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Abstract— The spatial resolution of a Digital Elevation Model
(DEM) plays a crucial role in many practical remote sensing
applications. However, it is normally limited by the spatial
resolution of the raw input imagery, from which a DEM is
derived. One solution to enhance the limited resolution of a
DEM during the post-processing, is fusing previously obtained
high resolution DEM data. This data-driven approach appears
particularly promising, considering the recent success of a
deep convolutional network in single image super resolution
(SISR). In this paper, we propose a new SISR network that
can recover a high resolution DEM. Instead of configuring a
single network directly mapping low resolution depth values
to high resolution depth values, we propose a new model
consisting of 3 subnetworks, i.e. a) extracting feature maps;
b) inferring the high frequency details; c) refining the result
combining the low resolution input with the details from b).
This is similar to LapSRN [1] in that both adopt a Laplacian
image pyramid to model the scaling process in SISR. However,
the proposed method implements a much deeper subnetworks
efficiently with multiple recursive feedback and feedforward
connections, and an additional Laplacian of Gaussian (LoG)-
based loss function help to produce more effective training
results. In this research, we also produce a high quality DEM
dataset obtained from optical and lidar sensors, from satellites
and aircraft respectively, covering different scenes found in
remote sensing applications. Our experiments demonstrate that
the proposed model performs better than other standard deep
SISR models in terms of the training convergence and the Peak
Signal to Noise Ratio (PSNR) of a reconstructed DEM.

I. INTRODUCTION

A digitised image generally surfers from a range of signal
distortions, including the aliasing effect from a sampling
process, the noise from an optical sensor, and the blur effect
from the lens aberration and the sensor motion [2]. Therefore,
recovering a higher resolution image from a degraded single
or a sequence of low resolution images is a complex and
ill-posed problem.

One obvious solution for increasing the spatial resolution
is simply integrating more optical sensors, however there is
a physical limitation for the pixel size to avoid the shot noise
[3]. In addition, considering extreme operating conditions of
a remote sensing vehicle, changing hardware specification is
not always feasible. Thus, the cost of high resolution terrain
models is generally high even simply for the visualisation
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purpose, as they are often derived products requiring more
than 2 high resolutions satellite images.

Due to the growing demand of geospatial raster products, a
range of techniques has been applied to remote sensing data,
since the beginning of the Super Resolution (SR) research
[4]. Although there are many mission-specific or sensor-
specific Multi-Image Super Resolution (MISR) solutions [5],
[6], [7], [8], recent trends show that learning based SISR is
more preferable due to cost and access to data [9], [10], [11],
[12]. The proposed approach is in line with the learning-
based SR approach. However, instead of enhancing raw
satellite imagery, our interest is enhancing its derived prod-
ucts, i.e. DEMs. Having a sensor independent SR model is
particularly useful for developing a unifying post-processing
pipeline. Also, it makes easier to collect sample data, given
that many publicly available DEMs are produced from vari-
ous sensor types, such as synthetic aperture radar, lidar, and
stereo imagery.

Since a DEM is a 2D float depth map, some SR techniques
developed for image restoration can be directly applicable.
However, it should be noted that the variance of height
values is more significant than that of a 8-bit image. Fur-
thermore, the linear models describing the distortion of the
image digitisation is no longer valid. More interestingly the
details required for a high resolution (HR) depth map are
significantly different depending on scene types; e.g. many
artificial objects found in an urban scene should need sharp
depth transitions after rescaling, whilst the depth values in
natural scenes are relatively smooth. Therefore, we need
a highly non-linear mapping function that can understand
the surrounding scene for recovering a HR depth map. To
address this, we develop a deep SISR model optimised for
the depth map enhancement. Motivated by LapSRN [1], the
proposed method adopts a Laplacian image pyramid but
we implement much deeper structure more efficiently using
multiple skip connections, and additional LoG based loss
helps to recover the sharp depth discontinuities.

To understand the details, this paper will briefly review
some key deep SISR models in Sec. II. In the following sec-
tion, we also explain our design idea, data augmentation, and
loss functions. Some experimental results obtained during the
tests are presented in Sec. IV, followed by our conclusions
and future work in Sec. V.

