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Abstract. Correlation Filter (CF)-based algorithms have achieved remarkable 

performance in the field of object tracking during past decades. They have great 

advantages in dense sampling and reduced computational cost due to the usage 

of circulant matrix. However, present monocular object tracking algorithms can 

hardly solve fast motion which usually causes tracking failure. In this paper, a 

novel probabilistic projection model for multi-camera object tracking using two 

Kinects is proposed. Once the object is found lost using multimodal target de-

tection, the point projection using a probabilistic projection model is processed 

to get a better tracking position of the targeted object. The projection model 

works well in the related experiments. Furthermore, when compared with other 

popular methods, the proposed tracking method grounded on the projection 

model is demonstrated to be more effective to accommodate the fast motion and 

achieve better tracking performance to promote robotic autonomy. 

Keywords: object tracking, correlation filter, multi-camera, multimodal target 

detection, projection 

1 Introduction  

Object tracking plays an important role in the field of computer vision. It can be used 

in video surveillance, human-robot interaction, augmented reality, etc. While a great 

many tracking algorithms have been proposed and improved constantly, challenges 

caused by background clutter, fast motion, occlusion and other factors still exist. 

In recent years, a lot of research works focus on two kinds of trackers: correlation 

filter-based tracker and deep learning-based tracker. Correlation filters use circulant 

matrix to conduct dense sampling and improve computational efficiency by explor-

ing matrix theory and kernel trick in the frequency domain [9, 10]. Correlation filter-

based methods are steadily improved from aspects of color information [4], back-

ground information [10], unwanted boundary effects [5] and scale variation [3, 6]. 

Deep learning-based trackers, such as Modeling and Propagating CNNs in a Tree 
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Structure for Visual Tracking (TCNN) [12] and Multi-Domain Convolutional Neural 

Networks (MDNET) [17], succeed in getting high-level semantic information while 

the heavy computational load constrains their development. 

Even though many nontrivial works have been done, there are still certain flaws. 

Almost all present trackers are based on monocular camera systems and recognized as 

single camera tracking (SCT). This indicates that we can get the information about the 

object from only one perspective. Once the object moves faster than the tracker can 

accommodate, total tracking loss may occur. In order to alleviate or further solve the 

problem, this paper proposes a novel probabilistic projection model for multi-camera 

object tracking based on two Kinects. The fast discriminative scale space tracking 

(fDSST) algorithm is conducted separately in two simultaneous videos. After each 

train-detection cycle, we use multimodal target detection to estimate whether the ob-

ject is lost or not. If loss happens, the probabilistic point projection derived from the 

information of the other Kinect is adopted to choose a better tracking posi-tion. 

The structure of this paper is as followed. Section 2 demonstrates the related work 

including a brief description of CF-based trackers, inter-camera tracking (ICT) and 

probabilistic models used in robotic area. Section 3 gives the formulation about 

fDSST algorithm. Section 4 gives probabilistic projection model for two Kinects. Sec-

tion 5 proposes the framework of multi-camera tracking. Experiments are described in 

section 6 followed by a conclusion in section 7. 

2 Related Work 

Object tracking algorithms using correlation filter can be traced back to the article [1] 

published in 2010 by David S. Bolme et al. The basic idea is that the similarity of two 

functions can be revealed by their cross-correlation. The filter is called Minimum 

Output Sum of Squared Error (MOSSE) filter and its tracking speed reaches 669 

frames per second (fps). It is well known that better tracking performance requires 

more samples. But computation of extensive samples will reduce efficiency. This 

problem is solved in the literature [10], where João F. Henriques et al. speed up the 

computing by using the matrix property of circulant matrix in the frequency domain. 

In case of dense sampling, it still retains a speed of more than 300 fps. Then Dual 

Correlation Filter (DCF) which expands the one-dimensional grayscale feature into 

multi-channel features and further advances the tracking results is proposed in [9]. 

