognises you 
are in the library and asks you to report on 
your learning experiences in the library). 
The resulting real-time data enhances 
closeness between an event and the report 
of the event, reducing retrospection bias 
(Walls & Schafer, 2006). It also enables 
the researcher to ask about experiences of 
the context in which the report takes place. 
Contextual variables can be organized in 
two ways. First, contexts can be thought 
of as levels of the hierarchical structure 
(e.g. time-points nested in students, 
nested in teachers, or classrooms). Sec­
ond, contextual information can also be 
organized as intraindividual variables, 
such as individuals perceptions of the 
context: task difficulty, perception of 
classroom climate, or interaction with 
the teacher (Malmberg, Lim, Tolvanen, & 
Nurmi, 2016). Many studies model intra­
individual data as «individuals as their 
own controls» using the multilevel model 
with time-points nested in persons (Mura­
yama et al., 2017).

8.  Experimental micro-longitudinal 
designs

Two types of models are applied to 
micro-longitudinal data. The first type is 
the random effects general linear models 
that grew out of the genetic modelling of 
Henderson (e.g. Henderson, 1982). Early 

models investigated genetic relatedness 
between offspring and parent generations 
(sires and dames) by applying random ef­
fects models. Also this methodology grew 
out of the GLM. Experimentalists have 
incorporated these models, particularly 
for the study of reaction time of various 
cognitive tasks. These models, common in 
experimental psychology, can incorporate 
complex random effects (Bates, Mächler, 
Bolker y Walker, 2014; Matuschek, Kliegl, 
Vasishtha, Baayen, & Bates, 2017).

Diary studies of micro-longitudi­
nal data have been carried out (Perels, 
Gurtler, & Schmitz, 2005). While micro- 
longitudinal data collection is relative­
ly rare in experimental designs, there 
are several ways in which aggregates of 
intraindividual variability could be as­
sessed (Malmberg et al., 2016), or associa­
tions (couplings) between variables could 
change as a function of the intervention 
(Schmitz, 2015). As engaged students 
have been found to have low intraindi­
vidual variability (i.e. small magnitude 
of change from one moment to another) 
in competence beliefs and intrinsic moti­
vation, a two-time-point study in which 
intraindidivual data would be collected 
at both time-points could unravel if intra­
individual variability had diminished (i.e. 
less oscillations between low and high mo­
tivation across the time-points) as a result 
of the intervention. An intervention could 
then focus on decreasing the fluctuations 
in perceptions and beliefs. An alternative 
could be to increasing the synchronicity 
between beliefs, for example intentions 
(goal-setting) the previous lesson with 
self-regulated learning (goal-accomplish­
ments) the subsequent lesson (Schmitz, 
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2015). An intervention could be designed 
as a within-person encouragement and the 
outcome could be a stronger magnitude 
between joy and working memory across 
time-points (Schmiedek, 2016). Interven­
tions could then be carried out with sin­
gle-case or multiple-case ABAB designs 
(Walls, Barta, Stawski, Collyer, & Hofer, 
2013), A indicating control or «business as 
usual» and B sequences when the partic­
ipant receives encouragement prompts. 
Single-case designs utilizing such burst 
designs are on the increase (Kratochwill 
& Levin, 2010). One methodology for 
single-case designs is the Bayesian un­
known change-point model to investi­
gate and quantify immediacy (Natesan 
& Hedges, 2017). Complex methodologies 
require complex preparation. For these 
types of intraindividual (and cross- 
classified) designs power calculations and 
effect size estimation, requires advanced 
computations or simulation studies (Mo­
erbeek & Teerenstra, 2016).

9.  How to treat the time-variable?
The scaling of time in longitudinal 

research has received attention, as the 
assumption of auto-regressive models 
is equidistant time-points. Time can be 
coded in two ways, discrete time (e.g. 
time-point 1, time-point 2, time-point t) or 
continuous time (e.g. 09:15, 09:45, 10:30, 
11:40, 13:20...). For data-collection in 
which participants are observed, or asked 
to complete a questionnaire, within a cer­
tain time-frame, or deliberately, continu­
ous time analysis could be an important 
way to correct the irregular time-intervals 
of discrete time-coding. Such models can 
be set up as flexibly coded growth models 

in which time is coded on the scale of in­
terest, or by using the ctsem package in R. 
Parameter estimates can thus be adjus­
ted for the time-intervals used. This en­
ables both modelling of longitudinal data 
and time-series data with parameter esti­
mates correctly taking the time lags into 
consideration (Voelkle, Oud, von Oertzen, 
& Lindenberger, 2012).

Another way of thinking of time- 
dynamics is using differential equation 
models, in which we can model the rate of 
acceleration (Deboeck, 2013). Think of a 
situation in which a student gets off-task 
and we want to estimate how fast he or 
she returns to on-task behavior. Alter­
native methods for working with inten­
sive longitudinal data is functional data 
analysis.

10.  To Bayes or not to Bayes?
Bayesian techniques are strongly on 

the rise with applications in commercial 
and freeware using Bayesian estima­
tion (Kaplan & Depaoli, 2012; Muthén 
& Asparouhov, 2012; Van de Schoot et 
al., 2014). The Bayesian technique es­
timates the probability of a parame­
ter given the data p (θ | data), rather 
than the probability of the data given 
the model p (data | θ) (i.e. null-hypoth­
esis significance testing, NHST). It is 
suitable for situations when Maximum 
Likelihood might be underpowered, as it 
does not rely on large-sample theory. It 
is suitable for complex models such as 
SEM as it does not converge at impro­
per estimates (e.g. negative residuals, 
correlations above 1, Zitzmann, Lüdtke, 
Robitzsch, & Marsh, 2016).
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11.  Conclusions and reflections
The aim of this overview paper was 

to inspect how processes and contexts 
can be investigated using state-of-the-
art methodologies. Process-models of se­
quences of learning events require models 
that can incorporate time-points within 
students and can take the flow of time into 
consideration in the model. Learning con­
texts prove complex places. These are pos­
sible to conceptualize in terms of hierar­
chies, e.g. time-points nested in students, 
nested in classrooms, nested in schools, but 
also according to relationships and inter- 
actions: student-teacher, teacher-student- 
group, and student-peers relationships 
and interactions, student-groups. Models 
for complex (e.g. cross-classified, multiple 
memberships) structures require suitable 
estimators (e.g. MCMC, Bayesian). There 
are several examples in the literature 
in which complex multilevel and cross- 
classified structures are modelled using 
manifest scales as dependent variables. 
We anticipate the next generation of mod­
els in which latent variables can be used 
as dependent variables.
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