II. RELATED WORK

Since the recent success of Convolutional Neural Net-
works (CNNs) in general image classification [13] and object
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detection [14], it has been applied to many classic image pro-
cessing applications and demonstrated superior performance
over existing solutions.

One way to understanding how a CNN works is seeing
it as layers of special non-linear image filters, consisting
of convolutions with small kernels (e.g. 3×3) followed by
thresholding using a sigmoid function with the optional
use of max pooling. The clever part of a CNN approach
is that we do not need to specify any filter coefficients
manually. Instead, we can simply configure the network
topology and let it estimate the best filter coefficients by
itself from the training data. Although the training process
often sounds very challenging due to the large number of
unknowns and the complex network topology, it can be
solved effectively with standard gradient-based optimisation
methods in a parallel computing environment. Furthermore,
many training techniques developed for neural networks
(e.g. stochastic gradient decent, batch normalisation) can be
transferred to help facilitate the process.

The first successful CNN model for SISR is SRCNN
[15]. In this approach, the SR problem is posed as a non-
linear image mapping, which needs to map a set of the
image features from convolutional filters to the pixel values
for a higher resolution image. To simulate these processes,
SRCNN is configured with a 3-layer CNN for the initial
feature extraction, the non-linear mapping, and final channel
reduction. The authors also report that this simple structure is
closely related to a sparse representation approach [16], [17]
with a different non-linear mapping strategy. However, the
shallow structure of SRCNN is not sufficient to address the
strong depth variation observed in urban DEMs and generally
produces over smooth results.

Although the number of trainable parameters in a SRCNN
is small, there is still room for further optimisation for real
time video processing. Fast SRCNN (FSRCNN) proposed by
Dong et al. [18] argues about the initial bicubic interpolation
applied to a low resolution (LR) input in SRCNN, which
can slow down the feature extraction process. Instead, they
directly extract small feature maps and then recover a desired
spatial resolution using transposed convolutional layers later
[19]. Shi et al. also point the same speed issue caused by
the interpolated input image in SRCNN, but they address
it differently by using sub-pixel convolution layers, which
reshuffles the low resolution feature maps in a specific order
to fill the desired resolution [20].

The performance of CNNs generally depends on the
number of layers; in general the more (i.e. deeper) layers
the better the performance. However, a deeper CNN also
increases the risk of overfitting, and the increased number
of unknown parameters in a deeper network makes the
training process much longer and requires more training
samples. One solution for configuring a deeper SR network
whilst maintaining the number of trainable parameters low,
is reusing the same convolutional layer recursively. This
Recursive CNN (RCN) can also reflect more contextual
information from a larger scale because the recursion of the
same filter is effectively equivalent to applying a sequence of

filters with gradually increasing kernel size. Deeply recursive
RCN (DRCN) proposed by [21] implements this idea for
SISR, and resolves the training stability issue caused by a
RCN with higher recursions.

Another interesting trend in deep learning over the past
few years is creating a deeper network using a residual
network (ResNet), which is a subnetwork constructed by an
additional skip connection between every few CNN layers.
He et al. demonstrate that a simple skip connection can
effectively tackle the gradient vanishing/exploding problem
observed in a deeper network [22]. Many recent deep SISR
models adopt the ResNet idea and report the improvement of
the training stability and prediction performance [23], [24].
Amongst many ResNet-based deep SR networks, the work
from Ledig et al. (called SR-GAN) [25] draws particular
interest from the community, as it combines a ResNet struc-
ture with an adversarial training framework. Lately, Lim et
al. propose a more optimised version of the ResNet structure
for SR in their Enhanced Deep Residual networks for SISR
(EDSR) which won the NTIRE2017 SISR challenge [26].

Laplacian SR Networks (LapSRN) [1] are also an intrigu-
ing development in the recent deep SISR literature. Unlike
the previous deep SR methods, this model is developed to
deal with a large scale change using two parallel networks
mimicking a Laplacian image pyramid. For example, the
feature extraction branch of LapSRN is designed to produce
high frequency details from feature maps, whilst the image
reconstruction branch is designed to produce a scaled up
image by merging them. The authors also mention that the
potential of recursive layers sharing the same parameters in
deep SISR networks.