Martin Danelljan introduces color features[4] into correlation filter on this basis. The 

color information is divided into 11 directions, so that the image information input of 

this algorithm is richer than the previous grayscale features and histogram of oriented 

gradients (HOG) features. The Spatially Regularized Discriminative Correlation Fil-

ters (SRDCF) algorithm is an extension of DCF. The DCF suffers the boundary prob-

lem caused by cyclic samples. Accordingly, the regularization term (originally is a 

con-stant multiplied by the filter) is improved in [5] and replaced by a position-

dependent function multiplied by the filter. The Continuous Convolution Operator 

Tracker (C-COT) [6] uses the correlation filter and adopts an implicit interpolation 

model to pose the learning problem in the continuous spatial relation and thus obtains 



a continuous response function to achieve sub-pixel localization. Although C-COT 

won the cham-pionship in VOT2016, its performance is far from complying with real-

time con-straint. Therefore, in 2017, the Efficient Convolution Operators (ECO) [3] 

for tracking as an accelerated version of C-COT is published. It improves C-COT 

from three main aspects: the dimension of the original feature channel is reduced; the 

generation model is improved; the update mechanism is advanced. 

Presently, multi-camera tracking applications mainly concentrate on pedestrian de-

tection, traffic monitoring, smart rooms, etc. [2,8]. In these applications, multiple 

targets are often tracked at the same time, and the perspectives do not or partially 

overlap between cameras in order to obtain a larger field of view. 

The problem of coordinate conversion between two-dimensional point in camera 

pixel coordinate system and three-dimensional point rises. It is mentioned in the liter-

ature [13] that the traditional stereo dual-camera system requires the distance be-

tween two cameras within a certain range. Only in this way can the two simultaneous-

ly obtained images of the same scene have enough matching points that the depth 

information can be solved correctly and accurately. The second Kinect in this article 

is chosen to shoot at another angle in order to obtain more information. So, it is im-

possible to reconstruct the same scenario by simply using traditional binocular vision 

method. The problem of obtaining three-dimensional coordinates from two-

dimensional images is considered in robotic grasping with a probabilistic model in 

[14]. In [14], two images of the same object are captured from different positions by 

the same camera to obtain the three-dimensional coordinates of grab point. The pub-

lished error is within 4cm. In this paper, considering that Kinect can get depth infor-

mation, the probabilistic model is used to obtain the three-dimensional coordinates of 

the target point. 

3 A Brief Description of fDSST 

The target sample x  consists of a d-dimensional feature vector ( ) dx n R , at each 

location n  in a rectangular domain. We denote the feature channel  1,...,l d  of 

x  by 
lx . The objective is to construct a correlation filter h  consisting of one filter 

lh  per feature channel. This is achieved by minimizing the L2 error of the correlation 

response compared to the desired correlation output g, 
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Here,  denotes circular correlation. The second term in (1) is a regularization 

with a weight parameter  . 

The filter that minimizes (1) is given by 
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Here, the capital letters denote the discrete Fourier transform (DFT) of the corre-

sponding quantities. The bar denotes complex conjugation. 

The numerator 
l

tA  and denominator 
l

tB  of the filter 
l

tH  with a new sample 
tx  

are defined as follows 
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Here, the scalar   is a learning rate parameter. The DFT of the correlation scores 

ty  is computed in the frequency domain 
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The test sample 
tz  is extracted using the same feature representation of training 

samples. The estimate of the current target state is obtained by finding the maximum 

correlation score. 

Based on multi-channel discriminative correlation filters given above, fDSST 

learns separate discriminative correlation filters for translation and scale estimation 

and reduces the feature dimension using Principal Components Analysis (PCA).  

 

 
 

Fig. 1. Linear model of a camera 
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4 Probabilistic Projection Model between Two Kinects 

4.1 Projection Theory and Coordinate System Conversion  

An ideal imaging model for a camera is normally linear for both simplicity and ef-

ficiency. The principle of linear imaging is depicted in Figure 1. 

The target point ( )w cP P  , the point P  on the image plane and the optical center 

of the camera 
cO are collinear. An imaginary world coordinate system 

w w w wO X Y Z−   is used to describe the position information of objects in space. 

c c c cO X Y Z−   denotes the camera coordinate system. The optical center of the cam-

era
cO  is defined as the origin of the coordinate system. The distance from the optical 

center to the image plane is f , the focal length of the camera. The pixel coordinate 

system is expressed as 
tO UV− . The upper left corner of the image is the origin and 

the basic unit of this coordinate system is pixel. Each image pixel is actually a small 

rectangle and its physical size is recorded as ,dx dy . 
1O XY−  is the physical coor-

dinate system which takes the center point of the image as the origin and millimeter as 

the basic unit. The coordinates of 
1O  in the 

tO UV−  coordinate system is 

( )0 0,u v  . It is assumed that the coordinates of any spatial point in the world coordi-

nate system and camera coordinate system can be respectively expressed as 

( ), ,w w wx y z  and ( ), ,c c cx y z . The conversion between the coordinates of the same 

spatial point in the world coordinate system and the pixel coordinate system of the 

image can be derived [18]: 
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For camera0, 0 0,R T  respectively represent the rotation matrix and translation vec-

tor of the camera coordinate system relative to the space coordinate system. And for 

camera1, 1 1,R T represent the same parameters. Hence, we can get: 
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Therefore, the rotation matrix and translation vector between two camera coordi-

nate systems can be obtained by: 
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4.2 Probabilistic Projection Model for Two Kinect System 

 From section 4.1 and section 4.2, the coordinates ( ), vu   in the pixel coordinate 

system of the image can be easily obtained if the coordinates ( ), ,w w wx y z   in the 

world coordinate system of the correspondent spatial point are known. Since two 

Kinects are used as image sensors in this paper, RGB images and depth information 

can be attained at the same time which enables us to get the 3-D coordinates of certain 

point in the 2-D image. In this way, the coordinates of this 3-D point can be projected 

to the coordinates in the pixel coordinate system of any other calibrated camera. 

Here, the problem is how to get proper and accurate information of the coordinates 

in the world coordinate system. Since the rectification between RGB and depth imag-

es from a Kinect usually leads to some non-numeric points in the rectified depth im-

ages, we apply a novel probabilistic model for the depth offered by depth image. 

It is assumed that, even though error exists in the rectified RGB and depth images, 

the coordinates of depth value closer to the chosen RGB point ( ), vu  are more likely 

to be the true depth value of the point. Then the two-dimensional Gaussian distribu-

tion is used to represent the possibility of the depth value at certain positions to be the 

true depth value, which can be written in: 
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where D  denotes the depth image, ( ), vD u denotes the depth value directly get 

from the coordinates ( ), vu  in the depth image D ,  ˆ ˆ, vu are random variables obey-

ing two-dimensional normal distribution and can be expressed as: 

 ( )2 2

1 2
ˆ ˆ, v N , , , ,u u v    . (9) 



( )ˆ ˆ, v 1z u = denotes that ( )ˆ ˆ, vD u is the true depth value of the point ( ), vu  in 

RGB image, and ( )ˆ ˆ, v 0z u = otherwise. Then the expectation of the true depth value 

of the point ( ), vu  in RGB image can be calculated in: 

 ( ) ( ) ( )( )
ˆ ˆ,v

ˆ ˆ ˆ ˆ( , ) , v , v 1|
u

E D u v D u P z u D= = . (10) 

Noted that, for certain coordinates ( )ˆ ˆ, vu , if the value ( )ˆ ˆ, vD u  equals 0 (out of 

Kinect detection range) or is non-numeric, we specially define 

 ( )( )ˆ ˆ, v 1| 0P z u D= = . (11) 

And this will result in  

 ( )( )
ˆ ˆ,v

ˆ ˆ, v 1| 1
u

P z u D=   (12) 

and the calculated depth will be smaller than the actual value. 