When developing SISR for DEMs, we try to adopt the
various features of the recently developed deep SISR archi-
tectures. We notice a strong link between LapSRN and the
ResNet structure. For example, the skipping connection used
in the ResNet enforces the network to learn the difference
between an input and an output (i.e. high frequency image
difference). Similarly, LapSRN is required to learn the high
frequency image components (i.e. image difference) from
the feature extraction network. Based on this observation,
we adopt an interpolated skipping connection, which can
combine the advantage of the ResNet and the LapSRN used
in SISR. The proposed model also adopts the RCN idea
to implement a deeper network for feature extraction, and
an additional feedforward connection is used in the final
refinement network similar to EDSR.

III. PROPOSED METHOD

A. Network configuration

The first LoGSRN model (see Fig. 1a) developed in
our test is motivated by the simple SRCNN structure. In
this initial model (called LoGSRN-α), we construct two
subnetworks; one for feature extraction from DEMs and
another for non-linear mapping from the extracted features
to the height values of an enlarged DEM grid, respectively.

Compared to SRCNN, there are three additional features
in LoGSRN-α. For example, the subnetwork for the feature
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(a) LoGSRN-α
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(b) LoGSRN-β
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(c) LoGSRN

Fig. 1: Example of LoGSRN and its variants. a letter F and K under a CNN block denote the number of convolutional layers
and the size of a filter kernel, respectively: (a) an alpha version of LoGSRN employing an interpolated skip connection and
a recursive network; (b) a beta version of LoGSRN including additional RCN unit motivated by a standard ResNet structure
and more refinement CNNs; (c) Final version of LoGSRN model consisting of 3 subnetworks for extracting feature maps,
inferring LoG for a HR depth map, and final refinement with a skip connection.

extraction (i.e. up to the first feedforward connection point
in Fig. 1a) has a RCN layer to implement a deeper feature
extraction network without incurring too many unknown
parameters. The two feedforward connections (i.e. the in-
terpolated skip connection in the outer loop and the standard
skip connection in the feature extraction) are used to improve
the training stability and enforce the network to learn the
high frequency components implicitly. A batch normalisation
(BN) and a parametric rectification linear unit (PReLU) are
also added to produce sharper depth transition when esti-
mating feature maps. The last subnet of LoGSRN-α (i.e. the
processing blocks from the Efficient SubPixel Convolutional
Network (ESPCN) [20] to the last CNN block in Fig. 1a) is
scaling the extracted feature maps before merging them with
an interpolated depth map.

To maximise the benefit of the increased depth generated
by the RCN, the beta version of LoGSRN (see Fig. 1b)
includes a post-RCN unit in the feature extraction (see the
second RCN unit after the PReLU block in Fig. 1b). This
design change resembles a standard ResNet structure which
is constructed by a sequence of CNN-BN-ReLU-CNN [22].
The additional CNN in the interpolated skip connection
makes LoGSRN-β closer to the image reconstruction branch
of LapSRN, and this could be more beneficial particularly
when there is stronger signal distortion in a LR depth map.

In the final version (see Fig. 1c), we develop a model
containing 3 subnetworks. The purpose of each subnet can
be summarised as a) extracting feature maps, b) inferring

the high frequency details (i.e. the required details for a
HR depth map), and c) final refinement, respectively. The
purpose of the first two subnets (i.e. up to the third CNN
block in Fig. 1c) is in essence translating a LR depth
map to HR LoG values. The second subnet (i.e. from the
transposed CNN block to the third CNN block in Fig. 1c)
is the same as the last subnet of the previous versions
except that the ESPCN is now replaced with a transposed
convolutional layer. This change has been implemented as we
found that ESPCN is prone to producing the block artefacts
from the shuffling of the feature maps from the zero-padded
interpolation (see the first two SRCNN results in Fig. 2). We
also attach a final ResNet block which will be used to refine
the merged depth map combining the interpolated LR depth
map with HR LoG estimation.