We remedy this problem by changing the expectation equation like 
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5 Multi-Camera Object Tracking Framework 

Our multi-camera object tracking method runs fDSST separately on each Kinect. 

The difference between traditional tracker and ours is that the multimodal target de-

tection [15] is introduced as the criterion for judging whether the target is lost or not 

and when the projection process is needed. For example, when the camera0 finds that 

the ratios between multiple peaks to the highest peak of the correlation scores ,transty  

are greater than a predefined threshold  , the loss of the targeted object is inferred. 

Then, the coordinates 
tproj  projected from the other camera (camera1) to the pixel 

coordinate system of camera0 is calculated. The algorithm will re-detect the response 

,transtyproj  at that point, compare its maximum with that of ,transty  and choose the 

higher one for the translation vector calculation. The original fDSST algorithm is 

followed subsequently to estimate the scale and update translation filter model and 

scale filter model. 



6 Experimental Results 

6.1 Experiments for Projection 

Based on the theories in Section 4, MATLAB stereo calibration app is used to get 

inner parameters and inter parameters between two Kinects. To ensure the effective-

ness and robustness of our projection method, experiment is conducted on 10 pairs of 

random matching points. Firstly, the actual coordinates of each pair of points are la-

belled manually. Then, the Euclidean distance between the actual coordinates and the 

calculated coordinates is used as error criterion. The results are compared with that of 

traditional projection methods. All specific data is shown in table 1 and is in pixels.  

Table 1. Projection Results of Traditional Method and Ours 

From the table above, there are two non-numeric results represented by NaN after 

using traditional projection method. This is directly due to the non-numeric depth 

value at the point in Camera0. As for our probabilistic projection method, the problem 

of invalid depth value caused by rectification of Kinect is completely avoided. The 

projection result for every point is achieved successfully. In order to compare results 

quantitively, the root mean square (RMS) of error, excluding the invalid results, of 

traditional projection method is 9.99 pixels while the correspondent one of our proba-

bilistic method is 9.57 pixels. This proves that our method has a slight improvement 

in accuracy and is much more robust compared to the traditional projection method. 

Since the distance between projection results and true positions of our method 

maintains within 15 pixels, it can certainly meet the tracking requirement according to 

the common size of target which is bigger than 40 *40 pixels. With such acceptable 

error range, the projection result will be within the target window. 

Coordinates get 

manually 

Traditional 

Projection 

results 

Distance(error) 

Probabilistic 

Projection 

results 

Distance(error) 

of Our Mathod 
Camera0 Camera1 

(136,246) (385,377) NaN NaN (136,241) 4.53 

(147,225) (409,418) (139,218) 9.92 (136,218) 12.35 

(144,221) (407,428) (130,213) 15.69 (131,213) 14.84 

(142,211) (407,438) (126,209) 15.57 (153,206) 12.35 

(405,304) (130,295) (400,308) 6.36 (400,307) 5.70 

(121,251) (385,379) (122,141) 10.11 (123,241) 10.31 

(188,271) (517,345) NaN NaN (184,258) 12.98 

(448,238) (191,356) (443,241) 6.10 (443,241) 6.10 

(402,305) (133,294) (402,307) 2.55 (402,307) 2.55 

(304,416) (115,220) (299,416) 5.02 (299,416) 5.02 

RMS of distance (excluding data 

contains NaN) 
9.99  9.57 

RMS of distance (all data) NaN  9.60 



6.2 Benchmark Building and Evaluation 

To validate the effectiveness of our proposed tracking method, a dataset including 

4 pairs of video sequences is built by two Kinects sensors. Each pair of sequence has 

two RGB videos and two sets of depth information. All target positions at each frame 

in RGB images are annotated using rectangles. The manual annotations are treated as 

the ground-truth to evaluate the methods performance. Each of the recorded video 

sequences faces several challenges such as occlusion, out-of-plane rotation, in-plane 

rotation, out-of-view, background clutter, deformation and scale variation. Some of 

the frames are illustrated in Fig.2. 

 

Fig. 2. Demonstration of video sequences in our datasets 

The data were captured by two Kinect v1.0 cameras. The resolution of output RGB 

image is 480 *640 pixels and the depth information is rectified to the same size as the 

RGB image. The frame rate is 25 fps. 

All tracking parameters are set the same as in [7]. As for multimodal target detec-

tion, the parameter is set as [15]. 

Since this is a real-time tracking system, the comparison confined within the re-

sults of several algorithms with high speed like CN [4], KCF [9], CA-SAMF [11], CA 

-DCF [11] and fDSST [7].  

Two tracking evaluation metrics, success rate and precision rate proposed in [16] 

are employed with one-pass evaluation (OPE). The success rate measures the inter-

section over union (IoU) between the ground-truth and tracking results. Area Under 

the Curve (AUC) of success plots is used to rank the trackers. The precision rate is 

defined as the distance error between the estimated target center and the ground-truth. 

Trackers are ranked in terms of the distance error at a threshold of 20 pixels. 



   

Fig. 3. The success rate plot and the precision plot 

 

Fig. 4. Overlap curve of the sequence ‘toy car’ from camera0 

6.3 Empirical results 

Because of the challenging characteristics of our locally captured videos, all trackers 

fail to track the object without intervention. Some failure instances are caused by 

occlusion while others are mostly affected by fast motion. It is promising to see that 

the proposed method can alleviate these problems to some extent, reflected by the 

success rate plot and the precision plot shown in Fig.3. Compared with all the other 

trackers, our tracker ranks the first place in both evaluation plots. 

As for precision plot, our method outperforms other algorithms from very begin-

ning. Among all algorithms for comparison, KCF is proposed earliest and is often 

used as a baseline. CN tracker puts the color information into consideration. When all 

trackers can catch up with the object, this tracker can easily figure out background 

and choose a better center of the target window. The CA-SAMF and CA-DCF use the 

context information as negative samples to cope with the challenge of cluttered back-

ground. While they may not get the most accurate position of the target because of the 

negative effect of certain context, they can get better tracking performance than KCF 

tracker overall. Our method is based on the fDSST algorithm. The fDSST is also a 

correlation filter tracker that especially joints a scale correlation filter with a transla-

tion filter. When the scale of the object changes, our method can change the window 



size for better adaptation under the incorporated background information. As a result, 

our method achieves better performance than the rest. 

In the plot of success rate, our method outperforms significantly at the overlap rate 

of 0.5. This means that our method catches up with the object in more frames than 

other algorithms. This result also owes to the advantages of fDSST algorithms, since 

the scale space filter can improve the overlap effectively. And it is intuitive that the 

projection strategy assists in catching up with a fast moving object. 

In Fig.4, the overlap curve of the sequence ‘toy car’ from camera0 is demonstrated. 

Near the 203rd frame, there is an obvious drop of overlap for all other algorithms, 

while an overlap of about 0.5 remains for the following 40 frames by using our meth-

od. The video is finally checked manually and we find that there is a frame where the 

object moves so fast and changes its appearance so rapidly at the same time, that none 

algorithm succeeds to catch up with it. The projected coordinates used in our method 

successfully update the model after the multimodal target detection works and finish 

the tracking task.  

7 Conclusion and Discussion 

In this paper, a novel probabilistic projection model for multi-camera object track-

ing based on two Kinects is proposed. The multimodal target detection is combined 

with the multi-camera object tracking method and further fuses information from two 

Kinects by projecting points between them. The probabilistic projection model 

achieves satisfactory experimental results with robustness and it can be further used in 

robotic vision and control to promote autonomy of robots or robotic systems. Experi-

mental results also demonstrate that our method outperforms other algorithms and 

helps alleviate the problem of tracking during fast motion. However, there is still 

improvement to be done such as fusing the information from two Kinects to predict 

out-of-view in the future work. 