B. Loss functions

For a loss function for LoGSRN-α and LoGSRN-β, we
use a standard Mean Square Error (MSE) of the depth
difference between the estimation and the true depth value,
i.e.

ldepth(X ,Y; ~θ) =
1

|X |
∑
~xi∈X

|~yi − f(~xi; ~θ)|2, (1)

where X and Y respectively represent a set of LR depth maps
and the corresponding HR depth maps in a mini batch, and
f(~xi; ~θ) is a prediction function that produces an estimated
HR depth map from a LR depth map ~xi with the trainable
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Fig. 2: Example of deep SR reconstruction results for natural, suburban, and urban scenes

network parameters ~θ, i.e. ideally a well trained model should
be able to produce f(~xi; θ) ' ~yi.

The above MSE loss generally works well and produces
high PSNR. However, it is not sufficient at times capturing
the abrupt depth changes in many artificial structures in a
unban scene. To improve the sharpness of a scaled depth
map further, we add an additional LoG based loss function
in the final model, such that

lLoG(X ,Y; ~θ) =
1

|X |
∑
~xi∈X

|∇~yi − g(~xi; ~θ)|2. (2)

The function g(·) in (2) represents the high frequency details
estimated by the proposed LoGSRN (i.e. the result before
merging with the interpolated skip connection in Fig. 1c).
Thus, what (2) does is explicitly comparing the estimated
high frequency details against the LoG of yi (i.e ∇~yi). This
makes the first two subnets of the proposed LoGSRN simu-
late the scaling process of a Laplacian pyramid explicitly.

The combined loss for LoGSRN is defined as the weighted
sum of two losses. i.e.

l(X ,Y; ~θ) = λldepth(X ,Y; ~θ) + (1− λ)lLoG(X ,Y; ~θ), (3)

where λ is a weighting coefficient between 0 and 1, and
λ = 0.95 was used in our experiments. We also approximate
∇~yi in (2) as the Difference of Gaussian (DoG) to simplify
the computation.

C. Depth DB and data augmentation

To train and validate the proposed models, we construct a
new depth DB. Raw DEMs produced from different missions
and different sensors are collected to increase the variation
within the training samples.

The spatial resolution of the raw DEMs ranges from 0.25m
to 1m, and captures various topological features from natural
(e.g. river, field, mountain - see the HR images of the first
two rows in Fig. 2) and urban scenes (e.g. road, building
- see the HR images of the last two rows in Fig. 2). To
populate samples from urban scenes, we used DEMs from
London (0.5m, lidar), and a subset of Didcot (1m, lidar)
and Bath (0.25m, optical sensor) in the UK, whilst DEMs
from Yorkshire (1m, lidar) and Region Four in Chile (1m,
satellite stereo imagery) are collected for covering natural
scene. The rest of the Bath and the Didcot data defines
suburban scenes, which are similar to natural scenes but
contain sparse artificial structures.



Since the proposed system is designed to return a 64×64
depth map from a 32×32 depth map, we initially subdi-
vide each raw DEM into 64×64 depth patches and apply
downsampling to populate smaller training samples. A small
Gaussian blur is added dynamically during the training to
improve the generalisation of the trained model, and the
higher resolution raw DEMs from the Bath and London are
normalised to 1m resolution using a simple sampling process
before the image cropping process. The resulting depth
patches are also filtered during the preprocessing, so that
we can remove the patches containing too many unknown
values from the previous DEM production process. Raw
DEMs with strong visible artefacts (e.g. the stitching pattern
from the ortho-rectification or the mosaicking process) are
also excluded. In the final DB, we have collected 119,816
training patches and 1,210 testing patches1.

IV. EXPERIMENTS

To evaluate the performance of the various SISR models,
this section presents the prediction results and the training
results. The prediction results are obtained from the test
dataset which has never been seen to the model during
the training, so that they are unbiased for evaluating the
generality of the trained models. On the other hand, the
training results are obtained from a larger training dataset
to demonstrate the training stability over the iterations, so
that it helps us to understand training behaviours, e.g. how
quickly a model can converge, and how noisy the training
process can be.

A. Prediction results

For visual comparison, we present some predicted results
from five different deep SR methods in Fig. 2. The first and
the second column of the figure respectively represent HR
depth patches (i.e. ground truth) and the corresponding LR
patches (i.e. input for each method), which is enlarged to
64×64 for visualisation purpose. The images from column
three to seven show the results produced by SRCNN, Lap-
SRN, SRResNet, EDSR, and LoGSRN. In our test, we use
a standard EDSR and SRResNet model having sixteen and
five ResNet units, respectively.