References 

1. Bolme, D. S., Beveridge, J. R., Draper, B. A., & Lui, Y. M. (2010, June). Visual 

object tracking using adaptive correlation filters. In Computer Vision and Pattern 

Recognition (CVPR), 2010 IEEE Conference on (pp. 2544-2550). IEEE. 

2. Chen, W., Cao, L., Chen, X., & Huang, K. (2014, October). A novel solution for 

multi-camera object tracking. In Image Processing (ICIP), 2014 IEEE Internation-

al Conference on (pp. 2329-2333). IEEE. 

3. Danelljan, M., Bhat, G., Khan, F. S., & Felsberg, M. (2017, July). ECO: Efficient 

Convolution Operators for Tracking. In CVPR (Vol. 1, No. 2, p. 7). 

4. Danelljan, M., Shahbaz Khan, F., Felsberg, M., & Van de Weijer, J. (2014). 

Adaptive color attributes for real-time visual tracking. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition (pp. 1090-1097). 



5. Danelljan, M., Hager, G., Shahbaz Khan, F., & Felsberg, M. (2015). Learning 

spatially regularized correlation filters for visual tracking. In Proceedings of the 

IEEE International Conference on Computer Vision (pp. 4310-4318). 

6. Danelljan, M., Robinson, A., Khan, F. S., & Felsberg, M. (2016, October). Be-

yond correlation filters: Learning continuous convolution operators for visual 

tracking. In European Conference on Computer Vision (pp. 472-488). Springer, 

Cham. 

7. Danelljan, M., Häger, G., Khan, F. S., & Felsberg, M. (2017). Discriminative 

scale space tracking. IEEE transactions on pattern analysis and machine intelli-

gence, 39(8), 1561-1575. 

8. Ge Dongyuan, Yao Xifan, & Li Kainan. (2010). Calibration of Binocular Stereo 

Vision System. Mechanical Design and Manufacturing, 6(6), 1-2. 

9. Henriques, J. F., Caseiro, R., Martins, P., & Batista, J. (2015). High-speed track-

ing with kernelized correlation filters. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 37(3), 583-596. 

10. Henriques, J. F., Caseiro, R., Martins, P., & Batista, J. (2012, October). Exploiting 

the circulant structure of tracking-by-detection with kernels. In European confer-

ence on computer vision (pp. 702-715). Springer, Berlin, Heidelberg. 

11. Mueller, M., Smith, N., & Ghanem, B. (2017, July). Context-aware correlation fil-

ter tracking. In Proc. of the IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR) (Vol. 2, No. 3, p. 6). 

12. Nam, H., Baek, M., & Han, B. (2016). Modeling and propagating cnns in a tree 

structure for visual tracking. arXiv preprint arXiv:1608.07242. 

13. Saxena, A. (2009). Monocular depth perception and robotic grasping of novel ob-

jects. STANFORD UNIV CA DEPT OF COMPUTER SCIENCE. 

14. Saxena, A., Driemeyer, J., & Ng, A. Y. (2008). Robotic grasping of novel objects 

using vision. The International Journal of Robotics Research, 27(2), 157-173.  

15. Wang, M., Liu, Y., & Huang, Z. (2017, July). Large margin object tracking with 

circulant feature maps. In Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, Honolulu, HI, USA (pp. 21-26). 

16. Wu, Y., Lim, J., & Yang, M. H. (2015). Object tracking benchmark. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 37(9), 1834-1848. 

17. Zhang, Z., Xie, Y., Xing, F., McGough, M., & Yang, L. (2017). Mdnet: A seman-

tically and visually interpretable medical image diagnosis network. 

In Proceedings of the IEEE conference on computer vision and pattern recogni-

tion (pp. 6428-6436). 

18. Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transac-

tions on pattern analysis and machine intelligence, 22. 