Despite of the smallest number of trainable parameters,
SRCNN (see the third column in Fig. 2) can perform better
than LapSRN (see the fourth column in Fig. 2) particularly
when dealing with the smooth depth transition observed in
most natural scenes (e.g. the first two rows in Fig. 2).

However, we found that LapSRN can reconstruct the
sharper depth transition in the urban scenes better (e.g. the
last two rows in Fig. 2). EDSR and SRResNet show similar
performance in general but the EDSR results often look
slightly better for capturing the high frequency components
in urban and suburban scenes. The proposed method per-
forms best in both natural and urban scenes (see the last

1The raw satellite DEMs used in the creation of the training and testing
depth patches are derived from the satellite imagery (from DigitalGlobe
Products. Imagery 2016 DigitalGlobe, Inc., a Maxar company), and the
lidar data from UK Environment Agency (copyright and/or database right
2015. All right reserved)
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Fig. 3: PSRN with respect to a training epoch: (a) PSNR
comparison with other deep SISR methods; (b) PSNR com-
parison with LoGSRN variants (nb. the result from EDSR is
presented as a baseline)

column in Fig. 2). The results from the other LoGSRN
variants and ESPCN are not included due to the page limit
but the PSNR values of all methods are found in Fig. 3.

B. Training results

In our experiment, we used an Adam optimiser with a fixed
learning rate (i.e. 1e−4). 32 LR depth patches are randomly
selected in each batch. Since the MSE loss (1) is closely
related to PSNR, all models manage to produce good PSNR
convergence (see Fig. 3a) within 100 epochs. In our test, the
worst PSNR was recorded by ESPCN which produces about
70dB after 100 epochs (nb. the potential max value for a 16-
bit depth map is 65535, so that our PSNR is generally higher
than the PSNR observed in a 8-bit image SR problem).

As reported in [26], EDSR performs better than SRResNet
(which is a SR-GAN without the adversarial learning part)
but tends to be more noisy over the time. LapSRN and
SRCNN show similar performance although LapSRN starts
with higher PSNR in the beginning. The best convergence
performance was recorded by the proposed LoGSRN which
can produce about 111dB.

Fig. 3b compares the convergence performance between



other LoGSRN variants. In this test, we add an addition
model called LoGSRN-γ, which has the same architec-
ture as LoGSRN but only uses the MSE loss shown in
(1) to demonstrate the impact of the additional LoG loss.
Interestingly, the performance of LogSRN-β is similar to
EDSR but it shows more stable convergence behaviour.
LoGSRN-α performs similar to LoGSR-γ despite of the
relatively simpler structure, but the best result was achieved
by LoGSRN.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a new SISR network which can be
used to enhance the spatial resolution of depth maps obtained
from various satellite missions. The proposed model (called
LoGSRN) is developed to simulate the scaling process of
a Laplacian image pyramid. This is similar to LapSRN
but the proposed model implements deeper network using
multiple feedback and feedforward skip connections. Our test
results demonstrate that the interpolated skip connection and
additional LoG loss can help to achieve better PSNR, and
the shared weights from the recursive network reduce the
training time for a deeper network.

Although the proposed LoGSRN shows good performance
with a test dataset, we have identified some limitations
and future work for the proposed model. One obvious next
challenge is producing a higher scale depth map beyond ×4.
One solution could be to append the LoGSRN sequentially
as suggested in LapSRN. However, this does not utilise the
similarity between scaling CNNs (i.e. the weights for the
×2 CNN are closely related to that for the higher scaling
CNNs). Therefore, it is worth investigating an efficient
network architecture that can combine all the intermediate
LR results adaptively and feedforward it to the next CNN
layers. Another important question that arises from practical
applications is increasing the size of the input. In theory,
the proposed pipeline can ingest a larger SL depth patch,
because it is a CNN model. However, the visual performance
would not be better if the model is trained only with images
at specific resolution. For the multi-resolution scaling, we
think the hourglass structure used in the image segmentation
could be useful.
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